CDD/CDF COMPLETE SDG FILE (CSF) INVENTORY SHEET

LABORA	TORY NAME		
CASE N TASK C CONTRA	STATE O. SDG NO. 193 SDG NOS. TO FOLLOW ORDER NO		
	cuments delivered in the Complete SDG File must be original ence - Exhibit B Section 2.6)	documents where possik	CHECK
2. <u>sp</u> 3. <u>Tr</u>	ventory Sheet (DC-2) (Do not number) G Narrative affic Report D/CDF Data	FROM TO 1 3 4 7 9 97	LAB EPA
	Sample Data Summary (FORM I-HR CDD-1) Toxicity Equivalence Summary (FORM I-HR CDD-2) Second Column confirmation Summary (FORM I-HR CDD-3) TEF Adjusted Concentration Mammal/Fish/Bird (FORM I-HR CDD-4) Selected Ion Current Profile (SICP) for each sample Quantitation Reports and Area Summaries Total Homologue Concentration Summary (FORM II-HR CDD) Quality Control Data Lab Control Sample Summary (FORM III-HR CDD-1) Method Blank Summary (FORM IV-HR CDD-1) Chromatographic Resolution Summary (FORM V-HR CDD-2) Analytical Sequence Summary (FORM V-HR CDD-3)	8 13 14 16 17 NA 18 18 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
c.	Calibration Data Initial Calibration Data (FORM VI-HR CDD-1 and FORM VI-HR CDD-2), PFK mass resolution, CDD/CDF standard(s) SICPs, Quantitation Reports, and Area Summaries for the initial (five-point) calibration Continuing Calibration Data (FORM VII-HR CDD-1 and FORM VII-HR CDD-2), PFK mass resolution, SICPs, Quantitation Reports, and Area Summaries	116 382	

		PAGE	NOs.	CHE	ECK
		FROM	TO	LAB	EPA
	d. Raw Quality Control Data	528	635		
	Blank Data FORM I-HR CDD-1, CDD-2, CDD-3 (if applicable)	528	531		
	Blank Data including SICPs, Quantitation Reports, and Area Summaries for each blank analyzed	532	567		
	LCS FORM I-HR CDD-1 and CDD-2	568	623		
	LCS Data including SICPs, Quantitation Reports, and Area Summaries				
5.	Miscellaneous Data				
	Original preparation and analysis forms or copies of preparation and analysis logbook pages	624	C027		
	Internal sample and sample extract transfer Chain of Custody Records	623	623		***************************************
	Screening records	NA	NA		
	All instrument output, including strip charts from screening activities (describe or list)		·		
		NA	NA		
6.	EPA Shipping/Receiving Documents	1 20			
	Airbills (No. of shipments)	629	633		
	Chain of Custody Records	694	640		
	Sample Tags	641	641		
	Sample Log-In Sheet (Lab & DC-1)	642	642		
	Traffic Report Cover Sheet	NA	NA	***	
	Miscellaneous Shipping/Receiving Records (describe or list)				
		١ ١٨			
		NA	NA		
7.	Internal Lab Sample Transfer Records and Tracking Sheets				
	(Describe or list)				
			2 1.1.6		
		64.	5 lelep		***************************************
8.	Other Records (describe or list)				
	Telephone Communication Log				
		۸ ۱۸	111		
		1017	NA	24.000.00	
9.	Comments:				
Comp	pleted by:				
(Lab)		_		_
	(Signature) (Print Name	e & Title)	•	(Date)	
	ited by:				
(USE		Laltin 3 c		(Date)	
	(Signature) (Print Name	~ ~ TTCTC)		(1466)	

Client: US Environmental Protection Agency Service Request No.:

Case: Dioxins/Furans/ Date Received: 5/9/12-5/11/12

Sample Matrix: Water and Sediment Contract Number:

CASE NARRATIVE

All analyses were performed in adherence to the quality assurance program of

This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

One sediment and three water samples were received for analysis between 5/9/12 and 5/11/12. However sample 236 was cancelled per the region on 5/10/12 and never logged in.

The samples were received at 0 and 1°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Re-extraction

Sample 584-001(193) was originally extracted on batch 1200314, but required re-extraction due to an inadequate sample amount used for the original extraction. The sample was re-extracted on batch 1200341, using an appropriate sample amount. The results from the first extraction are not included in this report.

Data Validation Notes and Discussion

Capillary Column

A 60 meter DB-5 column from J&W Scientific with an ID of 0.25mm and a 0.25 um film thickness was used for the primary analysis. A 30 meter DB-225 column from J&W Scientific with an ID of 0.25mm and a 0.25 um film thickness was used for the 2378-TCDF confirmation analysis.

B flags – Method Blanks

The Method Blank 1200313-01 contained low levels of OCDD at or below the Method Reporting Limit (MRL).

The Method Blank 1200341-01 contained low levels of 1234678-HpCDF at or below the Method Reporting Limit (MRL).

The associated compounds in the samples are flagged with 'B' flags.

0584 193) 1 of 666

MS/MSD

1200313: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch. The batch quality control criteria were met.

1200341: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch. The batch quality control criteria were met.

<u>C flags – 2378-TCDF Confirmation</u>

Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package.

The valid result for the 2378-TCDF compound is reported from the confirmation column.

The confirmation results have been included on form 1DF2.

Retention Times

The retention times in the data package are reported in standard minutes and second because our data system does not report retention times in decimal minutes.

Additional Notes

The fed ex way bill for the shipment on May 9, 2012 was discarded and not saved, however the custody seals were not discarded.

Detection Limits

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

The TEQ Summary results for each sample have been calculated by to include:

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > 2378-TCDF from the DB-225 column, when confirmation required
- Non-detected compounds are not included in the 'Total'

0584 193) 2 of 666

0584 193) 3 of 666

Page 1 of 1

USEPA Organics COC (LAB COPY)

CHAIN OF CUSTODY RECORD

DateShipped: 5/8/2012 CarrierName: FedEx

CarrierName: FedEx
AirbillNo: 13614

Case #: Cooler #:

Organic Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	Inorganic Sample #	For Lab Us Only
236		Grab	D/F(42), Cong(42)	1136 (ice), 1137 (ice) (2)	C0512- -A	05/08/2012 14:16	236	0.111
						27 603		
			1000					
	23.63.55.75							1000
				a recent of the		a metare in a resident and a second		
1.6								4
				The second secon				
	# 155 F T- 1-1				THE STATE OF THE S			
				Land Land Live			79	

Special Instructions: p	lease disregard tag numbers	PCB	Congenera	
Salinity 22.77ppt	DIOXIN FO	rons		
Analysis Key D/F=Dic	xin/Furans Cong=209 CBC-PC	B Congeners		

Shipment for Case Complete? N
Samples Transferred From Chain of Custody #

Date

Time

y Date Received by Date Time Items/Reason Relinquished By Date Received by

No seals 100

No seals 1°C wetreer Bubblewrap

THE 3614

Page 1	of 1	
--------	------	--

USEPA Organics COC (LAB COPY)

CHAIN OF CUSTODY RECORD

DateShipped: 5/10/2012 CarrierName: FedEx

AirbillNo: 34795

Case #: Cooler #:

Organic Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	Inorganic Sample #	For Lab Use Only
240		Grab	D/F(42), Cong(42)	1155 (ice), 1156 (ice) (2)	C0512- A-RS	05/10/2012 14:04	240	
						Later State Commission		
	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			and the second s	resultation and a	Albania 1920 and page of the		
					ATTACES OF	No. of Section 1		
				A CONTRACTOR OF THE CONTRACTOR		A Company of the Comp		
- 1 1 NASAN		101 / 2013 B B B B B B B B B B B B B B B B B B B		This is a second to the second			Est 1 64 644 2- 1 1	- e
	The second second second	Mar Jaco						
MARKE ARMS A AS								
				8				

Special Instructions: please disregard tag numbers			
Salinity (ppt)			

Shipment for Case Complete? N
Samples Transferred From Chain of Custody #

Analysis Key: D/F=Dioxin/Furans Mod

Cong=209 CBC-PCB Congeners Mod

Harra /Daggan	Delinguished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
	5	5/10/	12							5/1/12	958

2 soals Unatice-bubblewrep-bagging Feder, 0584 193)

NC046- 22.01

Page 1 of 1

AirbillNo:

USEPA

Organics COC (LAB COPY)

CHAIN OF CUSTODY RECORD

DateShipped: 5/9/2012 CarrierName: FedEx

1948

Case # Cooler #:

Organic Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	Inorganic Sample #	For Lab Use Only
193	sediment/	Grab	Cong(42), D/F(42)	1192 (ice), 1193 (ice) (2)	C0512-	05/09/2012 11:13	193	
					000014			
				197				
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	LIBERT DOC							
and the second second		- werman		- Marine Alexander - Alexander				
		The second	Market 12 Colonia Salara Miller Salara	The state of the s		ERE LARREST		
				The state of the s				
E E - HE SIGN		r se je je je je Kas		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		- Teartra		1
	7		And the state of t					opened @ W
				-				wetice
		2019				HE III		hubbleyap
- Tawali	STEET V K 1 de -	-		The state of the s		- T		wette bubbleyes two seets
				value and the second se		Are A construction	2151.5 8	100

Fedex
Shipment for Case Complete? N Special Instructions: please disregard tag numbers Samples Transferred From Chain of Custody # Analysis Key: Cong= 209 CBC- PCB Congeners Mod D/F=Dioxin/Furans Mod

d by/ Date	Received by	Date	,Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
5/9/n			/		/			/	
11110		/							
		/							
	/			/				5/10/12	100

Page 1 of 1

USEPA Organics COC (LAB COPY)

CHAIN OF CUSTODY RECORD

DateShipped: 5/9/2012 CarrierName: FedEx

Case #:

AirbillNo: 1948

Cooler #:

Organic Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	Inorganic Sample #	For Lab Use Only
238	PART OF THE PART O	Grab	D/F(42), Cong(42)	1145 (ice), 1146 (ice) (4)	C0512- -A	05/09/2012 08:59	238	J
				Tradi		A		
	AS T TESTAL TO L. 1 - 2 - 3			Professor Language Communication				
	The state of the s					2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
								1
7 14 == -				The second secon				opened e wa
1 1 1 1 1 1 1 1 1 1 1 1 1	PRINCE PRINCE PRINCE	1.000.000			A Keryana II yan			just ice bubbleup
				Maria Ma				two seals
								X 100

Sample(s) to be used for Lab QC:	238	-	Special Instructions: please disregard tag numbers
salinity 21.95 ppt			

Fedek
Shipment for Case Complete? N

Samples Transferred From Chain of Custody #

Analysis Key: D/F=Dioxin/Furans Mod , Cong=209 CBC-PCB Congeners

	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
	19/1	7_						Charles Services		
7.5404	7/1/2									
								V Para de dans		
									1.	
									9/10/12	1000

|--|

193

Lab Name:					Contract:		
Lab Code:	Case No	.: <u> </u>			TO No.:	SDG No.:	193
Matrix: (Soil/Water/	Ash/Tissu	ue/Oil)	Soil		Lab Sample ID:	00584-	001
Sample wt/vol:	30.272	(g/i	mL)	g	Lab File ID:	8294	:
Water Sample Prep:		-	(SEPF	F/SPE)	Date Received:	05/10/20	12
Concentrated Extract	Volume:	20		(uL)	Date Extracted:	06/12/20	12
Injection Volume:	1 (uL)	% Solids/L	ipids:	33.3	Date Analyzed:	06/19/20	12
GC Column: DB-5	ID:	0.2	5	(mm)	Dilution Factor:	1.0	
Instrument ID:		E-HRMS-03	•			_	

Concentration Units: (pg/L or ng/kg) ng/Kg

Concentration Units: (pg/L or ng		ng/Kg I	1	 		<u>i</u>
Target Analyte	Selected Ions	Peak RT	Ion Ratio #	Concentration	Q	EMPC/EDL
2,3,7,8-TCDD	320/322	29.22	0.74	2.74		0.0494
1,2,3,7,8-PeCDD	356/358	33.90	1.60	1.14	J	0.108
1,2,3,4,7,8-HxCDD	390/392	37.12	1.23	1.34	J	0.104
1,2,3,6,7,8-HxCDD	390/392	37.18	1.31	5.29		0.111
1,2,3,7,8,9-HxCDD	390/392	37.45	1.10	2.91	J	0.102
1,2,3,4,6,7,8-HpCDD	424/426	40.00	1.08	97.7	В	0.417
OCDD	485/460	43.03	0.89	962		0.371
2,3,7,8-TCDF	304/306	28.37	0.76	9.75		0.0497
1,2,3,7,8-PeCDF	340/342	32.80	1.49	2.39	J	0.0440
2,3,4,7,8-PeCDF	340/342	33.55	1.52	3.09	J	0.0540
1,2,3,4,7,8-HxCDF	374/376	36.38	1.15	7.31		0.126
1,2,3,6,7,8-HxCDF	374/376	36.50	1.32 #	3.25	J	0.122
1,2,3,7,8,9-HxCDF	374/376	*			U	0.124
2,3,4,6,7,8-HxCDF	374/376	36.98	0.98	1.67	J	0.129
1,2,3,4,6,7,8-HpCDF	408/410	39.12	1.01	41.7		0.129
1,2,3,4,7,8,9-HpCDF	408/410	40.40	1.26	1.95	J	0.128
OCDF	442/444	43.18	0.86	64.1		0.271

NOTE: Concentrations, Estimated Maximum Possible Concentrations (EMPCs), and Estimated Detection Levels (EDLs) for solid samples are calculated on a dry weight basis (except tissues, which are reported on a wet weight basis with % Lipids).

-						
Labeled Compounds	Selected Ions	Peak RT	Ion Ratio #	Ion Ratio Limits	% Rec #	Recovery Limits
13C-2,3,7,8-TCDD	332/334	29.18	0.79	0.65-0.89	67	25-164
13C-1,2,3,7,8-PeCDD	368/370	33.88	1.56	1.32-1.78	62	25-181
13C-1,2,3,4,7,8-HxCDD	402/404	37.10	1.29	1.05-1.43	74	32-141
13C-1,2,3,6,7,8-HxCDD	402/404	37.18	1.29	1.05-1.43	73	28-130
13C-1,2,3,4,6,7,8-HpCDD	436/438	40.00	1.07	0.88-1.20	75	23-140
13C-OCDD	470/472	43.02	0.90	0.76-1.02	56	17-157
13C-2,3,7,8-TCDF	316/318	28.33	0.80	0.65-0.89	51	24-169
13C-1,2,3,7,8-PeCDF	352/354	32.78	1.59	1.32-1.78	73	24-185
13C-2,3,4,7,8-PeCDF	352/354	33.53	1.60	1.32-1.78	63	21-178
13C-1,2,3,4,7,8-HxCDF	384/386	36.38	0.52	0.43-0.59	74	26-152
13C-1,2,3,6,7,8-HxCDF	384/386	36.48	0.54	0.43-0.59	76	26-123
13C-1,2,3,7,8,9-HxCDF	384/386	37.67	0.53	0.43-0.59	86	29-147
13C-2,3,4,6,7,8-HxCDF	384/386	36.98	0.53	0.43-0.59	78	28-136

 $\ensuremath{\text{\#}}$ Column to be used to flag values outside QC limits.

0584 193) FORM **8**-**dfR**66DD-1 DLM02.2 (12/09)

EPA	Sample No.
	193

Lab Name:				Contra	act:	_	
Lab Code:	Case No.:			TO No.	.:	SDG No.:	193
Matrix: (Soil/Water/A	- Ash/Tissue/C	il) Soil	L	Lab S	Sample ID:	00584	-001
Sample wt/vol:	30.272	(g/mL)	g	Lab	File ID:	829	94
Water Sample Prep:		(SEP	F/SPE)	Date	Received:	05/10/2	012
Concentrated Extract	Volume:	20	(uL)	Date	Extracted:	06/12/2	2012
Injection Volume:	1(uL) % S	olids/Lipids:	33.3	Date	Analyzed:	06/19/2	012
GC Column: DB-5	ID:	0.25	(mm)	Diluti	ion Factor:	1.0	
Instrument ID:	E-H	RMS-03					
Concentration Units:	(pg/L or ng	ı/kg) ı	ng/Kg				
13C-1,2,3,4,6,7,8-Hp0	CDF	418/420	39.12	0.45	0.37-0.51	62	28-143
13C-1,2,3,4,7,8,9-Hp0	CDF	418/420	40.40	0.46	0.37-0.51	85	26-138
37C1-2,3,7,8-TCDD		328/NA	29.22	NA	NA	77	35-197

0584 193) FORM 9-04F666DD-1 DLM02.2 (12/09)

EPA	EPA Sample	No.
	23	88

Lab Name:		_		Contract:		
Lab Code:	Case No	·.:		TO No.:	SDG No.:	193
Matrix: (Soil/Wate	r/Ash/Tiss	ue/Oil)	Water	Lab Sample ID:	00584-0	002
Sample wt/vol:	1040	(g/mI	ı) mL	Lab File ID:	8238	
Water Sample Prep:			(SEPF/SPE)	Date Received:	05/10/201	L2
Concentrated Extra	ct Volume:	20	(uL)	Date Extracted:	06/06/20	12
Injection Volume:	1 (uL)	% Solids/Lij	pids:	Date Analyzed:	07/06/201	L2
GC Column: DB-	5 ID:	0.25	(mm)	Dilution Factor:	1.0	
Instrument ID:		E-HRMS-04		_		

Concentration Units: (pg/L or n	g/kg)	pg/L				
Target Analyte	Selected Ions	Peak RT	Ion Ratio #	Concentration	Q	EMPC/EDL
2,3,7,8-TCDD	320/322	*			U	0.426
1,2,3,7,8-PeCDD	356/358	*			U	0.238
1,2,3,4,7,8-HxCDD	390/392	*			U	0.274
1,2,3,6,7,8-HxCDD	390/392	*			U	0.305
1,2,3,7,8,9-HxCDD	390/392	*			U	0.284
1,2,3,4,6,7,8-HpCDD	424/426	41.07	1.20 #	7.17	J	0.875
OCDD	485/460	45.05	0.86	63.0	BJ	1.63
2,3,7,8-TCDF	304/306	*			U	0.325
1,2,3,7,8-PeCDF	340/342	*			U	0.310
2,3,4,7,8-PeCDF	340/342	*			U	0.349
1,2,3,4,7,8-HxCDF	374/376	*	'		U	0.262
1,2,3,6,7,8-HxCDF	374/376	36.78	1.28	0.835	J	0.233
1,2,3,7,8,9-HxCDF	374/376	*			U	0.354
2,3,4,6,7,8-HxCDF	374/376	*	'		U	0.263
1,2,3,4,6,7,8-HpCDF	408/410	39.87	1.00	3.29	J	0.531
1,2,3,4,7,8,9-HpCDF	408/410	*	,		U	0.763
OCDF	442/444	45.07	0.44 #	2.77	J	1.66

NOTE: Concentrations, Estimated Maximum Possible Concentrations (EMPCs), and Estimated Detection Levels (EDLs) for solid samples are calculated on a dry weight basis (except tissues, which are reported on a wet weight basis with % Lipids).

Labeled Compounds	Selected Ions	Peak RT	Ion Ratio #	Ion Ratio Limits	% Rec #	Recovery Limits
13C-2,3,7,8-TCDD	332/334	29.05	0.79	0.65-0.89	58	25-164
13C-1,2,3,7,8-PeCDD	368/370	33.93	1.59	1.32-1.78	57	25-181
13C-1,2,3,4,7,8-HxCDD	402/404	37.50	1.27	1.05-1.43	59	32-141
13C-1,2,3,6,7,8-HxCDD	402/404	37.60	1.27	1.05-1.43	53	28-130
13C-1,2,3,4,6,7,8-HpCDD	436/438	41.05	1.07	0.88-1.20	64	23-140
13C-OCDD	470/472	45.03	0.90	0.76-1.02	58	17-157
13C-2,3,7,8-TCDF	316/318	28.15	0.80	0.65-0.89	62	24-169
13C-1,2,3,7,8-PeCDF	352/354	32.77	1.58	1.32-1.78	69	24-185
13C-2,3,4,7,8-PeCDF	352/354	33.55	1.59	1.32-1.78	61	21-178
13C-1,2,3,4,7,8-HxCDF	384/386	36.67	0.54	0.43-0.59	55	26-152
13C-1,2,3,6,7,8-HxCDF	384/386	36.78	0.52	0.43-0.59	58	26-123
13C-1,2,3,7,8,9-HxCDF	384/386	38.12	0.53	0.43-0.59	57	29-147
13C-2,3,4,6,7,8-HxCDF	384/386	37.35	0.53	0.43-0.59	62	28-136

Column to be used to flag values outside QC limits.

FORM 10-HR660D-1 DLM02.2 (12/09) 0584 193)

LPA	рте .	NO.	
	238	1	

Lab Name:				Contra	act:	<u>0W00107</u>	71
Lab Code:	Case No.:			TO No	.:	SDG No.:	193
Matrix: (Soil/Water/	- Ash/Tissue/(Oil) Wa	ter	Lab S	Sample ID:	00584	1-002
Sample wt/vol:	1040	(g/mL)	mL	Lal	o File ID:	82	38
Water Sample Prep:		(SI	EPF/SPE)	Date	Received:	05/10/2	2012
Concentrated Extract	Volume:	20	(uL)	Date	Extracted:	06/06/	2012
Injection Volume:	1 (uL) % S	olids/Lipids	g:	Date	Analyzed:	07/06/2	2012
GC Column: DB-5	ID:	0.25	(mm)	Dilut	ion Factor:	1.0)
Instrument ID:	E-H	IRMS-04					
Concentration Units:	(pg/L or no	g/kg)	pg/L				
13C-1,2,3,4,6,7,8-Hp0	CDF	418/420	39.88	0.45	0.37-0.51	58	28-143
13C-1,2,3,4,7,8,9-Hp0	CDF	418/420	41.45	0.45	0.37-0.51	67	26-138
37Cl-2 3 7 8-TCDD		328/NA	29 07	NΔ	NΔ	83	35-197

0584 193) FORM #HBR668DD-1 DLM02.2 (12/09)

EPA	Sample	No.
-----	--------	-----

240

Lab Name:

Lab Code: Case No.: TO No.: SDG No.: 1:

Matrix: (Soil/Water/Ash/Tissue/Oil) Water Lab Sample ID: 00584-003

Sample wt/vol: 1040 (g/mL) mL Lab File ID: 8239

Water Sample Prep: (SEPF/SPE) Date Received: 05/11/2012

Concentrated Extract Volume: 20 (uL) Date Extracted: 06/06/2012

Concentrated Extract Volume: 1 (uL) % Solids/Lipids: Date Analyzed: 07/06/2012 0W001071 TO No.: _____ SDG No.: ____ 193 GC Column: DB-5 ID: 0.25 (mm) Dilution Factor: 1.0

Instrument ID: E-HRMS-04

Concentration Units: (pg/L or ng	ı/kg)	pg/L				
Target Analyte	Selected Ions	Peak RT	Ion Ratio #	Concentration	Q	EMPC/EDL
2,3,7,8-TCDD	320/322	*			U	0.416
1,2,3,7,8-PeCDD	356/358	*			U	0.348
1,2,3,4,7,8-HxCDD	390/392	*			U	0.281
1,2,3,6,7,8-HxCDD	390/392	*			U	0.323
1,2,3,7,8,9-HxCDD	390/392	*			U	0.296
1,2,3,4,6,7,8-HpCDD	424/426	41.07	0.97	2.85	J	0.710
OCDD	485/460	44.97	0.79	18.3	BJ	1.42
2,3,7,8-TCDF	304/306	*			U	0.377
1,2,3,7,8-PeCDF	340/342	*			U	0.331
2,3,4,7,8-PeCDF	340/342	*			U	0.389
1,2,3,4,7,8-HxCDF	374/376	36.65	1.13	0.689	J	0.314
1,2,3,6,7,8-HxCDF	374/376	*			U	0.291
1,2,3,7,8,9-HxCDF	374/376	*			U	0.428
2,3,4,6,7,8-HxCDF	374/376	*			U	0.344
1,2,3,4,6,7,8-HpCDF	408/410	*			U	0.558
1,2,3,4,7,8,9-HpCDF	408/410	*			U	0.825
OCDF	442/444	*			U	1.25

NOTE: Concentrations, Estimated Maximum Possible Concentrations (EMPCs), and Estimated Detection Levels (EDLs) for solid samples are calculated on a dry weight basis (except tissues, which are reported on a wet weight basis with % Lipids).

Labeled Compounds	Selected Ions	Peak RT	Ion Ratio #	Ion Ratio Limits	% Rec #	Recovery Limits
13C-2,3,7,8-TCDD	332/334	29.03	0.79	0.65-0.89	51	25-164
13C-1,2,3,7,8-PeCDD	368/370	33.93	1.60	1.32-1.78	51	25-181
13C-1,2,3,4,7,8-HxCDD	402/404	37.48	1.36	1.05-1.43	55	32-141
13C-1,2,3,6,7,8-HxCDD	402/404	37.58	1.17	1.05-1.43	49	28-130
13C-1,2,3,4,6,7,8-HpCDD	436/438	41.02	1.08	0.88-1.20	64	23-140
13C-OCDD	470/472	44.97	0.90	0.76-1.02	62	17-157
13C-2,3,7,8-TCDF	316/318	28.15	0.78	0.65-0.89	51	24-169
13C-1,2,3,7,8-PeCDF	352/354	32.75	1.59	1.32-1.78	63	24-185
13C-2,3,4,7,8-PeCDF	352/354	33.53	1.58	1.32-1.78	53	21-178
13C-1,2,3,4,7,8-HxCDF	384/386	36.65	0.52	0.43-0.59	53	26-152
13C-1,2,3,6,7,8-HxCDF	384/386	36.75	0.53	0.43-0.59	55	26-123
13C-1,2,3,7,8,9-HxCDF	384/386	38.12	0.52	0.43-0.59	55	29-147
13C-2,3,4,6,7,8-HxCDF	384/386	37.33	0.53	0.43-0.59	56	28-136

Column to be used to flag values outside QC limits.

FORM **12-HR66**DD-1 DLM02.2 (12/09) 0584 193)

EPA	Sample No.	
	240	

Lab Name:	_			Contra	act:	<u>0W0010</u>	71
Lab Code:	Case No.:			TO No	.:	SDG No.:	193
Matrix: (Soil/Water/As	sh/Tissue/O	il) Wa	ter	Lab S	Sample ID:	00584	1-003
Sample wt/vol:	1040	(g/mL)	mL	Lal	b File ID:	82	39
Water Sample Prep:		(S	EPF/SPE)	Date	Received:	05/11/2	2012
Concentrated Extract V	Volume:	20	(uL)	Date	Extracted:	06/06/	2012
Injection Volume: 1	(uL) % So	olids/Lipid	s:	Date	Analyzed:	07/06/2	2012
GC Column: DB-5	ID:	0.25	(mm)	Dilut	ion Factor:	1.0)
Instrument ID:	E-HI	RMS-04					
Concentration Units:	(pg/L or ng	/kg)	pg/L				
13C-1,2,3,4,6,7,8-HpCl	DF	418/420	39.87	0.44	0.37-0.51	58	28-143
13C-1,2,3,4,7,8,9-HpC	DF	418/420	41.42	0.45	0.37-0.51	65	26-138
37Cl-2.3.7.8-TCDD		328/NA	29.07	NA	NA	72	35-197

0584 193) FORM #3-HF66@D-1 DLM02.2 (12/09)

1DFB - FORM I-HR CDD-2 CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

EPA	Sample	No.				
	193					

Lab Name:				Contract:	<u>0W001071</u>	
Lab Code:	Case No	·.:		TO No.:	SDG No.:	193
Matrix: (Soil/Water/	Ash/Tiss	ue/Oil)	Soil	Lab Sample ID:	00584-00)1
Sample wt/vol:	30.272	(g/mL)	g	Lab File ID:	8294	
Water Sample Prep:			(SEPF/SPE)	Date Received:	05/10/2012	2
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/12/201	2
Injection Volume:	1 (uL)	% Solids/Lip	ids: 33.3	Date Analyzed:	06/19/2012	2
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:		E-HRMS-03				•

Concentration Units: (pg/L or ng/kg) ng/Kg

r <u>ation Units: (pg/L or ng/kg)</u>	ng/Kg		
Target Analyte	Concentration	TEF*	TEF-Adjusted Concentration
2,3,7,8-TCDD	2.74	1	2.74
1,2,3,7,8-PeCDD	1.14	1	1.14
1,2,3,4,7,8-HxCDD	1.34	0.1	0.134
1,2,3,6,7,8-HxCDD	5.29	0.1	0.529
1,2,3,7,8,9-HxCDD	2.91	0.1	0.291
1,2,3,4,6,7,8-HpCDD	97.7	0.01	0.977
OCDD	962	0.0003	0.289
2,3,7,8-TCDF	9.75	0.1	0.975
1,2,3,7,8-PeCDF	2.39	0.03	0.0717
2,3,4,7,8-PeCDF	3.09	0.3	0.927
1,2,3,4,7,8-HxCDF	7.31	0.1	0.731
1,2,3,6,7,8-HxCDF	3.25	0.1	0.325
1,2,3,7,8,9-HxCDF	0.124	0.1	0
2,3,4,6,7,8-HxCDF	1.67	0.1	0.167
1,2,3,4,6,7,8-HpCDF	41.7	0.01	0.417
1,2,3,4,7,8,9-HpCDF	1.95	0.01	0.0195
OCDF	64.1	0.0003	0.0192
Total TEQ			9.30
	-		

^{*} TEF - Toxicity Equivalent Factors from the World Health Organization (WHO), 2005.

1DFB - FORM I-HR CDD-2 CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

EPA	Sample No.					
	238					

Lab Name:				Contract:	<u>0W001071</u>	
Lab Code:	Case No	.:		TO No.:	SDG No.:	193
Matrix: (Soil/Water/A	Ash/Tissu	ue/Oil)	Water	Lab Sample ID:	00584-0	002
Sample wt/vol:	1040	(g/mL)	mL	Lab File ID:	8238	
Water Sample Prep:			(SEPF/SPE)	Date Received:	05/10/201	L2
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/20	12
Injection Volume:	1 (uL)	% Solids/Lip	ids:	Date Analyzed:	07/06/201	L2
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:		E-HRMS-04		_		

Concentration Units: (pg/L or ng/kg) pg/L

r <u>ation Units: (pg/L or ng/kg)</u>	pg/L		
Target Analyte	Concentration	TEF*	TEF-Adjusted Concentration
2,3,7,8-TCDD	0.426	1	0
1,2,3,7,8-PeCDD	0.238	1	0
1,2,3,4,7,8-HxCDD	0.274	0.1	0
1,2,3,6,7,8-HxCDD	0.305	0.1	0
1,2,3,7,8,9-HxCDD	0.284	0.1	0
1,2,3,4,6,7,8-HpCDD	7.17	0.01	0.0717
OCDD	63.0	0.0003	0.0189
2,3,7,8-TCDF	0.325	0.1	0
1,2,3,7,8-PeCDF	0.310	0.03	0
2,3,4,7,8-PeCDF	0.349	0.3	0
1,2,3,4,7,8-HxCDF	0.262	0.1	0
1,2,3,6,7,8-HxCDF	0.835	0.1	0.0835
1,2,3,7,8,9-HxCDF	0.354	0.1	0
2,3,4,6,7,8-HxCDF	0.263	0.1	0
1,2,3,4,6,7,8-HpCDF	3.29	0.01	0.0329
1,2,3,4,7,8,9-HpCDF	0.763	0.01	0
OCDF	2.77	0.0003	0.000831
Total TEQ			0.208

^{*} TEF - Toxicity Equivalent Factors from the World Health Organization (WHO), 2005.

1DFB - FORM I-HR CDD-2 CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

LPA	Sample	NO.
	24	0

Lab Name:		_		Contract:	<u>0W001071</u>	
Lab Code: Case No.:		.:		TO No.:	SDG No.:	193
Matrix: (Soil/Water/	Ash/Tissu	ue/Oil)	Water	Lab Sample ID:	00584-00	13
Sample wt/vol:	1040	(g/mL)) <u>mL</u>	Lab File ID:	8239	
Water Sample Prep:			(SEPF/SPE)	Date Received:	05/11/2012	}
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/201	2
Injection Volume:	1 (uL)	% Solids/Lip	pids:	Date Analyzed:	07/06/2012	
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:		E-HRMS-04				

Concentration Units: (pg/L or ng/kg) pg/L

Target Analyte	Concentration	TEF*	TEF-Adjusted Concentration
2,3,7,8-TCDD	0.416	1	0
1,2,3,7,8-PeCDD	0.348	1	0
1,2,3,4,7,8-HxCDD	0.281	0.1	0
1,2,3,6,7,8-HxCDD	0.323	0.1	0
1,2,3,7,8,9-HxCDD	0.296	0.1	0
1,2,3,4,6,7,8-HpCDD	2.85	0.01	0.0285
OCDD	18.3	0.0003	0.00549
2,3,7,8-TCDF	0.377	0.1	0
1,2,3,7,8-PeCDF	0.331	0.03	0
2,3,4,7,8-PeCDF	0.389	0.3	0
1,2,3,4,7,8-HxCDF	0.689	0.1	0.0689
1,2,3,6,7,8-HxCDF	0.291	0.1	0
1,2,3,7,8,9-HxCDF	0.428	0.1	0
2,3,4,6,7,8-HxCDF	0.344	0.1	0
1,2,3,4,6,7,8-HpCDF	0.558	0.01	0
1,2,3,4,7,8,9-HpCDF	0.825	0.01	0
OCDF	1.25	0.0003	0
Total TEQ			0.103

^{*} TEF - Toxicity Equivalent Factors from the World Health Organization (WHO), 2005.

1DFC - FORM I-HR CDD-3 CDF SECOND COLUMN CONFIRMATION HIGH RESOLUTION

EPA	Sample No.
	100
	193

Lab Name:			Contract:	<u>0W001071</u>		
Lab Code:	_Case No	.:		TO No.:	SDG No.:193	
Matrix: (Soil/Water/	Ash/Tissu	ue/Oil) Soil	<u>l</u>	Lab Sample ID:	00584-001	
Sample wt/vol:	30.272	(g/mL)	g	Lab File ID:	7979	
Water Sample Prep: _		(SEP	F/SPE)	Date Received:	05/10/2012	
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/12/2012	
Injection Volume:	1 (uL)	% Solids/Lipids:	33.3	Date Analyzed:	06/21/2012	
GC Column: DB-225	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:		E-HRMS-04				

Concentration Units: (pg/L	or ng/kg)	ng/Kg				
Analyte	Selected Ions	Peak RT	Ion Ratio #	Concentration	Ŋ	EMPC/EDL
2,3,7,8-TCDF	304/306	23.25	0.68	5.22		0.233

NOTE: Concentrations, Estimated Maximum Possible Concentrations (EMPCs), and Estimated Detection Levels (EDLs) for solid samples are calculated on a dry weight basis (except tissues, which are reported on a wet weight basis with % Lipids).

Labeled Compounds	Selected Ions	Peak RT	Ion Ratio #	Ion Ratio Limits	% Rec #	Recovery Limits
13C-2,3,7,8-TCDF	316/318	23.23	0.80	0.65-0.89	47	24-169
37Cl-2,3,7,8-TCDD	328/NA	21.35	NA	AN	71	35-197

[#] Column to be used to flag values outside Quality Control (QC) limits.

Analytical Report

US Environmental Protection Agency **Client:**

Service Request: 00584 Dioxins/Furans/ **Date Collected:** 5/9/12 1113 **Project: Sample Matrix:** Sediment **Date Received:** 5/10/12

Sample Name: 193 Units: ng/Kg Lab Code: 00584-001 Basis: Dry

Percent Solids: 33.3

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Date Analyzed: 6/19/12 1525 **Analytical Method:** Method **Prep Method: Date Extracted:** 6/12/12 **Sample Amount:** 30.272g **Instrument Name:** E-HRMS-03 GC Column: DB-5

Data File Name: 8294 Blank File Name: 8291 **ICAL Date:** 04/23/12 Cal Ver. File Name: 8290

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	2.74	0.0494	0.992	0.74	1.001	1	-
1,2,3,7,8-PeCDD	1.14 J	0.108	4.96	1.60	1.000	1	
1,2,3,4,7,8-HxCDD	1.34 J	0.104	4.96	1.23	1.000	1	
1,2,3,6,7,8-HxCDD	5.29	0.111	4.96	1.31	1.000	1	
1,2,3,7,8,9-HxCDD	2.91 J	0.102	4.96	1.10	1.007	1	
1,2,3,4,6,7,8-HpCDD	97.7 B	0.417	4.96	1.08	1.000	1	
OCDD	962	0.371	9.92	0.89	1.000	1	
2.2.7.0 TCDE	0.55	0.0407	0.002	0.76	1 001	1	
2,3,7,8-TCDF	9.75	0.0497	0.992	0.76	1.001	1	
1,2,3,7,8-PeCDF	2.39 J	0.0440	4.96	1.49	1.001	1	
2,3,4,7,8-PeCDF	3.09 J	0.0540	4.96	1.52	1.000	1	
1,2,3,4,7,8-HxCDF	7.31	0.126	4.96	1.15	1.000	1	
1,2,3,6,7,8-HxCDF	3.25 J	0.122	4.96	1.32	1.000	1	
1,2,3,7,8,9-HxCDF	ND U	0.124	4.96	0.00	1 000	1	
2,3,4,6,7,8-HxCDF	1.67 J	0.129	4.96	0.98	1.000	1	
1,2,3,4,6,7,8-HpCDF	41.7	0.129	4.96	1.01	1.000	1	
1,2,3,4,7,8,9-HpCDF	1.95 J	0.128	4.96	1.26	1.000	1	
OCDF	64.1	0.271	9.92	0.86	1.004	I	
Total Tetra-Dioxins	15.7	0.0494	0.992	0.77		1	
Total Penta-Dioxins	14.7	0.108	4.96	1.61		1	
Total Hexa-Dioxins	69.5	0.104	4.96	1.27		1	
Total Hepta-Dioxins	312	0.417	4.96	1.06		1	
Total Tetra-Furans	68.4	0.0497	0.992	0.79		1	
Total Penta-Furans	43.8	0.0540	4.96	1.61		1	
Total Hexa-Furans	41.8	0.126	4.96	1.13		1	
Total Hepta-Furans	81.2	0.129	4.96	1.01		1	

Analytical Report

US Environmental Protection Agency **Client:**

Service Request: 00584 Dioxins/Furans/ **Date Collected:** 5/9/12 1113 **Project: Sample Matrix:** Sediment **Date Received:** 5/10/12

Sample Name: 193 Units: Percent Lab Code: 00584-001 Basis: Dry

Percent Solids: 33.3

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

/F DLM02.2 **Date Analyzed:** 6/19/12 1525 **Analytical Method:** Method **Prep Method: Date Extracted:** 6/12/12 **Sample Amount:** 30.272g **Instrument Name:** E-HRMS-03 GC Column: DB-5

Data File Name: 8294 Blank File Name: 8291 **ICAL Date:** 04/23/12 Cal Ver. File Name: 8290

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1335.591	67	25-164	0.79	1.007
13C-1,2,3,7,8-PeCDD	2000	1243.335	62	25-181	1.56	1.170
13C-1,2,3,4,7,8-HxCDD	2000	1471.036	74	32-141	1.29	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1461.565	73	28-130	1.29	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1496.418	75	23-140	1.07	1.069
13C-OCDD	4000	2220.304	56	17-157	0.90	1.149
13C-2,3,7,8-TCDF	2000	1022.168	51	24-169	0.80	0.978
13C-1,2,3,7,8-PeCDF	2000	1467.038	73	24-185	1.59	1.132
13C-2,3,4,7,8-PeCDF	2000	1264.094	63	21-178	1.60	1.158
13C-1,2,3,4,7,8-HxCDF	2000	1488.324	74	26-152	0.52	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1521.599	76	26-123	0.54	0.975
13C-1,2,3,7,8,9-HxCDF	2000	1727.466	86	29-147	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1569.974	78	28-136	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1238.703	62	28-143	0.45	1.045
13C-1,2,3,4,7,8,9-HpCDF	2000	1698.353	85	26-138	0.46	1.079
37Cl-2,3,7,8-TCDD	800	619.209	77	35-197	NA	1.009

Analytical Report

US Environmental Protection Agency **Client:**

Service Request: 00584 Dioxins/Furans/ **Date Collected:** 5/9/12 1113 **Project: Sample Matrix:** Sediment **Date Received:** 5/10/12

Sample Name: 193 Units: ng/Kg Lab Code: 00584-001 Basis: Dry

Percent Solids: 33.3

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

/F DLM02.2 **Date Analyzed:** 6/21/12 0844 **Analytical Method:**

Method **Prep Method: Date Extracted:** 6/12/12 **Sample Amount:** 30.272g **Instrument Name:** E-HRMS-04 GC Column: DB-225

7979 7978 **Data File Name: Blank File Name: ICAL Date:** 09/09/11 Cal Ver. File Name: 7977

Ion Dilution **Analyte Name** Result Q **EDL** MRL Ratio RRT **Factor** 2,3,7,8-TCDF 5.22 0.233 0.992 0.68 1.001 1

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDF	2000	936.948	47	24-169	0.80	1.077
37Cl-2,3,7,8-TCDD	800	570.309	71	35-197	NA	0.990

Printed 7/24/12 15:46 $\verb|\Inflow2\Starlims\LimsReps\AnalyticalReport.rpt| \\$

193)

00584

Form 1A

	-				.93		
Run #11 Processed	Filename 8294 : 20-JUN-12 11:09:2		: 1 Inj: 1 Sample ID:	Acquired: 00584-001RE	19-JUN-12 1	.5:25:5	0
Тур	Na	ame RT-1	Resp 1	Resp 2	Ratio Meet	Mod?	RRF
1 Unk	2,3,7,8-TC	יחד מויס	1.764e+03	2.306e+03	0.76 yes	no	0.929
2 Unk	1,2,3,7,8-PeC		7.922e+02	5.319e+02	1.49 yes	no	1.002
3 Unk	2,3,4,7,8-PeC		8.269e+02	5.456e+02	1.52 yes	no	0.963
4 Unk	1,2,3,4,7,8-HxC		1.835e+03	1.600e+03	1.15 yes	no	1.221
5 Unk	1,2,3,6,7,8-HxC		9.290e+02	7.026e+02	1.32 yes	no	1.139
6 Unk	2,3,4,6,7,8-HxC		4.421e+02	4.506e+02	0.98 no	yes	1.139
7 Unk	1,2,3,7,8,9-HxC		*	*	* no	yes	1.165
8 Unk	1,2,3,4,6,7,8-HpC		7.394e+03	7.288e+03	1.01 yes	no	1.394
9 Unk	1,2,3,4,7,8,9-HpC		4.714e+02	3.738e+02	1.26 no	no	1.334
10 Unk		DF 43:11	5.840e+03	6.807e+03	0.86 yes	no	1.227
10 01111				1	1 12	1	1
11 Unk	2,3,7,8-TC	DD 29:13	5.244e+02	7.073e+02	0.74 yes	no	0.980
12 Unk	1,2,3,7,8-PeC	DD 33:54	2.238e+02	1.400e+02	1.60 yes	no	0.915
13 Unk	1,2,3,4,7,8-HxC	DD 37:07	2.470e+02	2.009e+02	1.23 yes	no	1.001
14 Unk	1,2,3,6,7,8-HxC	DD 37:11	9.794e+02	7.469e+02	1.31 yes	no	0.978
15 Unk	1,2,3,7,8,9-HxC	DD 37:27	5.284e+02	4.802e+02	1.10 yes	yes	1.041
16 Unk	1,2,3,4,6,7,8-HpC	DD 40:00	1.514e+04	1.401e+04	1.08 yes	no	1.002
17 Unk	OC	DD 43:02	7.675e+04	8.623e+04	0.89 yes	no	1.054
			1 0 0 5 4 0 4	1 050 04	1 0 001	1	11 202
18 IS	13C-2,3,7,8-TC		3.964e+04	4.952e+04	0.80 yes	no	1.282
19 IS	13C-1,2,3,7,8-PeC		6.721e+04	4.236e+04	1.59 yes	no	1.098
20 IS	13C-2,3,4,7,8-PeC		5.637e+04	3.523e+04	1.60 yes	no	1.065
21 IS	13C-1,2,3,4,7,8-HxC		2.615e+04	5.021e+04	0.52 yes	no	1.062
22 IS	13C-1,2,3,6,7,8-HxC		3.057e+04	5.699e+04	0.54 yes	no	1.191
23 IS	13C-2,3,4,6,7,8-HxC		2.885e+04	5.446e+04	0.53 yes	no	1.098
24 IS	13C-1,2,3,7,8,9-HxC		2.843e+04	5.335e+04	0.53 yes	no	0.980
	BC-1,2,3,4,6,7,8-HpC		1.566e+04	3.447e+04	0.45 yes	no	0.837
26 IS 13	3C-1,2,3,4,7,8,9-HpC	DF 40:24	1.819e+04	3.991e+04	0.46 yes	no	0.708
27 IS	13C-2,3,7,8-TC	DD 29:11	4.016e+04	5.083e+04	0.79 yes	no	1.002
28 IS	13C-1,2,3,7,8-PeC		4.225e+04	2.701e+04	1.56 yes	no	0.819
29 IS	13C-1,2,3,4,7,8-HxC		3.726e+04	2.878e+04	1.29 yes	no	0.929
	13C-1,2,3,6,7,8-HxC		3.721e+04	2.894e+04	1.29 yes	no	0.937
	BC-1,2,3,4,6,7,8-HpC		3.048e+04	2.859e+04	1.07 yes	no	0.817
32 IS		DD 43:01	3.014e+04	3.366e+04	0.90 yes	no	0.595
					1	1	
33 RS/RT	13C-1,2,3,4-TC		6.038e+04	7.566e+04	0.80 yes	no	-
	13C-1,2,3,7,8,9-HxC		5.354e+04	4.310e+04	1.24 yes	no	-
35 C/Up	37Cl-2,3,7,8-TC	DD 29:13	4.378e+04			no	1.039
	(7.675e+04 + 8.623e+	04) ~ 400	10 na x 1		961.717 6/20	- 1k-	ı
OCDD				=	961.717	7717	
	(3.014e+04 + 3.366e+	04) x 30.2	72g x 333	/ 100 x 1.054	. 1.	112	
		<i></i>			6/20	2/16	

Run #11 Filename 8294 Samp: 1 Inj: 1 Acquired: 19-JUN-12 15:25:50 Processed: 20-JUN-12 11:09:211 LAB. ID: 00584-001RE

Processed: 20-JUN-12 11:09	9:211	LAB. IL): 0058	4-UUIRE		
Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2 S	/N Rat.2
1 2,3,7,8-TCDF	2.37e+05	6.72e+02	3.5e+02	3.09e+05	7.36e+02	4.2e+02
2 1,2,3,7,8-PeCDF	1.47e+05	1.00e+03	1.5e+02	1.02e+05	9.40e+02	1.1e+02
3 2,3,4,7,8-PeCDF	1.53e+05	1.00e+03	1.5e+02	1.01e+05	9.40e+02	1.1e+02
4 1,2,3,4,7,8-HxCDF	3.27e+05	2.34e+03	1.4e+02	2.90e+05	2.90e+03	1.0e+02
5 1,2,3,6,7,8-HxCDF	1.98e+05	2.34e+03	8.5e+01	1.45e+05	2.90e+03	5.0e+01
6 2,3,4,6,7,8-HxCDF	1.12e+05	2.34e+03	4.8e+01	9.76e+04	2.90e+03	3.4e+01
7 1,2,3,7,8,9-HxCDF	*	2.34e+03	*	*	2.90e+03	*
8 1,2,3,4,6,7,8-HpCDF	1.54e+06	2.55e+03	6.0e+02	1.53e+06	1.38e+03	1.1e+03
9 1,2,3,4,7,8,9-HpCDF	8.07e+04	2.55e+03	3.2e+01	7.10e+04	1.38e+03	5.2e+01
10 OCDF	7.94e+05	7.56e+02	1.0e+03	9.34e+05	1.90e+03	4.9e+02
·						
11 2,3,7,8-TCDD	6.98e+04	6.28e+02	1.1e+02	8.74e+04	9.64e+02	9.1e+01
12 1,2,3,7,8-PeCDD	4.75e+04	1.39e+03	3.4e+01	3.00e+04	1.38e+03	2.2e+01
13 1,2,3,4,7,8-HxCDD	6.50e+04	1.82e+03	3.6e+01	5.05e+04	1.50e+03	3.4e+01
14 1,2,3,6,7,8-HxCDD	2.25e+05	1.82e+03	1.2e+02	1.74e+05	1.50e+03	1.2e+02
15 1,2,3,7,8,9-HxCDD	1.25e+05	1.82e+03	6.8e+01	1.13e+05	1.50e+03	7.6e+01
16 1,2,3,4,6,7,8-HpCDD	3.17e+06	4.59e+03	6.9e+02	2.93e+06	5.73e+03	5.1e+02
17 OCDD	9.55e+06	1.95e+03	4.9e+03	1.08e+07	1.18e+03	9.1e+03
		6 44001	1 004	8.37e+06	1.12e+03	7.5e+03
18 13C-2,3,7,8-TCDF	6.71e+06	6.44e+02	1.0e+04 4.3e+03	8.45e+06	3.20e+03	2.6e+03
19 13C-1,2,3,7,8-PeCDF	1.33e+07	3.10e+03 3.10e+03	3.7e+03	7.10e+06	3.20e+03	2.0e+03 2.2e+03
20 13C-2,3,4,7,8-PeCDF	1.14e+07	1.66e+03	3.7e+03	1.11e+07	2.42e+03	4.6e+03
21 13C-1,2,3,4,7,8-HxCDF 22 13C-1,2,3,6,7,8-HxCDF	5.81e+06 6.52e+06	1.66e+03	3.9e+03	1.21e+07	2.42e+03	5.0e+03
23 13C-1,2,3,6,7,8-HxCDF	6.18e+06	1.66e+03	3.7e+03	1.15e+07	2.42e+03	4.7e+03
24 13C-1,2,3,7,8,9-HxCDF	6.28e+06	1.66e+03	3.8e+03	1.18e+07	2.42e+03	4.9e+03
25 13C-1,2,3,4,6,7,8-HpCDF	3.41e+06	1.66e+03	2.1e+03	7.44e+06	2.71e+03	2.7e+03
26 13C-1,2,3,4,7,8,9-HpCDF	3.57e+06	1.66e+03	2.2e+03	7.80e+06	2.71e+03	2.9e+03
20 130 1,2,3,1,,,0,3 112021	3.3,3133		_,,		1	
27 13C-2,3,7,8-TCDD	7.19e+06	1.78e+03	4.0e+03	9.08e+06	5.16e+02	1.8e+04
28 13C-1,2,3,7,8-PeCDD	8.39e+06	1.64e+03	5.1e+03	5.46e+06	1.08e+03	5.0e+03
29 13C-1,2,3,4,7,8-HxCDD	8.99e+06	1.59e+03	5.6e+03	6.88e+06	1.30e+03	5.3e+03
30 13C-1,2,3,6,7,8-HxCDD	8.51e+06	1.59e+03	5.3e+03	6.66e+06	1.30e+03	5.1e+03
31 13C-1,2,3,4,6,7,8-HpCDD	6.33e+06	2.61e+03	2.4e+03	5.88e+06	1.90e+03	3.1e+03
32 13C-OCDD	3.76e+06	7.36e+02	5.1e+03	4.15e+06	8.52e+02	4.9e+03
33 13C-1,2,3,4-TCDD	1.07e+07	1.78e+03	6.0e+03	1.34e+07	5.16e+02	2.6e+04
34 13C-1,2,3,7,8,9-HxCDD	1.08e+07	1.59e+03	6.8e+03	8.89e+06	1.30e+03	6.8e+03
35 37Cl-2,3,7,8-TCDD	7.75e+06	6.96e+02	1.1e+04			

CLIENT ID.

L93

Entry: 36 Totals Name: Total Tetra-Furans

Run: 11 File: 3294 Sample:1 Injection:1 Function:1

Mas	s: 303.9016 30	5.8987		Respo	nse:			
#	RT Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	24:15 3.47e+02	4.41e+02	0.79	yes	7.88e + 02		n	n
2	24:55 6.07e+02	7.26e+02	0.84	yes	1.33e+03		n	n
3	25:14 7.57e+02	9.91e+02	0.76	yes	1.75e+03		n	n
4	25:45 1.19e+03	1.59e+03	0.75	yes	2.79e+03		n	n
5	25:54 4.88e+02	6.41e+02	0.76	yes	1.13e+03		n	n
6	26:13 1.86e+03	2.36e+03	0.79	yes	4.22e+03		n	n
7	26:36 4.39e+02	5.33e+02	0.82	yes	9.72e+02		n	n
8	26:42 1.53e+03	2.13e+03	0.72	yes	3.66e+03		n	n
9	27:04 9.55e+02	1.26e+03	0.76	yes	2.22e+03		n	n
10	27:21 2.66e+02	3.84e+02	0.69	yes	6.50e+02		n	n
11	27:26 5.49e+02	6.49e+02	0.85	yes	1.20e+03		n	n
12	27:35 2.74e+02	3.98e+02	0.69	yes	6.73e+02		n	n
13	28:07 4.08e+02	4.96e+02	0.82	yes	9.05e+02		n	n
14	28:22 1.76e+03	2.31e+03	0.76	yes	4.07e+03	2,3,7,8-TCDF	n	n
15	28:51 5.80e+02	7.71e+02	0.75	yes	1.35e+03		n	n
16	29:08 3.74e+02	4.78e+02	0.78	yes	8.52e+02		n	n

CLIENT ID.

193

Entry: 37 Totals Name: Total Tetra-Dioxins

Run: 11 File: 8294 Sample:1 Injection:1 Function:1

Mas	s: 319.8965 32	1.8936		Respon	nse:			
#	RT Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	26:04 3.44e+02	4.48e+02	0.77	yes	7.93e+02		n	n
2	28:12 5.42e+01	7.21e+01	0.75	yes	1.26e+02		n	n
3	28:36 3.86e+01	5.18e+01	0.75	yes	9.04e+01		n	n
4	29:06 2.08e+03	2.72e+03	0.77	yes	4.81e+03		n	n
5	29:13 5.24e+02	7.07e+02	0.74	yes	1.23e+03	2,3,7,8-TCDD	n	n

CLIENT ID.

193

Entry: 38 Totals Name: Total Penta-Furans

Run: 11 File: 8294 Sample:1 Injection:1 Function:2

Mas	s: 339	.8597 34	1.8567		Respon	nse:			
#	RT	Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	30:39	3.65e+03	2.26e+03	1.61	yes	5.91e+03		n	n
2	31:45	4.29e+02	2.87e+02	1.50	yes	7.15e+02		n	n
3	31:53	3.95e+03	2.52e+03	1.57	yes	6.48e+03		n	n
4	32:03	4.68e+02	3.05e+02	1.54	yes	7.73e+02		n	n
5	32:18	1.06e+02	7.88e+01	1.35	yes	1.85e+02		n	n
6	32:24	1.05e+03	6.05e+02	1.73	yes	1.65e+03		n	n
7	32:30	4.79e+02	3.27e+02	1.47	yes	8.05e+02		n	n
8	32:43	3.02e+02	2.03e+02	1.49	yes	5.04e+02		n	n
9	32:48	7.92e+02	5.32e+02	1.49	yes	1.32e+03	1,2,3,7,8-PeCDF	n	n
10	33:06	4.70e+02	3.12e+02	1.51	yes	7.82e+02		n	n
11	33:33	8.27e+02	5.46e+02	1.52	yes	1.37e+03	2,3,4,7,8-PeCDF	n	n
12	33:41	4.74e+02	3.35e+02	1.41	yes	8.09e+02		У	У
13	33:44	2.58e+02	1.59e+02	1.62	yes	4.17e+02		У	У
14	34:31	4.48e+01	3.07e+01	1.46	yes	7.55e+01		У	У

CLIENT ID.

L93

Entry: 39 Totals Name: Total Penta-Dioxins

Run: 11 File: 3294 Sample:1 Injection:1 Function:2

Mass	: 355.8546 35			Respon			_	
#	RT Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	32:01 1.03e+03	6.38e+02	1.61	yes	1.67e+03		n	n
2	32:31 1.97e+02	1.16e+02	1.70	yes	3.13e+02		n	n
3	32:47 4.32e+02	3.02e+02	1.43	yes	7.34e + 02		n	n
4	32:56 2.81e+02	2.02e+02	1.40	yes	4.83e+02		n	n
5	33:07 2.82e+02	1.64e+02	1.72	yes	4.45e+02		n	n
6	33:17 8.50e+01	5.00e+01	1.70	yes	1.35e+02		n	n
7	33:23 1.95e+02	1.32e+02	1.48	yes	3.28e+02		n	n
8	33:35 1.30e+02	8.05e+01	1.62	yes	2.11e+02		n	n
9	33:54 2.24e+02	1.40e+02	1.60	yes	3.64e+02	1,2,3,7,8-PeCDD	n	n

CLIENT ID.

193

Entry: 40 Totals Name: Total Hexa-Furans

Run: 11 File: 3294 Sample:1 Injection:1 Function:3

Mas	s: 373.8208	375.8178		Respon	nse:			
#	RT R	esp Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
1	35:25 1.17e	+03 1.04e+03	1.13	yes	2.20e+03		n	n
2	35:33 4.37e	+03 3.66e+03	1.20	yes	8.03e+03		n	n
3	35:43 8.74e	+01 7.42e+01	1.18	yes	1.62e+02		n	n
4	35:51 2.32e	+02 1.99e+02	1.17	yes	4.31e+02		n	n
5	36:01 2.13e	+03 1.79e+03	1.19	yes	3.92e+03		n	n
6	36:23 1.83e	+03 1.60e+03	1.15	yes	3.44e+03	1,2,3,4,7,8-HxCDF	n	n
7	36:30 9.29e	+02 7.03e+02	1.32	yes	1.63e+03	1,2,3,6,7,8-HxCDF	n	n
8	36:35 5.98e	+01 5.12e+01	1.17	yes	1.11e+02		n	n
9	37:44 1.31e	+02 1.14e+02	1.15	yes	2.44e+02		У	У

CLIENT ID.

193

Entry: 41 Totals Name: Total Hexa-Dioxins

Run: 11 File: 8294 Sample:1 Injection:1 Function:3

Mass	s: 389.815	7 391.812	7	Respo	nse:			_
#	RT	Resp 1	Resp Rati	o Meet	Tot Resp	Name	Mod1?	Mod2
1	35:55 3.8	3e+03 3.026	e+03 1.2	7 yes	6.85e+03		n	n
2	36:12 1.3	9e+03 1.10	e+03 1.2	6 yes	2.49e+03		n	n
3	36:22 1.0	9e+03 8.81	e+02 1.2	3 yes	1.97e+03		n	n
4	36:35 4.3	5e+03 3.49	e+03 1.2	5 yes	7.84e+03		n	n
5	36:44 3.1	9e+02 2.71	e+02 1.1	8 yes	5.90e+02		n	n
6	37:07 2.4	7e+02 2.01	e+02 1.2	3 yes	4.48e+02	1,2,3,4,7,8-HxCDD	n	n ,
7	37:11 9.7	9e+02 7.47	e+02 1.3	1 yes	1.73e+03	1,2,3,6,7,8-HxCDD	n	n
8	37:26 1.9	5e+02 1.78	e+02 1.0	9 yes	3.73e+02		У	У
9	37:27 5.2	8e+02 4.80	e+02 1.1	0 yes	1.01e+03	1,2,3,7,8,9-HxCDD	У	У

CLIENT ID.

193

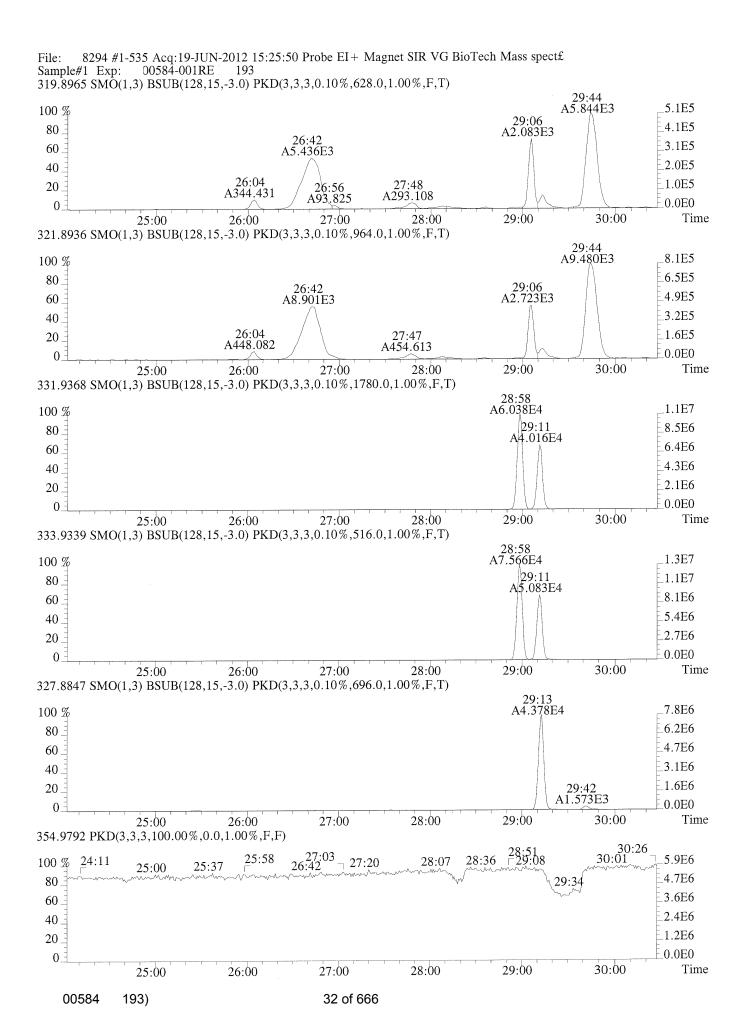
Entry: 42 Totals Name: Total Hepta-Furans

Run: 11 File: 8294 Sample:1 Injection:1 Function:4

Mas	s: 407.7818 4	09.7789	Response:			
#	RT Resp	Resp Rati	Meet Tot Resp	Name	Mod1?	Mod2
1	39:07 7.39e+03	7.29e+03 1.0	l yes 1.47e+04	1,2,3,4,6,7,8-HpCDF	n	n
2	39:28 6.61e+03	6.62e+03 1.0	yes 1.32e+04		n	n
3	40:30 8.97e+02	8.82e+02 1.0	yes 1.78e+03		n	n

CLIENT ID.

193


Entry: 43 Totals Name: Total Hepta-Dioxins

Run: 11 File: 8294 Sample:1 Injection:1 Function:4

Acquired: 19-JUN-12 15:25:50 Processed: 20-JUN-12 11:09:21

Mass: 423.7766 425.7737 Response:

3294 #1-535 Acq:19-JUN-2012 15:25:50 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: 00584-001RE 193 Sample#1 Exp 303,9016 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,672.0,1.00%,F,T) 26:42 A1.527E3 2.4E5 100 % 1.9E5 80 25:45 A1.194E3 27:04 25:14 A757.051 _1.4E5 60 28:51 A580.072 A954.684 27:48 A793.282 26:36 24:15 9.5E4 40 29:08 A373.501 A439.348 A346.770 30:15 4.7E4 20 A71.944 0.0E0 0 29:00 30:00 Time 27:00 28:00 25:00 26:00 305.8987~SMO(1,3)~BSUB(128,15,-3.0)~PKD(3,3,3,0.10%,736.0,1.00%,F,T)26:13 A2.360E3 26:42 A2.132E3 100 % A2.306E3 3.1E5 2.5E5 80 25:45 A1.595E3 27:03 1.9E5 60 28:52 A771.210 25:14 A990.769 26:35 A533 052 A1.262E3 27:49 A777.586 1.2E5 40 29:08 30:15 478.248 6.2E4 20 A46.567 0.0E0 25:00 26:00 27:00 28:00 29:00 30:00 Time 315.9419 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,644.0,1.00%,F,T) 28:20 A3.964E4 6.7E6 100 % 5.4E6 80 4.0E6 60 40 2.7E6 _1.3E6 20 0.0E0 29:00 30:00 Time 25:00 26:00 27:00 28:00 317.9389 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1120.0,1.00%,F,T) 28:20 A4.952E4 8.4E6 100 % 6.7E6 80 5.0E6 60 3.4E6 40 1.7E6 20 0.0E0 0 30:00 27:00 28:00 29:00 Time 25:00 26:00 375.8364 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 28:45 1.4E4 100 % 1.1E4 80 8.2E3 60 28:29 29:16 5.4E3 40 29:42 29:47 26:35 ^{27:03}/_{27:15} 27:48 30:23 28:09 25:19 2.7E3 20 0.0E0 29:00 30:00 Time 25:00 27:00 28:00 26:00 354.9792 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 30:26 30:01 28:51-29:08 $26:42^{27:03}$ $\sim 27:20$ 5.9E6 28:36 28:07 100 % 24:11 25:37 25:00 4.7E6 80 29:34 3.6E6 60 2.4E6 40 _1.2E6 20 0.0E0 30:00 Time 25:00 26:00 27:00 28:00 29:00 00584 31 of 666 193)

8294 #1-535 Acq:19-JUN-2012 15:25:50 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp: 00584-001RE 193 319.8965 SMO(1,3) BSUB(128,15,-3.0) 26:42 A5.550E3 2.7E5 100 % 95 2.6E5 _2.5E5 90 2.3E5 85 2.2E5 80 £2.1E5 75 1.9E5 70 1.8E5 65 1.6E5 60 55 1.5E5 1.4E5 50 1.2E5 45 1.1E5 40 9.6E4 35 8.2E4 30 _6.8E4 25 26:04 A344.426 5.5E4 20 _4.1E4 15 _2.7E4 10 _1.4E4 5 0.0E0 26:00 26:24 26:36 26:48 27:00 27:12 27:24 Time 26:12 321.8936 SMO(1,3) BSUB(128,15,-3.0) 26:42 A8.901E3 _4.5E5 100 % _4.3E5 95 4.1E5 90 _3.9E5 85 _3.6E5 80 75 _3.4E5 3.2E5 70 _3.0E5 65 2.7E5 60 NUM INTEGRATION DIPLANATION _2.5E5 55 PLAIC NOT LOUND/NOT INTEGRATED _2.3E5 50 _2.0E5 45 1.8E5 40 06/20/12 1.6E5 1.4E5 35 1.4E5 30 1.1E5 25 _9.1E4 20 26:04 A448.083 6.8E4 15 4.5E4 10 2.3E4 5

26:12

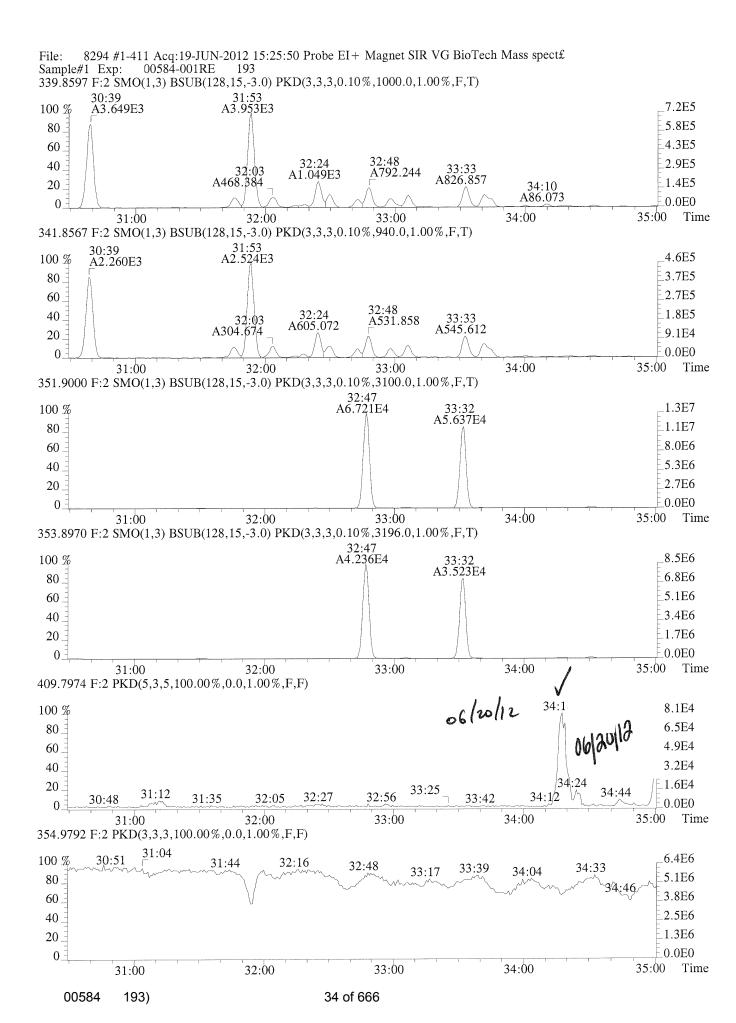
26:00

0.

26:48

26:36

26:24


27:00

27:12

0.0E0

Time

27:24

File: ___ 8294 #1-411 Acq:19-JUN-2012 15:25:50 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00584-001RE 193 339.8597 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1000.0,1.00%,F,T) 33:33 A826,857 1.5E5 100 % 95 1.5E5 90 _1.4E5 1.3E5 85 £1.2E5 80 1.1E5 75 1.1E5 70 _1.0E5 65 33:41 A473.699 9.2E4 60 _8.4E4 55 7.7E4 50 33:44 A257.614 _6.9E4 45 6.1E4 40 5.4E4 35 4.6E4 30 3.8E4 25 _3.1E4 20 34:10 A88.960 2.3E4 15 34:31 A44.784 1.5E4 10 34:00 A24.023 7.7E3 5 0.0E0 34:24 Time 33:24 33:36 33:48 34:00 34:12 34:36 341.8567 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,940.0,1.00%,F,T) 33:33 A545,612 1.0E5 100 % 9.6E4 95 9.1E4 90 _8.6E4 85 8.1E4 80 7.6E4 75 7.1E4 70 33:41 A335.336 NUAL INSTIGRASION EXPERNATION .6.6E4 65 6.1E4 60 RETENTION TIME SHEET 5.6E4 55 5.1E4 50 06/20/12 06/20/12 33 43 A159,198 4.6E4 45 4.1E4 40 3.6E4 35 _3.0E4 30 2.5E4 25 _2.0E4 20 _1.5E4

33:36

33:24

15

10

5.

0

34:00

A26.445

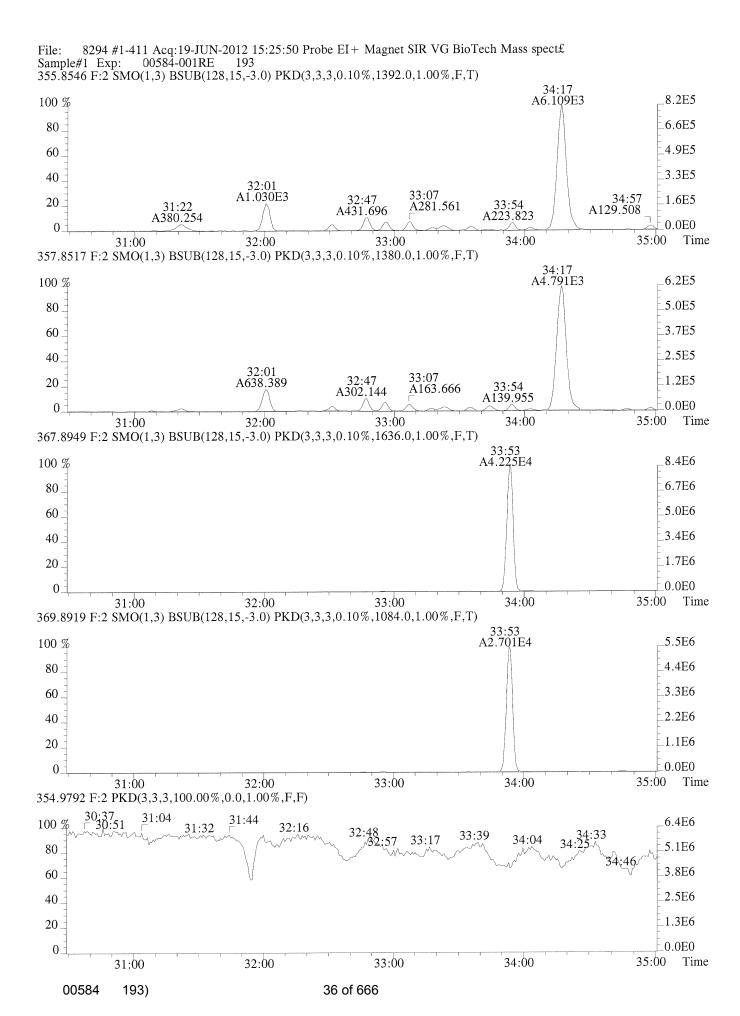
34:00

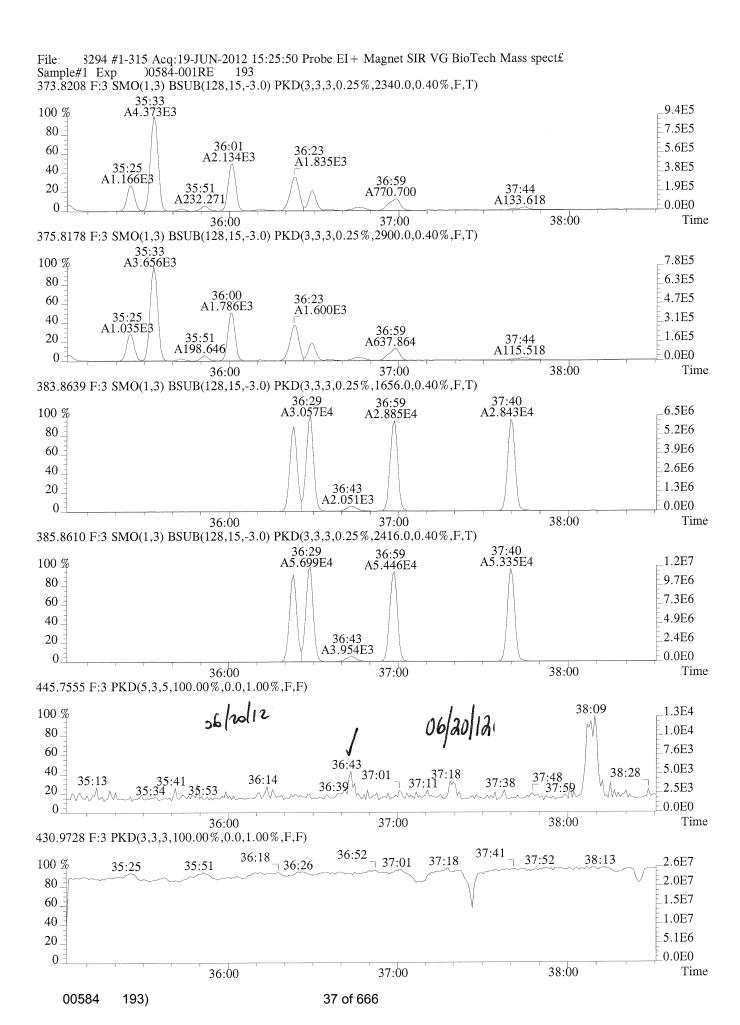
33:48

34:10 A19.401

34:12

_1.0E4


5.1E3


0.0E0

Time

34:31 A30.681

34:36

3294 #1-315 Acq:19-JUN-2012 15:25:50 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp: 00584-001RE 193 373.8208 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,2340.0,0.40%,F,T) 36:23 100 % A1.835E3 3.3E5 3.1E5 95 _3.0E5 90 2.8E5 85 2.6E5 80 2.5E5 75 2.3E5 70 2.1E5 65 36:30 A929.005 _2.0E5 60 £1.8E5 55 1.6E5 50 1.5E5 45 1.3E5 40 36:59 A442.076 1.1E5 35 9.9E4 36:57 30 A314,626 _8.2E4 25 _6.6E4 20 _4.9E4 15 37:44 A130.705 _3.3E4 10 36:35 A59.808 _1.6E4 5 0.0E0 0 37:24 37:36 37:48 Time 36:24 36:36 36:48 37:00 37:12 375.8178 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,2900.0,0.40%,F,T) 36:23 100 % A1.600E3 _2.9E5 2.8E5 95 _2.6E5 90 2.5E5 85 2.3E5 80 _2.2E5 75 2.0E5 VIVIAL INTEGRATION EXPLANATION 70 1.9E5 65 PEAK NOT FOUND/NOT INTEGRATED 1.7E5 60 4CORRECT/INACCURATE 1.6E5 55 36:30 A702.606 OTHER 1.5E5 50 1.3E5 45 1.2E5 40 36:59 1.0E5 35 A450.645 _8.7E4 30 7.3E4 25 36:57 A180,349 5.8E4 20 4.4E4 15 37:44 A113.752 2.9E4 10 36:35 A51.162 1.5E4 5

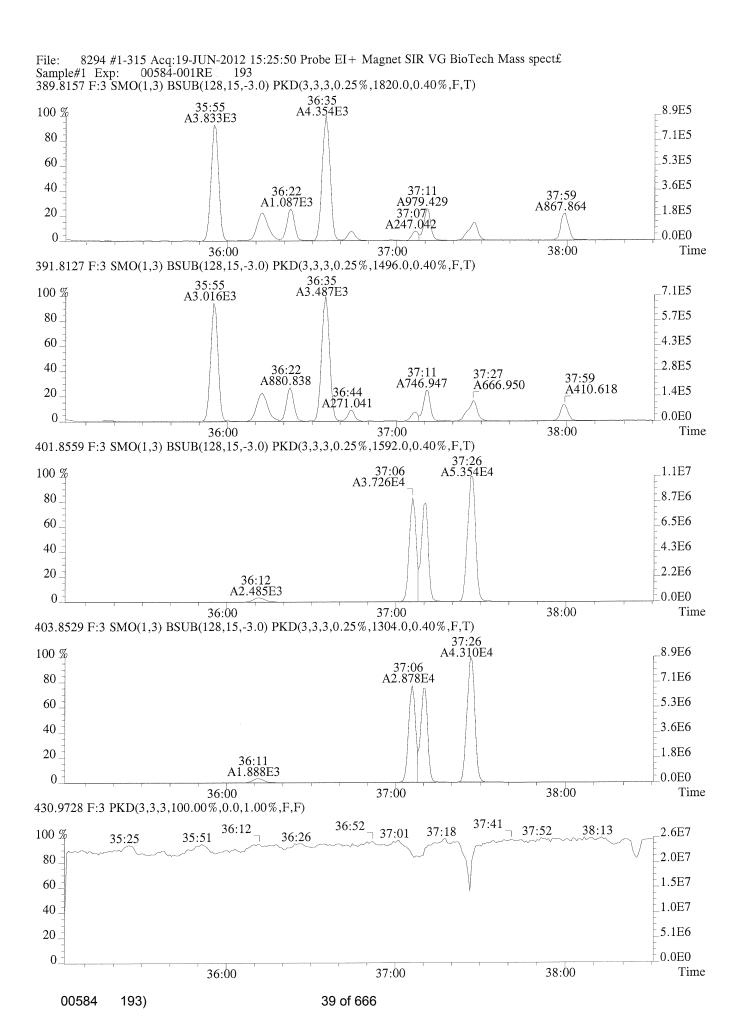
36:24

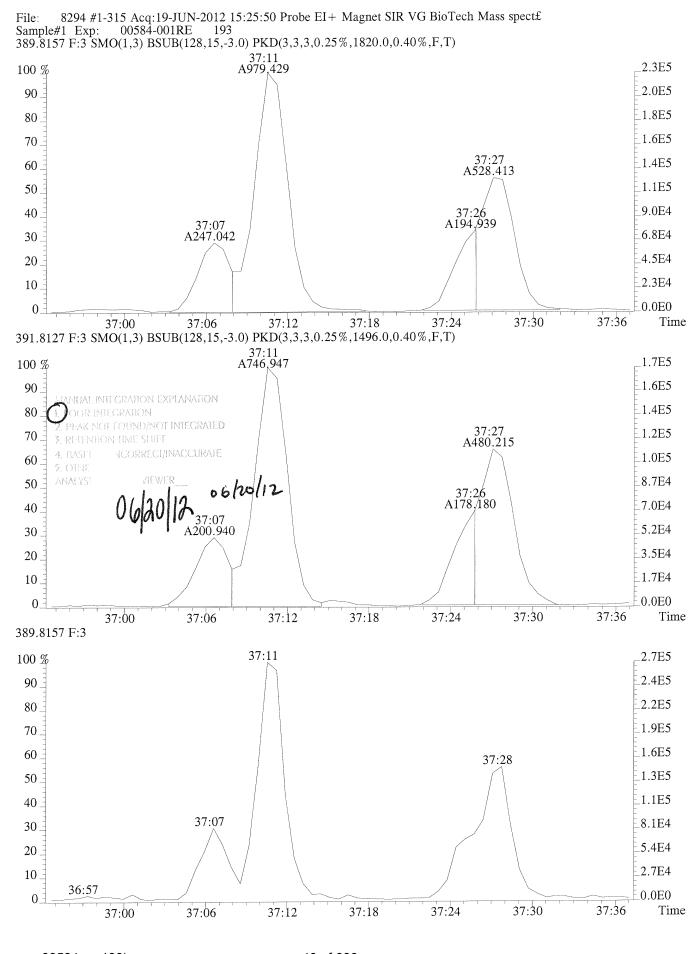
36:36

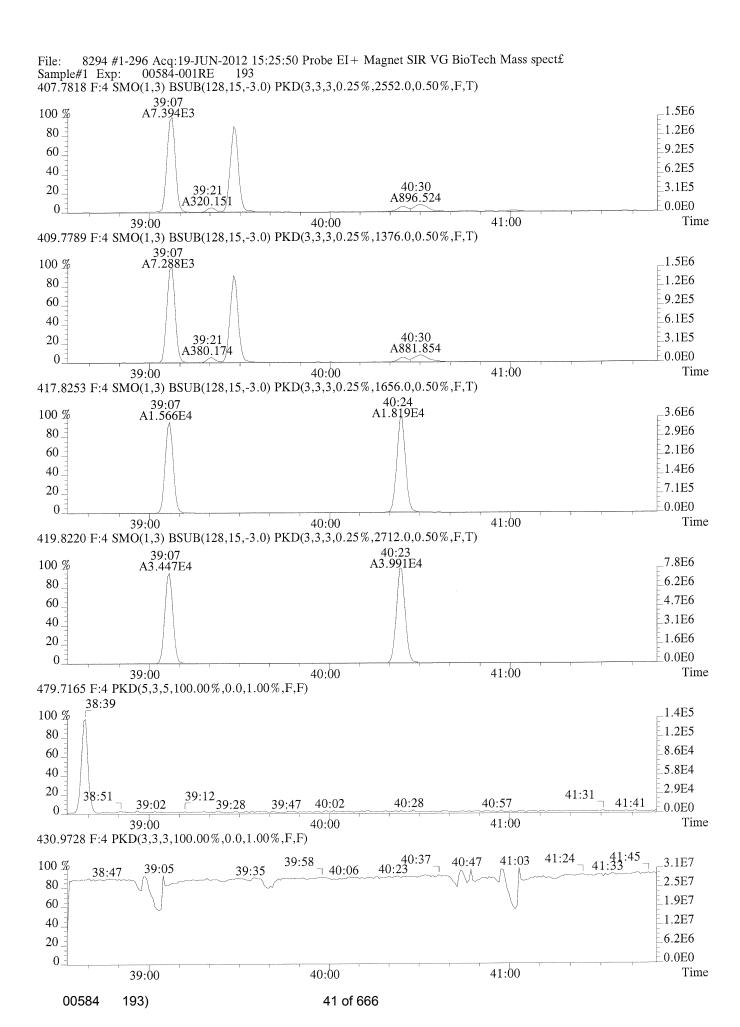
0

37:00

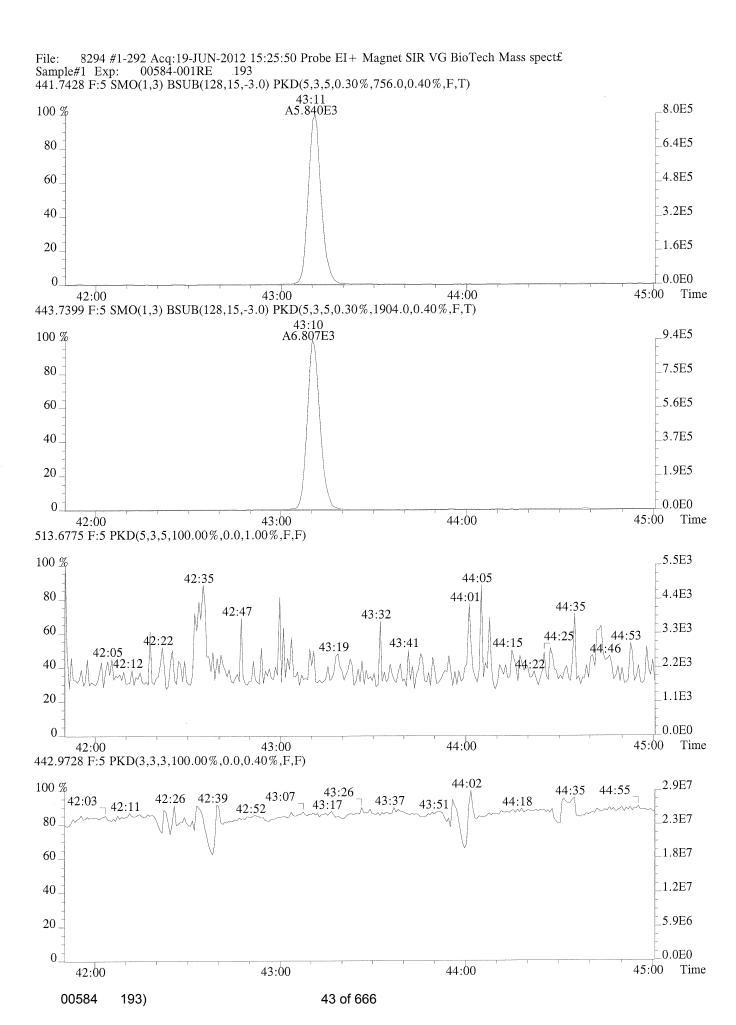
36:48

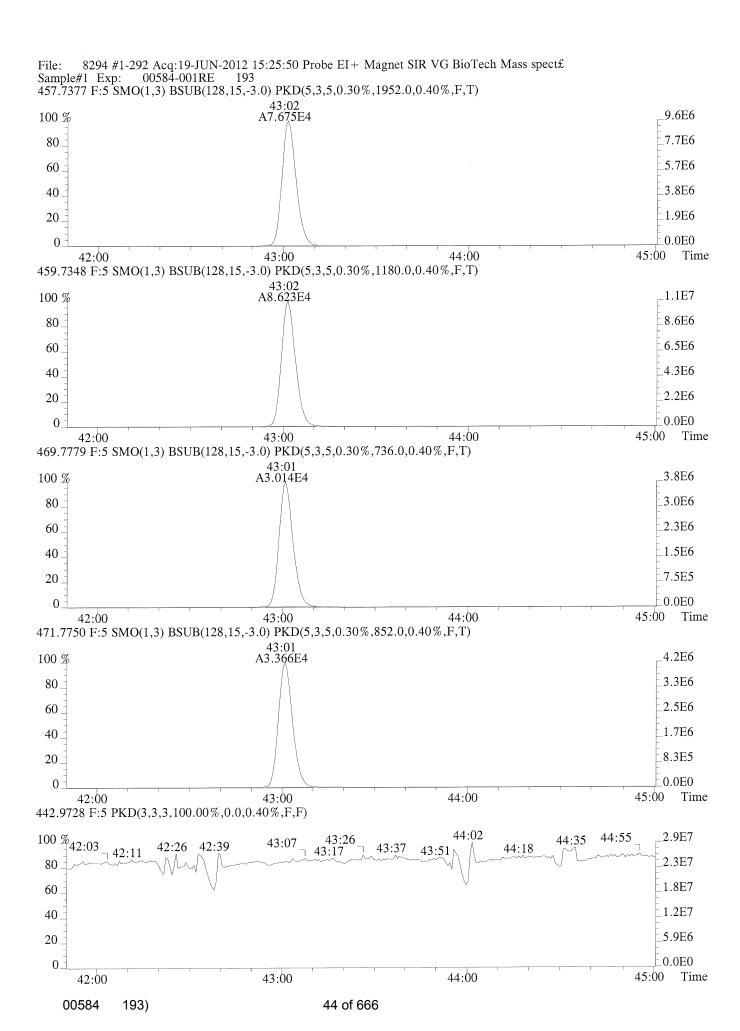

37:12


37:24

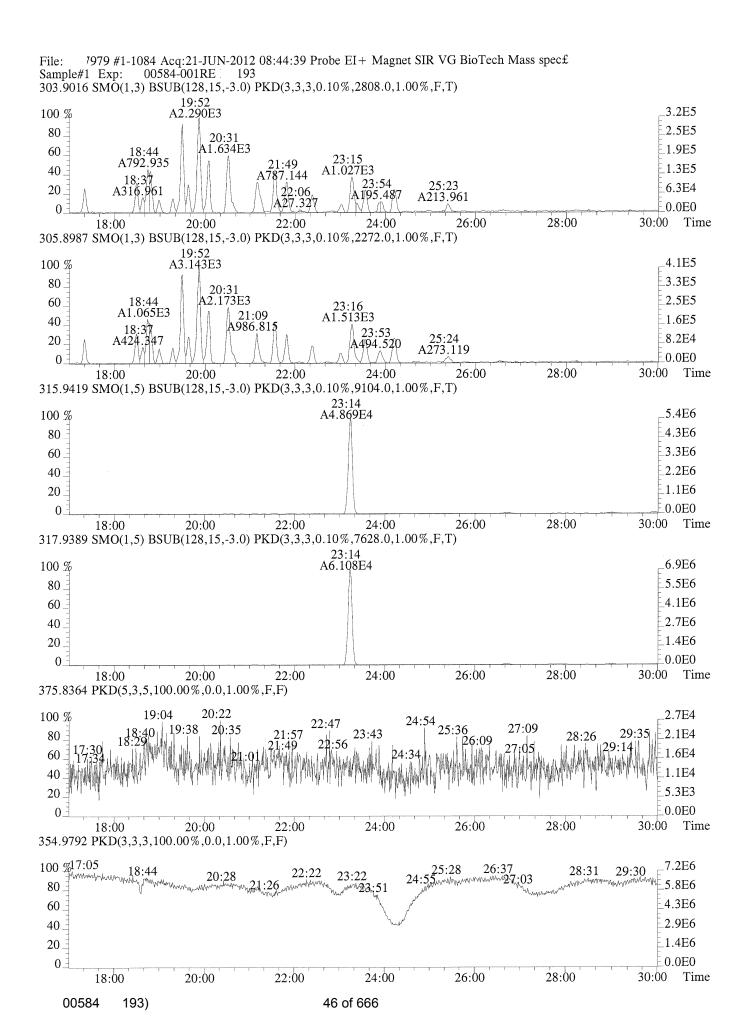

_0.0E0

Time


37:48



Sample Response Summary

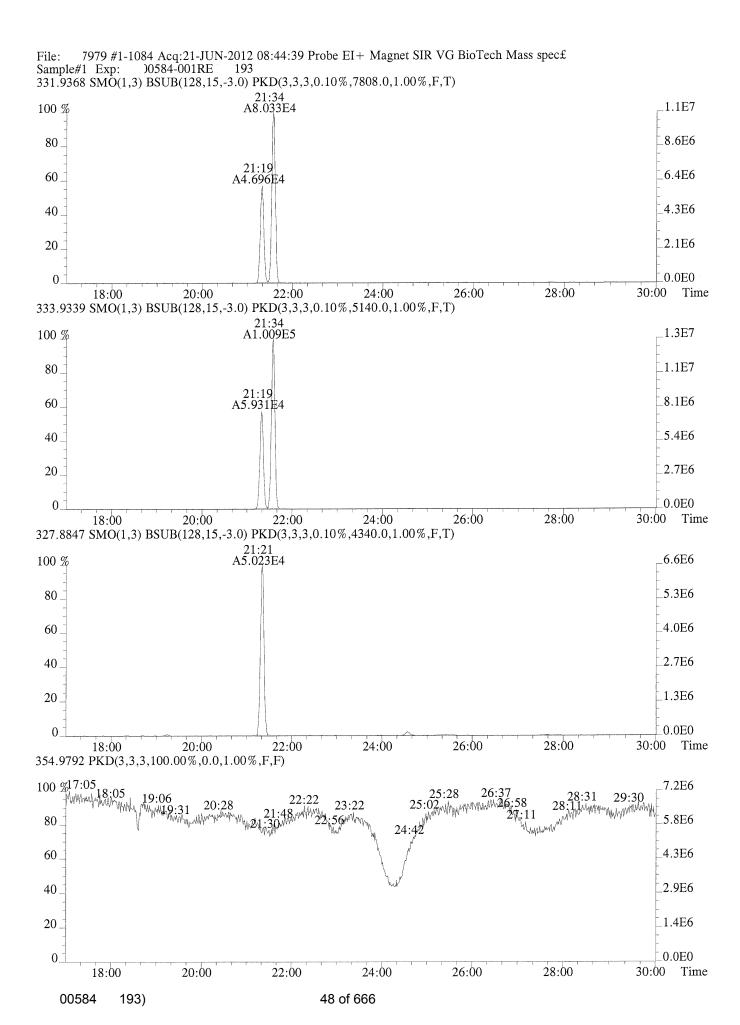

EPA SAMPLE NO.

