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Thermal Remediation at Superfund Sites: 
Problem Statement
• Thermal remediation technologies are complex systems.  It is an 

engineering feat to apply energy (electrical, thermal, and/or steam) to 
complex geologic & hydrogeologic settings to achieve uniform heating  
to achieve the target temperature & to recover what are often 
complex mixtures of contaminants.  

• The recovered contaminants then must then be treated aboveground 
to separate them from the air & water that is then discharged.  

• The contaminants can either be destroyed on site (for example, 
thermal oxidation), adsorbed onto activated carbon, or transported 
off site for disposal as a liquid.



Challenges at Thermal Remediation Sites

• Applying energy evenly to the 
subsurface

• Complex geology/hydrogeology
• Surface water
• Low permeability soils
• Deep contamination
• Fractured rock

• Characterization – determining the 
area to be treated

• delineation of NAPL horizontally & 
vertically

• Differentiating between NAPL & 
dissolved phase

• Large amounts of contaminant 
mass to be recovered

• Separating contaminants that have 
been recovered from water & air

• Infrastructure
• Buildings – often still in use
• Railroad tracks
• Abandoned subsurface structures

• Adverse weather conditions
• Power/energy availability



Four types of Thermal Remediation 

• Electrical Resistance Heating (ERH) – electrodes constructed in 
subsurface, current flows through soils, dissipated as heat, 
contaminants volatilized & collected as vapors, for low permeability 
soils

• Thermal Conductive Heating (TCH) – heater wells constructed in 
subsurface, heat is conducted into soils, contaminants volatilized & 
collected as vapors, for low permeability soils

• Steam Enhanced Extraction (SEE) – steam injected into subsurface, 
multiphase extraction used to recover vapors, groundwater, NAPL, for 
permeable soils

• Emerging thermal technology – in situ smoldering combustion (STAR)



Challenge:  Large site, LNAPL to 240 feet below 
ground surface
Former Williams Air Force Base, Mesa, AZ

• Jet Fuel spill, reached depths of 240 
feet below ground surface

• ~410,000 yd3 treatment area 
• 160 – 240 ft bgs

• >2.5 M lbs of petroleum 
hydrocarbons recovered, half as 
LNAPL, rest vapors

• Eductors to recover deep hot 
groundwater & fuel, thermal 
accelerators to destroy vapors, 
recovered fuel recycled
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Challenge:  complex geology, rising water table

• Highly heterogeneous soil 
strata did not stop 
downward migration of 
fuel, but low permeability 
zones trapped LNAPL below 
water table as the water 
table subsequently rose

• Effectively heated by steam 
injection into 3 vertical 
zones over 80 vertical feet
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Challenge:  
Old/incomplete 
characterization of 
extent of LNAPL

• NAPL extended much further 
than known, especially in the 
lowest zone

• 2.5 million pounds recovered

• Estimated that as much 
remains in the ground
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Beede Waste Oil Superfund Site
Plaistow, NH

• Operated from 1926 to 1994, 
blending oils

• Mostly petroleum hydrocarbons, 
mixed with chlorinated solvents

• LNAPL covered approximately 3 
acres

• 90,000 gallons of LNAPL recovered 
by vacuum extraction from 2001 – 
2005

• Steam Enhanced Extraction (SEE) 
chosen due to permeable sands, 
nearby surface water 



Challenge: LNAPL extends to Surface Water

• Beede:  Sheet pile wall 
constructed at northern end of 
thermal treatment area

• Extraction wells outside wall to 
aid in heat & NAPL recovery

• Eastern end of wall should have 
been extended

• Sheet pile joints should have been 
sealed

Sheet pile wall



Challenge: LNAPL Remained after Soil 
Criteria Met

• Positioning pump in MPE wells to 
provide drawdown & LNAPL 
recovery can be difficult

• A few MPE wells in Phase 1 at 
Beede still produce LNAPL (~ 80 
gallons) after soil cleanup criteria 
met

• Solution:  For Phase 2, ‘slurper’ 
system used to recover LNAPL not 
recovered by pumping



NAPL discharged to reinjection basin

• Caused in part by biological 
growth-generated LNAPL-water 
emulsion

• Solution: 
• Add biocides
• Adjust pH, ferric chloride addition
• Additional organoclay filters
• Oily soils excavated from basin for 

proper disposal



Challenge:  Separating NAPL from groundwater

• Jar tests to determine 
additives needed to 
separate NAPL from water



Challenge: Separating Recovered NAPL from Water

• NAPL was able to pass through 
the oil/water separator

• At Beede, additional ~40,000 lbs 
DNAPL was found in oil/water 
separator after project finished

• From the 2 areas treated 
separately ~400,000 lbs recovered



Solvent Recovery Services of New England
Southington, CT

• Operated from 1955 to 1991, 
redistilling ~100M gallons of solvents

• NAPL ~55% TCE by weight, other 
CVOCs, TPH, PCBs

• 2005 ROD selected In Situ Thermal 
Remediation (ISTR) to recover NAPL 
from the overburden, Thermal 
Conductive Heating (TCH) chosen 
due to low permeability soils

• Estimated 500,000 to 2,000,000 lbs 
of NAPL in thermal treatment area



Challenge: Delineating the NAPL Area



SRSNE DNAPL delineation – Visual 
observation, Oil Red O dye testing



Challenge:  Large site, a lot of contaminant mass

Site divided into two phases

Initiate heating of second phase after the peak 
loading to the thermox from Phase 1 had passed



