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Presentation Outline

• Important mechanisms for enhanced recovery of organic 
contaminants during in situ thermal remediation

•Description of the commonly used thermal technologies
•Brief case studies for each of these technologies
•Q & A
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In Situ Thermal Remediation
Applications
• Aggressive technologies:

– Generally applied to Source 
Zones to Recover NAPL 

– Only in situ technologies 
applicable to NAPLs

• Applicable to VOCs and SVOCs
• Applicable in wide variety of 

hydrogeologic conditions
– Simple and highly 

heterogeneous lithology
– Above and below water table
– Sites with surface structures
– Fractured bedrock

Expected Outcome in 
Porous Media
• Large percentage of mass 

recovered
• Orders of magnitude reductions in 

soil and groundwater 
concentrations

• Orders of magnitude reduction in 
mass flux to downgradient plume

• P&T or Monitored Natural 
Attenuation (MNA) effective for 
remaining dissolved phase & 
downgradient plume

4



Mechanisms for Enhancing Recovery of VOCs 
& SVOCs by Thermal Remediation

• Increasing the temperature:
– Exponential increase in vapor pressure

• For VOCs, vapor pressure increases more than an 
order of magnitude going from ambient temperature 
to 100°C

– Exponential decrease in viscosity of water and NAPL
• Most significant for viscous NAPLs

– Increased solubility of contaminants
• Increased rate of solubilization

– Decreases adsorption
• May also increase desorption rate
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Co-boiling of VOC NAPLs during Thermal Remediation
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• When a VOC NAPL is present with 
groundwater:

• Boiling occurs when the combined 
vapor pressure from the 2 liquids 
equals the local pressure
–Thus, a VOC NAPL boils at 

temperatures less than the boiling 
point of water

–For PCE, which has a boiling point 
of 121C, DNAPL/groundwater boils 
at 88C



The boiling point of water is recommended target 
temperature when remediating VOCs
• When the temperature reaches the 
co-boiling point with water, a volatile 
NAPL cannot exist in the presence of 
groundwater

• Dissolved, adsorbed phase remain, 
groundwater concentration likely 
orders of magnitude above MCLs

• Continue heating to boiling point of 
water to recover dissolved & 
absorbed contaminants

Note less DNAPL seems present 
at bottom of vial
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Thermal Technologies
• Three main technologies in use today:

– Steam Enhanced Extraction (SEE)
– Electrical Resistance Heating (ERH)
– Thermal Conductive Heating (TCH)

• Differ in the means by which energy is added to the subsurface

• Innovative thermal technology: Self-Sustaining Treatment for Active 
Remediation (STAR)

• All thermal technologies include:
–Thermocouples in the subsurface to monitoring temperature
–Extraction of vapors, steam using vacuum extraction
–Treatment of vapors and steam above ground 
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Steam Enhanced Extraction (SEE)

• Additional recovery mechanism of displacement

• Steam injected, groundwater, NAPL and vapors extracted

• Steam flows in more permeable strata, less permeable zones heated by conduction
– Minimum hydraulic conductivity for steam injection 10-5 cm/sec (silty sands)

• Pressure cycling (reducing steam injection, while continuing extraction) helps to 
recover contaminants from low permeability zones 

• Most appropriate for large, deep sites – significantly greater well spacings

• Applicable to highly permeable sands & gravels with high groundwater flow rates
• Best way to get large amount of energy into the subsurface
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Preferred SEE approach: Surround NAPL with 
injection wells, central extraction well
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Southern California Edison Steam Injection Remediation
Visalia, CA

• From May 1997 to June 2000, 
~ 660 million pounds of steam 
were injected

• ~ 1.33 million pounds of wood 
preservative chemicals 
recovered

• Enhanced biological 
degradation with air injection

• Continued operation of P&T 
through 2003



Visalia Post Steam Injection Site Chronology
 Total SEE Project Cost - $21.5 million 
 1996 through mid-2001
 Unit Cost per Cubic Yard of Soil Treated 