193

Run #9 Processed	Filename 7979 21-JUN-12 10:51:14	Samp: 1 Sample	Inj: 1 ID: 0058	Acquired: 34-001RE	21-JUN-1	2 08:44	:39				
Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?				
1 Unk 2 IS 3 RS/RT 4 C/Up	2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4-TCDD 37C1-2,3,7,8-TCDD	23:14	69e+04 6	513e+03 108e+04 009e+05	0.68 0.80 0.80	yes yes yes	n n n n n n n				
Signal/Noise Height Ratio Summary											
Signal 1 Noise 1 S/N Rat.1 Signal 2 Noise 2 S/N											
1 2 3 4	13C-2,3,7,8-TCDF 5.41 13C-1,2,3,4-TCDD 1.0	7e+05 2.81e+ 1e+06 9.10e+ 7e+07 7.81e+ 2e+06 4.34e+	03 5.9e+02 03 1.4e+03	1.68e+05 6.85e+06 1.34e+07	2.27e+03 7.63e+03 5.14e+03	9.0e+0	02				

--- 2378-TCDF EDL Calculation---

```
EDL = \frac{(2.808e+03 + 2.272e+03) \times 2000 \times 2.5 \text{ pg}}{(5.410e+06 + 6.849e+06) \times (0.000 \text{ g}) \times 0.00 /100 \times 0.88} = 0.233 \text{ ng/kg}
\frac{30.272}{33.3}
```



7979 #1-1084 Acq:21-JUN-2012 08:44:39 Probe EI+ Magnet SIR VG BioTech Mass spec£ File: Sample#1 Exp: 00584-001RE 193 303.9016 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2808.0,1.00%,F,T) 23:15 A1.027E3 1.2E5 100 % 1.0E5 90 80. 9.3E4 70. 8.2E4 23:34 A584.706 60. .7.0E4 _5.8E4 50. _4.7E4 40 23:54 A195.487 23:22 A190.359 _3.5E4 30. 23:02 A205.852 2.3E4 20. 1.2E4 10 0.0E0 23:12 24:00 22:36 22:48 23:00 23:24 23:36 23:48 Time 305.8987 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2272.0,1.00%,F,T) 23:16 A1.513E3 _1.7E5 100 % _1.5E5 90 1.3E5 80 1.2E5 70 23:33 A852.429 _1.0E5 60 _8.4E4 50 6.7E4 40 23:53 A494.520 23:01 A317.497 5.0E4 30 3.4E4 20 -1.7E4 10 22:42 A21.848 E0.0E0 0 23:36 24:00 22:48 23:00 23:12 23:24 23:48 22:36 Time 315.9419 23:14 _6.0E6 100 % 5.4E6 90 06/21/12 06/21/12 4.8E6 80 4.2E6 70 3.6E6 60 3.0E6 50 _2.4E6 40 1.8E6 30 20 1.2E6 10 6.0E5 0. 0.0E0 22:36 22:48 23:00 23:12 23:24 23:36 24:00 23:48 Time

47 of 666

00584

193)

Analytical Report

US Environmental Protection Agency **Client:**

Service Request: 00584 Dioxins/Furans/ **Date Collected:** 5/9/12 0859 **Project: Sample Matrix:** Water **Date Received:** 5/10/12

Sample Name: 238 Units: pg/L Lab Code: 00584-002 Basis: NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Date Analyzed: 7/6/12 1253 **Analytical Method:** Method **Prep Method: Date Extracted:** 6/6/12 1040mL **Instrument Name:** E-HRMS-04 **Sample Amount:**

GC Column: DB-5 **Data File Name:** 8238 Blank File Name: 8236 **ICAL Date:** 05/03/12 Cal Ver. File Name: 8231

				Ion		Dilution	
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	ND U	0.426	9.62			1	
1,2,3,7,8-PeCDD	ND U	0.238	48.1			1	
1,2,3,4,7,8-HxCDD	ND U	0.274	48.1			1	
1,2,3,6,7,8-HxCDD	ND U	0.305	48.1			1	
1,2,3,7,8,9-HxCDD	ND U	0.284	48.1			1	
1,2,3,4,6,7,8-HpCDD	7.17 J	0.875	48.1	1.20	1.000	1	
OCDD	63.0 BJ	1.63	96.2	0.86	1.000	1	
2,3,7,8-TCDF	ND U	0.325	9.62			1	
1,2,3,7,8-PeCDF	ND U	0.310	48.1			1	
2,3,4,7,8-PeCDF	ND U	0.349	48.1			1	
1,2,3,4,7,8-HxCDF	ND U	0.262	48.1			1	
1,2,3,6,7,8-HxCDF	0.835 J	0.233	48.1	1.28	1.000	1	
1,2,3,7,8,9-HxCDF	ND U	0.354	48.1			1	
2,3,4,6,7,8-HxCDF	ND U	0.263	48.1			1	
1,2,3,4,6,7,8-HpCDF	3.29 J	0.531	48.1	1.00	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND U	0.763	48.1			1	
OCDF	2.77 J	1.66	96.2	0.44	1.001	1	
Total Tetra-Dioxins	ND U	0.426	9.62			1	
Total Penta-Dioxins	ND U	0.238	48.1			1	
Total Hexa-Dioxins	ND U	0.274	48.1			1	
Total Hepta-Dioxins	5.70 J	0.875	48.1	1.17		1	
Total Tetra-Furans	ND U	0.325	9.62			1	
Total Penta-Furans	ND U	0.349	48.1			1	
Total Hexa-Furans	0.835 J	0.262	48.1	1.28		1	
Total Hepta-Furans	5.78 J	0.531	48.1	1.00		1	

Analytical Report

US Environmental Protection Agency **Client:**

00584 **Service Request:** Dioxins/Furans/ **Date Collected:** 5/9/12 0859 **Project: Sample Matrix:** Water **Date Received:** 5/10/12

Sample Name: 238 Units: Percent Lab Code: 00584-002 Basis: NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Date Analyzed: 7/6/12 1253 **Analytical Method:** Method **Prep Method: Date Extracted:** 6/6/12 1040mL **Instrument Name:** E-HRMS-04 **Sample Amount:**

GC Column: DB-5 **Data File Name:** 8238 Blank File Name: 8236 **ICAL Date:** 05/03/12 Cal Ver. File Name: 8231

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1155.382	58	25-164	0.79	1.008
13C-1,2,3,7,8-PeCDD	2000	1136.860	57	25-181	1.59	1.177
13C-1,2,3,4,7,8-HxCDD	2000	1172.856	59	32-141	1.27	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1052.372	53	28-130	1.27	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1279.612	64	23-140	1.07	1.083
13C-OCDD	4000	2302.049	58	17-157	0.90	1.188
13C-2,3,7,8-TCDF	2000	1232.097	62	24-169	0.80	0.976
13C-1,2,3,7,8-PeCDF	2000	1387.316	69	24-185	1.58	1.136
13C-2,3,4,7,8-PeCDF	2000	1219.571	61	21-178	1.59	1.164
13C-1,2,3,4,7,8-HxCDF	2000	1106.322	55	26-152	0.54	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1162.927	58	26-123	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1136.061	57	29-147	0.53	1.005
13C-2,3,4,6,7,8-HxCDF	2000	1238.790	62	28-136	0.53	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1161.381	58	28-143	0.45	1.052
13C-1,2,3,4,7,8,9-HpCDF	2000	1336.223	67	26-138	0.45	1.093
37Cl-2,3,7,8-TCDD	800	660.794	83	35-197	NA	1.008

Run #14 Filename 8238 Samp: 1 Inj: 1 Acquired: 6-JUL-12 12:53:25 Processed: 14-JUL-12 09:23:10 Sample ID: 00584-002 Name RT-1 Resp 1 Resp 2 RatioMeet Mod? RRF Тур 2,3,7,8-TCDF | NotFnd | 1,2,3,7,8-PeCDF | NotFnd | 2,3,4,7,8-PeCDF | NotFnd | * no 1 Unk no 0.948 * no | yes | 0.987 2 Unk * no yes | 1.240 * no no 0.954 3 Unk 1,2,3,4,7,8-HxCDF | NotFnd 4 Unk 1,2,3,6,7,8-HxCDF 36:47 | 1.914e+01 | 1.500e+01 | 1.28 yes no | 1.165 5 Unk * | * no 1.161 2,3,4,6,7,8-HxCDF|NotFnd | yes 6 Unk yes | 1.186 | yes | 1.404 * no 1,2,3,7,8,9-HxCDF|NotFnd | 7 Unk 8 Unk 1,2,3,4,6,7,8-HpCDF 39:52 5.756e+01 5.781e+01 9 Unk 1,2,3,4,7,8,9-HpCDF NotFnd * 1.00 yes no | 1.336 * | * no 10 Unk OCDF | 45:04 | 2.793e+01 | 6.321e+01 | 0.44 | no yes | 1.303 2,3,7,8-TCDD | NotFnd | 1,2,3,7,8-PeCDD | NotFnd | * no 1.015 yes 11 Unk yes 0.961 yes 1.074 * no 12 Unk * no 1,2,3,4,7,8-HxCDD|NotFnd | 13 Unk * no | yes | 1.038 14 Unk *| no |yes 1.075 15 Unk 9.472e+01 | 1.20 | no | yes 1.053 16 Unk 6.630e+02 | 0.86 yes 1.188 OCDD 45:03 | 5.670e+02 no 17 Unk 1.275 13C-2,3,7,8-TCDF|28:09 2.917e+04 3.642e+04 | 0.80 yes no 18 IS 13C-1,2,3,7,8-PeCDF 32:46 | 4.540e+04 | 2.881e+04 | 1.58 yes | no 1.281 19 IS 13C-2,3,4,7,8-PeCDF 33:33 | 4.037e+04 | 2.547e+04 | 1.59 | yes | no 13C-1,2,3,4,7,8-HxCDF 36:40 | 1.952e+04 | 3.592e+04 | 0.54 | yes | no 1.293 20 IS 1.157 21 IS 1.340 22 IS 1.182 23 IS 1.015 24 IS 0.953 25 IS 13C-1,2,3,4,7,8,9-HpCDF 41:27 | 1.412e+04 | 3.108e+04 | 0.45 yes | no | 0.781 26 IS 0.932 1.983e+04 2.515e+04 | 0.79|yes | no 13C-2,3,7,8-TCDD 29:03 27 IS 13C-1,2,3,7,8-PeCDD | 33:56 | 2.699e+04 | 1.697e+04 | 1.59 | yes | no | 0.926 | 13C-1,2,3,4,7,8-HxCDD | 37:30 | 2.683e+04 | 2.119e+04 | 1.27 | yes | no | 0.945 | 13C-1,2,3,6,7,8-HxCDD | 37:36 | 2.579e+04 | 2.034e+04 | 1.27 | yes | no | 1.012 | 13C-1,2,3,4,6,7,8-HpCDD | 41:03 | 2.541e+04 | 2.377e+04 | 1.07 | yes | no | 0.887 | 13C-0CDD | 45:02 | 2.997e+04 | 3.321e+04 | 0.90 | yes | no | 0.634 28 IS 29 IS 30 IS 31 IS 32 IS 33 RS/RT 13C-1,2,3,4-TCDD 28:50 | 3.701e+04 | 4.649e+04 | 0.80 yes no 34 RS/RT 13C-1,2,3,7,8,9-HxCDD 37:55 | 4.842e+04 | 3.821e+04 | 1.27 yes no 0.956 35 C/Up 37Cl-2,3,7,8-TCDD 29:04 | 2.637e+04 no For Manual OCDD Calculation, Use mean $(5.670e+02 + 6.630e+02) \times 4000 pg \times 1$ Quadratic Coeff: 77.878 = Mean 7.788e+01 - -[OCDD] =----* [OCDD] + -) * L. Where d[OCDD] = 0.0001

Acquired: 6-JUL-12 12:53:25 Run #14 Filename 8238 Samp: 1 Inj: 1 Processed: 14-JUL-12 09:23:101 LAB. ID: 00584-002 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2.36e+02 4.76e+02 1 2,3,7,8-TCDF 6.32e+022:84e+02 1,2,3,7,8-PeCDF 6.32e + 022.84e+02 3 2,3,4,7,8-PeCDF 4.20e+022.48e+02 1,2,3,4,7,8-HxCDF 4 4.20e+02 | 8.1e+00 2.48e+02 | 1.5e+01 | 3.38e+03 | 1,2,3,6,7,8-HxCDF 3.72e+03 5 2,3,4,6,7,8-HxCDF 4.20e+02 2.48e+02 6 4.20e+02 7 1,2,3,7,8,9-HxCDF 2.48e+02 6.70e+03 3.44e + 021.9e + 015.32e+02 1.4e+01 1,2,3,4,6,7,8-HpCDF 8 7.34e+03 * 3.44e + 029 1,2,3,4,7,8,9-HpCDF * 5.32e+02 3.27e+03 | 3.72e+02 | 8.8e+00 | 6.29e+03 | 3.56e+02 | 1.8e+01 OCDF 10 2,3,7,8-TCDD 5.16e+02 2.12e+02 11 2.36e+02 12 1.80e+02 1,2,3,7,8-PeCDD 2.20e+02 2.64e+02 13 1,2,3,4,7,8-HxCDD 2.20e+02 1,2,3,6,7,8-HxCDD 14 2.64e+02 2.20e+02 1,2,3,7,8,9-HxCDD 2.64e+02 15 9.50e+03 | 4.48e+02 | 2.1e+01 | 8.96e+03 | 4.36e+02 2.1e+0116 1,2,3,4,6,7,8-HpCDD OCDD 3.39e+04 3.80e+02 8.9e+01 3.79e+04 2.72e+02 1.4e+02 17 4.92e+06 | 1.25e+03 | 3.9e+03 | 6.14e+06 | 4.68e+02 1.3e + 0418 13C-2,3,7,8-TCDF 1.72e+02 | 3.3e+04 13C-1,2,3,7,8-PeCDF | 8.74e+06 | 1.48e+02 | 5.9e+04 | 5.60e+06 | 19 8.10e+06 | 1.48e+02 | 5.5e+04 | 5.10e+06 | 1.72e+02 | 3.0e+04 13C-2,3,4,7,8-PeCDF 20 3.41e+06 | 5.16e+02 | 6.6e+03 | 6.52e+06 | 9.36e+02 | 7.0e+03 21 13C-1,2,3,4,7,8-HxCDF 5.16e+02 | 8.0e+03 | 7.63e+06 | 9.36e+02 | 8.1e+03 4.11e+06 22 13C-1,2,3,6,7,8-HxCDF 6.86e+06 9.36e+02 | 7.3e+03 3.62e+06 | 5.16e+02 7.0e+03 23 13C-2,3,4,6,7,8-HxCDF 2.61e+06 | 5.16e+02 | 5.1e+03 | 5.03e+06 | 9.36e+02 5.4e + 0313C-1,2,3,7,8,9-HxCDF 2.2e + 031.77e+06 | 1.01e+03 | 1.7e+03 | 3.85e+06 | 1.77e+03 25 13C-1,2,3,4,6,7,8-HpCDF 26 13C-1,2,3,4,7,8,9-HpCDF| 1.29e+06| 1.01e+03| 1.3e+03| 2.83e+06| 1.77e+03| 1.6e+03 3.56e+06 | 1.54e+03 | 2.3e+03 | 4.50e+06 | 8.32e+02 | 5.4e+03 27 13C-2,3,7,8-TCDD 5.36e+06 | 1.64e+02 | 3.3e+04 | 3.36e+06 | 2.0e + 0413C-1,2,3,7,8-PeCDD 1.72e+02 28 4.46e+06 | 8.68e+02 | 5.1e+03 | 3.44e+06 | 5.56e+02 | 6.2e+03 29 13C-1,2,3,4,7,8-HxCDD 4.09e+06 | 8.68e+02 | 4.7e+03 | 3.24e+06 | 5.56e+02 | 5.8e+03 13C-1,2,3,6,7,8-HxCDD 2.37e+06 | 2.92e+02 | 8.1e+03 | 2.23e+06 | 2.40e+02 | 9.3e+03 31 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD | 1.54e+06 | 2.44e+02 | 6.3e+03 | 1.69e+06 | 1.28e+02 | 1.3e+04 13C-1,2,3,4-TCDD | 6.41e+06 | 1.54e+03 | 4.2e+03 | 8.00e+06 | 8.32e+02 | 9.6e+03 33 13C-1,2,3,7,8,9-HxCDD 7.50e+06 8.68e+02 8.6e+03 5.88e+06 5.56e+02 1.1e+04 34

37Cl-2,3,7,8-TCDD 4.59e+06 3.00e+02 1.5e+04

35

Peak List Summary

CLIENT ID.

238

Entry: 40 Totals Name: Total Hexa-Furans

Run: 14 File: 8238 Sample:1 Injection:1 Function:3

Acquired: 6-JUL-12 12:53:25 Processed: 14-JUL-12 09:23:10

Mass: 373.8210 375.8180 Response:

RT Resp Ratio Meet Tot Resp Name Mod1? Mod2

1 36:47 1.91e+01 1.50e+01 1.28 yes 3.41e+01 1,2,3,6,7,8-HxCDF n n

Peak List Summary

CLIENT ID.

238

Entry: 42 Totals Name: Total Hepta-Furans

Run: 14 File: 8238 Sample:1 Injection:1 Function:4

Acquired: 6-JUL-12 12:53:25 Processed: 14-JUL-12 09:23:10

Mass: 407.7820 409.7790 Response:

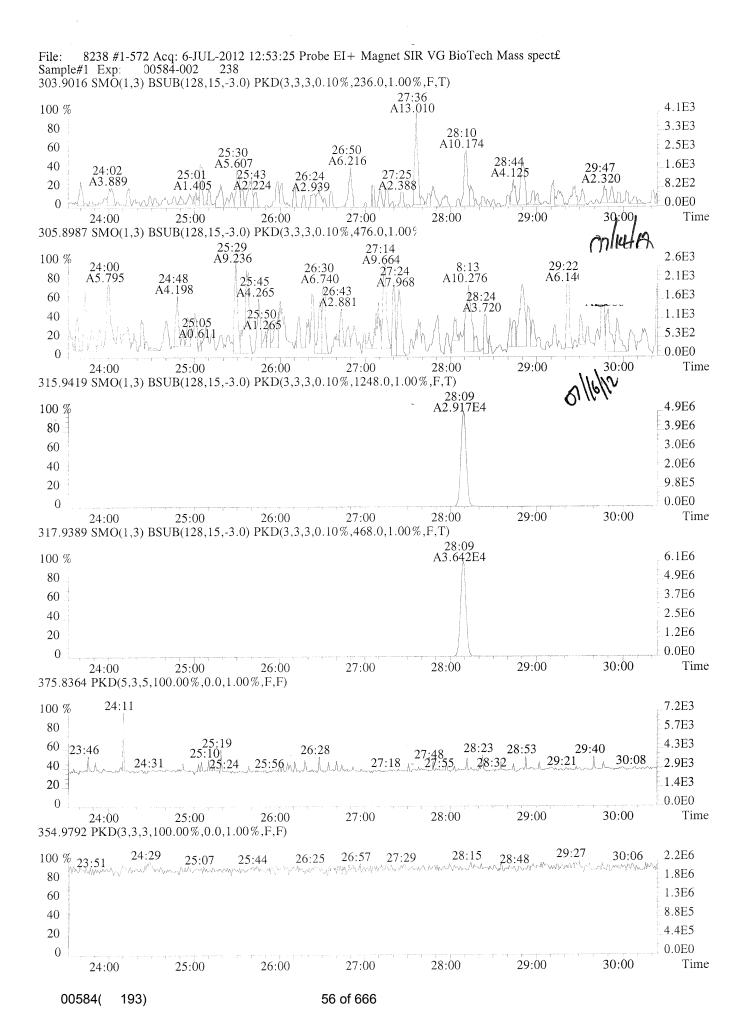
#	RT	Resp	Resp	Ratio	Meet	Tot Resp	Name	Mod1?	Mod2
			5.78e+01 4.09e+01		-		1,2,3,4,6,7,8-HpCDF	У У	y n

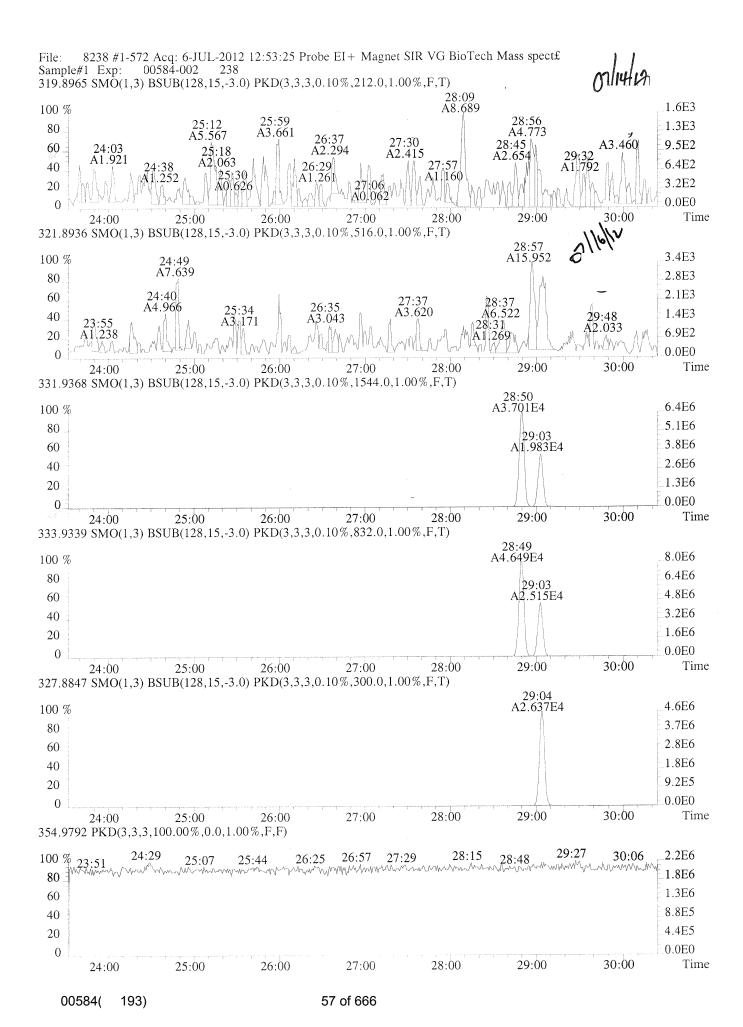
Peak List Summary

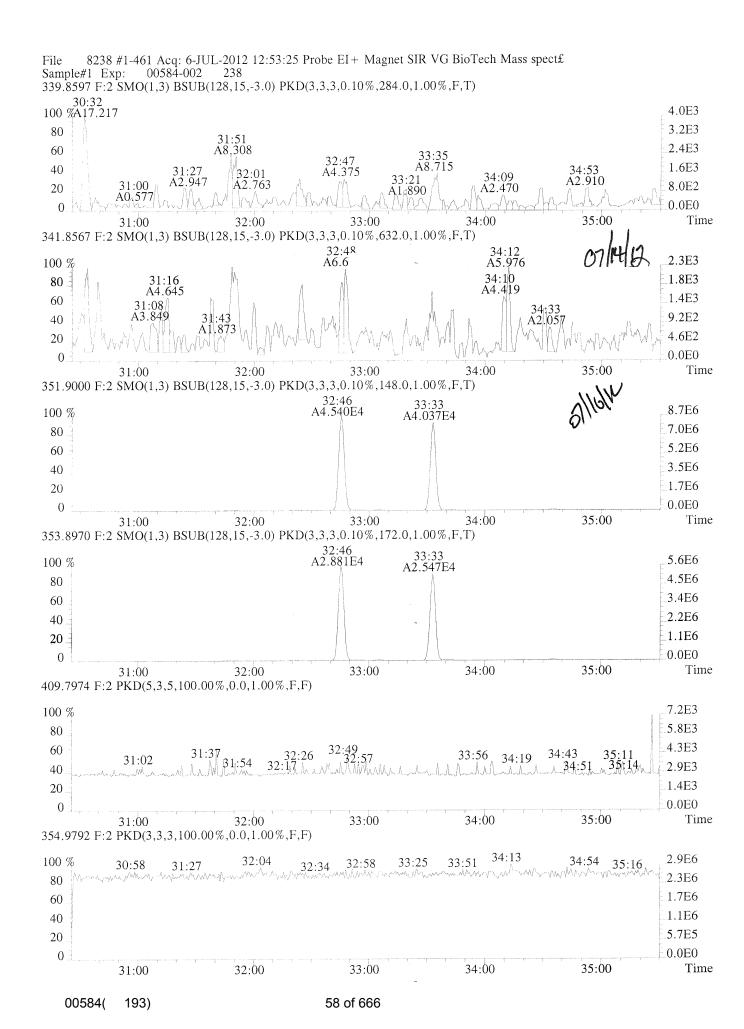
CLIENT ID.

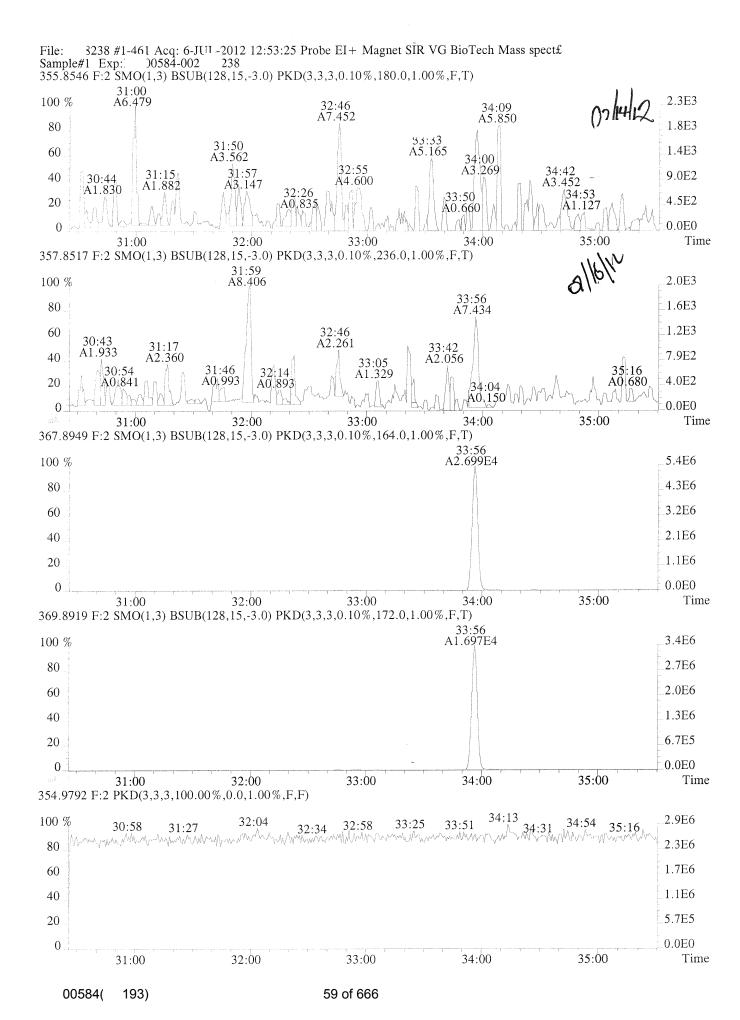
238

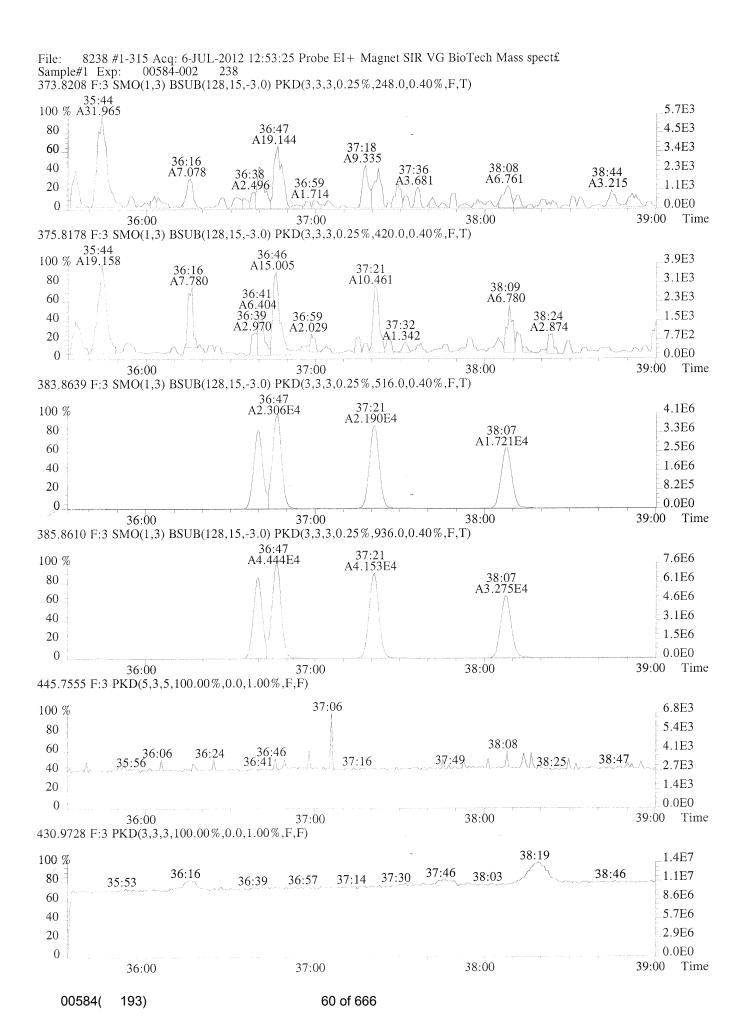
Entry: 43 Totals Name: Total Hepta-Dioxins


Run: 14 File: 8238 Sample:1 Injection:1 Function:4


Acquired: 6-JUL-12 12:53:25 Processed: 14-JUL-12 09:23:10


Mass: 423.7770 425.7740 Response:


RT Resp Ratio Meet Tot Resp Name Mod1? Mod2


n y 1 40:15 8.27e+01 7.08e+01 1.17 yes 1.54e+02

8238 #1-315 Acq: 6-JUL-2012 12:53:25 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00584-002 373.8208 F:3 100 % 35:44 1.0E4 9.8E3 95 9.3E3 90 36:46 8.8E3 85 .8.3E3 80 7.7E3 75 7.2E3 70 36:40 6.7E3 65 6.2E3 60 37:30 5.7E3 55 36:16 37:36 5.2E3 50 4.6E3 45 38:31 .38:08 38:45 38:51 35:55 4.1E3 40 38:21 37:00 36:27 37:41 37:46 3.6E3 35 1,///// 37:10 3.1E3 30 36:10 2.6E3 25 2.1E3 20 1.5E3 15 1.0E3 10 5.2E2 5 0.0E0 0 39:00 Time 36:00 38:00 37:00 375.8178 F:3 36:16 9.1E3 100 % 8.7E3 95 .8.2E3 90 36:46 .7.8E3 85 7.3E3 80 37:22 35:4 6.8E3 75 6.4E3 70 5.9E3 65 5.5E3 60 36:41 5.0E3 55 38:23 4.6E3 50 36:59 37:26 4.1E3 45 37:55 37:46 3.6E3 40 35:53 \$8:35 312E3 35 √37:12 36:08 36:29 2.7E3 30 2.3E3 25 1.8E3 20 1.4E3

36:00

15

10

5

0

37:00

38:00

9.1E2

4.6E2

0.0E0

39:00 Time

8238 #1-315 Acq: 6-JUL-2012 12:53:25 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp 00584-002 238 373.8208 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,248.0,0.40%,F,T) 35:44 A32.420 5.7E3 100 % 5.4E3 95 5.1E3 90 4.8E3 85 4.5E3 80 4.3E3 75 36:47 A19.144 4.0E3 70 3.7E3 65 3.4E3 60 3.1E3 55 2.8E3 50 2.6E3 45 2.3E3 40 2.0E3 35 1.7E3 30 1.4E3 25 1.1E3 20 8.5E2 15 5.7E2 10 2.8E2 5 0.0E0 0 37:12 37:00 37:24 37:36 Time 36:12 36:24 36:36 36:48 36:00 375.8178 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,420.0,0.40%,F,T) 35:44 A19.418 3.9E3 100 % 36:46 A15.005 3.7E3 95 3.5E3 90 .3.3E3 85 3.1E3 80 2.9E3 75 2.7E3 70 2.5E3 65 MANUAL INTEGRATION EXPLANATION 2.3E3 60 1. POOR INTEGRATION 2.1E3 55 2. PEAK NOT FOUND/NOT INTEGRATED 1.9E3 3 RETENTION TIME SHIFT 50 RRECTINACCIDATE (4.- ASELII 1.7E3 45 5. OTHER 1.5E3 40 ANALY! REVIEWER 1.4E3 35 1.2E3 30 9.6E2 25 7.7E2 20

35:48

36:00

36:12

15

10

5

0

35:36

36:36

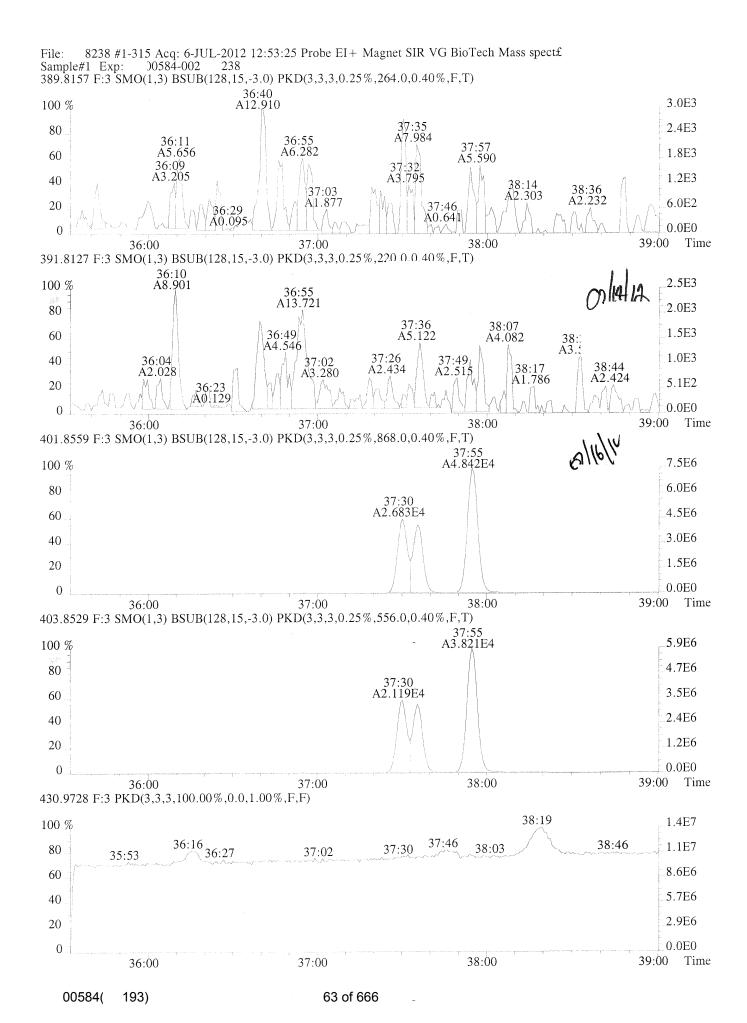
36:48

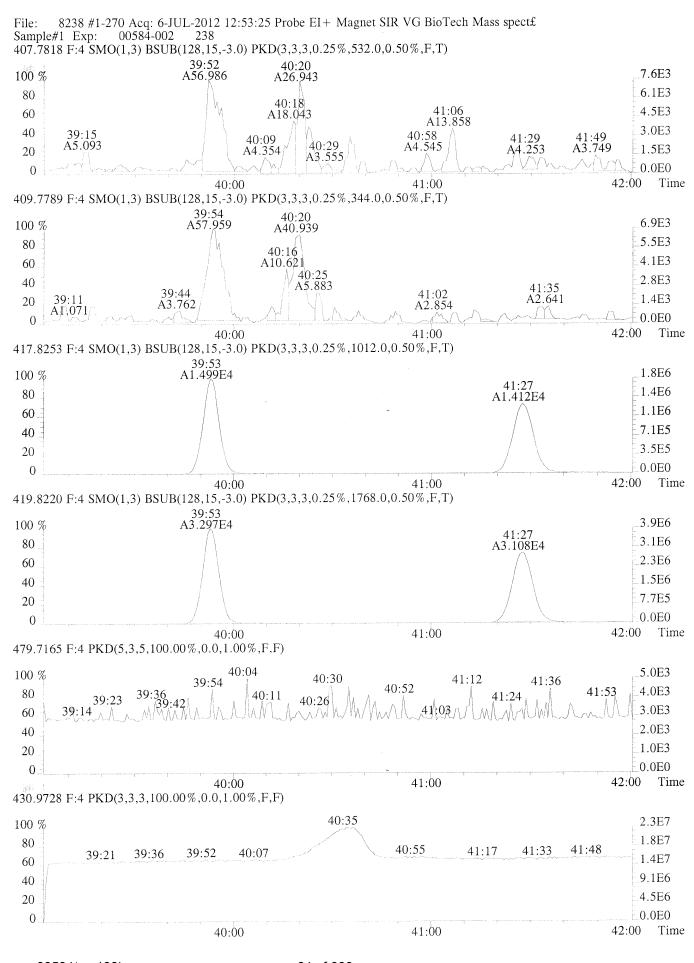
36:24

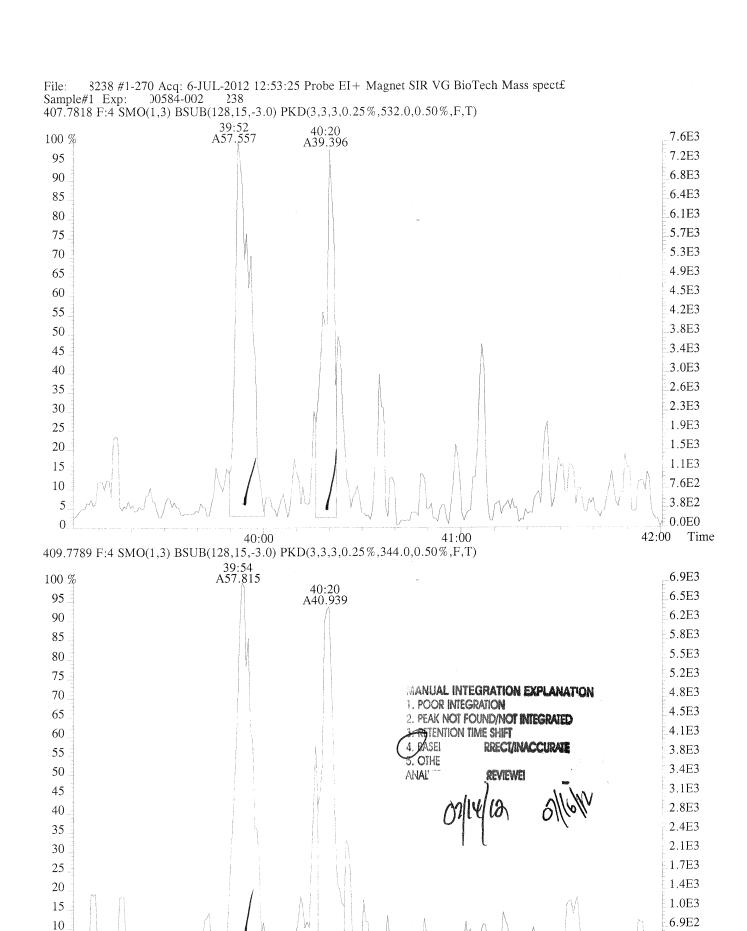
37:00

37:12

37:24


5.8E2


3.9E2

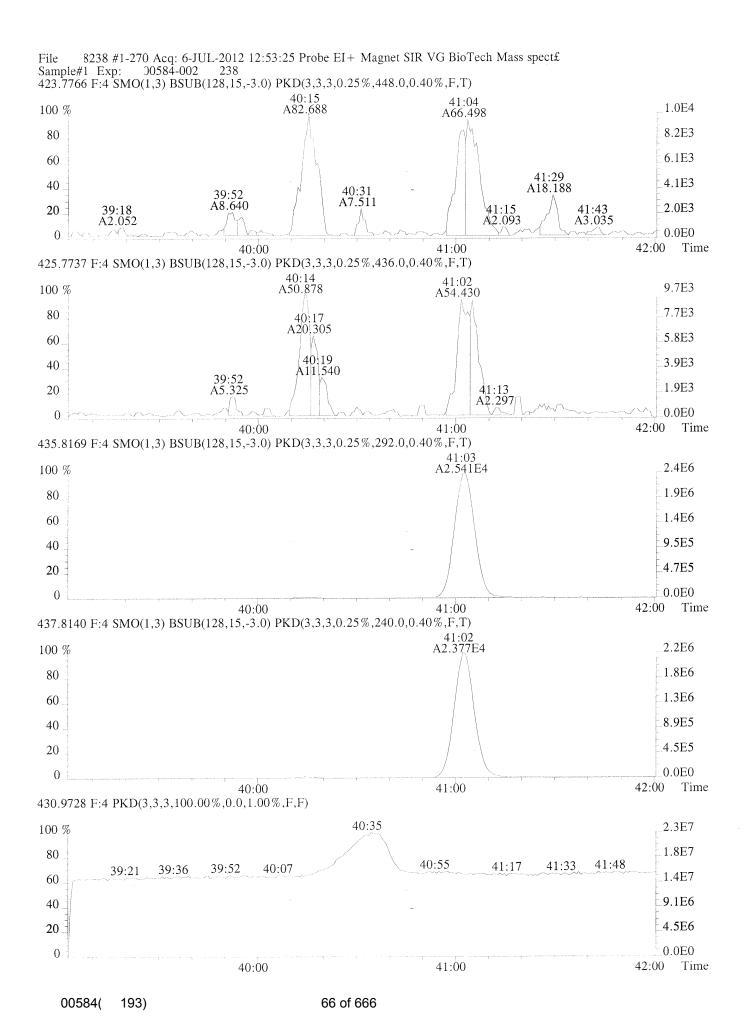

1.9E2

.0.0E0

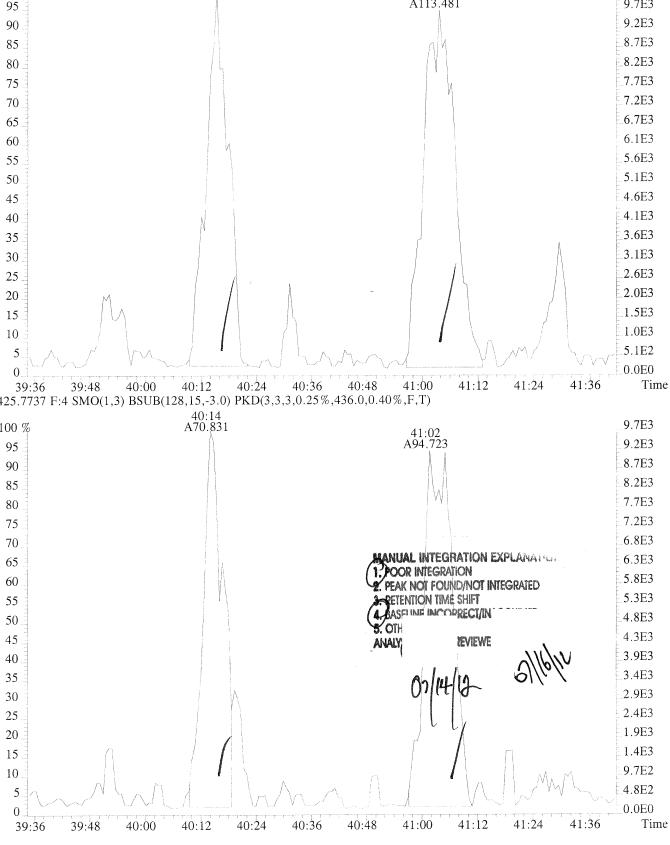
Time

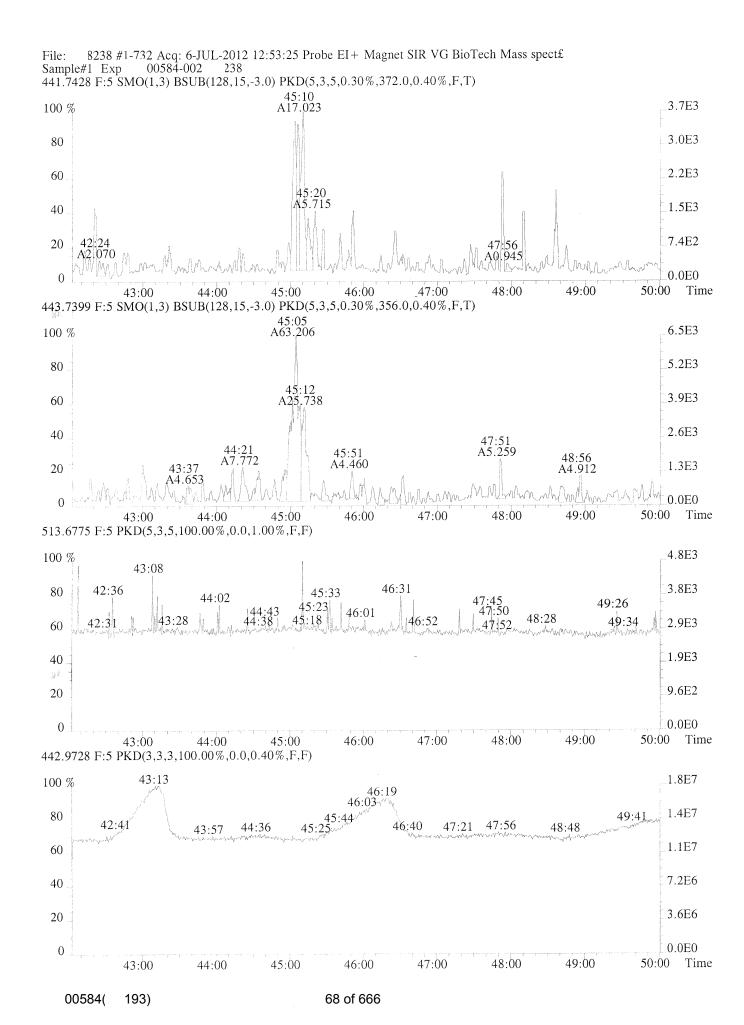
5

0


40:00

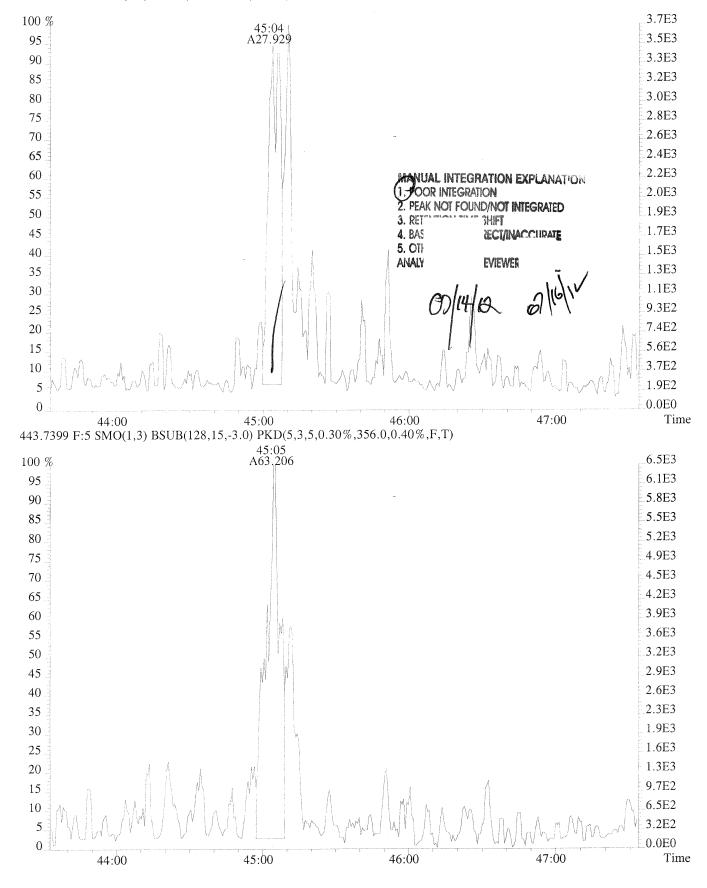
41:00

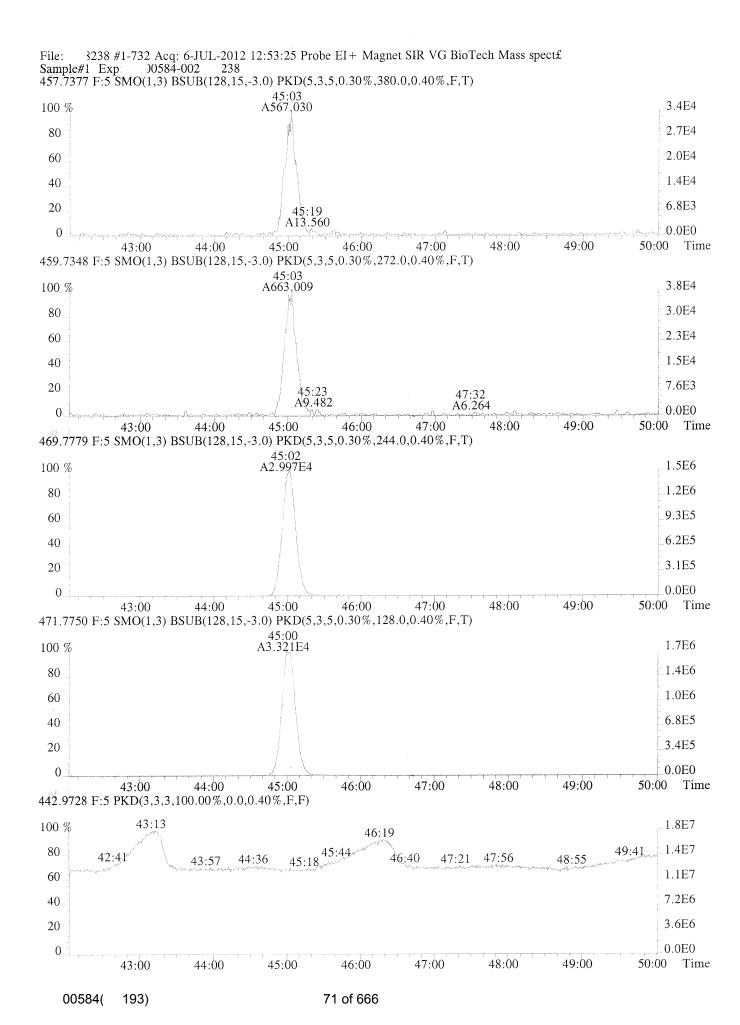

3.4E2


0.0E0

Time

3238 #1-270 Acq: 6-JUL-2012 12:53:25 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp: :00584-002 238 423.7766 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,448.0,0.40%,F,T) 40:15 1.0E4 100 % A82.688 41:04 A113.481 9.7E3 95 9.2E3 90 .8.7E3 85 8.2E3 80 7.7E3 75 7.2E3 70 .6.7E3 65 6.1E3 60 5.6E3 55 5.1E3 50 4.6E3 45 4.1E3 40 3.6E3 35 _3.1E3 30 2.6E3 25 2.0E3 20 1.5E3 15 1.0E3 10 5.1E2 5 0.0E0 0 41:36 40:48 41:00 41:12 41:24 40:36 39:48 40:00 40:12 40:24 $425.7737 \; F:4 \; SMO(1,3) \; BSUB(128,15,-3.0) \; PKD(3,3,3,0.25\%,436.0,0.40\%,F,T)$ 40:14 A70.831 9.7E3 100 % 41:02 A94.723 9.2E3 95 8.7E3 90 8.2E3 85 7.7E3 80 7.2E3 75 6.8E3 70 ANUAL INTEGRATION EXPLANATION 6.3E3 65 POOR INTEGRATION 5.8E3 60 2. PEAK NOT FOUND/NOT INTEGRATED 3-RETENTION TIME SHIFT 5.3E3 55 4 BASFIINE INCOPRECIÓN 4.8E3 50 S. OTH





8238 #1-732 Acq: 6-JUL-2012 12:53:25 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00584-002 441.7428 F:5 45:06 8.8E3 100 % 8.3E3 95 7.9E3 90 45:10 7.4E3 85 7.0E3 80 6.6E3 75 45:04 6.1E3 70 5.7E3 65 45:51 45:27 5.3E3 60 _4.8E3 55 4.4E3 50 44:18 44:59 46:26 3.9E3 45 43:38 43:45 47:03 3.5E3 40 46:54 47:18 44:11 3.1E3 35 2.6E3 30 2.2E3 25 1.8E3 20 .1.3E3 15 .8.8E2 10 4.4E2 5 0.0E0 0 47:00 Time 46:00 44:00 45:00 443.7399 F:5 1.0E4 100 % 70 45:05 9.7E3 95 9.2E3 90 8.7E3 85 8.2E3 80 7.7E3 75 7.2E3 70 44:56 45:10 6.6E3 65 6.1E3 60 44:13 5.6E3 55 43:49 45:14 5.1E3 50 46:32 43:36 4.6E3 45 45:51 46:23 46:45 47:29 4.1E3 40 44:03 45:27 47:10 47:13 3.6E3 46:49 35 3.1E3 30 °2.6E3 25 2.0E3 20 1.5E3 15 1.0E3 10 5.1E2 5 0.0E0 0 45:00 46:00 47:00 Time 44:00

File: 3238 #1-732 Acq: 6-JUL-2012 12:53:25 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00584-002 238

441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,372.0,0.40%,F,T)

Analytical Report

Client: US Environmental Protection Agency

Service Request: 00584 Dioxins/Furans/ Project: **Date Collected:** 5/10/12 1404 **Sample Matrix:** Water **Date Received:** 5/11/12

Sample Name: 240 Units: pg/L Lab Code: 00584-003 Basis: NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Date Analyzed: 7/6/12 1344 **Analytical Method: Prep Method:** Method **Date Extracted:** 6/6/12

1040mL E-HRMS-04 **Sample Amount: Instrument Name:**

DB-5 GC Column: **Data File Name:** 8239 8236 Blank File Name: **ICAL Date:** 05/03/12 Cal Ver. File Name: 8231

Ion Dilution **EDL** MRL Ratio RRT **Factor Analyte Name** Result Q 2,3,7,8-TCDD ND U 0.416 9.62 1 1,2,3,7,8-PeCDD ND U 0.348 48.1 1 0.281 ND U 48.1 1,2,3,4,7,8-HxCDD 1 1,2,3,6,7,8-HxCDD ND U 0.323 48.1 0.296 48.1 1,2,3,7,8,9-HxCDD ND U 0.710 0.97 1.001 1,2,3,4,6,7,8-HpCDD **2.85** J 48.1 1 0.79 1.000 OCDD **18.3** BJ 1.42 96.2 ND U 0.377 9.62 2,3,7,8-TCDF 1,2,3,7,8-PeCDF ND U 0.331 48.1 2,3,4,7,8-PeCDF ND U 0.389 48.1 1,2,3,4,7,8-HxCDF 0.314 48.1 1.13 1.000 0.689 J 1,2,3,6,7,8-HxCDF ND U 0.291 48.1 ND U 0.428 1,2,3,7,8,9-HxCDF 48.1 ND U 0.344 48.1 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF ND U 0.558 48.1 1,2,3,4,7,8,9-HpCDF ND U 0.825 48.1 **OCDF** ND U 1.25 96.2 **Total Tetra-Dioxins** ND U 0.416 9.62 **Total Penta-Dioxins** ND U 0.348 48.1 **Total Hexa-Dioxins** ND U 0.281 48.1 Total Hepta-Dioxins **5.92** J 0.710 48.1 0.99 Total Tetra-Furans ND U 0.377 9.62 **Total Penta-Furans** ND U 0.389 48.1 1 **0.689** J Total Hexa-Furans 0.314 48.1 1.13 1 Total Hepta-Furans ND U 0.558 48.1

Analytical Report

Client: US Environmental Protection Agency

00584 **Service Request:** Dioxins/Furans/ **Date Collected:** 5/10/12 1404 **Project: Sample Matrix:** Water **Date Received:** 5/11/12

Sample Name: 240 Units: Percent

Lab Code: 00584-003 Basis: NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

-D/F DLM02.2 **Date Analyzed:** 7/6/12 1344 **Analytical Method:**

Method **Prep Method: Date Extracted:** 6/6/12 **Instrument Name:** E-HRMS-04 **Sample Amount:** 1040mL GC Column: DB-5

Data File Name: 8239 Blank File Name: 8236 **ICAL Date:** 05/03/12 Cal Ver. File Name: 8231

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1025.460	51	25-164	0.79	1.008
13C-1,2,3,7,8-PeCDD	2000	1026.744	51	25-181	1.60	1.178
13C-1,2,3,4,7,8-HxCDD	2000	1100.768	55	32-141	1.36	0.989
13C-1,2,3,6,7,8-HxCDD	2000	984.193	49	28-130	1.17	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1278.473	64	23-140	1.08	1.082
13C-OCDD	4000	2481.859	62	17-157	0.90	1.186
13C-2,3,7,8-TCDF	2000	1021.295	51	24-169	0.78	0.977
13C-1,2,3,7,8-PeCDF	2000	1266.224	63	24-185	1.59	1.136
3C-2,3,4,7,8-PeCDF	2000	1064.702	53	21-178	1.58	1.164
3C-1,2,3,4,7,8-HxCDF	2000	1058.005	53	26-152	0.52	0.967
3C-1,2,3,6,7,8-HxCDF	2000	1104.833	55	26-123	0.53	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1102.260	55	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1120.382	56	28-136	0.53	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1162.985	58	28-143	0.44	1.052
3C-1,2,3,4,7,8,9-HpCDF	2000	1292.820	65	26-138	0.45	1.093
7Cl-2,3,7,8-TCDD	800	572.025	72	35-197	NA	1.009

Acquired: 6-JUL-12 13:44:34 Run #15 Filename 8239 Samp: 1 Inj: 1 Processed: 14-JUL-12 09:23:121 LAB. ID: 00584-003 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 1.48e+02 6.12e+02 2,3,7,8-TCDF 1 * 8.04e + 022.00e+02 1,2,3,7,8-PeCDF 2.00e+02 8.04e+023 2,3,4,7,8-PeCDF 2.40e+03 | 5.00e+02 | 4.8e+00 | 2.19e+03 3.76e+02 1,2,3,4,7,8-HxCDF 4 3.76e+02 5.00e+02 * 5 1,2,3,6,7,8-HxCDF * 3.76e+02 5.00e+02 6 2,3,4,6,7,8-HxCDF 3.76e+02 5.00e+027 1,2,3,7,8,9-HxCDF * * 4.68e+02 5.64e+02 1,2,3,4,6,7,8-HpCDF * 4.68e+02 9 1,2,3,4,7,8,9-HpCDF 5.64e+02 4.20e+02 OCDF 2.52e+02 10 2,3,7,8-TCDD 4.80e+02 2.20e+02 11 1.44e + 024.76e+02 12 1,2,3,7,8-PeCDD 2.20e+02 13 1,2,3,4,7,8-HxCDD 3.08e+02 * 2.20e+02 1,2,3,6,7,8-HxCDD 3.08e+02 14 2.20e+02 3.08e+02 * 1,2,3,7,8,9-HxCDD 15 4.74e+03 | 6.92e+02 | 6.8e+00 | 5.90e+03 | 1.16e+02 5.1e + 011,2,3,4,6,7,8-HpCDD 16 $1.41e+04 \mid 3.04e+02 \mid 4.6e+01 \mid 1.92e+04 \mid 3.96e+02 \mid 4.9e+01$ 17 OCDD 1.48e+03 | 3.0e+03 | 5.77e+06 | 4.80e+02 | 1.2e+04 4.42e+06 18 13C-2,3,7,8-TCDF 9.01e+06 | 1.80e+02 | 5.0e+04 | 5.69e+06 | 7.00e+02 | 8.1e+03 19 13C-1,2,3,7,8-PeCDF 7.90e+06 | 1.80e+02 | 4.4e+04 | 5.04e+06 | 7.00e+02 | 7.2e+03 13C-2,3,4,7,8-PeCDF 20 3.68e+06 | 5.92e+03 | 6.2e+02 | 7.10e+06 | 9.48e+02 | 7.5e+03 13C-1,2,3,4,7,8-HxCDF 7.3e+02 | 8.09e+06 | 9.48e+02 | 8.5e+03 4.29e+06 5.92e+03 13C-1,2,3,6,7,8-HxCDF 22 3.59e+06 | 5.92e+03 | 6.1e+02 | 6.97e+06 9.48e+02 7.4e + 0313C-2,3,4,6,7,8-HxCDF 23 2.82e+06 | 5.92e+03 | 4.8e+02 | 5.46e+06 | 9.48e+02 | 5.8e + 0313C-1,2,3,7,8,9-HxCDF 1.95e+06 | 1.48e+03 | 1.3e+03 | 4.34e+06 | 2.88e+03 | 1.5e+03 25 13C-1,2,3,4,6,7,8-HpCDF 26 13C-1,2,3,4,7,8,9-HpCDF| 1.39e+06| 1.48e+03| 9.3e+02| 3.10e+06| 2.88e+03| 1.1e+03 3.50e+06 | 2.26e+03 | 1.5e+03 | 4.45e+06 | 5.84e+02 | 7.6e+03 13C-2,3,7,8-TCDD 27 5.43e+06 | 1.52e+02 | 3.6e+04 | 3.46e+06 | 3.92e+02 | 8.8e+03 28 13C-1,2,3,7,8-PeCDD 4.65e+06 | 6.36e+02 | 7.3e+03 | 3.71e+06 | 7.92e+02 4.7e+03 13C-1,2,3,4,7,8-HxCDD 4.25e+06 | 6.36e+02 | 6.7e+03 | 3.34e+06 | 7.92e+02 | 4.2e+03 13C-1,2,3,6,7,8-HxCDD 2.69e+06 | 3.08e+02 | 8.7e+03 | 2.49e+06 | 1.36e+02 | 1.8e + 0431 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD| 1.88e+06| 4.48e+02| 4.2e+03| 2.10e+06| 3.44e+02| 6.1e+03 13C-1,2,3,4-TCDD| 7.38e+06| 2.26e+03| 3.3e+03| 9.31e+06| 5.84e+02| 1.6e+04 33 13C-1,2,3,7,8,9-HxCDD | 8.38e+06 | 6.36e+02 | 1.3e+04 | 6.65e+06 | 7.92e+02 | 8.4e+03

37Cl-2,3,7,8-TCDD | 4.54e+06 | 1.64e+02 | 2.8e+04

34

35

Peak List Summary

CLIENT ID.

:40

Entry: 40 Totals Name: Total Hexa-Furans

Run: 15 File: 3239 Sample:1 Injection:1 Function:3

Acquired: 6-JUL-12 13:44:34 Processed: 14-JUL-12 09:23:12

Mass: 373.8210 375.8180 Response:

RT Resp Resp Ratio Meet Tot Resp Name Mod1? Mod2

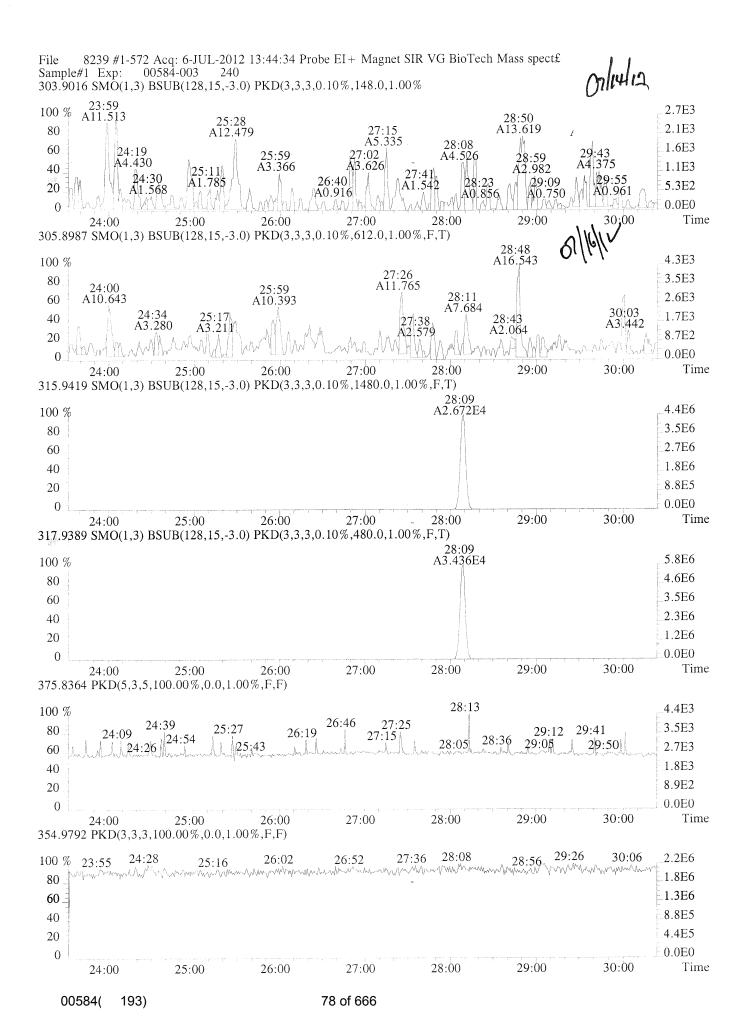
1 36:39 1.39e+01 1.23e+01 1.13 yes 2.62e+01 1,2,3,4,7,8-HxCDF y y

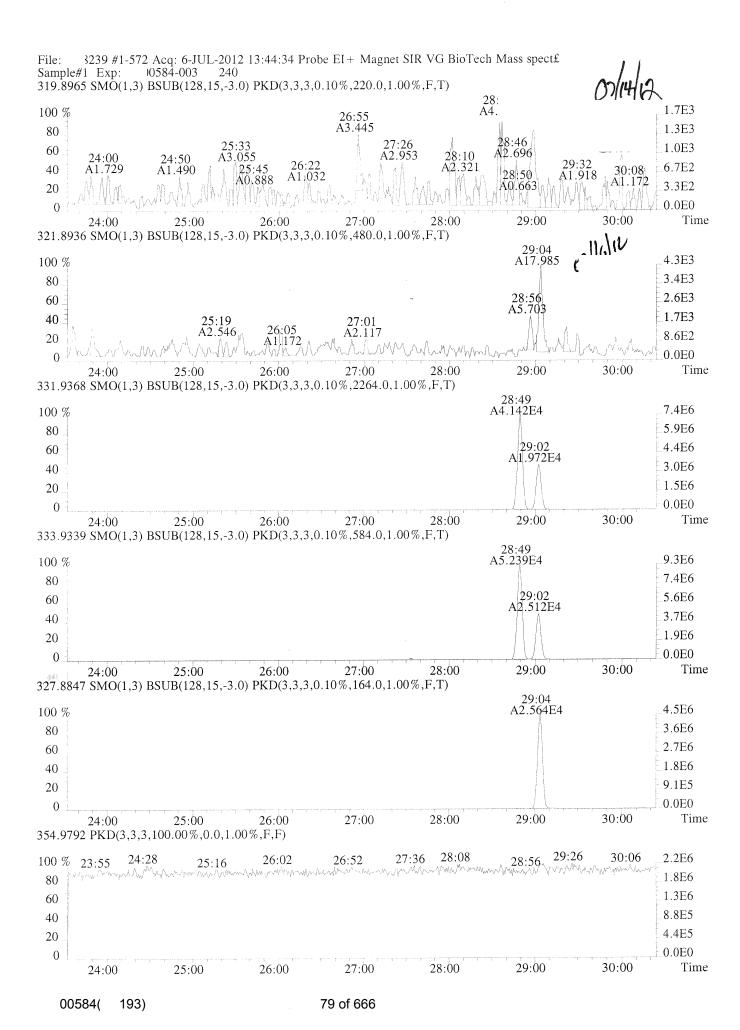
Peak List Summary

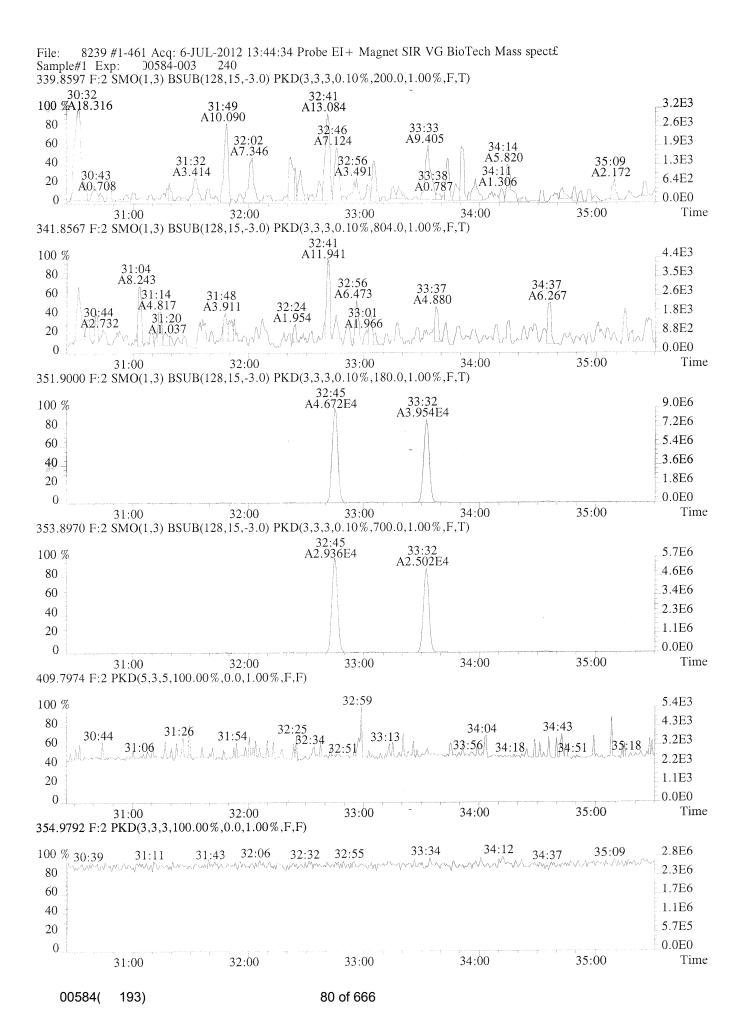
CLIENT ID.

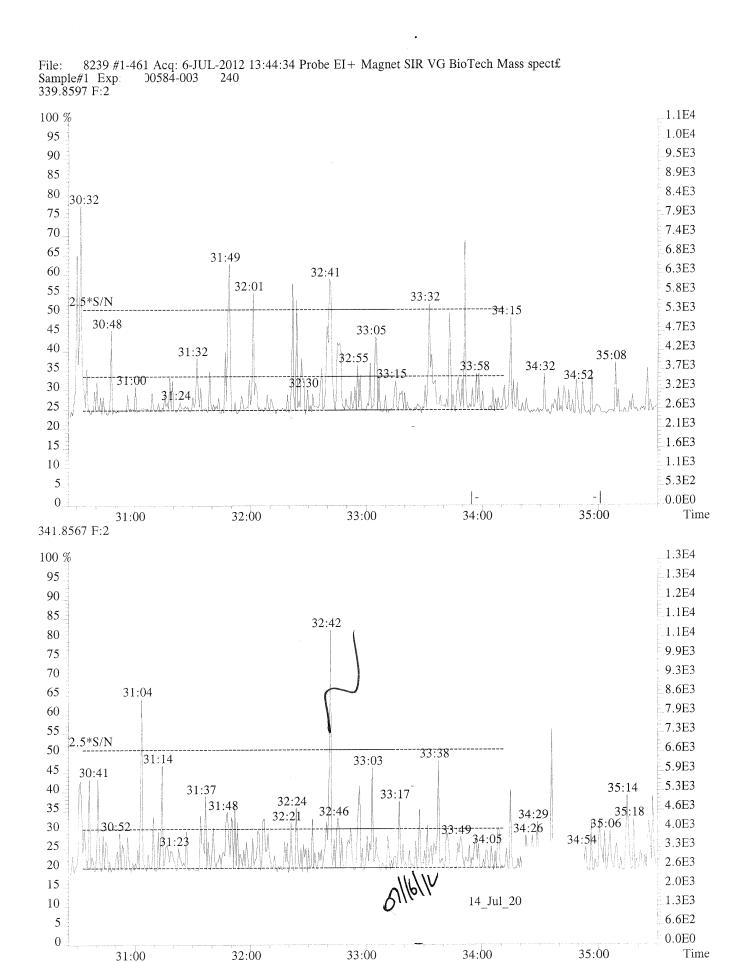
240

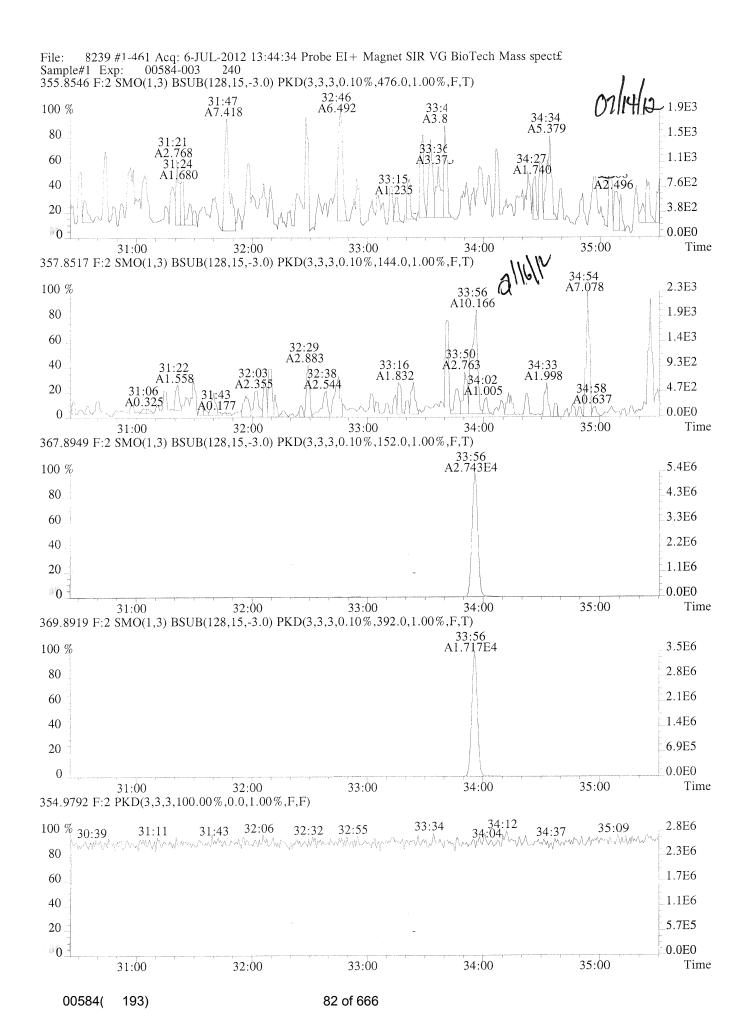
Entry: 43 Totals Name: Total Hepta-Dioxins

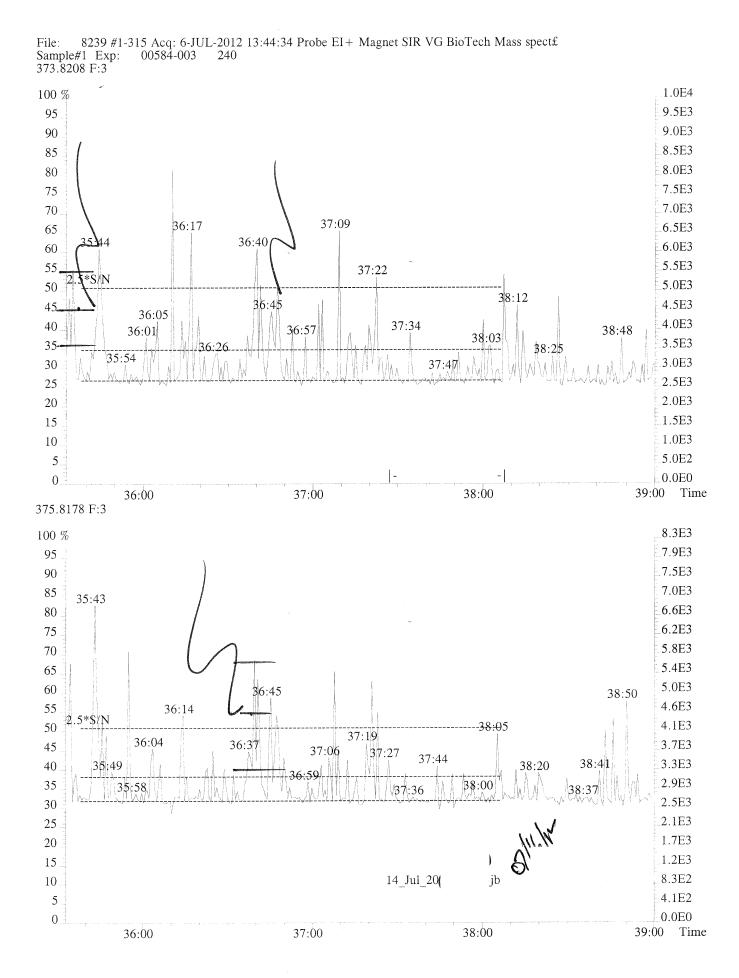

Run: 15 File: 8239 Sample:1 Injection:1 Function:4


Acquired: 6-JUL-12 13:44:34 Processed: 14-JUL-12 09:23:12


Mass: 423.7770 425.7740 Response:


RT Resp Resp Ratio Meet Tot Resp Name Mod1? Mod2


1 40:13 4.58e+01 4.62e+01 0.99 yes 9.21e+01
2 41:04 4.20e+01 4.33e+01 0.97 yes 8.53e+01 1,2,3,4,6,7,8-HpCDD y y



83 of 666

00584(

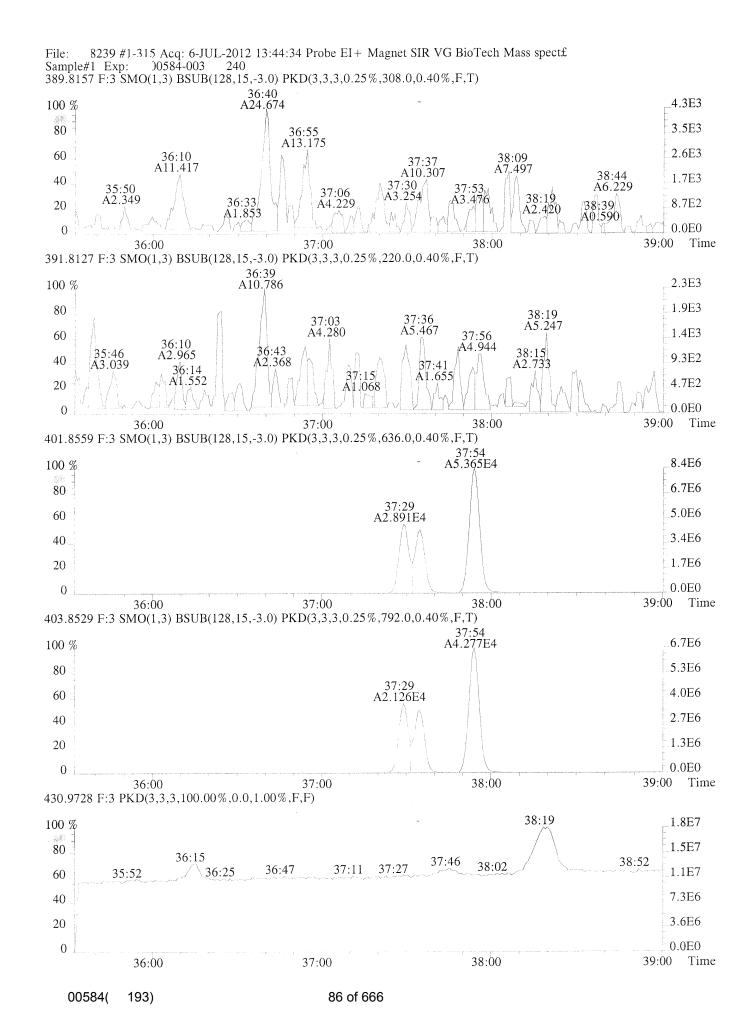
193)

Sample#1 Exp 373.8208 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,500.0,0.40%,F,T) 35:44 A13.914 2.9E3 100 % 36:39 A13.899 2.7E3 95 2.6E3 90 2.4E3 85 _2.3E3 80 2.2E3 75 2.0E3 70 1.9E3 65 1.7E3 60 1.6E3 55 1.4E3 50 1.3E3 45 1.1E3 40 1.0E3 35 8.6E2 30 7.2E2 25 5.7E2 20 4.3E2 15 2.9E2 10 5 1.4E2 0.0E0 0 38:00 Time 36:00 37:00 375.8178 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,376.0,0.40%,F,T) 35:43 A14.746 3.0E3 100 % 2.9E3 95 2.7E3 90 2.6E3 85 36:40 A12.323 2.4E3 80 MANUAL INTEGRATION EXPLANATION 2.3E3 75 1. POOR INTEGRATION 2. PEAK NOT FOUND/NOT INTEGRATED 70 2.1E3 RETENTION TIME SHIFT 2.0E3 65 ECUM COUNTY 4. BASI 1.8E3 60 5. OTH EVIEWER ANALY: 1.7E3 55 1.5E3 50 1.4E3 45 1.2E3 40 1.1E3 35 9.0E2 30 7.5E2 25 6.0E2 20 4.5E2 15 3.0E2 10

36:00

5

0


37:00

1.5E2

0.0E0

Time

38:00

8239 #1-315 Acq: 6-JUL-2012 13:44:34 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00584-003 389.8157 F:3 36:40 8.2E3 100 % 7.8E3 95 7.4E3 90 36:46 7.0E3 85 38:09 6.6E3 80 36:54 6.2E3 75 37:36 5.8E3 70 38:36 5.3E3 37:58 65 37:46 4.9E3 60 38:44 38:32 4.5E3 55 4.1E3 50 36:26 38:14 38:52 **2**3.7E3 45 38:29 3.3E3 40 2.9E3 35 2.5E3 30 2.1E3 25 1.6E3 20 1.2E3 15 8.2E2 10 4.1E2 5 0.0E0 0 38:00 9:00 Time 37:00 391.8127 F:3 7.1E3 100 % .6.7E3 95 6.4E3 90 6.0E3 85 5.7E3 37:12 80 37:36 36:39 5.3E3 75 5.0E3 70 37:03 38:19 4.6E3 65 37:47 37:20 36:53 4.3E3 60 37:56 3.9E3 55 38:52 38:15 36:43 38:31 3.5E3 50 36:31 38:03 3.2E3 45 38:34 2.8E3 40 2.5E3 35 2.1E3 30 1.8E3 25 1.4E3 20

37:00

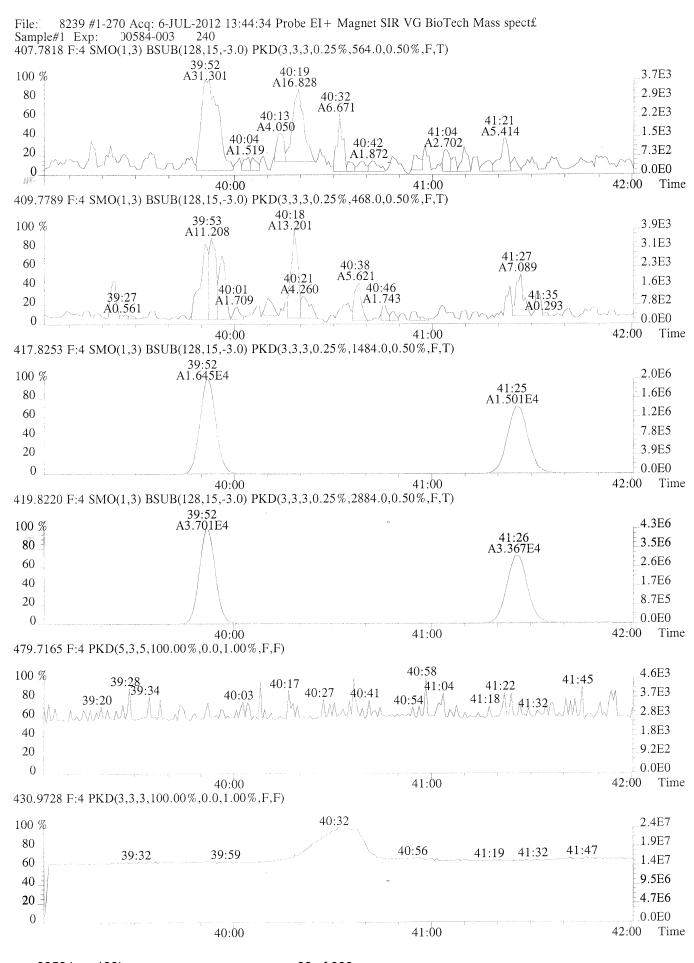
15

10

5

0

38:00


1.1E3

7.1E2

_3.5E2

0.0E0

39:00 Time

8239 #1-270 Acq: 6-JUL-2012 13:44:34 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00584-003 407.7818 F:4 1.4E4 100 % 1.3E4 95 1.2E4 90 1.2E4 85 1.1E4 80 1.0E4 75 70 9.6E3 8.9E3 65 60 8.2E3 7.6E3 55 .5*S/N 50 6.9E3 40:33 40:19 6.2E3 45 40 .5.5E3 41:22 41:04 |41:10 4.8E3 35 39:17 41:50 4.1E3 30 40:48 39:46 40:01 41:35 3.4E3 25 2.7E3 20 2.1E3 15 1.4E3 10 5 6.9E2 0.0E0 0 42:00 Time 40:00 41:00 409.7789 F:4 1.0E4 100 % 9.8E3 95 9.3E3 90 _8.8E3 85 8.3E3 80 40:19 _7.7E3 75 70 7.2E3 41:26 39:52 6.7E3 65 39:56 6.2E3 60 40:37 5.7E3 39:23 55 2.5*S/N 41:32 5.2E3 50 4.6E3 45 4.1E3 40 40:07 40:32 40:54 41:49 .3.6E3 35 40:51 41:41 39:15 39:44 3.1E3 30 39:10 41:08 2.6E3 25 2.1E3 20 1.5E3 15 1.0E3 14 Jul 2 10 5.2E2 5 0.0E0 0 41:00 42:00 Time 40:00

10 E

8239 #1-270 Acq: 6-JUL-2012 13:44:34 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp: 00584-003 240 423.7766 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,692.0,0.40%,F,T) 40:13 A45.813 _6.3E3 100 % .6.0E3 95 _5.7E3 90 41:04 A41.983 5.4E3 85 5.1E3 80 4.7E3 75 70 4.4E3 4.1E3 65 3.8E3 60 _3.5E3 55 .3.2E3 50 2.8E3 45 2.5E3 40 2.2E3 35 1.9E3 30 1.6E3 25 1.3E3 20 9.5E2 15 6.3E2 10 5 3.2E2 0.0E0 0 Time 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 39:48 425.7737 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,116.0,0.40%,F,T) 41:03 A43.348 5.9E3 100 % 5.6E3 95 40:13 A46.243 .5.3E3 90 5.0E3 85 4.7E3 80 4.5E3 MANUAL INTEGRATION EXPLANATION 75 1. ROOR INTEGRATION 70 4.2E3 2. PEAK NOT FOUND/NOT INTEGRATED 3.9E3 65 RETENTION TIME SHIFT 3.6E3 ASEL RRECT/INA 60 -5. OTHEI 3.3E3 55 ANA .3.0E3 50 2.7E3 45 2.4E3 40 2.1E3 35 1.8E3 30 1.5E3 25 1.2E3 20 8.9E2 15 5.9E2 10 3.0E2 5 0.0E0 0 Time 41:24 41:36 41:48 41:00 41:12 39:36 39:48 40:00 40:12 40:24 40:36 40:48

3239 #1-732 Acq: 6-JUL-2012 13:44:34 Probe EI+ Magnet SIR VG BioTech Mass spect£ File Sample#1 Exp: 00584-003 240 441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,252.0,0.40%,F,T) 3.0E3 100 % 2.4E3 NOTE 80 60 1.8E3 48:32 A3.535 1.2E3 40 46:57 6.1E2 20 A1.825 41.0280.0E0 0 49:00 50:00 Time 44:00 45:00 46:00 47:00 48:00 43:00 443.7399 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,420.0,0.40%,F,T) 45:01 3.6E3 A20.106 100 % 2.9E3 80 45:06 A10.377 2.2E3 60 45:10 47:42 A7.981 A6.1031.4E3 40 46:04 A4.287 7.2E2 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 44:00 45:00 46:00 43:00 513.6775 F:5 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 48:59 4.3E3 100 % 45:48 43:11 43:45 3.4E3 42:20 80 46:10 48:11 43:00 46:32 49:04 2.6E3 60 1.7E3 40 8.5E2 20 0.0E0 0 49:00 Time 47:00 48:00 50:00 43:00 44:00 45:00 46:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 43:06 1.8E7 100 % 46:03 45:48 49:39 1.4E7 80 45:27 47:33 49:01 42:33 46:58 48:22 44:23 43:27 1.1E7 60 1 7.1E6 40 3.6E6 20 0.0E0 0

47:00

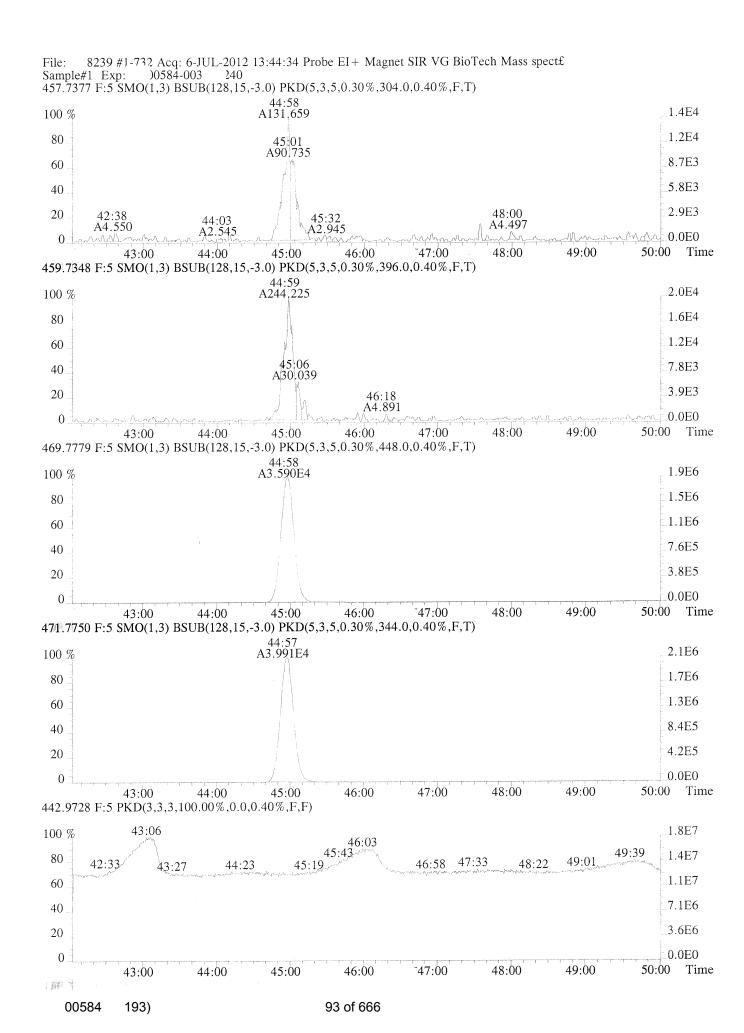
44:00

43:00

193)

00584

45:00


46:00

92 of 666

48:00

49:00

50:00 Time

8239 #1-732 Acq: 6-JUL-2012 13:44:34 Probe EI+ Magnet SIR VG BioTech Mass spect£ f1 Exp: 00584-003 240 File Sample#1 Exp: $457.7377 \; F:5 \; \tilde{S}MO(1,3) \; BSUB(128,15,-3.0) \; PKD(5,3,5,0.30\%,304.0,0.40\%,F,T)$ 44:58 A189,446 1.4E4 100 % 1.4E4 95 90 1.3E4 1.2E4 85 1.2E4 80 1.1E4 75 1.0E4 70 9.4E3 65 8.7E3 60 8.0E3 55 7.2E3 50 6.5E3 45 5.8E3 40 5.1E3 35 4.3E3 30 3.6E3 25 2.9E3 20 2.2E3 15 1.4E3 10 7.2E2 5 0.0E0 44:00 45:00 46:00 47:00 48:00 49:00 50:00 Time 43:00 459.7348 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,396.0,0.40%,F,T) 44:59 A238,446 2.0E4 100 % 1.9E4 95 1.8E4 90 1.7E4 85 1.6E4 80 1.5E4 75 1.4E4 70 1.3E4 65 1.2E4 60 1.1E4 55 MANUAL INTEGRATION EXPLANATION 1./POOR INTEGRATION 9.8E3 50 2. PEAK NOT FOUND/NOT INTEGRATED 8.8E3 45 3. RETENTION TIME SHIFT 7.8E3 ECI/IN COLOR 40 4. BAS 5. OTH 6.9E3 35 ANA 5.9E3 30 4.9E3 25 _3.9E3 20 2.9E3 15 2.0E3 10 9.8E2 5 M. M. Mar Mary M. 0.0E0

43:00

44:00

45:00

46:00

47:00

48:00

49:00

50:00

Time

2DF - FORM II-HR CDD CDD/CDF TOTAL HOMOLOGUE CONCENTRATION SUMMARY HIGH RESOLUTION

Lab Name:		_		Contract:		
Lab Code:	Case No	o.:		TO No.:	SDG No.:	193
Matrix: (Soil/Water/	_ Ash/Tiss	ue/Oil)	Soil	Lab Sample ID:	00584-	001
Sample wt/vol:	30.272	(g/mL) <u>g</u>	Lab File ID:	829	4
Water Sample Prep:		_	(SEPF/SPE)	Date Received:	05/10/20	12
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/12/2	012
Injection Volume:	1 (uL)	% Solids/Li	pids:	Date Analyzed:	06/19/20	12
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:		E-HRMS-03		-		<u> </u>

Concentration Units: (pg/L or ng/kg) ng/Kg

deron onich (pg/h or ng/kg/	119/10	· <u>y</u>		
Homologue	Peaks	Concentration	Q	EMPC/EDL
Dioxins				
Total Tetra-Dioxins	5	15.7		
Total Penta-Dioxins	9	14.7		
Total Hexa-Dioxins	9	69.5		
Total Hepta-Dioxins	2	312		
	•	•		

Furans								
Total Tetra-Furans	16	68.4						
Total Penta-Furans	14	43.8						
Total Hexa-Furans	9	41.8						
Total Hepta-Furans	3	81.2						

2DF - FORM II-HR CDD CDD/CDF TOTAL HOMOLOGUE CONCENTRATION SUMMARY HIGH RESOLUTION

ĽРА	PA Sample	NO.
	23	0

Lab Name:	_			Contract:		
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/A	sh/Tissue/Oil	.) <u>W</u> a	ter	Lab Sample ID:	00584-	002
Sample wt/vol:	1040	(g/mL)	mL	Lab File ID:	8238	
Water Sample Prep:		(S:	EPF/SPE)	Date Received:	05/10/20	12
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/20	12
Injection Volume:1	(uL) % Sol	ids/Lipid	s:	Date Analyzed:	07/06/203	12
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:	E-HRM	S-04		_	•	

Concentration Units: (pg/L or ng/kg) pg/L

F 37 =			
Peaks	Concentration	Q	EMPC/EDL
		Ŭ	0.426
		Ŭ	0.238
		Ŭ	0.274
1	5.70	J	
		Peaks Concentration	U U

Furans							
Total Tetra-Furans			Ŭ	0.325			
Total Penta-Furans			Ū	0.349			
Total Hexa-Furans	1	0.835	J				
Total Hepta-Furans	2	5.78	J				

2DF - FORM II-HR CDD CDD/CDF TOTAL HOMOLOGUE CONCENTRATION SUMMARY HIGH RESOLUTION

Lab Name:	_			Contract:		
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/A	sh/Tissue/Oil	L) Wa	ter	Lab Sample ID:	00584-	003
Sample wt/vol:	1040	(g/mL)	mL	Lab File ID:	8239)
Water Sample Prep:		(S	EPF/SPE)	Date Received:	05/11/20	12
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/20	12
Injection Volume: 1	(uL) % Sol	ids/Lipid	s:	Date Analyzed:	07/06/20	12
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1	
Instrument ID:	E-HRN	rs-04		_		•

Concentration Units: (pg/L or ng/kg) pg/L

F 37 =			
Peaks	Concentration	Q	EMPC/EDL
		Ŭ	0.416
		Ŭ	0.348
		Ŭ	0.281
2	5.92	J	
		Peaks Concentration	U U

Furans				
Total Tetra-Furans			Ŭ	0.377
Total Penta-Furans			Ū	0.389
Total Hexa-Furans	1	0.689	J	
Total Hepta-Furans			Ŭ	0.558

EPA	Sample	No.
	DLCS	

Lab Name:				Contract:	0W001071	
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/	 Ash/Tissue/Oil	.) Wa	ter	Lab Sample ID:	00313-	02
Sample wt/vol:	1000	(g/mL)	mL	Lab File ID:	8232	
Water Sample Prep:		(S	EPF/SPE)	Date Received:		
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/20	12
Injection Volume:	1		(uL)	Date Analyzed:	07/06/201	.2
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1.0	
Instrument ID:	F-HPM	S-04	<u></u>	_		

Concentration Units: (pg/L or ng/kg) _ pg/L

entration units. (pg/L or ng/kg)	p	3/L			
Spike Analyte	Spike Added	Amount Recovered	Percent Recovery	#	QC Limits
2,3,7,8-TCDD	200	222	111		67-158
1,2,3,7,8-PeCDD	1000	1120	112		70-142
1,2,3,4,7,8-HxCDD	1000	1040	104		70-164
1,2,3,6,7,8-HxCDD	1000	1100	110		76-134
1,2,3,7,8,9-HxCDD	1000	1070	107		64-162
1,2,3,4,6,7,8-HpCDD	1000	1060	106		70-140
OCDD	2000	1990	99		78-144
2,3,7,8-TCDF	200	236	118		75-158
1,2,3,7,8-PeCDF	1000	1130	113		80-134
2,3,4,7,8-PeCDF	1000	1190	119		68-160
1,2,3,4,7,8-HxCDF	1000	1170	117		72-134
1,2,3,6,7,8-HxCDF	1000	1070	107		84-130
1,2,3,7,8,9-HxCDF	1000	1070	107		78-130
2,3,4,6,7,8-HxCDF	1000	1040	104		70-156
1,2,3,4,6,7,8-HpCDF	1000	1110	111		82-122
1,2,3,4,7,8,9-HpCDF	1000	1000	100		78-138
OCDF	2000	2010	100		63-170

[#] Column to be used to flag values outside Quality Control (QC) limits. Laboratory Control Sample Recovery: 0 Outside limits out of 17 total.