Challenge:  Treating large quantity of 
contaminant above ground

• NAPL had high BTU value
• TCH heating system recovers 

contaminants as vapors
• Strategy was to maintain majority 

of contaminants in vapor phase & 
destroy in on site in thermal 
oxidizer
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NAPL in pre-oxidizer heat exchanger
• NAPL re-vaporized in air stripper, 

caused combustion in pre-oxidizer 
heat exchanger, damaging ‘daisy 
wheel’ at oxidizer inlet

• Solution:
• Added organoclay filter after oil-water 

separator
• Added temperature sensor at oxidizer 

inlet
• Reduced heat exchanger temperature 

set point
• VGAC backup used for 5 weeks



Challenge:  Low permeability soils
Camelot Cleaners, Fargo, ND

• Electrical Resistance Heating (ERH) 
& Thermal Conductive Heating 
(TCH) are both very effective in low 
permeability soils

• Tight, fat clay, little groundwater; 
threatened lower aquifer which 
provides Fargo’s water supply 

• Initial concentrations of PCE as high 
as 2200 mg/kg

• > 5,000 lbs of PCE recovered by ERH

• Of 80 confirmation samples, 57 
were ND, 2 exceeded cleanup goal 
of 3 ppm

20



PCE mass recovery over time
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Very little mass 
removed at ambient 
temperatures

Contaminant mass removal 
rate increases as the 
temperature increases



Montrose Chemical Superfund Site: Large 
contaminant mass

• Top 25 feet is tight soils, 
estimated 237,000 lbs 
chlorobenzene, not being 
addressed

• 25 – 65 feet unsaturated sands 
– estimated 261,000 lbs 
chlorobenzene



Challenge of Large Contaminant Mass 

• 65 – 95 feet saturated lower 
permeability soils – estimated 
473,000 – 780,000 lbs 
chlorobenzene to be recovered by 
Electrical Resistance Heating (ERH)

• Initiated SVE in the vadose zone to 
reduce the mass of contaminants 
that will be recovered during ERH

• To date, 423,000 lbs recovered 
from unsaturated zone, initially 
recovered 380 lb/day, currently 
recovering 185 lbs/day



Challenges: Shallow soil contamination of high 
boiling compounds - Ex-Situ Thermal Desorption
Danang, Vietnam

• Agent Orange, dioxin 
contamination

• Topsoil excavated, 
placed in concrete 
foundation

• Thermal Conductive 
Heating (TCH)
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Challenge:  Surface soil contamination over large 
area
Ex situ thermal remediation of excavated soils
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Challenge – Fractured Bedrock



Loring Quarry: research on steam injection 
(SEE) in fracture rock

• Difficult to impossible to control 
vapors in a complex system

• Now generally TCH used for 
treating fractured rock, entire 
rock matrix is heated

• Where groundwater flow rates 
are high in fractures, SEE better 
to heat the zones where 
contaminants mass is the 
highest



Challenges of Fractured Rock

• Characterization of NAPL distribution and thus defining the area to be treated

• Moving contaminants out of low permeability matrix
• During thermal remediation, pressure buildup due to vapor generation in low 

permeability matrix will force contaminants to higher permeability zones

• Low permeability matrix, low fracture frequency increases the boiling point of 
water/contaminants

• Ensuring capture of vapors and groundwater

• These are also challenges in heterogeneous porous media

• The challenges are not insurmountable – SEE, ERH and TCH have all been applied 
successfully to fractured rock – must match technology to specific site
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Challenge of Characterization – Defining the 
Area to be Treated
• Characterization is critical to the success of Remediation
• Treatment zone depends on objectives, defined by characterization
• NAPL – contaminated
• Soil concentration
• Groundwater concentration



Challenge: Operating under & adjacent to active 
manufacturing facility
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Challenge: Infrastructure - ERH Under Building
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Treating next to occupied house & in operating 
business
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Challenge :  Concrete layers in 
the subsurface

• Old foundations at this former 
chemical plant

• Concrete slabs limited air flow, 
trapped contaminants 

• Heating to the soil surface – 
even with surface cover – can 
be difficult
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Subsidence at Thermal Remediation sites is not 
common, however -
• Subsidence did occur at Camelot 
Cleaners due to the tight, fat clay

• Subsidence has also occurred in 
peat soils

• Remediation done within tent-like 
structure due to cold climate
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Challenge:  Adjacent to or Under Railroad Tracks

• A few soil types can subside 
when heated for remediation: 
fat clays, peat soils

• Other soil types do not subside 
& thermal remediation can be 
used adjacent to & under 
railroad tracks

• Ground was monitored for 
movement during the 
remediation
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Challenge:  Winter Operation in New England

• Diaz:  condensation in above ground 
lines
–Solution: wait for warmer weather 

to start system
• SRSNE:  NAPL condensation under 
cap
–Solution:  Increase insulation of 

cap, increase energy to upper part 
of formation

• Beede: Water lines froze/damaged
–Solution:  heat tracing



Challenge:  Energy Availability
Diaz Chemical Superfund Site, Holley, New York
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• Insufficient natural gas 
available during the winter

• Semi trucks of compressed 
natural gas brought in to supply 
~ 6 MMBTU/hr

• Each truck lasted ~ 1.5 days



Challenge:  Working in Residential Areas

• Odor Monitoring
• Noise Monitoring
• Limit on working hours
• Site security
• Motion sensors
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Groveland Wells Superfund Site



Successful Thermal Remediation requires:

• Good characterization to define the treatment zone, groundwater flow, 
existing infrastructure

• Heat to the boiling point of water throughout the treatment area, including low 
permeability zones
– Use energy balance to ensure all areas are heated

• Collection of mobilized contaminants
• Separation of contaminants from air & water
• Proper disposal/destruction of contaminants
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