 Actual Costs              $57
 With Lessons Learned $38

 Comparative Cost per Gallon of Creosote 
Removed
 Pump and Treat  $26,000 
 Steam Injection  $130

 Estimated Time to Remove 1.2 M lbs of 
Creosote
 Pump and Treat       3,250 years
 SEE      3 years

• P&T: 1975 – 1990
–~ $1M/yr

• Steam injection: 1997 – 2000
• Continued P&T: 2000 - 2004
• Remedial Action Report and Final 
Close Out Completed: 2009

• Visalia Pole Yard De-Listed from 
National Priorities List: 2010
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Beede Waste Oil Superfund Site
Plaistow, NH

• 2 Phases of SEE completed
• Waste oil, CVOCs, PCBs
• ~95 M lbs steam injected
• ~54,000 gallons NAPL 
recovered

• Strict soil cleanup criteria were 
met
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Former Williams Air Force Base Site ST-12
Mesa, AZ

• Jet Fuel spill, reached depths of 
240 feet below ground surface

• Highly heterogeneous soil strata 
did not stop downward migration 
of fuel, but low permeability 
zones trapped LNAPL below 
water table as the water table 
subsequently rose

•  Water table at ~160 ft bgs at 
time of SEE
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Williams Air Force Base Remedial Actions

Previous Remedial Actions

• SVE in vadose zone, ~370,000 
gallons of JP-4 removed since 2005 

• Attempt to use horizontal wells to 
recover LNAPL was unsuccessful

• Steam pilot scale demonstrated that 
SEE can effectively recover LNAPL

Thermox used to destroy fuel vapors 
from the SVE system
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Williams AFB: Largest, Deepest SEE Remediation

• 2013 RODA selected SEE to recover 
jet fuel from below the water table

• ~410,000 yd3 treatment area 
–160 – 240 ft bgs

• >300 M lbs of steam injected
• >2.5 M lbs of petroleum 
hydrocarbons recovered, half as 
LNAPL, most of the rest as vapors
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Complication to 
Remedial Efforts:  
NAPL outside of 
treatment area

Light blue – SEE treated 
area

Dark blue - LNAPL extent
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Electrical Resistance Heating (ERH) for Remediation
• Electrodes installed in 
subsurface 

• Alternating current applied to 
electrodes

• Current carried between 
electrodes by water in pore 
spaces

• Resistance of soils to 
current flow produces heat

• Full scale application uses 3 
phase current
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How Does Electrical Heating Work ?

• Vertical or angled electrodes 
in triangular/hexagonal array

• A typical array diameter is 20 
– 40 feet

• Typically 100 – 600 volts 
applied per electrode

• Steam temperatures reached 
in ~ 3 – 6 months

• Vapor extraction at 
electrodes or MPE wells 
between electrodes

Electrode/Vent

Electrode/Vent
Electrode/Vent

Electrode/Vent

Electrode/Vent

Electrode/Vent
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Electrical Heating of Soils

• Heating dependent on electrical conductivity of water in pore 
space:  low permeability zones often heated first due to higher 
cation content, less groundwater flow

• Works above and below water table
• Temperature limited to boiling point of water as water in the 

pores is needed to conduct current
• Contaminants collected as vapors
• Where groundwater flow rate is high, groundwater also 

extracted, can extract NAPL
• Challenged by groundwater flow rates greater than 1 ft/day

–Works very well in low permeability soils
20



ERH Under Building
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Fort Lewis Army Logistics Center
Fort Lewis, WA

• Waste oils & chlorinated 
solvents
– ~ 6,600 lbs CVOCs & 88,500 lbs 

TPH recovered by ERH

• Highly permeable soils, high 
groundwater flow rate

• Upgradient groundwater 
extraction used to reduce flow 
rate through thermal treatment 
area