EPA	Sample	No.
	DLCS	

Lab Name:				Contract:	W001071	
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/A	Ash/Tissue/Oi	l) Wa	ter	Lab Sample ID:	00313	-03
Sample wt/vol:	1000	(g/mL)	mL	Lab File ID:	8233	3
Water Sample Prep:		(S	EPF/SPE)	Date Received:	_	
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/20)12
Injection Volume:	1		(uL)	Date Analyzed:	07/06/20	12
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1.0	
Instrument ID:	E-HRN	4S-04		_		_

Concentration Units: (pg/L or ng/kg) _____ pg/L

	3/г			
Spike Added	Amount Recovered	Percent Recovery	#	QC Limits
200	225	113		67-158
1000	1090	109		70-142
1000	1000	100		70-164
1000	1080	108		76-134
1000	1080	108		64-162
1000	1020	102		70-140
2000	1960	98		78-144
200	236	118		75-158
1000	1090	109		80-134
1000	1150	115		68-160
1000	1100	110		72-134
1000	1050	105		84-130
1000	1050	105		78-130
1000	1010	101		70-156
1000	1200	120		82-122
1000	990	99		78-138
2000	1860	93		63-170
	Added 200 1000 1000 1000 1000 2000 2000 1000 1000 1000 1000 1000 1000 1000 1000	Added Recovered 200 225 1000 1090 1000 1000 1000 1080 1000 1080 1000 1020 2000 236 1000 1090 1000 1150 1000 1050 1000 1010 1000 1200 1000 1200 1000 1200 1000 990	Added Recovered Recovery 200 225 113 1000 1090 109 1000 1000 1000 1000 1080 108 1000 1080 108 1000 1020 102 2000 1960 98 200 236 118 1000 1090 109 1000 1150 115 1000 1100 110 1000 1050 105 1000 1010 101 1000 1200 120 1000 990 99	Added Recovered Recovery 200 225 113 1000 1090 109 1000 1000 1000 1000 1080 108 1000 1080 108

[#] Column to be used to flag values outside Quality Control (QC) limits. Laboratory Control Sample Recovery: 0 Outside limits out of 17 total.

4DF - FORM IV-HR CDD CDD/CDF METHOD BLANK SUMMARY HIGH RESOLUTION

EPA	Sample	No.
	DFBLK	

Lab Name:		_			Contract:		
Lab Code:		Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/W	Water/A	sh/Tissue/O	il)	Soil	Lab Sample ID:	00341	-01
<pre>Sample wt/vol:</pre>		10.554	(g/mL)	g	Lab File ID:	8293	1
Water Sample Pr	rep:		(:	SEPF/SPE)	Date Received:		
GC Column:	DB-5	ID:	0.25	(mm)	Date Extracted:	06/12/2	012
Instrument ID:		E-HR	MS-03		Date Analyzed:	06/19/20	12

EPA Sample No.	Lab Sample ID	Lab File ID	Date Analyzed
DFBLK	00341-01	8291	06/19/2012
DLCS	00341-02	8292	06/19/2012
DLCS	00341-03	8293	06/19/2012
193	00584-001	8294	06/19/2012

EPA	Sample	No.
	DLCS	

Lab Name:				Contract:		
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/	Ash/Tissue/Oil	S	oil	Lab Sample ID:	00341-	-02
Sample wt/vol:	10.692	(g/mL)	g	Lab File ID:	8292	
Water Sample Prep:		(5	SEPF/SPE)	Date Received:	-	
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/12/20	12
Injection Volume:	1		(uL)	Date Analyzed:	06/19/20	12
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1.0	
Instrument ID:	E-HRMS	L=03		_		_

Concentration Units: (pg/L or ng/kg) ng/Kg

entration Units: (pg/L or ng/kg)	119	/Kg			
Spike Analyte	Spike Added	Amount Recovered	Percent Recovery	#	QC Limits
2,3,7,8-TCDD	18.7	20.8	111		67-158
1,2,3,7,8-PeCDD	93.5	104	111		70-142
1,2,3,4,7,8-HxCDD	93.5	95.5	102		70-164
1,2,3,6,7,8-HxCDD	93.5	101	108		76-134
1,2,3,7,8,9-HxCDD	93.5	99.5	106		64-162
1,2,3,4,6,7,8-HpCDD	93.5	95.1	102		70-140
OCDD	187	198	106		78-144
2,3,7,8-TCDF	18.7	19.7	106		75-158
1,2,3,7,8-PeCDF	93.5	98.3	105		80-134
2,3,4,7,8-PeCDF	93.5	103	110		68-160
1,2,3,4,7,8-HxCDF	93.5	106	113		72-134
1,2,3,6,7,8-HxCDF	93.5	100	107		84-130
1,2,3,7,8,9-HxCDF	93.5	99.6	106		78-130
2,3,4,6,7,8-HxCDF	93.5	96.2	103		70-156
1,2,3,4,6,7,8-HpCDF	93.5	101	108		82-122
1,2,3,4,7,8,9-HpCDF	93.5	95.2	102		78-138
OCDF	187	213	114		63-170

[#] Column to be used to flag values outside Quality Control (QC) limits. Laboratory Control Sample Recovery: 0 Outside limits out of 17 total.

EPA	Sample	No.
	DLCS	

Lab Name:				Contract:		
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/	Ash/Tissue/Oil)	Sc	oil	Lab Sample ID:	00341	-03
Sample wt/vol:	11.376	(g/mL)	g	Lab File ID:	8293	
Water Sample Prep:		(SI	EPF/SPE)	Date Received:		
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/12/20	12
Injection Volume:	1		(uL)	Date Analyzed:	06/19/20	12
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1.0	
Instrument ID:	F-HRMS	:_03		_	<u> </u>	

Concentration Units: (pg/L or ng/kg) ng/Kg

entration Units: (pg/L or ng/kg)	119	/Kg			
Spike Analyte	Spike Added	Amount Recovered	Percent Recovery	#	QC Limits
2,3,7,8-TCDD	17.6	19.0	108		67-158
1,2,3,7,8-PeCDD	87.9	97.0	110		70-142
1,2,3,4,7,8-HxCDD	87.9	88.6	101		70-164
1,2,3,6,7,8-HxCDD	87.9	93.7	107		76-134
1,2,3,7,8,9-HxCDD	87.9	90.1	102		64-162
1,2,3,4,6,7,8-HpCDD	87.9	90.5	103		70-140
OCDD	176	183	104		78-144
2,3,7,8-TCDF	17.6	18.4	104		75-158
1,2,3,7,8-PeCDF	87.9	93.1	106		80-134
2,3,4,7,8-PeCDF	87.9	96.6	110		68-160
1,2,3,4,7,8-HxCDF	87.9	99.0	113		72-134
1,2,3,6,7,8-HxCDF	87.9	95.7	109		84-130
1,2,3,7,8,9-HxCDF	87.9	93.0	106		78-130
2,3,4,6,7,8-HxCDF	87.9	90.9	103		70-156
1,2,3,4,6,7,8-HpCDF	87.9	95.3	108		82-122
1,2,3,4,7,8,9-HpCDF	87.9	88.6	101		78-138
OCDF	176	196	112		63-170

[#] Column to be used to flag values outside Quality Control (QC) limits. Laboratory Control Sample Recovery: 0 Outside limits out of 17 total.

4DF - FORM IV-HR CDD CDD/CDF METHOD BLANK SUMMARY HIGH RESOLUTION

EPA	Sample	No.
	DFBLK	

Lab Name:				Contract:		
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Wate	er/Ash/Tissue/Oil)	W	later	Lab Sample ID: _	00313-	-01
Sample wt/vol:	1000	(g/mL)	mL	Lab File ID:	8236	
Water Sample Prep	:	()	SEPF/SPE)	Date Received:		
GC Column: DB	-5 ID:	0.25	(mm)	Date Extracted:	06/06/20	12
Instrument ID:	E-HRMS	-04		Date Analyzed:	07/06/203	12

EPA Sample No.	Lab Sample ID	Lab File ID	Date Analyzed
DFBLK	00313-01	8236	07/06/2012
DLCS	00313-02	8232	07/06/2012
DLCS	00313-03	8233	07/06/2012
ZZZZZ	00360-02	8234	07/06/2012
ZZZZZ	00360-03	8235	07/06/2012
ZZZZZ	00360-01	8237	07/06/2012
238	00584-002	8238	07/06/2012
240	00584-003	8239	07/06/2012

DLM02.2 **90584** 193)

EPA	Sample	No.
	DLCS	

Lab Name:					Contract:	0	W001071	
Lab Code:	 Case No	o.:	_		TO No.:	SDG N	o.:	193
Matrix: (Soil/Water/	_ Ash/Tiss	ue/Oil)	Wa	ter	Lab Sample ID:		00313-	02
Sample wt/vol:	1000	(g/	mL)	mL	Lab File ID:		8232	
Water Sample Prep:			(SI	EPF/SPE)	Date Received:		· -	
Concentrated Extract	Volume:	20		(uL)	Date Extracted:	(06/06/20	12
Injection Volume:		1		(uL)	Date Analyzed:	0	7/06/201	2
GC Column: DB-5	ID:	0.2	5	(mm)	Dilution Factor:		1.0	
Instrument ID:		E-HRMS-04			_			_

Concentration Units: (pg/L or ng/kg) pg/L

Spike Added	Amount	Percent		1
Added	Recovered	Recovery	#	QC Limits
200	222	111		67-158
1000	1120	112		70-142
1000	1040	104		70-164
1000	1100	110		76-134
1000	1070	107		64-162
1000	1060	106		70-140
2000	1990	99		78-144
200	236	118		75-158
1000	1130	113		80-134
1000	1190	119		68-160
1000	1170	117		72-134
1000	1070	107		84-130
1000	1070	107		78-130
1000	1040	104		70-156
1000	1110	111		82-122
1000	1000	100		78-138
2000	2010	100		63-170
	200 1000 1000 1000 1000 2000 2000 1000 1000 1000 1000 1000 1000 1000 2000	200 222 1000 1120 1000 1040 1000 1100 1000 1070 1000 1060 2000 1990 200 236 1000 1130 1000 1170 1000 1070 1000 1070 1000 1040 1000 1110 1000 2000 2000 2010	200 222 111 1000 1120 112 1000 1040 104 1000 1100 110 1000 1070 107 1000 1060 106 2000 1990 99 200 236 118 1000 1130 113 1000 1190 119 1000 1170 117 1000 1070 107 1000 1040 104 1000 1110 111 1000 1000 1000	200 222 111 1000 1120 112 1000 1040 104 1000 1100 110 1000 1070 107 1000 1060 106 2000 1990 99 200 236 118 1000 1130 113 1000 1190 119 1000 1170 117 1000 1070 107 1000 1070 107 1000 1040 104 1000 1110 111 1000 1000 100 2000 2010 100

[#] Column to be used to flag values outside Quality Control (QC) limits. Laboratory Control Sample Recovery: 0 Outside limits out of 17 total.

EPA	Sample	No.	
	DLCS		

Lab Name:		<u></u>		Contract:		
Lab Code:	Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/Water/	Ash/Tissue/Oil) <u>W</u> a	ater	Lab Sample ID:	00313-	-03
Sample wt/vol:	1000	(g/mL)	mL	Lab File ID:	8233	
Water Sample Prep:		(5	SEPF/SPE)	Date Received:		
Concentrated Extract	Volume:	20	(uL)	Date Extracted:	06/06/20	12
Injection Volume:	1		(uL)	Date Analyzed:	07/06/203	L2
GC Column: DB-5	ID:	0.25	(mm)	Dilution Factor:	1.0	
Instrument ID:		3-04		_	•	

tration Units: (pg/L or ng/kg) pg/L					
Spike Analyte	Spike Added	Amount Recovered	Percent Recovery	#	QC Limits
2,3,7,8-TCDD	200	225	113		67-158
1,2,3,7,8-PeCDD	1000	1090	109		70-142
1,2,3,4,7,8-HxCDD	1000	1000	100		70-164
1,2,3,6,7,8-HxCDD	1000	1080	108		76-134
1,2,3,7,8,9-HxCDD	1000	1080	108		64-162
1,2,3,4,6,7,8-HpCDD	1000	1020	102		70-140
OCDD	2000	1960	98		78-144
2,3,7,8-TCDF	200	236	118		75-158
1,2,3,7,8-PeCDF	1000	1090	109		80-134
2,3,4,7,8-PeCDF	1000	1150	115		68-160
1,2,3,4,7,8-HxCDF	1000	1100	110		72-134
1,2,3,6,7,8-HxCDF	1000	1050	105		84-130
1,2,3,7,8,9-HxCDF	1000	1050	105		78-130
2,3,4,6,7,8-HxCDF	1000	1010	101		70-156
1,2,3,4,6,7,8-HpCDF	1000	1200	120		82-122
1,2,3,4,7,8,9-HpCDF	1000	990	99		78-138
OCDF	2000	1860	93		63-170

[#] Column to be used to flag values outside Quality Control (QC) limits. Laboratory Control Sample Recovery: 0 Outside limits out of 17 total.

4DF - FORM IV-HR CDD CDD/CDF METHOD BLANK SUMMARY HIGH RESOLUTION

EPA	Sample	No.
	DFBLK	

Lab Name:		_			Contract:	<u>w001071</u>	
Lab Code:		Case No.:			TO No.:	SDG No.:	193
Matrix: (Soil/W	Nater/A	sh/Tissue/O	il) So	oil	Lab Sample ID:	00341-0)1
Sample wt/vol:		10.554	(g/mL)	g	Lab File ID:	8291	
Water Sample Pr	rep:		(S	EPF/SPE)	Date Received:		
GC Column:	DB-5	ID:	0.25	(mm)	Date Extracted:	06/12/201	2
Instrument ID:		E-HI	RMS-03		Date Analyzed:	06/19/2012	2

EPA Sample No.	Lab Sample ID	Lab File ID	Date Analyzed
DFBLK	00341-01	8291	06/19/2012
DLCS	00341-02	8292	06/19/2012
DLCS	00341-03	8293	06/19/2012
193	00584-001	8294	06/19/2012

WINDOW DEFINING MIX SUMMARY

CLIENT ID: WDM

Lab Name: Lab Code:

GC Column: DB-5

Contract No:
Case No.: TO No: SDG No: 193
ID: 0.25 (mm) Lab File ID: 8289
Date Analyzed: 19-JUN-2012

Congener	Retention Time First Eluting	[Retention Time Last Eluting
TCDF	24:16		30:21
TCDD	26:04		30:21
PeCDF	30:39		34:32
PeCDD	32:01		34:23
HxCDF	35:26		37:45
HxCDD	35:56		37:26
HpCDF	39:08		40:25
HpCDD	39:23		40:02
% Valley 2378-7	CCDD:	5 %	

WINDOW DEFINING MIX SUMMARY

CLIENT ID: WDM

Contract No:

Lab Name: Lab Code:

GC Column: DB-5

Case No.: TO No.: SDG No.: 193

ID: 0.25 (mm) Lab File ID: 8296

Date Analyzed: 19-JUN-2012

Time Analyzed: 17:41:15

Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:17	30:22
TCDD	26:05	30:21
PeCDF	30:39	34:32
PeCDD	32:02	34:23
HxCDF	35:26	37:46
HxCDD	35:56	37:26
HpCDF	39:08	40:25
HpCDD	39:23	40:02

3 %

% Valley 2378-TCDD:

WINDOW DEFINING MIX SUMMARY

CLIENT ID: MDM

Lab Name: Lab Code: Gc Column: Db-5

Contract No.:
Case No.: To No.: Sdg No.: 193
Id: 0.25 (Mm) Lab File ID: 8230
Date Analyzed: 6-JUL-2012 Time Analyzed: 05:14:35

Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:03	30:16
TCDD	25:51	30:15
PeCDF	30:33	34:37
PeCDD	31:59	34:28
HxCDF	35:35	38:13
HxCDD	36:10	37:52
HpCDF	39:54	41:29
HpCDD	40:15	41:03

% Valley 2378-TCDD:

6 %

WINDOW DEFINING MIX SUMMARY

CLIENT	ID:
WDM	

Contract No.:

Lab Name: Lab Code: GC Column: DB-5

Case No.: TO No.: SDG No.: 193

ID: 0.25 (mm) Lab File ID: 8241

Date Analyzed: 6-JUL-2012

Time Analyzed: 15:36:26

Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:02	30:14
TCDD	25:50	30:14
PeCDF	30:33	34:37
PeCDD	31:59	34:28
HxCDF	35:36	38:13
HxCDD	36:10	37:53
HpCDF	39:54	41:27
HpCDD	40:15	41:02

[%] Valley 2378-TCDD:

WINDOW DEFINING MIX SUMMARY

CLIENT ID: MDM

Lab Name: Lab Code:

GC Column: DB-5

Contract No.:

Case No.: TO No.: SDG No.: 193

ID: 0.25 (mm) Lab File ID: 8342

Date Analyzed: 12-JUL-2012

Time Analyzed: 05:31:22

Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:03	30:16
TCDD	25:52	30:15
PeCDF	30:34	34:38
PeCDD	32:00	34:30
HxCDF	35:37	38:19
HxCDD	36:12	37:58
HpCDF	40:03	41:41
HpCDD	40:26	41:16

7 %

% Valley 2378-TCDD:

WINDOW DEFINING MIX SUMMARY

CLIENT ID: MDM

Lab Name:

Contract No.:

Lab Name: Lab Code:

GC Column: DB-5

Case No.: TO No.: SDG No.: 193

ID: 0.25 (mm) Lab File ID: 8349 Date Analyzed: 12-JUL-2012

Time Analyzed: 16:15:34

Retention Time Retention Time First Last Eluting Eluting Congener 28:10 TCDF 29:04 TCDD 32:48 33:36 PeCDF PeCDD 33:59 36:51 36:44 HxCDF 37:36 37:42 HxCDD 40:04 41:41 HpCDF HpCDD 41:16

% Valley 2378-TCDD:

0 왕

5DFC - FORM V-HR CDD-3 CDD/CDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Lab Name: Contract:

Case No.: TO No.: SDG No.: 193 Lab Code:

Instrument ID: E-HMS-04 GC Column: $\underline{DB-5}$ ID: $\underline{0.25}$ (mm)

Init. Calib. Date(s): 05/03/2012

Initial Calib. Times: 05:17am

The Analytical Sequence of standards, samples, blanks, and Laboratory Control Samples (LCSs) is as follows:

es(LCSs) is as	follows:	, ,	,	1
EPA SampleNo.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Window Define		8230	6-JUL-12	05:14:35
CCAL CS3		8231	6-JUL-12	06:10:10
DLCS-	00313-01	8232	6-JUL-12	07:18:59
DLCS-	00313-02	8233	6-JUL-12	08:09:46
XXXXXXXX	XXXXXXXXX	8234	6-JUL-12	09:00:56
XXXXXXXX	XXXXXXXXX	8235	6-JUL-12	09:52:12
DFBLK-	00313-01	8236	6-JUL-12	11:11:40
XXXXXXXX	XXXXXXXXX	8237	6-JUL-12	12:02:09
238	00584-002	8238	6-JUL-12	12:53:25
240	00584-003	8239	6-JUL-12	13:44:34
CCAL CS3		8240	6-JUL-12	14:38:40
	i	i		1

DLM02.2 (12/09) FORM V-HR CDD-3

5DFC - FORM V-HR CDD-3 CDD/CDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Lab Name: Contract:

TO No.: SDG No.: <u>193</u> Lab Code: Case No.:

GC Column: <u>DB-5</u> ID: <u>0.25</u> (mm) Instrument ID: E-HMS-04

Init. Calib. Date(s): 05/03/2012

Initial Calib. Times: 05:17am

The Analytical Sequence of standards, samples, blanks, and Laboratory Control Samples (LCSs) is as follows:

EPA SampleNo.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Window Define		8230	6-JUL-12	05:14:35
CCAL CS3		8231	6-JUL-12	06:10:10
DLCS-	00313-01	8232	6-JUL-12	07:18:59
DLCS-	00313-02	8233	6-JUL-12	08:09:46
XXXXXXXX	XXXXXXXXX	8234	6-JUL-12	09:00:56
XXXXXXXX	XXXXXXXXX	8235	6-JUL-12	09:52:12
DFBLK-	00313-01	8236	6-JUL-12	11:11:40
XXXXXXXX	XXXXXXXXX	8237	6-JUL-12	12:02:09
238	00584-002	8238	6-JUL-12	12:53:25
240	00584-003	8239	6-JUL-12	13:44:34
CCAL CS3		8240	6-JUL-12	14:38:40

DLM02.2 (12/09) FORM V-HR CDD-3

5DFC - FORM V-HR CDD-3 CDD/CDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Lab Name: Contract:

Lab Code: Case No.: TO No.: SDG No.: 193

Init. Calib. Date(s): 05/03/2011

Initial Calib. Times: 05:17am

The Analytical Sequence of standards, samples, blanks, and Laboratory Control Samples(LCSs) is as follows:

EPA SampleNo.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
COL. PERFORM		8342	12-JUL-12	06:41:55
CCAL CS3	-83-1	8344	12-JUL-12	07:20:49
INST BLANK	INST BLANK	7977	12-JUL-12	08:13:02
193	00584-001RE	7979	12-JUL-12	08:44:39
XXXXXXX	XXXXXXX	7980	12-JUL-12	09:19:02
XXXXXXX	XXXXXXX	7981	12-JUL-12	09:53:24
XXXXXXX	XXXXXXX	7982	12-JUL-12	10:27:46
XXXXXXX	XXXXXXX	7983	12-JUL-12	11:02:09
XXXXXXX	XXXXXXX	7984	12-JUL-12	11:36:31
XXXXXXX	XXXXXXX	7985	12-JUL-12	12:10:54
XXXXXXX	XXXXXXX	7986	12-JUL-12	12:45:19
XXXXXXX	XXXXXXX	7987	12-JUL-12	13:19:42
XXXXXXX	XXXXXXX	7988	12-JUL-12	14:04:24
XXXXXXX	XXXXXXX	7989	12-JUL-12	14:35:06
CCAL CS3	-83-1	7990	12-JUL-12	15:14:58
COL. PERFORM		7991	12-JUL-12	16:23:09
			 	-

USEPA -

6DFA6

CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY HIGH RESOLUTION

Lab Name:

Contract No.:

TO No.: SDG No.: 193

Lab Name: Lab Code:

Lab Code:
Case No.:
GC Column: DB-5
ID: 0.25(mm)

Instrument ID: E-HRMS-03

Init. Calib. Date(s).: 04/23/12

Init. Calib. Time.: 05:13

RR/RRF

								MEAN	
Target Analytes	CS0.5	CS1	CS2	CS3	CS4	CS5	RR/RRF	%RSD	QC LIMITS
2,3,7,8-TCDD	0.92	0.99	0.99	0.96	1.01	1.01	0.98	3.29	+/-20%
2,3,7,8-TCDF	0.93	0.94	0.93	0.91	0.93	0.93	0.93	0.96	+/-20%
1,2,3,7,8-PeCDF	0.96	1.02	1.02	0.93	1.04	1.04	1.00	4.37	+/-20%
1,2,3,7,8-PeCDD	0.85	0.92	0.91	0.92	0.94	0.94	0.91	3.60	+/-20%
2,3,4,7,8-PeCDF	0.90	0.96	0.96	1.00	0.97	0.98	0.96	3.40	+/-20%
1,2,3,4,7,8-HxCDF	1.16	1.26	1.26	1.19	1.25	1.21	1.22	3.41	+/-20%
1,2,3,6,7,8-HxCDF	1.09	1.14	1.16	1.15	1.15	1.14	1.14	2.08	+/-20%
1,2,3,4,7,8-HxCDD	0.93	0.99	1.02	1.06	1.01	1.00	1.00	4.40	+/-20%
1,2,3,6,7,8-HxCDD	0.95	1.03	1.01	0.88	1.01	1.00	0.98	5.84	+/-20%
1,2,3,7,8,9-HxCDD	1.01	1.05	1.04	1.04	1.05	1.05	1.04	1.62	+/-20%
2,3,4,6,7,8-HxCDF	1.09	1.18	1.16	1.12	1.16	1.12	1.14	3.13	+/-20%
1,2,3,7,8,9-HxCDF	1.13	1.20	1.18	1.13	1.19	1.16	1.16	2.56	+/-20%
1,2,3,4,6,7,8-HpCDF	1.33	1.44	1.41	1.34	1.43	1.41	1.39	3.46	+/-20%
1,2,3,4,6,7,8-HpCDD	0.95	1.02	1.02	0.97	1.03	1.02	1.00	3.14	+/-20%
1,2,3,4,7,8,9-HpCDF	1.28	1.34	1.33	1.37	1.36	1.34	1.33	2.38	+/-20%
OCDD	1.00	1.08	1.06	0.99	1.09	1.11	1.05	4.75	+/-20%
OCDF	1.19	1.23	1.24	1.09	1.29	1.32	1.23	6.52	+/-20%
Labeled Compounds									
13C-2,3,7,8-TCDD	1.05	0.99	0.98	0.99	0.98	1.02	1.00	2.93	+/-35%
13C-1,2,3,7,8-PeCDD	0.81	0.78	0.76	0.82	0.87	0.87	0.82	5.66	+/-35%
13C-1,2,3,4,7,8-HxCDD	0.92	0.96	0.95	0.92	0.93	0.91	0.93	1.94	+/-35%
13C-1,2,3,6,7,8-HxCDD	0.93	0.93	0.93	1.01	0.92	0.91	0.94	3.63	+/-35%
13C-1,2,3,4,6,7,8-HpCDD	0.78	0.81	0.81	0.86	0.82	0.82	0.82	2.99	+/-35%
13C-OCDD	0.53	0.58	0.57	0.67	0.60	0.62	0.59	7.92	+/-35%
13C-2,3,7,8-TCDF	1.28	1.28	1.28	1.27	1.27	1.31	1.28	1.23	+/-35%
13C-1,2,3,7,8-PeCDF	1.08	1.03	1.02	1.12	1.16	1.19	1.10	6.11	+/-35%
13C-2,3,4,7,8-PeCDF	1.06	0.99	1.00	1.04	1.14	1.15	1.07	6.38	+/-35%
13C-1,2,3,4,7,8-HxCDF	1.05	1.05	1.07	1.10	1.05	1.05	1.06	1.88	+/-35%
13C-1,2,3,6,7,8-HxCDF	1.18	1.21	1.24	1.18	1.17	1.17	1.19	2.39	+/-35%
13C-2,3,4,6,7,8-HxCDF	1.09	1.10	1.12	1.12	1.08	1.08	1.10	1.75	+/-35%
13C-1,2,3,7,8,9-HxCDF	0.97	0.99	0.99	1.01	0.96	0.97	0.98	2.08	+/-35%
13C-1,2,3,4,6,7,8-HpCDF	0.80	0.84	0.85	0.85	0.83	0.85	0.84	2.54	+/-35%
13C-1,2,3,4,7,8,9-HpCDF	0.67	0.71	0.72	0.71	0.71	0.73	0.71	2.95	+/-35%
37Cl-2,3,7,8-TCDD	1.05	1.04	1.01	1.02	1.04	1.07	1.04	2.03	+/-35%

^{1.123789-}HxCDD Relative Response (RR) is calculated based on the labeled analog of the other two HxCDDs.

FORM VI-HR CDD-1

^{2.} OCDF RR is calculated based on the labeled analog of OCDD

USEPA 6DFB6 CDD/CDF INITIAL CALIBRATION ION ABUNDANCE RATIO SUMMARY HIGH RESOLUTION

Lab Name: Contract No.:

Lab Code: Case No.: TO No.: SDG No.: 193

GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-03

Init. Calib. Date(s).: 04/23/12

Init. Calib. Time.: 05:13

ION ABUNDANCE RATIO

	CDI DOMDD	101	4 ADOMDA	TIACTI ICEL	10				ION RATIO
The country Theory Theorem	SELECTED	CS0.5	CS1	CS2	CS3	CS4		FLAG	QC lIMITS
Target Analytes	IONS 304/306	0.77	0.72	0.76	0.77	0.79	0.79	гыас	0.65-0.89
2,3,7,8-TCDF	344/306	1.51	1.59	1.53	1.56	1.56	1.57		0.65-0.89
1,2,3,7,8-PeCDF	340/342	1.51	1.55	1.56	1.55	1.57	1.56		1.32-1.78
2,3,4,7,8-PeCDF	,		1.24	1.31	1.30	1.27	1.26		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.24					1.28		1.32-1.78
1,2,3,6,7,8-HxCDF	374/376	1.23	1.23	1.21	1.22	1.29			1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	1.24	1.19	1.25	1.25	1.26	1.28		
1,2,3,7,8,9-HxCDF	374/376	1.30	1.27	1.25	1.25	1.27	1.27		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.04	1.03	1.03	1.03	1.04	1.04		1.05-1.43
1,2,3,4,7,8,9-HpCDF	408/410	1.09	1.03	1.03	1.05	1.04	1.04		1.05-1.43
OCDF	442/444	0.89	0.91	0.91	0.90	0.91	0.91		1.05-1.43
2,3,7,8-TCDD	320/322	0.87	0.76	0.76	0.76	0.78	0.77		1.05-1.43
1,2,3,7,8-PeCDD	356/358	1.53	1.59	1.53	1.57	1.56	1.55		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.22	1.21	1.24	1.24	1.24	1.21		0.88-1.20
1,2,3,6,7,8-HxCDD	390/392	1.18	1.23	1.26	1.27	1.24	1.24		0.88-1.20
1,2,3,7,8,9-HxCDD	390/392	1.31	1.23	1.22	1.24	1.24	1.23		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.02	1.04	1.04	1.04	1.04		0.76-1.02
OCDD	458/460	0.92	0.89	0.88	0.90	0.89	0.89		0.76-1.02
13C-2,3,7,8-TCDF	316/318	0.77	0.78	0.77	0.77	0.77	0.77		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.56	1.57	1.55	1.56	1.56	1.56		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.57	1.57	1.56	1.56	1.55	1.57		1.05-1.43
13C-1,2,3,4,7,8-Hx ₁	384/385	0.52	0.53	0.54	0.54	0.52	0.52		1.05-1.43
13C-1,2,3,6,7,8-Hx7	384/385	0.53	0.51	0.51	0.50	0.52	0.52		0.88-1.20
13C-2,3,4,6,7,8-Hx	384/385	0.52	0.52	0.52	0.52	0.52	0.52		0.76-1.02
13C-1,2,3,7,8,9-Hx ₇	384/385	0.52	0.52	0.52	0.52	0.52	0.52		0.65-0.89
13C-1,2,3,4,6,7,8-n	418/420	0.45	0.45	0.45	0.45	0.44	0.45		1.32-1.78
13C-1,2,3,4,7,8,9-7	418/420	0.45	0.45	0.45	0.45	0.45	0.45		1.32-1.78
13C-2,3,7,8-TCDD	332/334	0.79	0.78	0.78	0.79	0.78	0.79		0.43-0.59
13C-1,2,3,7,8-PeCDD	368/370	1.58	1.58	1.57	1.58	1.56	1.56		0.43-0.59
13C-1,2,3,4,7,8-Hx ₁	402/404	1.26	1.25	1.26	1.26	1.24	1.24		0.43-0.59
13C-1,2,3,6,7,8-Hx ₁	402/404	1.25	1.26	1.25	1.25	1.24	1.25		0.43-0.59
13C-1,2,3,4,6,7,8-1	436/438	1.06	1.06	1.05	1.04	1.04	1.05		0.37-0.51
13C-OCDD	470/472	0.90	0.90	0.89	0.90	0.89	0.89		0.37-0.51
136-0600	7/0/4/2	0.90	0.50	0.09	0.50	0.00	0.00		0.5/ 0.51
13C-1,2,3,4-TCDD	332/334	0.79	0.79	0.80	0.79	0.79	0.79		0.65-0.89
	402/404	1.26	1.25	1.23	1.24	1.23	1.24		1.05-1.43
13C-1,2,3,7,8,9-Hx ₁	•	⊥.∠0	1.25	1.23	1.24	1.43	1.4		T.00 T.40
37Cl-2,3,7,8-TCDD	328								

Quality Control (QC) limits represent +/- 15% window around the theoretical ion abundance ratio. The laboratory must flag any analyte in any calibration solution which does not meet the ion abundance ratio QC limit by placing an asterisk in the flag column.

FORM VI-HR CDD-2

USEPA -

6DFA6

CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY HIGH RESOLUTION

Lab Name:

Contract No.:

TO No.:

SDG No.: 193 Lab Code: Case No.: TO No.: SDG No.: GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-04

Init. Calib. Date(s).: 05/03/12

Init. Calib. Time.: 05:17

							MEAN	
CS0.5	CS1	CS2	CS3	CS4	CS5	RR/RRF	%RSD	QC LIMITS
1.18	0.94	0.97	1.01	0.99	1.00	1.01	8.31	+/-20%
1.09	0.89	0.87	0.95	0.93	0.95	0.95	8.25	+/-20%
0.93	0.97	0.97	0.98	1.02	1.05	0.99	3.96	+/-20%
0.97	0.93	0.91	1.05	0.95		0.96	5.07	+/-20%
0.89	0.93	0.91		0.97	0.98	0.95		+/-20%
1.32	1.19	1.21		1.25	1.26	1.24		+/-20%
1.22	1.12	1.12		1.16	1.17	1.17		+/-20%
1.11	1.03	1.02						+/-20%
1.15	1.03							+/-20%
1.21	1.03	0.99		1.08	1.11	1.07		+/-20%
1.27	1.15	1.13						+/-20%
1.31	1.15	1.13						+/-20%
1.55	1.36	1.35						+/-20%
1.17	1.04							+/-20%
1.43	1.28	1.27						+/-20%
1.44	1.20	1.11						+/-20%
1.44	1.26	1.25	1.21	1.30	1.35	1.30	6.18	+/-20%
0.90	0.90							+/-35%
0.91	0.89	0.89						+/-35%
0.94	0.96							+/-35%
								+/-35%
0.84								+/-35%
0.54	0.56							+/-35%
	1.23							+/-35%
								+/-35%
								+/-35%
1.11								+/-35%
1.30	1.38							+/-35%
1.12								+/-35%
0.99	0.98							+/-35%
0.89	0.95							+/-35%
0.72	0.75	0.82						+/-35%
0.96	0.94	0.86	0.93	0.97	1.08	0.96	7.51	+/-35%
	1.18 1.09 0.93 0.97 0.89 1.32 1.22 1.11 1.15 1.21 1.55 1.17 1.43 1.44 1.44 0.90 0.91 0.94 0.94 0.96 0.54 1.19 1.23 1.11 1.30 1.12 0.99 0.89	1.18	1.18 0.94 0.97 1.09 0.89 0.87 0.93 0.97 0.97 0.97 0.93 0.91 0.89 0.93 0.91 1.32 1.19 1.21 1.22 1.12 1.12 1.11 1.03 1.02 1.15 1.03 1.00 1.21 1.03 0.99 1.27 1.15 1.13 1.31 1.15 1.13 1.55 1.36 1.35 1.17 1.04 0.98 1.43 1.28 1.27 1.44 1.26 1.25 0.90 0.90 0.90 0.91 0.89 0.89 0.92 0.94 0.96 0.97 0.96 1.05 1.06 0.84 0.86 0.94 0.54 0.56 0.64 1.24 1.23 1.24 1.11 1.13 1.14 1.30 1.38 1.39 1.12	1.18 0.94 0.97 1.01 1.09 0.89 0.87 0.95 0.93 0.97 0.93 0.91 1.05 0.89 0.93 0.91 1.04 1.32 1.19 1.21 1.21 1.32 1.19 1.21 1.21 1.22 1.16 1.12 1.20 1.16 1.15 1.03 1.00 0.95 1.21 1.03 1.00 0.95 1.21 1.03 1.00 0.95 1.21 1.03 1.00 0.95 1.16 1.15 1.13 1.10 1.13 1.10 1.31 1.10 1.31 1.17 1.31 1.17 1.31 1.17 1.31 1.17 1.31 1.17 1.33 1.37 1.37 1.31 1.34 1.37 1.33 1.37 1.37 1.39 1.05 1.36 1.35 1.37 1.39 1.44 1.20 1.11 1.09 1.44 1.26 1.25 1.21 1.09 1.44 1.26 1.25 1.21 1.09 1.44 1.26 1.25 1.21 <td< td=""><td>1.18 0.94 0.97 1.01 0.99 1.09 0.89 0.87 0.95 0.93 0.93 0.97 0.98 1.02 0.97 0.93 0.91 1.05 0.95 0.89 0.93 0.91 1.04 0.97 1.32 1.19 1.21 1.21 1.25 1.22 1.12 1.12 1.20 1.16 1.11 1.03 1.02 1.16 1.06 1.15 1.03 1.00 0.95 1.05 1.21 1.03 0.99 1.03 1.08 1.27 1.15 1.13 1.10 1.16 1.31 1.15 1.33 1.17 1.17 1.55 1.36 1.35 1.37 1.39 1.17 1.04 0.98 1.05 1.04 1.43 1.28 1.27 1.39 1.31 1.44 1.26 1.25 1.21 1.30 0.90 0.90 0.91 0.95 0.99 0.91</td><td>1.18 0.94 0.97 1.01 0.99 1.00 1.09 0.89 0.87 0.95 0.93 0.95 0.93 0.97 0.97 0.98 1.02 1.05 0.97 0.93 0.91 1.05 0.95 0.97 0.89 0.93 0.91 1.04 0.97 0.98 1.32 1.19 1.21 1.21 1.25 1.26 1.22 1.12 1.12 1.20 1.16 1.17 1.11 1.03 1.02 1.16 1.06 1.07 1.15 1.03 1.00 0.95 1.05 1.06 1.21 1.03 0.99 1.03 1.08 1.11 1.27 1.15 1.13 1.10 1.16 1.17 1.31 1.15 1.33 1.17 1.17 1.19 1.55 1.36 1.35 1.37 1.39 1.41 1.17 1.04 0.98 1.05 1.04 1.05 1.43 1.28 1.27 1.39</td><td>CSO.5 CS1 CS2 CS3 CS4 CS5 RR/RRF 1.18 0.94 0.97 1.01 0.99 1.00 1.01 1.09 0.89 0.87 0.95 0.93 0.95 0.95 0.93 0.97 0.97 0.98 1.02 1.05 0.99 0.97 0.93 0.91 1.05 0.95 0.97 0.96 0.89 0.93 0.91 1.04 0.97 0.98 0.95 1.32 1.19 1.21 1.21 1.25 1.26 1.24 1.22 1.12 1.12 1.20 1.16 1.07 1.07 1.15 1.03 1.00 0.95 1.05 1.06 1.04 1.21 1.03 1.09 1.03 1.08 1.11 1.07 1.27 1.15 1.13 1.17 1.17 1.19 1.19 1.55 1.36 1.35 1.37 1.39 1.41</td><td>1.18 0.94 0.97 1.01 0.99 1.00 1.01 8.31 1.09 0.89 0.87 0.95 0.93 0.95 0.95 8.25 0.93 0.97 0.97 0.98 1.02 1.05 0.99 3.96 0.97 0.93 0.91 1.05 0.95 0.97 0.96 5.07 0.89 0.93 0.91 1.04 0.97 0.98 0.95 5.60 1.32 1.19 1.21 1.21 1.25 1.26 1.24 3.95 1.22 1.12 1.12 1.20 1.16 1.17 1.17 3.43 1.11 1.03 1.02 1.16 1.06 1.07 1.07 5.07 1.15 1.03 1.00 0.95 1.05 1.06 1.04 6.29 1.21 1.03 1.00 0.95 1.05 1.06 1.04 6.29 1.21 1.03 1.00 0.95 1.05 1.06 1.04 6.29 1.24 1.27 1.15<!--</td--></td></td<>	1.18 0.94 0.97 1.01 0.99 1.09 0.89 0.87 0.95 0.93 0.93 0.97 0.98 1.02 0.97 0.93 0.91 1.05 0.95 0.89 0.93 0.91 1.04 0.97 1.32 1.19 1.21 1.21 1.25 1.22 1.12 1.12 1.20 1.16 1.11 1.03 1.02 1.16 1.06 1.15 1.03 1.00 0.95 1.05 1.21 1.03 0.99 1.03 1.08 1.27 1.15 1.13 1.10 1.16 1.31 1.15 1.33 1.17 1.17 1.55 1.36 1.35 1.37 1.39 1.17 1.04 0.98 1.05 1.04 1.43 1.28 1.27 1.39 1.31 1.44 1.26 1.25 1.21 1.30 0.90 0.90 0.91 0.95 0.99 0.91	1.18 0.94 0.97 1.01 0.99 1.00 1.09 0.89 0.87 0.95 0.93 0.95 0.93 0.97 0.97 0.98 1.02 1.05 0.97 0.93 0.91 1.05 0.95 0.97 0.89 0.93 0.91 1.04 0.97 0.98 1.32 1.19 1.21 1.21 1.25 1.26 1.22 1.12 1.12 1.20 1.16 1.17 1.11 1.03 1.02 1.16 1.06 1.07 1.15 1.03 1.00 0.95 1.05 1.06 1.21 1.03 0.99 1.03 1.08 1.11 1.27 1.15 1.13 1.10 1.16 1.17 1.31 1.15 1.33 1.17 1.17 1.19 1.55 1.36 1.35 1.37 1.39 1.41 1.17 1.04 0.98 1.05 1.04 1.05 1.43 1.28 1.27 1.39	CSO.5 CS1 CS2 CS3 CS4 CS5 RR/RRF 1.18 0.94 0.97 1.01 0.99 1.00 1.01 1.09 0.89 0.87 0.95 0.93 0.95 0.95 0.93 0.97 0.97 0.98 1.02 1.05 0.99 0.97 0.93 0.91 1.05 0.95 0.97 0.96 0.89 0.93 0.91 1.04 0.97 0.98 0.95 1.32 1.19 1.21 1.21 1.25 1.26 1.24 1.22 1.12 1.12 1.20 1.16 1.07 1.07 1.15 1.03 1.00 0.95 1.05 1.06 1.04 1.21 1.03 1.09 1.03 1.08 1.11 1.07 1.27 1.15 1.13 1.17 1.17 1.19 1.19 1.55 1.36 1.35 1.37 1.39 1.41	1.18 0.94 0.97 1.01 0.99 1.00 1.01 8.31 1.09 0.89 0.87 0.95 0.93 0.95 0.95 8.25 0.93 0.97 0.97 0.98 1.02 1.05 0.99 3.96 0.97 0.93 0.91 1.05 0.95 0.97 0.96 5.07 0.89 0.93 0.91 1.04 0.97 0.98 0.95 5.60 1.32 1.19 1.21 1.21 1.25 1.26 1.24 3.95 1.22 1.12 1.12 1.20 1.16 1.17 1.17 3.43 1.11 1.03 1.02 1.16 1.06 1.07 1.07 5.07 1.15 1.03 1.00 0.95 1.05 1.06 1.04 6.29 1.21 1.03 1.00 0.95 1.05 1.06 1.04 6.29 1.21 1.03 1.00 0.95 1.05 1.06 1.04 6.29 1.24 1.27 1.15 </td

^{1.123789-}HxCDD Relative Response (RR) is calculated based on the labeled analog of the other two HxCDDs.

FORM VI-HR CDD-1

^{2.} OCDF RR is calculated based on the labeled analog of OCDD

USEPA -6DFB6

CDD/CDF INITIAL CALIBRATION ION ABUNDANCE RATIO SUMMARY HIGH RESOLUTION

Contract No.:

Lab Name: TO No.: SDG No.: 193 Lab Code: Case No.:

GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-04

Init. Calib. Date(s).: 05/03/12

Init. Calib. Time.: 05:17

ION ABUNDANCE RATIO

	SELECTED	101	· IIDOIVDI	HVCE ICII					ION RATIO
Target Analytes	IONS	CS0.5	CS1	CS2	CS3	CS4	CS5	FLAG	QC lIMITS
2,3,7,8-TCDF	304/306	0.85	0.84	0.77	0.77	0.77	0.77		0.65-0.89
1,2,3,7,8-PeCDF	340/342	1.59	1.61	1.60	1.56	1.56	1.56		0.65-0.89
2,3,4,7,8-PeCDF	340/342	1.52	1.54	1.55	1.55	1.58	1.56		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.21	1.20	1.25	1.25	1.25	1.25		1.32-1.78
1,2,3,6,7,8-HxCDF	374/376	1.25	1.24	1.22	1.26	1.26	1.25		1.32-1.78
2,3,4,6,7,8-HxCDF	374/376	1.23	1.24	1.26	1.26	1.24	1.25		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	1.24	1.31	1.26	1.26	1.25	1.25		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.04	0.99	1.04	1.03	1.03	1.03		1.05-1.43
1,2,3,4,7,8,9-HpCDF	408/410	0.98	1.05	1.00	1.03	1.03	1.04		1.05-1.43
OCDF	442/444	0.91	0.89	0.90	0.90	0.90	0.90		1.05-1.43
2,3,7,8-TCDD	320/322	0.70	0.84	0.72	0.77	0.78	0.77		1.05-1.43
1,2,3,7,8-PeCDD	356/358	1.65	1.60	1.63	1.59	1.56	1.57		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.16	1.20	1.27	1.27	1.25	1.24		0.88-1.20
1,2,3,6,7,8-HxCDD	390/392	1.25	1.28	1.24	1.27	1.27	1.25		0.88-1.20
1,2,3,7,8,9-HxCDD	390/392	1.18	1.24	1.30	1.27	1.25	1.26		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.01	1.01	1.04	1.06	1.05	1.03		0.76-1.02
OCDD	458/460	0.83	0.86	0.91	0.89	0.90	0.89		0.76-1.02
13C-2,3,7,8-TCDF	316/318	0.78	0.78	0.78	0.78	0.78	0.78		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.56	1.57	1.58	1.60	1.56	1.56		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.58	1.57	1.58	1.59	1.57	1.56		1.05-1.43
13C-1,2,3,4,7,8-Hx ₁	384/386	0.52	0.52	0.51	0.53	0.52	0.52		1.05-1.43
13C-1,2,3,6,7,8-Hx7	384/386	0.52	0.53	0.52	0.52	0.52	0.52		0.88-1.20
13C-2,3,4,6,7,8-Hx	384/386	0.52	0.52	0.52	0.53	0.52	0.52		0.76-1.02
13C-1,2,3,7,8,9-Hx	384/386	0.52	0.52	0.52	0.53	0.52	0.50		0.65-0.89
13C-1,2,3,4,6,7,8-	418/420	0.44	0.44	0.44	0.45	0.44	0.44		1.32-1.78
13C-1,2,3,4,7,8,9-	418/420	0.44	0.44	0.45	0.44	0.44	0.44		1.32-1.78
13C-2,3,7,8-TCDD	332/334	0.79	0.78	0.78	0.79	0.79	0.79		0.43-0.59
13C-1,2,3,7,8-PeCDD	368/370	1.57	1.55	1.59	1.59	1.57	1.55		0.43-0.59
13C-1,2,3,4,7,8-Hx ₇	402/404	1.26	1.26	1.26	1.26	1.27	1.26		0.43-0.59
13C-1,2,3,6,7,8-Hx ₁	402/404	1.28	1.26	1.27	1.27	1.25	1.26		0.43-0.59
13C-1,2,3,4,6,7,8-n	436/438	1.06	1.05	1.07	1.06	1.05	1.06		0.37-0.51
13C-OCDD	470/472	0.91	0.91	0.91	0.91	0.90	0.90		0.37-0.51
13C-1,2,3,4-TCDD	332/334	0.79	0.79	0.78	0.80	0.79	0.78		0.65-0.89
13C-1,2,3,7,8,9-Hx ₁	402/404	1.26	1.26	1.25	1.28	1.26	1.25		1.05-1.43
37Cl-2,3,7,8-TCDD	328								

Quality Control (QC) limits represent +/- 15% window around the theoretical ion abundance ratio. The laboratory must flag any analyte in any calibration solution which does not meet the ion abundance ratio QC limit by placing an asterisk in the flag column.

FORM VI-HR CDD-2

USEPA -

6DFA6

CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY

HIGH RESOLUTION

) 18400 Jab (1940) (1940) (1940)

SDG No.:

Instrument ID: E-HRMS-04

Contract No.: TO No.:

Case No.:
GC Column: db5 ID: 0.25(mm)
6 Init. Calib. Date(s).: 09/09/11
7 Init. Calib. Time.: 10:55

	δc	LIMITS	+/-20%	+/-35%	+/-35%
		%RSD	13.34	1.41	11.15
	MEAN	RR/RRF	0.88	1.29	0.97
	A CONTRACTOR OF THE CONTRACTOR	CS6	1.05	1.30	1.13
				1.26	
RF		CS4	0.79	1.31	0.91
RR/RRF		CS3	0.81	1.29	0.87
		CS2	0.88	1.31	1.01
		CS1	0.99	1.29	1.04
	'	Target Analytes	2,3,7,8-TCDF	13C-2,3,7,8-TCDF	37C1-2,3,7,8-TCDD

USEPA -

CDD/CDF INITIAL CALIBRATION ION ABUNDANCE RATIO SUMMARY

HIGH RESOLUTION

GC Column: db5 Description (198500) (199500) (199500) (199500)

Case No.:

ID: 0.25 (mm)

6 Init. Calib. Date(s).: 09/09/11 (Init. Calib. Time.: 10:55

ION ABUNDANCE RATIO

SDG No.: Instrument ID: E-HRMS-04 TO No.:

Contract No.:

CS2 0.73 0.78 0.82 CS1 SELECTED 304/306 316/318 IONS

0.77 CS4 CS3 0.76 0.77

FLAG

ION RATIO QC LIMITS

Target Analytes 2,3,7,8-TCDF 13C-2,3,7,8-TCDF 37Cl-2,3,7,8-TCDD

0.78 CS5

CS6 0.78 0.77

0.65-0.89

Initial Calibration QC Checklist

ICAL Name: 0909 TCDF I		
Date: <u>9 Sep 11</u>		ing the second of the second o
Method: 1613 / 8290 / Tetra / TCDD On	aly / TCDF Conf / 8280 / 61	3 / M23 / TO-9
Retention Window/Column Performance Check	Analyst	Second Check
Windows in and first and last eluters labeled	NA	NA
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and it's closest eluters		
No QC ion deflections affect column specific 2378 isomer or it's closest eluters		
Initial Calibration	Analyst	Second Check
Percent RSD within method criteria		
All relative abundance ratios meet method criteria		
No QC ion deflections of greater than 20%		7,000
Mass spectrometer resolution greater than or equal to 10,000 and documented		
2378-TCDD elutes at 25 minutes or later on the DB-5 column	NA	NA
Signal-to-noise of all target analytes and their labeled standards at least 10:1		
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50%	NA	N/A 2 A
All Manual Intergrations signed and dated and first and final copies of Ical summary included		
Analyst:	Second QC:	
icalqc.xls 02-23-00		NAME OF THE STATE

122 of 666

Page 1 of 1 USEPA -

5DFC PCDD/PCDF/PCB ANALYTICAL SEQUENCE SUMMARY

Lab Name:

Contract:

Lab Code:

Case No.:

SDG No.:

GC Column: DB-225 ID: 0.25 (mm) Instrument ID: E-HRMS-04

Init. Calib. Date: 09/09/11

Init. Calib.Times: 10:55:41

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, AND LABORATORY CONTROL SAMPLES (LCSs) IS AS FOLLOWS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
COLUMN PERFORMANCE	======================================	======================================	9-SEP-11	10:55:41
D12-2-1BA	ICAL CS1	4395	9-SEP-11	12:19:16
D12-2-1BB	ICAL CS2	4396	9-SEP-11	13:39:43
D12-2-1BC	ICAL CS3	4397	9-SEP-11	14:16:37
D12-2-1BD	ICAL CS4	4398	9-SEP-11	14:52:45
D12-2-1BE	ICAL CS5	4399	9-SEP-11	15:30:10
D10-83-1B	ICAL CS6	4402	9-SEP-11	18:07:26

Sample List Report	eport			Mass	MassLynx 4.1			
Sample List: Last Modified:	Mond	lay, Septembe	t Monday, September 12, 2011 07:34:42 Central Daylight Time	aylight Time				Page 1 of 1
Printed:	Mond	Monday, September 12,	er 12, 2011 07:36:27 Central Daylight Time	aylight Time	линий од тор да да при тура дей реду дала индесникательного			Page Position (1, 1)
	ن							
Date	Time	File Name	Sample ID	Client ID	Analyst	Comments	GC Met	Acq Met
1 00/00/11	10.66	0001		2		Office design	L	77-17
	9	1394	CCAL CS3	D12-21-1B	-		7001	tcdf
3	12:19	1395	ICAL CS1	7 1 1	_		TCDF	tcdf
4	13:39	96£†	ICAL CS2	1			TCDF	tcdf
22	<u>ه</u> ::		ICAL CS3	1 1	+		TCDF	tcdf
1 0	14.50	1398	ICAL CS4	-	-		TCDF	tcdf
- 80	0.00	٠. ـ	ICAL CSS				1001	tcal
6	16:45	1401	CCAL CS3 (2ND REF)	-			TCDF	tcdf
10	18:07	1402	ICAL CS6	-		HRMS Check 19:47	TCDF	tcdf
11			1	1			TCDF	tcdf
12		1					TCDF	tcdf
13			1		To deliver the state of the sta		TCDF	tcdf
14		!	1	-	Martin of Parties and Parties of the		TCDF	tcdf
5		!	!	-			TCDF	tcdl
17			-	ļ			707	tcdi
18							1001	[CG]
19		1	!				1001	- FC
20			1	1			TCDF	tod:
21		1		-			TCDF	tcdl
22							TCDF	tcdl
23		1						
24		1	i	-				
25		1	-	1	*		-	1
26	!	!		-	# #	1		
27	1	1	-	-		1		
28	•		1	-				
67			1	1	1			
	-	1	1	1	!			
37	1		1	1			TCDF	tcdí
32	1	!	!	-		1	TCDF	tcd
33	-	!	1	1	1	-	TCDF	tcd
34	I	-	1	1	-	-		1
30	1	!	!	-	-	1		
30	1 .	1	1		1			1
10	1	1		\$ 		Reviewed by:	-	1

USEPA -5DFB

PCDD/PCDF WINDOW DEFINING MIX SUMMARY

EPA SAMPLE NO.

				Column Perform
Lab Name:		_Contract:	**************************************	
Lab Code:	Case No.:		Client No.:	SDG No.:
GC Column: 30m DB-225	ID: 0.25	_ (mm)	Lab File ID:	4393
Instrument ID: E-HRMS-04	<u>4</u>		Date Analyzed	9 Sep 11
			Time Analyzed	10:55;41
Percent Valley deterimant For the Column Performant 1478-TCDD/2378-TCDD:				
QUALITY COTROL (QC) LIM		s must be 1	less than or equal	to 25%.
Percent Valley deterimant For the Column Performant				
2347-TCDF/2378-TCDF:	16 %	_		
QUALITY COTROL (QC) LIM	ITS:			
Percent Valley between t	the TCDF/TCDF i	somers must	t be less than or	equal to 25%.

Analyst Init

FORM V-HR CDD-2

4393 #1-657 Acq: 9-SEP-2011 10:55:41 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp:D4-59-1 303.9016 22:30 _1.7E7 100 % 1.6E7 95 1.5E7 90 22:20 1.4E7 85 22:38 1.4E7 80 1.3E7 75 70 _1.2E7 65 _1.1E7 1.0E7 60 9.3E6 55 8.5E6 <---23/78-TCDF 50 7.6E6 45 6.8E6 40 5.9E6 35 5.1E6 30 4.2E6 25 3.4E6 20. ---16% Valley 2.5E6 15 1.7E6 10 8.5E5 5 0.0E0 0 23:00 23:06 Time 22:24 22:30 22:36 22:42 22:48 22:54 22:06 22:18 22:00 22:12 354.9792 22:29 100 %22:00 23:04 5.9E6 22:06 22:34 22:12 22:58 22:20 22:45 5.6E6 95 5.3E6 90 5.0E6 85 4.7E6 80 .4.5E6 75 70 4.2E6 3.9E6 65 3.6E6 60 3.3E6 55 3.0E6 50 2.7E6 45 2.4E6 40 2.1E6 35 1.8E6 30 1.5E6 25 1.2E6 20 8.9E5 15 5.9E5 10 .3.0E5 5 0.0E0 0.

22:06

22:00

22:30

22:36

22:42

22:18

22:24

22:12

23:00

23:06

Time

22:54

22:48

USEPA -

6DFA6

CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY

HIGH RESOLUTION

) Lab Name:

Case No.:

ID: 0.25 (mm)

TO No.:

Contract No.:

SDG No.:

Instrument ID: E-HRMS-04 CS5 0.76 1.26 0.86 0.79 CS4 RR/RRF 0.81 1.29 0.87 CS2 0.88 1.31 1.01 (66 Init. Calib. Date(s).: 09/09/11 Init. Calib. Time.: 10:55 0.99 1.29 1.04 CS1 13C-2,3,7,8-TCDF 37C1-2,3,7,8-TCDD GC Column: db5 Target Analytes 2,3,7,8-TCDF

+/-35% +/-20% LIMITS

11.15

1.41

0.88

1.05

13.34

%RSD

RR/RRF

CS6

MEAN

USEPA -

CDD/CDF INITIAL CALIBRATION ION ABUNDANCE RATIO SUMMARY

HIGH RESOLUTION

Description (198500) (199500) (199500) (199500)

Case No.: ID: 0.25 (mm)

Contract No.: TO No.:

SDG No.: Instrument ID: E-HRMS-04

GC Column: db5

6 Init. Calib. Date(s).: 09/09/11 (Init. Calib. Time.: 10:55

0.78 CS5 0.77 CS4 ION ABUNDANCE RATIO CS3 0.76 0.77 CS2 0.73 0.78 0.82 CS1 SELECTED 304/306 316/318 IONS Target Analytes 2,3,7,8-TCDF 13C-2,3,7,8-TCDF

37Cl-2,3,7,8-TCDD

0.65-0.89

ION RATIO QC LIMITS

FLAG

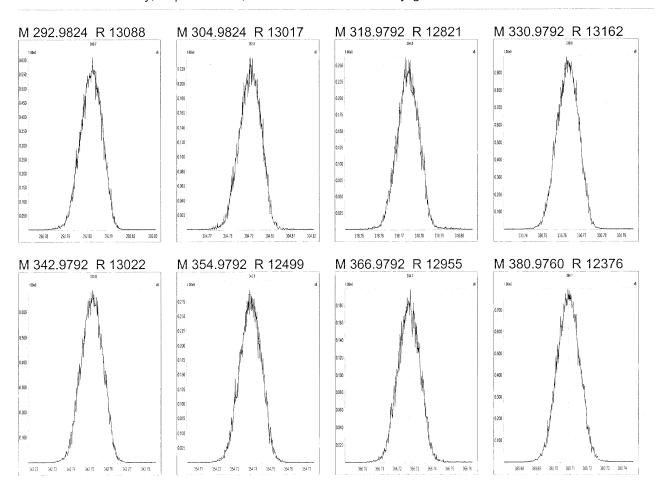
CS6 0.78 0.77

128 of 666

Experiment Calibration Report

MassLynx 4.1

Page 1 of 1


File:

Experiment: tcdf

.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

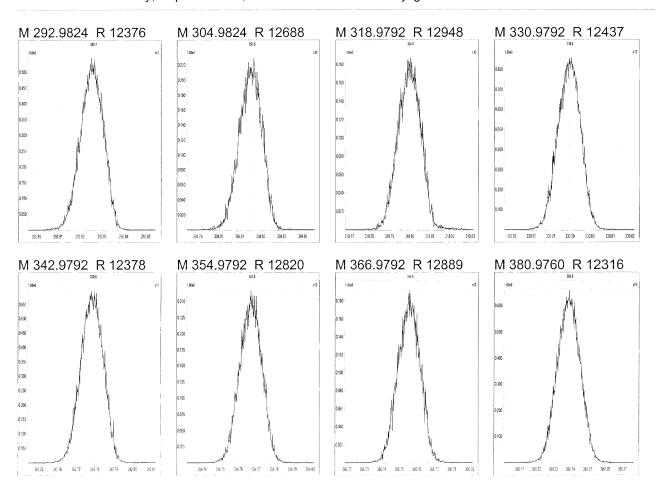
Printed:

Friday, September 09, 2011 10:50:33 Central Daylight Time

Experiment Calibration Report

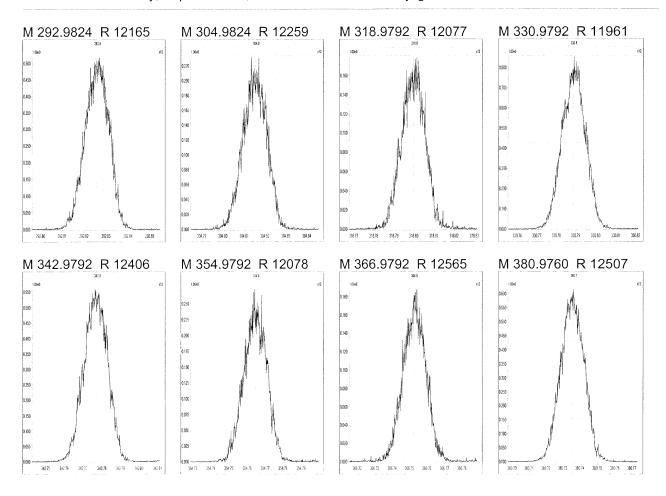
MassLynx 4.1

Page 1 of 1


File:

Experiment: tcdf

.exp Reference: pfk.ref Function: 1 @ 200 (ppm)


Printed:

Friday, September 09, 2011 18:06:01 Central Daylight Time

Printed:

Friday, September 09, 2011 19:47:56 Central Daylight Time

EPA SAMPLE NO. -2-1BA

Run #1 Processed	Filename : 12-SEP-11			: 1 Inj: Sample ID: 1		Acquired: 31	9-SEP-11	. 12:1	19:16		
Тур		Name	RT-1	Resp :	1	Resp 2	Ratio	Meet	Mod?		
1 Unk 2 IS 3 RS/RT 4 C/Up	13C-2,3 13C-1,2	8,7,8-TCDF 8,7,8-TCDF 2,3,4-TCDD 8,7,8-TCDD	22:28 21:11	4.874e+02 9.469e+04 7.393e+04 8.777e+02	4 5	5.931e+02 1.227e+05 9.460e+04	0.82 0.77 0.78	yes yes yes	no no no		
	Signal/Noise Height Ratio Summary										
		Sign	nal 1	Noise 1 S/I	N Rat.	1 Signal 2 1	Noise 2	S/N			
1 2 3 4	2,3,7,8- 13C-2,3,7,8- 13C-1,2,3,4- 37C1-2,3,7,8-	TCDF 1.37	7e+07 9e+07	1.13e+03 1 2.37e+03 5	.1e+01 .2e+04 .0e+03	1.78e+07	1.07e+03 1.30e+03 1.45e+03	1.46	e+04		

133 of 666

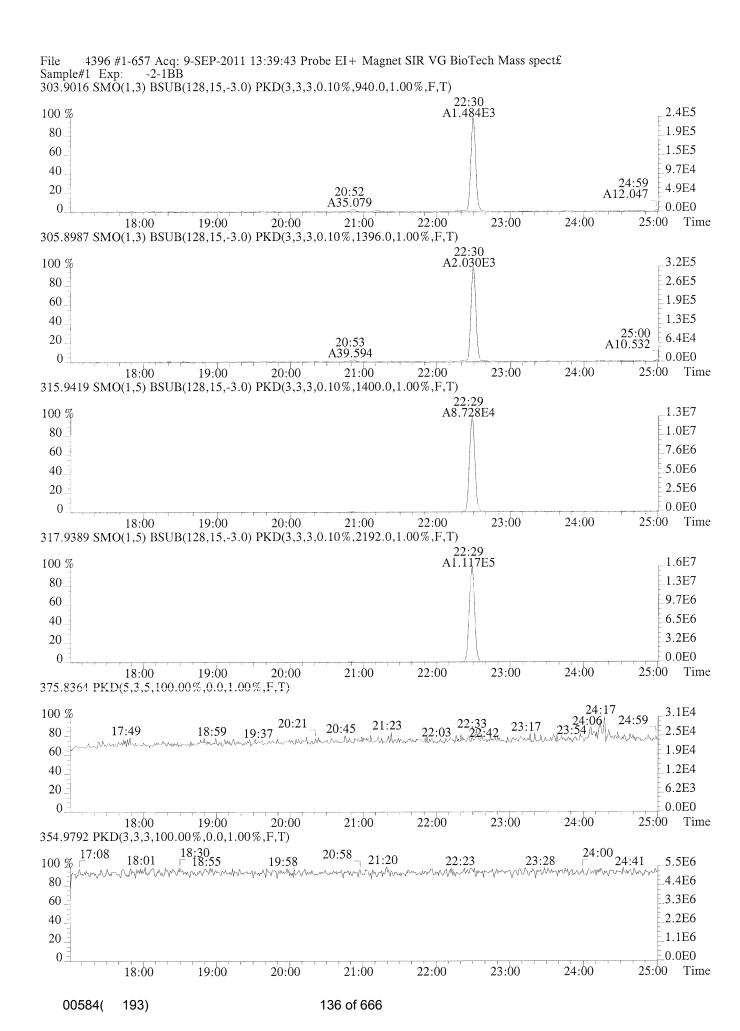
1,546

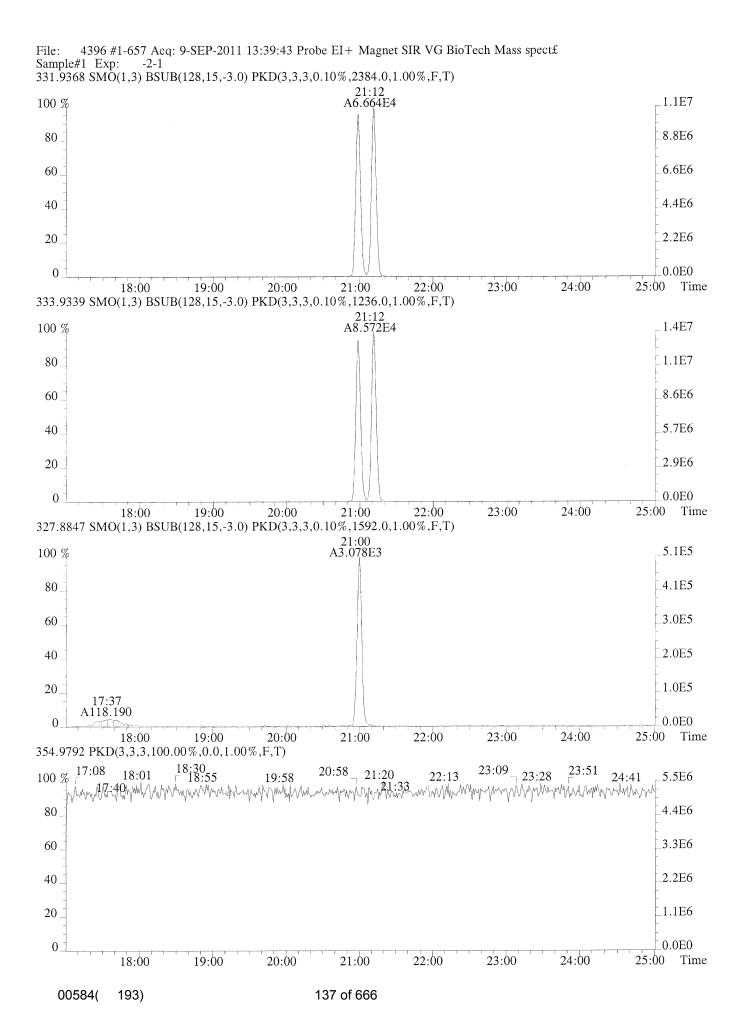
BOUS

00584(

193)

4395 #1-657 Acg: 9-SEP-2011 12:19:16 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 331.9368 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2372.0,1.00%,F,T) 1.2E7 100 % 9.5E6 80 _7.2E6 60 4.8E6 40 2.4E6 20 0.0E0 23:00 24:00 25:00 Time 18:00 19:00 20:00 21:00 22:00 333.9339 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1452.0,1.00%,F,T) 21:11 A9.460E4 1.5E7 100 % _1.2E7 80 9.2E6 60 6.1E6 40 3.1E6 20 0.0E0 0 24:00 23:00 25:00 Time 18:00 19:00 20:00 21:00 22:00 327.8847 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1528.0,1.00%,F,T) 1.5E5 100 % 1.2E5 80 8.8E4 60 24:03 A376.407 5.9E4 40 2.9E4 20 22:41 A6.202 _0.0E0 22:00 24:00 25:00 23:00 Time 18:00 19:00 20:00 21:00 354.9792 PKD(3,3,3,100.00%,0.0,1.00%,F,T) 21:24 21:00 $19:06 \quad {}^{19:56}_{\neg 20:15}$ 21:54 22:30 23:12 5.7E6 18:21 100 % many in many property and the contraction of the co 4.6E6 80 3.4E6 60 _2.3E6 40 _1.1E6 20 0.0E0 0. 23:00 25:00 Time 18:00 19:00 20:00 21:00 22:00 24:00


134 of 666

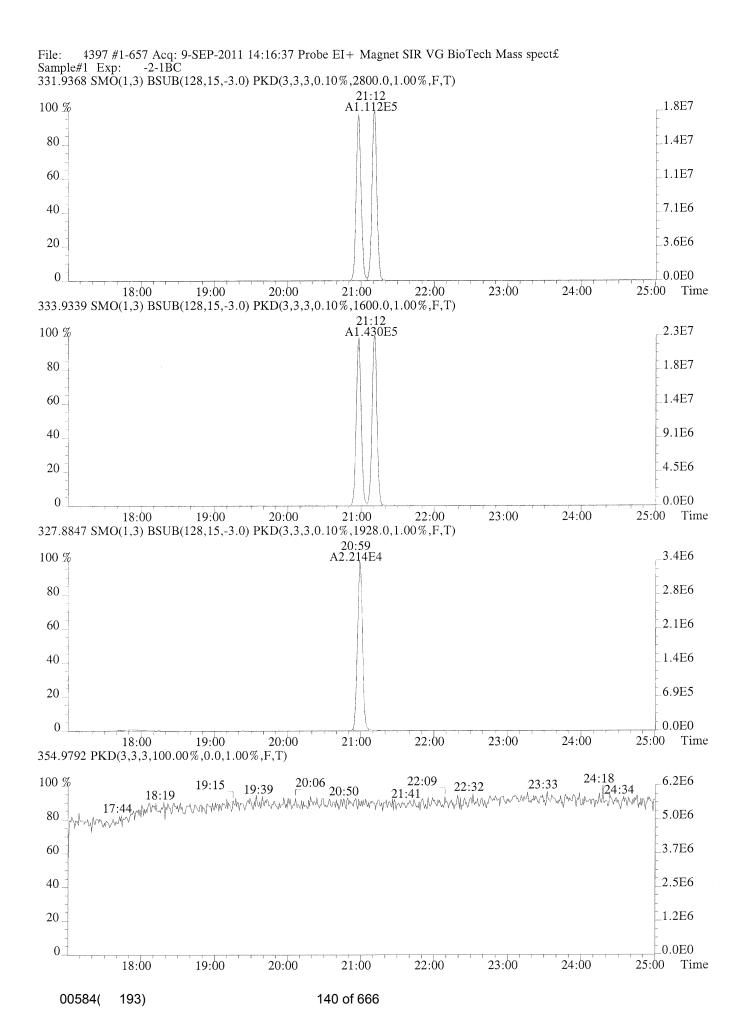

00584(

193)

-2-1BB

	Filename : 12-SEP-11	4396 08:31:25	-	1 Inj: 1 ample ID: ICAL		9-SEP-11	13:39:43						
Тур		Name	RT-1	Resp 1	Resp 2	Ratio M	Meet Mod?						
Unk 2 IS 3 RS/RT 4 C/Up	13C-2, 13C-1,	3,7,8-TCDF 3,7,8-TCDF 2,3,4-TCDD 3,7,8-TCDD	22:29 21:12	1.484e+03 8.728e+04 6.664e+04 3.078e+03	2.030e+03 1.117e+05 8.572e+04	0.73 0.78 0.78	yes no no yes no						
	Signal/Noise Height Ratio Summary Signal 1 Noise 1 S/N Rat.1 Signal 2 Noise 2 S/N												
1 2 3	2,3,7,8 13C-2,3,7,8 13C-1,2,3,4 37C1-2,3,7,8	-TCDF 1.20 -TCDD 1.10	5e+07 1 0e+07 2	.40e+02 2.6e+ .40e+03 9.0e+ .38e+03 4.6e+ .59e+03 3.2e+	03 1.62e+07 03 1.42e+07	1.40e+03 2.19e+03 1.24e+03	2.3e+02 7.4e+03 1.2e+04						

EPA SAMPLE NO. -2-1BC


#3 Processed:		4397 08:31:29	Samı	_	Inj: 1 ID: ICAL	Acquired: CS3	9-SEP-11	14:1	6:37
Тур		Name	RT-1	Re	esp 1	Resp 2	Ratio	Meet	Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	13C-2,3 13C-1,2	,7,8-TCDF ,7,8-TCDF ,3,4-TCDD ,7,8-TCDD	22:28 21:12	1.42	1e+04 7e+05 2e+05 4e+04	1.495e+04 1.849e+05 1.430e+05	0.76 0.77 0.78	yes yes yes	no no no
				Height I		mmary t.1 Signal 2	Noige 2	g/M	
1 1	2,3,7,8- 13C-2,3,7,8- 13C-1,2,3,4- 7C1-2,3,7,8-	Name TCDF 1.79 TCDF 2.01 TCDD 1.77	e+06 e+07 e+07 e+06	1.26e+03 1.65e+03 2.80e+03 1.93e+03	3 1.4e+0 3 1.2e+0 3 6.3e+0	03 2.35e+06 04 2.62e+07 03 2.27e+07	1.20e+03 2.18e+03 1.60e+03	2.0e	+04

4397 #1-657 Acq: 9-SEP-2011 14:16:37 Probe EI+ Magnet SIR VG BioTech Mass spect£ -2-1BC Sample#1 Exp: 303.9016 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1260.0,1.00%,F,T) 22:30 A1.144E4 1.8E6 100 % 1.4E6 80 60 1.1E6 7.2E5 40 3.6E5 20 20:50 A270.676 0.0E0 0 21:00 25:00 Time 19:00 20:00 22:00 23:00 24:00 18:00 305.8987 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1196.0,1.00%,F,T) 22:30 A1.495E4 2.4E6 100 % 1.9E6 80 60 _1.4E6 9.4E5 40 4.7E5 20 0.0E0 21:00 23:00 24:00 25:00 Time 20:00 22:00 18:00 19:00 315.9419 SMO(1,5) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1652.0,1.00%,F,T) 22:28 A1.427E5 2.0E7 100 % 80 1.6E7 60 1.2E7 8.1E6 40 4.0E6 20 0.0E0 0 19:00 22:00 23:00 24:00 25:00 Time 20:00 21:00 18:00 317.9389 SMO(1,5) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2180.0,1.00%,F,T) 22:28 A1.849E5 2.6E7 100 % 2.1E7 80 1.6E7 60 1.0E7 40 5.2E6 20 0.0E0 22:00 23:00 24:00 25:00 Time 18:00 19:00 20:00 21:00 375.8364 PKD(5,3,5,100.00%,0.0,1.00%,F,T) 17:53 3.1E4 100 % 17:05 17:57 80 20:31 21:04 22:31 23:08 2.5E4 20:08 60 1.8E4 1.2E4 40 6.1E3 20 0.0E0 0 25:00 Time 20:00 21:00 22:00 23:00 24:00 18:00 19:00 354.9792 PKD(3,3,3,100.00%,0.0,1.00%,F,T) 24:18 23:33 6.2E6 100 % 5.0E6 80 3.7E6 60 2.5E6 40 1.2E6 20 0.0E0 0 23:00 24:00 25:00 Time 18:00 19:00 20:00 21:00 22:00

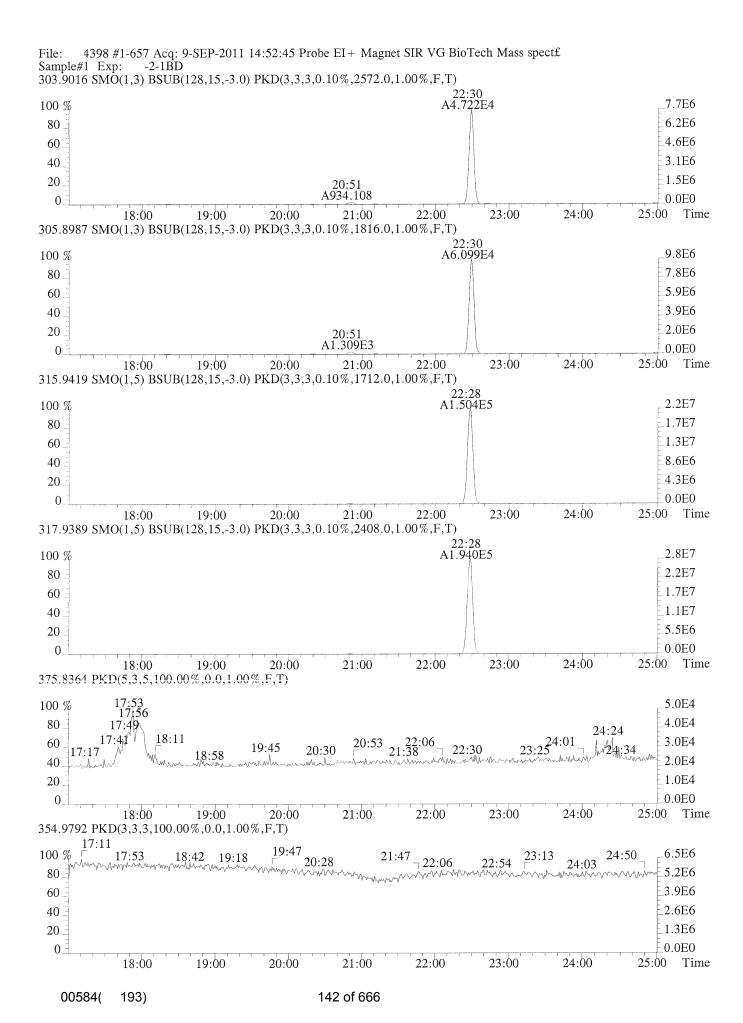
139 of 666

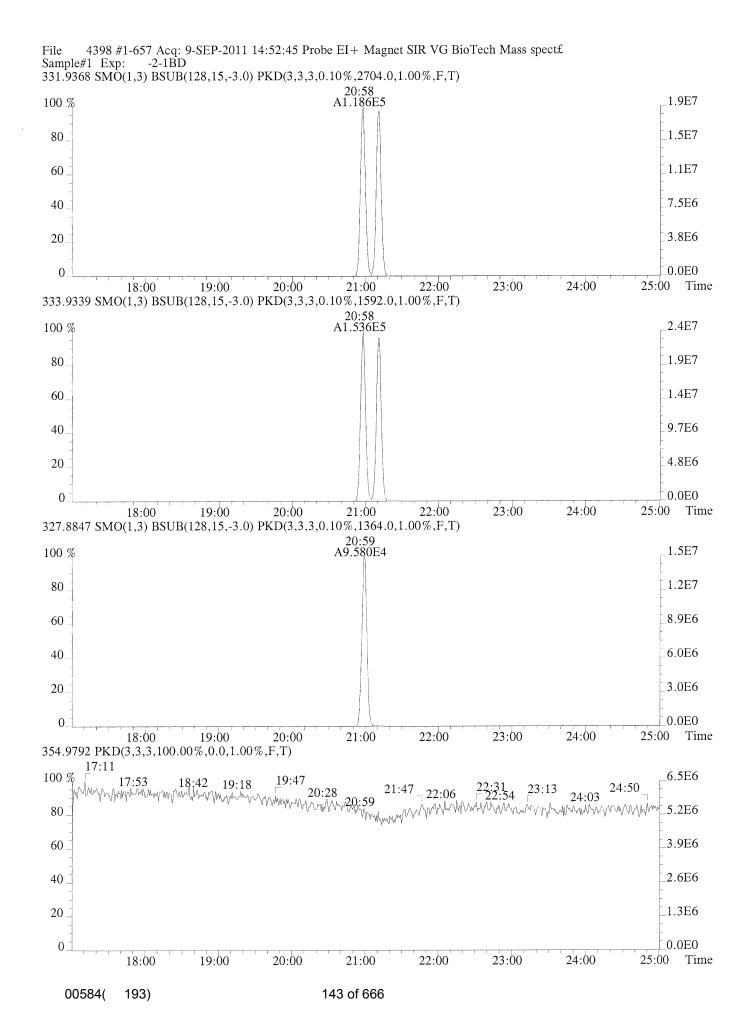
00584(

193)

EPA SAMPLE NO. -2-1BD

Run #4	Filename	4398	Samp: 1	Inj: 1	Acquired:	9-SEP-11	14:52:45
Processed:	12-SEP-11	08:31:33	Sample	ID: ICAL	CS4		

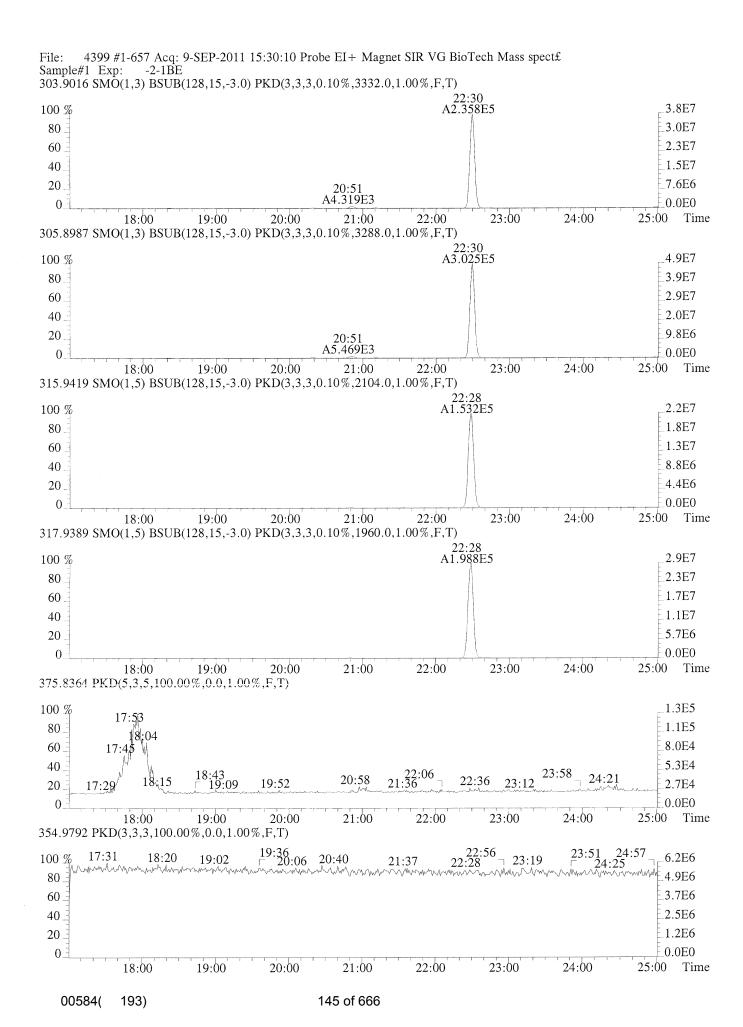

i.	Тур	Name	RT-1		Resp 1		Resp 2	Ratio	Meet	Mod?
1	Unk	2,3,7,8-TCDF	22:30	1	4.722e+04	6.0	099e+04	0.77	yes	no
2	IS	13C-2,3,7,8-TCDF	22:28	İ	1.504e+05	1.9	940e+05	0.78	yes	no
: 3	RS/RT	13C-1,2,3,4-TCDD	21:12	İ	1.153e+05	1.4	472e+05	0.78	yes	no
4	C/Up	37Cl-2,3,7,8-TCDD	20:59	İ	9.580e+04					

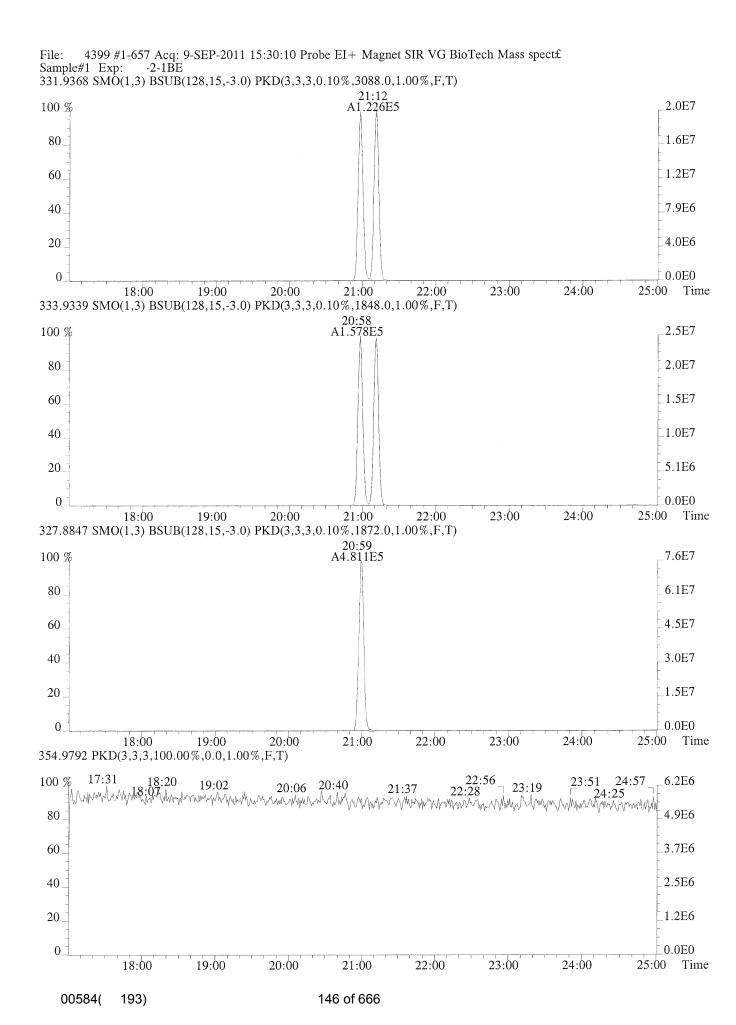

Signal/Noise Height Ratio Summary

| Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N

M	2	m	0	

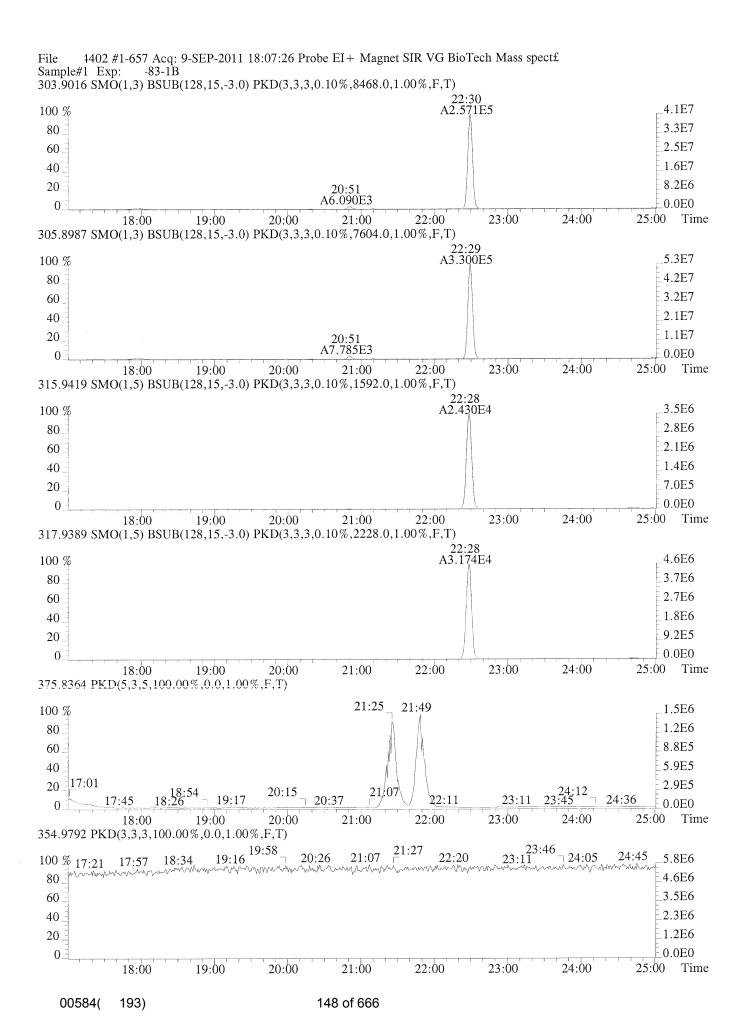
- 5	2101110						
1	2,3,7,8-TCDF	7.69e+06	2.57e+03	3.0e+03	9.76e+06	1.82e+03	5.4e + 03
2	13C-2,3,7,8-TCDF	2.15e+07	1.71e+03	1.3e+04	2.76e+07	2.41e+03	1.1e + 04
3	13C-1,2,3,4-TCDD	1.82e+07	2.70e+03	6.7e+03	2.32e+07	1.59e+03	1.5e + 04
4	37Cl-2,3,7,8-TCDD	1.49e+07	1.36e+03	1.1e+04			

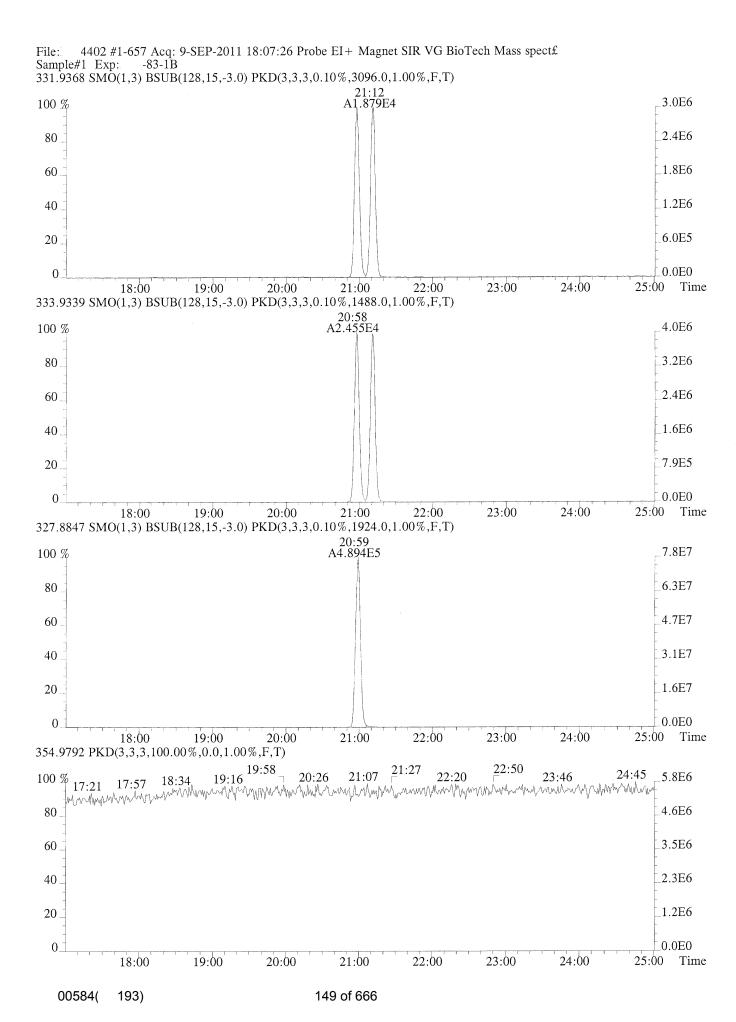

EPA SAMPLE NO. -2-1BE


	Filename 12-SEP-11	1399 08:31:37	Sam	p: 1 Sampl	Inj: 1 e ID: IC		Acquired: CS5	9-SEP-1	1 15:	30:10
Тур		Name	RT-1		Resp 1		Resp 2	Ratio	Meet	Mod?
Unk 2 IS 3 RS/RT 4 C/Up	13C-2, 13C-1,	3,7,8-TCDF 3,7,8-TCDF 2,3,4-TCDD 3,7,8-TCDD	22:28 21:12	1.	358e+05 532e+05 226e+05 811e+05		3.025e+05 1.988e+05 1.566e+05	0.78 0.77 0.78	yes yes yes	no no no
		Signal,	/Noise	Heigh	ıt Ratio	Sum	nmary			
		Sign	nal 1	Noise	1 S/N	Rat	1 Signal 2 1	Noise 2	S/N	
		Name								

2,3,7,8-TCDF | 3.81e+07 | 3.33e+03 | 1.1e+04 | 4.89e+07 | 3.29e+03 | 1.5e+04 | 13C-2,3,7,8-TCDF | 2.19e+07 | 2.10e+03 | 1.0e+04 | 2.85e+07 | 1.96e+03 | 1.5e+04 1

13C-1,2,3,4-TCDD | 1.99e+07 | 3.09e+03 | 6.4e+03 | 2.52e+07 | 1.85e+03 | 1.4e+04


37Cl-2,3,7,8-TCDD 7.57e+07 1.87e+03 4.0e+04



EPA SAMPLE NO.
-83-1B

		4402	_	1 Inj:		_	9-SEP-11	18:07:26
Processed:	12-SEP-11	08:31:42	S	ample ID:	ICAL C	S6		
Тур		Name	RT-1	Resp :	1	Resp 2	Ratio M	Meet Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	13C-2,3 13C-1,2	,7,8-TCDF ,7,8-TCDF ,3,4-TCDD ,7,8-TCDD	22:28 21:12	2.571e+0 2.430e+0 1.879e+0 4.894e+0	4	3.300e+05 3.174e+04 2.435e+04	0.77	yes no yes no yes no
		Signal,	Noise H	eight Ratio	o Summ	ary		
		Sign	nal 1 N	oise 1 S/I	N Rat.	1 Signal 2 I	Noise 2 S	/N
	2,3,7,8- 13C-2,3,7,8- 13C-1,2,3,4- 7C1-2,3,7,8-	TCDF 3.52 TCDD 3.03	2e+06 1 le+06 3	.59e+03 2 .10e+03 9	.9e+03 .2e+03 .7e+02	4.57e+06 3.93e+06	7.60e+03 2.23e+03 1.49e+03	6.9e+03 2.1e+03 2.6e+03

FORM 4A TCDF CALIBRATION VERIFICATION

Lab Name:

Contract No.:

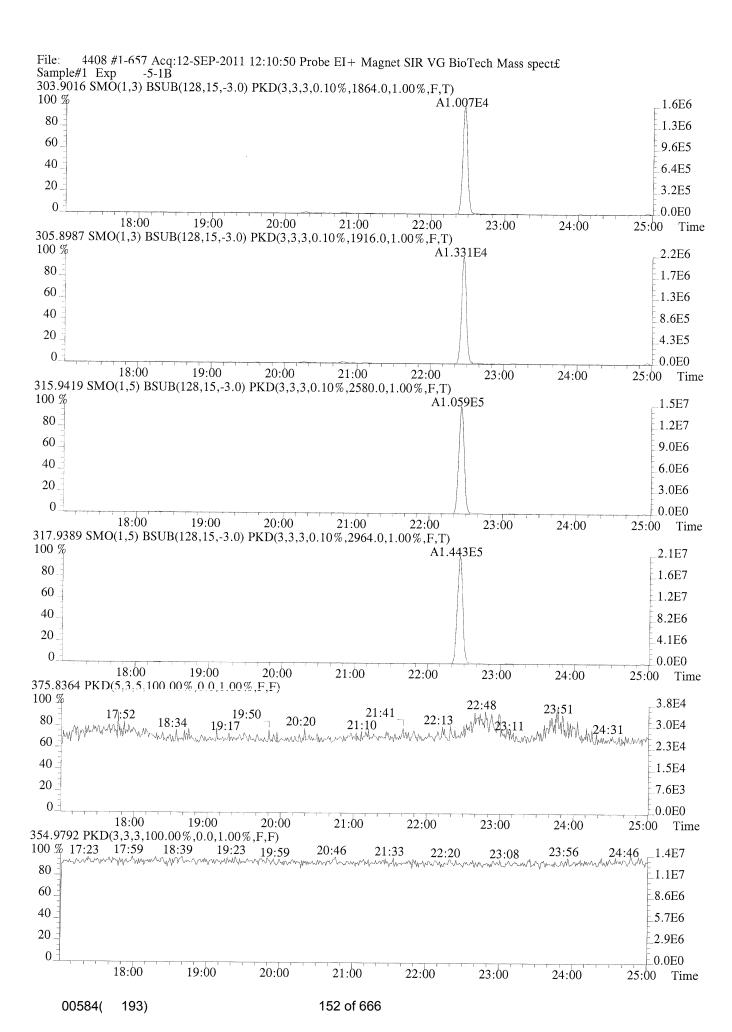
Lab Code: Case No.: Client No: SDG No.:

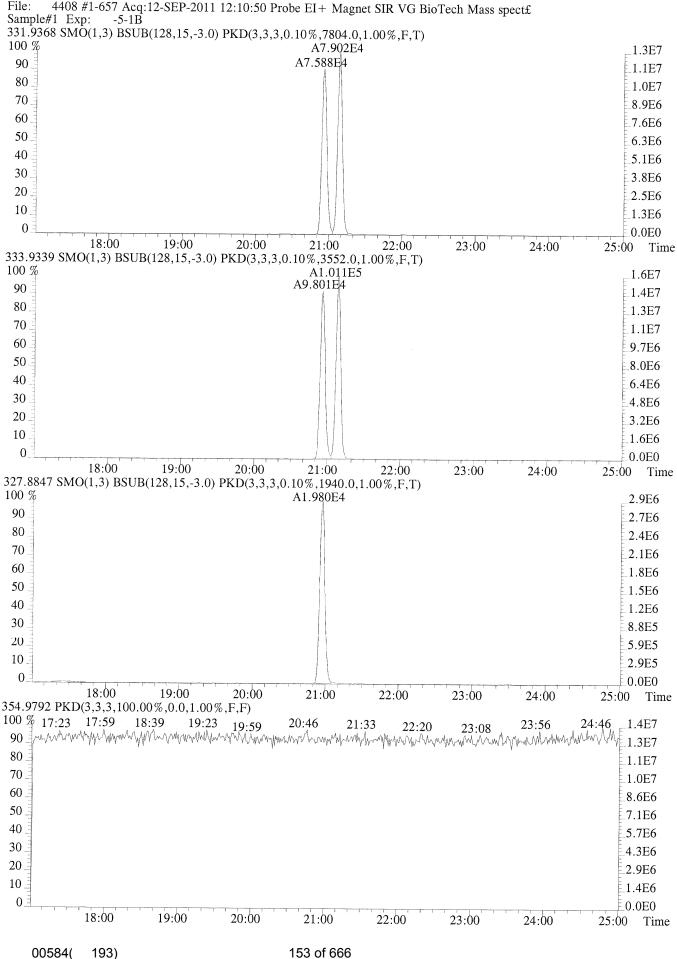
Initial Calibration Date: 09/09/11

Instrument ID.: AutoSpec_Premier GC COLUMN ID: DB-225

VER Data Filename: 4408 Analysis Date: 12-SEP-11 Time: 12:10:50

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
2,3,7,8-TCDF	M/M+2	0.76	0.65-0.89	0.93	0.88	6.22
Labeled Compounds						
13C-2,3,7,8-TCDF	M/M+2	0.73	0.65-0.89	1.39	1.29	7.44
Cleanup Standard						
37Cl-2,3,7,8-TCDD				1.10	0.97	13.15


FORM VII-HR CDD1


DLM01.3

Sample Response Summary

CCAL CS3

Run #7	Filename	4408	Samp	p: 1	Inj: 1	Acquired:	12-SEP-	11 12:1	.0:50
Processed	: 23-SEP-11	13:33:58		Sample	ID: CCAL				
Тур		Name	RT-1	_	Resp 1	Resp 2	Ratio	Meet	Mod?
1 Unk 2 IS 3 RS/RT 4 C/Up	13C-2, 13C-1,	3,7,8-TCDF 3,7,8-TCDF 2,3,4-TCDD 3,7,8-TCDD	22:26 21:09 20:57	1.00 7.90 1.90	07e+04 59e+05 02e+04 80e+04	1.331e+04 1.443e+05 1.011e+05	0.76 0.73 0.78	yes yes yes	n n n n n n n
		Signal,	/Noise	Height	Ratio Sur	mmary			
		Sign	nal 1	Noise 3	1 S/N Rat	t.1 Signal 2	Noise 2	S/N	
1 2 3 4	2,3,7,8 13C-2,3,7,8 13C-1,2,3,4 37Cl-2,3,7,8	-TCDF 1.51 -TCDD 1.2	le+06 le+07 7e+07	1.86e+0 2.58e+0 7.80e+0 1.94e+0	5.8e+0 3 1.6e+0	03 2.06e+07 03 1.61e+07	1.92e+03 2.96e+03 3.55e+03	3 6.9e	+03

Initial Calibration QC Checklist

3403/6131 **ICAL Nam** Date: ⁷8290 / Tetra / TCDD Only / TCDF Conf-/_8280 / 613 / M23 / TO-9 Method: Retention Window/Column Performance Check Second Check Analyst Windows in and first and last eluters labeled Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and it's closest eluters No QC ion deflections affect column specific 2378 isomer or it's closest eluters Analyst Second Check Initial Calibration Percent RSD within method criteria All relative abundance ratios meet method criteria No QC ion deflections of greater than 20% Mass spectrometer resolution greater than or equal to 10,000 and documented 2378-TCDD elutes at 25 minutes or later on the DB-5 column Signal-to-noise of all target analytes and their labeled standards at least 10:1 Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50% All Manual Intergrations signed and dated and first and fina al summary included

icalqc.xls 02-23-00

Analyst: ____

Second QC: _

5DFC

PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Name:

Contract

Lab Code: CASE No.: Client No: SDG No.:

Init Calib. Date: 04/23/12

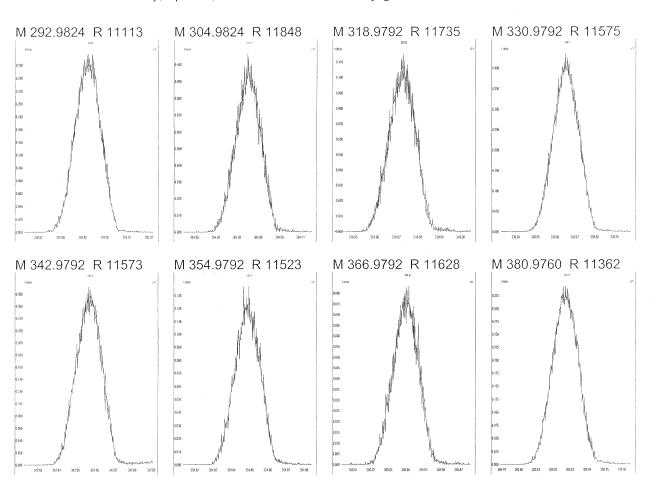
Init. Calib.Times: 05:13:56

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, SPIKES AND DUPLICATES IS AS FOLLOWS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
				=========
WINDOW DEFINE	ICAL CS5	7201	23-APR-12	05:13:56
ICAL CS0.5	ICAL CS0.5	7202	23-APR-12	06:03:22
ICAL CS1	ICAL CS1	7203	23-APR-12	07:12:38
ICAL CS2	ICAL CS2	7204	23-APR-12	08:03:38
ICAL CS3	ICAL CS3	7205	23-APR-12	08:56:23
ICAL CS4	ICAL CS4	7206	23-APR-12	09:57:19
ICAL CS5	ICAL CS5	7207	23-APR-12	10:51:12

	Sample List Report	port				MassLynx 4.1	nx 4.1						THE CONTRACTOR STATES AND A STATE OF THE PARTY OF THE PAR
	Sample List:	()	· · · · · · · · · · · · · · · · · · ·	4 C C C C C C C C C C C C C C C C C C C	H + + + + + + + + + + + + + + + + + + +	(•			¥	<u>.</u>	Page 1 of 2
00584	Printed:	Monda	Mondav, April 23, 2012	Mondav. April 23, 2012 15:16:39 Central Daylight Tim	15:16:39 Central Daylight Tim	me me						Page Por	Page Position (1, 1)
(193		Ä	3182946	3602	Ä	4084	408KE-VEL	$\ddot{\Box}$	ISEM SENC	陷	Ä	3086	208/ES-VALMOS
3)	Date	Time	File Name	Sample ID		Client ID	ŏ	Commenus	u.		GC Met	Acq Met	Column
156 of 666	22		7201 7202 7203 7203 7204 7205 7206 7206 7208 7208 7208 7208 7208 7208 7208 7208	WINDOW DEFINE ICAL CS0.5 ICAL CS1 ICAL CS3 ICAL CS5 ZND SOURCE VEF	SOW DEFINE CS0.5 CS1 CS2 CS3 CS4 CS5 SOURCE VERIFICATION	D12-56-2 D13-8-2 D13-8-2 D12-90-3A D12-90-3B D12-90-3E		HRMS Chec	3	11:50 50:21	88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290 88290	88290 88290 88290 68200 68200 68200 68200 68200 68	DB
							indille.						

New Teal


Page 1 of 4 Page Position (1, 1) dat dat dat .dat dat dat dat C:\MassLynx\8290 C:\MassLynx\8290 C:\MassLynx\8290 C:\MassLynx\8290 C:\MassLynx\8290 C:\MassLynx\8290 Process Options C:\MassLynx\428 Column 08-5 08-5 08-5 08-5 08-5 Inlet File 8290 8290 8290 3290 8290 8290 8290 MS File 8290 8290 8290 8290 8290 8290_ 8290_ 8290 8290 8290 8290 8290 8290 8290 8290 8290 D12-56-2 D13-8-2 D12-90-3A D12-90-3B D12-90-3E D12-5-1B D12-83-1 D12-90-3D Client ID MassLynx 4.1 2ND SOURCE VERIFICATION Monday, April 23, 2012 15:16:22 Central Daylight Time Monday, April 23, 2012 15:16:28 Central Daylight Time WINDOW DEFINE CAL CS0.5 CAL CS2 CAL CS3 ICAL CS5 CAL CS4 CAL CS1 CAS ID 2ND SOURCE VERIFICATION WINDOW DEFINE CAL CS0.5 CAL CS3 CAL CS1 CAL CS2 CAL CS4 ICAL CS5 File Text Sample List Report File Name 201 202 203 204 205 205 206 207 208 Last Modified: Sample List: Printed: 157 of 666 00584(193)

Experiment: 8290

exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

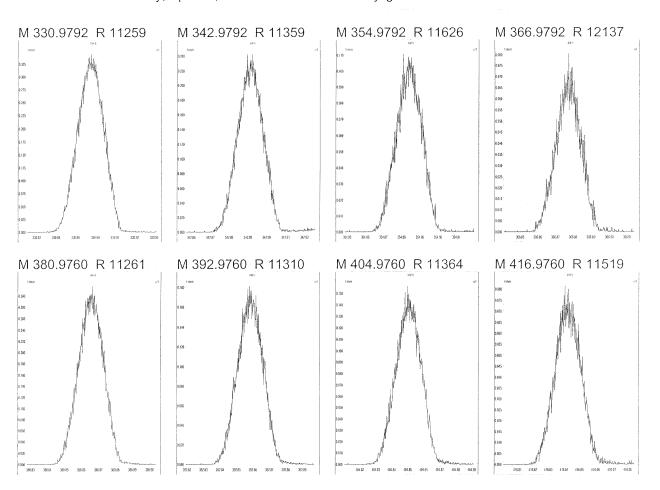
Printed:

Monday, April 23, 2012 05:11:40 Central Daylight Time

Experiment Calibration Report

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290_

exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

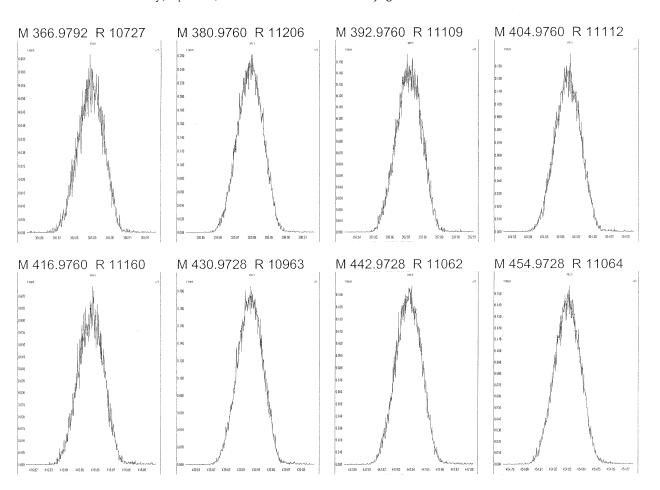
Printed:

Monday, April 23, 2012 05:12:02 Central Daylight Time

Experiment Calibration Report

MassLynx 4.1

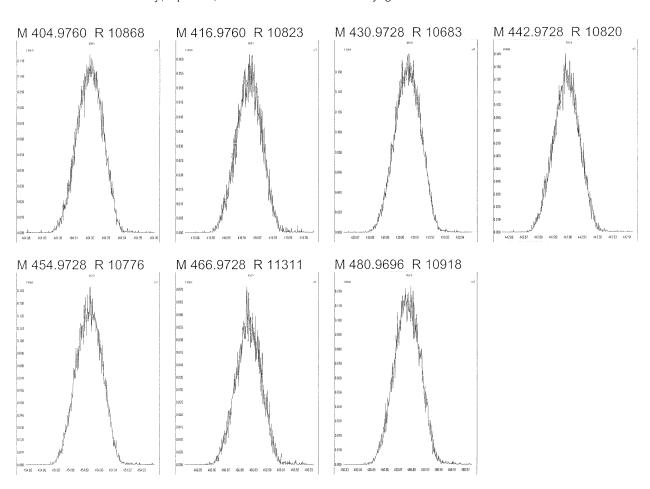
Page 1 of 1


File:

Experiment: 8290_

exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

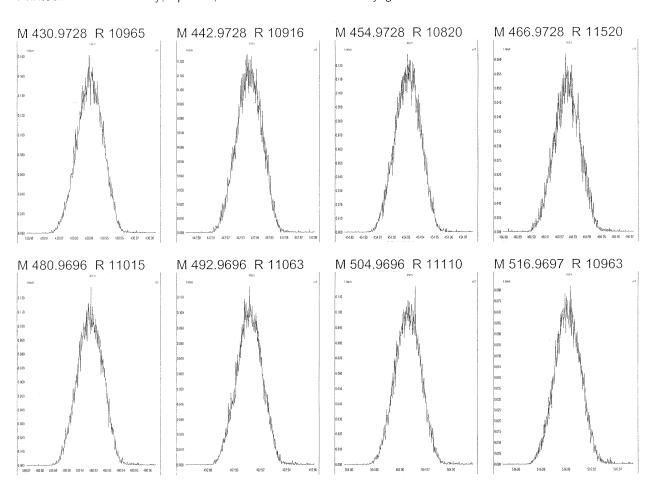
Printed:


Monday, April 23, 2012 05:12:25 Central Daylight Time

Experiment: 8290_ exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

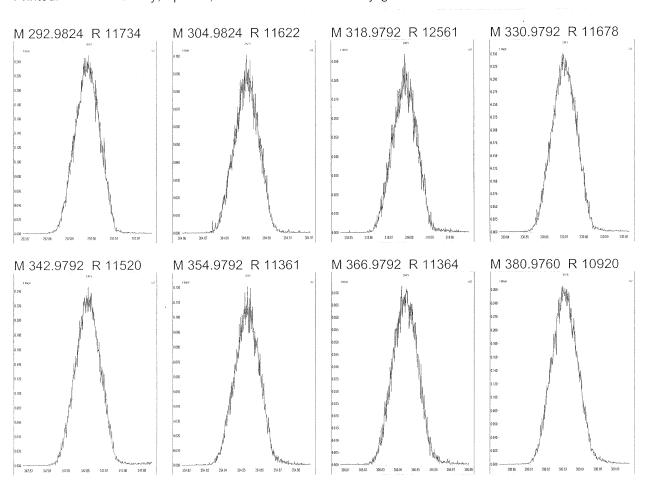
Monday, April 23, 2012 05:12:49 Central Daylight Time


Page 1 of 1

File:

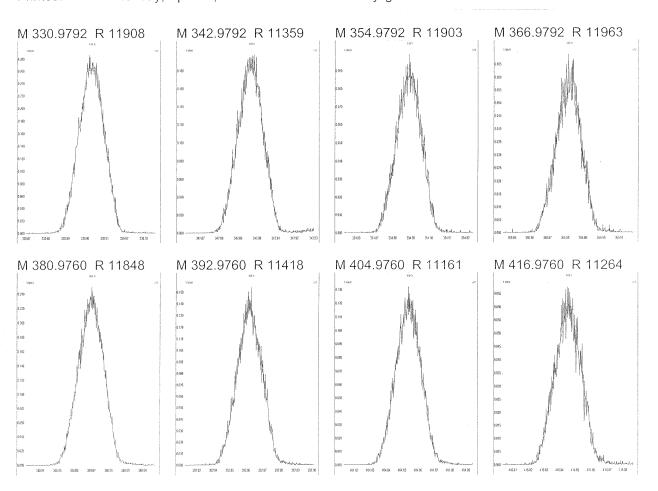
Experiment: 8290_ .exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:


Monday, April 23, 2012 05:13:11 Central Daylight Time

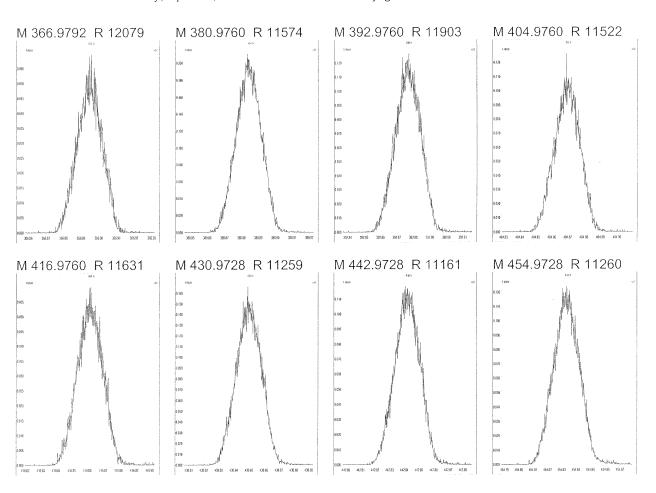
Experiment: 8290_ exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:


Monday, April 23, 2012 11:47:15 Central Daylight Time

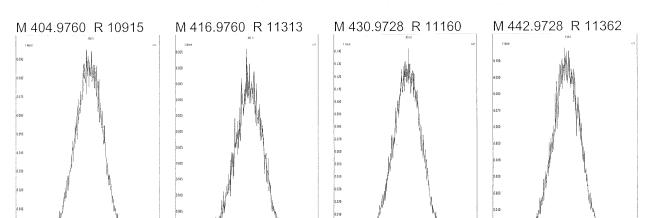
Experiment: 8290 .exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

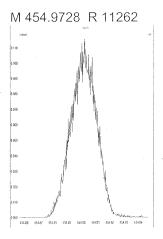
Printed:

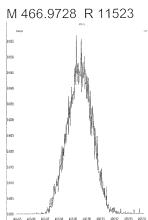

Monday, April 23, 2012 11:47:41 Central Daylight Time

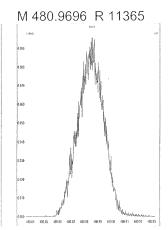
Experiment: 8290_ .exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

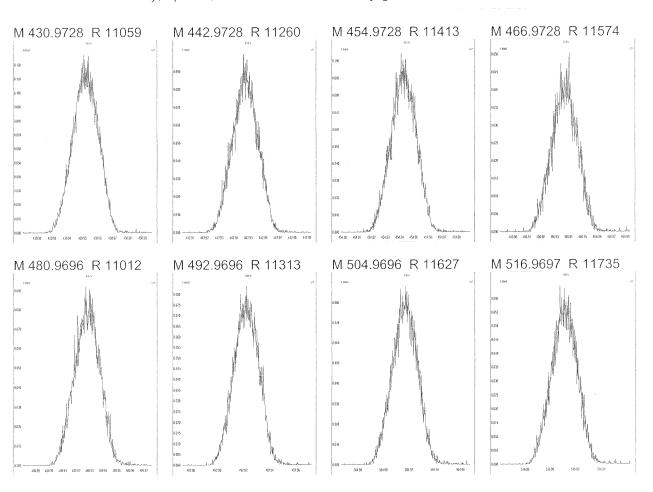

Monday, April 23, 2012 11:48:08 Central Daylight Time




Experiment: 8290_ .exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

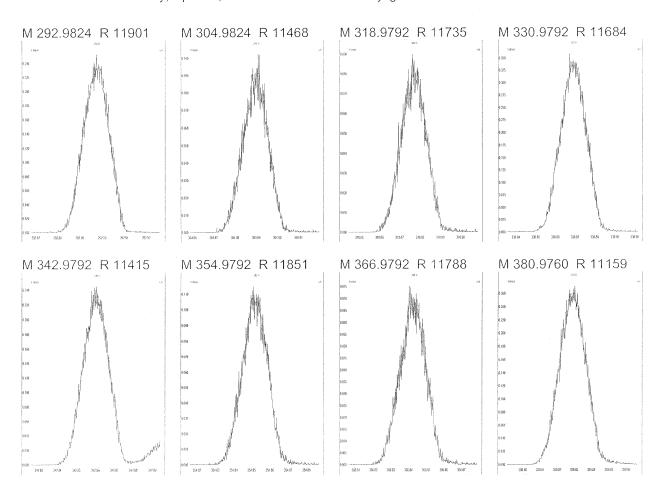

Printed:

Monday, April 23, 2012 11:48:33 Central Daylight Time



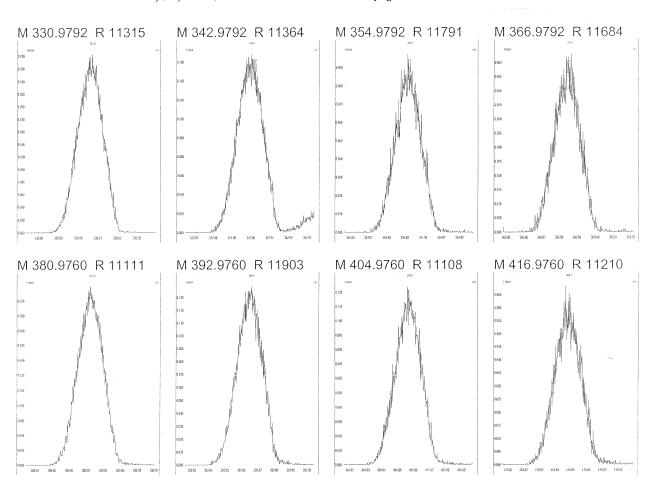
Experiment: 8290_ exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:


Monday, April 23, 2012 11:48:55 Central Daylight Time

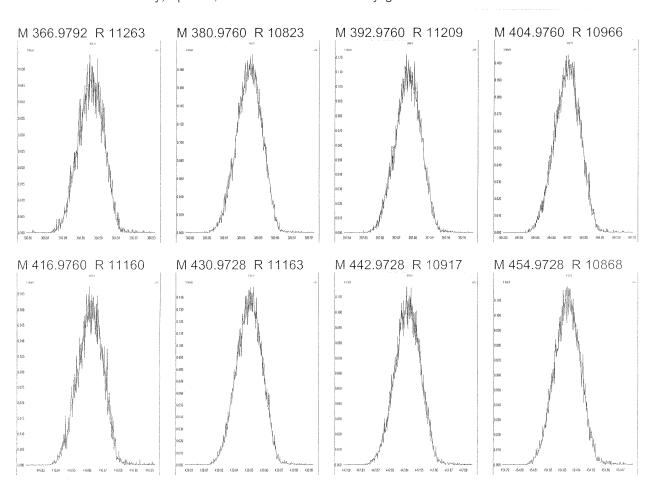
Experiment: 8290_ .exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:


Monday, April 23, 2012 15:03:23 Central Daylight Time

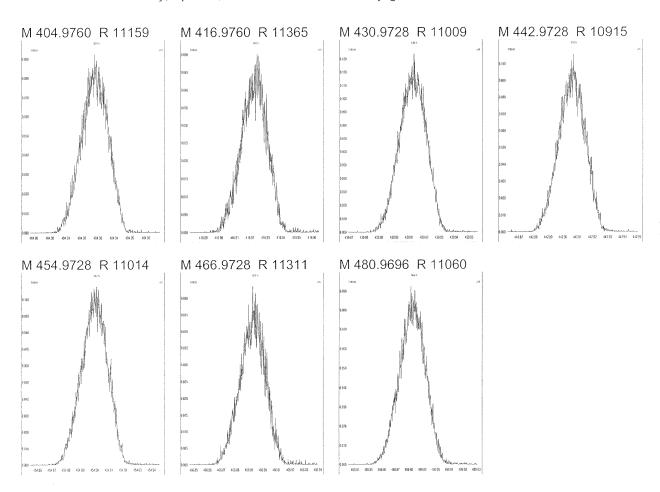
Experiment: 8290_ .exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:


Monday, April 23, 2012 15:04:24 Central Daylight Time

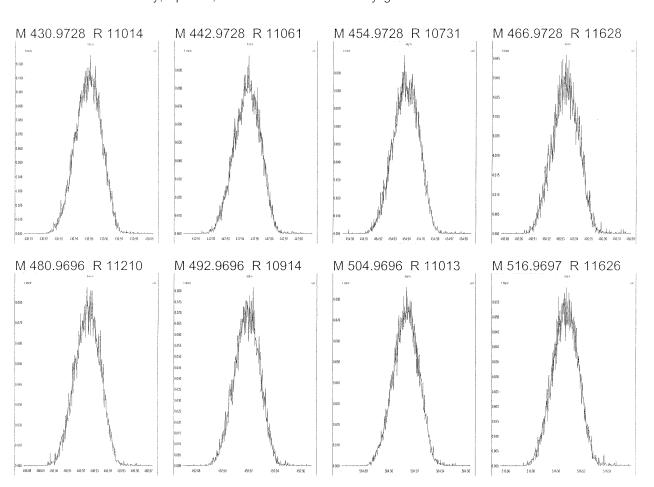
Experiment: 8290_ .exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:


Monday, April 23, 2012 15:05:16 Central Daylight Time

Experiment: 8290_ .exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:


Monday, April 23, 2012 15:06:16 Central Daylight Time

Experiment: 8290_ .exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

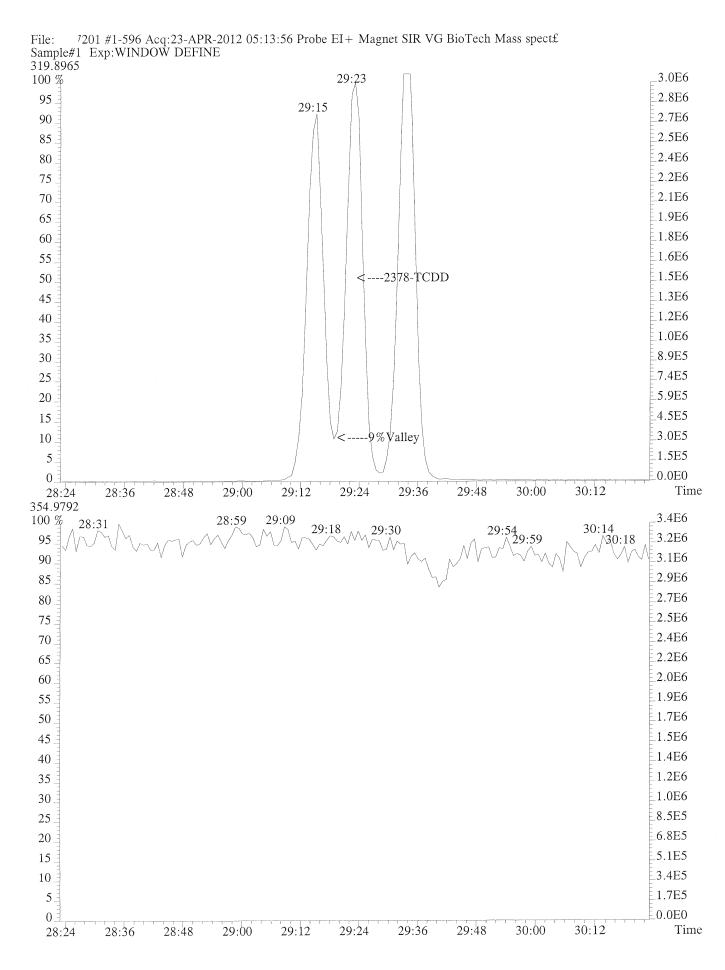
Printed:

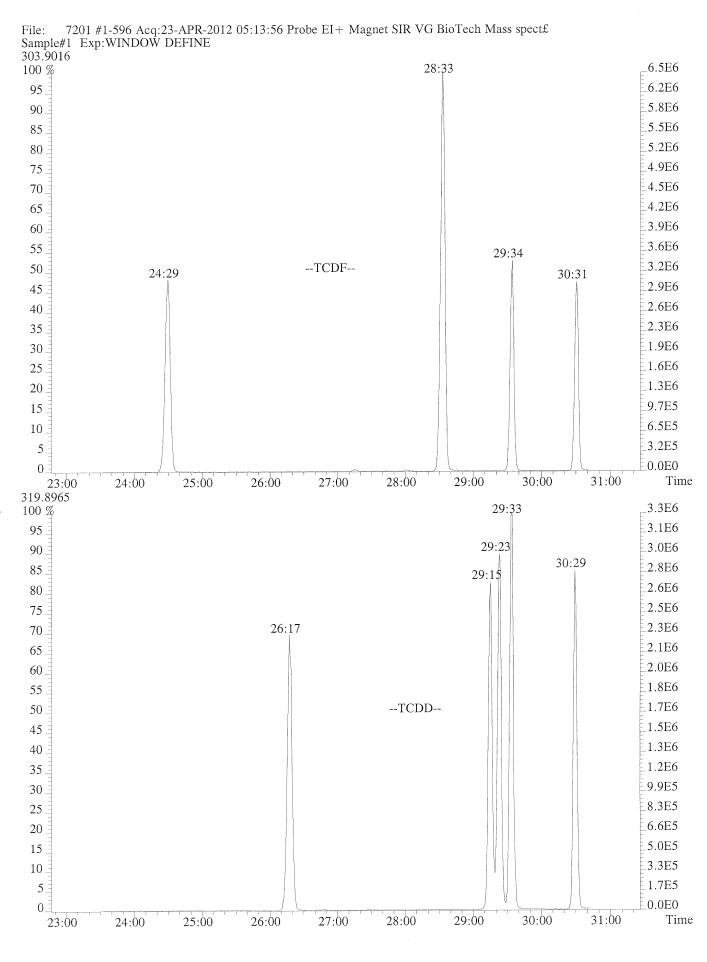
Monday, April 23, 2012 15:07:45 Central Daylight Time

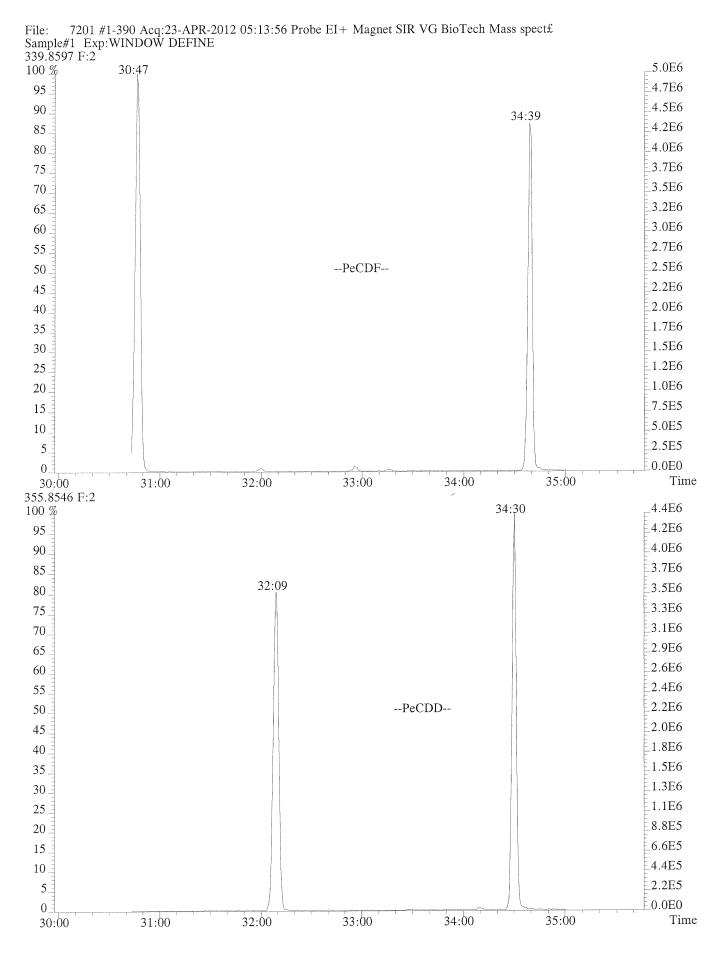
5DFA

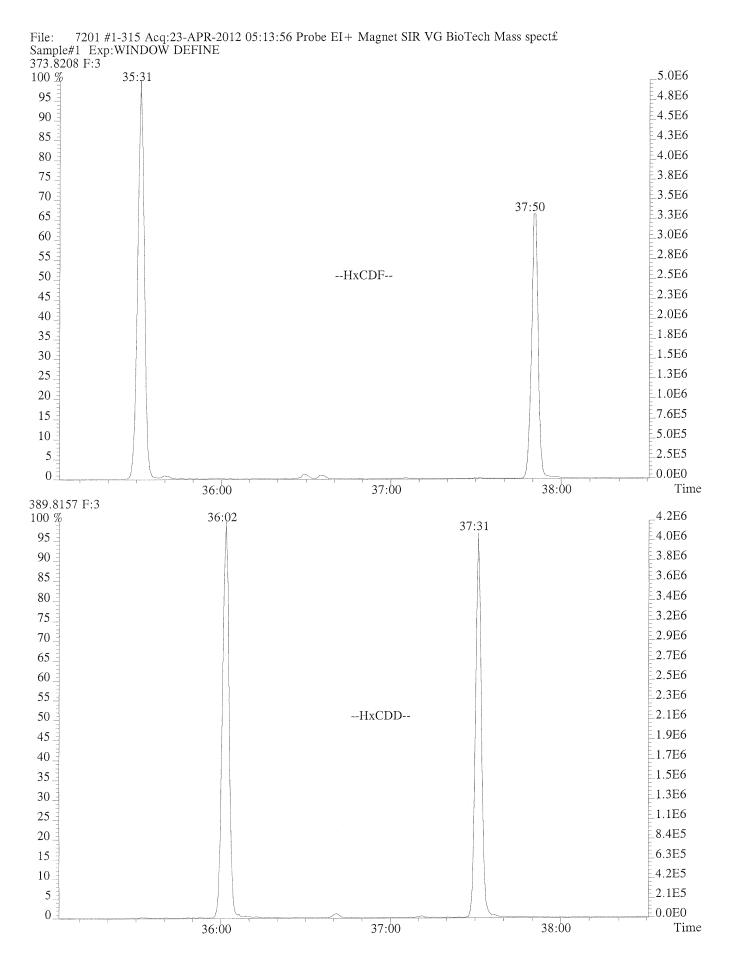
WINDOW DEFINING MIX SUMMARY

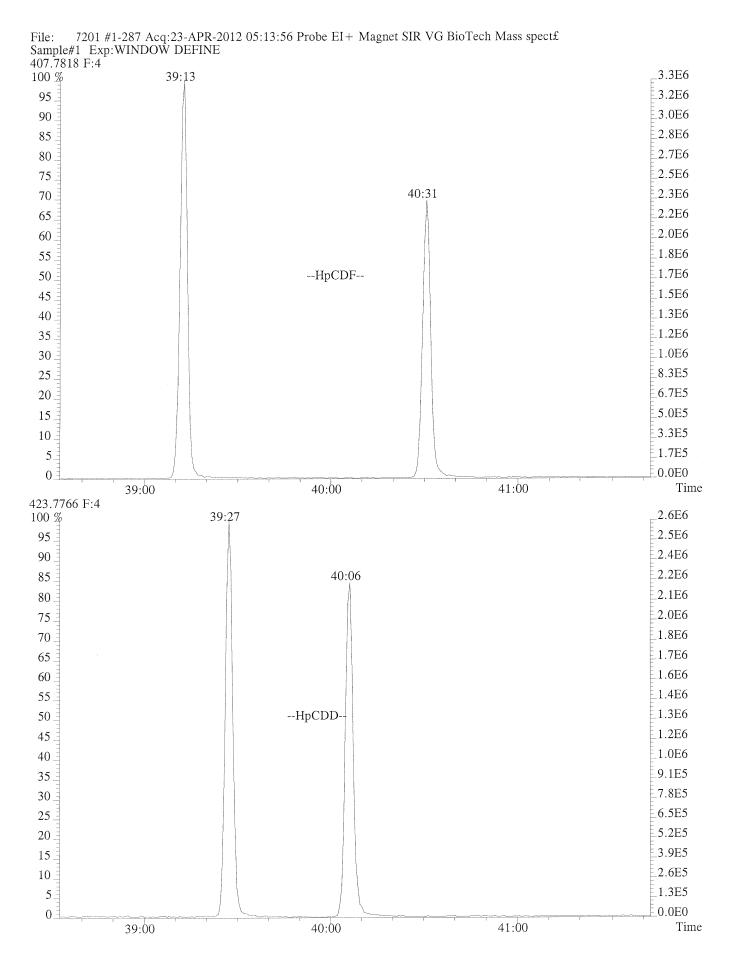
CLIENT.	ID:	
		.,
WDM		


Lab Name: Lab Code:


GC Column: DB-5


Case No.: SDG No.:
ID: 0.25 (mm) Lab File ID: 7201
Date Analyzed: 23-APR-2012


Time Analyzed: 05:13:56


Congener	Retention Time First Eluting	I	Retention Time Last Eluting
TCDF	24:29		30:31
TCDD	26:17		30:29
PeCDF	30:47		34:39
PeCDD	32:09		34:30
HxCDF	35:31		37:50
HxCDD	36:02		37:31
HpCDF	39:13		40:31
HpCDD	39:27		40:06
ϵ			
% Valley 2378-T	CDD:	9 %	

USEPA -

6DFB6

CDD/CDF INITIAL CALIBRATION ION ABUNDANCE RATIO SUMMARY HIGH RESOLUTION

> Lab Name: Lab Code: 00584(

193)

GC Column: DB-5 ID: 0.25(mm) Init. Calib. Date(s).: 04/23/12 Init. Calib. Time.: 05:13

Contract No.: TO No.:

SDG No.: 3 Instrument ID: E-HRMS-03

ION ABUNDANCE RATIO

E	TON KAIL	C limit	.65-0.8	.65-0.8	.32-1.7	.32-1.7	.32-1.7	05-	.05-1.4	.05-1.4	.05-1.4	.05-1.4	.05-1.4	.05-1.4	.88-1.2	.88-1.2	.88-1.2	.76-1.0	.76-1.0	.65-0.8	.32-1.7	.05-1.4	.05-1.4	.88-1.2	.76-1.0	.65-0.8	.32-1.7	.32-1.7	0.43-0.59	.43-0.5	.43-0.5	.43-0.5	.37-0.5	.37-0.5
			. 7	. 7	.5	. 5	.5	1.26	ς.	2.	2		2.		0.	0.	0.	∞.	<i>.</i>	. 7	.5	7		0.	∞	. 7	.5	.57	0.52	.5	.5	.5	4.	4.
	- 1		. 7	. 7	.57	.5	.5	1.27	ς.	2.	3	2	2.	ς.	0.	0.	0	•	<u>.</u>	. 7	.5	Ġ	2	0	∞.	. 7	.5	.5	0.52	.5	.5	.5	4.	4.
)		23	. 7	. 7	.5	.5	.5	1.30	2.	2.	ς.	ς.	ς.	2.	0.	0.	0.	9.	·	0.79	.5	2	ς.	Ò.	9.	. 7		.5	0.54	.5	.5	.5	4.	
ANCE RATIO			. 7	. 7	.5	. 5	.5	1.31		2.	3	2	ς.	ς.	0.	0.	0.	ω.	9.	. 7	5	ζ.	Ω.	0.	∞	. 7	.57	. 5	0.54	.5	. 21	.5	4.	4.
ABUNDANCE		-	. 7	. 7	.5	.5	.5	1.24	2			Ω.	Η.	3	0.	0.	0.	ω.	<i>o</i> .	. 7	5	3	2	0.	و.		.5	.5	0.53	.57	.5	5	4.	4.
NOT TON		S 0	∞.	. 7	.5	.5	.5	1.24	ς.	2.	۲.	.3	2	.3	0.	0.	0.	9.	ω.	7	.5	2	Ω.	0.	9.	. 7	.5	5	0.52	.5	.57	.5	4.	4.
	SELECTED - 1111	IONS	20/32	04/30	340/342	6/35	0/34	374/376	4/37	0/39	0/39	0/39	4/37	4/37	408/410	/42	8/41	8/46	442/444	332/334	368/370	/40	/40	/43	/47	/31	/35	/35	384/385	/38	/38	/38	8/42	418/420
		Зe	2,3,7,8-TCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	1,2,3,7,8-PeCDD	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	7	6 , 2, 3, 6, 7, 8-HxCDD	<u>o</u> 1,2,3,7,8,9-HxCDD	<u>o</u> 2,3,4,6,7,8-HxCDF	2,3,7,8,	2,3,4,6,	,3,4,6,7,8	2,3,4,7,		OCDF	13C-2,3,7,8-TCDD	3C-1	3-1,2,3,4	3-1,2,3,6,7,	13C-1,2,3,4,6,7,8-HpCDD	C-OCDD	3-2,3,7,	2-1,2,3,7,8	3-2,3,4	7,8	2-1,2,3,6,7,8	C-2,3,4,6,7,8	3C-1,2,3,7,8,9-	5,7,8	\sim

6DFB6

QG GQuality Control (QC) limits represent +/- 15% window around the theoretical ion abundance ratio. The laboratory must flag any analyte in any calibration solution which does not meet the ion abundance ratio QC limit by placing an 0.79 0.79 0.80 0.79 0.79 332/334 402/404 6 asterisk in the flag column. 13C-1,2,3,4-TCDD 13C-1,2,3,7,8,9-HxCDD

0.65-0.89

FORM VI-HR CDD-2

DLM02.0 (5/05)

USEPA -

6DFA6

CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY HIGH RESOLUTION

Gase No.:
3C Column: DB-5 ID: 0.25(mm)
6 Init. Calib. Date(s).: 04/23/12
Clinit. Calib. Time.: 05:13

TO No.:

Contract No.:

SDG No.: 3 Instrument ID: E-HRMS-03

RR/RRF

			7	1,1,1				MEAN		
Target Analytes	CS0.5	N	CS2	CS3	CS4	CS5	Curve	RR/RRF	%RSD	C LII
2,3,7,8-TCDD	0.92	6.	9.	6.	0.	0.	mean	9.	2.	/-20
2,3,7,8-TCDF	0.93	9.	6.	9.	9.	9	mean	9.	9	/-20
1,2,3,7,8-PeCDF	9.	0.	0.	9.	0.	0.	mean	0.	ω.	-20
1,2,3,7,8-PeCDD	0.85	9.	9.	9.	6.	9.	mean	9.	9.	/-20
2,3,4,7,8-PeCDF	0.90	9.	9.	0.	9.	9.	mean	9.	4.	/-20
1,2,3,4,7,8-HxCDF	1.16	1.26	1.26	1.19	1.25	1.21	mean	1.22	3.41	+/-20%
1,2,3,6,7,8-HxCDF	0	۲.	Η.	۲.	Η.	Н.	mean	۲.	0.	/-20
3,4,	9.	9.	0.	0.	0.	0.	mean	0.	4.	/-20
$\overline{100}$ 2, 3, 6, 7, 8-HxCDD	0.95	0.	0.	ω.	0.	0.	mean	9.	ω.	20
1 2, 3, 7, 8, 9-HxCDD	1.01	0.	0.	0.	0.	0.	mean	0.	9.	/-20
3,4,	0.	Η.	۲.	۲.	Η.	Ч.	mean	۲.	<u>-</u>	/-20
3,7,	1.13	ς.	Η.	Η.	Η.	۲.	mean	۲.	.5	/-20
1,2,3,4,6,7,8-HpCDF	ć,	4.	4.	ω.	4.	4.	mean	.3	.4	/-20
1,2,3,4,6,7,8-HpCDD	0.95	0.	0.	9.	0.	0.	mean	0.	Η.	20
1,2,3,4,7,8,9-HpCDF	1.28	ς.	ω.	ω.	ω.	ω.	mean	.3	ω.	20
OCDD	1.00	0.	0.	9.	0.	Η.	mean	0.	. 7	20
OCDF	1.19		2	0.	2	ς.	mean		υ.	20
Labeled Compounds										
13C-2,3,7,8-TCDD	1.05	9.	9.	9.	9.	0.	mean	0.	9	20
13C-1,2,3,7,8-PeCDD	0.81	. 7	. 7	ω.	∞.	ω.	mean	∞.	9.	0
C-1,2,3,4,	0.92	9.	9.	9.	9.	9.	mean	9.	9.	/-20
13C-1,2,3,6,7,8-HxCDD	0.93	9.	9	0.	6	9.	mean	6.	9.	20
	0.7	ω.	∞	∞.	∞.	∞	mean	φ.	9.	/-20
3C-	0.53	.5		9.	9.	9.	mean	.5	9.	20
3C-2,3,7,8-	1.28	7	3	2	ζ.	ω.	mean	ς.	2	/-20
3C-1,2,3,7,8-	1.08	0.	0.		Η.	Η.	mean	۲.	۲.	/-20
	0	9.	0.	0.	۲.	Η.	mean	0.	.3	-20
3C-1,2,3,4,	1.05	1.05	1.07	1.10	1.05	1.05	mean	1.06	1.88	\
13C-1,2,3,6,7,8-HxCDF	1.18	Ω.	Ω.	Η.	Η.	Η.	mean	Η.	\sim	-20
C-2,3,4,6,7,8	0	Η.	Η.	Η.	0.	0.	mean	Η.	. 7	20
C-1,2,3,7,8,9-	0.97	9	<u>.</u>	0.	6.	ο.	mean	9.	0.	0
13C-1,2,3,4,6,7,8-HpCDF	. 0.80	∞.	∞.	ω.	∞.	ω.	mean	ω.		20
13C-1,2,3,4,7,8,9-HpCDF	7 0.67	. 7	. 7	. 7	. 7	. 7	mean	. 7	6.	20

37C1-2,3,7,8-TCDD

For Method 1613, 123789-HxCDD Relative Response (RR) is calculated based on the labeled analogs of the other two HxCDDs. For Method M23 and T09 the Relative Response is calculated O of the other two HXCDDs. For the other two HXCDDs. For the on 13C-123678-HXCDD.

. OCDF RR is calculated based on the labeled analog of OCDD

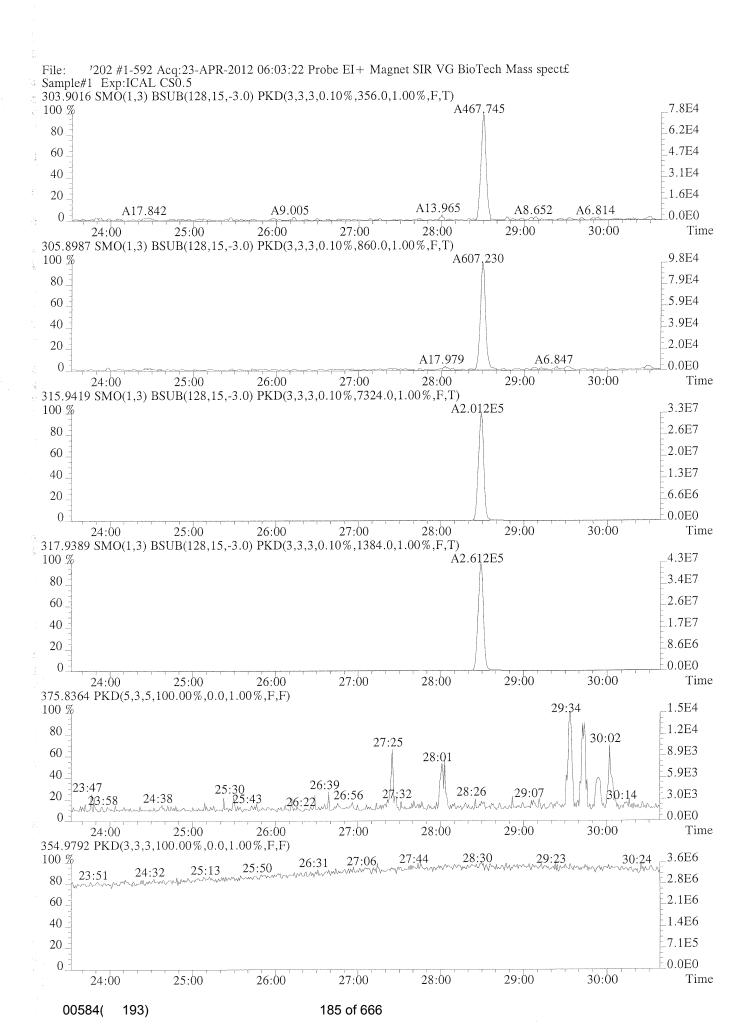
FORM VI-HR CDD-1

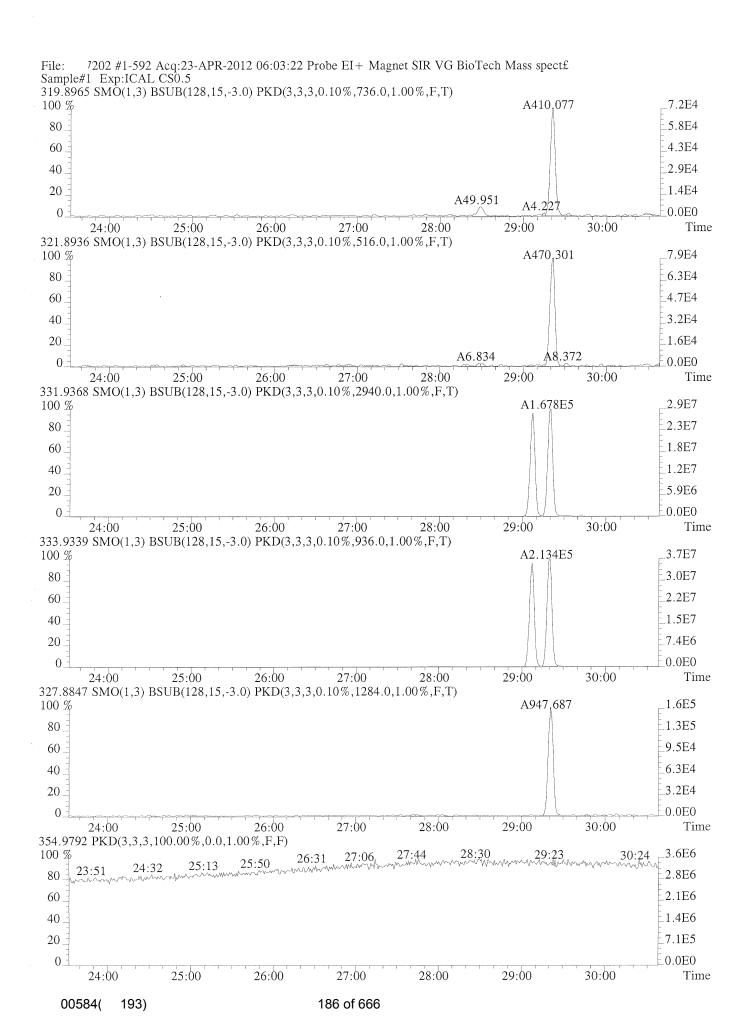
DLM02.0 (5/05) /6DFAP7

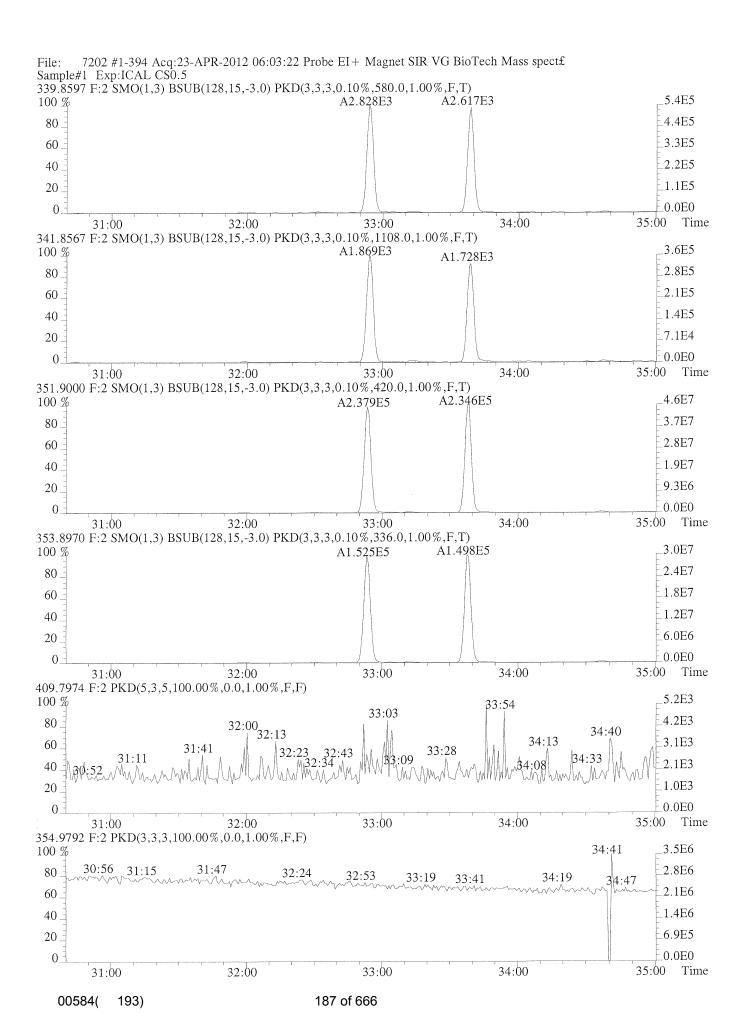
193)

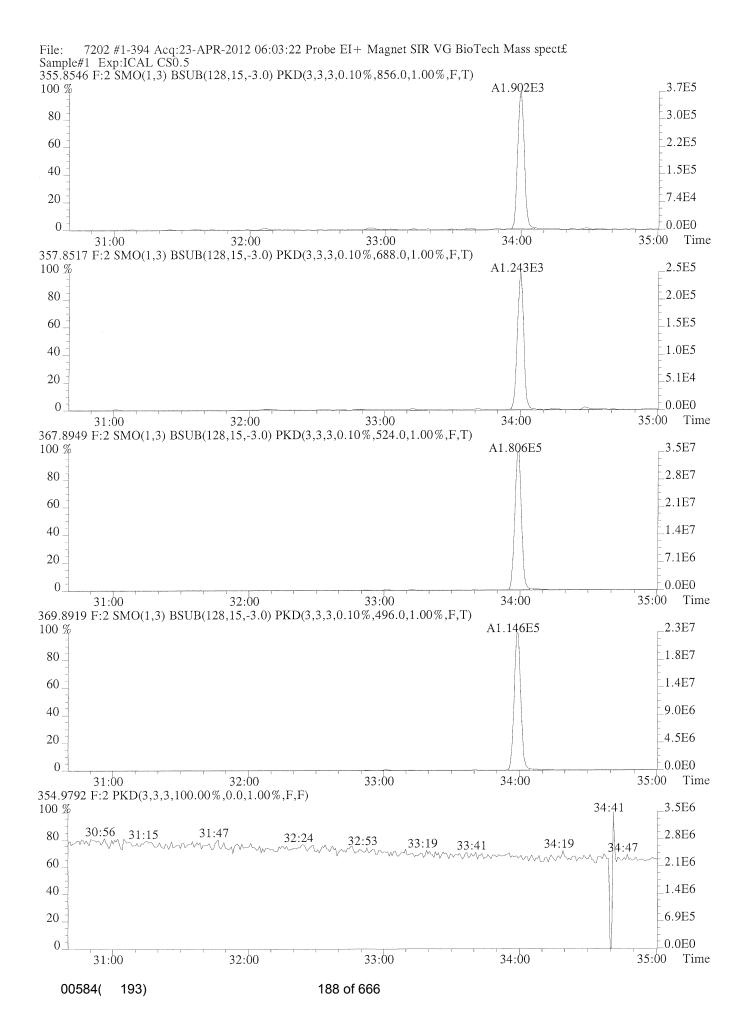
ICAL CS0.5

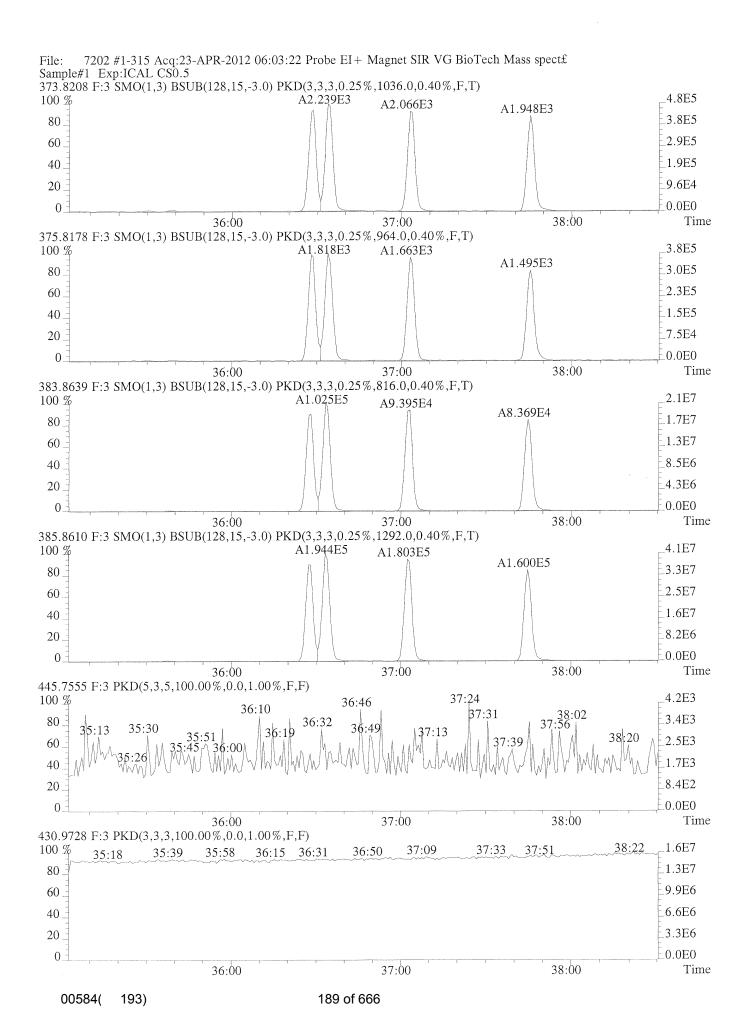
Rum #1 Filename 7202 #1 Samp: 1 Inj: 1 Acquired: 23-APR-12 06:03:22 Processed: 23-APR-12 10:20:38 LAB. ID: ICAL CS0.5

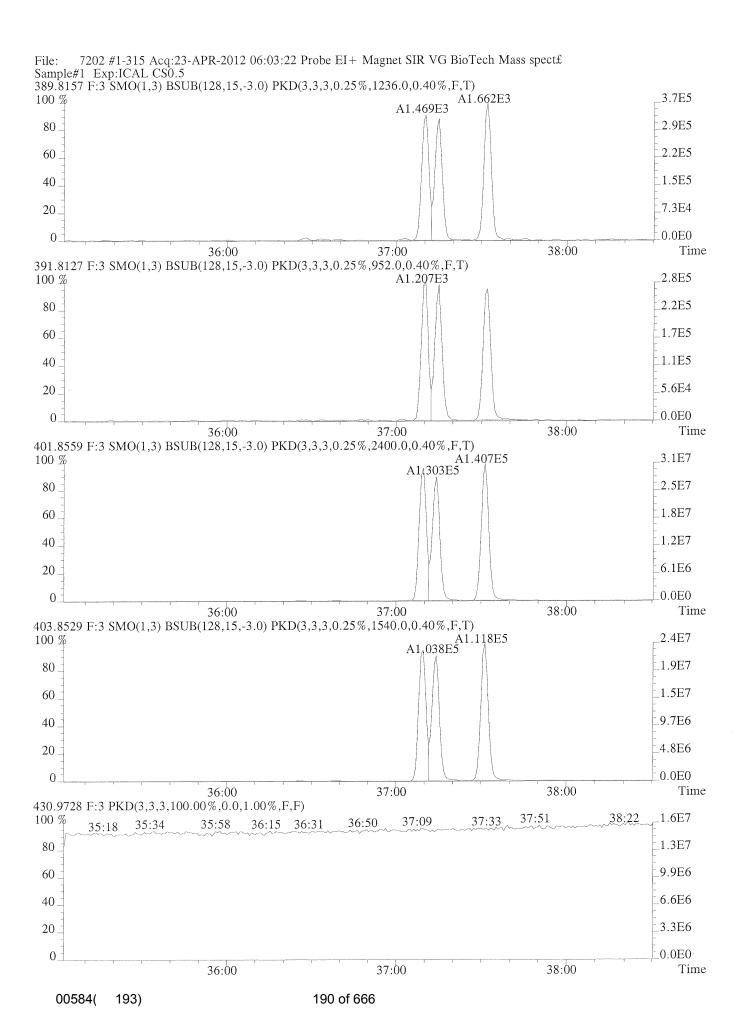

Typ Name RT-1 Resp 1 Resp 2 Ratio Mcct Mod7 RRT Crk		Tr. 250			Name	חת ז	Pos	m 1	Resp	2 0 5	atio	Meet	Mods	RRT
1 Unk		Тур			Name	KI-I	Res	ъЪ т	resp	2 Re	acio	Meet	Moa:	ICICI
This 1,2,1,4,7,8 Perc 33:39 2.6176-03 1.728e403 1.51 yes no 1.000	3.					I .	1	,		1		_	no	
Unit						,				1		-		
Duk 1,2,3,6,7,8-HxCDF 26,94 2,239e+03 1.818e+03 1.22 yes no 1.000							1	,				-		
Onk 2,3,4,6,7,8-HxCDP 37:03 2,0560+03 1,663e+03 1,24 yes no 1,000							1							
Unk 1,2,3,7,8,9-ExCDP 37:45 1.948+03 1.495+03 1.495+03 1.000 0 Unk 1,2,3,4,6,7,8-ExCDP 39:11 1.705+03 1.627+03 1.00 yes no							1	1		1	,			
S Unik 1,2,3,4,6,7,8-HpCDF 40:29							1	1		1		-		
Onk							1							
Unk 2,3,7,8-TCDD 29:21 4.101e+02 4.703e+03 1.53 yes no 1.004 Unk 1,2,3,7,8-PeCDD 34:00 1.902e+03 1.249e+03 1.53 yes no 1.001 Unk 1,2,3,7,8-PeCDD 34:00 1.469e+03 1.207e+03 1.53 yes no 1.000 Unk 1,2,3,4,7,8-HECDD 37:10 1.469e+03 1.207e+03 1.22 yec no 1.000 Unk 1,2,3,4,8-HECDD 37:15 1.501e+03 1.269e+03 1.18 yes no 1.000 Unk 1,2,3,4,6,7,8-HECDD 37:35 1.662e+03 1.273e+03 1.31 yes no 1.000 Unk 1,2,3,4,6,7,8-HECDD 40:05 1.170e+03 1.753e+03 1.31 yes no 1.000 Unk 1,2,3,4,6,7,8-HECDD 40:05 1.170e+03 1.753e+03 1.00 yes no 1.000 Unk 1,2,3,4,6,7,8-HECDD 40:05 1.607e+03 1.753e+03 0.92 yes no 1.000 Unk 130-2,3,7,8-PECDF 28:29 2.012e+05 2.612e+05 0.77 yes no 0.978 US 1S 13C-2,3,4,7,8-HECDF 36:38 2.346e+05 1.566 yes no 1.129 US 1S 13C-1,2,3,4,7,8-HECDF 36:38 9.03ee+04 1.737e+05 1.52 yes no 0.972 US 1S 13C-1,2,3,6,7,8-HECDF 36:33 1.025e+05 1.944e+05 0.52 yes no 0.974 US 1S 13C-1,2,3,7,8-PECDF 39:10 6.275e+04 1.36ee+05 0.52 yes no 0.974 US 1S 13C-1,2,3,7,8-PECDF 40:26 5.238e+04 1.600e+05 0.52 yes no 0.974 US 1S 13C-1,2,3,7,8-PECDF 39:10 6.275e+04 1.36ee+05 0.52 yes no 0.974 US 1S 13C-1,2,3,7,8-PECDF 39:10 6.275e+04 1.36ee+05 0.52 yes no 0.978 US 1S 13C-1,2,3,7,8-PECDF 39:10 6.275e+04 1.36ee+05 0.52 yes no 0.992 US 1S 13C-1,2,3,7,8-PECDF 39:10 6.275e+04 1.36ee+05 0.52 yes no 0.993 US 1S 13C-1,2,3,4,5,7,8-HECDF 39:10 6.275e+04 1.36ee+05 0.45 yes no 1.079 US 1S 13C-1,2,3,4,5,7,8-HECDF 39:10 1.303e+05 1.03ee+05 1.26 yes no 1.079 US 1S 13C-1,2,3,4,7,8-HECDD 37:14 1.303e+05 1.03ee+05 0.45 yes no 1.079 US 1S 13C-1,2,3,4,7,8-HECDD 37:10 1.289e+05 1.026e+05 0.45 yes no 1.079 US 1S 13C-1,2,3,4,7,8-HECDD 37:10 1.289e+05 1.026e+05 0.49 yes no 1.079 US 1S 13C-1,2,3,4,7,8-HECDD 37:10 1.289e+05 1.026e+05 0.49 yes no 1.079 US 1S 13C-1,2,3,4,7,8-HECDD 37:10 1.289e+05 1.026e+05 0.49 yes no 1.079 US 1S 13C-1,2,3,4,7,8-HECDD 37:10 1.289e+05 1.026e+05 0.90 yes no 1.089 US 1SIS-1,2,3,4,7,8-HECDD 37:10 1.289e+05 1.026e+05 0.90 yes no 1.089							t .	1				-		
12. Unk				4,/,0,9			1					_		
13 Unk 1,2,3,4,7,8-HxCDD 37:10	1.50	OILV			OCDI	1 40.10	1 1.0000	105	2.120010	,5 6	.05	100	110	1.001
18 13C-2,3,7,8-TCDP 28:29 2.012e+05 1.56e+05 1.57 yes no 1.000 1.0	7.3.	Unk		2,3,7,	8-TCDD	29:21					,	-	no	
1.		Unk					•							
18												-		
18							!	!						
Is 13C-1,2,3,4,7,8-PECDF 32:53 2.379e+05 1.525e+05 1.56 yes no 1.000							l l	1			1			
IS 13C-2,3,7,8-TCDF 28:29 2.012e+05 1.526e+05 1.56 yes no 0.978 1.526e+05 1.56 yes no 1.129 1.51 1.52,3,4,7,8-PeCDF 33:38 2.379e+05 1.525e+05 1.56 yes no 1.129 1.51 1.52,3,4,7,8-PeCDF 33:38 2.346e+05 1.498e+05 1.57 yes no 1.155 1.51 1.52,3,4,7,8-PeCDF 36:28 9.054e+04 1.737e+05 0.52 yes no 0.974 1.51 1.52,3,4,6,7,8-HxCDF 36:33 1.025e+05 1.944e+05 0.53 yes no 0.974 1.51 1.52,3,7,8,9-HxCDF 37:45 8.369e+04 1.600e+05 0.52 yes no 0.988 1.51 1.52,3,4,6,7,8-HyCDF 37:45 8.369e+04 1.600e+05 0.52 yes no 1.064 1.513C-1,2,3,4,7,8,9-HyCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.044 1.513C-1,2,3,4,7,8,9-HyCDF 40:28 5.238e+04 1.165e+05 0.45 yes no 1.079 1.51 1.52,3,4,7,8-PeCDD 33:59 1.806e+05 1.146e+05 1.58 yes no 1.079 1.51 1.52,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.26 yes no 0.991 1.51 1.52,3,4,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 1.51 1.20,3,4,7,8-HyCDD 40:04 1.013e+05 9.559e+04 1.06 yes no 1.068 1.58 1.58 1.58 1.52 1.23,4,7,8-HyCDD 37:14 1.303e+05 1.242e+05 0.90 yes no 1.068 1.58 1			1,2,3,	4,6,7,8								-		
IS 13C-1,2,3,7,8-PeCDF 32:53 2.379e+05 1.525e+05 1.56 yes no 1.129 IS 13C-2,3,4,7,8-PeCDF 33:38 2.346e+05 1.498e+05 1.57 yes no 1.155 IS 13C-1,2,3,4,7,8-HxCDP 36:28 9.054e+04 1.737e+05 0.52 yes no 0.972 IS 13C-1,2,3,4,6,7,8-HxCDF 37:03 9.395e+04 1.803e+05 0.52 yes no 0.974 IS 13C-2,3,4,6,7,8-HxCDF 37:45 8.369e+04 1.600e+05 0.52 yes no 0.988 IS 13C-1,2,3,4,6,7,8-HxCDF 37:45 8.369e+04 1.386e+05 0.52 yes no 1.006 IS 13C-1,2,3,4,6,7,8-HxCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.044 IS 13C-1,2,3,4,7,8-PeCDD 39:10 6.275e+04 1.386e+05 0.45 yes no 1.074 IS 13C-1,2,3,7,8-PeCDD 33:59 1.806e+05 1.146e+05 0.45 yes no 1.077 IS 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.58 yes no 1.676 IS 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.038e+05 1.26 yes no 0.991 IS 13C-1,2,3,4,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.26 yes no 0.991 IS 13C-1,2,3,4,6,7,8-HxCDD 37:14 1.303e+05 1.303e+05 1.26 yes no 0.991 IS 13C-1,2,3,4,6,7,8-HxCDD 37:31 1.275e+05 1.422e+05 0.90 yes no 1.068 IS 13C-1,2,3,4,6,7,8-HxCDD 37:31 1.407e+05 1.118e+05 1.26 yes no 1.068 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.26 yes no *	17	Unk			OCDD	43:05	1.607e	:+03	1.753e+0	13 ().92	yes	no	1.000
IS 13C-1,2,3,7,8-PeCDF 32:53 2.379e+05 1.525e+05 1.57 yes no 1.129 IS 13C-2,3,4,7,8-PeCDF 33:38 2.346e+05 1.498e+05 1.57 yes no 1.125 IS 13C-1,2,3,4,7,8-HxCDF 36:28 9.054e+04 1.737e+05 0.52 yes no 0.972 IS 13C-1,2,3,4,6,7,8-HxCDF 37:03 9.395e+04 1.803e+05 0.52 yes no 0.974 IS 13C-2,3,4,6,7,8-HxCDF 37:45 8.369e+04 1.600e+05 0.52 yes no 0.988 IS 13C-1,2,3,7,8-PeCDD 33:10 6.275e+04 1.386e+05 0.52 yes no 1.006 IS 13C-1,2,3,4,6,7,8-HxCDF 40:28 5.238e+04 1.165e+05 0.45 yes no 1.004 IS 13C-1,2,3,7,8-PeCDD 33:59 1.806e+05 1.146e+05 0.45 yes no 1.079 IS 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.58 yes no 1.167 IS 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.038e+05 1.26 yes no 0.991 IS 13C-1,2,3,4,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.26 yes no 0.991 IS 13C-1,2,3,4,6,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 IS 13C-1,2,3,4,6,7,8-HxCDD 37:31 1.275e+05 1.422e+05 0.90 yes no 1.068 IS 13C-1,2,3,4,6,7,8-HxCDD 29:07 1.600e+05 2.023e+05 0.79 yes no 1.068 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.18e+05 1.26 yes no 1.008 IS 13C-1,2,3,7,8-TCDD 29:21 9.477e+02 1.18e+05 1.18e+	1.8	IS	13C	-2,3,7,	8-TCDF	28:29	2.012e	+05	2.612e+0	5 0	77	yes	no	0.978
IS 13C-2,3,4,7,8-PeCDF 36:28 9.054e+04 1.737e+05 0.52 yes no 0.972 18 13C-1,2,3,4,6,7,8-HxCDF 36:33 1.025e+05 1.944e+05 0.53 yes no 0.978 18 13C-1,2,3,7,8,9-HxCDF 37:03 9.395e+04 1.803e+05 0.52 yes no 0.978 18 13C-1,2,3,4,6,7,8-HxCDF 37:03 9.395e+04 1.803e+05 0.52 yes no 0.988 18 13C-1,2,3,4,6,7,8-HxCDF 37:04 8.369e+04 1.600e+05 0.52 yes no 1.006 1813C-1,2,3,4,6,7,8-HxCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.004 1813C-1,2,3,4,6,7,8-HxCDD 39:10 6.275e+04 1.386e+05 0.45 yes no 1.007 18 13C-1,2,3,4,7,8-PxCDD 33:59 1.806e+05 1.165e+05 0.45 yes no 1.007 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.146e+05 1.58 yes no 1.007 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.26 yes no 0.991 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.26 yes no 0.991 18 13C-1,2,3,6,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 18 13C-1,2,3,4,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 18 18 13C-1,2,3,6,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 18 18 18 18 18 18 18 18 18 18 18 18 18							2.379e	+05	1.525e+0	5 1	56	yes	no	1.129
IS 13C-1,2,3,6,7,8-HxCDF 36:33		IS					2.346	+05	1.498e+0	5 1	57	yes	no	
18 13C-2,3,4,6,7,8-HxCDF 37:03 9.395e+04 1.803e+05 0.52 yes no 0.988 13C-1,2,3,7,8,9-HxCDF 37:45 8.369e+04 1.600e+05 0.52 yes no 1.006 1.006 1513C-1,2,3,4,6,7,8-HyCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.004 1513C-1,2,3,4,7,8,9-HyCDF 40:28 5.238e+04 1.165e+05 0.45 yes no 1.079 18 13C-1,2,3,7,8-TCDD 29:20 1.678e+05 1.146e+05 1.58 yes no 1.079 18 13C-1,2,3,7,8-PeCDD 33:59 1.806e+05 1.146e+05 1.58 yes no 1.167 1.58 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.26 yes no 0.991 1.51 13C-1,2,3,4,6,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 1.523C-1,2,3,4,6,7,8-HyCDD 40:04 1.013e+05 9.559e+04 1.06 yes no 1.068 1.5 13C-1,2,3,4,6,7,8-HyCDD 43:05 1.275e+05 1.422e+05 0.90 yes no 1.148 1.303e+05 1.25 yes no 0.992 1.305 1.275e+05 1.422e+05 0.90 yes no 1.148 1.303e+05 1.25 yes no 0.992 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.275e+05 1.422e+05 0.90 yes no 1.088 1.305 1.30	21	IS	13C-1,2,	3,4,7,8	-HxCDF	36:28	9.054€	+04	1.737e+0			yes	no	
18 13C-1,2,3,7,8,9-HxCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.006 1813C-1,2,3,4,6,7,8-HpCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.044 1813C-1,2,3,4,7,8,9-HpCDF 40:28 5.238e+04 1.165e+05 0.45 yes no 1.044 1813C-1,2,3,4,7,8,9-HpCDF 40:28 5.238e+04 1.165e+05 0.45 yes no 1.079 18 13C-1,2,3,7,8-PeCDD 33:59 1.806e+05 1.146e+05 1.58 yes no 1.079 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.26 yes no 0.991 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.038e+05 1.26 yes no 0.991 18 13C-1,2,3,4,6,7,8-HpCDD 40:04 1.013e+05 9.559e+04 1.06 yes no 1.068 18 13C-0CDD 43:05 1.275e+05 1.422e+05 0.90 yes no 1.148 18 18C-1,2,3,4,7,8,9-HxCDD 37:31 1.407e+05 1.18e+05 1.26 yes no 1.088 12 C/Up 37C1-2,3,7,8,9-HxCDD 37:31 1.407e+05 1.18e+05 1.26 yes no 1.008	23.35	IS					1	- 1				-	no	
1813C-1,2,3,4,6,7,8-HpCDF 39:10 6.275e+04 1.386e+05 0.45 yes no 1.044 1.165e+05 0.45 yes no 1.079 1.		IS					1							
ISI3C-1,2,3,4,7,8,9-HpCDF 40:28 5.238e+04 1.165e+05 0.45 yes no 1.079 IS							!							
IS 13C-2,3,7,8-TCDD 29:20										1				
IS 13C-2,3,7,8-TCDD 29:20 1.678e+05 2.134e+05 0.79 yes no 1.007 18 13C-1,2,3,7,8-PeCDD 33:59 1.806e+05 1.146e+05 1.58 yes no 1.167 18 13C-1,2,3,4,7,8-HxCDD 37:10 1.289e+05 1.026e+05 1.26 yes no 0.991 18 13C-1,2,3,6,7,8-HxCDD 37:14 1.303e+05 1.038e+05 1.25 yes no 0.992 1813C-1,2,3,4,6,7,8-HxCDD 40:04 1.013e+05 9.559e+04 1.06 yes no 1.068 18 13C-0CDD 43:05 1.275e+05 1.422e+05 0.90 yes no 1.148 18 13C-1,2,3,4-TCDD 29:07 1.600e+05 2.023e+05 0.79 yes no 1.148 13C-1,2,3,7,8,9-HxCDD 37:31 1.407e+05 1.118e+05 1.26 yes no *	28	IS1	3C-1,2,3,	4,7,8,9	-HpCDF	40:28	5.238e	+04	1.165e+0	15 0).45	yes	no	1.079
**************************************		IS	13C	-2,3,7,	8-TCDD	29:20	1.678e	+05	2.134e+0	5 0	79	yes	no	1.007
**************************************	33	IS					1.806e	+05				- '	no	
**************************************	89	IS					1					- :		
**************************************	4.5						!	:				- ;		
**************************************			3C-1,2,3,				1					- '		
**RS/RT 13C-1,2,3,7,8,9-HxCDD 37:31	1.4	IS		13	C-OCDD	43:05	1.275e	+05	1.422e+0	15 0	0.90	yes	no	1.148
**RS/RT 13C-1,2,3,7,8,9-HxCDD 37:31 1.407e+05 1.118e+05 1.26 yes no	474	S/RT	13C	-1,2,3,	4-TCDD	29:07	1.600e	+05	2.023e+0	5 0	.79	yes	no	*
C/Up 37C1-2,3,7,8-TCDD 29:21 9.477e+02 no 1.008							1	;	1.118e+0	5 1	.26		no	*
	. 4						,	•			·		no	1.008
	3.0													
	1 1													
	- 4 - 4													
	5 J 4 D													
	5. V 5. H	1												
00584(193) 183 of 666	5.8													
00584(193) 183 of 666														
00584(193) 183 of 666														
00584(193) 183 of 666														
00584(193) 183 of 666														
00584(193) 183 of 666	17 E													
7.55 O. 655	16		00584(193)			183 o	f 666						
	2.5%		3000 11	/			. 55 0	-						