• Remediation was a mass 
removal exercise, treated to 
‘diminishing returns’
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Groundwater TCE 
concentration 
contours 2.5 years 
after thermal 
remediation
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Camelot Cleaners
Fargo, ND

• Tight, fat clay, little 
groundwater; overlying aquifer 
which provides Fargo’s water 
supply 

• Initial concentrations of PCE 
as high as 2200 mg/kg

• > 5,000 lbs of PCE recovered 
by ERH

• Of 80 confirmation samples, 
57 were ND, 2 exceeded 
cleanup goal of 3 ppm
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Cleburn St: Success with Thermal!
Hastings, NE

• Chlorinated solvents recovered 
via ERH in low permeability 
soils, SEE in underlying aquifer

• 99% reduction in contamination
• 2nd order effects up to 300 
yards downgradient: 
–from 7,000 ppb to 700 ppb outside 

thermal treatment zone
• No rebound



South Municipal Well Superfund Site
Peterborough, NH
• Active manufacturing facility
• Chlorinated solvents (mostly PCE) 

impacting municipal well
• TI Wavier, P&T for hydraulic 

containment, could not maintain 
pumping due to biofouling of wells

• Thermal remediation of source zone, 
permeable reactive barrier at fence line
–~ 4,500 lbs recovered by ERH

• Angled electrodes to address source 
zone under building
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Permeable Reactive Barrier (PRB) at TI 
Wavier Boundary

• Thin zero valent iron 
(ZVI) wall was not 
treating contaminants

• Groundwater flow 
direction changed – A 
wells to north now 
contaminated

• 1,4-dioxane not 
treated by ZVI
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Concentrations have fluctuated widely
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Thermal Conductive Heating (TCH)

• Heat is conducted from the heater well 
to the soil, dependent on soil thermal 
conductivity

• Heater wells with temperature of 
~700°C installed in triangular pattern, 
12 – 20 ft spacing

• Co-located vapor extraction wells
• Can be electrical or gas combustion 
fueled

• Temperatures greater than 300C can 
be reached in vadose zone
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Thermal Conductive Heating
• Relies on thermal conductivity of soil to heat ground

– Thermal conductivity of soils/rocks fairly uniform – thus 
more uniform heating of subsurface

– But low, ~10-6 m2/s 
• Requires high temperature (~700°C or greater) at point of 
application, close well spacing (10 – 12 ft)

• Triangular/hexagonal arrays
• Vapor extraction wells co-located with heater wells
• Treatment temperatures > 300°C possible above the 
water table
– Can vaporize SVOCs such as PCBs, PAHs, dioxins
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TCH via natural gas combustion at the wellhead

• Has a real advantage where 
electrical power is limited or not 
readily available

• Diaz Superfund Site:
–Unusual SVOCs containing 

fluoride
–Pilot study used to determine 

temperature requirement
–Site is in residential area
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Solvent Recovery Services of New England
Southington, CT
• Waste oil Superfund Site
• ~1.7 acres, >700 heater wells, 
>430,000 lbs of CVOCs, petroleum 
hydrocarbons recovered

• Objective was mass recovery, 
eliminate NAPL

• Soil cleanup criteria exceeded by 
orders of magnitude
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P&T influent concentrations show that significant 
NAPL did not remain after thermal treatment
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Southern California Edison’s Alhambra Wood Preserving Site
Alhambra, CA 
Creosote contamination to a depth 
of >100 feet

TCH remediated soils to stringent 
cleanup goals – target temperature 
> 300C

36



Coal Tar Remediation at former Manufactured 
Gas Plant (MGP)
North Adams, MA

• Treatment area was former gas 
holder which held coal tar

• Temperature ramped up in 3 phases
–Dewatering at 80C
–Liquid coal tar recovery at 100C 

via viscosity reduction
–Vaporization at 325C to recover 

high boiling PAHs



Ex-Situ Thermal Desorption
Danang, Vietnam

• Agent Orange, dioxin 
contamination

• Topsoil excavated, 
placed in concrete 
foundation

• Thermal Conductive 
Heating (TCH) to 
350C
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STAR - Self-Sustaining Treatment for Active 
Remediation
• Smoldering Combustion
• Applicable to creosote, 
coal tar, heavy 
hydrocarbons at 
concentrations > 3000 
mg/kg