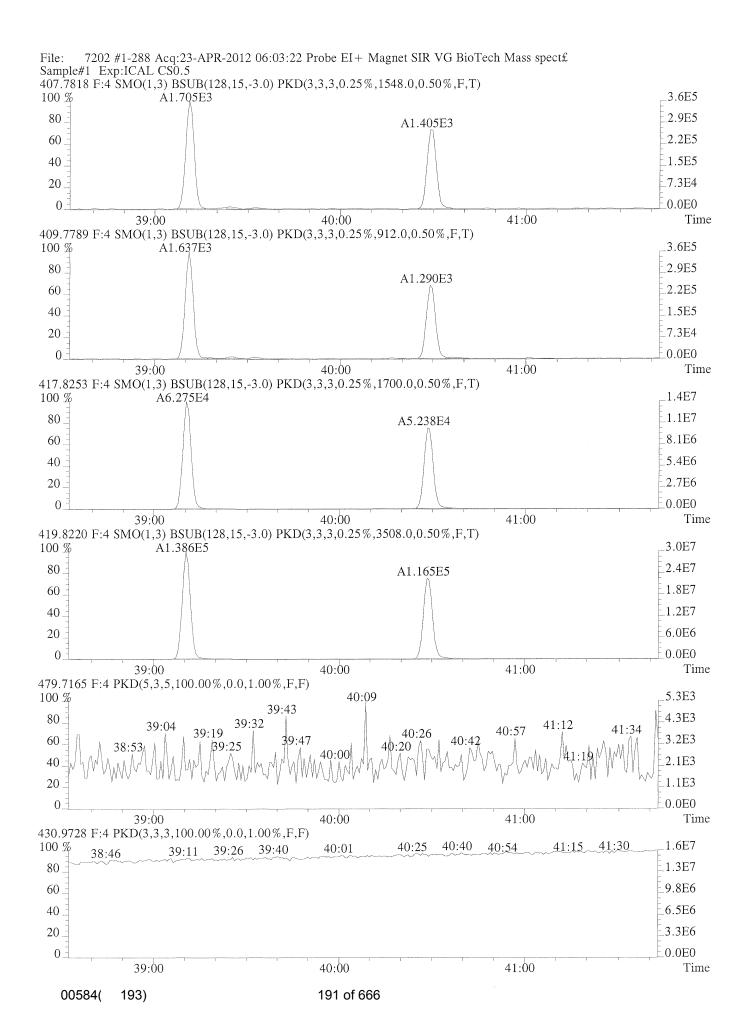

7) #1 Filename 7202 Samp: 1 Inj: 1 Acquired: 23-APR-12 06:03:22 cessed: 23-APR-12 10:20:381 LAB. ID: ICAL CS0.5 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 23 2,3,7,8-TCDF 7.76e+04 3.56e+02 2.2e+02 9.77e+04 | 8.60e+02 | 1.1e+02 1,2,3,7,8-PeCDF 5.45e+05 5.80e+02 9.4e + 023.56e+05 1.11e+03 3.2e + 023.27e+05 1.11e+03 3.0e + 022,3,4,7,8-PeCDF 5.33e+05 5.80e+02 9.2e+02 1,2,3,4,7,8-HxCDF 3.71e+05 | 9.64e+02 | 3.9e+02 4.46e+05 1.04e+03 | 4.3e+02 3.75e+05 | 9.64e+02 | 3.9e+021,2,3,6,7,8-HxCDF 4.76e+05 1.04e+03 4.6e+02 3.8e+02 3.63e+05 | 9.64e+02 | 2,3,4,6,7,8-HxCDF 4.3e+02 4.44e+05 1.04e+03 1,2,3,7,8,9-HxCDF 3.17e+05| 9.64e+02| 3.3e + 024.21e+05 1.04e+03 4.1e+02 3.64e+05 9.12e+02 4.0e + 021,2,3,4,6,7,8-HpCDF 3.61e+05 1.55e+03 2.3e+02 1.7e+02 2.50e+05 9.12e+02 2.7e + 021,2,3,4,7,8,9-HpCDF 2.64e+05 1.55e+03 3.60e+05 | 6.40e+02 | 5.6e+02 4.52e+02 | 6.9e+02 | OCDF | 3.14e+05| 130 2,3,7,8-TCDD| 7.19e+04| 7.36e+02| 9.8e+01| 7.88e+04 5.16e+02 1.5e + 021341 2.54e+05 6.88e+02 3.7e + 021,2,3,7,8-PeCDD 3.70e+05 8.56e+02 4.3e+02 1,2,3,4,7,8-HxCDD 3.33e+05 1.24e+03 2.7e + 022.81e+05 9.52e+02 2.9e + 021,2,3,6,7,8-HxCDD 3.24e+05 1.24e+03 2.6e+02 2.77e+05 9.52e+02 2.9e + 029.52e+02 2.8e + 021,2,3,7,8,9-HxCDD 3.67e+05 1.24e+03 3.0e+02 2.68e+05 1,2,3,4,6,7,8-HpCDD 2.41e+05 | 4.04e+02 | 6.0e+02 | 2.39e+05 3.20e+02 7.5e + 02OCDD| 2.61e+05| 3.24e+02| 8.1e+02| 2.89e+05| 5.60e+02| 5.2e+02 7.32e+03 | 4.5e+03 | 4.29e+07 | 1.38e+03 | 3.1e + 0413C-2,3,7,8-TCDF 3.29e+07 13C-1,2,3,7,8-PeCDF | 4.55e+07| 4.20e+02 | 1.1e+05 | 2.95e+07 | 3.36e+02 8.8e + 043.36e+02 8.9e + 044.20e+02 1.1e+05 2.98e+07 18C-2,3,4,7,8-PeCDF 4.63e+07 1.92e+07 | 8.16e+02 | 2.4e+04 | 3.67e+07 1.29e+03 2.8e + 0413C-1,2,3,4,7,8-HxCDF 13C 1,2,3,6,7,8-HxCDF 4.08e+07 1.29e+03 3.2e + 042.13e+07 8.16e+02 2.6e+04 3.87e+07 1.29e+03 3.0e + 0413C-2,3,4,6,7,8-HxCDF 1.99e+07 8.16e+02 2.4e+04 13C-1,2,3,7,8,9-HxCDF 1.81e+07 8.16e+02 2.2e+04 3.47e+07 1.29e+03 2.7e + 041.35e+07 | 1.70e+03 | 8.0e+03 | 3.00e+07 3.51e+03 8.6e+03 76.13C-1,2,3,4,7,8,9-HpCDF| 1.02e+07| 1.70e+03| 6.0e+03| 2.26e+07| 3.51e+03| 6.4e+03 2.93e+07 | 2.94e+03 | 1.0e+04 | 3.72e+07 | 9.36e+02 | 4.0e+04 13C-2,3,7,8-TCDD 3.53e+07 2.26e+07 4.96e+02 6.7e+04 4.5e + 0413C-1,2,3,7,8-PeCDD 5.24e+02 1.2e+04 2.30e+07 1.54e+03 1.5e + 0413C-1,2,3,4,7,8-HxCDD 2.95e+07 2.40e+03 1.1e+04 2.20e+07 1.54e+03 1.4e + 0413C-1,2,3,6,7,8-HxCDD 2.75e+07 2.40e+03 1.8e+04 | 1.94e+07 | 7.32e+02 2.6e + 0413C-1,2,3,4,6,7,8-HpCDD 2.07e+07 | 1.14e+03 | 13C-OCDD| 2.12e+07| 5.64e+02| 3.8e+04| 2.35e+07| 7.92e+02| 3.0e+04 2.82e+07 | 2.94e+03 | 9.6e+03 | 3.57e+07 | 9.36e+02 | 3.8e+04 13C-1,2,3,4-TCDD 1.3e+04 | 2.42e+07 | 1.54e+03 | 1.6e+04 13C-1,2,3,7,8,9-HxCDD 3.06e+07 2.40e+03

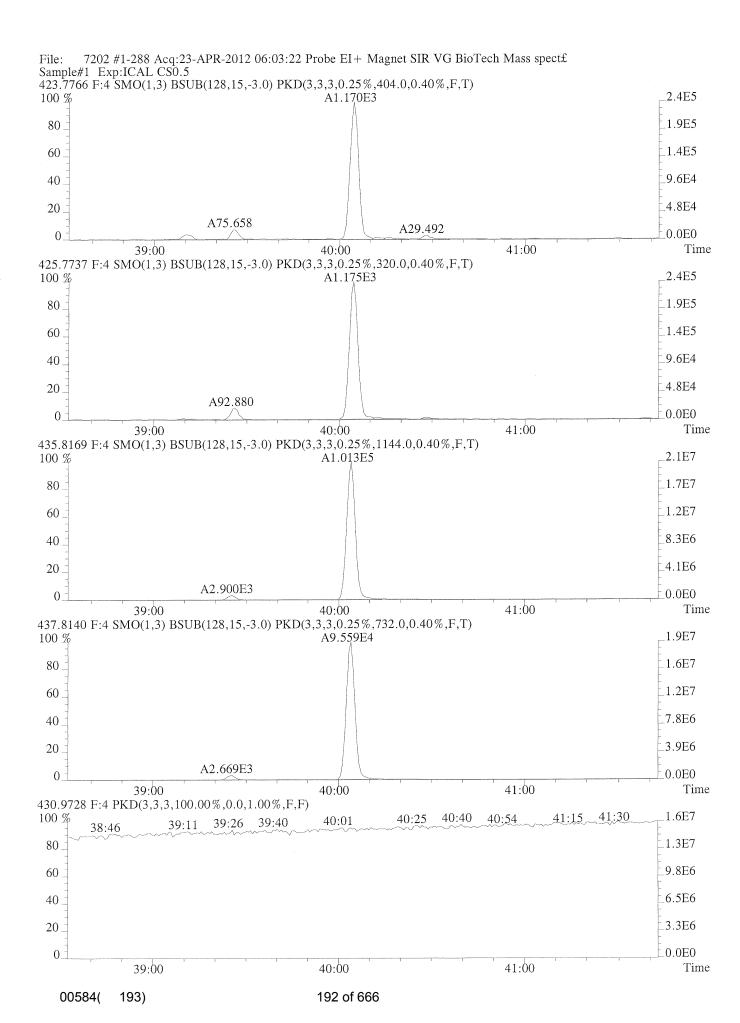

37Cl-2,3,7,8-TCDD | 1.57e+05 | 1.28e+03 | 1.2e+02

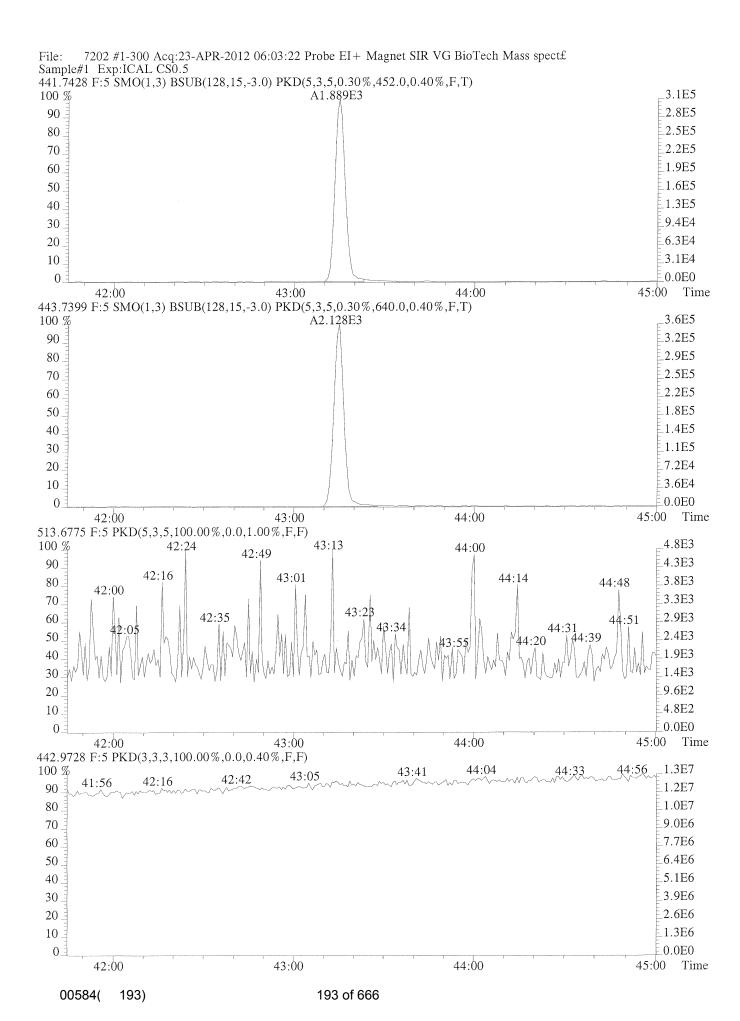

23

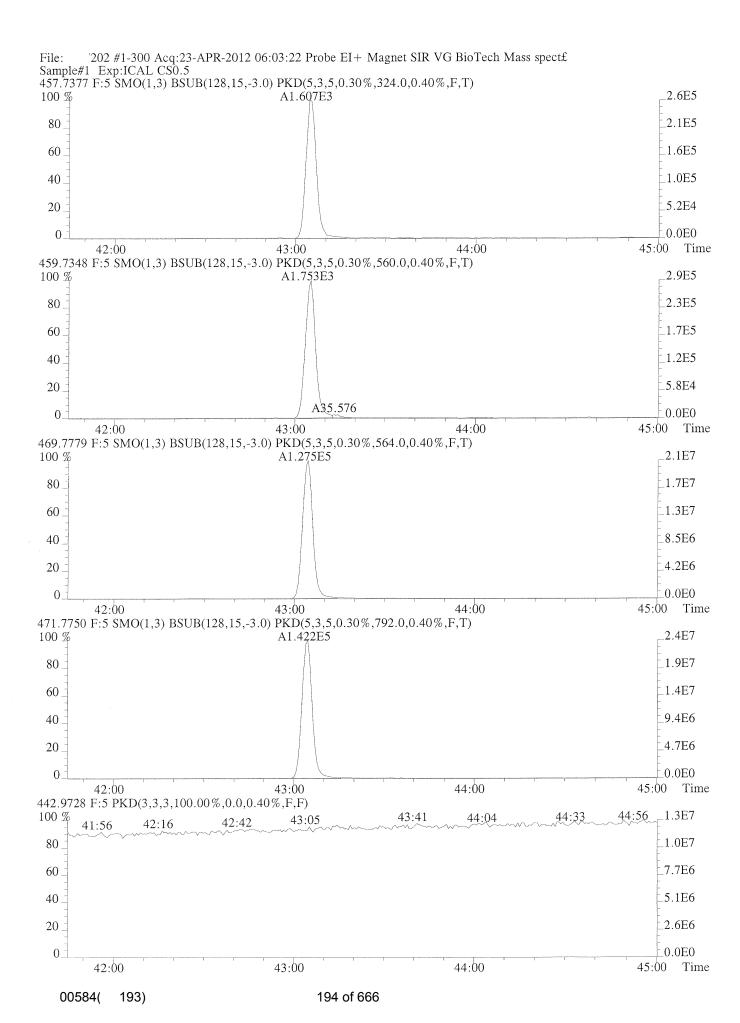

dolui *@4.c 4











1.63 1.63 1.63		Sample R	Response Summary		CLIENT ICAL CS			
	Filename 7203 #1 : 23-APR-12 10:20:42	Samp:	1 Inj: 1 LAB. ID: ICAL		23-APR	-12 07	:12:3	8
Тур	Name	e RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
Unk Unk Unk		F 32:55	1.117e+03 7.190e+03 6.413e+03	1.557e+03 4.529e+03 4.148e+03	0.72 1.59 1.55	yes yes yes	no no no	1.001
TORG Unk 1860 Unk 1865 Unk	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI	F 36:29 F 36:35 F 37:04	5.746e+03 5.979e+03 5.534e+03	4.635e+03 4.867e+03 4.663e+03	1.24 1.23 1.19	yes yes yes	no no no	1.000
diff Unk V8 Unk Unk Unk	1,2,3,4,6,7,8-HpCDI 1,2,3,4,7,8,9-HpCDI	F 39:12	5.168e+03 4.787e+03 3.775e+03 5.272e+03	4.077e+03 4.657e+03 3.673e+03 5.801e+03	1.27 1.03 1.03 0.91	yes yes yes yes	no no no no	1.000 1.000 1.000 1.004
Unk Unk	2,3,7,8-TCDI 1,2,3,7,8-PeCDI	0 29:22 0 34:01	9.344e+02 4.866e+03	1.233e+03 3.062e+03	0.76	yes yes	no no	1.001
Unk Unk Unk Unk	1,2,3,4,6,7,8-HpCDI	37:15 37:32 0 40:05	4.053e+03 4.085e+03 4.271e+03 3.271e+03	3.339e+03 3.329e+03 3.460e+03 3.210e+03	1.21 1.23 1.23 1.02	yes yes yes	no no no	1.000 1.000 1.008 1.000
Unk IS IS IS IS	13C-2,3,7,8-TCDI		4.582e+03 2.487e+05 2.802e+05	5.162e+03 3.208e+05 1.781e+05	0.89	yes yes	no no no	0.978
is is	13C-1,2,3,4,7,8-HxCDI 13C-1,2,3,6,7,8-HxCDI 13C-2,3,4,6,7,8-HxCDI	F 36:28 F 36:34 F 37:03	2.685e+05 1.146e+05 1.273e+05 1.186e+05	1.710e+05 2.150e+05 2.519e+05 2.259e+05	1.57 0.53 0.51 0.52	yes yes yes	no no no	1.154 0.972 0.975 0.988 1.006
IS:	13C-1,2,3,7,8,9-HxCDI 13C-1,2,3,4,6,7,8-HpCDI 13C-1,2,3,4,7,8,9-HpCDI	F 39:11 F 40:29	1.049e+05 8.125e+04 6.924e+04	2.031e+05 1.803e+05 1.534e+05	0.52	yes yes yes	no no no	1.044
IS IS IS IS	13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeCDI 13C-1,2,3,4,7,8-HxCDI 13C-1,2,3,6,7,8-HxCDI 13C-1,2,3,4,6,7,8-HpCDI 13C-OCDI	33:59 0 37:10 0 37:14 0 40:04	1.925e+05 2.112e+05 1.659e+05 1.611e+05 1.303e+05 1.715e+05	2.452e+05 1.339e+05 1.324e+05 1.279e+05 1.234e+05 1.900e+05	0.78 1.58 1.25 1.26 1.06 0.90	yes yes yes yes yes	no no no no no	1.007 1.166 0.991 0.992 1.068 1.148
RS/RT RS/RT C/Up	13C-1,2,3,4-TCDI 13C-1,2,3,7,8,9-HxCDI 37Cl-2,3,7,8-TCDI	37:31	1.964e+05 1.735e+05 2.319e+03	2.473e+05 1.389e+05	0.79 1.25	yes yes	no no no	* * 1.008
	00584(193)		195 of 666					

28 CLIENT ID. Signal/Noise Height Ratio Summary ICAL CS1 1940 Acquired: 23-APR-12 07:12:38 #2 Filename 7203 Samp: 1 Inj: 1 LAB. ID: ICAL CS1 Processed: 23-APR-12 10:20:421 30. Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 91 97 20 2,3,7,8-TCDF 1.87e+05 3.80e+02 | 4.9e+02 | 2.61e+05 | 5.68e+02 | 4.6e+02 1.42e+06 4.16e+02 3.4e+03 8.89e+05 1.24e+03 7.2e + 021,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1.26e+06 4.16e+02 3.0e+03 8.28e+05 1.24e+03 6.7e+02 1,2,3,4,7,8-HxCDF 1.25e+06 7.20e+02 | 1.7e+03 9.88e+05 3.80e+02 2.6e + 031,2,3,6,7,8-HxCDF 7.20e+02 | 1.8e+03 1.05e+06 3.80e+02 2.8e + 031.30e+06 5 ¥ 7.20e+02 1.7e+03 1.03e+06 3.80e+02 2.7e + 032,3,4,6,7,8-HxCDF 1.21e+06 7.20e+02 1.5e+03 8.47e+05 3.80e+02 2.2e + 031,2,3,7,8,9-HxCDF 1.09e+06 3. Jul 1.26e+03 7.9e + 026.5e+02 9.98e+05 1,2,3,4,6,7,8-HpCDF 1.03e+06 1.59e+03 1.26e+03 5.7e + 024.6e+02 7.20e+05 1,2,3,4,7,8,9-HpCDF 7.28e+05 1.59e+03 azir 4.40e+02 | 1.9e+03 | 9.60e+05 5.48e+02 1.8e + 03OCDF 8.52e+05 úŹ 2,3,7,8-TCDD | 1.63e+05 | 5.60e+02 | 2.9e+02 | 5.4e + 022.04e+05 | 3.80e+02 | 1,2,3,7,8-PeCDD | 9.68e+05 | 5.44e+02 | 1.8e+03 | 2.5e + 036.20e+05 | 2.52e+02 | 7.43e+05 | 6.68e+02 | 1.1e + 036.60e+02 1.4e+03 1,2,3,4,7,8-HxCDD 9.05e+05 1.1e + 031,2,3,6,7,8-HxCDD 9.02e+05 6.60e+02 1.4e+03 7.41e+05 | 6.68e+02 | 1.1e + 031,2,3,7,8,9-HxCDD 9.01e+05 6.60e+02 1.4e + 037.35e+05 6.68e+02 2.80e+02 2.3e + 031,2,3,4,6,7,8-HpCDD 6.40e+05 4.24e+02 1.5e+03 6.44e+05 OCDD| 7.86e+05| 3.84e+02| 2.0e+03| 8.58e+05| 2.68e+02| 3.2e+03 5.32e+07 | 9.12e+02 | 5.8e + 0413C-2,3,7,8-TCDF 4.13e+07 3.98e+03 1.0e+04 7.5e + 0413C-1,2,3,7,8-PeCDF 5.44e+07 2.88e+02 1.9e+05 3.47e+07 | 4.60e+02 7.4e + 0413C-2,3,4,7,8-PeCDF 5.39e+07 2.88e+02 1.9e+05 3.42e+07 4.60e+02 4.2e+045.1e + 044.72e+07 1.12e+03 13C-1,2,3,4,7,8-HxCDF 2.45e+07 4.80e+02 4.80e+02 5.7e+04 5.26e+07 1.12e+03 4.7e + 0413C-1,2,3,6,7,8-HxCDF 2.76e+07

3.35e+07 | 3.08e+03 | 1.1e+04 | 4.25e+07 | 1.37e+03 3.1e + 0413C-2,3,7,8-TCDD 9.4e+04 2.67e+07 3.48e+02 7.7e + 044.20e+07 4.48e+02 13C-1,2,3,7,8-PeCDD 2.95e+07 1.45e+03 2.0e + 0413C-1,2,3,4,7,8-HxCDD 3.70e+07 2.38e+03 1.6e+04 13C-1,2,3,6,7,8-HxCDD 1.4e+04 2.75e+07 1.45e+03 1.9e + 043.44e+07 2.38e+03 3.6e + 042.1e+04 2.46e+07 6.84e+02 2.58e+07 1.24e+03 3C-1,2,3,4,6,7,8-HpCDD 6.0e + 0413C-OCDD | 2.87e+07 | 5.72e+02 | 5.0e+04 | 3.19e+07 | 5.28e+02 |

4.80e+02

4.80e+02

5.04e+03

2.58e+07

2.22e+07

1.73e+07

1.34e+07

5.4e+04

4.6e+04

3.4e+03

4.90e+07

4.24e+07

3.80e+07

5.04e+03 | 2.6e+03 | 2.96e+07 | 7.10e+03 |

1.12e+03

1.12e+03

7.10e+03

4.4e + 04

3.8e + 04

5.4e + 03

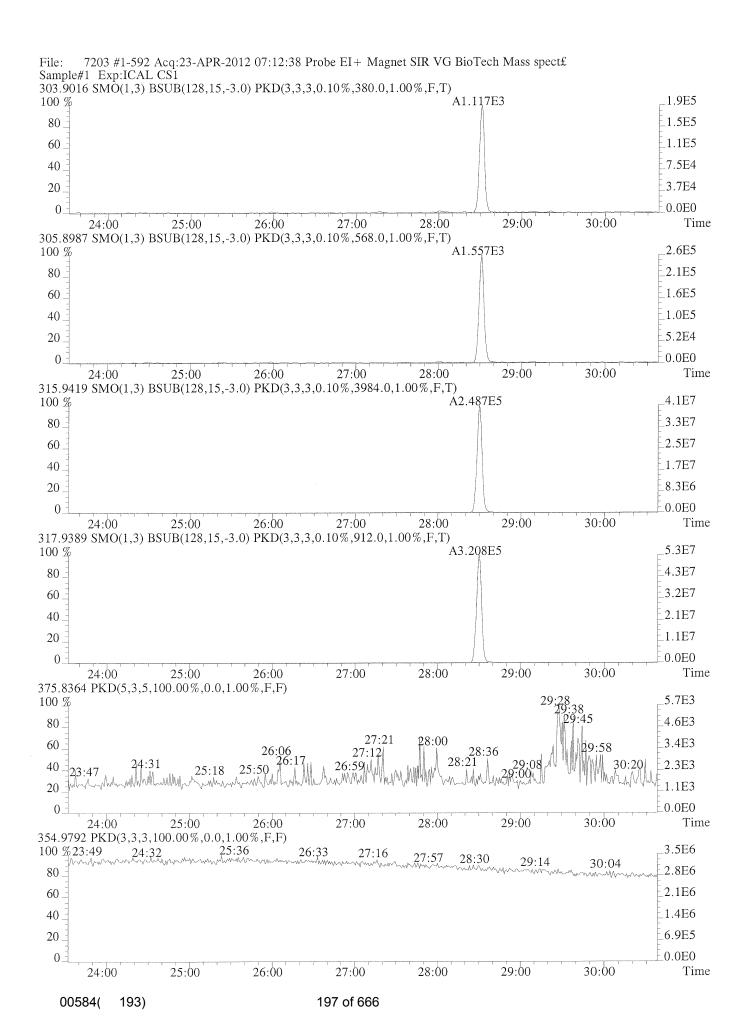
4.2e + 03

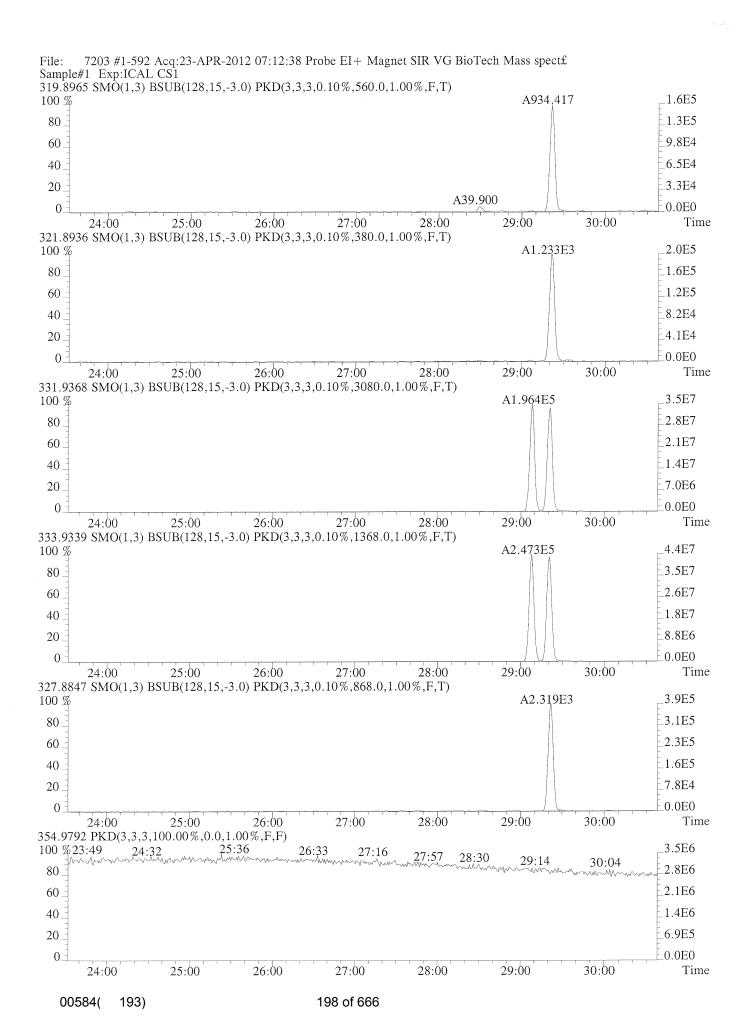
13C-1,2,3,4-TCDD | 3.48e+07 | 3.08e+03 | 1.1e+04 | 4.39e+07 | 1.37e+03 | 3.2e+04 | 13C-1,2,3,7,8,9-HxCDD | 3.73e+07 | 2.38e+03 | 1.6e+04 | 3.00e+07 | 1.45e+03 | 2.1e+04 | 37Cl-2,3,7,8-TCDD | 3.90e+05 | 8.68e+02 | 4.5e+02

13C-2,3,4,6,7,8-HxCDF

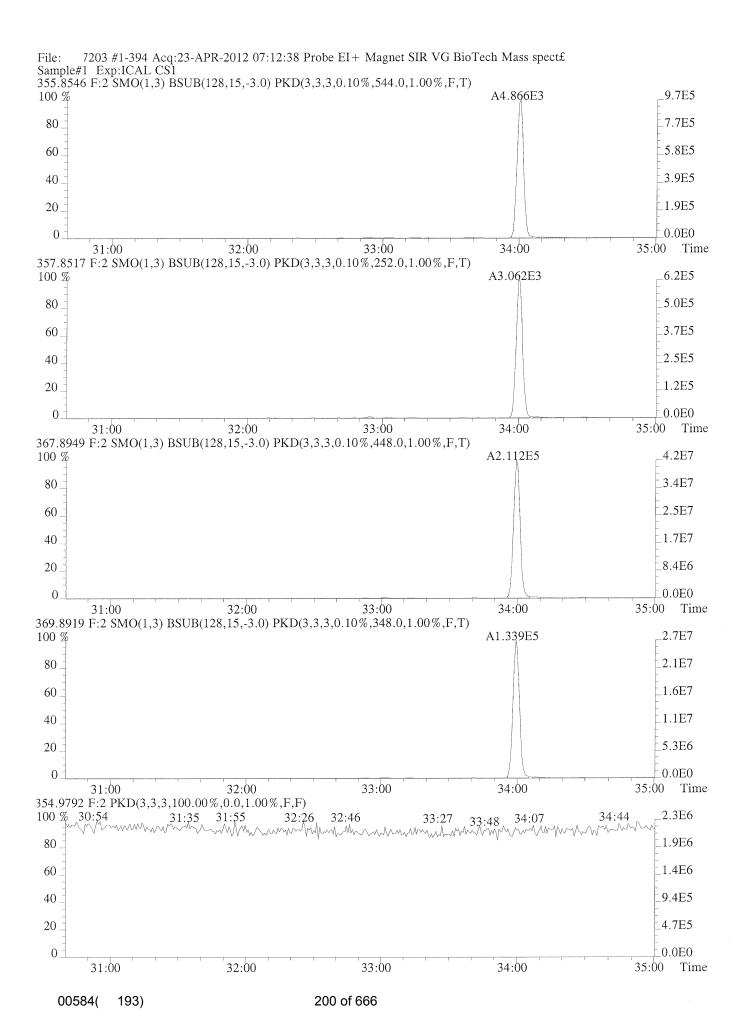
13C-1,2,3,7,8,9-HxCDF

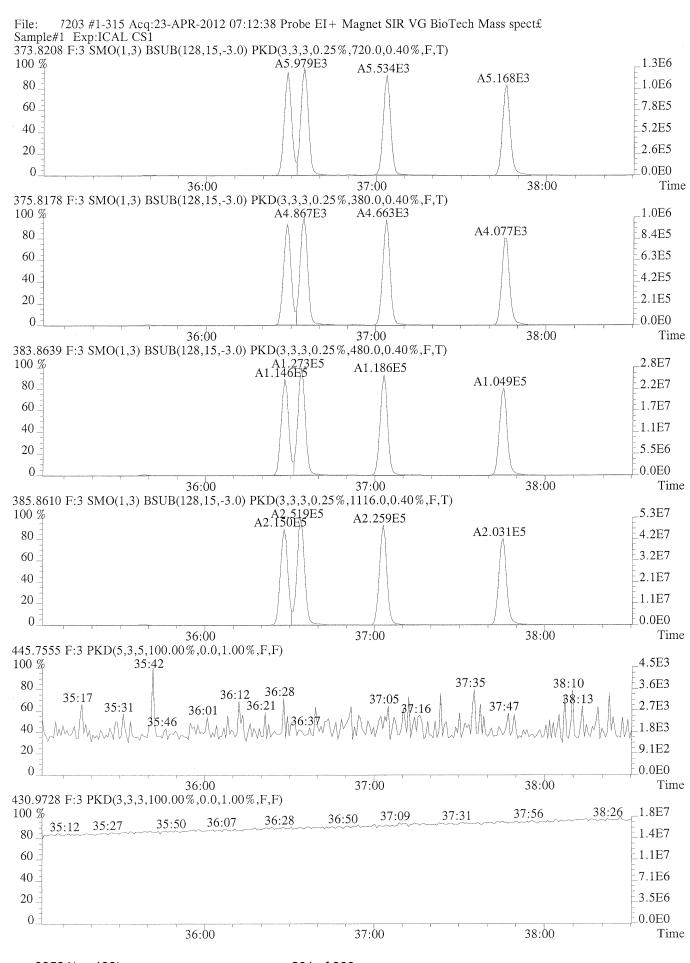
%5-13C-1,2,3,4,6,7,8-HpCDF

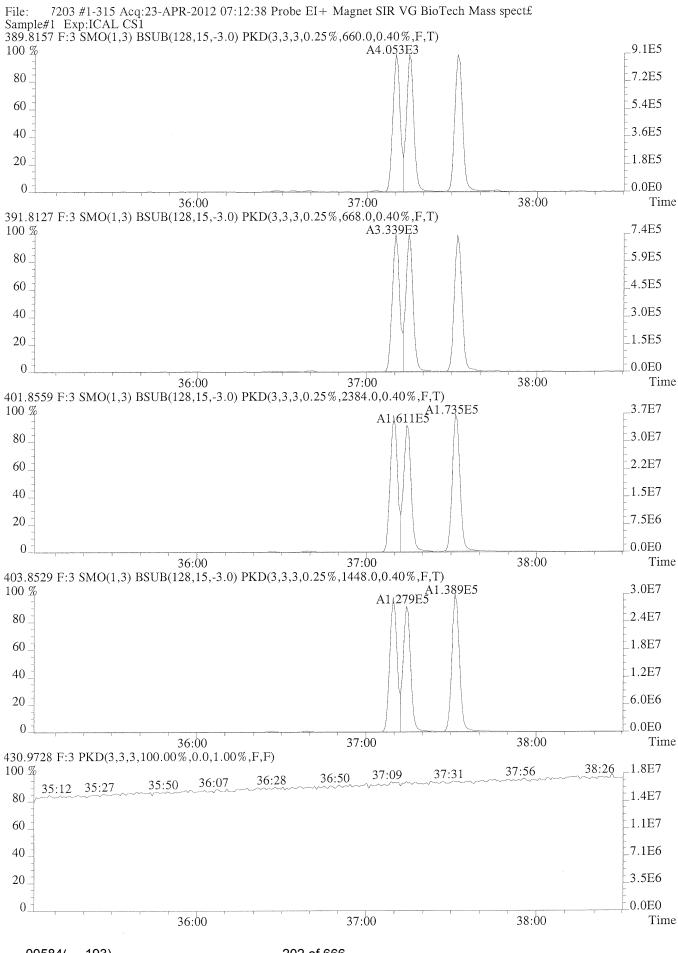

36,13C-1,2,3,4,7,8,9-HpCDF

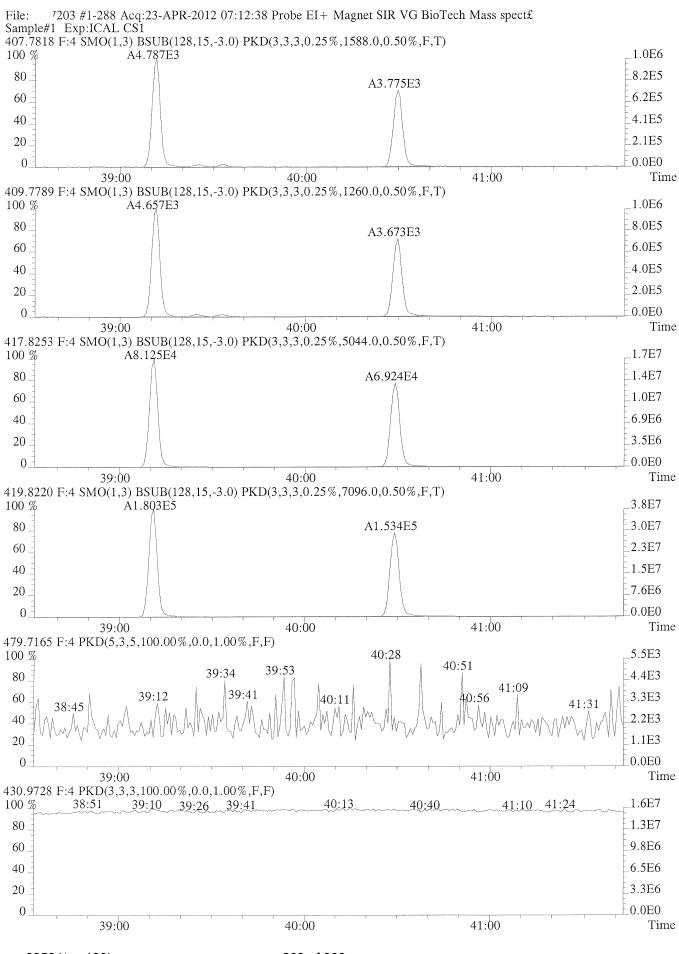

(n. 14)

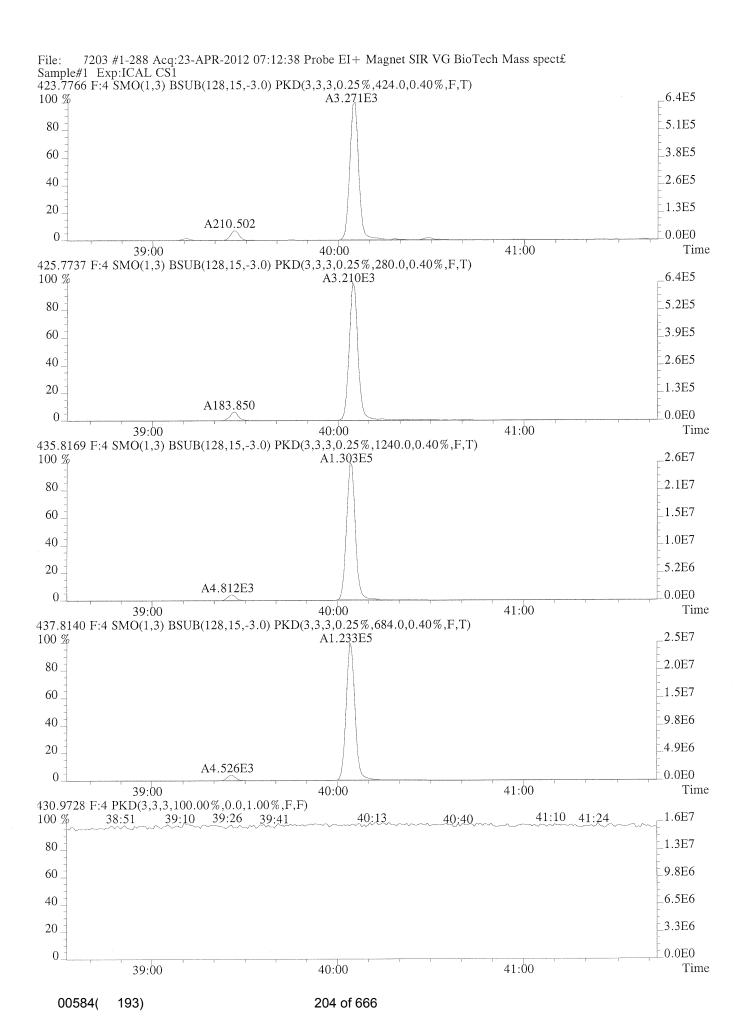
33₅

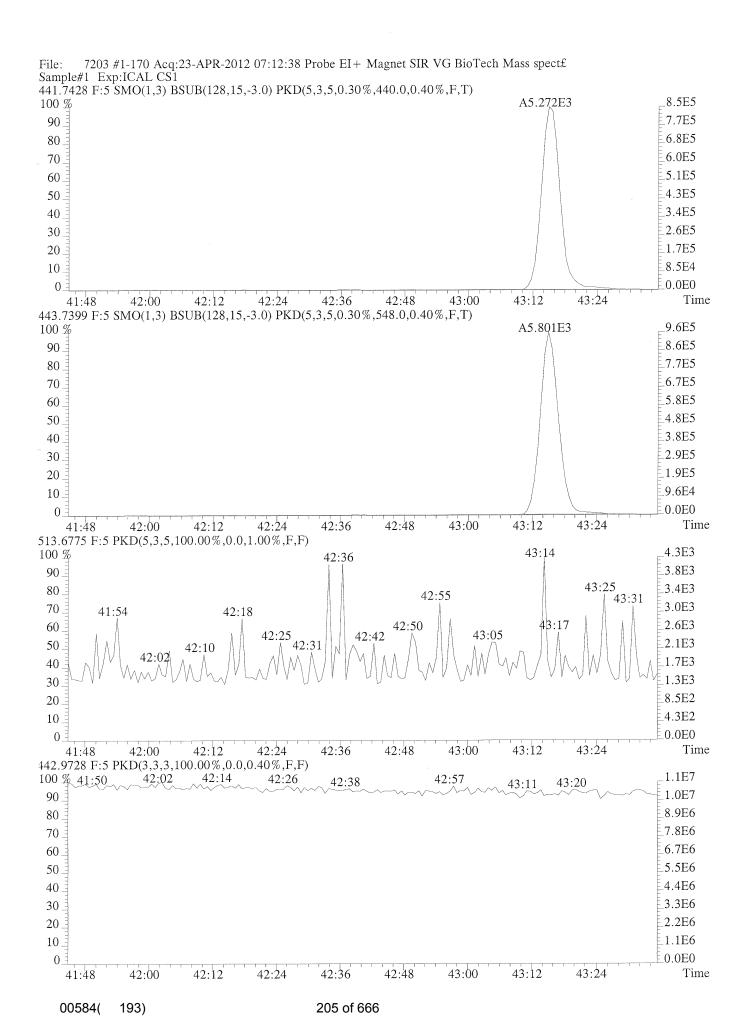

41 g 4

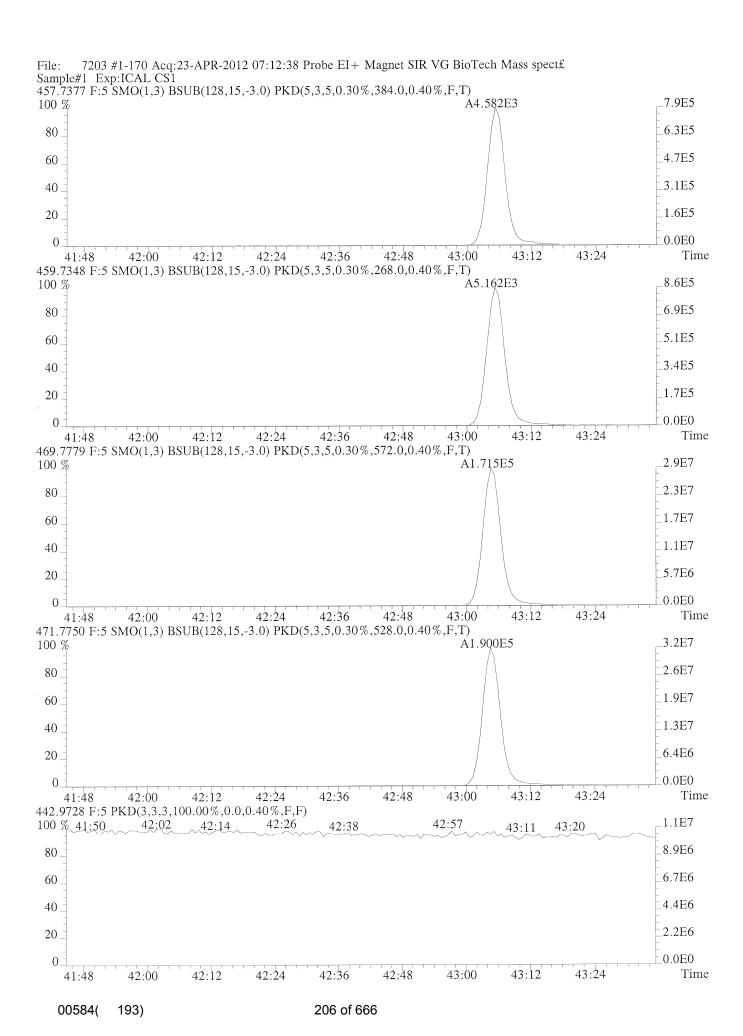

4.3











ICAL CS2

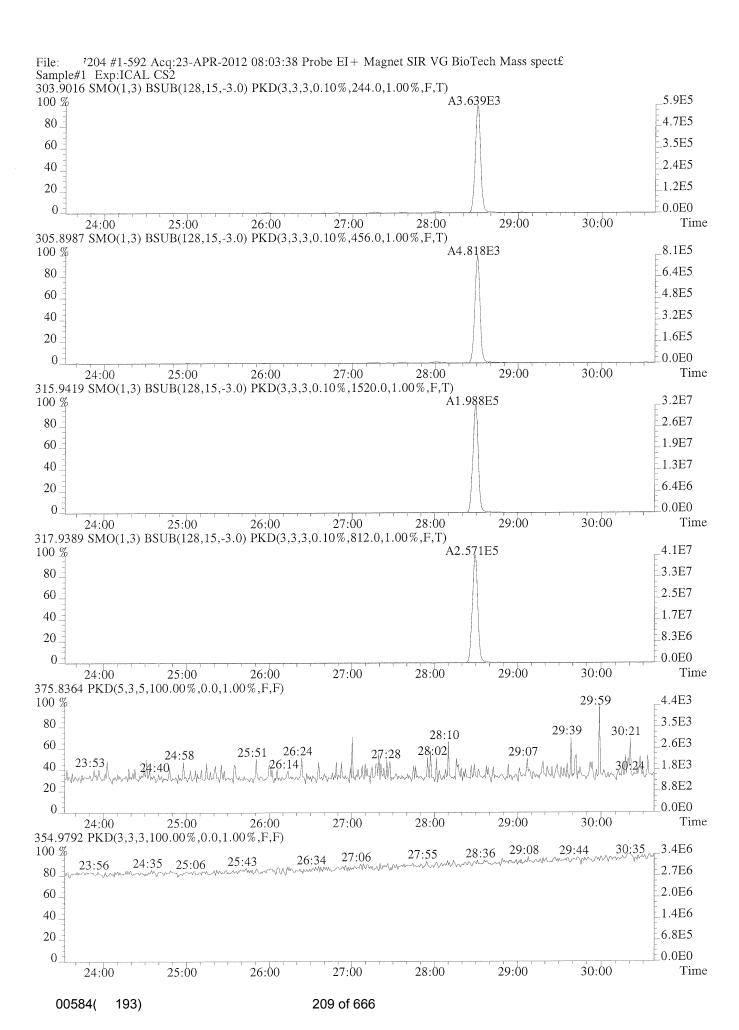
#3 Filename 7204 #1 Samp: 1 Inj: 1 Acquired: 23-APR-12 08:03:38 LAB. ID: ICAL CS2

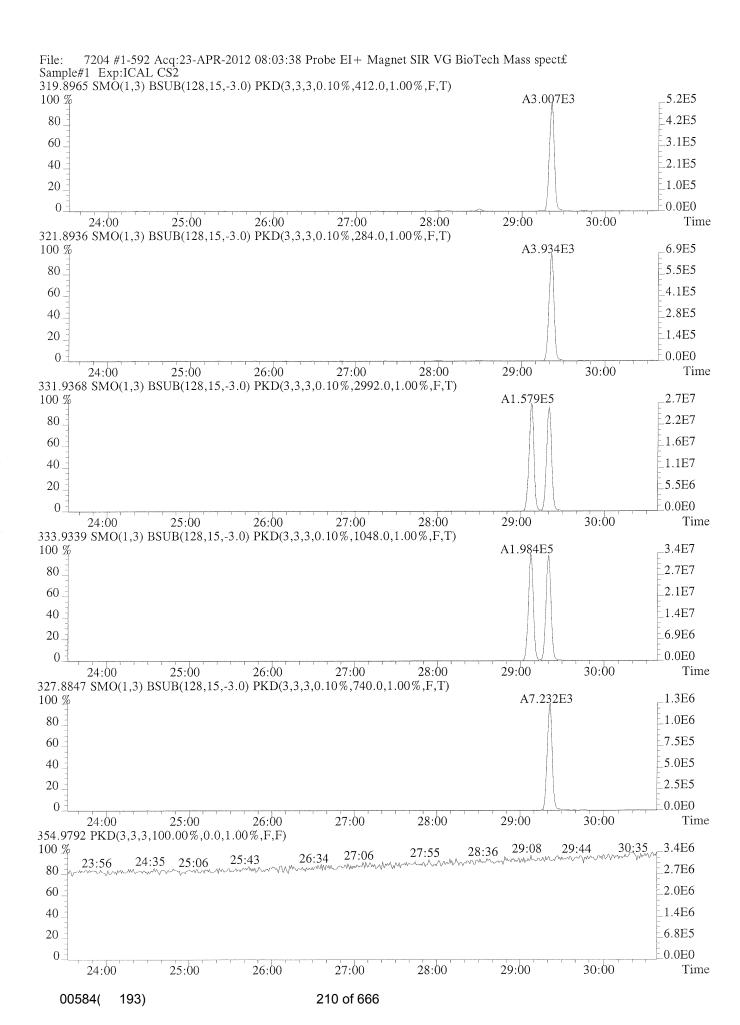
1321.

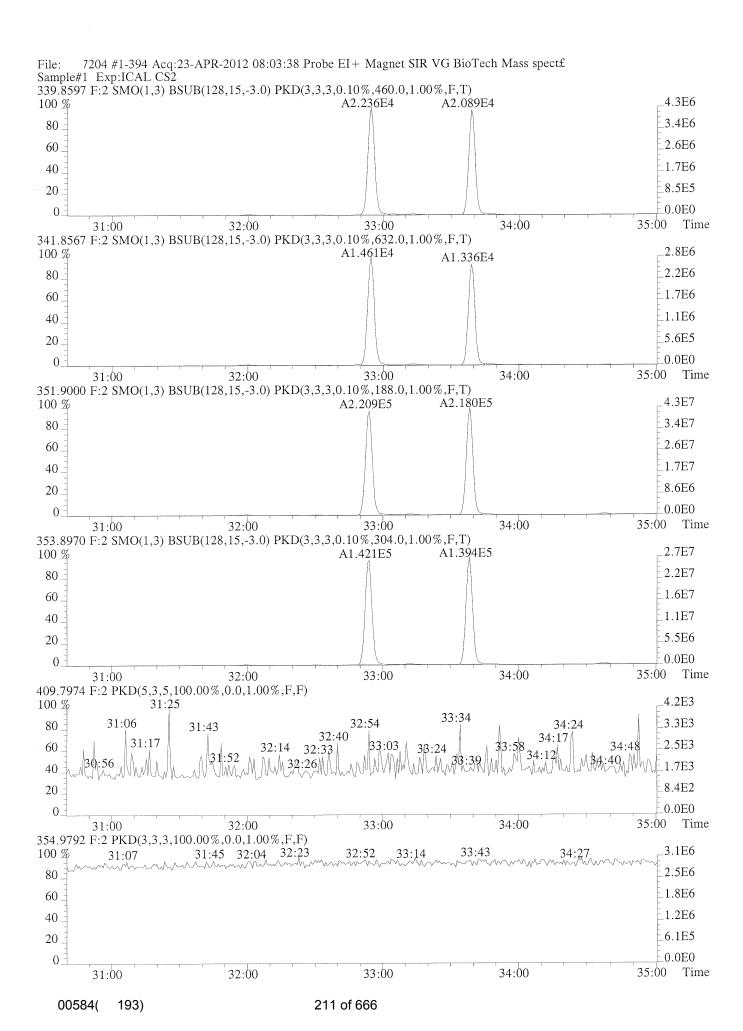
	cessea:	23-APR-12	10:20:46		LAB. ID: ICAI	J C52				
102 153	Тур		Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
	Unk	2.	3,7,8-TCDF	28:31	3.639e+03	4.818e+03	0.76	yes	no	1.001
12.39	Unk		7,8-PeCDF	•	2.236e+04	1.461e+04	1.53	yes	no	1.001
1 1 A	Unk		.,7,8-PeCDF		2.089e+04	1.336e+04	1.56	yes	no	1.000
128	Unk		7,8-HxCDF		1.874e+04	1.436e+04	1.31	yes	no	1.000
	Unk		5,7,8-HxCDF		1.915e+04	1.587e+04	1.21	yes	no	1.000
	Unk			37:04	1.763e+04	1.415e+04	1.25	yes	no	1.000
- 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (Unk		7,8,9-HXCDF	i .	1.581e+04	1.266e+04	1.25	yes	no	1.000
	Unk				1.481e+04	1.442e+04	1.03	yes	no	1.000
- 3423	Unk		7,8-HpCDF 7,8,9-HpCDF		1.431e+04	1.143e+04	1.03	yes	no	1.000
		1,2,3,4,7		43:16	1.644e+04	1.797e+04	0.91	yes	no	1.004
	Unk		OCDF	43:10	1.0440+04	1.79704	0.91	УСБ	110	1.004
	Unk.	2	3,7,8-TCDD	29.22	3.007e+03	3.934e+03	0.76	yes	no	1.001
a visto. Na series	Unk		7,8-PeCDD	!	1.492e+04	9.729e+03	1.53	yes	no	1.000
	Unk		7,8-HxCDD		1.305e+04	1.048e+04	1.24	yes	no	1.000
	Unk		7,8-HxCDD		1.281e+04	1.013e+04	1.26	yes	no	1.000
43	Unk		7,8,9-HxCDD		1.314e+04	1.078e+04	1.22	yes	no	1.008
24.3	Unk		7,8-HpCDD		1.028e+04	9.917e+03	1.04	yes	no	1.000
ا بالمراج المراجع المراجع	Unk	1,2,3,4,6		43:05	1.028e+04	1.564e+04	0.88	yes	no	1.000
- 무료생 무료활동	UIIK		ОСДД	43:03	1.3036+04	1.3046+04	0.00	усь	110	1.000
1	IS	13C-2.	3,7,8-TCDF	28:30	1.988e+05	2.571e+05	0.77	yes	no	0.979
19	IS		,7,8-PeCDF	,	2.209e+05	1.421e+05	1.55	yes	no	1.130
38	IS		7,8-PeCDF		2.180e+05	1.394e+05	1.56	yes	no	1.155
7 0 st		13C-1,2,3,4		•	9.150e+04	1.707e+05	0.54	yes	no	0.972
443		13C-1,2,3,6			1.019e+05	2.002e+05	0.51	yes	no	0.975
		13C-2,3,4,6			9.342e+04	1.803e+05	0.52	yes	no	0.988
		13C-1,2,3,7			8.275e+04	1.578e+05	0.52	yes	no	1.006
17 13 14 17 12 14		C-1,2,3,4,6			6.435e+04	1.430e+05	0.45	yes	no	1.044
		C-1,2,3,4,5			5.403e+04	1.208e+05	0.45	yes	no	1.079
	1077	C 1/2/3/4//	, o , o iipebi	10.25	7 3.1030701	1.2000.00	1 0.101	2 1		
	IS	13C-2,	3,7,8-TCDD	29:20	1.532e+05	1.958e+05	0.78	yes	no	1.007
1. 注意。	IS		,7,8-PeCDD		1.649e+05	1.051e+05	1.57	yes	no	1.167
343.		13C-1,2,3,4			1.286e+05	1.024e+05	1.26	yes	no	0.991
		13C-1,2,3,6			1.263e+05	1.009e+05	1.25	yes	no	0.992
3.4		C-1,2,3,4,6			1.015e+05	9.667e+04	1.05	yes	no	1.068
135	IS	, , , ,	13C-OCDD	43:05	1.307e+05	1.461e+05	0.89	yes	no	1.148
425				'	·					
- 1437	S/RT		2,3,4-TCDD		1.579e+05	1.984e+05	0.80	yes	no	*
		13C-1,2,3,7			1.348e+05	1.092e+05	1.23	yes	no	*
33	C/Up	37Cl-2,	3,7,8-TCDD	29:22	7.232e+03				no	1.009
1.58										
14 H										
34										
(4)										
\$ 3 										
7 Mr. -A B										

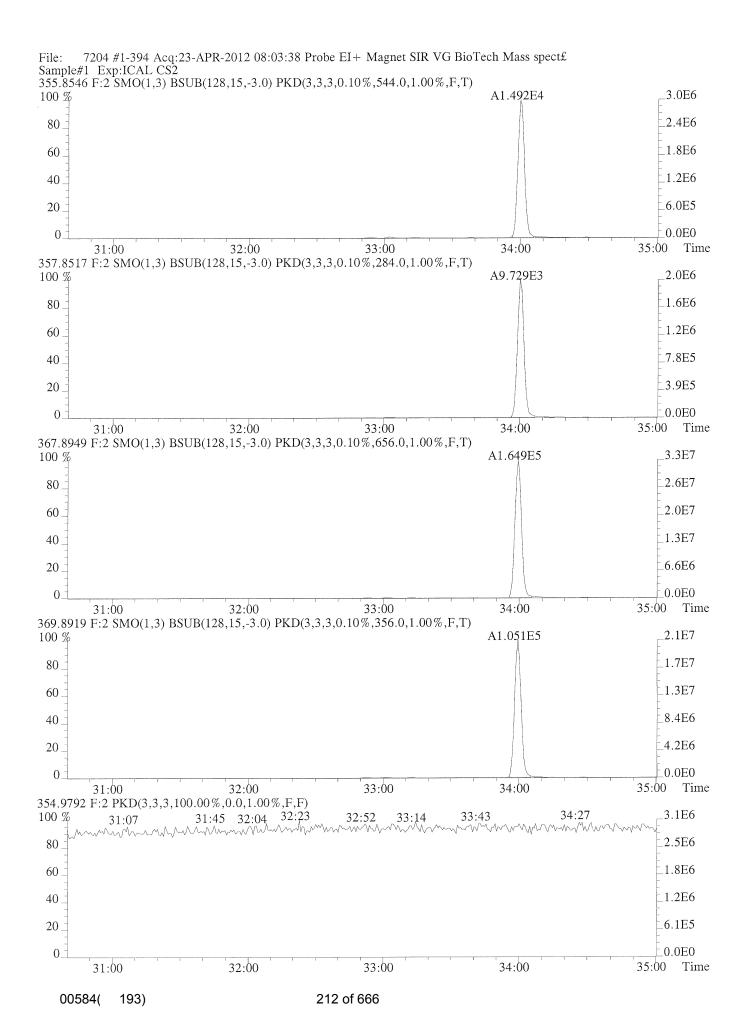
\$9m.#3 Acquired: 23-APR-12 08:03:38 Filename 7204 Samp: 1 Inj: 1 LAB. ID: ICAL CS2 Processed: 23-APR-12 10:20:461 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 5.90e+05 | 2.44e+02 | 2.4e+03 | $8.05e+05 \mid 4.56e+02 \mid 1.8e+03$ 2.79e+06 | 6.32e+02 | 4.4e+03 4.26e+06 4.60e+02 9.3e+03 1,2,3,7,8-PeCDF 2.60e+06 | 6.32e+02 | 2,3,4,7,8-PeCDF 4.15e+06 4.60e+02 9.0e+03 4.1e + 031,2,3,4,7,8-HxCDF 4.05e+06 6.56e+02 6.2e+03 3.19e+06 | 3.32e+02 | 9.6e + 031,2,3,6,7,8-HxCDF 4.06e+06 | 6.56e+02 6.2e+03 3.27e+06 | 3.32e+02 | 9.8e+03 6.56e+02 5.8e+03 3.07e+06 3.32e+02 9.2e + 032,3,4,6,7,8-HxCDF 3.81e+06 4.9e+03 2.59e+06 3.32e+02 7.8e + 031,2,3,7,8,9-HxCDF 3.22e+06 6.56e+02 2.99e+06 1.70e+03 1.8e + 031,2,3,4,6,7,8-HpCDF 1.5e+03 3.08e+06 2.10e+03 2.21e+06 1.70e+03| 2.10e+03 1.1e+03 1.3e + 031,2,3,4,7,8,9-HpCDF 2.28e+06 OCDF | 2.61e+06 | 2.92e+02 | 8.9e+03 | 2.94e+06 | 4.20e+02 | 7.0e + 032,3,7,8-TCDD | 5.20e+05 | 4.12e+02 | 1.3e+03 | 2.4e + 036.87e+05 2.84e+02 1,2,3,7,8-PeCDD | 2.99e+06 | 5.44e+02 | 5.5e+03 | 6.9e + 031.95e+06 | 2.84e+02 | 3.7e + 032.31e+06 6.28e+02 1,2,3,4,7,8-HxCDD 3.4e+03 2.87e+06 8.36e+02 2.75e+06 8.36e+02 3.3e+03 2.19e+06 6.28e+02 3.5e + 031,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2.79e+06 8.36e+02 3.3e+03 | 2.26e+06 | 6.28e+02 3.6e + 034.8e+03 | 1.92e+06 | 6.04e+02 3.2e + 031,2,3,4,6,7,8-HpCDD 2.04e+06 4.28e+02 OCDD| 2.26e+06| 2.48e+02| 9.1e+03| 2.55e+06| 3.16e+02| 8.1e+03 3.22e+07 | 1.52e+03 | 2.1e+04 | 4.13e+07 | 8.12e+02 | 5.1e + 0413C-2,3,7,8-TCDF 19 ... 8.7e + 0413C-1,2,3,7,8-PeCDF 4.14e+07 1.88e+02 | 2.2e+05 | 2.65e+07 3.04e+02 9.0e + 044.28e+07 1.88e+02 | 2.3e+05 | 2.73e+07 3.04e+02 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 3.2e + 041.10e+03 1.8e+04 3.77e+07 1.17e+03 1.96e+07 13C-1,2,3,6,7,8-HxCDF 1.10e+03 2.0e+04 4.10e+07 1.17e+03 3.5e + 042.15e+07 13C-2,3,4,6,7,8-HxCDF 1.10e+03 | 1.8e+04 | 3.89e+07 1.17e+03 3.3e + 042.02e+07 13C-1,2,3,7,8,9-HxCDF 3.25e+07 1.17e+03 2.8e + 041.6e+04 1.72e+07 1.10e+03 3C-1,2,3,4,6,7,8-HpCDF 1.01e+04 2.69e+03 5.1e+03 3.02e+07 3.0e + 031.36e+07 3C-1,2,3,4,7,8,9-HpCDF| 1.03e+07| 2.69e+03| 3.9e+03| 2.32e+07| 1.01e+04| 2.3e+03 13C-2,3,7,8-TCDD | 2.65e+07 | 2.99e+03 | 8.9e+03 | 3.38e+07 | 1.05e+03 | 3.2e + 043.28e+07 | 6.56e+02 | 5.0e+04 | 2.10e+07 | 3.56e+02 | 5.9e+04 18C-1,2,3,7,8-PeCDD 2.26e+07 1.02e+03 2.2e + 042.83e+07 1.5e+04 13C-1,2,3,4,7,8-HxCDD 1.82e+03 1.82e+03 1.5e+04 2.16e+07 1.02e+03 2.1e + 0413C-1,2,3,6,7,8-HxCDD 2.65e+07 1.88e+07| 1.4e+04 3.44e+02 5.5e + 041.95e+07 | 1.40e+03 | 3C-1,2,3,4,6,7,8-HpCDD 13C-OCDD| 2.12e+07| 5.28e+02| 4.0e+04| 2.38e+07| 5.04e+02| 4.7e+04 13C-1,2,3,4-TCDD | 2.74e+07 | 2.99e+03 | 9.2e+03 | 3.44e+07 | 1.05e+03 | 3.3e+04

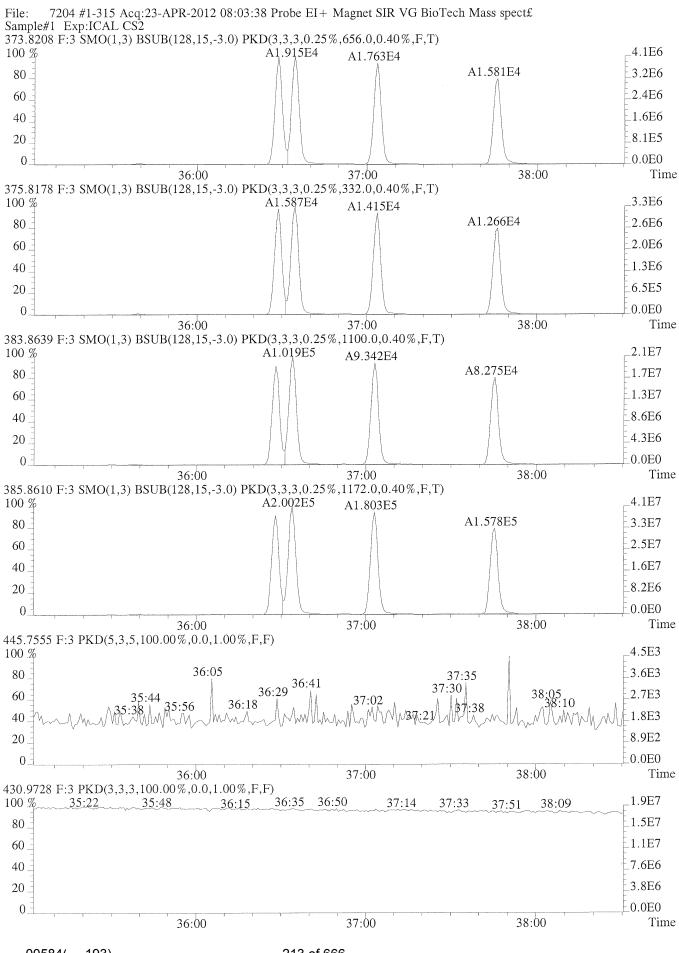
2.81e+07 | 1.82e+03 |

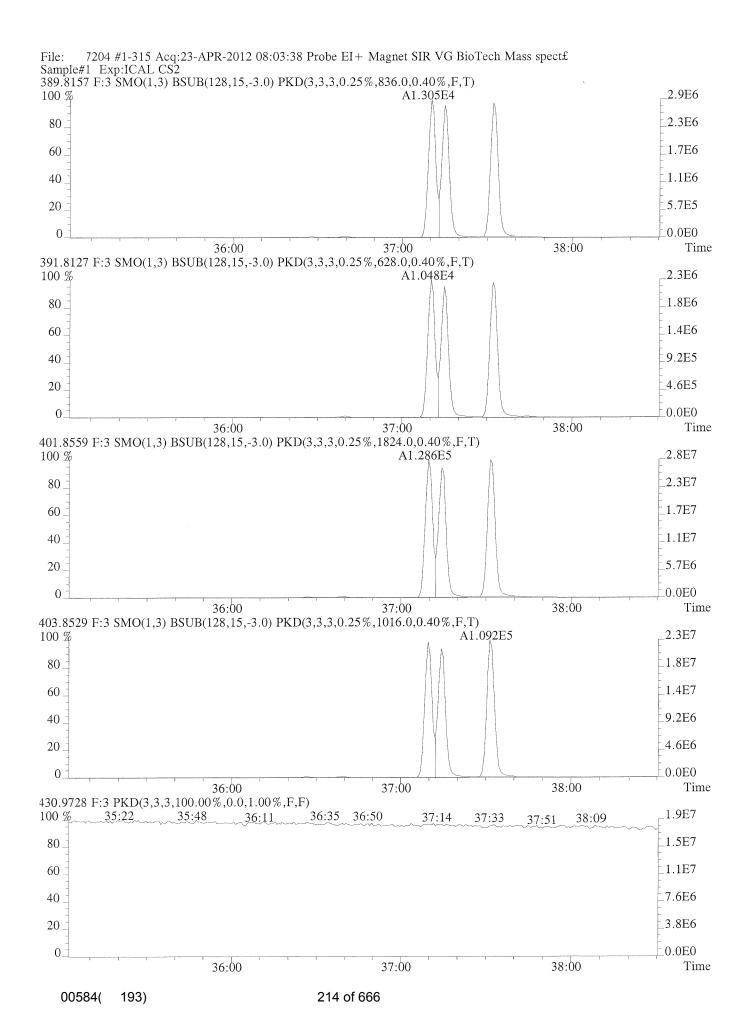

37Cl-2,3,7,8-TCDD | 1.25e+06 | 7.40e+02 |

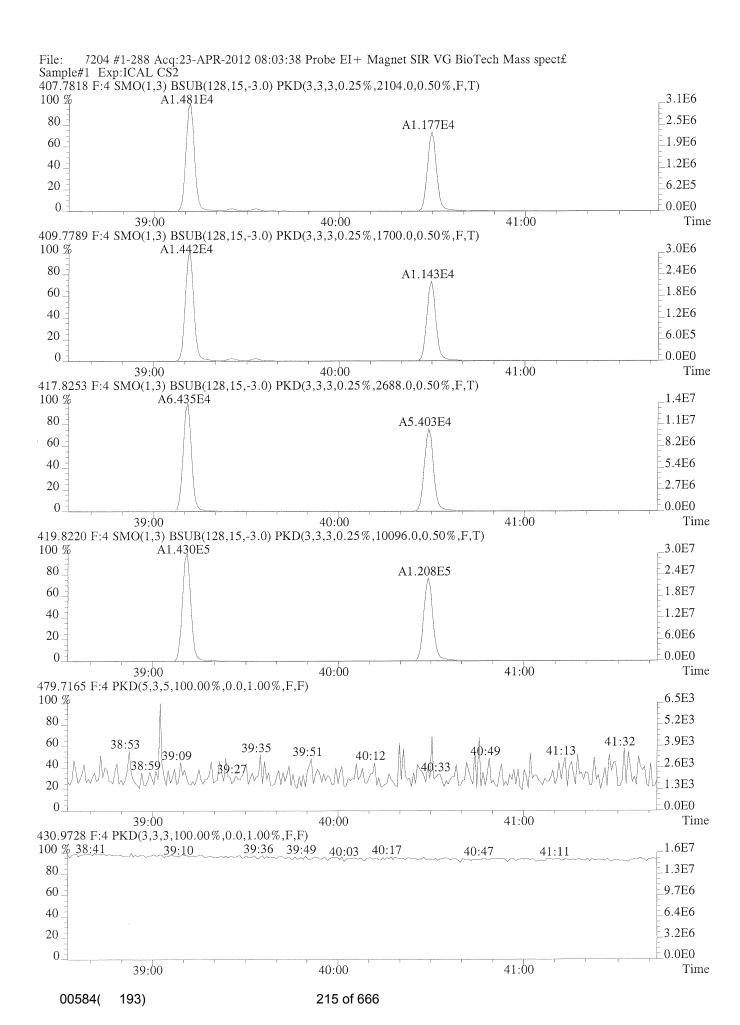

13C-1,2,3,7,8,9-HxCDD

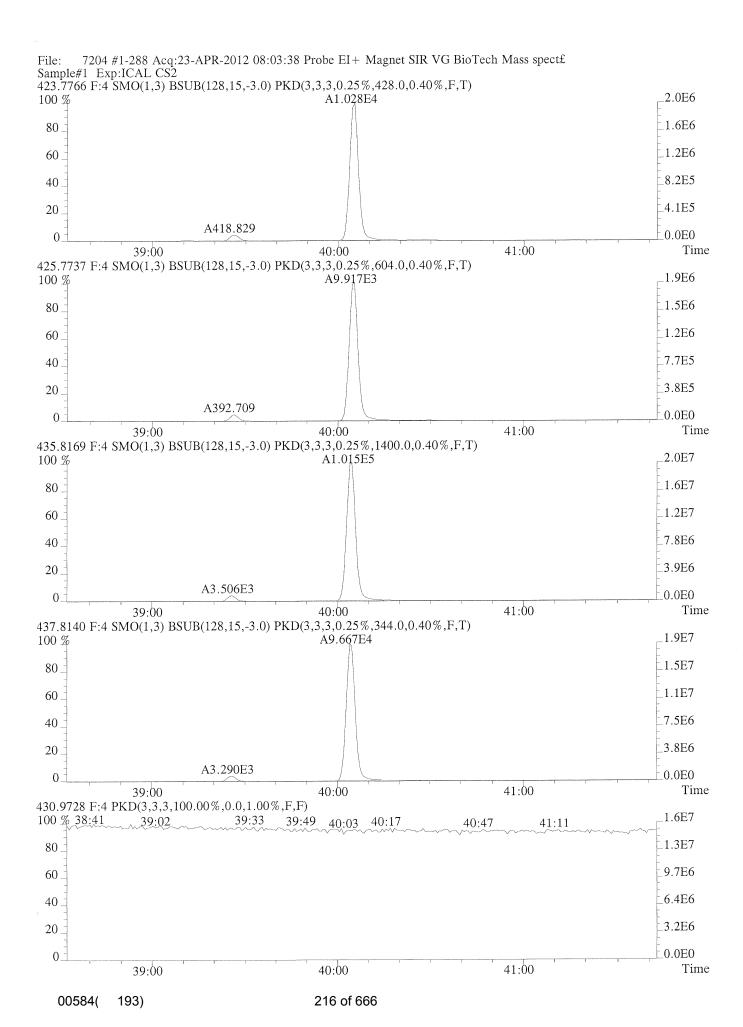

3

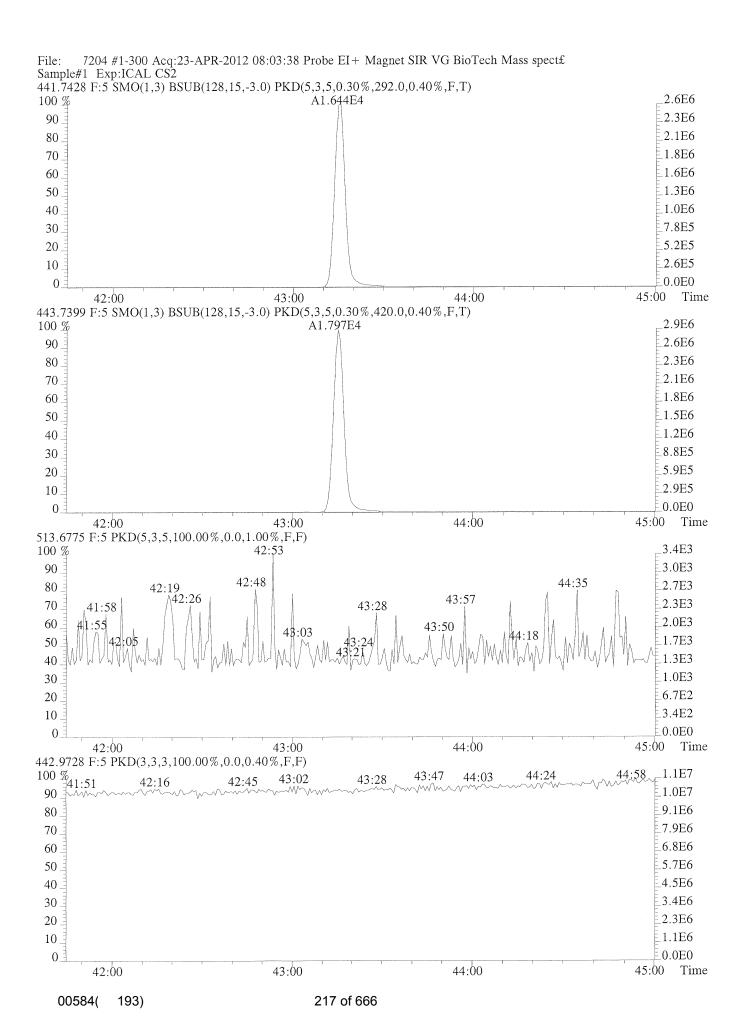

1.7e + 03

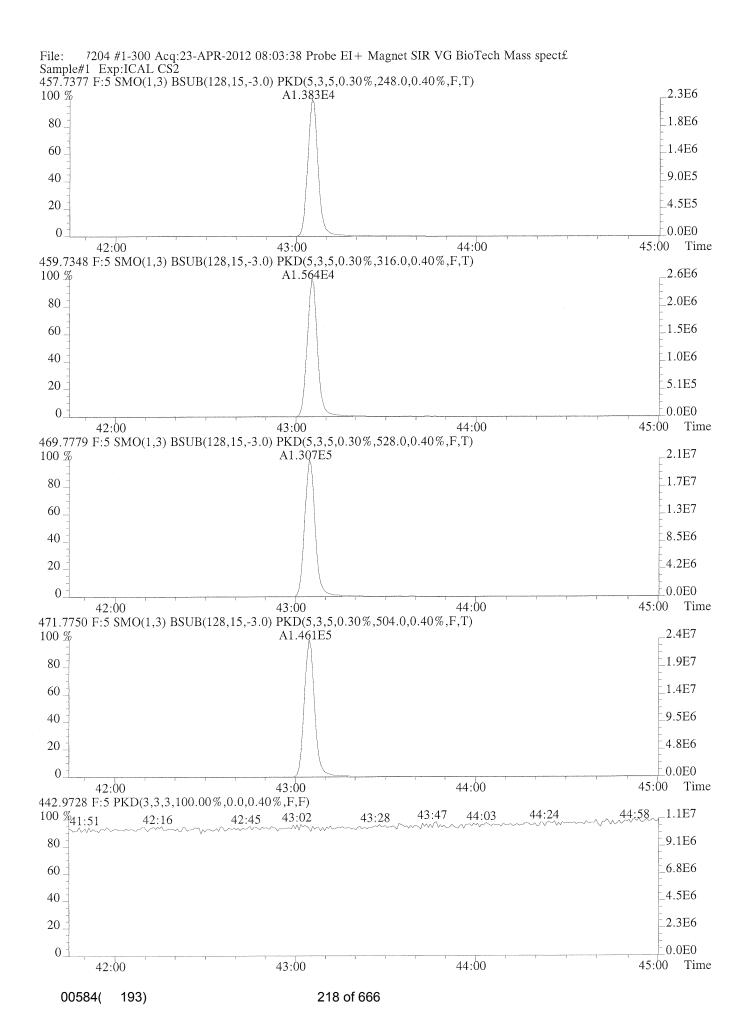

1.5e+04 | 2.30e+07 | 1.02e+03 | 2.3e+04











1.044

1.079

1.007

1.166

0.991

0.992

1.068

1.148

1.008

*

no

no

no

no

no

no

no

no

no

no

44 Acquired: 23-APR-12 08:56:23 7205 #1 Samp: 1 Inj: 1 Filename LAB. ID: ICAL CS3 Phocessed: 23-APR-12 10:20:50 Resp 2 Meet Mod? RRT Ratio Name RT-1 Resp 1 Тур 143 1.001 2,3,7,8-TCDF 28:31 2.275e+04 2.946e+04 0.77 yes no Unk 1.001 1.426e+05 9.148e + 041.56 yes no 1,2,3,7,8-PeCDF 32:55 Unk 1.000 1.55 Unk 2,3,4,7,8-PeCDF | 33:39 1.433e + 059.220e+04 yes no Unk-1,2,3,4,7,8-HxCDF 36:29 1.219e + 059.389e+041.30 yes no 1.000 Unk 1,2,3,6,7,8-HxCDF 36:35 1.244e+05 1.017e + 051.22 yes no 1.000 1.25 2,3,4,6,7,8-HxCDF | 37:04 1.154e+05 9.228e+04yes no 1.000 Unk. 1,2,3,7,8,9-HxCDF | 37:46 1.060e+05 8.453e+041.25 yes no 1.000 Unk 1,2,3,4,6,7,8-HpCDF | 39:12 9.649e + 049.341e+041.03 yes no 1.000 Unk 1.000 1,2,3,4,7,8,9-HpCDF | 40:30 7.834e+041.05 yes no 8.190e+04Unk. OCDF | 43:15 1.157e+05 1.279e + 050.90 yes no 1.004 Unk 2.424e+040.76 yes no 1.001 2,3,7,8-TCDD 29:22 1.848e+04 Unk 1.000 1.57 1,2,3,7,8-PeCDD 34:00 1.043e+05 6.641e + 04yes no Unk 1.000 1,2,3,4,7,8-HxCDD 37:10 8.974e+047.215e+041.24 yes no 1.3 Unk 1.000 1,2,3,6,7,8-HxCDD 37:15 1.27 6.455e + 04yes no 二重新 8.166e + 04Unk 1.008 7.397e + 041.24 yes no Unk 1,2,3,7,8,9-HxCDD 37:32 9.167e + 041.000 6.782e+04 1.04 yes no 1,2,3,4,6,7,8-HpCDD | 40:05 7.029e+04Unk 1.000 0.90 no OCDD | 43:05 1.043e+05 1.159e + 05yes Unk 3.231e+05 0.77 yes no 0.978 13C-2,3,7,8-TCDF | 28:30 2.490e+05 IS 13C-1,2,3,7,8-PeCDF 32:54 1.56 no 1.129 1.957e+05 yes IS 3.061e+05 1.154 2.864e+05 1.833e+05 1.56 yes no IS 13C-2,3,4,7,8-PeCDF | 33:38 0.972 1.270e+05 2.371e+05 0.54 yes no IS-13C-1,2,3,4,7,8-HxCDF|36:28 0.50 0.975 2.609e+05 no 13C-1,2,3,6,7,8-HxCDF 36:34 1.314e+05 yes 0.52 0.988 IS 13C-2,3,4,6,7,8-HxCDF 37:03 1.274e+05 2.443e+05yes no 1.006 13C-1,2,3,7,8,9-HxCDF | 37:45 1.149e+05 2.219e+05 0.52 yes no IS

8.770e + 04

7.259e+04

1.969e+05

2.264e+05

1.700e+05

1.853e+05

1.451e+05

1.992e+05

1.841e+05

4.595e+04

2.115e+05

1.955e+05

1.619e + 05

2.481e+05

1.437e+05

1.353e+05

1.484e+05

1.391e+05

2.344e+05

2.508e+05

1.479e+05

0.45

0.45

0.79

1.58

1.26

1.25

1.04

0.90

0.79

1.24

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

ISL3C-1,2,3,4,6,7,8-HpCDF | 39:11

IS13C-1,2,3,4,7,8,9-HpCDF | 40:29

IS

IS

IS

IS

IS

TRS/RT

RS/RT

C/Up

37

13C-2,3,7,8-TCDD 29:20

13C-1,2,3,4-TCDD | 29:08

37Cl-2,3,7,8-TCDD 29:22

13C-OCDD | 43:05

13C-1,2,3,7,8-PeCDD | 33:59

13C-1,2,3,4,7,8-HxCDD | 37:10

13C-1,2,3,6,7,8-HxCDD | 37:14

13C-1,2,3,7,8,9-HxCDD | 37:31

IS13C-1,2,3,4,6,7,8-HpCDD | 40:04

Acquired: 23-APR-12 08:56:23 7205 ∂òn #4 Samp: 1 Inj: 1 Filename LAB. ID: ICAL CS3 Processed: 23-APR-12 10:20:501 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF 3.73e+06 | 4.36e+02 | 8.6e+03 4.82e+06 7.08e+02 6.8e+03 1.74e+07 | 1.18e+03 | 1.5e + 041,2,3,7,8-PeCDF 2.72e+07 9.72e+02 2.8e+04 1.18e+03 2,3,4,7,8-PeCDF 2.85e+07 9.72e+02 2.9e+04 1.84e+07 1.6e + 041,2,3,4,7,8-HxCDF 2.62e+07 1.81e+03 1.4e+04 2.07e+07 1.70e+03 1.2e + 041,2,3,6,7,8-HxCDF 2.66e+07 1.81e+03 1.5e+04 2.12e+07 1.70e+03 1.2e + 042,3,4,6,7,8-HxCDF 2.53e+07 1.81e+03 | 1.4e+04 | 2.02e+07 1.70e+03 1.2e + 041,2,3,7,8,9-HxCDF 2.19e+07 1.81e+03 1.2e+04 1.72e+07 1.70e+03 1.0e + 045.27e+03 3.9e+03 1.98e+07 2.86e+03 6.9e + 031,2,3,4,6,7,8-HpCDF 2.05e+07 2.86e+03 5.4e + 031,2,3,4,7,8,9-HpCDF 1.61e+07 5.27e+03 3.1e+03 1.55e+07 2.13e+07 | 1.46e+03 | 1.5e + 04OCDF | 1.92e+07 8.36e+02 2.3e+04 1.2e + 043.17e+06 | 6.76e+02 | 4.7e+03 | 4.19e+06 | 3.44e+02 2,3,7,8-TCDD 1.03e+03 | 2.0e+04 | 1.33e+07 | 8.52e+02 1.6e + 041,2,3,7,8-PeCDD 2.05e+07 1.5e+04 1.61e+07 7.48e+02 2.1e + 041,2,3,4,7,8-HxCDD 2.01e+07 1.31e+03 7.48e+02 1.9e + 041.40e+07 1,2,3,6,7,8-HxCDD 1.75e+07 1.31e+03 1.3e + 041.5e+04 1.61e+07 7.48e+02 2.1e + 041,2,3,7,8,9-HxCDD 1.98e+07 1.31e+03 16... 19... 1.32e+07 1.16e+03 1.1e + 041,2,3,4,6,7,8-HpCDD | 1.38e+07 1.29e+03 1.1e+04 2.0e + 04OCDD | 1.73e+07 9.36e+02 | 1.9e+04 | 1.92e+07 9.36e+02 484 5.30e+07 1.26e+03 4.2e + 0413C-2,3,7,8-TCDF 4.11e+07 2.1e+04 入魔(1) 1.92e+03 3.74e+07 | 5.80e+02 6.4e + 048.7e+04 13C-1,2,3,7,8-PeCDF 5.89e+07 6.80e+02 6.80e+02 8.4e+04 3.68e+07 5.80e+02 6.3e + 0413C-2,3,4,7,8-PeCDF 5.72e+07 1.5e + 045.21e+07 1.99e+03 2.6e + 0413C-1,2,3,4,7,8-HxCDF 2.72e+07 1.76e+03 13C-1,2,3,4,7,6 HxCDF 2.7e + 042.79e+07 1.76e+03 1.6e+04 5.42e+07 1.99e+03 130 2,3,4,6,7,8-HxCDF 2.77e+07 1.76e+03 1.6e+04 5.34e+07 1.99e+03 2.7e + 0413C₂1,2,3,7,8,9-HxCDF 2.40e+07 1.76e+03 1.4e+04 4.59e+07 1.99e+03 2.3e + 043C-1,2,3,4,6,7,8-HpCDF 4.14e+07 | 4.17e+03 | 9.9e + 031.87e+07 3.44e+03 5.4e+03 3.20e+07 | 4.17e+03 | 7.7e+03 3C-1;2,3,4,7,8,9-HpCDF 1.44e+07 3.44e+03 | 4.2e+03 | 4.22e+07 | 1.34e+03 | 3.2e+04 13C-2,3,7,8-TCDD | 3.33e+07 | 2.44e+03 | 1.4e+04 |

4.72e+02

1.90e+03

1.90e+03

1.29e+03

9.5e+04

2.0e+04

2.1e+04

2.2e+04

13C-OCDD | 3.55e+07 | 1.27e+03 | 2.8e+04 | 3.92e+07 | 1.25e+03 | 3.1e+04

13C-1,2,3,4-TCDD | 3.46e+07 | 2.44e+03 | 1.4e+04 | 4.36e+07 | 1.34e+03 | 3.3e+04 | 13C-1,2,3,7,8,9-HxCDD | 3.95e+07 | 1.90e+03 | 2.1e+04 | 3.18e+07 | 1.90e+03 | 1.7e+04

2.86e+07

2.98e+07

3.20e+07

2.76e+07

00584(193)

4.50e+07

3.74e+07

3.95e+07

2.85e+07

37Cl-2,3,7,8-TCDD 7.90e+06 6.80e+02 1.2e+04

13C-1,2,3,7,8-PeCDD

13C-1,2,3,4,7,8-HxCDD

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,6,7,8-HpCDD

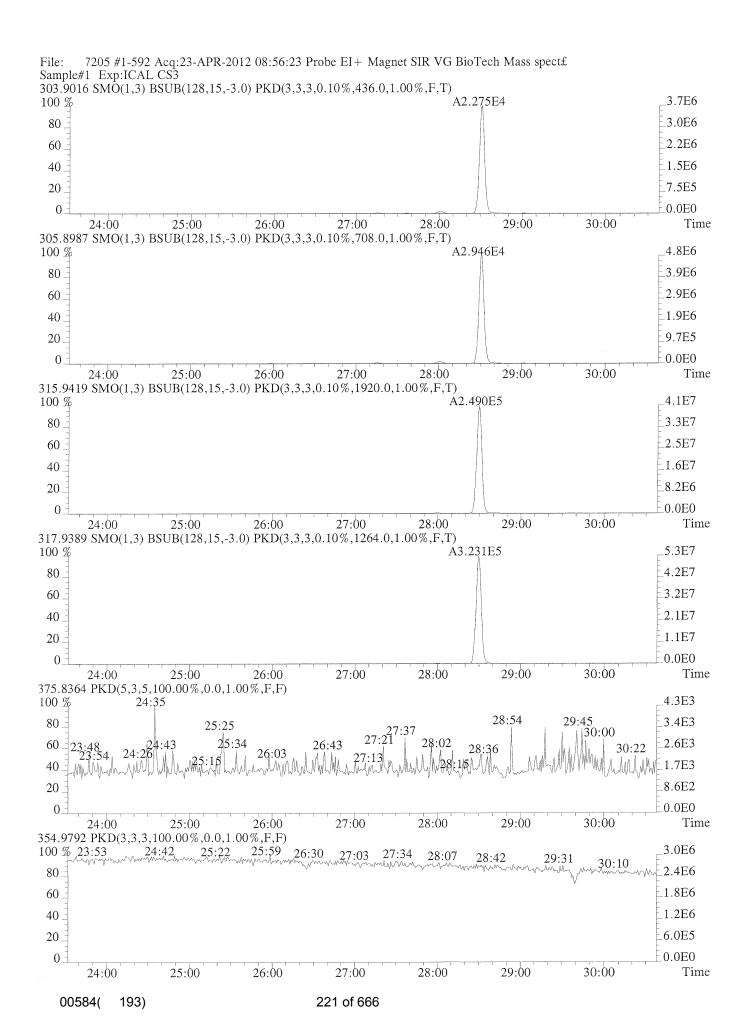
2,9

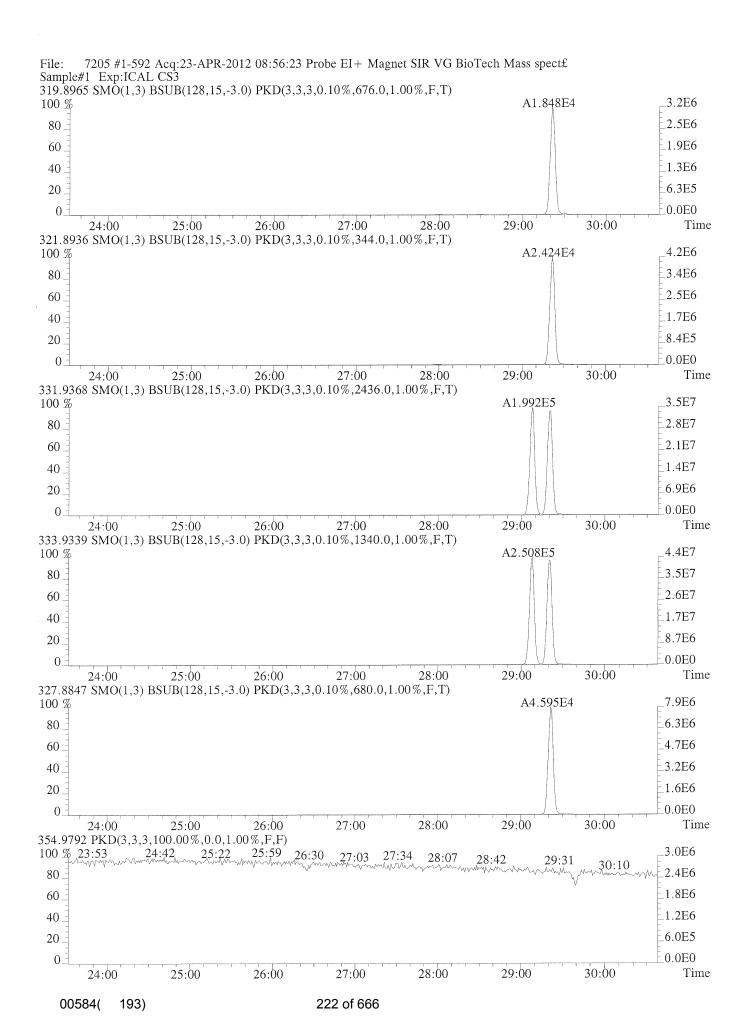
ં

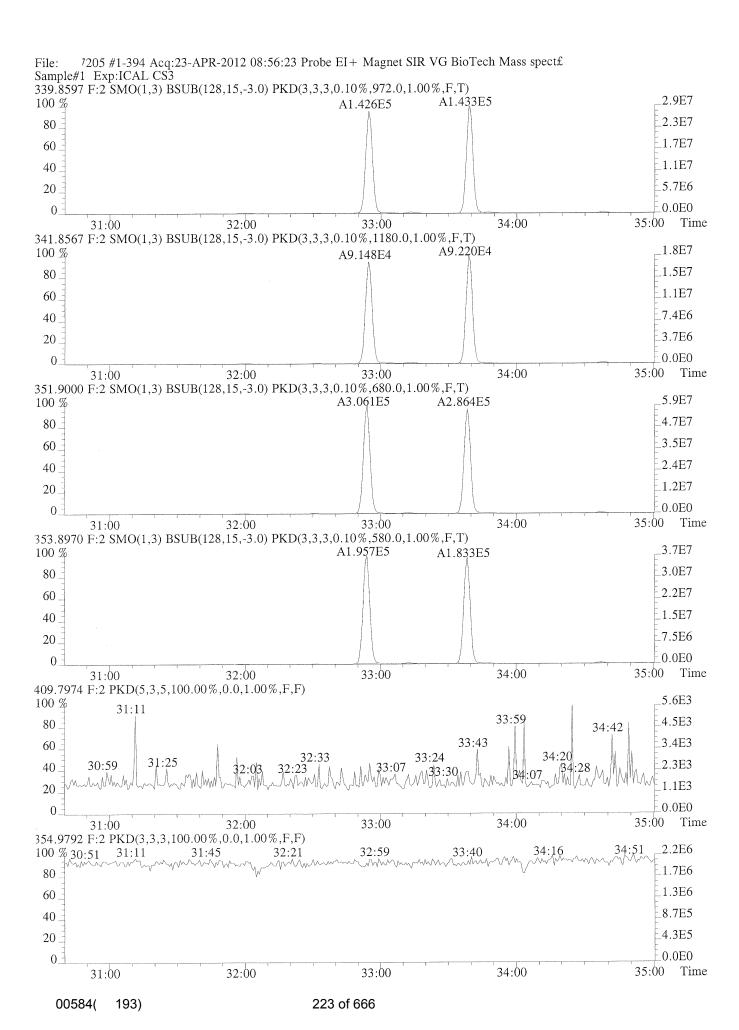
6.96e+02

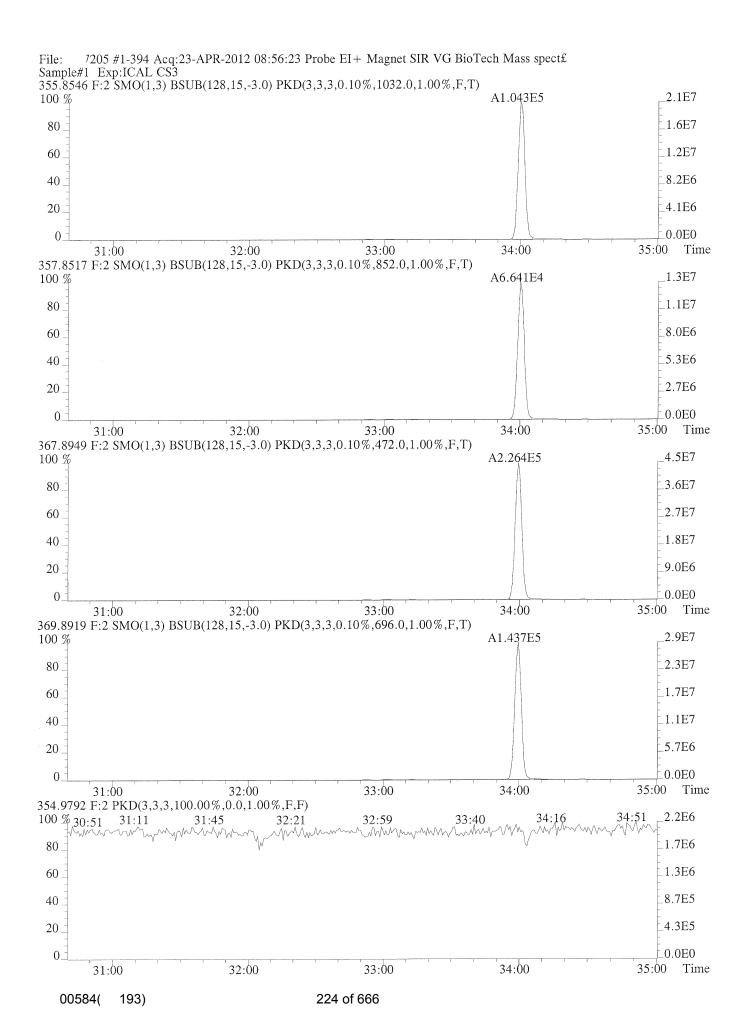
1.90e+03

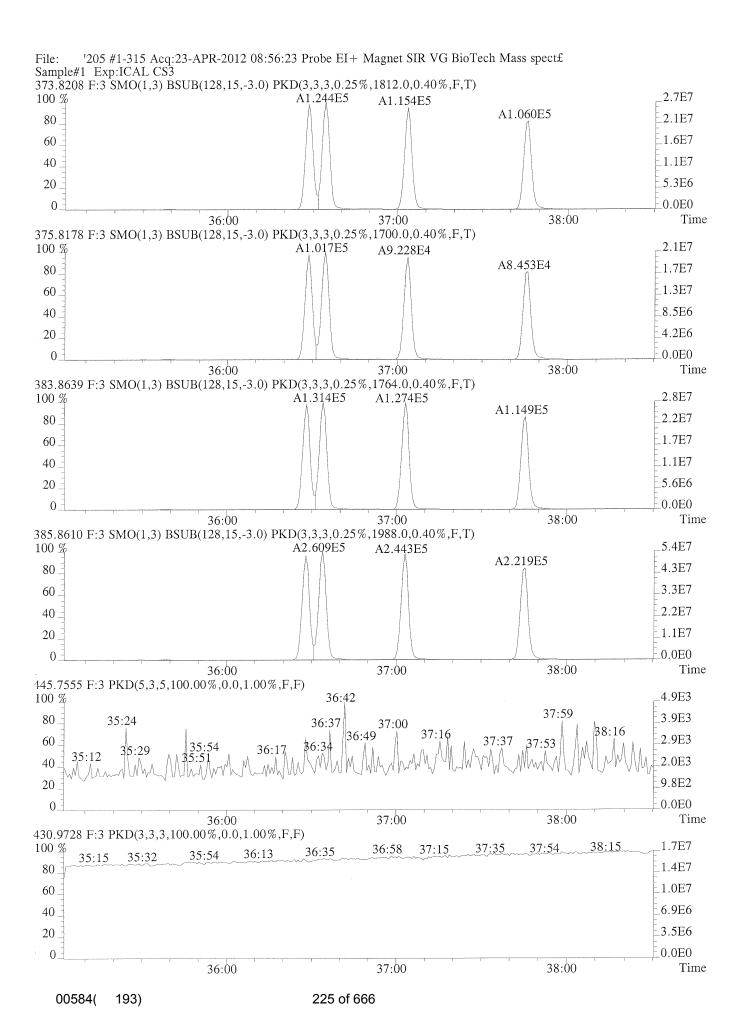
1.90e+03

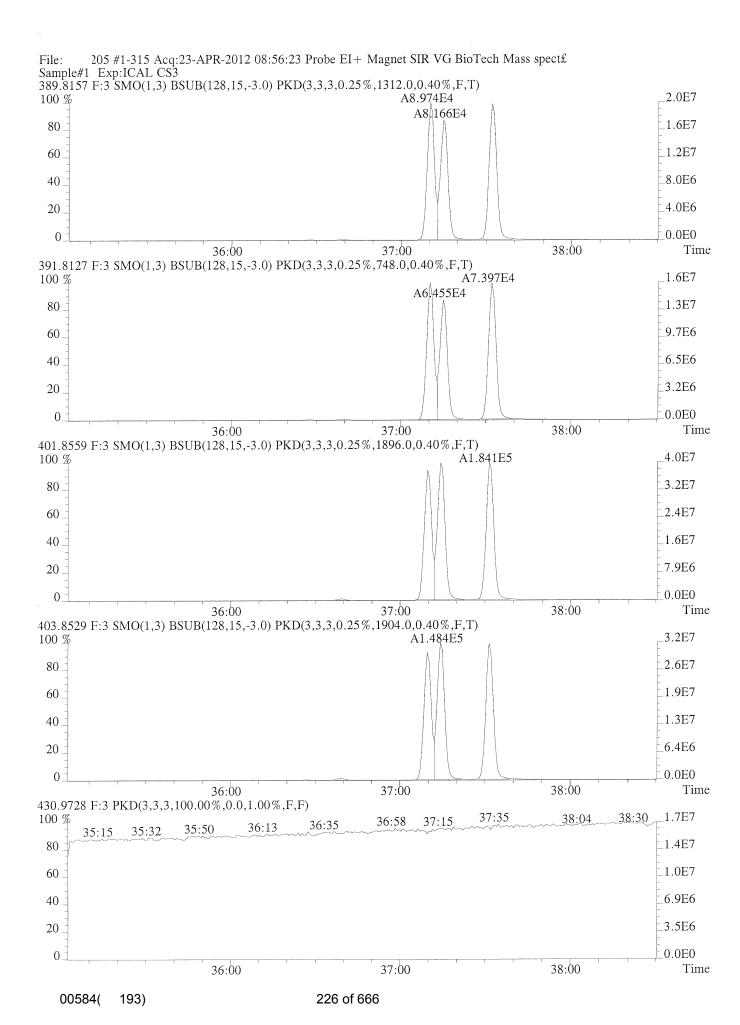

9.84e+02

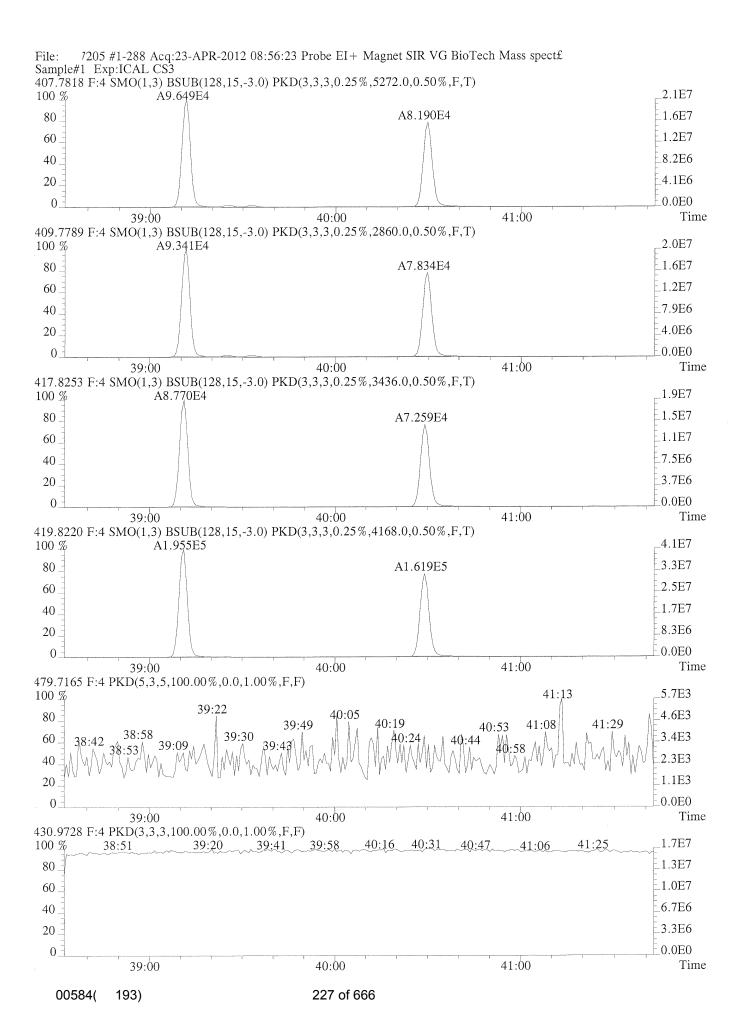

4.1e + 04

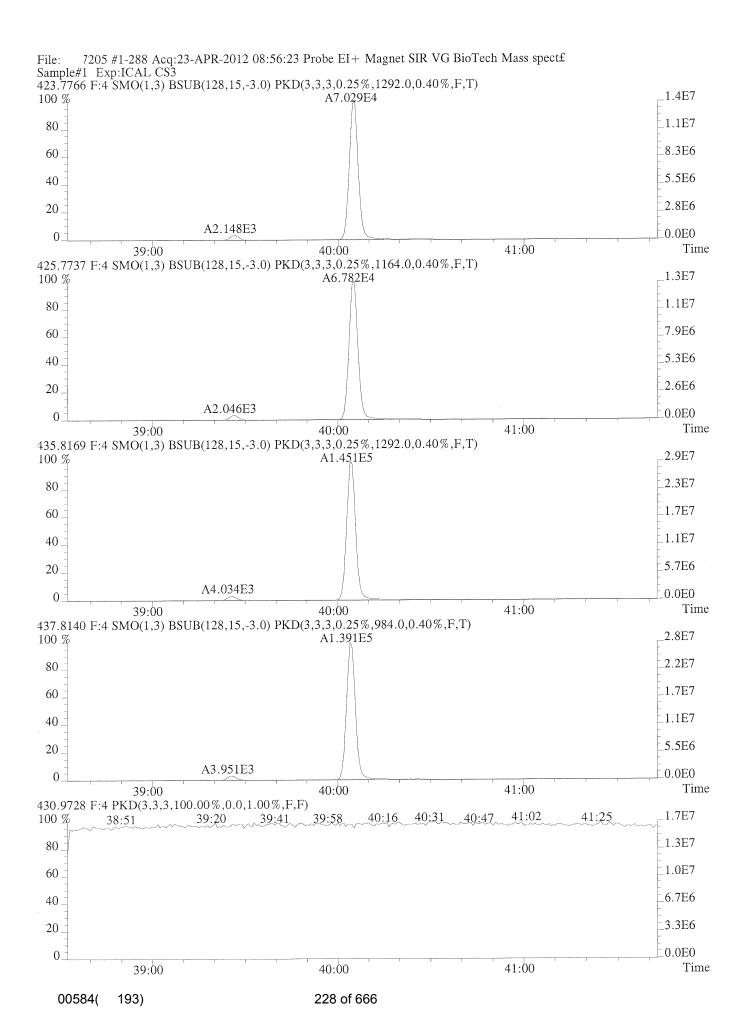

1.6e + 04

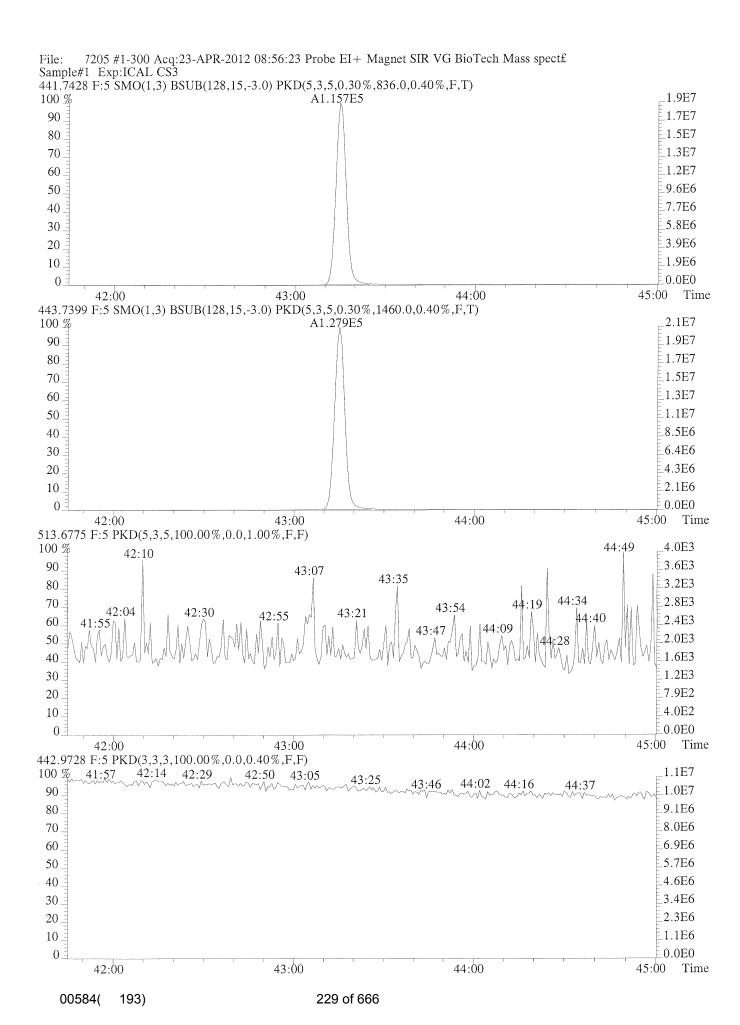

1.7e + 04

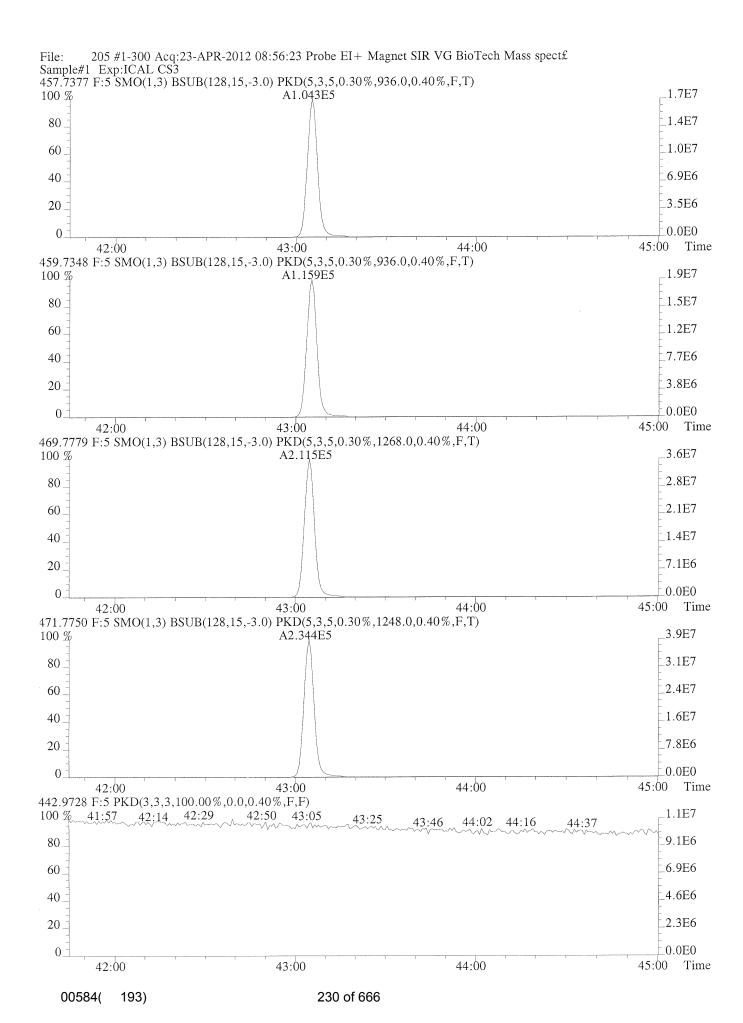

2.8e + 04

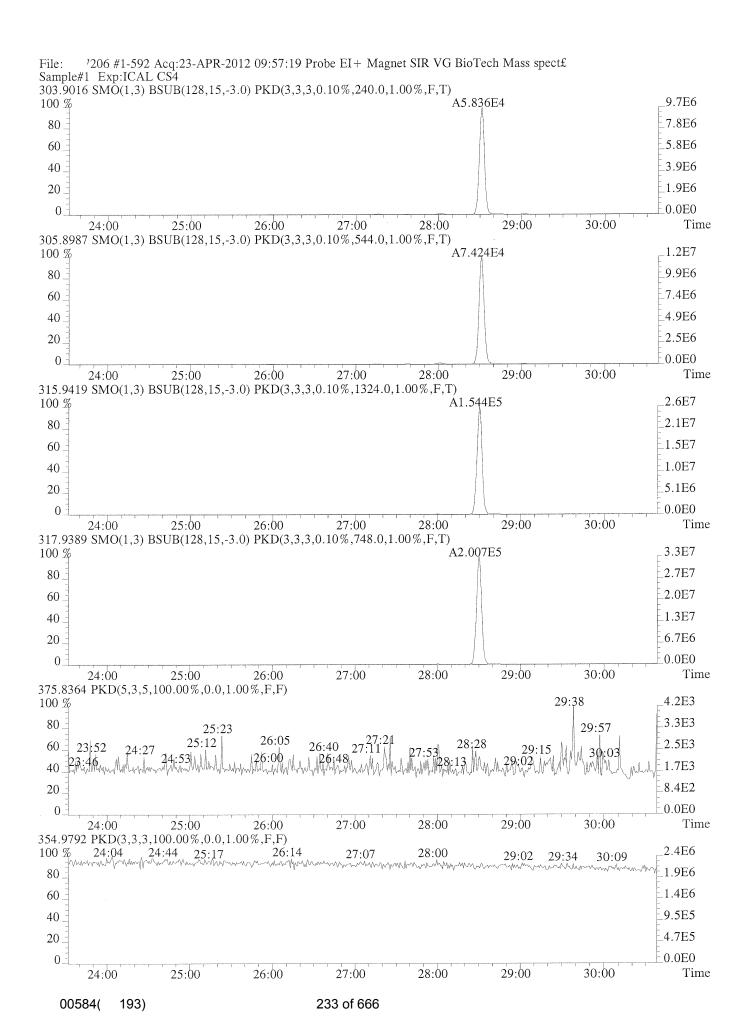


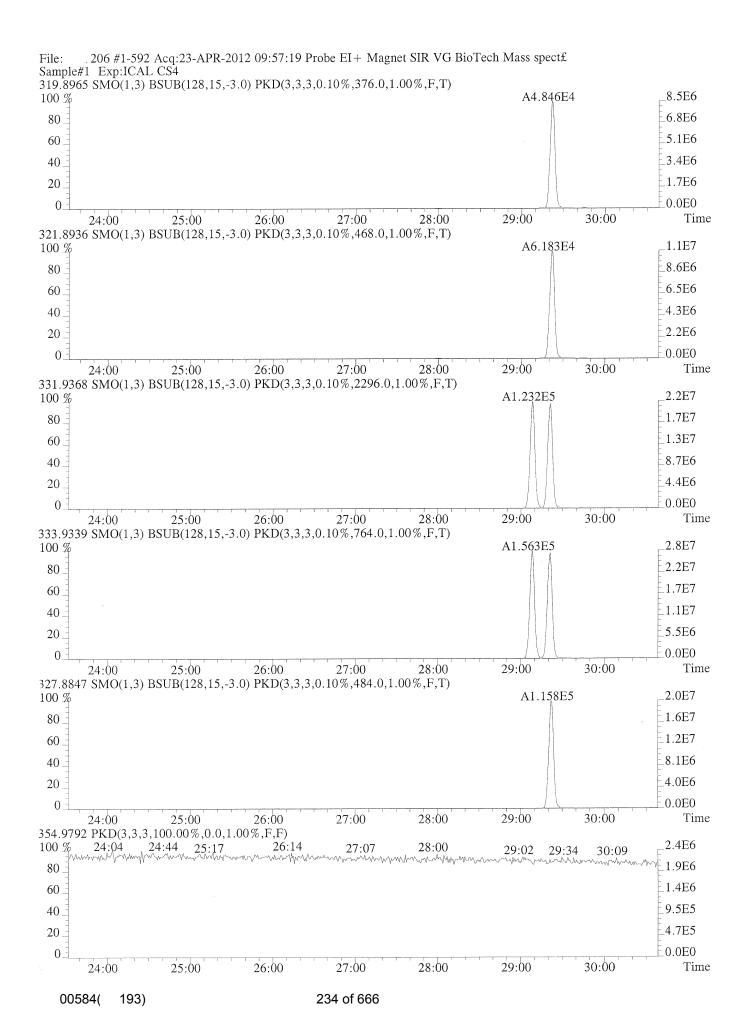


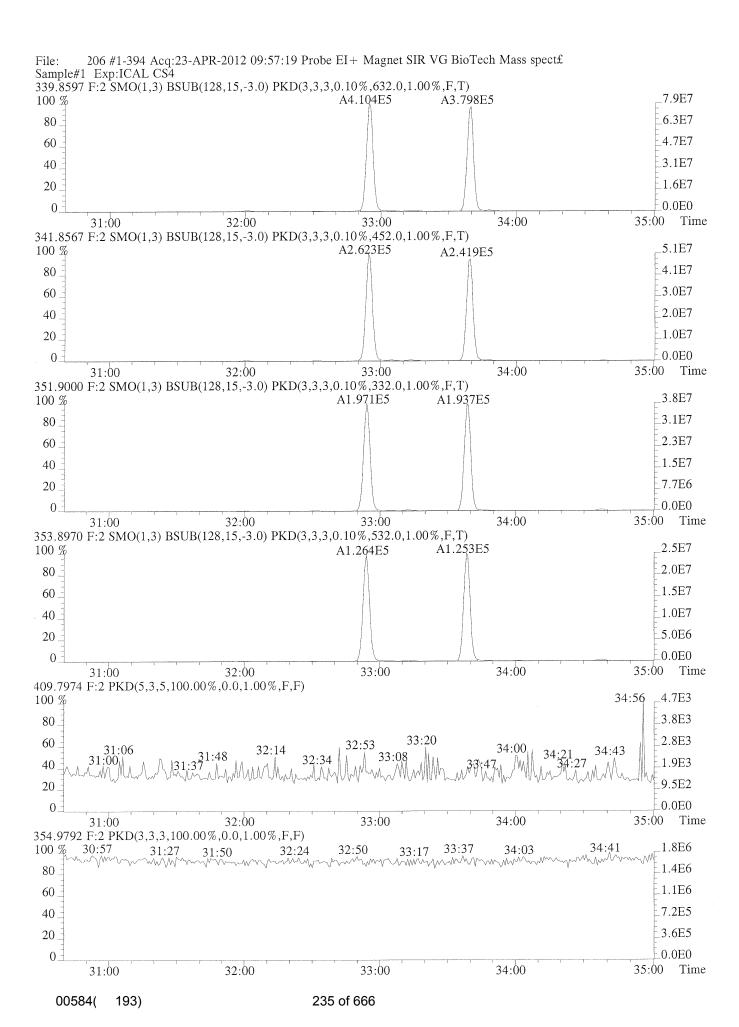


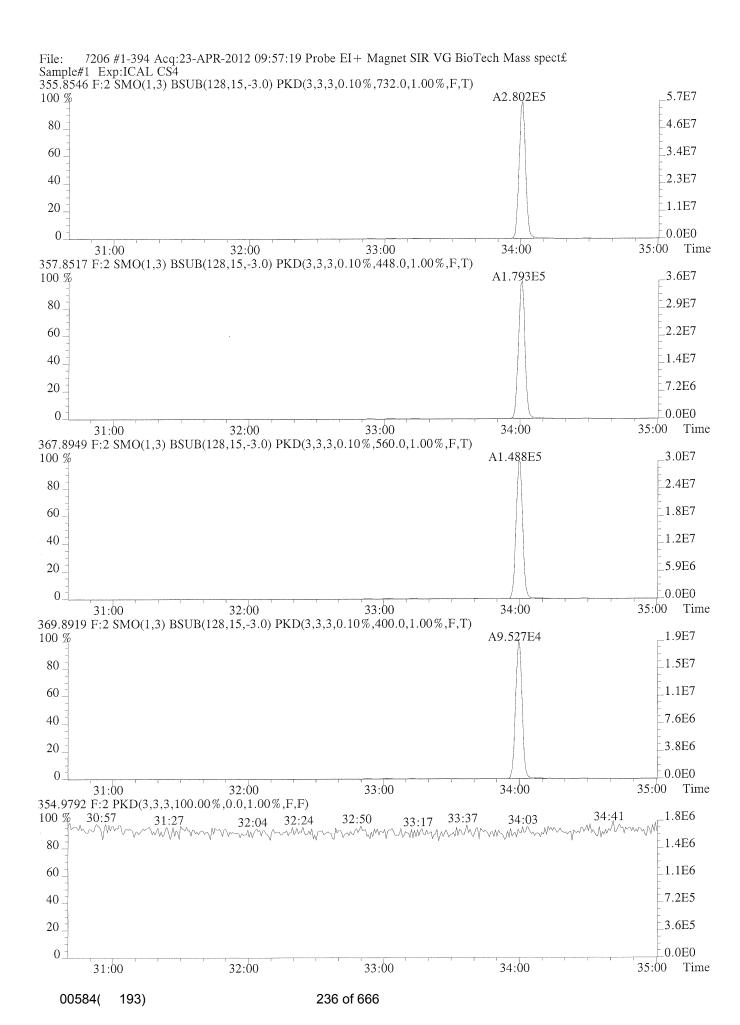


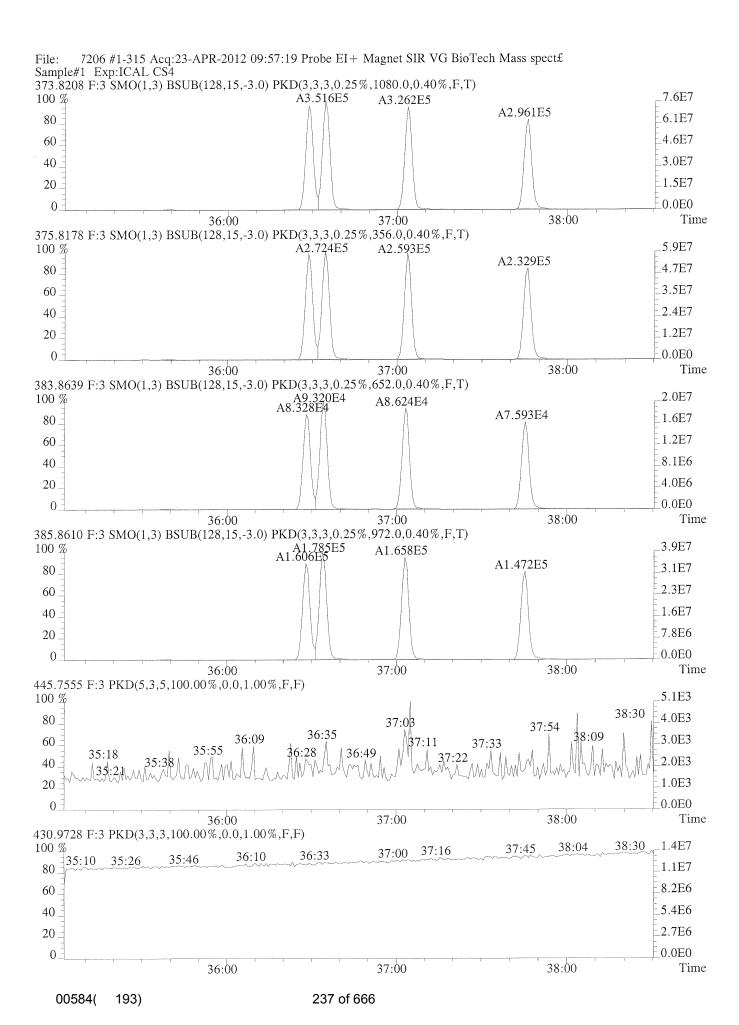


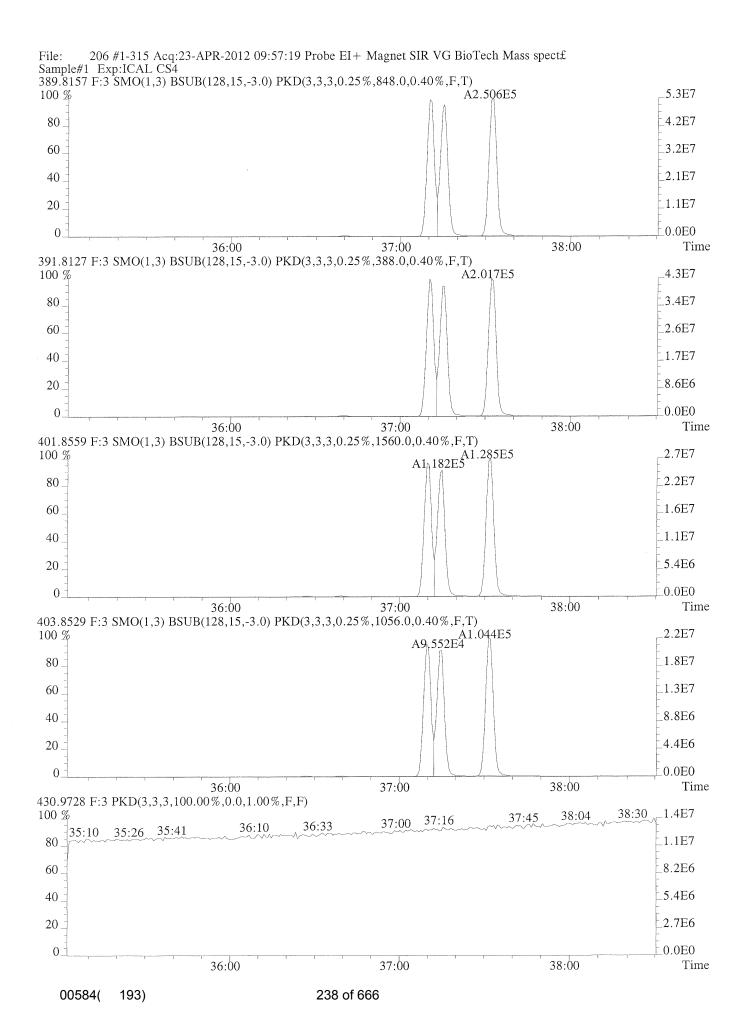


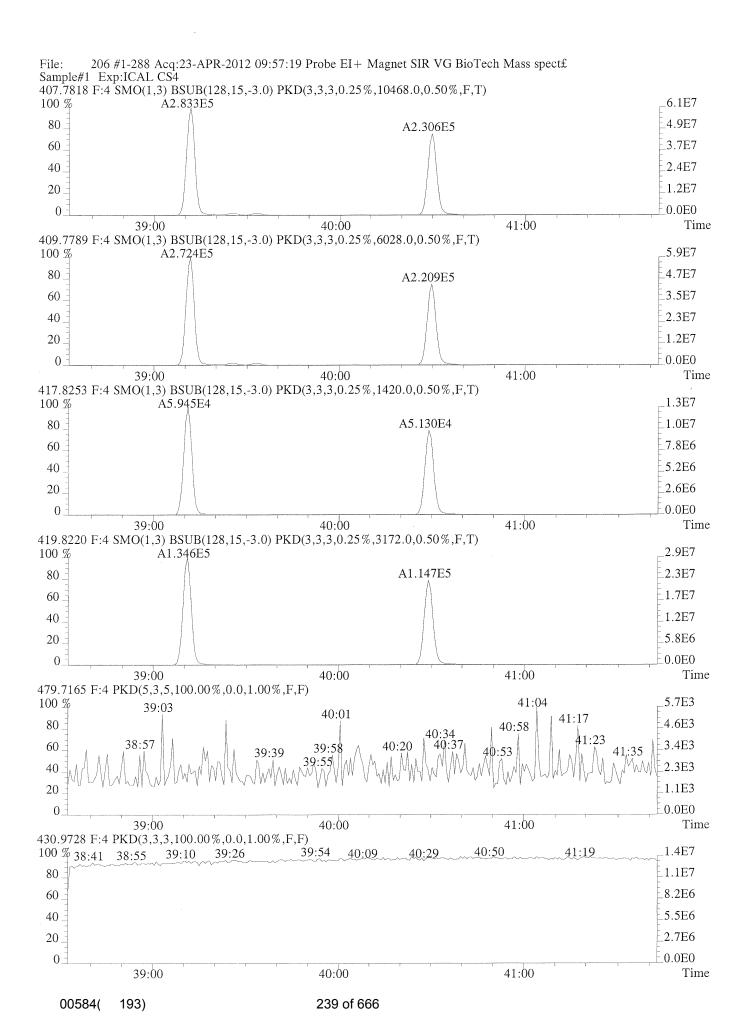


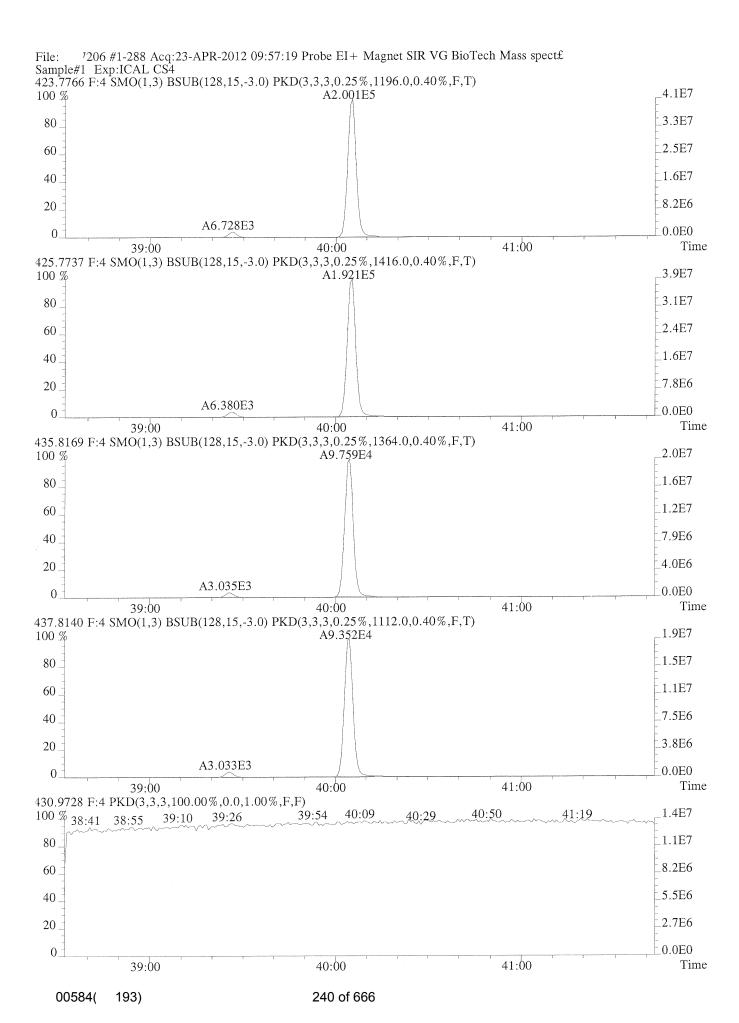

	Sample Respons	e Summary	CLIENT ID. ICAL CS4	
	Samp: 1	Inj: 1 Acquire		9:57:19
cessed: 23-APR-12 10:34:2	LAB.	ID: ICAL CS4		
Typ	ame RT-1 R	esp 1 Resp 2		
Unk 2,3,7,8-To Unk 1,2,3,7,8-Peo Unk 2,3,4,7,8-Peo	CDF 32:55 4.10 CDF 33:40 3.79	6e+04 7.424e+04 4e+05 2.623e+05 8e+05 2.419e+05	1.56 yes 1.57 yes	no 1.001 no 1.001
Unk 1,2,3,4,7,8-Hx0 Unk 1,2,3,6,7,8-Hx0 Unk 2,3,4,6,7,8-Hx0 Unk 1,2,3,7,8,9-Hx0	CDF 36:35 3.51 CDF 37:04 3.26	7e+05 2.678e+05 6e+05 2.724e+05 2e+05 2.593e+05 1e+05 2.329e+05	5 1.29 yes 5 1.26 yes	no 1.000 no 1.000
Unk 1,2,3,4,6,7,8-Hp0 Unk 1,2,3,4,7,8,9-Hp0 Unk 00	CDF 39:12 2.83 CDF 40:30 2.30	3e+05 2.724e+05 6e+05 2.209e+05 9e+05 3.772e+05	5 1.04 yes 5 1.04 yes	no 1.000 no 1.000
Unk 2,3,7,8-T0 Unk 1,2,3,7,8-Pe0 Unk 1,2,3,4,7,8-Hx0 Unk 1,2,3,6,7,8-Hx0 Unk 1,2,3,7,8,9-Hx0	CDD 34:01 2.80 CDD 37:10 2.40	6e+04 6.183e+04 2e+05 1.793e+05 1e+05 1.942e+05 7e+05 1.928e+05	5 1.56 yes 5 1.24 yes	no 1.001 no 1.000
Unk 1,2,3,4,6,7,8-Hp0	CDD 37:33 2.50 CDD 40:05 2.00	6e+05 2.017e+05 1e+05 1.921e+05 7e+05 3.237e+05	5 1.24 yes 5 1.04 yes 5 0.89 yes	no 1.008 no 1.000 no 1.000
IS 13C-2,3,7,8-TG IS 13C-1,2,3,7,8-PeG IS 13C-2,3,4,7,8-PeG IS 13C-1,2,3,4,7,8-HxG	CDF 32:54 1.97 CDF 33:38 1.93 CDF 36:28 8.32	4e+05 2.007e+05 1e+05 1.264e+05 7e+05 1.253e+05 8e+04 1.606e+05	5 1.56 yes 5 1.55 yes 5 0.52 yes	no 1.129 no 1.154 no 0.972
IS 13C-1,2,3,6,7,8-Hx0 23 IS 13C-2,3,4,6,7,8-Hx0 24 IS 13C-1,2,3,7,8,9-Hx0 25 IS13C-1,2,3,4,6,7,8-Hp0 26 IS13C-1,2,3,4,7,8,9-Hp0	DF 37:03 8.62 DF 37:45 7.59 DF 39:11 5.94	0e+04 1.785e+05 4e+04 1.658e+05 3e+04 1.472e+05 5e+04 1.346e+05 0e+04 1.147e+05	0.52 yes 0.52 yes 0.44 yes	no 0.987 no 1.006 no 1.044
IS 13C-2,3,7,8-TG IS 13C-1,2,3,7,8-PG IS 13C-1,2,3,4,7,8-HXG IS 13C-1,2,3,6,7,8-HXG IS 13C-1,2,3,4,6,7,8-HPG IS 13C-06	CDD 33:59 1.48 CDD 37:10 1.19 CDD 37:15 1.18 CDD 40:05 9.75	5e+05 1.536e+05 8e+05 9.527e+04 7e+05 9.617e+04 2e+05 9.552e+04 9e+04 9.352e+04 8e+05 1.478e+05	1.56 yes 1.24 yes 1.24 yes 1.04 yes	no 0.990 no 0.992 no 1.068
RS/RT 13C-1,2,3,4-TO RS/RT 13C-1,2,3,7,8,9-HxC C/Up 37Cl-2,3,7,8-TC	CDD 29:08 1.23 CDD 37:32 1.28	2e+05 1.563e+05 5e+05 1.044e+05	5 0.79 yes	s no *
00584(193)	231	of 666		

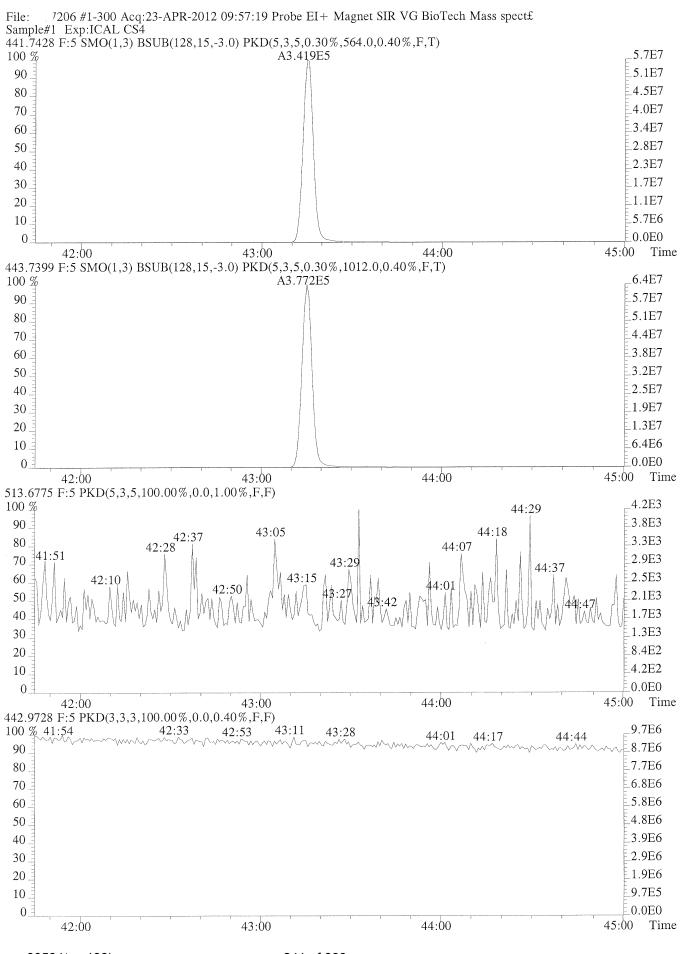

u8És

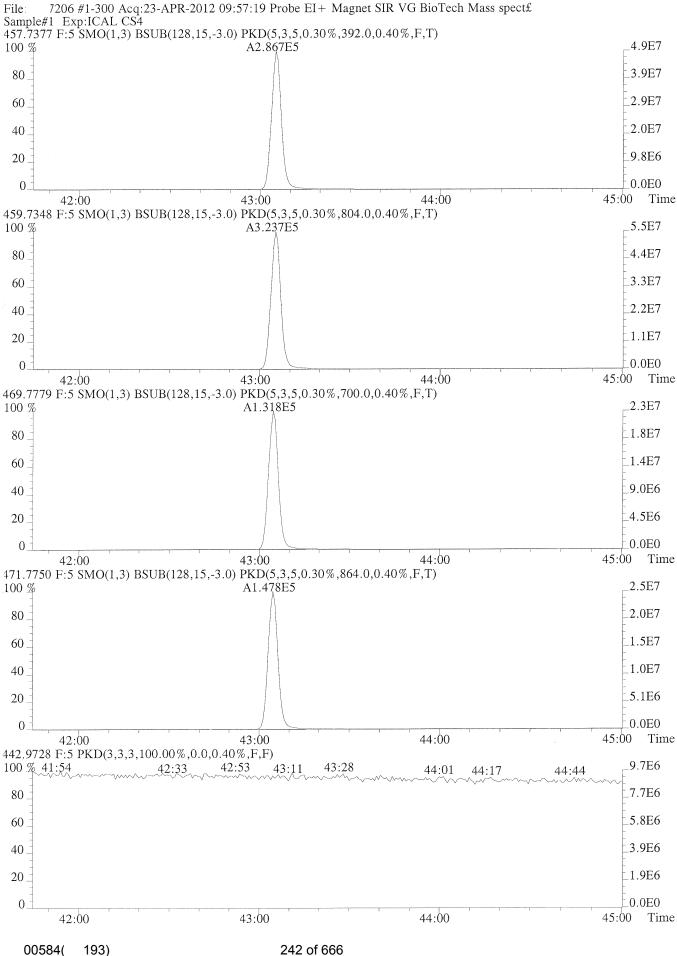

Samp: 1 Acquired: 23-APR-12 09:57:19 \$ #5 7206 Inj: 1 Filename Agrocessed: 23-APR-12 10:34:211 LAB. ID: ICAL CS4 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 9.72e+06 | 2.40e+02 | 4.1e+04 | 1.23e+07 | 5.44e+02 | 2.3e + 041,2,3,7,8-PeCDF | 7.87e+07 | 6.32e+02 | 1.2e+05 | 5.07e+07 | 4.52e+02 1.1e + 052,3,4,7,8-PeCDF | 7.64e+07 | 6.32e+02 | 1.2e+05 | 4.82e+07 | 4.52e+02 1.1e + 051,2,3,4,7,8-HxCDF 7.32e+07 1.08e+03 6.8e+04 5.80e+07 3.56e+02 1.6e+05 -1,2,3,6,7,8-HxCDF 7.60e+07 1.08e+03 | 7.0e+04 | 5.88e+07 | 3.56e+02 1.7e + 057.25e+07 5.83e+07 3.56e+02 1.6e + 052,3,4,6,7,8-HxCDF 1.08e+03 | 6.7e+04 4.98e+07 6.34e+07 1.08e+03 5.9e+04 3.56e+02 1.4e + 051,2,3,7,8,9-HxCDF 9.7e + 036.09e+07 | 1.05e+04 | 5.8e+03 | 5.85e+07 6.03e+03 1,2,3,4,6,7,8-HpCDF 4.60e+07 | 1.05e+04 | 4.4e+03 | 4.39e+07 | 6.03e+03 7.3e + 031,2,3,4,7,8,9-HpCDF 10 OCDF | 5.65e+07 | 5.64e+02 | 1.0e+05 | 6.35e+07 | 1.01e+03 | 6.3e+04 2,3,7,8-TCDD | 8.45e+06 | 3.76e+02 | 2.2e+04 | 1.08e+07 | 4.68e+02 | 2.3e+04 4.48e+02 | 8.1e+04 1,2,3,7,8-PeCDD 5.73e+07 7.32e+02 7.8e+04 3.62e+07 1,2,3,4,7,8-HxCDD 5.27e+07 | 8.48e+02 | 6.2e+04 | 4.28e+07 3.88e+02 1.1e + 051,2,3,6,7,8-HxCDD| 5.07e+07| 8.48e+02| 6.0e+04| 4.05e+07| 3.88e+02| 1.0e + 055.29e+07 | 8.48e+02 | 6.2e+04 | 4.28e+07 | 3.88e+02 1.1e + 051,2,3,7,8,9-HxCDD 4.11e+07 | 1.20e+03 | 3.4e+04 | 3.91e+07 | 1.42e+03 | 2.8e + 041,2,3,4,6,7,8-HpCDD OCDD | 4.91e+07 | 3.92e+02 | 1.3e+05 | 5.52e+07 | 8.04e+02 | 6.9e+04 2.57e+07 | 1.32e+03 | 1.9e+04 | 3.33e+07 | 7.48e+02 | 4.5e+04 13C-2,3,7,8-TCDF 1 C-1,2,3,7,8-PeCDF 3.84e+07 3.32e+02 1.2e+05 2.47e+07 5.32e+02 4.6e+04 $3.82e+07 \mid 3.32e+02 \mid 1.2e+05 \mid 2.50e+07 \mid 5.32e+02 \mid 4.7e+04$ 1.0C-2,3,4,7,8-PeCDF 1.79e+07 | 6.52e+02 | 2.8e+04 | 3.47e+07 | 9.72e+02 | 3.6e+04 13C-1,2,3,4,7,8-HxCDF 2.02e+07 | 6.52e+02 | 3.1e+04 | 3.88e+07 | 9.72e+02 4.0e+04 13C-1,2,3,6,7,8-HxCDF 1.90e+07 | 6.52e+02 | 2.9e+04 | 3.68e+07 9.72e+02 13C-2,3,4,6,7,8-HxCDF 3.8e + 041.64e+07 | 6.52e+02 | 2.5e+04 | 3.17e+07 | 9.72e+02 3.3e + 0413C-1,2,3,7,8,9-HxCDF 332-1,2,3,4,6,7,8-HpCDF| 1.29e+07| 1.42e+03| 9.1e+03| 2.89e+07| 3.17e+03 | 9.1e+03 36 13C-1,2,3,4,7,8,9-HpCDF | 1.02e+07 | 1.42e+03 | 7.2e+03 | 2.28e+07 3.17e+03 | 7.2e+03 7.64e+02 | 3.5e+04 13C-2,3,7,8-TCDD | 2.12e+07 | 2.30e+03 | 9.2e+03 | 2.70e+07 | 2.97e+07 | 5.60e+02 | 5.3e+04 | 1.91e+07 | 4.00e+02 | 4.8e+04 13C-1,2,3,7,8-PeCDD 1.06e+03 13C-1,2,3,4,7,8-HxCDD 2.63e+07 | 1.56e+03 | 1.7e+04 | 2.12e+07 | 2.0e + 042.49e+07 | 1.56e+03 | 1.6e+04 | 2.01e+07 | 1.06e+03 1.9e + 0413C-1,2,3,6,7,8-HxCDD 3C-1,2,3,4,6,7,8-HpCDD| 1.98e+07| 1.36e+03| 1.5e+04| 1.88e+07| 1.11e+03 1.7e + 0413C-OCDD | 2.25e+07 | 7.00e+02 | 3.2e+04 | 2.53e+07 | 8.64e+02 | 2.9e+04 13C-1,2,3,4-TCDD 2.17e+07 2.30e+03 9.5e+03 2.76e+07 7.64e+02 3.6e+04 13C-1,2,3,7,8,9-HxCDD | 2.72e+07 | 1.56e+03 | 1.7e+04 | 2.20e+07 | 1.06e+03 | 2.1e+04 37Cl-2,3,7,8-TCDD 2.02e+07 4.84e+02 4.2e+04

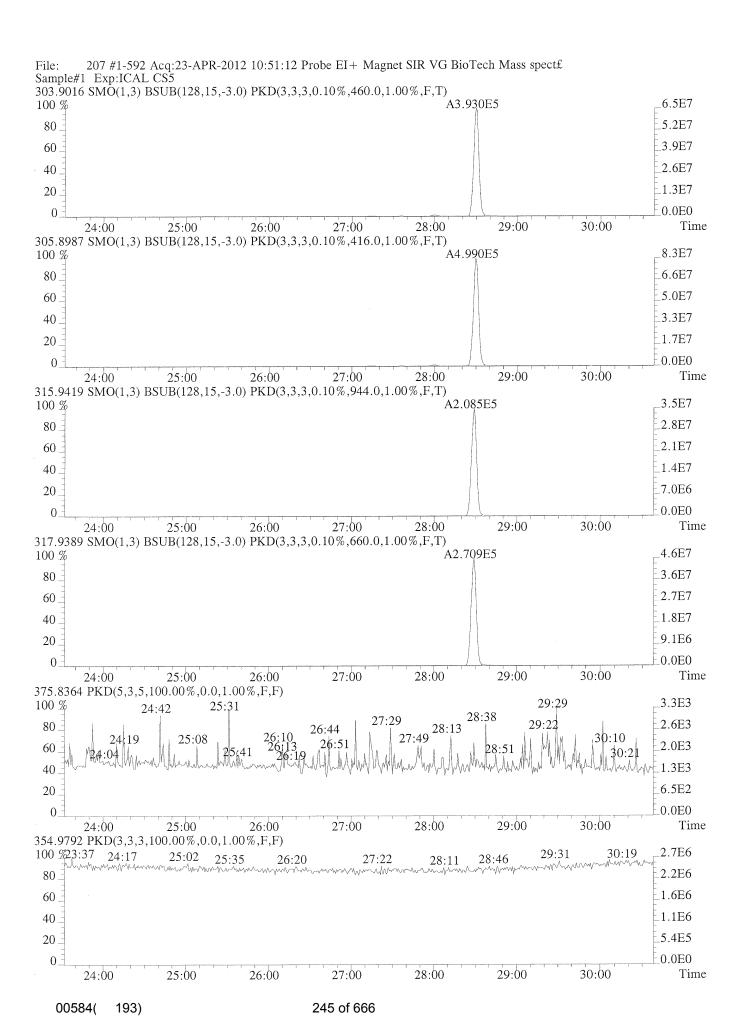


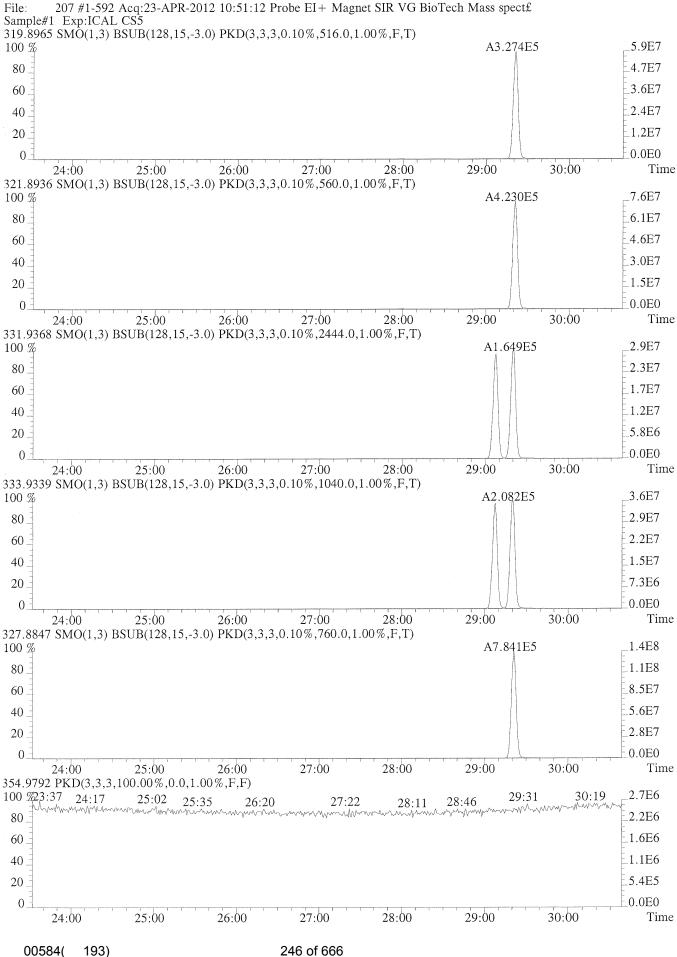


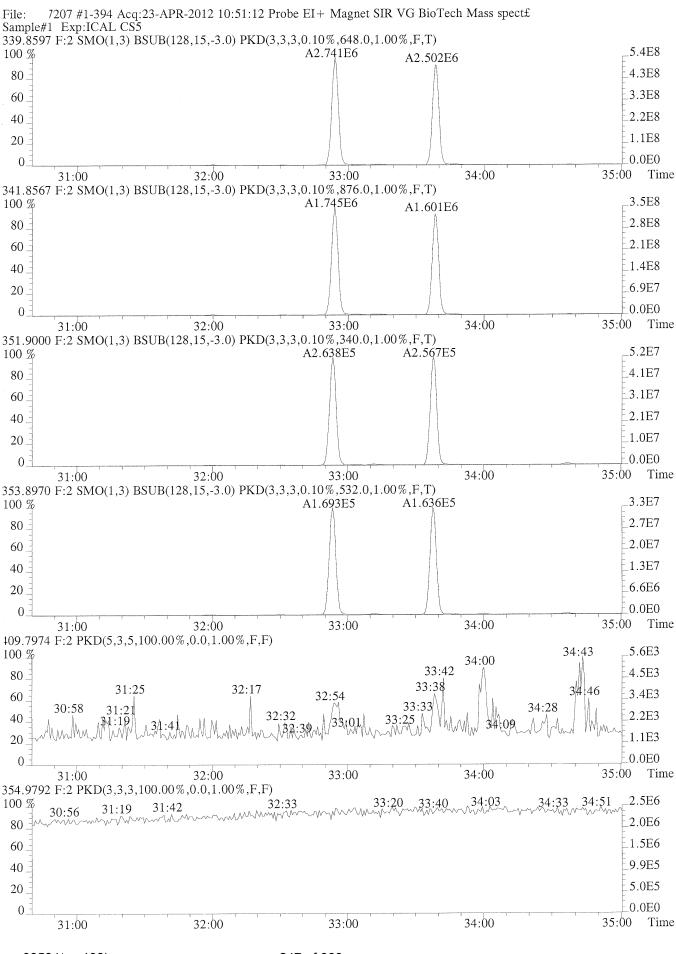


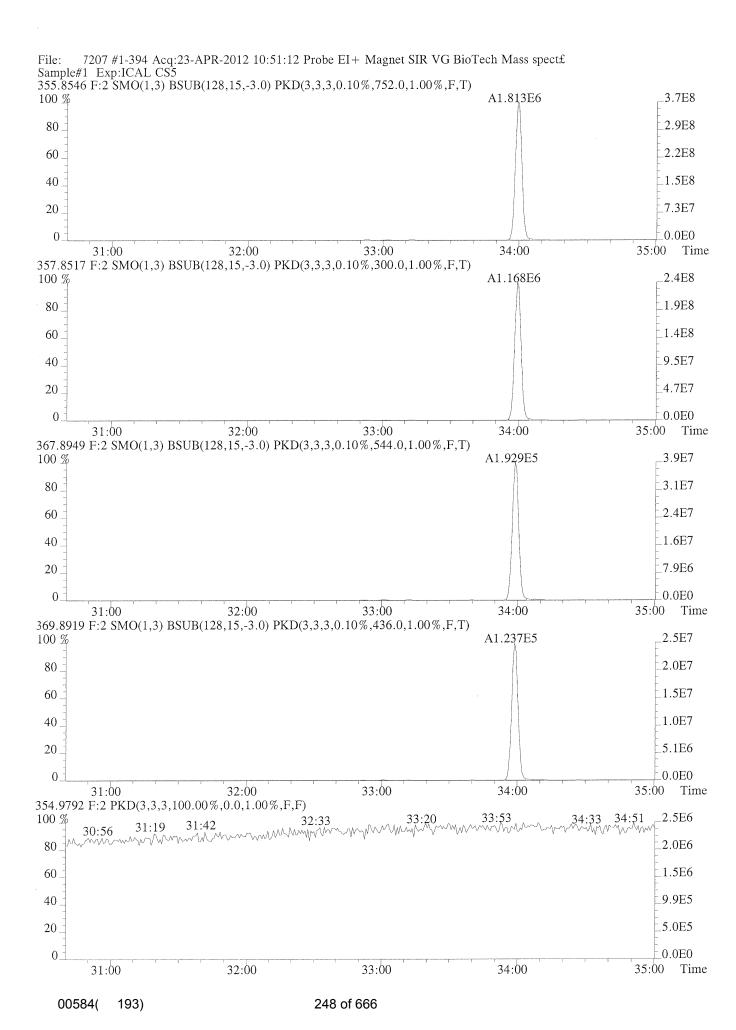


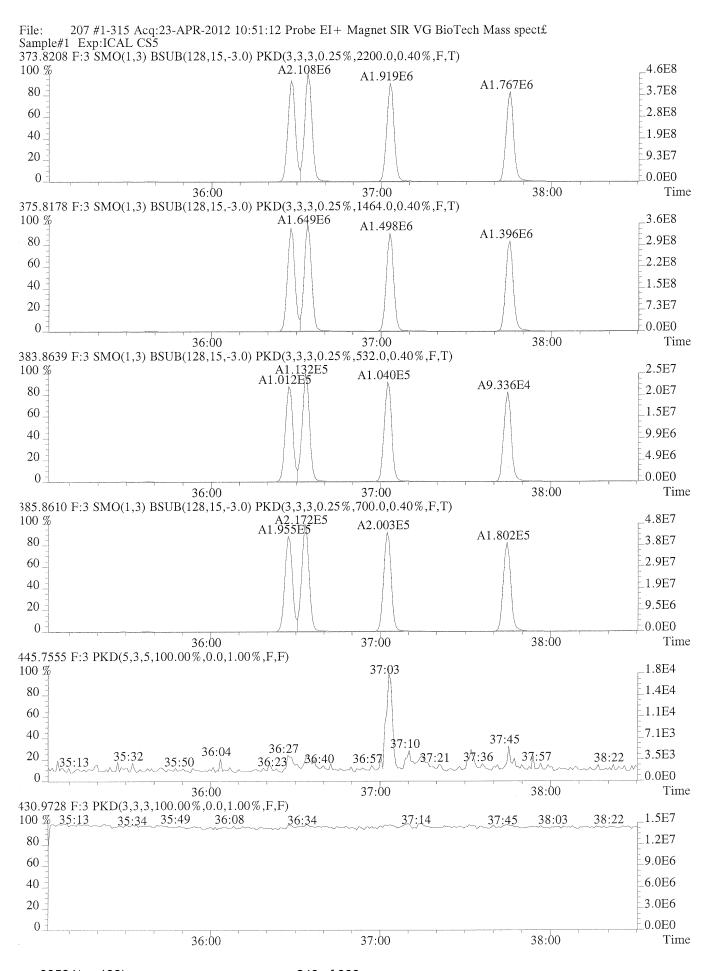


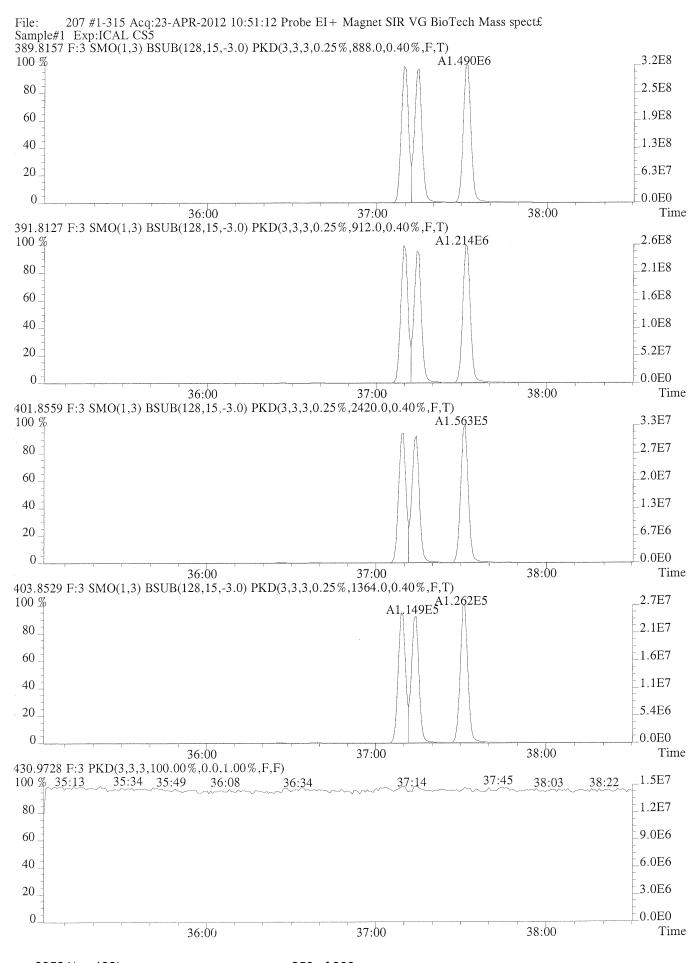


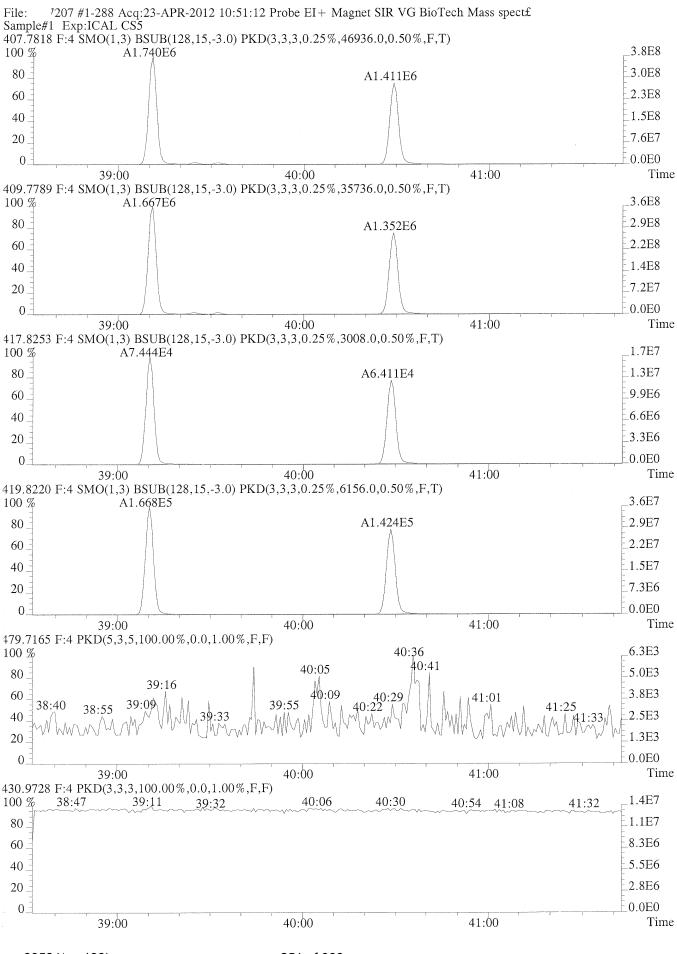

	Sample Response Summary		CLIENT ID. ICAL CS5					
	Filename 7207 #1 1: 23-APR-12 11:24:35	Samp:	1 Inj: 1 LAB. ID: ICAL	Acquired: CS5	23-APR	1-12 10):51:1	2
Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
Unk	2,3,7,8-TCDF	28:30	3.930e+05	4.990e+05	0.79	yes	no	1.001
Unk	1,2,3,7,8-PeCDF	32:54	2.741e+06	1.745e+06	1.57	yes	no	1.001
Unk	2,3,4,7,8-PeCDF	33:38	2.502e+06	1.601e+06	1.56	yes	no	1.000
Unk	1,2,3,4,7,8-HxCDF	36:28	2.007e+06	1.590e+06	1.26	yes	no	1.000
Unk	1,2,3,6,7,8-HxCDF	36:34	2.108e+06	1.649e+06	1.28	yes	no	1.000
Unk	2,3,4,6,7,8-HxCDF		1.919e+06	1.498e+06	1.28	yes	no	1.000
Unk	1,2,3,7,8,9-HxCDF		1.767e+06	1.396e+06	1.27	yes	no	1.000
Unk	1,2,3,4,6,7,8-HpCDF		1.740e+06	1.667e+06	1.04	yes	no	1.000
Unk	1,2,3,4,7,8,9-HpCDF		1.411e+06	1.352e+06	1.04	yes	no	1.000
Unk	OCDF	43:15	2.188e+06	2.412e+06	0.91	yes	no	1.004
Unk Unk Unk	2,3,7,8-TCDD		3.274e+05	4.230e+05	0.77	yes	no	1.001
Unk	1,2,3,7,8-PeCDD		1.813e+06	1.168e+06	1.55	yes	no	1.000
OIIK	1,2,3,4,7,8-HxCDD		1.412e+06	1.164e+06	1.21	yes	no	1.000
Unk	1,2,3,6,7,8-HxCDD		1.430e+06	1.151e+06	1.24	yes	no	1.000
Unk			1.490e+06	1.214e+06	1.23	yes	no	1.008
Unk	1,2,3,4,6,7,8-HpCDD		1.208e+06	1.158e+06	1.04	yes	no	1.000
Unk	OCDD	43:05	1.808e+06	2.040e+06	0.89	yes	no	1.000
IS.	13C-2,3,7,8-TCDF	28:29	2.085e+05	2.709e+05	0.77	yes	no	0.978
i IS	13C-1,2,3,7,8-PeCDF		2.638e+05	1.693e+05	1.56	yes	no	1.129
IS	13C-2,3,4,7,8-PeCDF		2.567e+05	1.636e+05	1.57	yes	no	1.155
IS	13C-1,2,3,4,7,8-HxCDF	•	1.012e+05	1.955e+05	0.52	yes	no	0.972
3 IS	13C-1,2,3,6,7,8-HxCDF		1.132e+05	2.172e+05	0.52	yes	no	0.974
IS	13C-2,3,4,6,7,8-HxCDF	37:02	1.040e+05	2.003e+05	0.52	yes	no	0.987
IS IS IS	13C-1,2,3,7,8,9-HxCDF	37:45	9.336e+04	1.802e+05	0.52	yes	no	1.006
IS	3C-1,2,3,4,6,7,8-HpCDF		7.444e+04	1.668e+05	0.45	yes	no	1.044
IS1	3C-1,2,3,4,7,8,9-HpCDF	40:28	6.411e+04	1.424e+05	0.45	yes	no	1.079
IS	13C-2,3,7,8-TCDD	29:20	1.649e+05	2.082e+05	0.79	yes	no	1.007
Ĩ IS	13C-1,2,3,7,8-PeCDD		1.929e+05	1.237e+05	1.56	yes	no	1.167
IS	13C-1,2,3,4,7,8-HxCDD		1.422e+05	1.146e+05	1.24	yes	no	0.991
ÌIS	13C-1,2,3,6,7,8-HxCDD		1.434e+05	1.149e+05	1.25	yes	no	0.992
🏅 ISl	3C-1,2,3,4,6,7,8-HpCDD		1.189e+05	1.130e+05	1.05	yes	no	1.068
IS IS IS IS	13C-OCDD	43:04	1.640e+05	1.842e+05	0.89	yes	no	1.148
S/RT	13C-1,2,3,4-TCDD	29:07	1.613e+05	2.038e+05	0.79	yes	no	*
	13C-1,2,3,7,8,9-HxCDD		1.563e+05	1.262e+05	1.24	yes	no	*
S/RT		29:21	7.841e+05				no	1.008

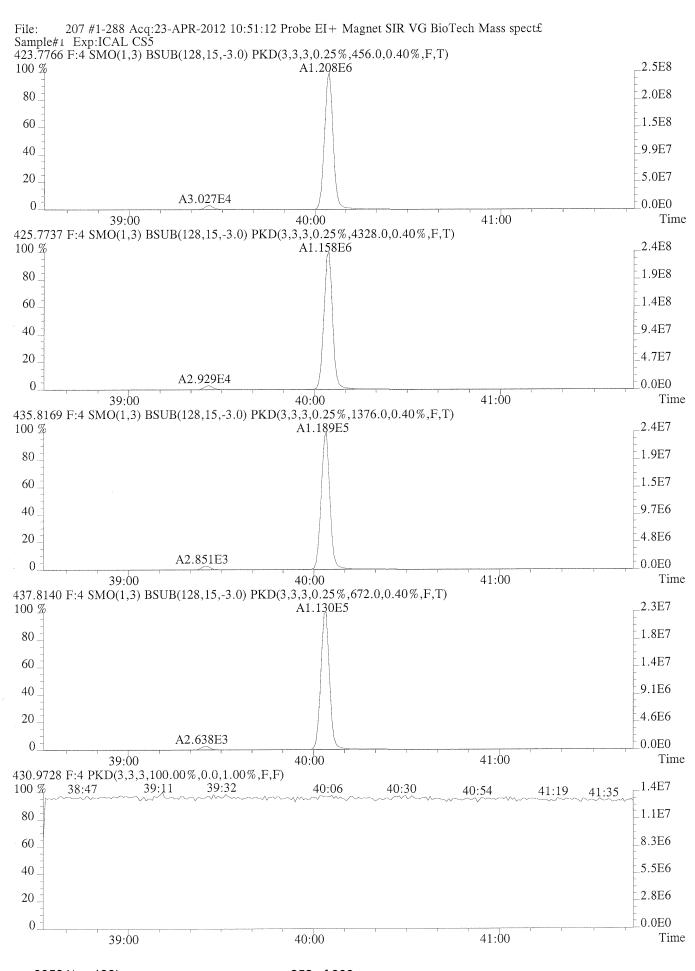

d #6 Filename Acquired: 23-APR-12 10:51:12 7207 Samp: 1 Inj: 1 ႏွံင**းနေရဲ့:** 23-APR-12 LAB. ID: ICAL CS5 11:24:351 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 6.49e+07 | 4.60e+02 | 1.4e+05 | 8.26e+07 | 4.16e+02 | 2.0e+05 2,3,7,8-TCDF 1,2,3,7,8-PeCDF | 5.41e+08 | 6.48e+02 | 4.0e + 058.4e+05 3.47e+08 8.76e+02 2,3,4,7,8-PeCDF | 5.03e+08 | 6.48e+02 | 7.8e+05 3.24e+08 8.76e+02 3.7e + 052.4e + 051,2,3,4,7,8-HxCDF 3.48e+08 1.46e+03 4.35e+08 2.20e+03 2.0e+05 2.20e+03 2.1e + 053.62e+08 1.46e+03 2.5e + 051,2,3,6,7,8-HxCDF 4.64e+08 3.30e+08 1.46e+03 2.3e + 052,3,4,6,7,8-HxCDF 4.23e+08 2.20e+03 1.9e+05 1,2,3,7,8,9-HxCDF 1.46e+03 2.1e+05 3.86e+08 2.20e+03 1.8e+05 3.04e+08 8.1e+03 1.0e + 041,2,3,4,6,7,8-HpCDF 3.79e+08 4.69e+04 3.61e+08 3.57e+04 2.72e+08 3.57e+04 7.6e + 031,2,3,4,7,8,9-HpCDF 2.85e+08 | 4.69e+04 | 6.1e+03 OCDF | 3.74e+08 | 5.20e+02 | 7.2e+05 | 4.11e+08 | 5.12e+02 | 8.0e+05 2,3,7,8-TCDD | 5.92e+07 | 5.16e+02 | 1.1e+05 | 7.61e+07 5.60e+02 1.4e + 057.52e+02 4.9e+05 2.37e+08 3.00e+02 7.9e + 051,2,3,7,8-PeCDD | 3.65e+08| 3.14e+08 8.88e+02 | 3.5e+05 | 2.61e+08 9.12e+02 2.9e + 051,2,3,4,7,8-HxCDD 3.5e+05 2.48e+08 9.12e+02 2.7e + 051,2,3,6,7,8-HxCDD 3.07e+08 8.88e+02 1,2,3,7,8,9-HxCDD 2.9e + 052.61e+08 9.12e+02 3.16e+08 8.88e+02 3.6e+05 5.4e+05 2.35e+08 4.32e+03 5.4e + 041,2,3,4,6,7,8-HpCDD 2.47e+08 4.56e+02 OCDD 3.07e+08 3.40e+02 9.0e+05 3.49e+08 5.40e+02 6.5e + 0513C-2,3,7,8-TCDF 3.51e+07 $9.44e+02 \mid 3.7e+04 \mid 4.55e+07 \mid$ 6.60e+02 | 6.9e+04 5.17e+07 | 3.40e+02 | 1.5e+05 | 3.32e+07 | 5.32e+02 | 6.2e+04 13C-1,2,3,7,8-PeCDF 3.32e+07 5.32e+02 | 6.2e+04 13C-2,3,4,7,8-PeCDF 5.17e+07 3.40e+02 1.5e+05 5.32e+02 4.1e+04 4.21e+07 7.00e+02 6.0e + 0413C-1,2,3,4,7,8-HxCDF 2.18e+07 7.00e+02 2.47e+07 5.32e+02 4.6e+04 4.75e+07 6.8e+04 2 13C-1,2,3,6,7,8-HxCDF 7.00e+02 6.3e + 042.27e+07 5.32e+02 4.3e+04 4.40e+07 13C-2,3,4,6,7,8-HxCDF 5.32e+02 3.8e+04 3.94e+07 7.00e+02 5.6e + 0413C 1,2,3,7,8,9-HxCDF 2.04e+07 3C-1,2,3,4,6,7,8-HpCDF 3C-1,2,3,4,7,8,9-HpCDF 13C-2,3,7,8-TCDD 1.65e+07 | 3.01e+03 | 5.5e+03 | 3.64e+07 | 6.16e+03 | 5.9e+03 1.28e+07 | 3.01e+03 | 4.3e+03 | 2.86e+07 | 6.16e+03 | 4.7e+03 3C-1/2,3,4,7,8,9-HpCDF 13C-2,3,7,8-TCDD | 2.89e+07 | 2.44e+03 | 1.2e+04 | 3.64e+07 | 1.04e+03 | 3.5e+04 7.2e+04 2.54e+07 4.36e+02 | 5.8e+04 13C-1,2,3,7,8-PeCDD 3.93e+07 | 5.44e+02 | 13C-1,2,3,4,7,8-HxCDD 3.14e+07 2.42e+03 | 1.3e+04 | 2.54e+07 | 1.36e+03 | 1.9e+04 13C-1,2,3,6,7,8-HxCDD 3.08e+07 2.42e+03 1.3e+04 2.46e+07 1.36e+03 1.8e + 042.28e+07 2.42e+07 6.72e+02 3.4e + 04.3C-1₆₀2,3,4,6,7,8-HpCDD 1.38e+03 1.8e+04 13C-OCDD | 2.78e+07 | 6.68e+02 | 4.2e+04 | 3.11e+07 | 9.00e+02 | 3.5e+04 13C-1,2,3,4-TCDD| 2.82e+07| 2.44e+03| 1.2e+04| 3.57e+07| 1.04e+03| 3.4e+04 13C-1,2,3,7,8,9-HxCDD| 3.33e+07| 2.42e+03| 1.4e+04| 2.67e+07| 1.36e+03| 2.0e+04

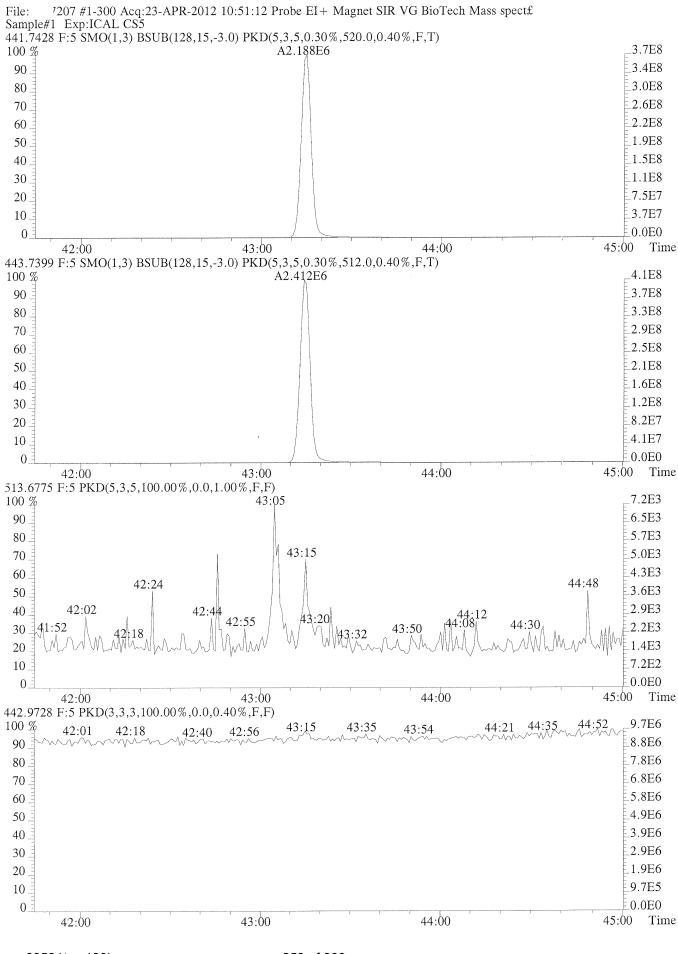

40) 1

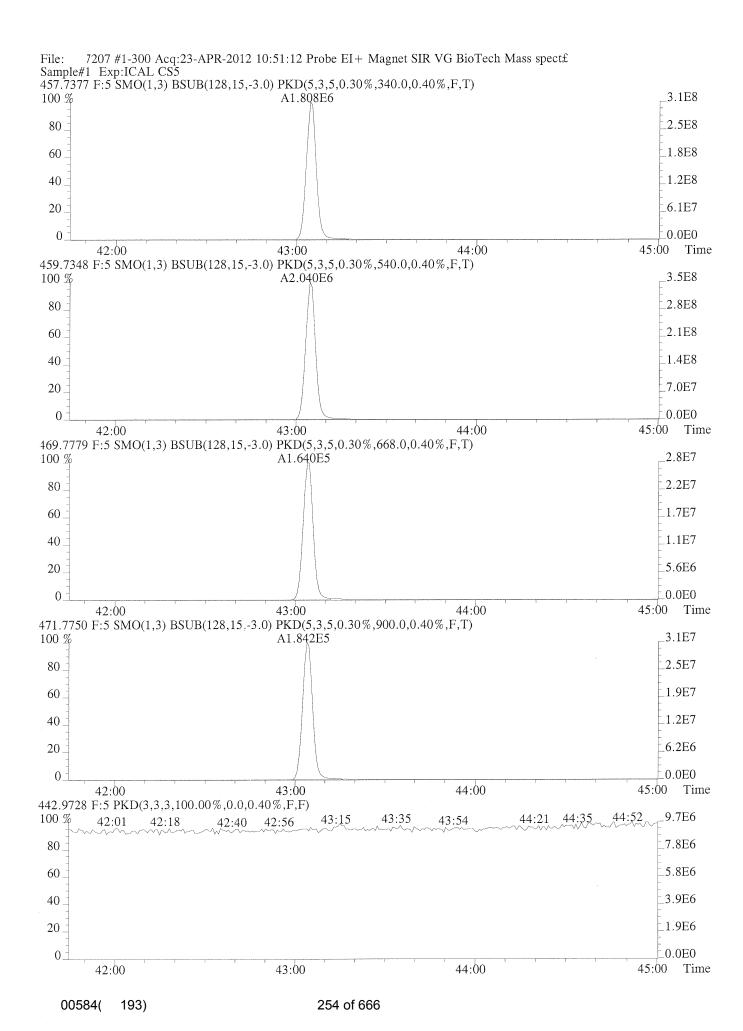

37Cl-2,3,7,8-TCDD | 1.41e+08 | 7.60e+02 | 1.9e+05











FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name:

drus Aria

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 04/23/12

Instrument ID: AutoSpec-Ultima

GC Column ID: DB-5

VER Data Filename: 7208 Analysis Date: 23-APR-12 Time: 11:54:29

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE (3) (ng/mL)
\$2,3,7,8-TCDD	M/M+2	0.77	0.65-0.89	10.3	7.8 - 12.9
3.7,2,3,7,8-PeCDD	M+2/M+4	1.56	1.32-1.78	50	39 - 65
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.25 1.26 1.24	1.05-1.43 1.05-1.43 1.05-1.43	52 52 57	39 - 64 39 - 64 41 - 61
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.04	0.88-1.20	51	43 - 58
(CDD	M+2/M+4	0.89	0.76-1.02	116	79 - 126
32,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	9.9	8.4 - 12.0
2,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.56 1.55	1.32-1.78 1.32-1.78	51 50	41 - 60 41 - 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.23 1.22 1.23 1.22	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	51 51 51 51	45 - 56 44 - 57 45 - 56 44 - 57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	M+2/M+4	1.04	0.88-1.20 0.88-1.20	51 50	45 - 55 43 - 58
OCDF	M+2/M+4	0.91	0.76-1.02	100	63 - 159

⁽¹⁾ Seé Table 8, Method 1613B, for m/z specifications.