• Air injection, vapor 
extraction required

• ROI ~ 10 feet
• Works above & below 
water table



Combining Thermal Technologies 

• It’s critical to heat the entire 
contaminated area

• When the area to be treated 
includes both low & high 
permeability soils: 
–ERH or TCH can be used in the 

low permeability soils 
–Steam injection (SEE) is used in 

the high permeability soils
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Monitoring thermal remediation operation
• Subsurface temperature distribution

• Thermocouple strings throughout treatment area
• Hydraulic control maintained

• Thermocouple string outside thermal treatment area
• Pneumatic control maintained

• Vacuum measurements outside treatment area
• Contaminant extraction rates

• NAPL, vapor, and aqueous phases
• Groundwater concentrations

• Expect concentrations to increase during initial heating then 
decrease as mass in subsurface is depleted

• Soil concentrations
41



Temperature monitoring outside treatment area to 
verify hydraulic control

• Some heating outside 
treatment area expected due to 
thermal conduction

• Thermal conduction outside 
treatment area may be reduced 
by groundwater flow towards 
the treatment area

• Significant loss of hydraulic 
control obvious in temperature 
history

• No contamination lost here42



Soil vacuum monitoring outside of treatment area

• Ensure soil vapor pressure 
does not increase outside of 
thermal treatment area

43



How many monitoring points?
• No one size fits all response to this question
• Things to consider:

–Size of treatment area
–Heterogeneity of soils in treatment area
–Cost of installing the monitoring point

• Depth 
–Consequences of not knowing/area to be protected

• Are there sensitive areas around the treatment zone 
that need to be protected?
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How do we know when we are done?
• First criteria:  have temperature goals been met 
throughout treatment area? 

• Diminishing returns
–Recovery rate reduced to small amount
–Groundwater concentrations have peaked and then 

decreased
–More than one round of groundwater samples showing 

low concentrations
–Soil concentrations can also be measured
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What diminishing mass 
recovery looks like
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Successful Thermal Remediation requires:
• Site must be characterized adequately
• Apply thermal to all areas with significant NAPL

– NAPL adjacent to the treated area will be pulled into the treatment 
area by the extraction system 

– Inffluent and groundwater concentration will remain high for an 
extended period during treatment

– Contamination remaining upgradient will recontaminate the 
treated area
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Successful Thermal Remediation requires:

• Implement appropriate thermal technology to reach target temperature
–Dependent on temperature needed, site geology & hydrogeology
–Heterogeneous site hydrogeology may require combining thermal 

technologies 
• Design of heating and extraction system is crucial: all NAPL areas must be 
heated, all mobilized contaminants must be extracted

• For VOCs, heat to the boiling point of water throughout the treatment area, 
including low permeability zones

• SVOCs generally require higher temperatures
– Use energy balance to ensure all areas are heated
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Lessons Learned
• Defining the area to be treated

– NAPL contaminated area – NAPL can continue to migrate!
– Dependent on objectives of the remediation

• Characterization methods
– Soil data vs groundwater data
– Screening tools vs sonic cores

• Estimating mass in the ground, mass recovered
– Over- or under-estimating can be a problem, especially with screening 

data such as MIP, soil samples are critical for NAPL delineation & mass 
estimation

– Contaminants not detected by common analytical methods
• Above Ground Treatment Methods

– Destruction via thermal oxidation vs condensing to reuse or dispose
49



Questions?

Contact Information:

davis.eva@epa.gov

(580) 235-7716
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The views expressed in this presentation are those of the author and 
do not necessarily represent the views or policies of the U.S. 
Environmental Protection Agency.
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