6/90

Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613B.

Contract-required concentration range as specified in Table 6, Method 1613B, under VER.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name:

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 04/23/12

Instrument ID: AutoSpec-Ultima

GC Column ID: DB-5

VER Data Filename: 7208 Analysis Date: 23-APR-12 Time: 11:54:29

LABELED COMPOUNDS	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE (3) (ng/mL)
13C-2,3,7,8-TCDD	M/M+2	0.79	0.65-0.89	98	82 - 121
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.56	1.32-1.78	95	62 - 160
13C-1,2,3,4,7,8-HxCDI		1.26 1.26	1.05-1.43 1.05-1.43	87 93	85 - 117 85 - 118
13C-1,2,3,4,6,7,8-Hp0	CDD M+2/M+4	1.04	0.88-1.20	104	72 - 138
% 1.3 0-0CDD √3.3 0-0CDD	M+2/M+4	0.89	0.76-1.02	242	96 - 415
[13C-2,3 ⁷ 7,8-TCDF	M/M+2	0.78	0.65-0.89	99	71 - 140
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.57 1.56	1.32-1.78 1.32-1.78	97 97	76 - 130 77 - 130
13C-1,2,3,4,7,8-HxCDE 13C-1,2,3,6,7,8-HxCDE 13C-1,2,3,7,8,9-HxCDE 13C-2,3,4,6,7,8-HxCDE	M/M+2 M/M+2	0.52 0.52 0.52 0.52	0.43-0.59 0.43-0.59 0.43-0.59 0.43-0.59	100 100 96 99	76 - 131 70 - 143 74 - 135 73 - 137
13C-1,2,3,4,6,7,8-HpC		0.45	0.37-0.51 0.37-0.51	96 103	78 - 129 77 - 129
EANUP STANDARD					
201-2,3,7,8-TCDD				10.1	7.9 - 12.7

See Table 8, Method 1613B, for m/z specifications.

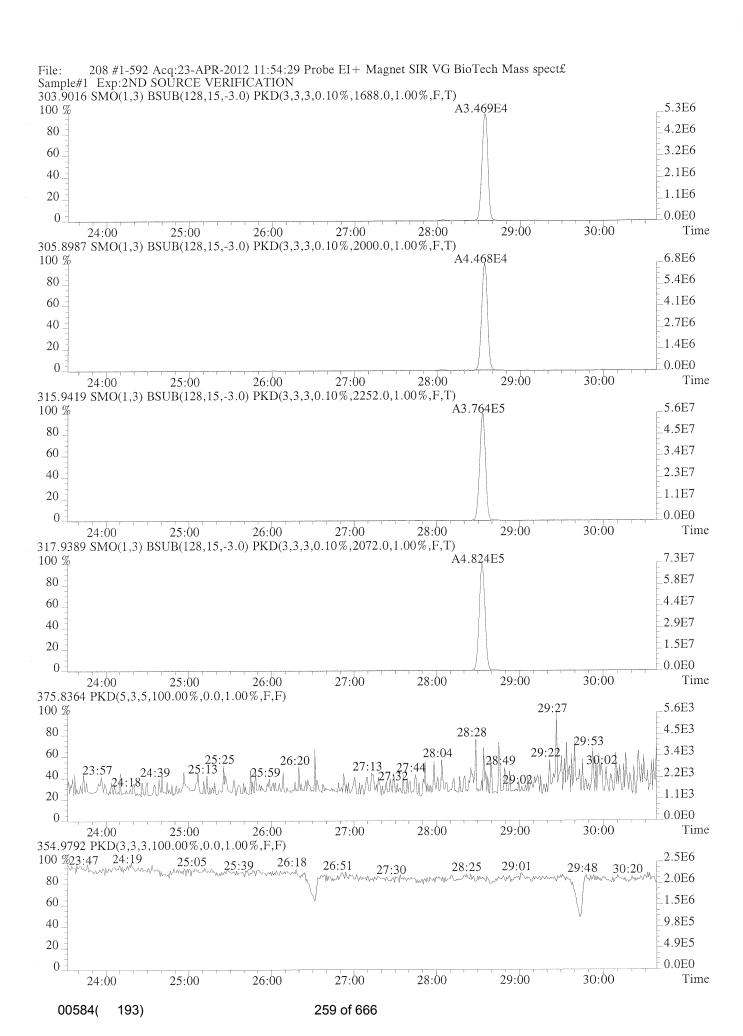
6/90

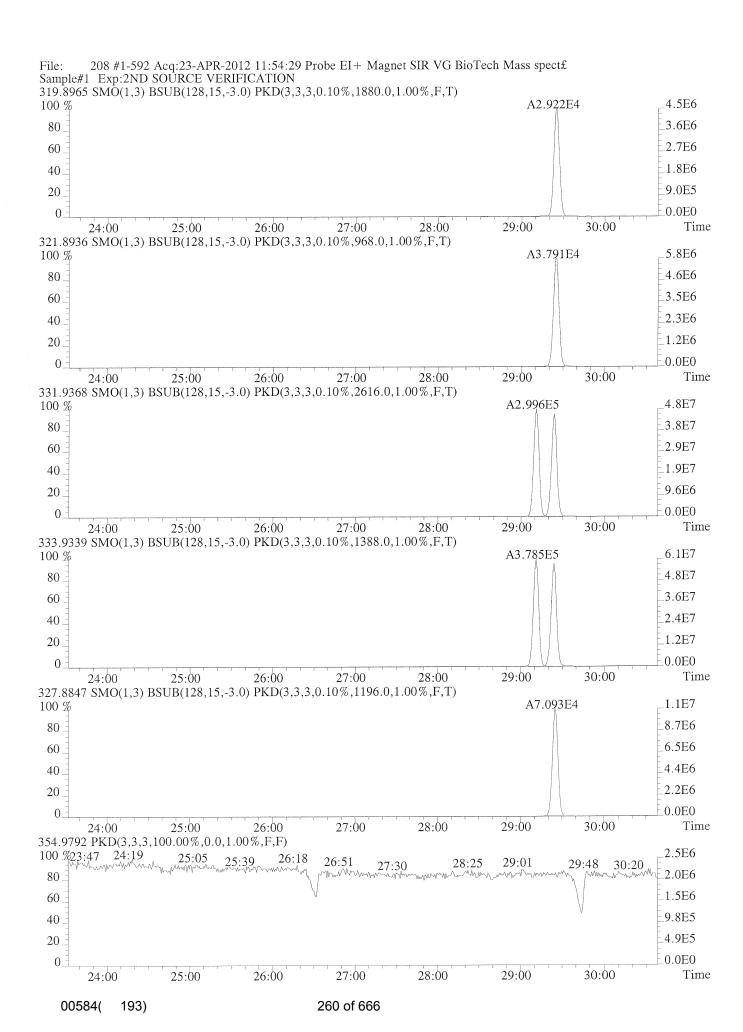
¹³²⁾ Ioa Abundance Ratio Control Limits as specified in Table 9, Method 1613B.

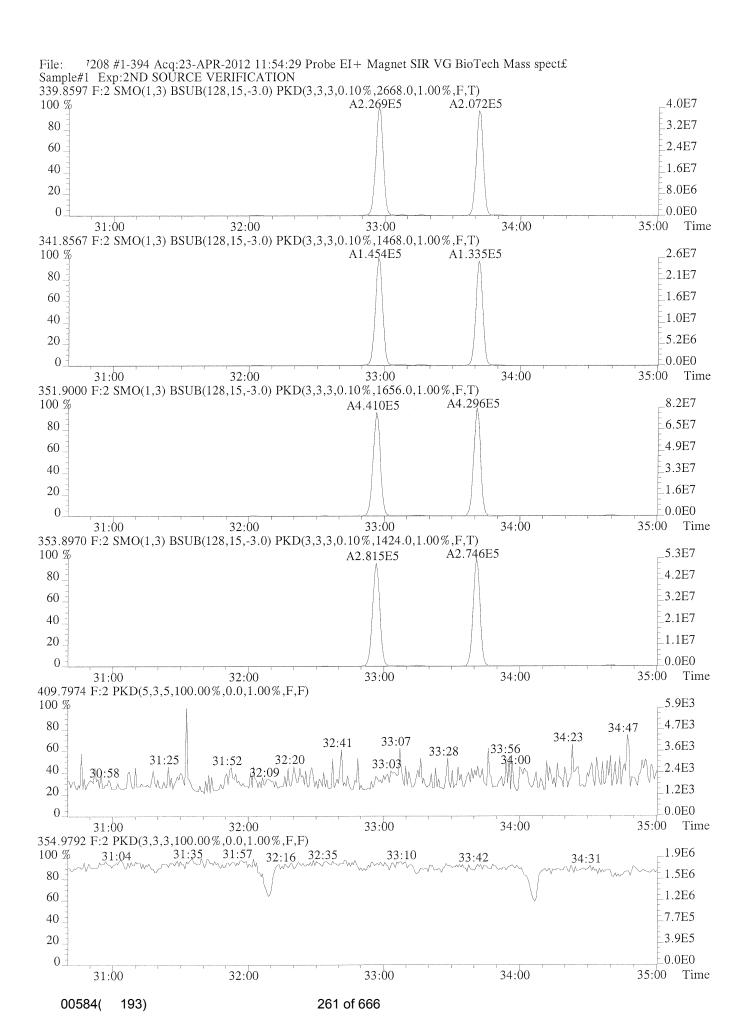
Contract-required concentration range, as specified in Table 6, Method 1613B, under VER.

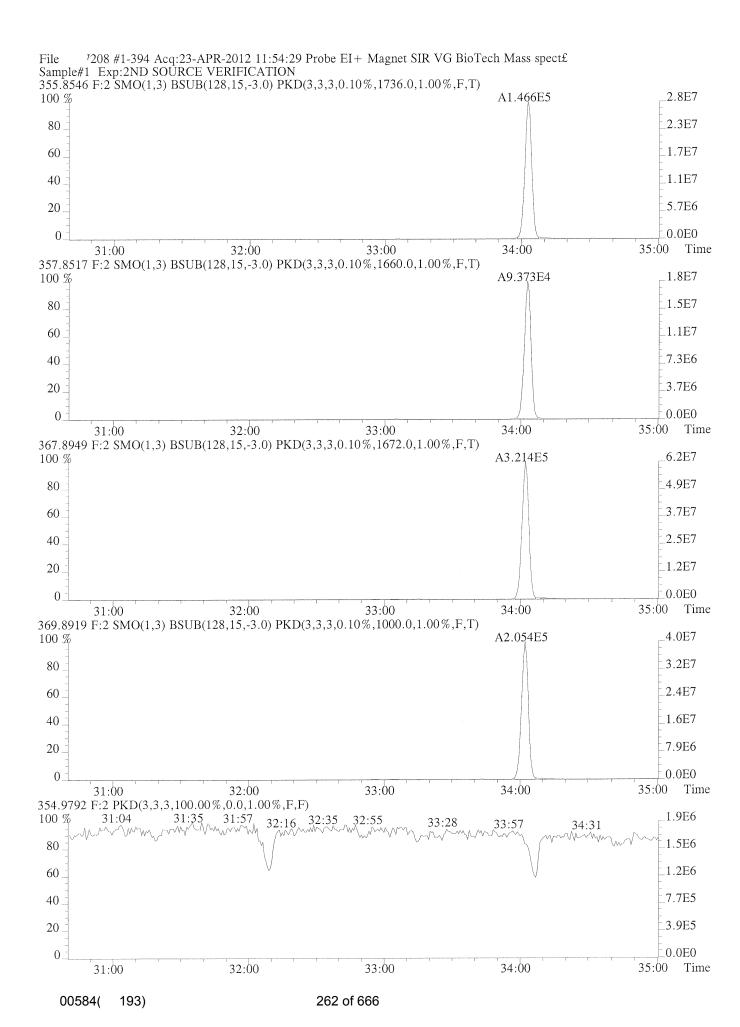
No ion abundance ratio; report concentration found.

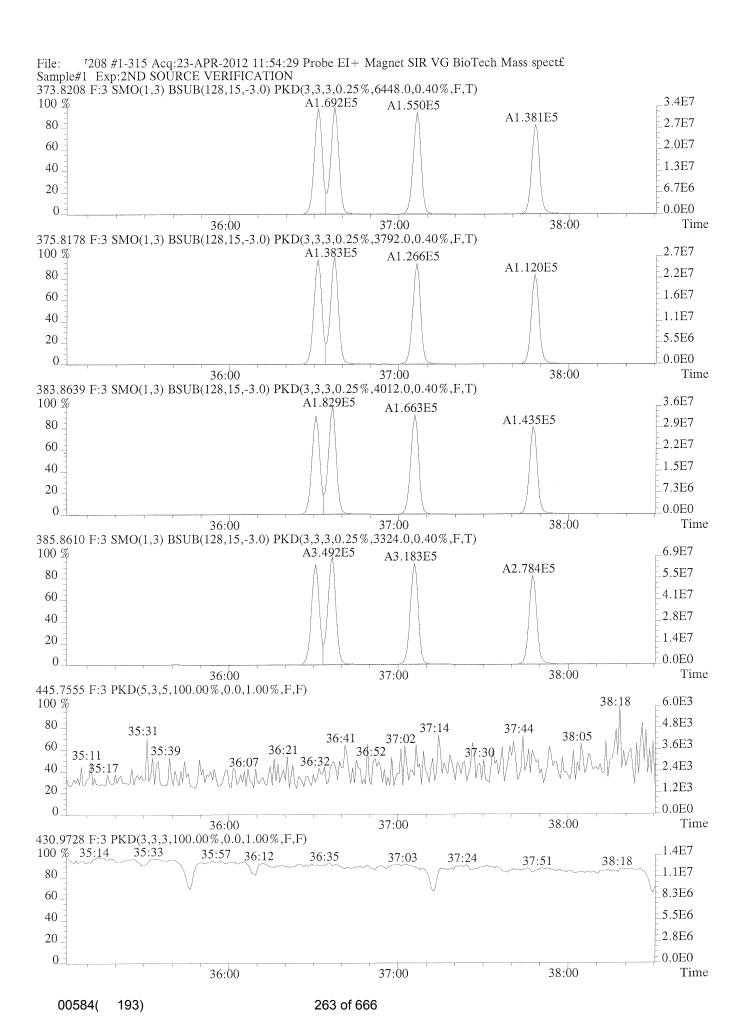
CLIENT ID. 2ND SOURCE VERIF

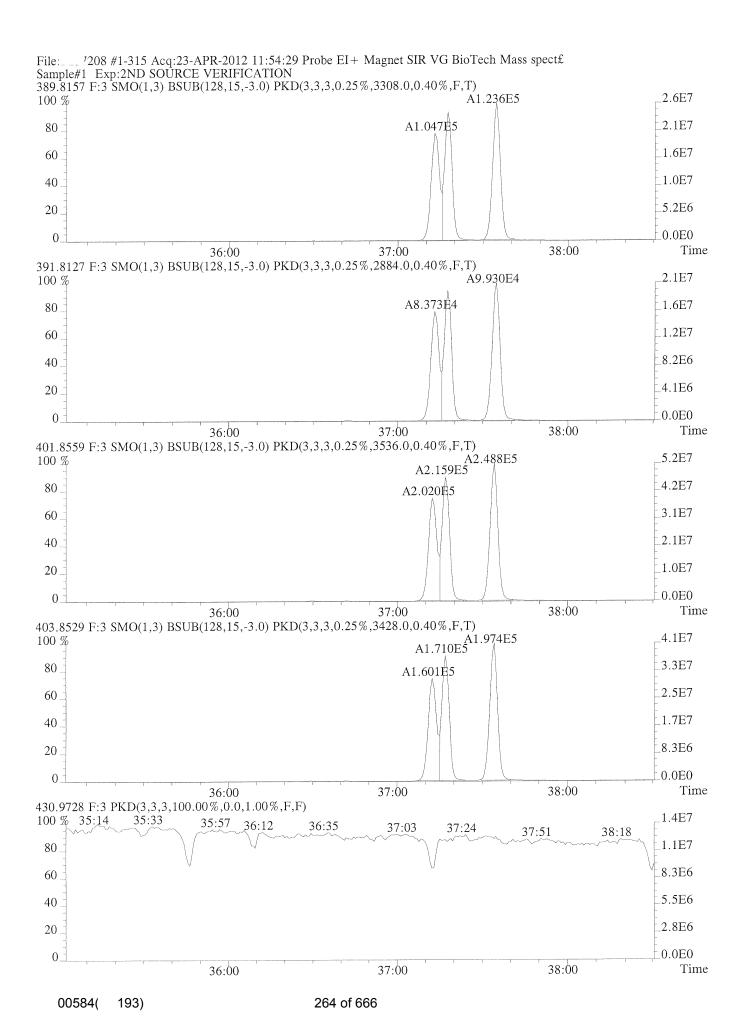

Run #7 Processed	Filename 7208 #1 d: 24-APR-12 07:24:19	Samp:	1 Inj: 1 LAB. ID:	Acquired:	23-APR	-12 11	:54:2	9
Typ	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
i Unk	2,3,7,8-TCDF	28:34	3.469e+04	4.468e+04	0.78	yes	no	1.001
Unk	1,2,3,7,8-PeCDF		2.269e+05	1.454e+05	1.56	yes	no	1.000
Unk Unk Unk	2,3,4,7,8-PeCDF		2.072e+05	1.335e+05	1.55	yes	no	1.000
4 Unk	1,2,3,4,7,8-HxCDF		1.616e+05	1.316e+05	1.23	yes	no	1.000
4 Unk 5 Unk	1,2,3,6,7,8-HxCDF	36:37	1.692e+05	1.383e+05	1.22	yes	no	1.000
6 Unk	2,3,4,6,7,8-HxCDF	37:06	1.550e+05	1.266e+05	1.22	yes	no	1.000
7 Unk 8 Unk	1,2,3,7,8,9-HxCDF	37:48	1.381e+05	1.120e+05	1.23	yes	no	1.000
8 Unk	1,2,3,4,6,7,8-HpCDF		1.301e+05	1.251e+05	1.04	yes	no	1.000
9 Unk	1,2,3,4,7,8,9-HpCDF		1.102e+05	1.067e+05	1.03	yes	no	1.000
10 Unk		43:18	1.883e+05	2.061e+05	0.91	yes	no	1.004
35			,					
11 Unk	2,3,7,8-TCDD	29:25	2.922e+04	3.791e+04	0.77	yes	no	1.001
12 Unk	1,2,3,7,8-PeCDD		1.466e+05	9.373e+04	1.56	yes	no	1.000
13 Unk	1,2,3,4,7,8-HxCDD		1.047e+05	8.373e+04	1.25	yes	no	1.000
TA Unk	1,2,3,6,7,8-HxCDD		1.102e+05	8.718e+04	1.26	yes	no	1.000
F\$ Unk			1.236e+05	9.930e+04	1.24	yes	no	1.008
16 Unk	1,2,3,4,6,7,8-HpCDD		9.899e+04	9.561e+04	1.04	yes	no	1.000
17 Unk		43:08	1.856e+05	2.083e+05	0.89	yes	no	1.000
		s	,					
18 IS	13C-2,3,7,8-TCDF	28:33	3.764e+05	4.824e+05	0.78	yes	no	0.978
19 IS	13C-1,2,3,7,8-PeCDF	32:57	4.410e+05	2.815e+05	1.57	yes	no	1.129
20 IS	13C-2,3,4,7,8-PeCDF	33:41	4.296e+05	2.746e+05	1.56	yes	no	1.154
2 S	13C-1,2,3,4,7,8-HxCDF	36:31	1.610e+05	3.118e+05	0.52	yes	no	0.972
2\$ IS	13C-1,2,3,6,7,8-HxCDF	36:37	1.829e+05	3.492e+05	0.52	yes	no	0.974
23 IS	13C-2,3,4,6,7,8-HxCDF	37:06	1.663e+05	3.183e+05	0.52	yes	no	0.987
24 IS	13C-1,2,3,7,8,9-HxCDF		1.435e+05	2.784e+05	0.52	yes	no	1.006
25 IS1	3C-1,2,3,4,6,7,8-HpCDF		1.118e+05	2.483e+05	0.45	yes	no	1.044
26 IS1	3C-1,2,3,4,7,8,9-HpCDF	40:32	1.008e+05	2.246e+05	0.45	yes	no	1.079
0		'						
27 IS	13C-2,3,7,8-TCDD	29:24	2.933e+05	3.728e+05	0.79	yes	no	1.007
28 IS	13C-1,2,3,7,8-PeCDD	34:02	3.214e+05	2.054e+05	1.56	yes	no	1.166
29 IS	13C-1,2,3,4,7,8-HxCDD	37:12	2.020e+05	1.601e+05	1.26	yes	no	0.990
.39 IS	13C-1,2,3,6,7,8-HxCDD	37:17	2.159e+05	1.710e+05	1.26	yes	no	0.992
isi isi	3C-1,2,3,4,6,7,8-HpCDD		1.932e+05	1.852e+05	1.04	yes	no	1.068
IS1	13C-OCDD		3.037e+05	3.397e+05	0.89	yes	no	1.148
26			'		. ,	,		
33RS/RT	13C-1,2,3,4-TCDD	29:11	2.996e+05	3.785e+05	0.79	yes	no	*
34RS/RT	13C-1,2,3,7,8,9-HxCDD		2.488e+05	1.974e+05	1.26	yes	no	*
C/Up	37C1-2,3,7,8-TCDD		7.093e+04			ĺ	no	1.008
		•						

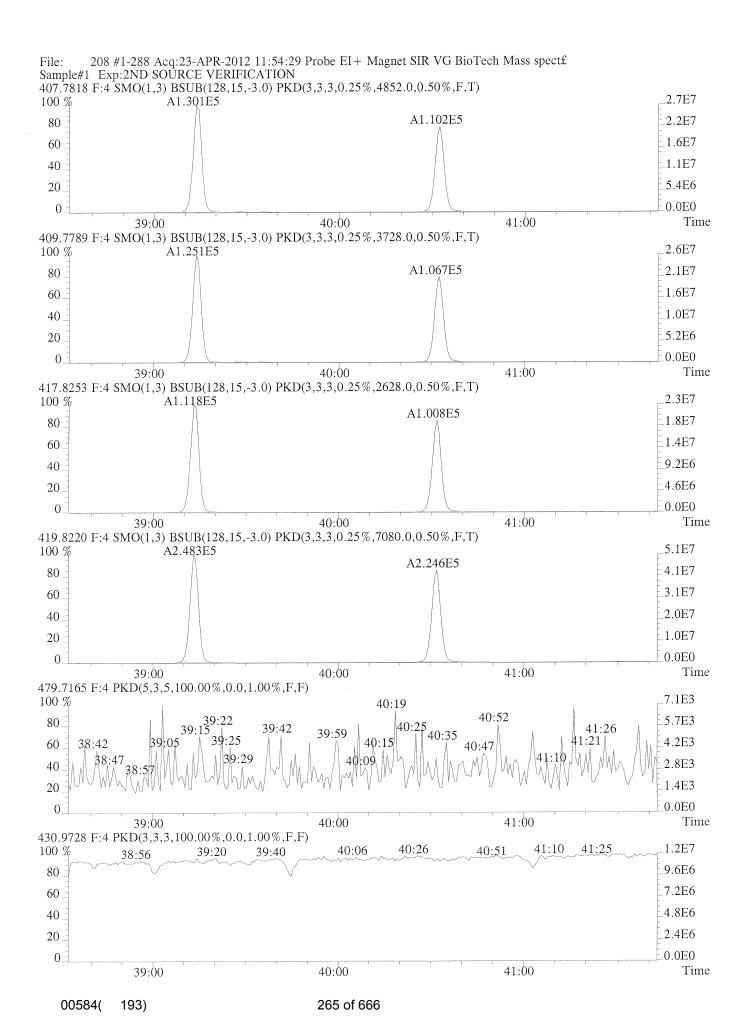

CLIENT ID.
2ND SOURCE VERIF

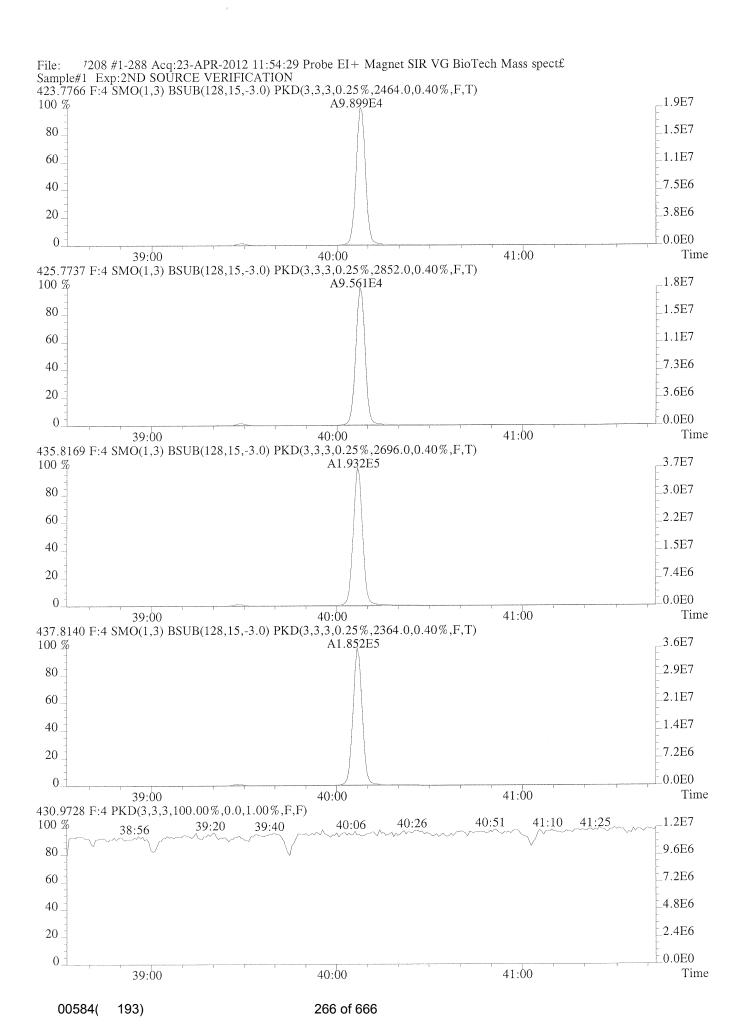

Right #7 Acquired: 23-APR-12 11:54:29 7208 Inj: 1 Filename Samp: 1 LAB. ID: Processed: 24-APR-12 07:24:191 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 5.28e+06 1.69e+03 | 3.1e+03 | 6.78e+06 2.00e+03 3.4e + 032,3,7,8-TCDF 2. 7 4.00e+07 1.5e+04 2.59e+07 1.47e+03 1.8e + 041,2,3,7,8-PeCDF 2.67e+03 2,3,4,7,8-PeCDF 3.90e+07 2.67e+03 1.5e + 042.52e+07 1.47e+03 1.7e + 043 ... 4 - p1,2,3,4,7,8-HxCDF 3.32e+07 6.45e+03 5.1e + 032.68e+07 3.79e+03 7.1e + 032.74e+07 1,2,3,6,7,8-HxCDF 6.45e+03 5.2e+03 3.79e+03 7.2e + 03F 5. 3.36e+07 5, 27 2,3,4,6,7,8-HxCDF 3.19e+07 6.45e+03 | 4.9e+03 | 2.58e+07 3.79e+03 | 6.8e+03 1,2,3,7,8,9-HxCDF 2.81e+07 6.45e+03 4.4e+03 2.28e+07 3.79e+03 6.0e + 033. 1. 5.5e+03 2.60e+07| 3.73e+03 7.0e + 031,2,3,4,6,7,8-HpCDF 2.68e+07 4.85e+03 2.07e+07 3.73e+03 5.5e + 032.14e+07 4.85e+03 4.4e+03 1,2,3,4,7,8,9-HpCDF 1.3e + 042.96e+03 | 1.0e+04 | 3.41e+07 2.69e+03 OCDF | 3.10e+07 10 5.79e+06 | 9.68e+02 | 6.0e+03 1.88e+03 | 2.4e+03 | 1.3. 2,3,7,8-TCDD 4.47e+06 1.1e + 041.74e+03 1.6e+04 1.83e+07 | 1.66e+03 | 1,2,3,7,8-PeCDD | 2.84e+07| 5.6e + 03134 K. 1.62e+07 2.88e+03 3.31e+03 6.1e+03 1,2,3,4,7,8-HxCDD 2.02e+07 RIGHT 6.7e + 033.31e+037.3e + 031.93e+07 2.88e+03 1,2,3,6,7,8-HxCDD 2.42e+07 子类中心 7.1e + 03°1,2,3,7,8,9-HxCDD 2.58e+07 3.31e+037.8e+03 2.04e+07 2.88e+03 6.4e + 031.6 2.46e+03 7.6e+03 1.82e+07 2.85e+03 1,2,3,4,6,7,8-HpCDD 1.87e+07 3.40e+03 | 9.0e+03 | 3.47e+07 | 4.03e+03 8.6e + 037.7 OCDD 3.08e+07 3.5e + 042.07e+03 19 13C-2,3,7,8-TCDF 5.64e+07 2.25e+03 2.5e+04 7.25e+07 3.5e + 0413C-1,2,3,7,8-PeCDF 7.82e+07 1.66e+03 4.7e+04 5.01e+07 1.42e+03 3.7e + 041.66e+03 4.9e+04 5.25e+07 1.42e+03 13C-2,3,4,7,8-PeCDF 8.16e+07 30 1.9e + 048.2e+03 6.38e+07 3.32e+03 17. 13C-1,2,3,4,7,8-HxCDF 3.31e+07 4.01e+03 327, 13C-1,2,3,6,7,8-HxCDF 9.0e+03 6.87e+07 3.32e+03 2.1e + 043.62e+07 4.01e+03 ∳3 ° 8.3e+03 6.44e+07 3.32e+03 1.9e + 043.34e+07 4.01e+03 13C-2,3,4,6,7,8-HxCDF 5.66e+07 3.32e+03 1.7e + 047.3e+03 13C-1,2,3,7,8,9-HxCDF 2.92e+07 4.01e+03 7.2e + 0335 13C-1,2,3,4,6,7,8-HpCDF 2.63e+03 8.7e+03 5.10e+07 7.08e+03 2.30e+07 1.96e+07 | 2.63e+03 | 7.4e+03 | 4.35e+07 | 7.08e+03 | 6.1e+03 18 13C-1,2,3,4,7,8,9-HpCDF 27 1.39e+03 | 4.2e+04 4.57e+07 2.62e+03 | 1.7e+04 5.79e+07 13C-2,3,7,8-TCDD 3.9e + 0418 13C-1,2,3,7,8-PeCDD 6.17e+07 3.7e+04 3.95e+07 1.00e+03 1.67e+03 9.0e + 033.08e+07 3.43e+03 3.90e+07 1.1e+04 13C-1,2,3,4,7,8-HxCDD 3.54e+03 13C-1,2,3,6,,,5 13C-1,2,3,4,6,7,8-HpCDD | 13C-OCDD | 1.1e + 043.54e+03 1.3e + 043.77e+07 3.43e+03 4.70e+07 1.5e + 041.4e+04 3.57e+07 2.36e+03 3.69e+07 2.70e+03 3.7e + 0413C-OCDD | 5.07e+07 | 2.04e+03 | 2.5e+04 | 5.66e+07 | 1.52e+03 | 1.8e+04 | 6.05e+07 | 1.39e+03 | 4.4e+04 33 13C-1,2,3,4-TCDD| 4.80e+07| 2.62e+03 1.5e+04 | 4.12e+07 | 3.43e+03 | 1.2e+04 10 13C-1,2,3,7,8,9-HxCDD | 5.20e+07 3.54e+03 19. 37Cl-2,3,7,8-TCDD | 1.09e+07 | 1.20e+03 | 9.1e + 03

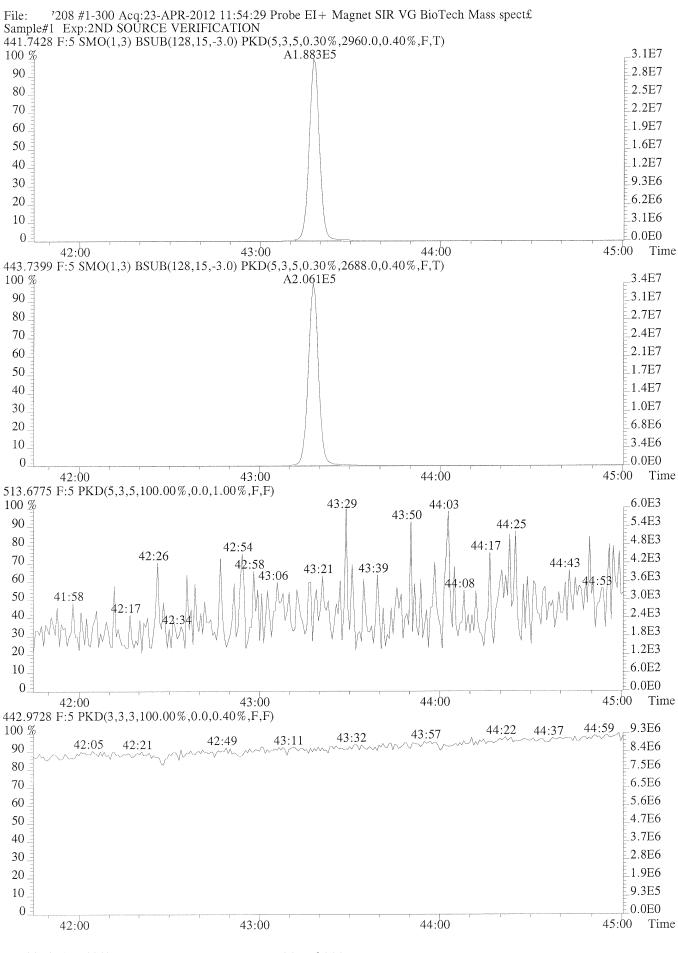

Cit

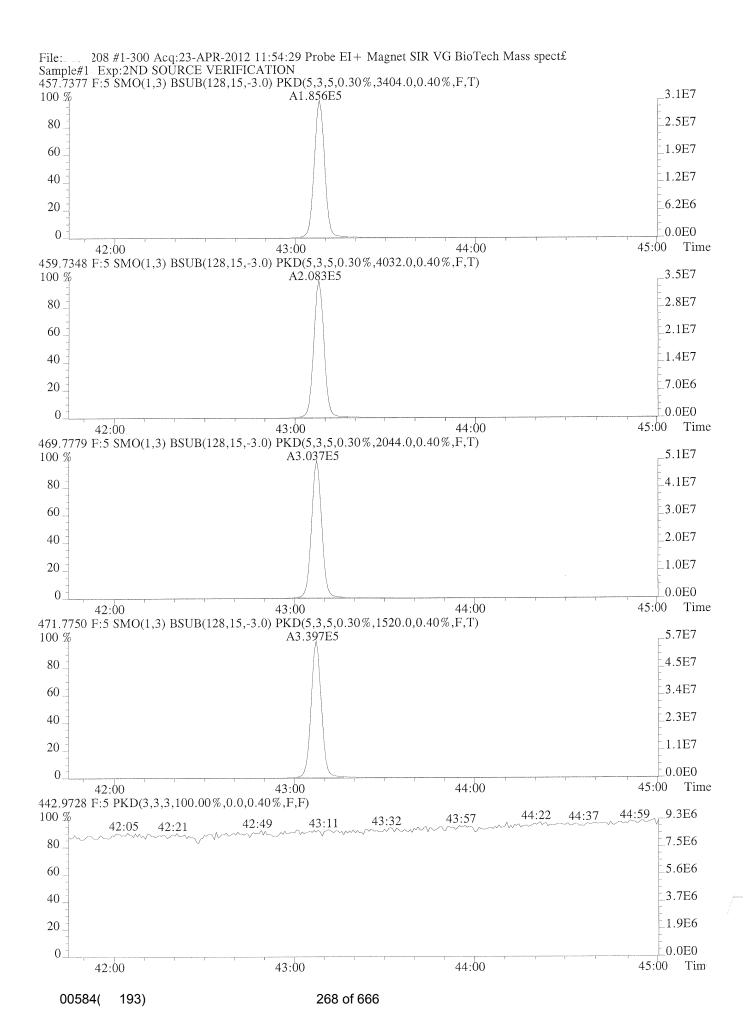

238











Initial Calibration QC Checklist

ICAL Name:		
	nly / TCDF Conf / 8280 / 6	13 / M23 / TO-9
Retention Window/Column Performance Check	Analyst	Second Check
Windows in and first and last eluters labeled		
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and it's closest eluters		
No QC ion deflections affect column specific 2378 isomer or it's closest eluters		
Initial Calibration	Analyst	Second Check
Percent RSD within method criteria		
All relative abundance ratios meet method criteria		
No QC ion deflections of greater than 20%		
Mass spectrometer resolution greater than or equal to 10,000 and documented		
2378-TCDD elutes at 25 minutes or later on the DB-5 column		
Signal-to-noise of all target analytes and their labeled standards at least 10:1		
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50%		
All Manual Intergrations signed and dated and first and final conies of Ical summary included		
Analyst: icalqc.xls 02-	Second QC:	

00584(193)

269 of 666

5DFC

PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Name: Contract

Lab Code: CASE No.: Client No: SDG No.:

Init. Calib. Date: 05/03/12

Init. Calib.Times: 05:17

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, SPIKES AND DUPLICATES IS AS FOLLOWS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
WINDOW DEFINE ICAL CS0.5 ICAL CS1 ICAL CS2 ICAL CS3 ICAL CS4 ICAL CS5	ICAL CS0.5 ICAL CS1 ICAL CS2 ICAL CS3 ICAL CS4	7388 7389 7390 7391 7392 7393	3 - MAY - 12 3 - MAY - 12 3 - MAY - 12 3 - MAY - 12 3 - MAY - 12 3 - MAY - 12 3 - MAY - 12	05:17:38 06:11:11 07:07:52 08:16:36 09:15:36 10:13:02

 $i \mathbb{A}$

Sample List Report	eport				Massl	Massl ynx 4.1				1
Sample List: Last Modified:	C:\Ma: Thursc	C:\MassLynx\ Thursday, May 03,	C:\MassLynx\ Thursday, May 03, 2012 10:21:13 Central Daylight Time	PRO\SampleDB\ 13 Central Daylic	B\ 20503.SPL ylight Time				Ć	Page 1 of 1
i illinodi.	Ne min	uay, iviay us	Titusuday, ividy 03, 2012 10.23.40 Ceriman rayiigiir Hille	ت ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	yngmr rime				 	Fage Position (1, 1)
	055	0563 6131) ;	DECOMBRAT	Ä	1305les vel	ک	7395FE	7395/ES-VERMAS
Date	Time	File Name	Sample ID		Client ID	A	Comments		GC Met	Acq Met
0.000	SS: 7	7388	WINDOW DEFINE	FINE	D12-56-2		HOME CHECK (15:15		8290	8290
3.	で : C:	7390	ICAL CS1		D12-90-3A	سيو			8290	8290
4		7391	ICAL CS2		D12-90-3B				8290	8290
20		7392	ICAL CS3		D12-83-1			observation are seen and seen and seen are seen to see a seen seen to see a seen seen seen seen seen seen see	8290	8290
2		7394	ICAL CS4		D12-90-3D D12-90-3E				8290	8290 8290
8	高:33	7395	2ND SOURCE VERIFICATION	E VERIFIC		7	HOMS MITTER		8290	8290
6		1	1 1		1	-			8290	8290
10	AND CONTRACTOR OF THE PROPERTY	1	-		1 1 1	mbers a sidemanness op men			8290	8290
- 5	APPROXIMATION OF THE PROPERTY	+	5 dr se		A. 10. 10. 10.	***************************************			8290	8290
7 6		* * * * * * * * * * * * * * * * * * * *	-		1 2 1	Annual consummary and a figure		objektivni dobjeni v do sementilika prov videlih od vinobilski komo vejsoven	8290	8290
14					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				8290	829C
15			1						8290	829C
16	The state of the s	1	1		4 6 8	Control for each of the second			8290	8290
17	Material control of the second	1	1 1 1		1 1	talahan dahari d			8290	8290
198	Validation of the second of th	THE PAR VE	1		1 1 1		de partir y des services de la composition de la companya del la companya del la companya del la companya de la companya de la companya de la companya de la companya de la companya del la companya del la companya del la companya del la companya d		8290	8290
19		1	-		-	· Charles de Lace de L			8290	8290
20	The state of the s	***	3 1			Acresina de desentación de la constitución de la co			8290	8290
17		-	2 40 10						No man man	
23		I I	7 B			0.000 0.000	t s ș		TODE	#COMF
24		,				£				toof
25		1	1		1 3	g 0			2	נכת
26	1 1	1	5 0 2		1	-	• •		TCDF	fodf
27	-	1	1			16 to 20	!		TCDF	8290
28			L. sa va				1 1		TCDF	8290
29	1		*		1 1	i : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1		E	i : : : : : : : : : : : : : : : : : : :
30	3 1	1	1 1		1	2 1 4	1		8290	8290
31		:	1 4 5		***	-			8290	8280
32		1	Į		* ***	1 2	Reviewed by:	oran palabasan	do se de	P
								erizania.		


File:

Experiment: 8290

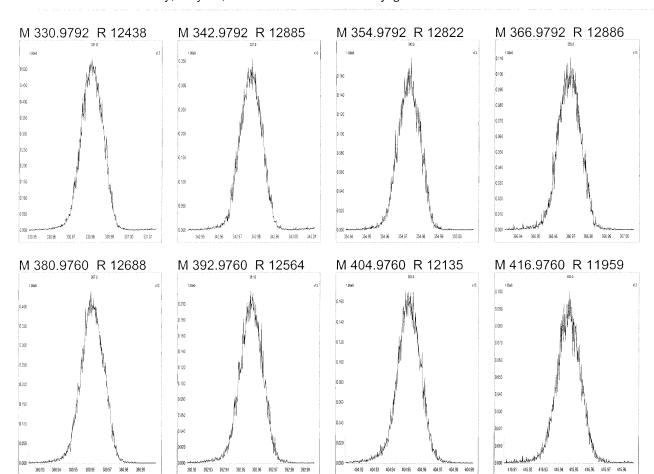
.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 05:15:11 Central Daylight Time

MassLynx 4.1

Page 1 of 1

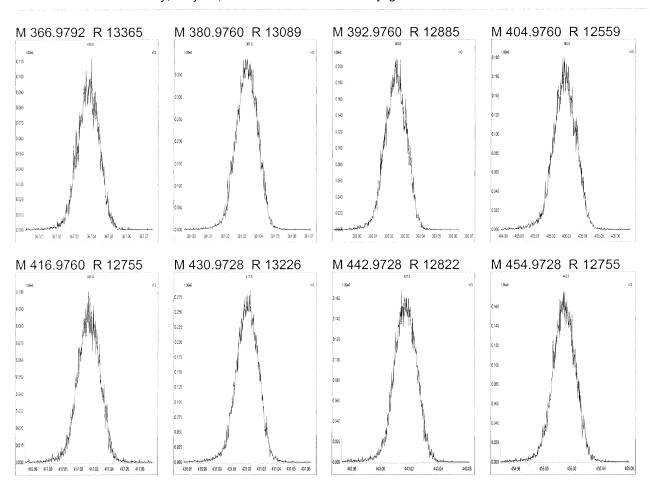

File:

Experiment: 8290

.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 05:15:54 Central Daylight Time


File:

Experiment: 8290

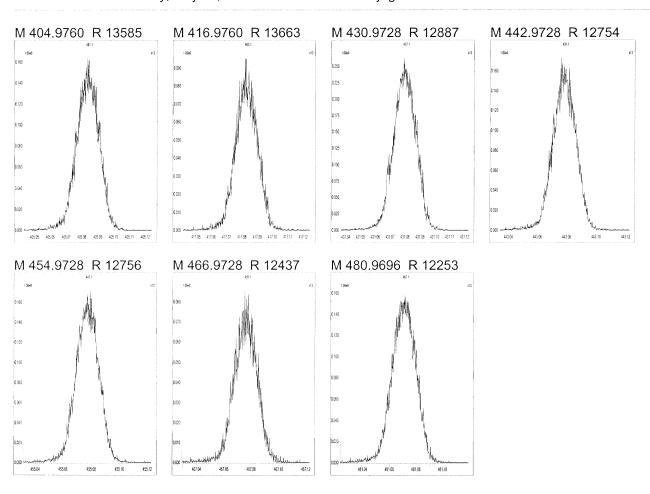
.exp Reference: pfk.ref Function: 3 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 05:16:17 Central Daylight Time

MassLynx 4.1

Page 1 of 1

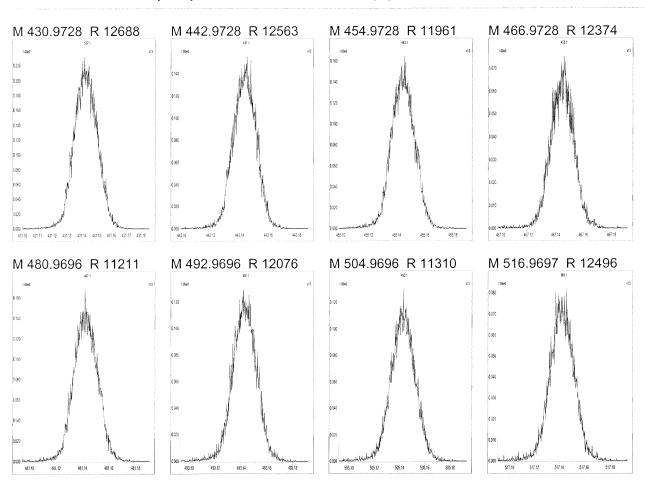

File:

Experiment: 8290

.exp Reference: pfk.ref Function: 4 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 05:16:46 Central Daylight Time


File:

Experiment: 8290

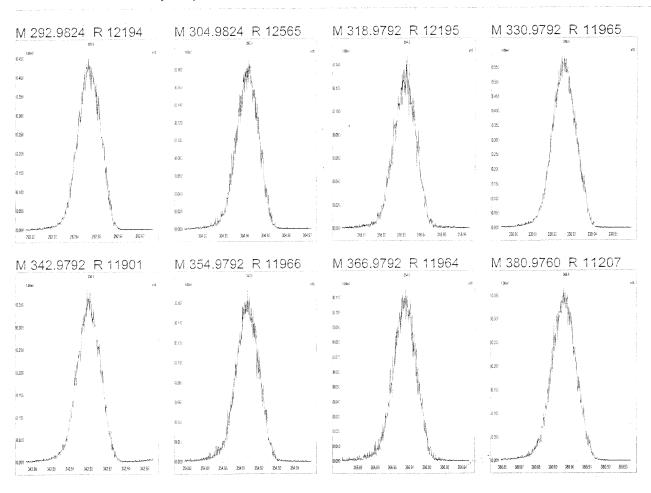
exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 05:17:12 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

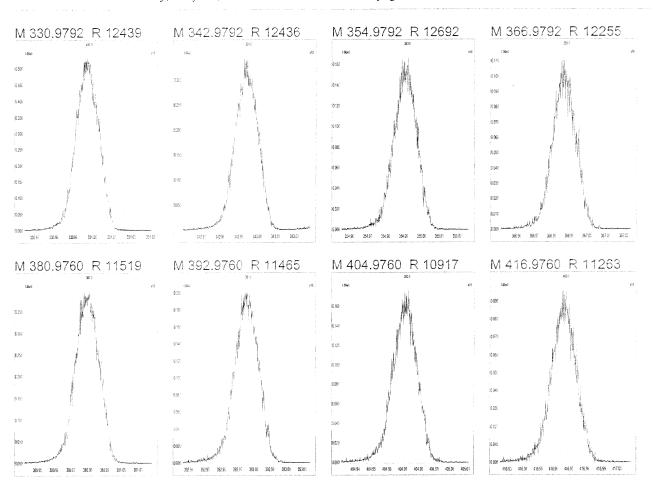
.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 12:10:01 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

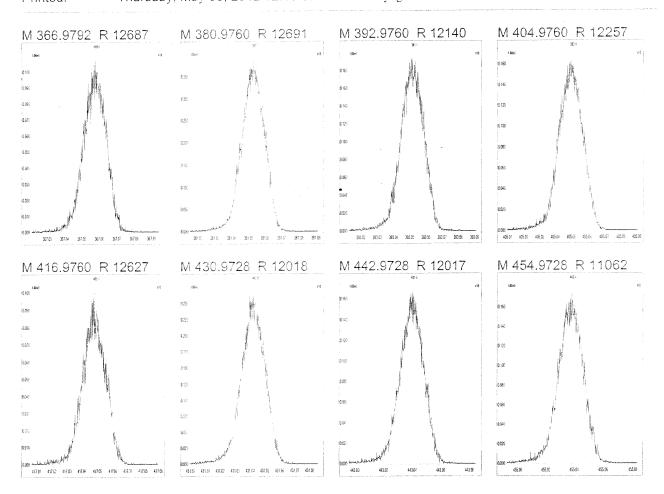
.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 12:10:32 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

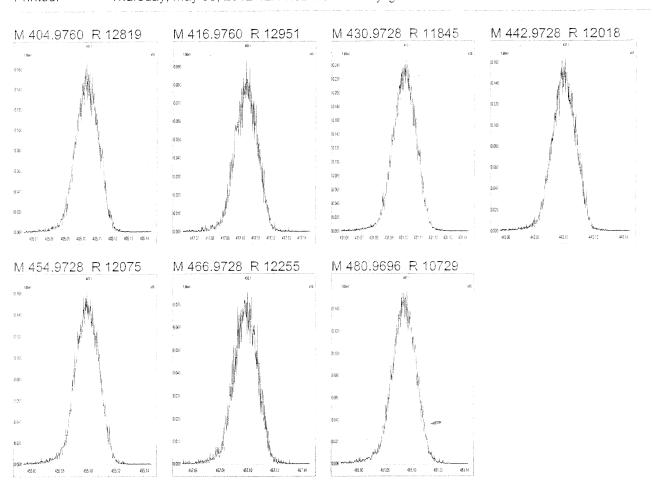
.exp Reference: pfk.ref Function: 3 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 12:10:59 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

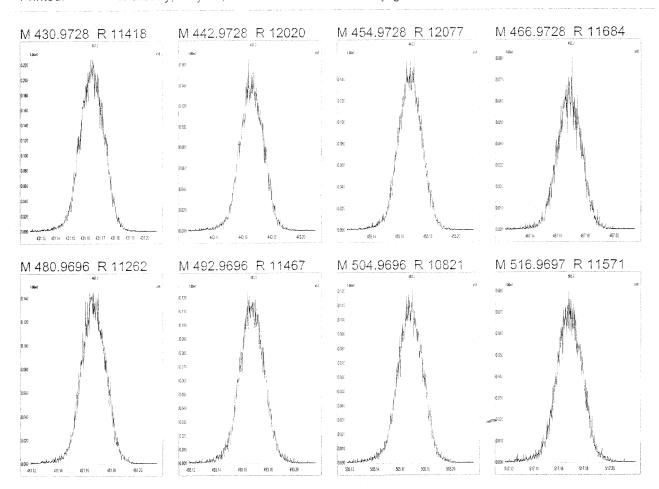
.exp Reference: pfk.ref Function: 4 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 12:11:32 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

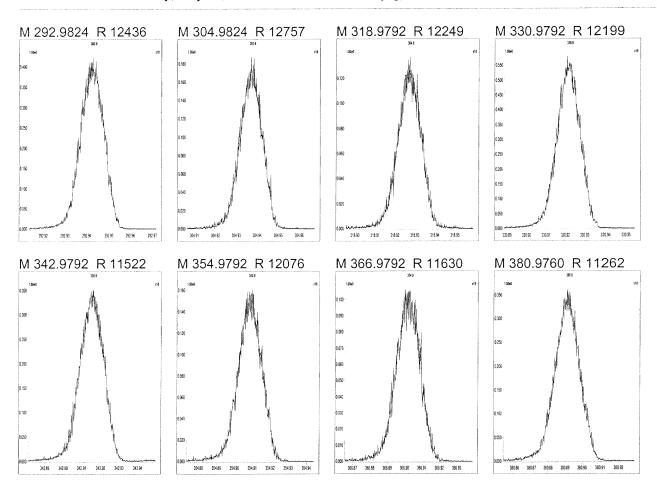
.exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 12:12:02 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

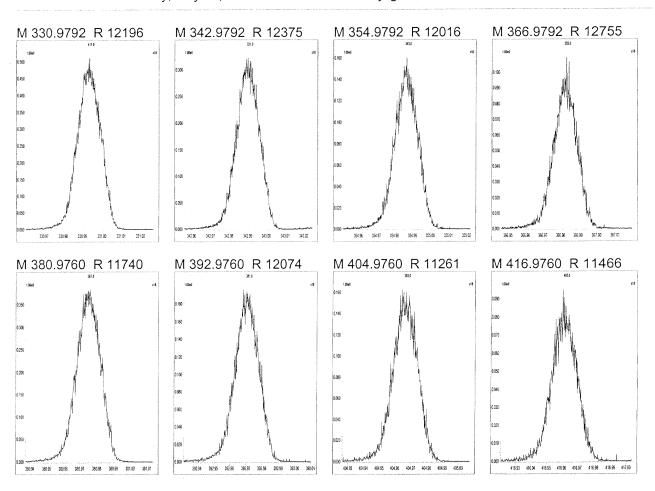
.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 13:58:49 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

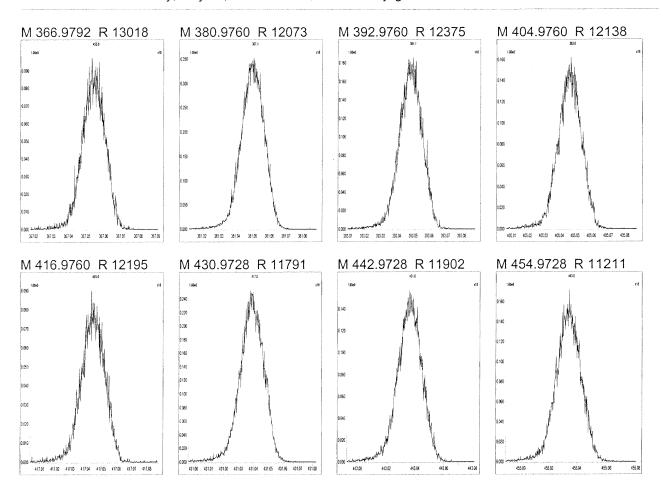
.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 13:59:37 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

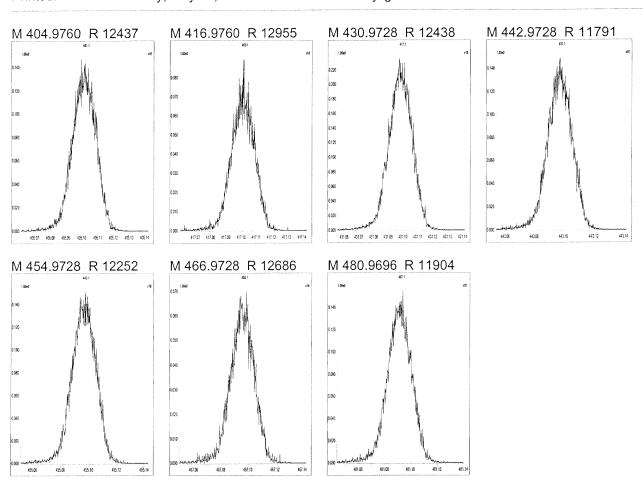
exp Reference: pfk.ref Function: 3 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 14:00:20 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

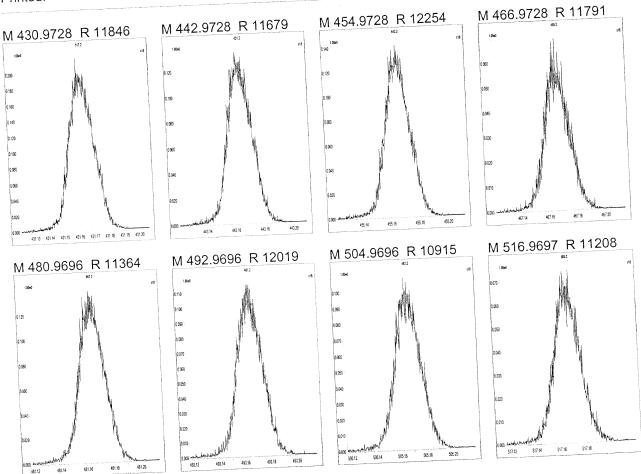
exp Reference: pfk.ref Function: 4 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 14:01:06 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

.exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed:

Thursday, May 03, 2012 14:01:43 Central Daylight Time

5DFA

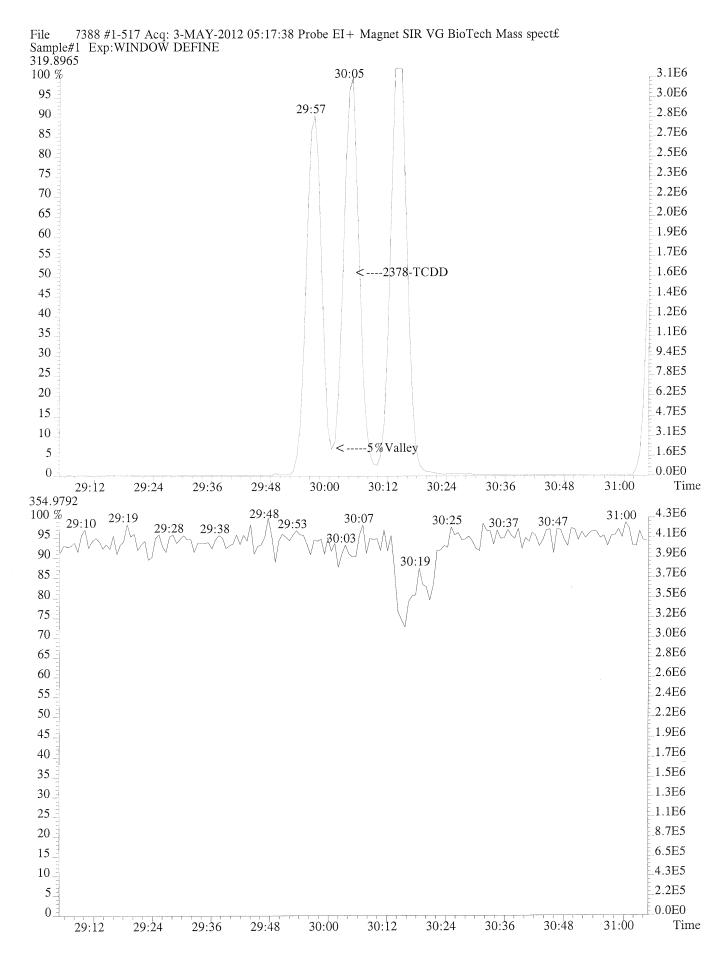
WINDOW DEFINING MIX SUMMARY

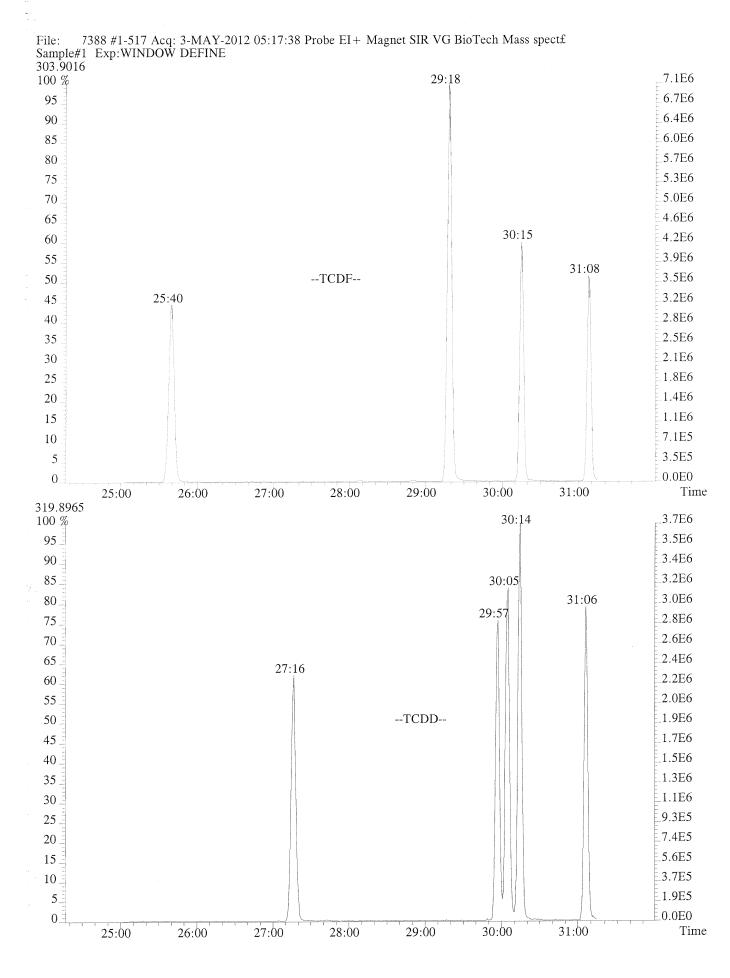
CLIENT	ID:
WDM	

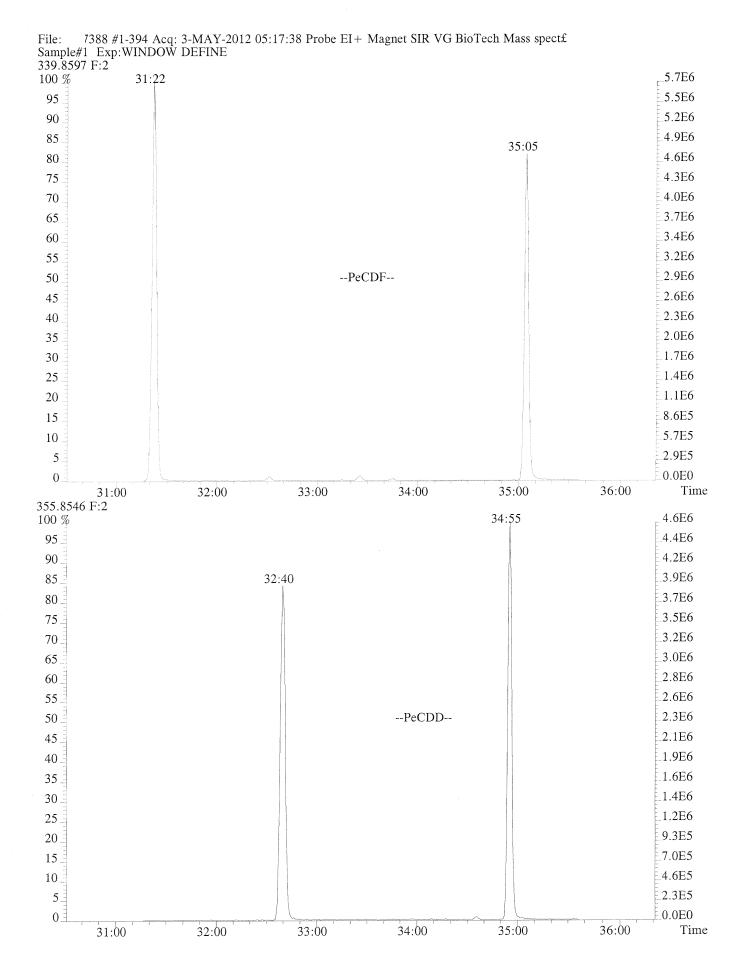
Lab Name:

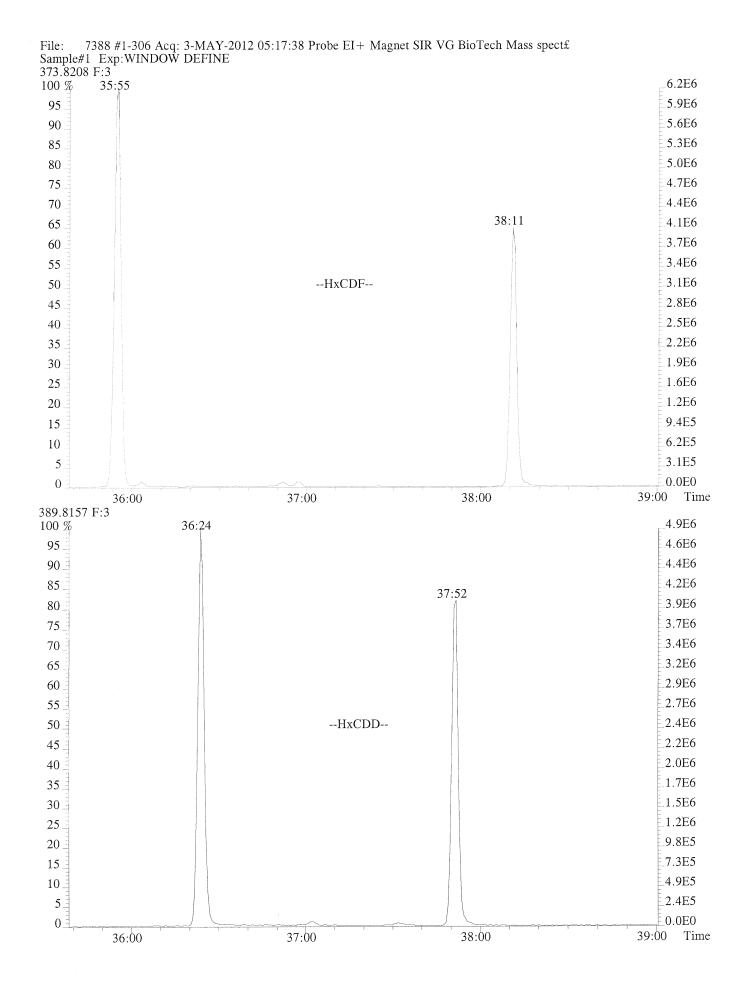
Lab Code:

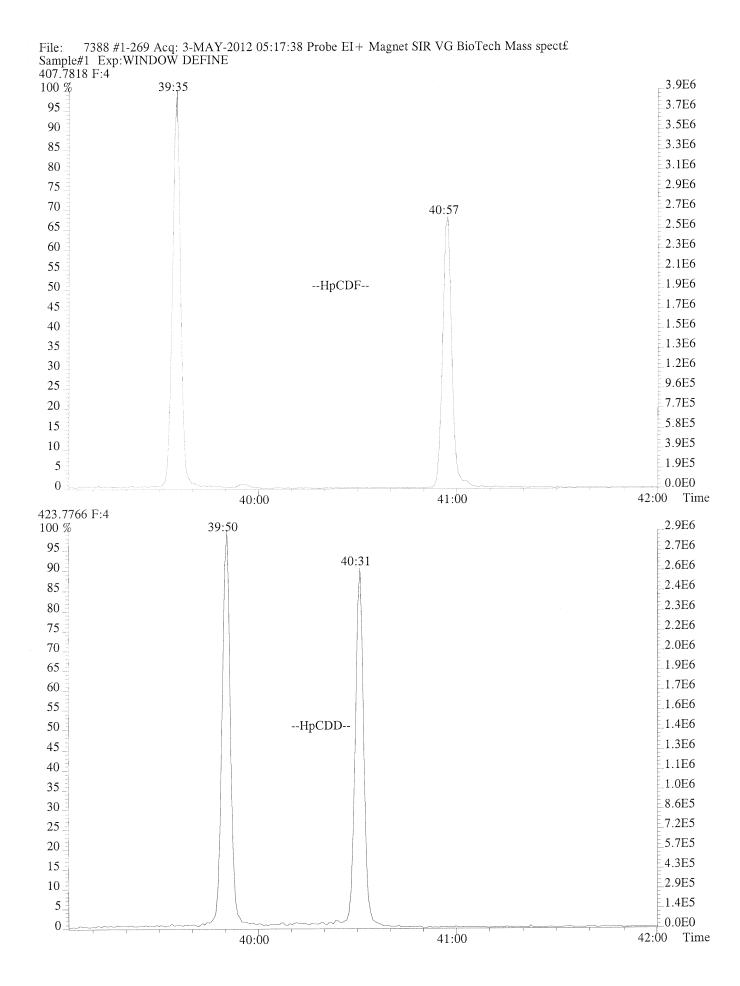
GC Column: DB-5


____ SDG No.: Lab File ID: 7388 Date Analyzed: 3-MAY-2012


Time Analyzed: 05:17:38


Congener	Retention Time First Eluting	Retention Time Last Eluting
CCDF	25:40	31:08
TCDD	27:16	31:06
PeCDF	31:22	35:05
PeCDD	32:40	34:55
#xCDF	35:55	38:11
HxCDD	36:24	37:52
HpCDF	39:35	40:57
HpCDD	39:50	40:31


% Valley 2378-TCDD:


5 %

USEPA, EAD Page 1 of 1

FORM 3A: PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Episode No.:

Contract No.: Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

CS1 Data Filename: 7389 CS4 Data Filename: 7392

CS2 Data Filename: 7390 CS5 Data Filename: 7393

CS3 Data Filename: 7391 CS6 Data Filename: 7394

			EAN (%RS	Cv SD)				
	CS1	CS2	CS3	CS4	CS5	CS6	(:	1)
MATIVE ANALYTES								
7,3,7,8-TCDD	1.18	0.94	0.97	1.01	0.99	1.00	1.01	8.31
2,3,7,8-PeCDD	0.97	0.93	0.91	1.05	0.95	0.97	0.96	5.07
2,3,4,7,8-HxCDD	1.11	1.03	1.02	1.16	1.06	1.07	1.07	5.07
2,3,6,7,8-HxCDD	1.15	1.03	1.00	0.95	1.05	1.06	1.04	6.29
,2,3, ¹ ,8,9-HxCDD	1.21	1.03	0.99	1.03	1.08	1.11	1.07	7.24
1,2,3,4,6,7,8-HpCDD	1.17	1.04	0.98	1.05	1.04	1.05	1.05	6.15
OCDD '	1.44	1.20	1.11	1.09	1.13	1.14	1.19	10.96
2,3,7,8-TCDF	1.09	0.89	0.87	0.95	0.93	0.95	0.95	8.25
1,2,3,7,8-PeCDF	0.93	0.97	0.97	0.98	1.02	1.05	0.99	3.96
2,3,4,7,8-PeCDF	0.89	0.93	0.91	1.04	0.97	0.98	0.95	5.60
%2,3,4,7,8-HxCDF	1.32	1.19	1.21	1.21	1.25	1.26	1.24	3.95
1,2,3,6,7,8-HxCDF 2,2,3,7,8,9-HxCDF	1.22	1.12	1.12	1.20	1.16	1.17	1.17	3.43
₹/2,3,7,8,9-HxCDF	1.31	1.15	1.13	1.17	1.17	1.19	1.19	5.38
2,3,4,6,7,8-HxCDF	1.27	1.15	1.13	1.10	1.16	1.17	1.16	4.84
3,2,3,4,6,7,8-HpCDF	1.55	1.36	1.35	1.37	1.39	1.41	1.40	5.18
1,2,3,4,7,8,9-HpCDF		1.28	1.27	1.39	1.31	1.34	1.34	4.75
3cdf ₹	1.44	1.26	1.25	1.21	1.30	1.35	1.30	6.18

Fil) For contract Cv specifications, see Section 10.5.4, Method 1613.

RFP C500273T1

⁽²⁾ Response Ratios are calculated relative to the labeled analogs of the other two HxCDDs (Section 17.1.2, Method 1613).

⁽³⁾ Response Ratios are calculated relative to the labeled analog of OCDD (Section 17.1.1, Method 1613).

USEPA - EAD Page 1 of 1

FORM 3B: PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Episode No.:

Contract No.: Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

CS1 Data Filename: 7389 CS4 Data Filename: 7392

CS2 Data Filename: 7390 CS5 Data Filename: 7393

CS3 Data Filename: 7391 CS6 Data Filename: 7394

		RELATIVE	E RESPON	SE (RR)			MEAN RR (Cv %RSD)
	CS1	CS2	CS3	CS4	CS5	CS6		(1)
RELED COMPOUNDS								
-2,3 ² 7,8-TCDD	0.90	0.90	0.90	0.91	0.95	1.03	0.93	5.70
:-1,2,3,7,8-PeCDD	0.91	0.89	0.89	0.67	1.07	1.12	0.93	17.17
-1,2,3,4,7,8-HxCDD -1,2,3,6,7,8-HxCDD	0.94	0.96 1.05	0.97 1.06	1.00	0.91	0.89	0.95 1.01	4.12 6.07
%%C-1,2,3,4,6,7,8-HpCDD	0.84	0.86	0.94	0.96	0.86	0.86	0.89	5.69
13C-OCDD	0.54	0.56	0.64	0.85	0.60	0.61	0.63	17.64
13C-2,3,7,8-TCDF	1.24	1.23	1.24	1.32	1.28	1.34	1.28	3.47
C-1,2,3,7,8-PeCDF	1.19	1.21 1.22	1.17 1.21	1.18 1.09	1.40 1.45	1.54 1.55	1.28 1.29	12.04 13.26
112-1,2,3,4,7,8-HxCDF -1,2,3,6,7,8-HxCDF 12-1,2,3,7,8,9-HxCDF 12-2,3,4,6,7,8-HxCDF	1.11 1.30 0.99 1.12	1.13 1.38 0.98 1.22	1.14 1.39 1.00 1.23	1.41 1.43 1.09 1.18	1.09 1.30 1.02 1.19	1.08 1.25 1.01 1.16	1.16 1.34 1.02 1.18	10.70 5.16 4.02 3.31
38-1,2,3,4,6,7,8-HpCDF 36-1,2,3,4,7,8,9-HpCDF		0.95 0.75	0.99	1.04	0.93 0.77	0.92 0.76	0.95 0.78	5.63 7.02
SEANUP STANDARD								
3751-2,3,7,8-TCDD	0.96	0.94	0.86	0.93	0.97	1.08	0.96	7.51

For assignment of labeled compounds to internal standards, see Table 2. Contract Cv specifications, see Section 10.6.3, Method 1613.

RFP C500273T1

130

13C 14A USEPA - EAD Page 1 of 1

FORM 3C: PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Episode No.:

238C

138

Initial Calibration Date: 05/03/12 37 Contract No.:

GC Column ID: DB-5 Instrument ID: AutoSpec-Premier

CS1 Data Filename: CS4 Data Filename: 7392 7389

CS2 Data Filename: 7390 CS5 Data Filename: 7393

CS3 Data Filename: 7391 CS6 Data Filename: 7394

	M/Z'S FORMING	ION ABUNDANCE RATIO					QC LIMITS	
TIVE ANALYTES	RATIO(1)	CS1	CS2	CS3	CS4	CS5	CS6	(2)
ಿತಿ,7,8-TCDD	M/M+2	0.70	0.84	0.72	0.77	0.78	0.77	0.65-0.89
2,3,7,8-PeCDD	M+2/M+4	1.65	1.60	1.63	1.59	1.56	1.57	1.32-1.78
% 12,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,13,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.16 1.25 1.18	1.20 1.28 1.24	1.27 1.24 1.30	1.27 1.27 1.27	1.25 1.27 1.25	1.24 1.25 1.26	1.05-1.43 1.05-1.43 1.05-1.43
,3,4,6,7,8-HpCDD	M+2/M+4	1.01	1.01	1.04	1.06	1.05	1.03	0.88-1.20
ccpd	M+2/M+4	0.83	0.86	0.91	0.89	0.90	0.89	0.76-1.02
3,7,7,8-TCDF	M/M+2	0.85	0.84	0.77	0.77	0.77	0.77	0.65-0.89
3,2,3,7,8-PeCDF 3,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.59 1.52	1.61 1.54	1.60 1.55	1.56 1.55	1.56 1.58	1.56 1.56	1.32-1.78 1.32-1.78
3,4,7,8-HxCDF 3,3,6,7,8-HxCDF 2,3,7,8,9-HxCDF 3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.21 1.25 1.24 1.23	1.20 1.24 1.31 1.24	1.25 1.22 1.26 1.26	1.25 1.26 1.26 1.26	1.25 1.26 1.25 1.24	1.25 1.25 1.25 1.25	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	M+2/M+4	1.04	0.99 1.05	1.04	1.03	1.03	1.03	0.88-1.20 0.88-1.20
(1) See Table 8,	M+2/M+4 Method 16	0.91 13, for	0.89 m/z spe	0.90 ecificat	0.90	0.90	0.90	0.76-1.02

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

RFP C500273T1

⁽²⁾ Son Abundance Ratio Control Limits from Table 9, Method 1613.

USEPA - ITD Page 1 of 1

FORM 3D: PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Episode No.:

Contract No.: Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

CS1 Data Filename: 7389 CS4 Data Filename: 7392

CS2 Data Filename: 7390 CS5 Data Filename: 7393

CS3 Data Filename: 7391 CS6 Data Filename: 7394

	M/Z'S ION ABUNDANCE FORMING						E RATIO		
REFLED COMPOUNDS	RATIO(1)	CS1	CS2	CS3	CS4	CS5	CS6	(2)	
: 1,-2,3, ¹ 7,8-TCDD	M/M+2	0.79	0.78	0.78	0.79	0.79	0.79	0.65-0.89	
%%-1,2,3,7,8-PeCDD	M+2/M+4	1.57	1.55	1.59	1.59	1.57	1.55	1.32-1.78	
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	M+2/M+4 M+2/M+4	1.26 1.28	1.26 1.26	1.26 1.27	1.26 1.27	1.27 1.25	1.26 1.26	1.05-1.43	
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.06	1.05	1.07	1.06	1.05	1.06	0.88-1.20	
POCDD D	M+2/M+4	0.91	0.91	0.91	0.91	0.90	0.90	0.76-1.02	
2-2,3,7,8-TCDF	M/M+2	0.78	0.78	0.78	0.78	0.78	0.78	0.65-0.89	
30-1,2,3,7,8-PeCDF 30-2,3,4,7,8-PeCDF	M/M+2 M+2/M+4	1.56 1.58	1.57 1.57	1.58 1.58	1.60 1.59	1.56 1.57	1.56 1.56	1.32-1.78 1.32-1.78	
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M/M+2 M/M+2 M/M+2 M/M+2	0.52 0.52 0.52 0.52	0.52 0.53 0.52 0.52	0.51 0.52 0.52 0.52	0.53 0.52 0.53 0.53	0.52 0.52 0.52 0.52	0.52 0.52 0.50 0.52	0.43-0.59 0.43-0.59 0.43-0.59 0.43-0.59	
35-1,2,3,4,6,7,8-HpCDF 25-1,2,3,4,7,8,9-HpCDF	M/M+2 M/M+2	0.44	0.44	0.44	0.45	0.44	0.44	0.37-0.51 0.37-0.51	

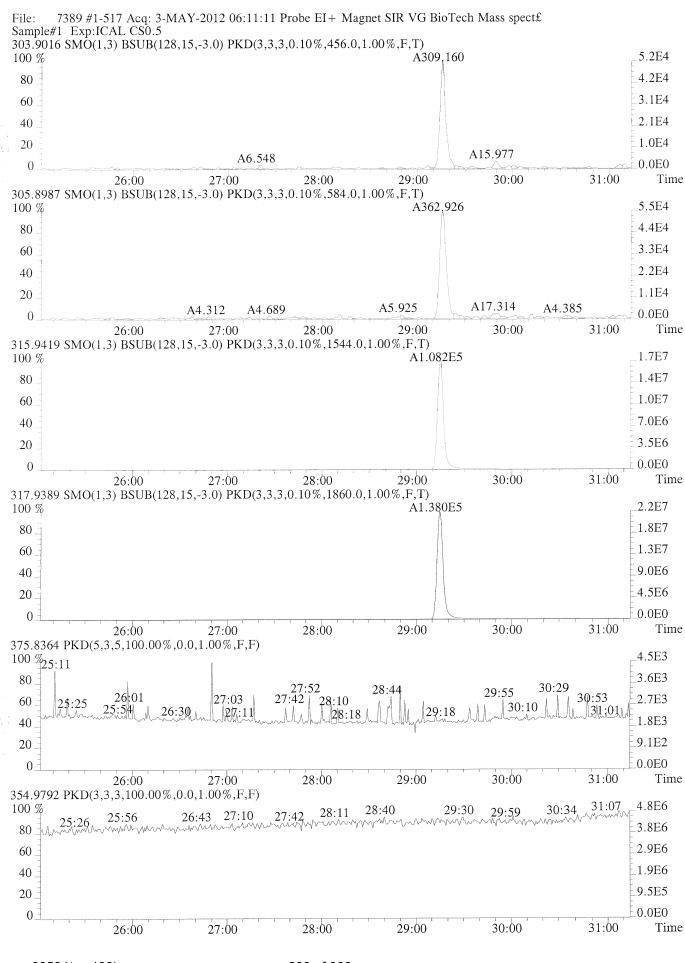
RFP C500273T1

13C-13C-

13C-USOL 13C-

See Table 8, Method 1613, for m/z specifications.

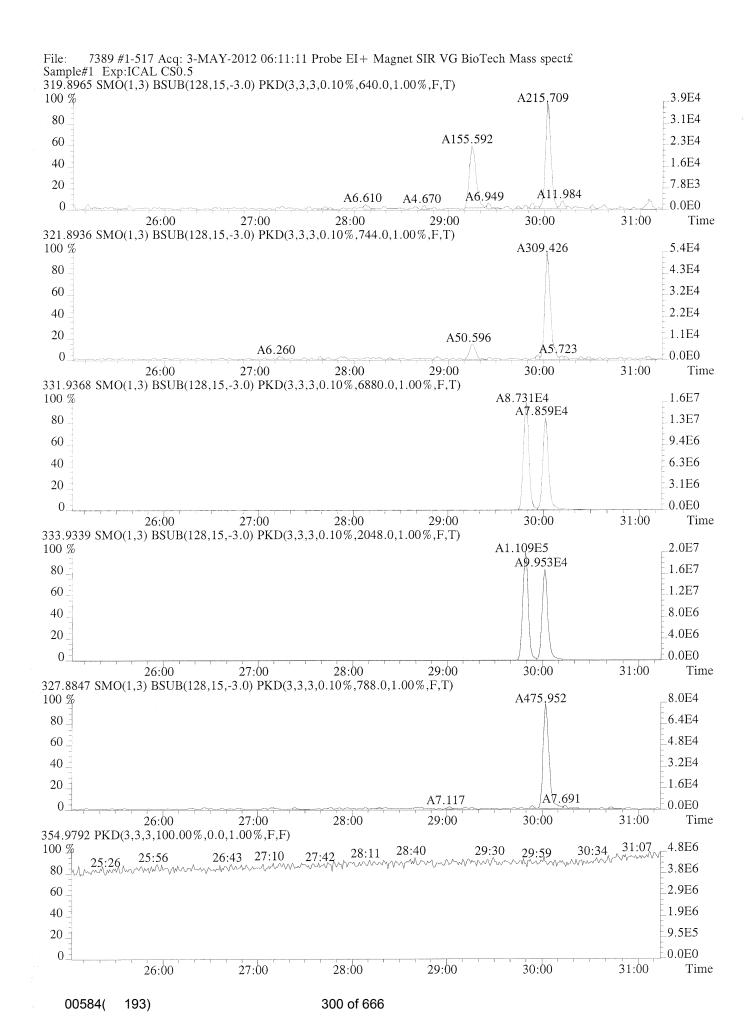
³⁰³⁾ Ion Abundance Ratio Control Limits from Table 9, Method 1613.

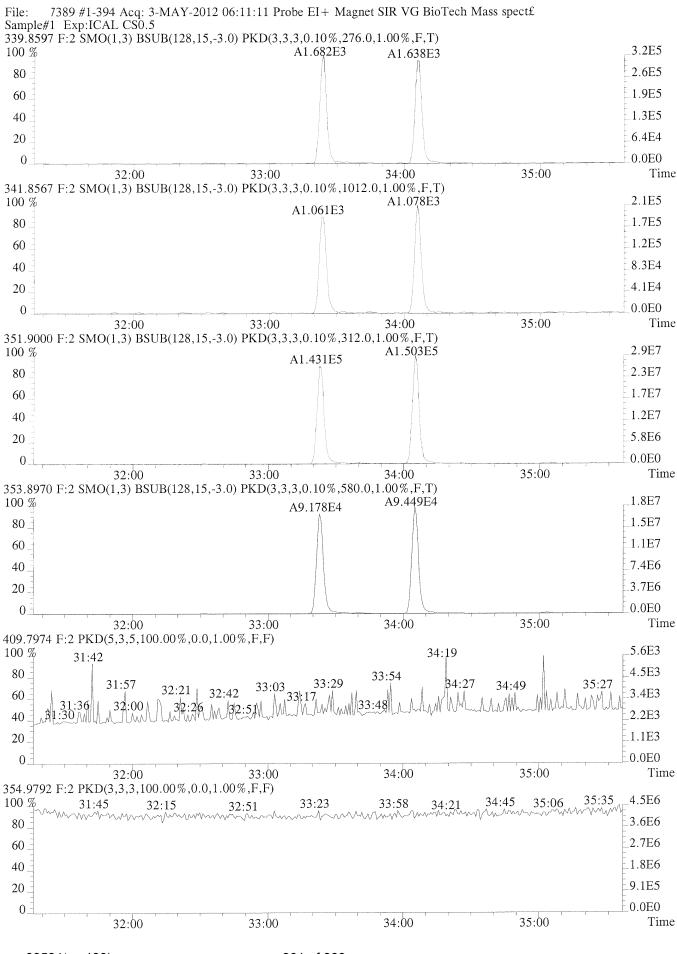

#1 Filename 7389 #1 Samp: 1 Inj: 1 Acquired: 3-MAY-12 06:11:11 Processed: 3-MAY-12 06:50:01 LAB. ID: ICAL CS0.5

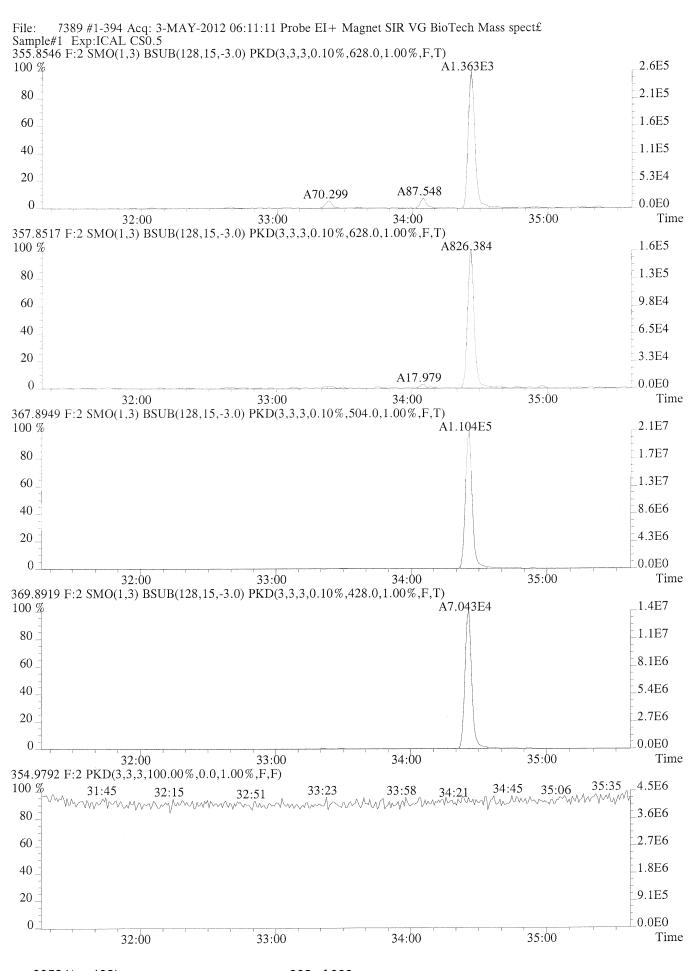
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
	Unk	2,3,7,8-TCDF	29.16	3.092e+02	3.629e+02	0.85	yes	no	1.001
	Unk	1,2,3,7,8-PeCDF		1.682e+03	1.061e+03	1.59	yes	no	1.001
5	Unk	2,3,4,7,8-PeCDF		1.638e+03	1.078e+03	1.52	yes	no	1.000
· .	Unk	1,2,3,4,7,8-HxCDF		1.782e+03	1.471e+03	1.21	yes	no	1.000
	Unk	1,2,3,4,7,8-HXCDF		1.762C+03	1.555e+03	1.25	yes	no no	1.000
	Unk	2,3,4,6,7,8-HXCDF		1.739e+03	1.417e+03	1.23	yes	no	1.000
7.7	Unk	1,2,3,7,8,9-HxCDF		1.733e+03	1.288e+03	1.24	yes	no	1.000
·		1,2,3,4,6,7,8-HpCDF		1.558e+03	1.502e+03	1.04	yes	no	1.000
0	Unk			1.129e+03	1.149e+03	0.98	yes	no	1.000
	Unk	1,2,3,4,7,8,9-HpCDF		1.129e+03	1.815e+03	0.91	yes	1	1.004
10	Unk	OCDF	43:51	1.6486+03	1.0150+03	0.91	усь	110	1.004
11	Unk	2,3,7,8-TCDD	30:02	2.157e+02	3.094e+02	0.70	yes	no	1.000
7 :	Unk	1,2,3,7,8-PeCDD	34:26	1.363e+03	8.264e+02	1.65	yes	no	1.000
	Unk	1,2,3,4,7,8-HxCDD	37:30	1.243e+03	1.068e+03	1.16	yes	no	1.000
	Unk	1,2,3,6,7,8-HxCDD	37:35	1.358e+03	1.091e+03	1.25	yes	no	1.000
	Unk	1,2,3,7,8,9-HxCDD		1.379e+03	1.172e+03	1.18	yes	no	1.008
	Unk	1,2,3,4,6,7,8-HpCDD		1.094e+03	1.087e+03	1.01	yes	no	1.000
	Unk		43:40	1.578e+03	1.897e+03	0.83	yes	no	1.000
	0		,	1			•	•	
	IS	13C-2,3,7,8-TCDF	29:14	1.082e+05	1.380e+05	0.78	yes	no	0.981
	IS	13C-1,2,3,7,8-PeCDF	33:23	1.431e+05	9.178e+04	1.56	yes	no	1.119
	IS	13C-2,3,4,7,8-PeCDF	34:05	1.490e+05	9.449e+04	1.58	yes	no	1.143
1. 12. 1. 12. 13.	IS	13C-1,2,3,4,7,8-HxCDF	36:50	6.706e+04	1.295e+05	0.52	yes	no	0.973
22	IS	13C-1,2,3,6,7,8-HxCDF		7.918e+04	1.512e+05	0.52	yes	no	0.975
2, 49	IS	13C-2,3,4,6,7,8-HxCDF		6.827e+04	1.312e+05	0.52	yes	no	0.988
24	IS	13C-1,2,3,7,8,9-HxCDF		6.056e+04	1.156e+05	0.52	yes	no	1.006
28	IS	L3C-1,2,3,4,6,7,8-HpCDF		4.833e+04	1.100e+05	0.44	yes	no	1.045
пŘ		L3C-1,2,3,4,7,8,9-HpCDF		3.903e+04	8.812e+04	0.44	yes	no	1.081
27	IS	13C-2,3,7,8-TCDD	120.01	7.859e+04	9.953e+04	0.79	yes	no	1.007
2 A	IS	13C-1,2,3,7,8-PeCDD		1.104e+05	7.043e+04	1.57	yes	no	1.155
4 M 4 M	IS	13C-1,2,3,4,7,8-PeCDD		9.324e+04	7.402e+04	1.26	yes	no	0.990
43 43.		13C-1,2,3,4,7,8-HxCDD		9.590e+04	7.402e+04 7.512e+04	1.28	yes	no	0.992
	IS			7.648e+04	7.202e+04	1.06	yes	no	1.069
- 살충.		L3C-1,2,3,4,6,7,8-HpCDD		1		0.91	yes	no no	1.153
	IS	13C-OCDD	43:39	9.187e+04	1.009e+05	0.91	yes	110	1.100
STR	S/RT	13C-1,2,3,4-TCDD	29:49	8.731e+04	1.109e+05	0.79	yes	no	*
+ R	S/RT	13C-1,2,3,7,8,9-HxCDD	37:52	9.902e+04	7.865e+04	1.26	yes	no	*
3.3	C/Up	37Cl-2,3,7,8-TCDD	30:02	4.760e+02				no	1.007
	- 5		,	•					
2.3									
2 %									
1.2									
. A \$									
13									
100									
2.8									
e e e e e e e e e e e e e e e e e e e				•					
6									
1 N. W.									
16 14-		00584(193)		297 of 666					
3.77.		3000.		_0. 0. 000					

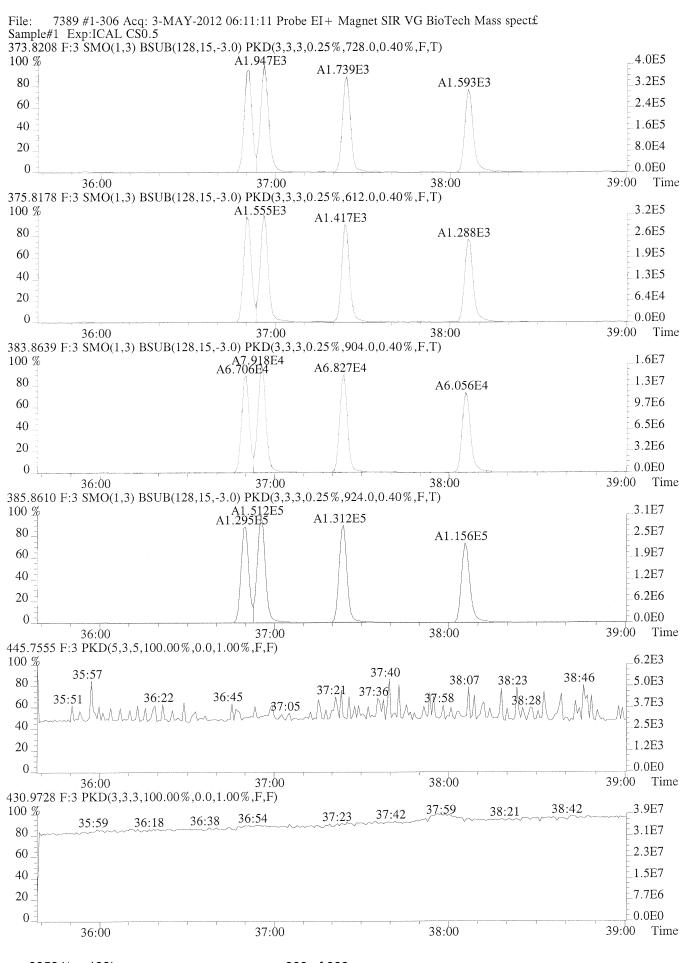
35% #1 Acquired: 3-MAY-12 06:11:11 Filename 7389 Samp: 1 Inj: 1 े [€]cessed: 3-MAY-12 06:50:011 LAB. ID: ICAL CS0.5 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 5.20e+04 | 4.56e+02 | 1.1e+02 | 5.43e+04 | 5.84e+02 | 9.3e+01 3.19e+05 | 2.76e+02 | 1.2e+03 | 1.85e+05 | 1.01e+03 1.8e+02 1,2,3,7,8-PeCDF 3.05e+05 | 2.76e+02 | 1.1e+03 | 2.07e+05 | 1.01e+03 2.1e + 022,3,4,7,8-PeCDF 7.28e+02 | 5.2e+02 | 3.14e+05 6.12e+02 5.1e + 021,2,3,4,7,8-HxCDF 3.82e+05 6.12e+02 5.2e+02 3.19e+05 1,2,3,6,7,8-HxCDF 4.00e+05 7.28e+02 5.5e+02 7.28e+02 4.9e+02 2.90e+05 6.12e+02 4.7e + 022,3,4,6,7,8-HxCDF 3.58e+05 1,2,3,7,8,9-HxCDF 3.10e+05 | 7.28e+02 | 4.3e+02 | 2.46e+05 | 6.12e+02 4.0e + 023.12e+05 | 1.58e+03 | 2.0e+02 | 3.00e+05 | 6.72e+02 4.5e+02 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 2.00e+05 | 1.58e+03 | 1.3e+02 | 2.00e+05 | 6.72e+02 3.0e+02 OCDF $2.36e+05 \mid 4.36e+02 \mid 5.4e+02 \mid 2.63e+05 \mid 7.52e+02 \mid 3.5e+02$ 2,3,7,8-TCDD | 3.87e+04 | 6.40e+02 | 6.0e+01 | 5.37e+04 | 7.44e+02 7.2e + 012.65e+05 | 6.28e+02 | 4.2e+02 | 1.62e+05 6.28e+02 2.6e + 021,2,3,7,8-PeCDD 2.32e+05 4.56e+02 5.1e + 021,2,3,4,7,8-HxCDD 2.70e+05 8.48e+02 3.2e+02 5.1e+021,2,3,6,7,8-HxCDD 2.85e+05 8.48e+02 | 3.4e+02 | 2.31e+05 | 4.56e+02 1,2,3,7,8,9-HxCDD 2.82e+05 8.48e+02 3.3e+02 2.37e+05 4.56e+02 5.2e + 023.7e + 022.1e+02 2.05e+05 5.56e+02 1,2,3,4,6,7,8-HpCDD 2.05e+05 9.84e+02 2.46e+05 | 9.52e+02 | 2.6e+02 | 2.84e+05 9.92e+02 2.9e + 02OCDD 1.86e+03 1.2e + 041.54e+03 | 1.1e+04 | 2.24e+07 | 13C-2,3,7,8-TCDF 1.75e+07 5.80e+02 2.9e+04 2.62e+07 | 3.12e+02 | 8.4e+04 | 1.70e+07 13C-1,2,3,7,8-PeCDF 5.80e+02 3.2e+04 13C-2,3,4,7,8-PeCDF 2.90e+07 3.12e+02 | 9.3e+04 1.84e+07 2.76e+07 9.24e+02 3.0e + 0413C-1,2,3,4,7,8-HxCDF 1.45e+07 9.04e+02 1.6e+04 9.04e+02 1.8e+04 3.11e+07 9.24e+02 3.4e + 0422 13C-1,2,3,6,7,8-HxCDF 1.62e+07 9.04e+02 | 1.6e+04 2.79e+07 9.24e + 023.0e + 041.46e+07 334 13C-2,3,4,6,7,8-HxCDF 9.24e+02 2.5e + 049.04e+02 | 1.3e+04 2.29e+07 13C-1,2,3,7,8,9-HxCDF 1.20e+07 13C-1,2,3,4,6,7,8-HpCDF 2.32e+03 | 4.2e+03 | 2.22e+07 | 3.50e+03 6.3e + 039.67e+06 13C-1,2,3,4,7,8,9-HpCDF 6.94e+06 2.32e+03 3.0e+03 1.55e+07 3.50e+03 4.4e+03 13C-2,3,7,8-TCDD 1.34e+07 | 6.88e+03 | 1.9e+03 | 1.69e+07 | 2.05e+03 8.3e + 032.14e+07 | 5.04e+02 | 4.3e+04 | 1.35e+07 4.28e+02 3.2e + 0413C-1,2,3,7,8-PeCDD 1.63e+07 1.67e+03 9.8e+03 13C-1,2,3,4,7,8-HxCDD 2.05e+07 | 3.53e+03 | 5.8e+03 | 3C-1 2,3,4,6,7,8-HxCDD 13C-OCDD 13C-1,2,3,4,7,8-HxCDD 9.6e+03 2.03e+07 3.53e+03 5.7e+03 1.60e+07 1.67e+03 1.46e+07 1.74e+03 8.4e+03 1.37e+07 | 9.00e+02 1.5e + 0413C-OCDD | 1.42e+07 | 5.64e+02 | 2.5e+04 | 1.56e+07 | 7.20e+02 | 2.2e+04 13C-1,2,3,4-TCDD | 1.57e+07 | 6.88e+03 | 2.3e+03 | 2.01e+07 | 2.05e+03 | 9.8e+03 13C-1,2,3,7,8,9-HxCDD | 2.06e+07 | 3.53e+03 | 5.8e+03 | 1.65e+07 | 1.67e+03 | 9.9e+03

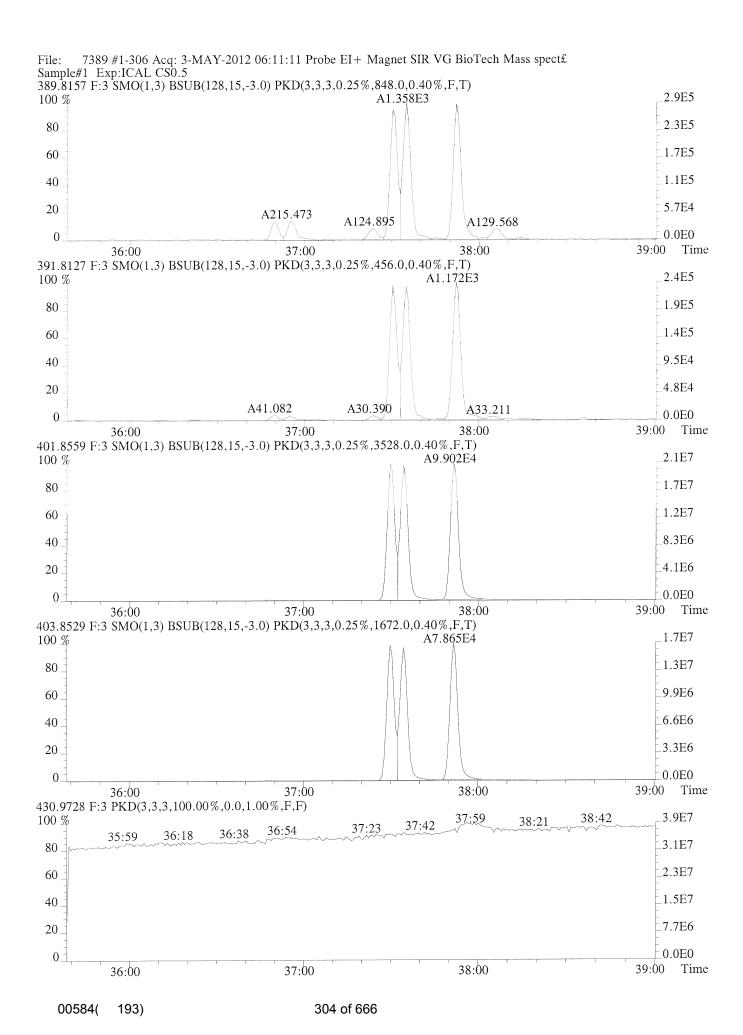
37Cl-2,3,7,8-TCDD | 7.94e+04 | 7.88e+02 | 1.0e+02

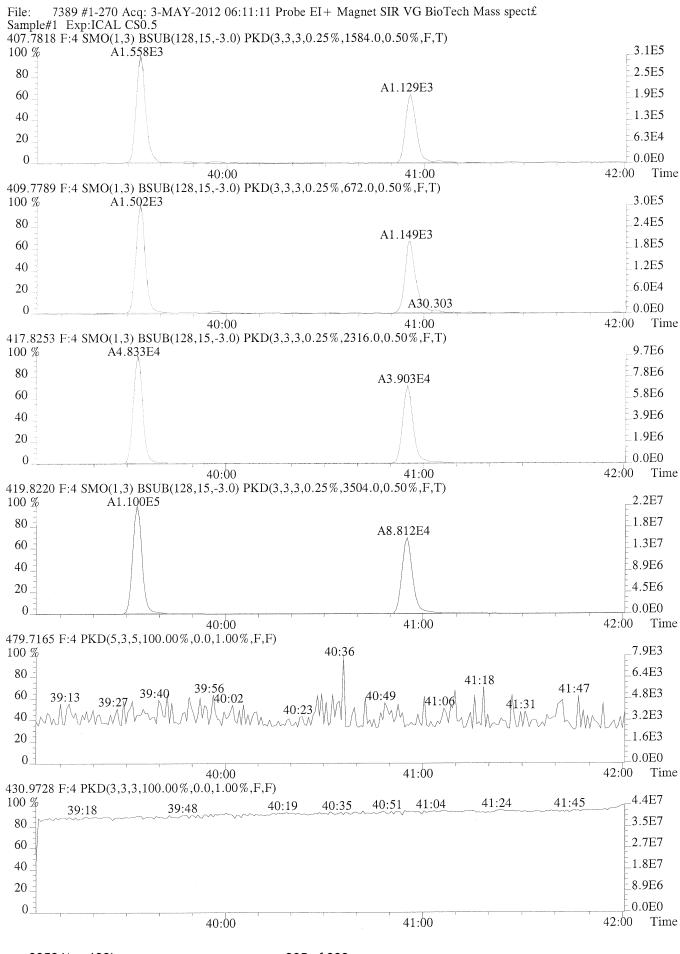

39°

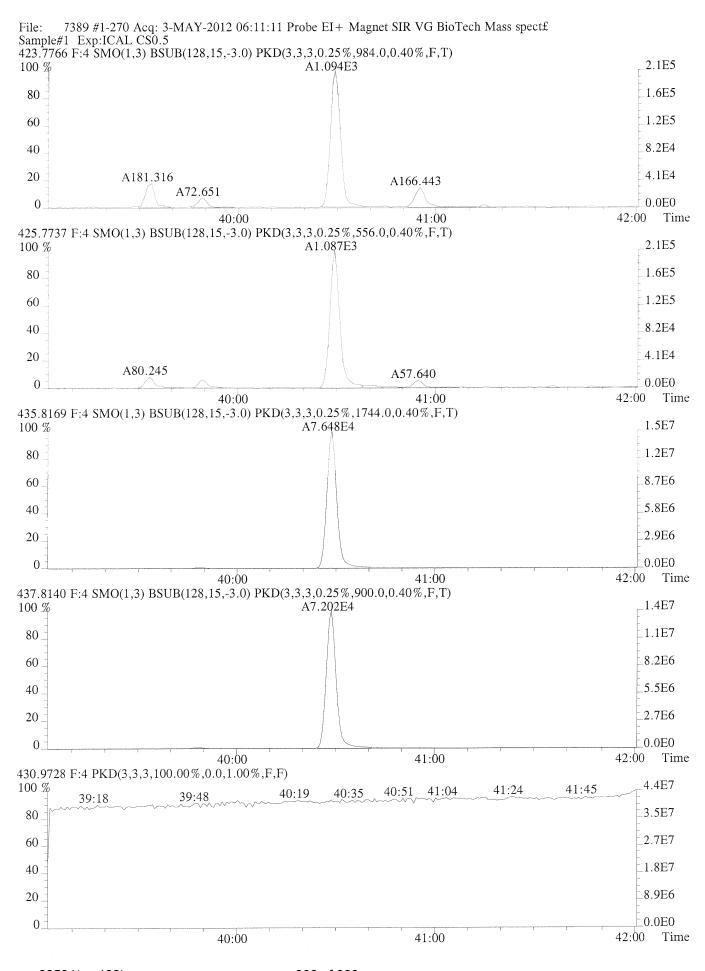


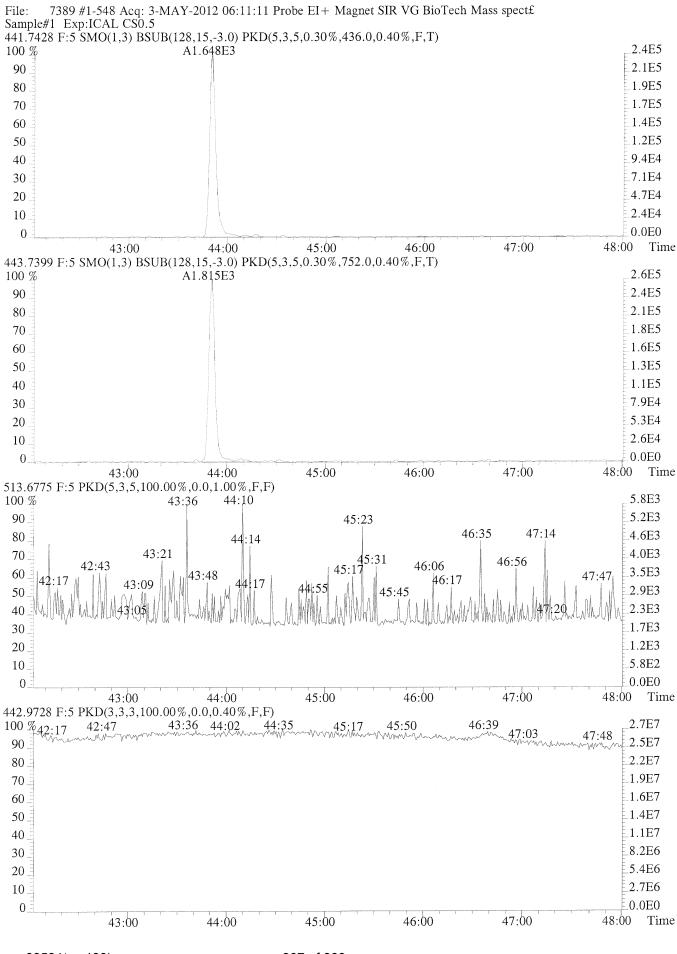

34

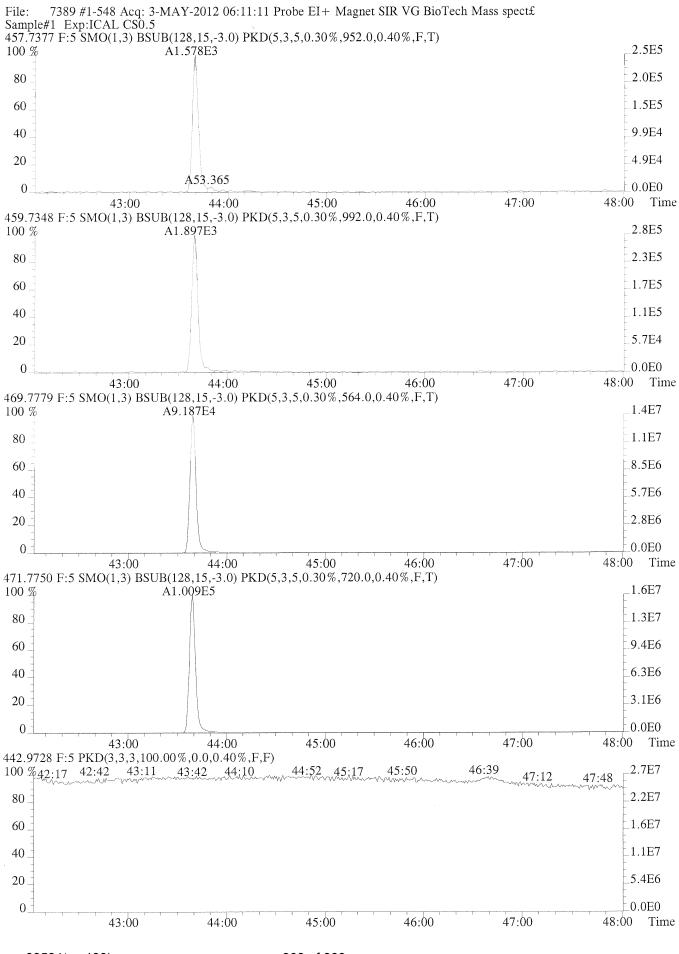

Hebis


更加。







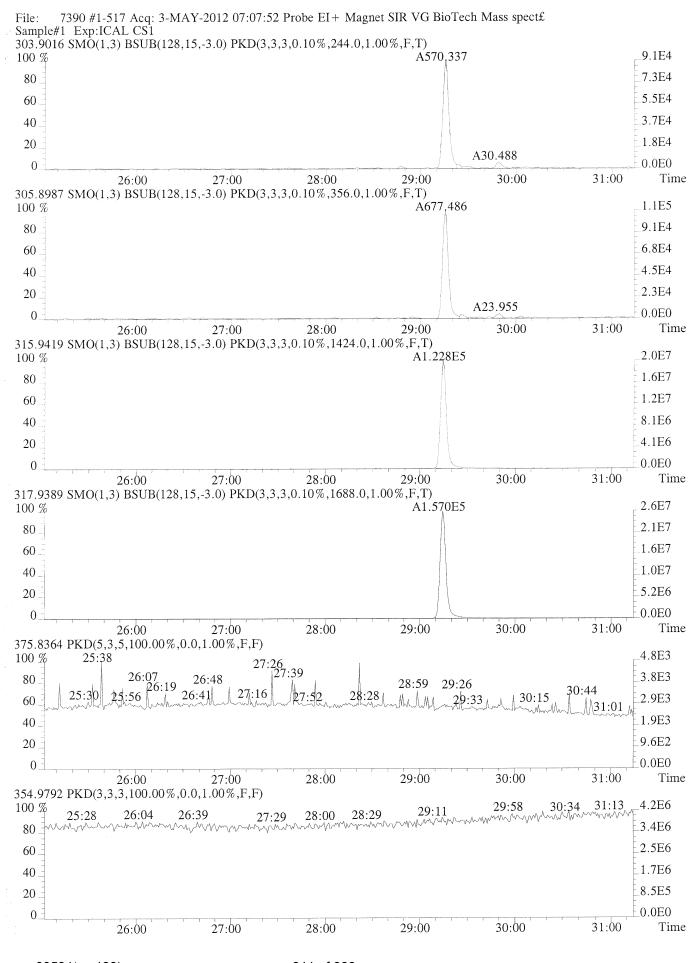


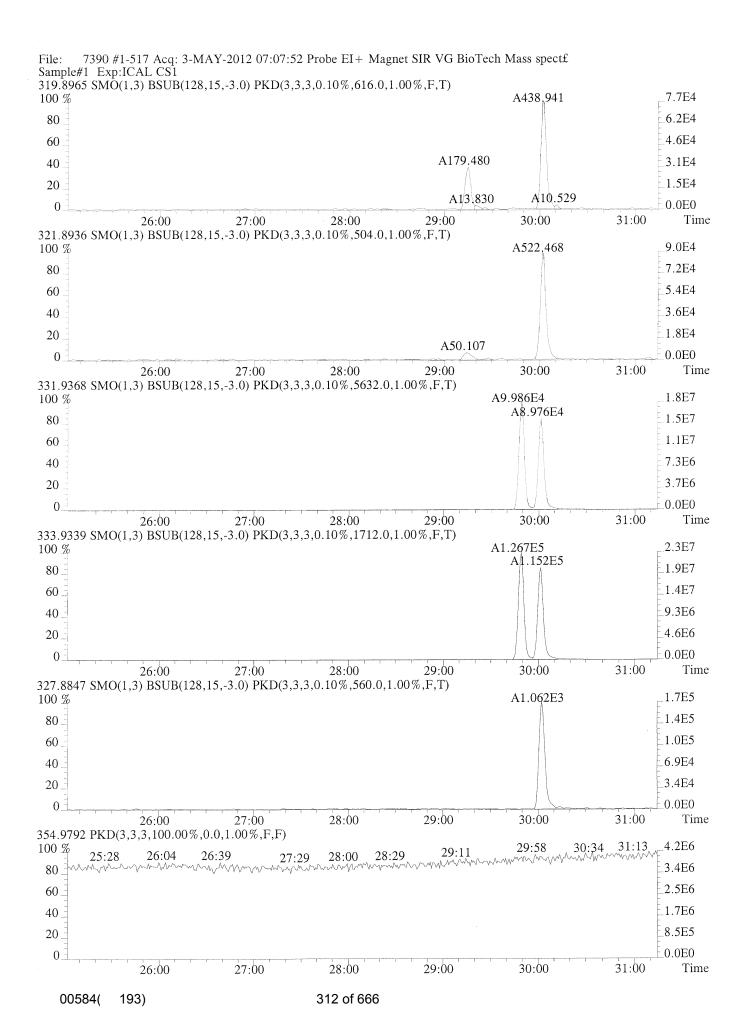
Sample Response Summary

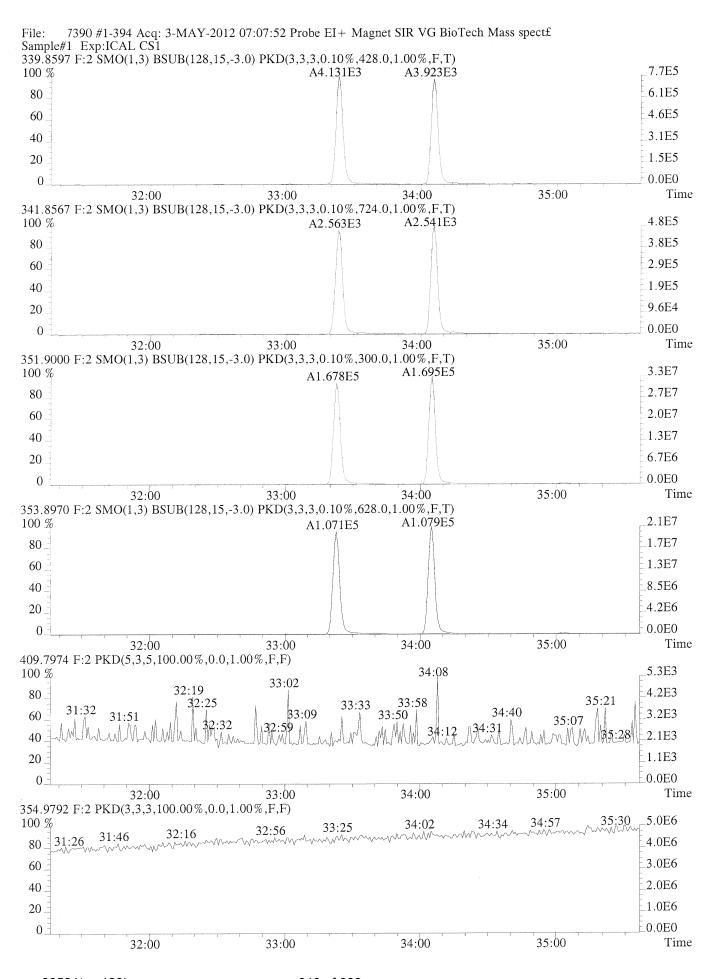
7390 #1 Samp: 1 Inj: 1 Acquired: 3-MAY-12 07:07:52 modessed: 3-MAY-12 07:48:20 LAB. ID: ICAL CS1

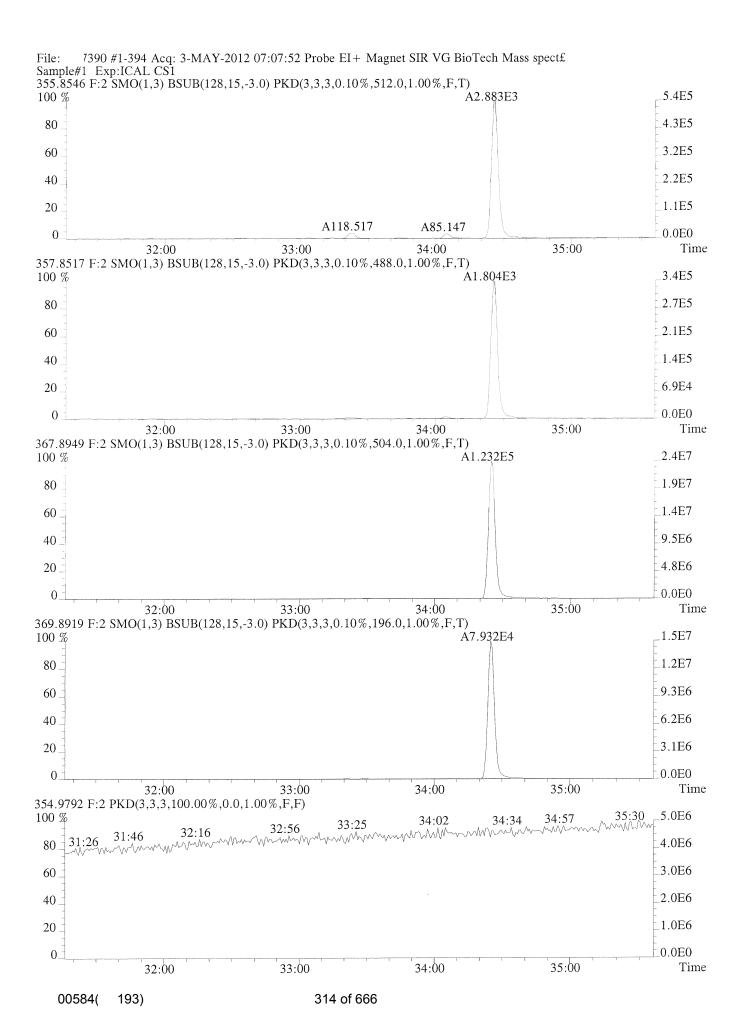
	Тур	Name RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
-1	Unk	2,3,7,8-TCDF 29:16	5.703e+02	6.775e+02	0.84	yes	no	1.001
2	Unk	1,2,3,7,8-PeCDF 33:23	4.131e+03	2.563e+03	1.61	yes	no	1.000
3	Unk	2,3,4,7,8-PeCDF 34:06	3.923e+03	2.541e+03	1.54	yes	no	1.000
d.	Unk	1,2,3,4,7,8-HxCDF 36:50	3.472e+03	2.892e+03	1.20	yes	no	1.000
-	Unk	1,2,3,6,7,8-HxCDF 36:56	4.085e+03	3.306e+03	1.24	yes	no	1.000
Ž	Unk	2,3,4,6,7,8-HxCDF 37:24	3.664e+03	2.965e+03	1.24	yes	no	1.000
7	Unk	1,2,3,7,8,9-HxCDF 38:06	3.042e+03	2.327e+03	1.31	yes	no	1.000
. 8	Unk	1,2,3,4,6,7,8-HpCDF 39:33	3.072e+03	3.091e+03	0.99	yes	no	1.000
	Unk	1,2,3,4,7,8,9-HpCDF 40:55	2.331e+03	2.222e+03	1.05	yes	no	1.000
1	Unk	OCDF 43:50	3.156e+03	3.535e+03	0.89	yes	no	1.005
			1	1	1	- '		
	Unk	2,3,7,8-TCDD 30:02	4.389e+02	5.225e+02	0.84	yes	no	1.001
	Unk	1,2,3,7,8-PeCDD 34:26	2.883e+03	1.804e+03	1.60	yes	no	1.000
1.12	Unk	1,2,3,4,7,8-HxCDD 37:30	2.546e+03	2.118e+03	1.20	yes	no	1.000
477 gt	Unk	1,2,3,6,7,8-HxCDD 37:35	2.866e+03	2.236e+03	1.28	yes	no	1.000
1840	Unk	1,2,3,7,8,9-HxCDD 37:52	2.722e+03	2.196e+03	1.24	yes	no	1.008
1.49	Unk	1,2,3,4,6,7,8-HpCDD 40:29	2.138e+03	2.112e+03	1.01	yes	no	1.000
5.7	Unk	OCDD 43:39	2.951e+03	3.424e+03	0.86	yes	no	1.000
		'	'	,				
200	IS	13C-2,3,7,8-TCDF 29:14	1.228e+05	1.570e+05	0.78	yes	no	0.980
12.11	IS	13C-1,2,3,7,8-PeCDF 33:23	1.678e+05	1.071e+05	1.57	yes	no	1.120
2 ".	IS	13C-2,3,4,7,8-PeCDF 34:05	1.695e+05	1.079e+05	1.57	yes	no	1.143
2 %	IS	13C-1,2,3,4,7,8-HxCDF 36:49	7.327e+04	1.409e+05	0.52	yes	no	0.972
22	IS	13C-1,2,3,6,7,8-HxCDF 36:55	9.066e+04	1.722e+05	0.53	yes	no	0.975
23	IS	13C-2,3,4,6,7,8-HxCDF 37:23	7.932e+04	1.522e+05	0.52	yes	no	0.987
3.4	IS	13C-1,2,3,7,8,9-HxCDF 38:05	6.382e+04	1.230e+05	0.52	yes	no	1.006
28 38 28	IS1	3C-1,2,3,4,6,7,8-HpCDF 39:33	5.535e+04	1.258e+05	0.44	yes	no	1.044
2.8 2.0	IS1	3C-1,2,3,4,7,8,9-HpCDF 40:54	4.350e+04	9.902e+04	0.44	yes	no	1.080
3.0								
27	IS	13C-2,3,7,8-TCDD 30:01	8.976e+04	1.152e+05	0.78	yes	no	1.007
34.	IS	13C-1,2,3,7,8-PeCDD 34:25	1.232e+05	7.932e+04	1.55	yes	no	1.154
13	IS	13C-1,2,3,4,7,8-HxCDD 37:30	1.012e+05	8.029e+04	1.26	yes	no	0.990
, <u>1</u> . è	IS	13C-1,2,3,6,7,8-HxCDD 37:34	1.109e+05	8.790e+04	1.26	yes	no	0.992
		3C-1,2,3,4,6,7,8-HpCDD 40:28	8.426e+04	7.988e+04	1.05	yes	no	1.069
331	IS	13C-OCDD 43:38	1.008e+05	1.111e+05	0.91	yes	no	1.152
1,8						1		
	S/RT	13C-1,2,3,4-TCDD 29:49	9.986e+04	1.267e+05	0.79	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD 37:52	1.060e+05	8.393e+04	1.26	yes	no	*
	C/Up	37Cl-2,3,7,8-TCDD 30:02	1.062e+03				no	1.007

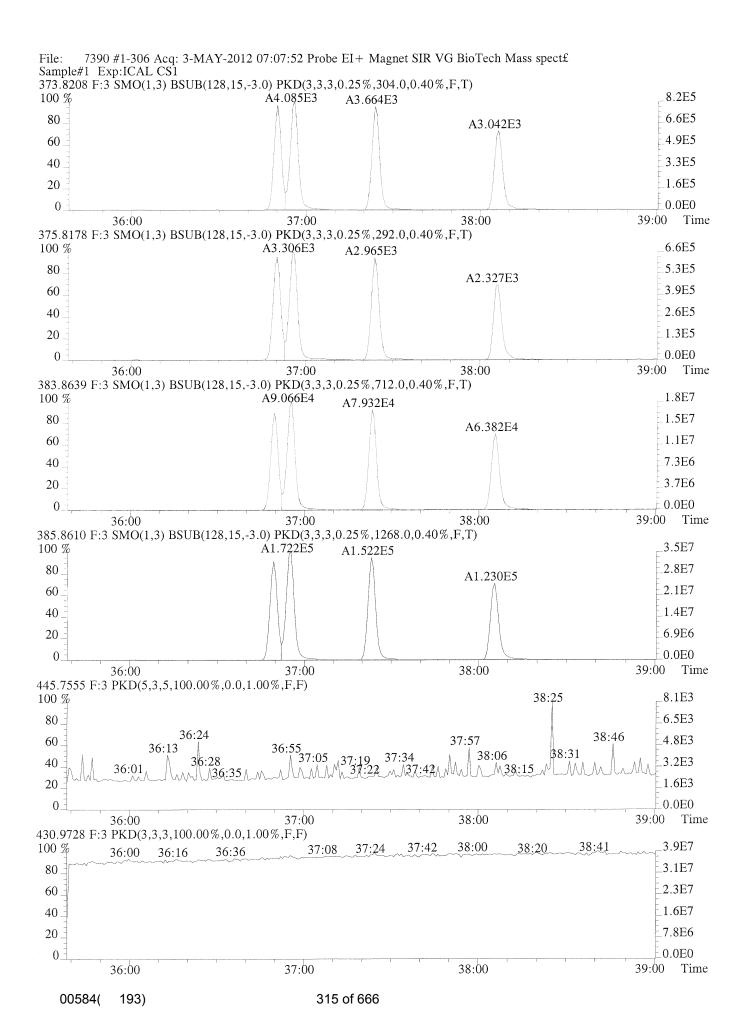
CLIENT ID. ICAL CS1

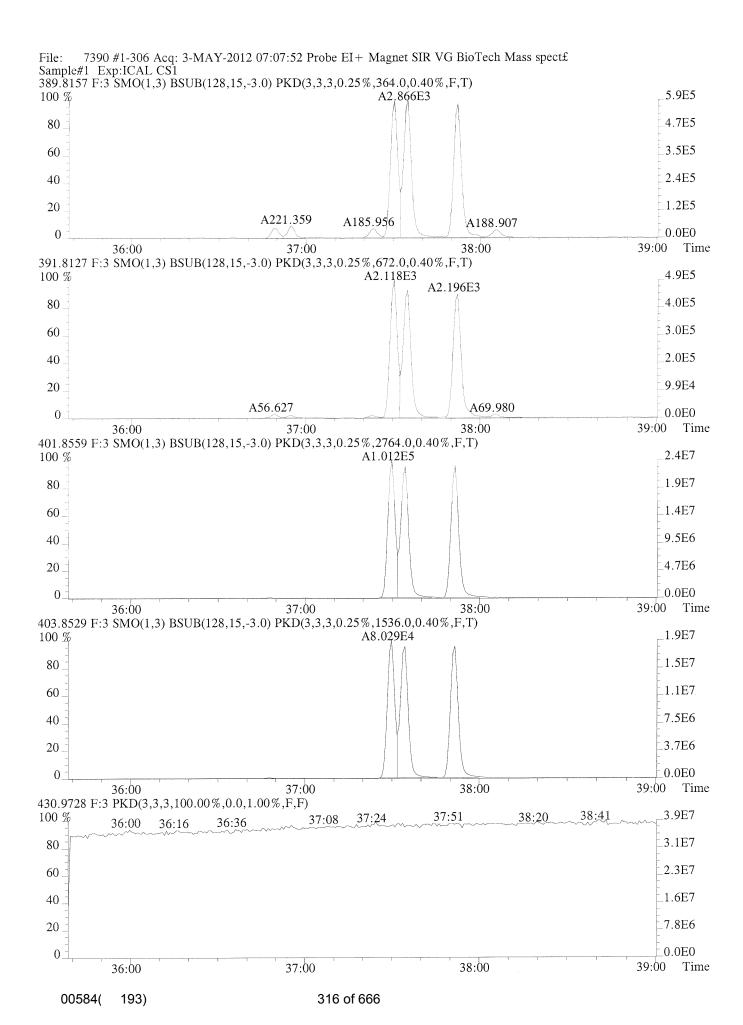

Acquired: 3-MAY-12 07:07:52 Pun. #2 Filename 7390 Samp: 1 Inj: 1 LAB. ID: ICAL CS1 processed: 3-MAY-12 07:48:201 . . . 4 3.5 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | olu. 2,3,7,8-TCDF 9.14e+04 | 2.44e+02 | 3.7e+02 1.13e+05 | 3.56e+02 3.2e + 021.8e+03 4.64e+05 $7.24e+02 \mid 6.4e+02$ 1,2,3,7,8-PeCDF 7.65e+05 4.28e+02 980 7.24e+02 | 6.6e+02 2,3,4,7,8-PeCDF 7.45e+05 4.28e+02 1.7e+03 4.81e+05 બેલી હ 35 -1,2,3,4,7,8-HxCDF 7.90e+05 3.04e+02 2.6e+03 6.29e+05 2.92e+02 2.2e + 0336 1,2,3,6,7,8-HxCDF 8.18e+05 3.04e+02 2.7e+03 6.57e+05 2.92e+02 2.2e + 03亲手 2,3,4,6,7,8-HxCDF 7.84e+05 3.04e+02 | 2.6e+03 | 6.23e+05 2.92e+02 | 2.1e+03 1,2,3,7,8,9-HxCDF 5.98e+05 3.04e+02 | 2.0e+03 | 4.56e+05 2.92e+02 | 1.6e+03 1,2,3,4,6,7,8-HpCDF 1.51e+03 4.0e+02 5.99e+05 1.23e+03 4.9e + 026.05e+05 4.01e+05 1.23e+03 3.3e + 021,2,3,4,7,8,9-HpCDF 4.27e+05 1.51e+03 2.8e+02 1.7e+03 | 5.24e+05 | 7.80e+02 | 6.7e+02 OCDF | 4.73e+05 | 2.84e+02 | 117 9.00e+04 | 5.04e+02 | 1.8e+02 2,3,7,8-TCDD 7.67e+04 6.16e+02 1.2e+02 3.43e+05 4.88e+02 7.0e+02 1,2,3,7,8-PeCDD 5.40e+05 | 5.12e+02 | 1.1e+03 | 13 -4.93e+05 6.72e+02 7.3e + 025.85e+05 3.64e+02 1.6e+03 1,2,3,4,7,8-HxCDD 6.72e+02 | 6.8e+02 4.56e+05 441 1,2,3,6,7,8-HxCDD 5.87e+05 3.64e+02 1.6e+03 J. 16 1.6e+03 4.44e+05 6.72e+02 6.6e + 021,2,3,7,8,9-HxCDD 5.71e+05 3.64e + 02: 5 4.08e+02 1.0e+03 4.01e+05 5.72e+02 7.0e + 021,2,3,4,6,7,8-HpCDD 4.12e+05 4.52e+05 | 5.60e+02 | 8.1e+02 | 5.30e+05 | 6.60e+02 8.0e+02 OCDD 2.02e+07 | 1.42e+03 | 1.4e+04 | 2.59e+07 | 1.69e+03 1.5e + 0413C-2,3,7,8-TCDF 2.02e+07 6.28e+02 3.2e + 041.0e+05 13C-1,2,3,7,8-PeCDF 3.13e+07 3.00e+02 · 44. 2.12e+07 6.28e+02 3.4e + 0413C-2,3,4,7,8-PeCDF 3.34e+07 3.00e+02 1.1e+05 13C-1,2,3,4,7,8-HxCDF 7.12e+02 2.3e+04 3.15e+07 1.27e+03 2.5e + 041.65e+07 30 P 2.7e + 0413C-1,2,3,6,7,8-HxCDF 1.83e+07 7.12e+02 2.6e+04 3.46e+07 1.27e + 0313C-2,3,4,6,7,8-HxCDF 1.70e+07 7.12e+02 | 2.4e+04 | 3.29e+07 1.27e+03 2.6e + 041.29e+07 7.12e+02 1.8e+04 2.45e+07 1.27e+03 1.9e + 0413C-1,2,3,7,8,9-HxCDF 35 13C-1,2,3,4,6,7,8-HpCDF 1.11e+07 | 6.52e+03 1.7e+03 2.49e+07 1.25e+04 2.0e + 031.25e+04 | 1.4e+03 7.78e+06 | 6.52e+03 | 1.2e+03 | 1.76e+07 6-13C-1,2,3,4,7,8,9-HpCDF 1.2e+04 13C-2,3,7,8-TCDD 1.54e+07 $5.63e+03 \mid 2.7e+03 \mid 1.98e+07 \mid$ 1.71e+03 1.96e+02 7.9e+04 13C-1,2,3,7,8-PeCDD 2.38e+07 $5.04e+02 \mid 4.7e+04 \mid 1.54e+07 \mid$ 1.54e+03 1.2e + 042.76e+03 8.6e+03 1.87e+07 13C-1,2,3,4,7,8-HxCDD 2.37e+07 1.78e+07 1.54e+03 1.2e + 0413C-1,2,3,6,7,8-HxCDD 2.27e+07 2.76e+03 8.2e+03 13C-1,2,3,4,6,7,8-HpCDD 1.54e+07 5.16e+02 3.0e + 041.61e+07 9.76e+02 1.7e+04 13C-OCDD | 1.55e+07 | 5.28e+02 | 2.9e+04 | 1.74e+07 | 3.08e+02 | 5.6e+04 Ç. 5.63e+03 | 3.2e+03 | 2.32e+07 | 1.71e+03 | 1.4e + 0413C-1,2,3,4-TCDD | 1.83e+07 13C-1,2,3,7,8,9-HxCDD| 2.27e+07| 2.76e+03| 8.2e+03| 1.78e+07| 1.54e+03| 1.2e+04 dgr. 37Cl-2,3,7,8-TCDD | 1.72e+05 | 5.60e+02 | 3.1e+02

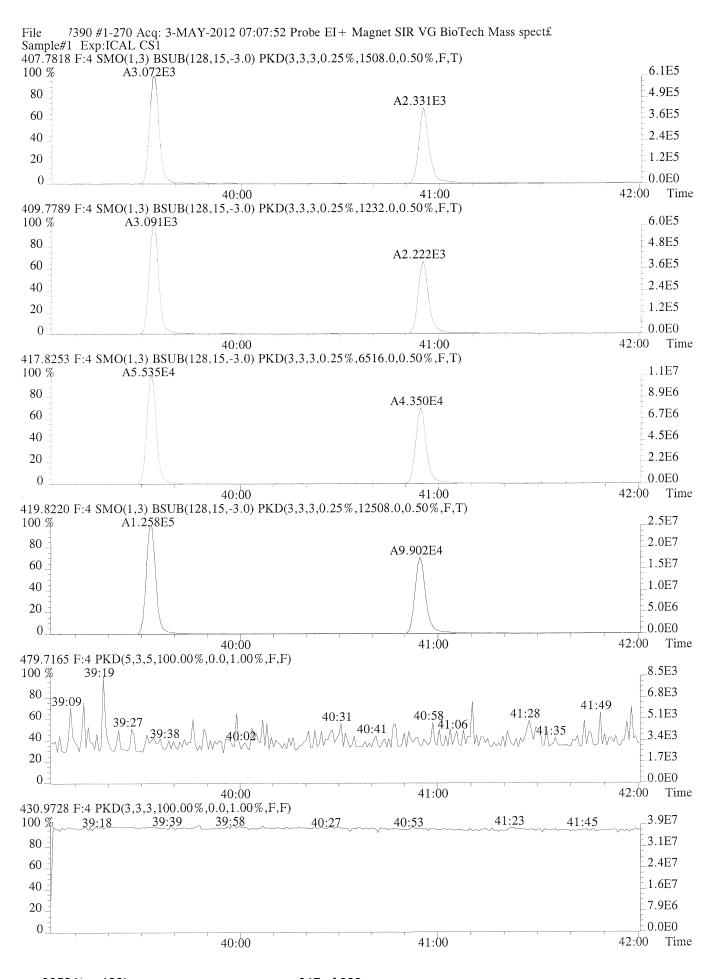

\$4

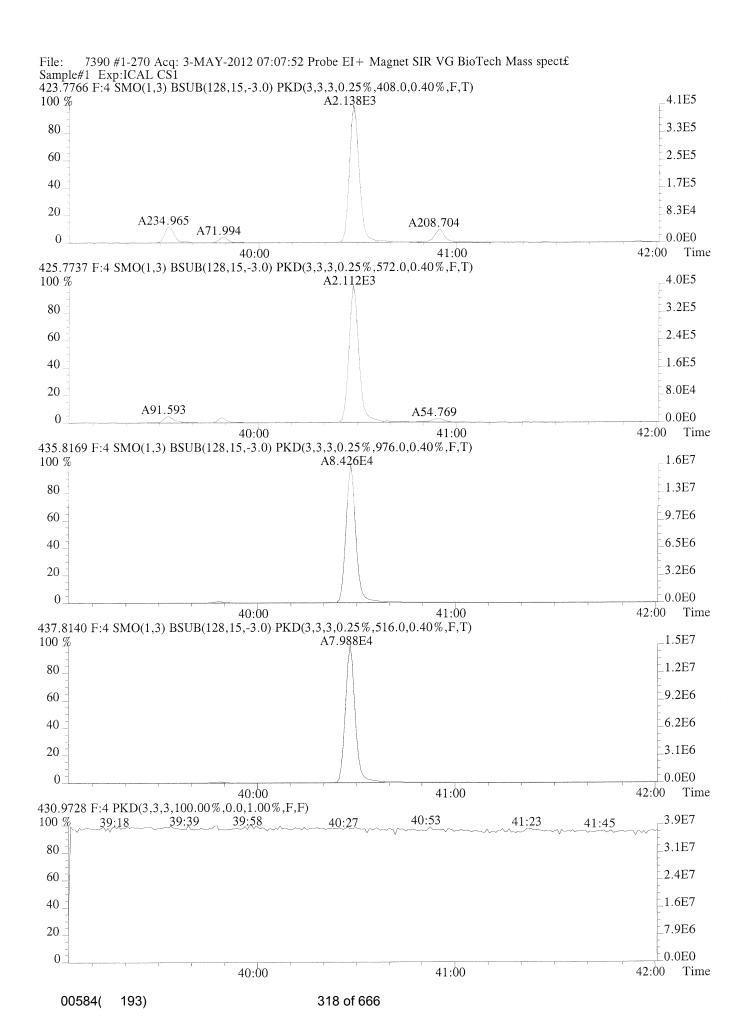

SIR Sak He

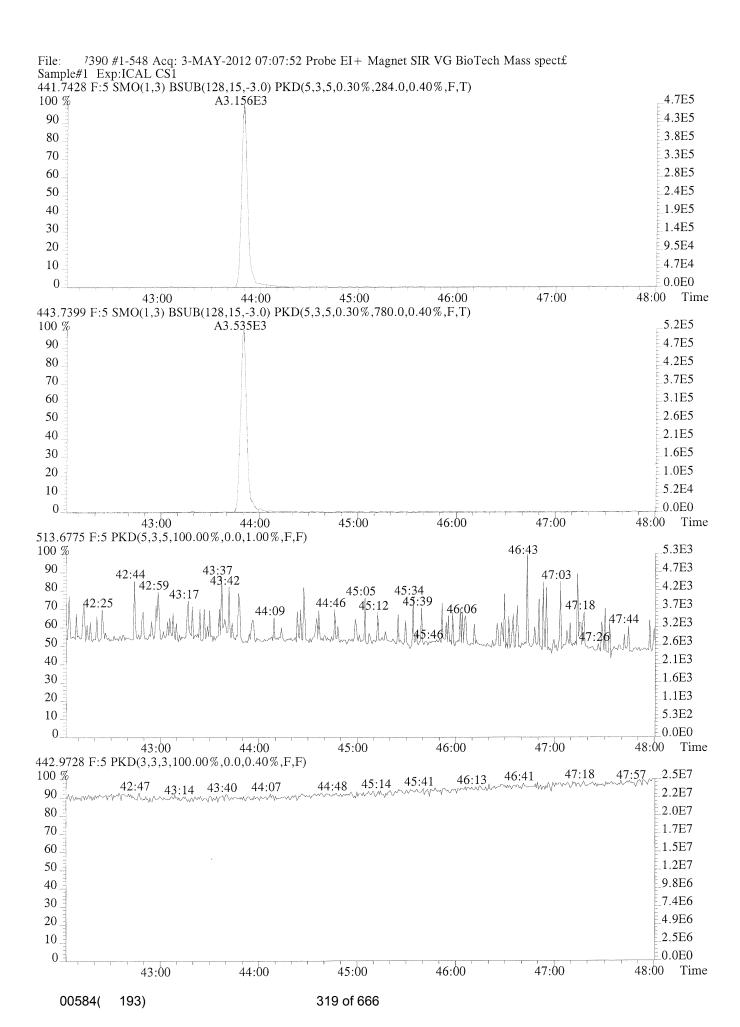

. (-

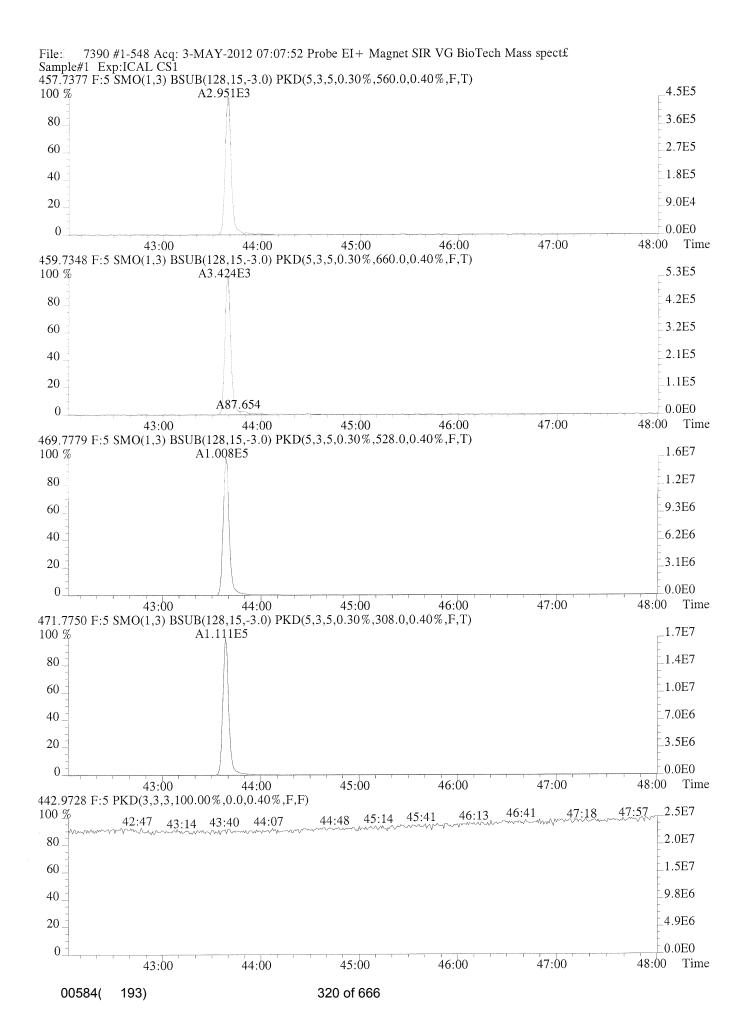

苦红











CLIENT ID. ICAL CS2

940 #3 Filename Acquired: 3-MAY-12 08:16:36 7391 #1 Samp: 1 Inj: 1 cessed: 3-MAY-12 LAB. ID: ICAL CS2 08:55:47 Meet Mod? RRT Name RT-1 Resp 2 Ratio Typ Resp 1 | 0.77|1.000 Unk 2,3,7,8-TCDF | 29:16 1.536e+03 1.985e+03ves no 1,2,3,7,8-PeCDF|33:23 1.000 1.145e+04 7.173e+031.60 yes no Unk 1.000 Unk 2,3,4,7,8-PeCDF 34:06 1.104e+047.120e+031.55 yes no 1,2,3,4,7,8-HxCDF | 36:50 1.014e+04 8.117e + 031.25 yes no 1.000 Unk 1,2,3,6,7,8-HxCDF | 36:56 1.133e+04 9.292e+03 1.22 yes no 1.000 Unk 1.027e+04 8.144e+03 1.26 yes no 1.000 2,3,4,6,7,8-HxCDF | 37:24 Unk 1,2,3,7,8,9-HxCDF | 38:06 8.321e+03 6.619e+03 1.26 yes no 1.000 Unk 1,2,3,4,6,7,8-HpCDF | 39:33 1.04 no 1.000 9.068e+03 8.678e+03 yes Unk 1.000 1,2,3,4,7,8,9-HpCDF | 40:55 6.982e+03 6.959e+03 1.00 yes no Unk 1.004 OCDF | 43:50 1.005e+04 1.115e+04 0.90 yes no Unk 1.001 0.72 2,3,7,8-TCDD 30:03 1.198e+03 1.664e+03 yes no Unk 1,2,3,7,8-PeCDD | 34:26 1.001 8.180e + 035.010e+031.63 yes Unk 1.27 5.779e+03 1.000 1,2,3,4,7,8-HxCDD | 37:30 yes no 7.351e+03Unk. 1,2,3,6,7,8-HxCDD|37:35 1.000 1.24 7.796e+03 6.297e + 03yes no Unk 1.30 no 1.008 1,2,3,7,8,9-HxCDD 37:52 7.559e + 035.810e + 03yes Unk 1.04 no 1.000 6.211e+03 5.995e+03yes Unk 1,2,3,4,6,7,8-HpCDD | 40:29 1.000 OCDD | 43:39 8.966e+03 9.889e+030.91 yes no Unk 1.137e+05 0.78 0.981 yes no IS 13C-2,3,7,8-TCDF 29:15 8.889e+04 1.119 1.58 no IS 13C-1,2,3,7,8-PeCDF | 33:23 1.173e+05 7.413e+04yes 7.699e + 041.58 no 1.143 IS 13C-2,3,4,7,8-PeCDF | 34:05 1.220e+05 yes 0.973 0.51 no 13C-1,2,3,4,7,8-HxCDF | 36:49 5.123e+041.001e+05 yes IS no 0.975 IS 13C-1,2,3,6,7,8-HxCDF 36:55 6.350e + 041.214e + 050.52 yes 13C-2,3,4,6,7,8-HxCDF | 37:23 5.602e+04 1.072e + 050.52 yes no 0.987 IS 13C-1,2,3,7,8,9-HxCDF|38:05 8.733e+040.52 yes no 1.006 4.536e+04 1.044 4.016e+049.173e+040.44 yes no IS13C-1,2,3,4,6,7,8-HpCDF | 39:32 0.45 1.081 3.380e+04 7.555e+04yes no IS13C-1,2,3,4,7,8,9-HpCDF 40:54 13C-2,3,7,8-TCDD|30:01 6.434e+04 8.250e+040.78 yes no 1.007 IS 1.154 13C-1,2,3,7,8-PeCDD | 34:25 8.925e+04 5.624e+041.59 yes nο IS 0.990 1.26 yes no 13C-1,2,3,4,7,8-HxCDD 37:30 7.189e + 045.718e+04IS 0.992 IS 13C-1,2,3,6,7,8-HxCDD 37:34 7.923e+046.234e+041.27 yes no 1.07 1.069 6.441e+04 6.033e+04yes no ISA3C-1,2,3,4,6,7,8-HpCDD 40:28 0.91 1.153 8.886e+04no 13C-OCDD 43:38 8.088e+04 yes IS. RS/RT 9.187e + 040.78 13C-1,2,3,4-TCDD 29:49 7.188e+04yes * 1.25 5.908e+04yes no 34RS/RT 13C-1,2,3,7,8,9-HxCDD 37:52 7.400e+041.008 C/Up 37Cl-2,3,7,8-TCDD 30:03 2.806e+03 no

931

305

323

1 9

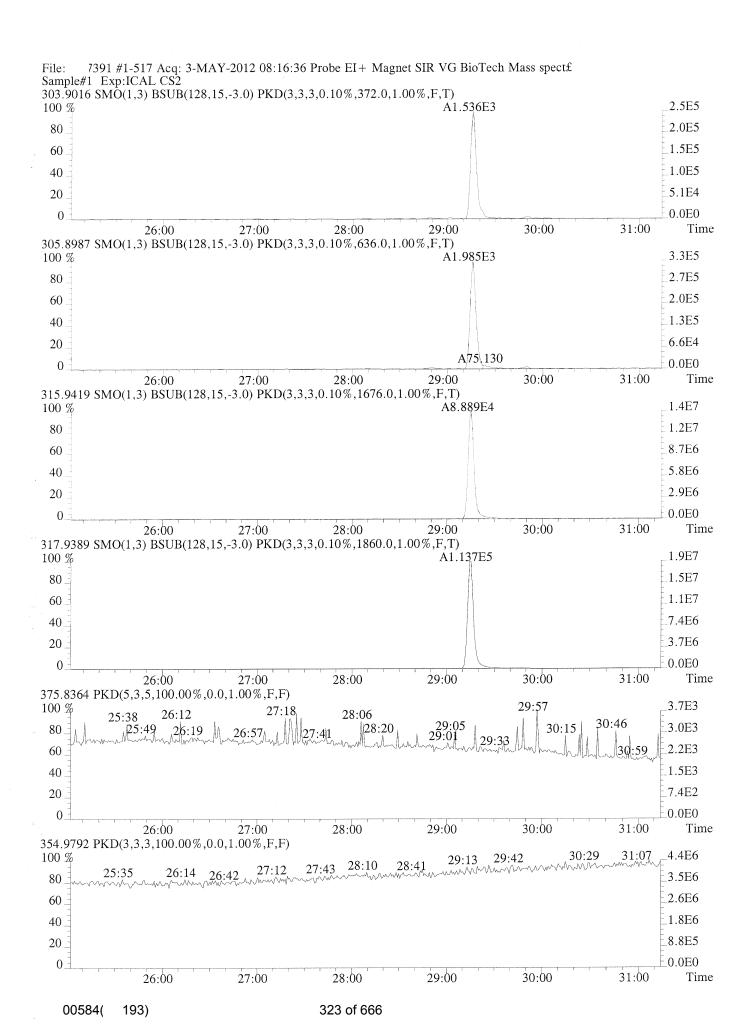
900

1

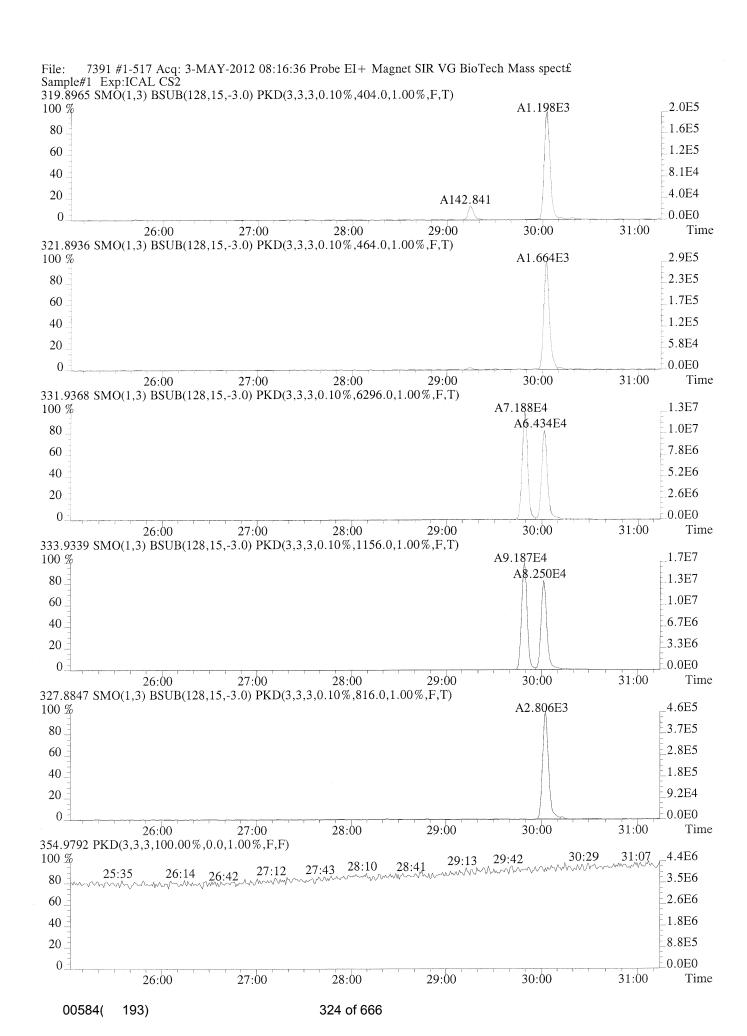
建定金

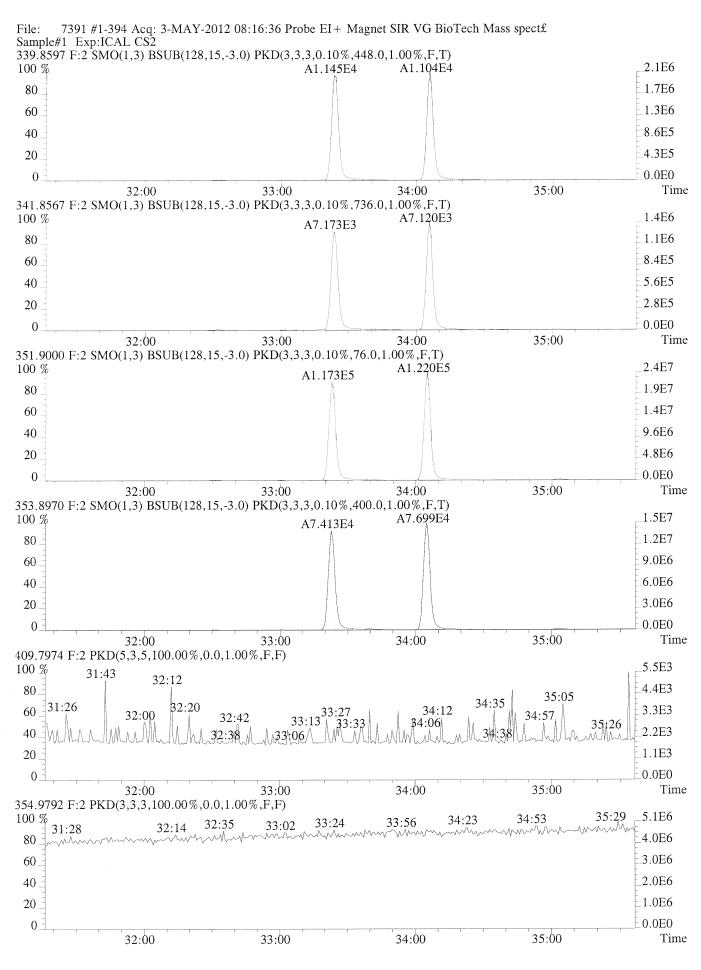
423 :24 35

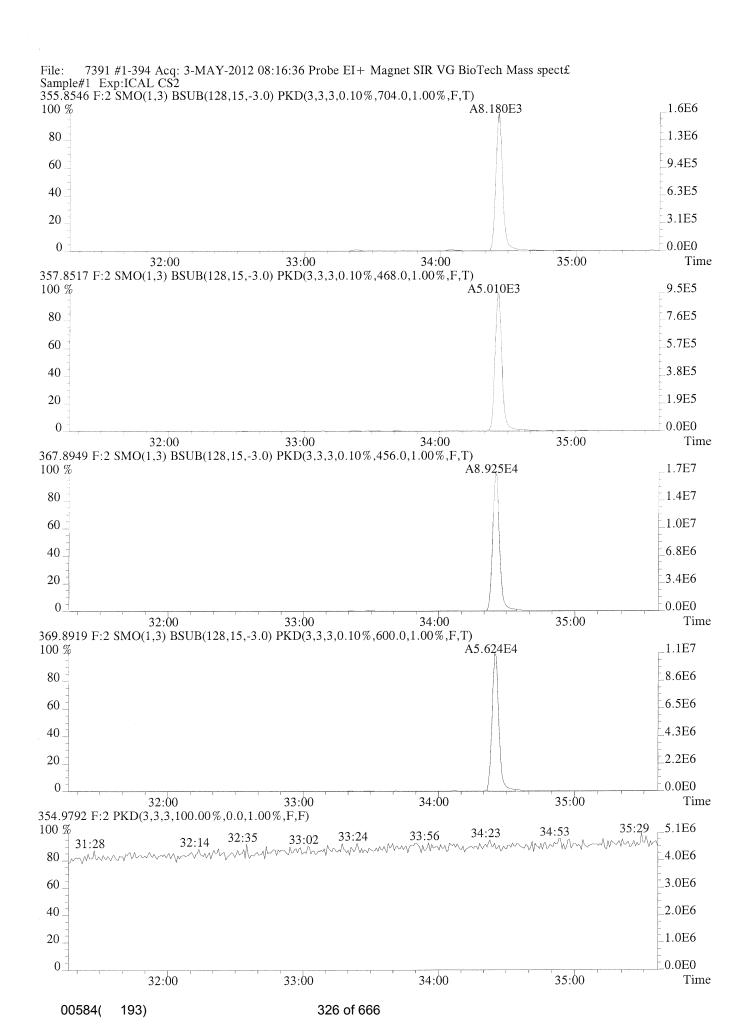
9545 #3 Acquired: 3-MAY-12 08:16:36 Filename 7391 Samp: 1 Inj: 1 LAB. ID: ICAL CS2 **Scessed: 3-MAY-12 08:55:471 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF| 2.53e+05| 3.72e+02| 6.8e+02| $3.32e+05 \mid 6.36e+02 \mid 5.2e+02$ 4.6e+03 1.28e+06 7.36e+02 1.7e + 031,2,3,7,8-PeCDF 2.08e+06 4.48e+02 1.40e+06 7.36e+02 1.9e + 032,3,4,7,8-PeCDF 2.14e+06 4.48e+02 4.8e+03 1,2,3,4,7,8-HxCDF 2.25e+06 5.16e+02 4.4e+03 1.82e+06 2.76e+02 6.6e + 031,2,3,6,7,8-HxCDF 2.16e+06 5.16e+02 | 4.2e+03 | 1.80e+06 2.76e+02 6.5e + 032,3,4,6,7,8-HxCDF 2.18e+06 5.16e+02 4.2e+03 | 1.75e+06 | 2.76e+02 | 6.3e+03 1,2,3,7,8,9-HxCDF 1.62e+06 | 5.16e+02 3.1e+03 | 1.24e+06 | 2.76e+02 | 4.5e+03 1,2,3,4,6,7,8-HpCDF 1.78e+06 8.52e+02 2.1e+03 1.69e+06 1.72e+03 9.8e+02 1.22e+06 1.4e+03 1.22e+06 1.72e+03 | 7.1e+02 1 2,3,4,7,8,9-HpCDF 8.52e+02 4.80e+02 | 3.1e+03 | 1.65e+06 | 5.32e+02 | 3.1e+03 OCDF | 1.46e+06| 6.2e+02 2.88e+05 | 4.64e+02 2,3,7,8-TCDD | 2.01e+05 | 4.04e+02 | 5.0e+02 | 2.0e + 031.57e+06 7.04e+02 | 2.2e+03 | 9.48e+05 | 4.68e+02 1,2,3,7,8-PeCDD 2.3e + 037.96e+02 | 2.2e+03 | 1.30e+06 5.76e+02 1,2,3,4,7,8-HxCDD 1.72e+06 5.76e+02 2.2e + 037.96e+02 2.0e+03 1.26e+06 1,2,3,6,7,8-HxCDD 1.56e+06 1,2,3,7,8,9-HxCDD 1.9e+03 1.19e+06 5.76e+02 2.1e + 031.54e+06 7.96e+02 5.28e+02 | 2.2e+03 | 1.14e+06 5.16e+02 2.2e + 031,2,3,4,6,7,8-HpCDD 1.18e+06 7.28e+02 | 1.9e+03 | 1.54e+06 | 7.40e+02 | 2.1e+03 OCDD | 1.39e+06| 1.68e+03 | 8.6e+03 | 1.85e+07 | 1.86e+03 9.9e + 0313C-2,3,7,8-TCDF 1.45e+07 1.39e+07 4.00e+02 3.5e + 047.60e+01 | 2.9e+05 13C-1,2,3,7,8-PeCDF 2.19e+07 1.50e+07 4.00e+02 3.7e + 0413C-2,3,4,7,8-PeCDF 2.40e+07 7.60e+01 3.2e+05 1.3e+04 2.23e+07 1.83e+03 1.2e + 0413C-1,2,3,4,7,8-HxCDF 1.14e+07 8.60e+02 1.83e+03 1.3e + 0413C~1,2,3,6,7,8-HxCDF 1.25e+07 8.60e+02 1.5e+04 2.35e+07 13C-2,3,4,6,7,8-HxCDF 1.21e+07 8.60e+02 1.4e+04 2.31e+07 1.83e+03 1.3e + 0413C-1,2,3,7,8,9-HxCDF 1.0e+04 8.80e+06 8.60e+02 1.70e+07 1.83e+03 9.3e + 033C-1/2,3,4,6,7,8-HpCDF 1.81e+07 7.60e+03 2.4e + 037.85e+06 2.67e+03 2.9e+03 13C-1,2,3,4,7,8,9-HpCDF 6.01e+06 | 2.67e+03 | 2.2e+03 | 1.34e+07 | 7.60e+03 | 1.8e+03 13C-2,3,7,8-TCDD | 1.08e+07 | 6.30e+03 | 1.7e+03 | 1.38e+07 | 1.16e+03 | 1.2e+04 1.70e+07 | 4.56e+02 | 3.7e+04 | 13C-1,2,3,7,8-PeCDD 1.08e+07 6.00e+02 | 1.8e+04 1.0e+04 1.31e+07 1.63e+03 8.1e + 0313C-1,2,3,4,7,8-HxCDD 1.67e+07 1.59e+03 1.25e+07 1.63e+03 7.7e + 031.60e+07 1.0e+04 13C-1,2,3,6,7,8-HxCDD 1.59e+03 4.68e+02 5.68e+02 2.1e+04 1.13e+07 2.4e + 043C-1,2,3,4,6,7,8-HpCDD 1.22e+07 13C-OCDD | 1.26e+07 | 5.00e+02 | 2.5e+04 | 1.38e+07 | 3.08e+02 | 13C-1,2,3,4-TCDD | 1.30e+07 | 6.30e+03 | 2.1e+03 | 1.67e+07 | 1.16e+03 | 1.4e+04 13C-1,2,3,7,8,9-HxCDD | 1.56e+07 | 1.59e+03 | 9.8e+03 | 1.23e+07 | 1.63e+03 | 7.5e+03

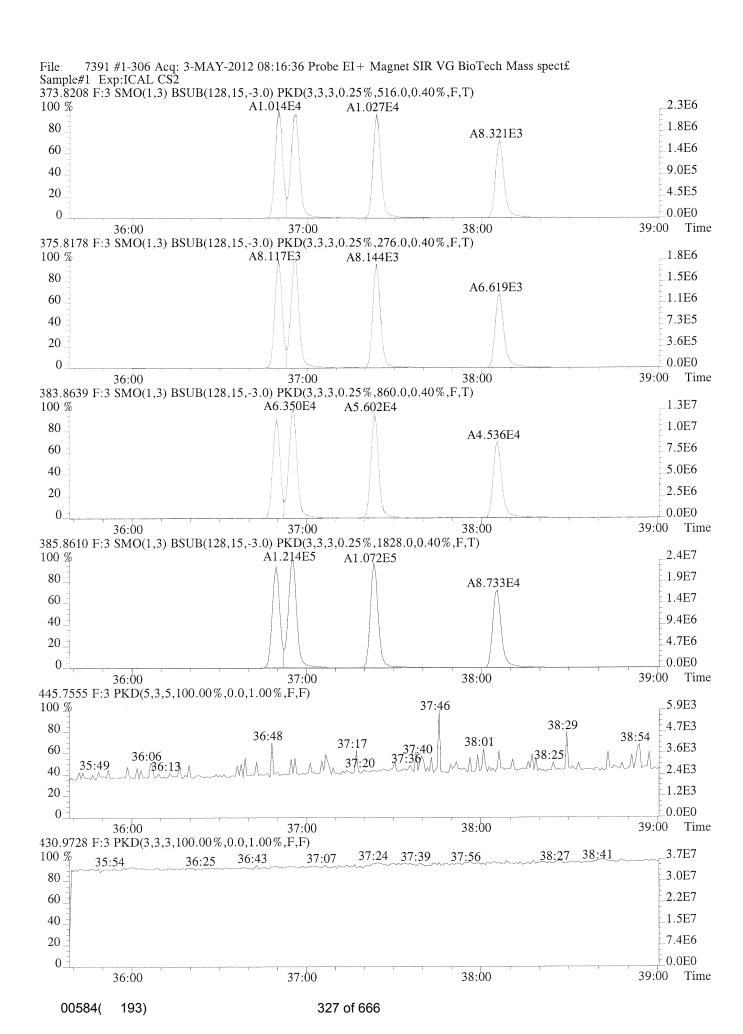

198 g. i **是勤造人。** 330 533

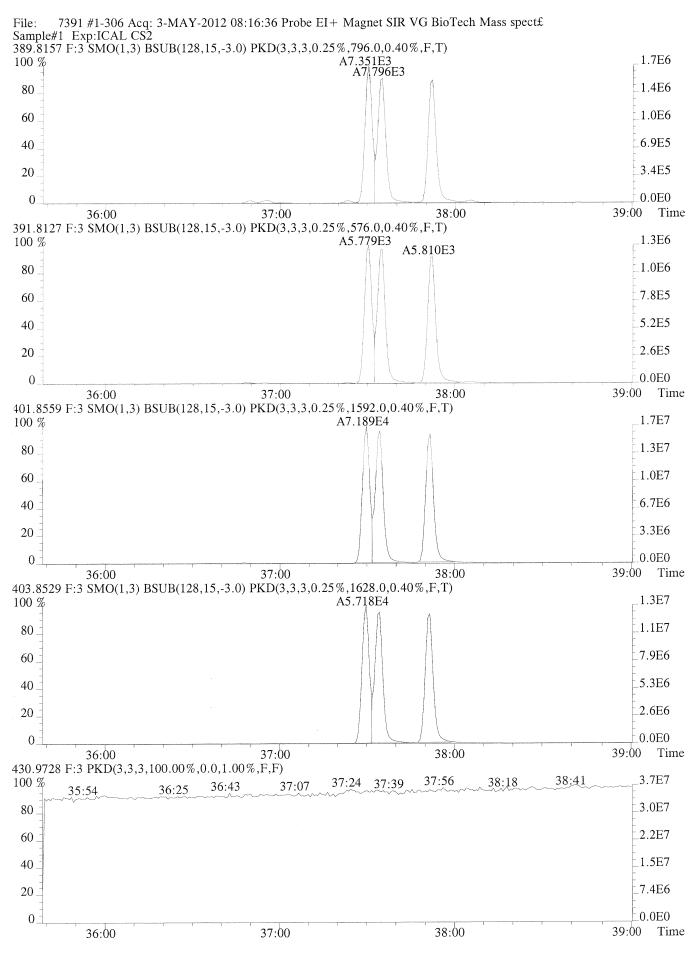
160

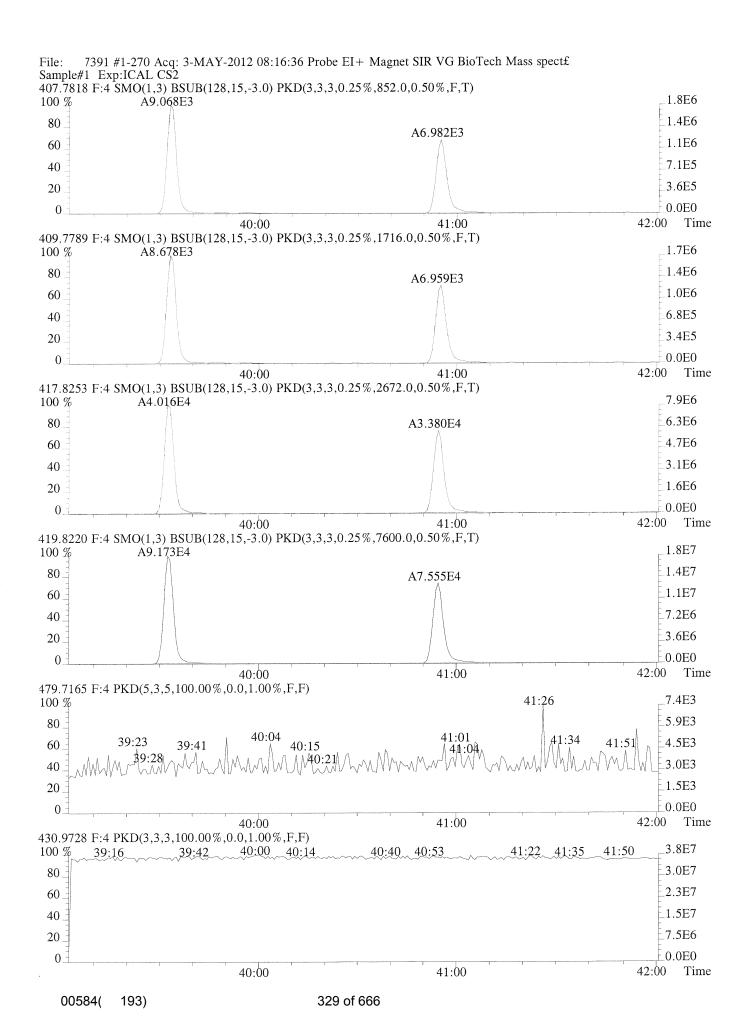

*老爹~

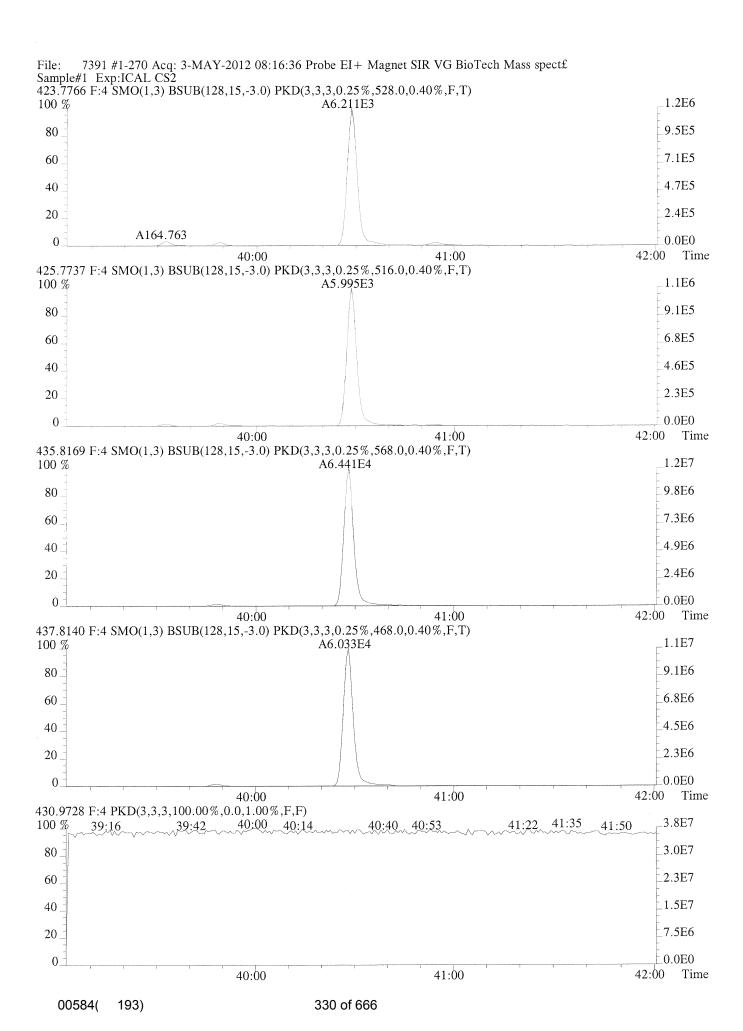

1. Se 1. T. F. 1. S

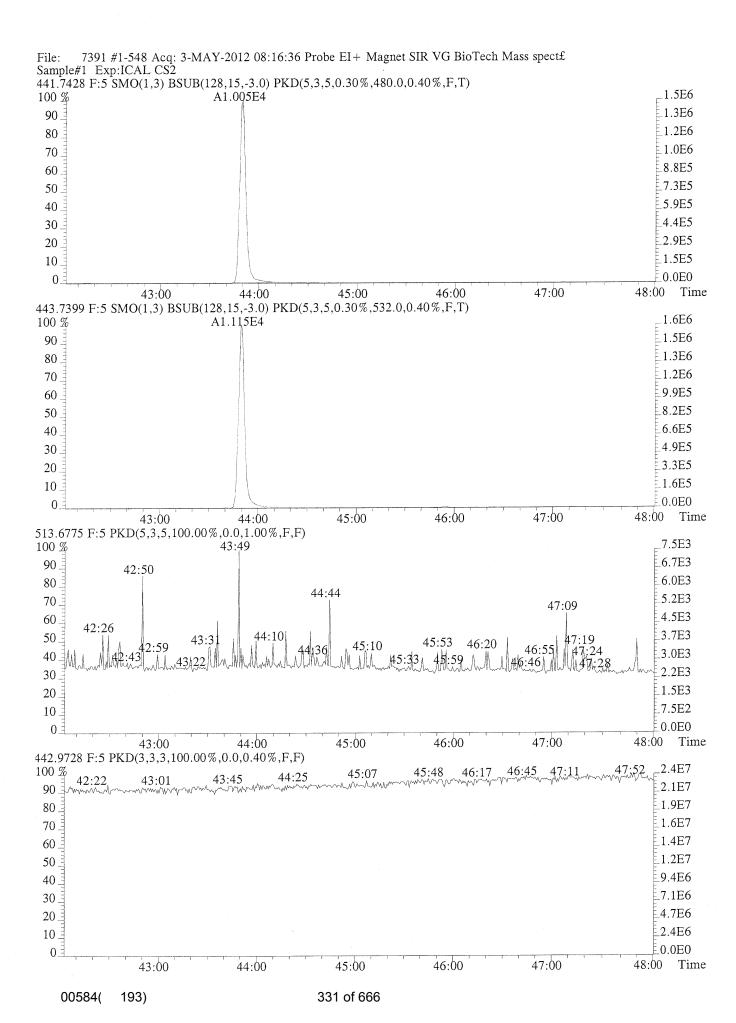

37Cl-2,3,7,8-TCDD | 4.61e+05 | 8.16e+02 | 5.6e+02

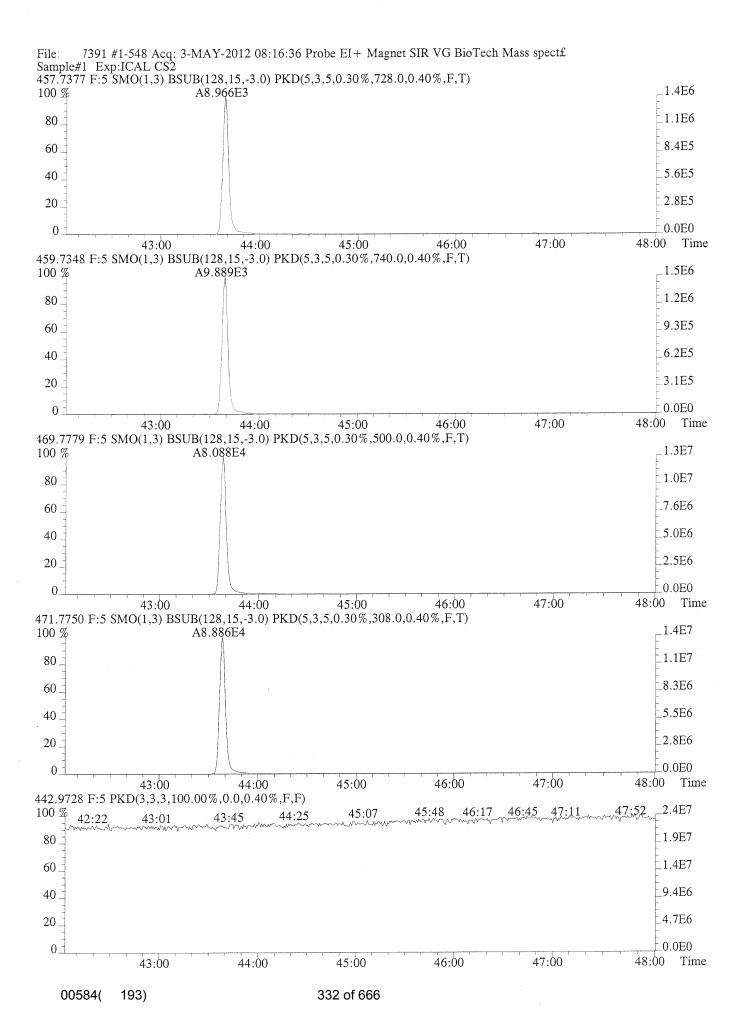



, o an Jasi









Inj: 1

Samp: 1

CLIENT ID. ICAL CS3

Acquired: 3-MAY-12 09:15:36

LAB. ID: ICAL CS3 Processed: 3-MAY-12 09:51:32 Тур Name RT-1 Resp 1 Resp 2 Ratio Meet Mod? RRT 2,3,7,8-TCDF | 29:17 0.77 1.001 Unk 2.342e+043.045e+04yes no 1.000 Unk 1,2,3,7,8-PeCDF | 33:25 1.498e+05 9.584e+041.56 yes no Unk Unk 2,3,4,7,8-PeCDF | 34:07 1.474e + 059.505e+04 1.55 yes no 1.000 1.164e+05 1.25 9.281e+04 no 1.000 િક્કુ Unk 1,2,3,4,7,8-HxCDF | 36:51 yes 1.000 difji Unk 1,2,3,6,7,8-HxCDF | 36:57 1.171e+05 9.315e+041.26 yes no 7.040e+041.26 1.000 516 Unk 2,3,4,6,7,8-HxCDF | 37:25 8.877e + 04yes no 1.26 1.000 Unk 1,2,3,7,8,9-HxCDF 38:08 8.779e+046.973e+04 yes no 348 Unk 1,2,3,4,6,7,8-HpCDF | 39:35 8.913e+04 8.622e+041.03 yes no 1.000 3 : 9 Unk 1,2,3,4,7,8,9-HpCDF | 40:57 7.495e+047.302e+041.03 yes no 1.000 1.0 1.200e+05 1.337e+05 0.90 yes no Unk OCDF | 43:52 442 2,3,7,8-TCDD|30:04 1.711e+04 2.210e+04 0.77 yes no Unk 1,2,3,7,8-PeCDD | 34:28 5.809e+041.59 yes no Unk 9.240e+04Unk 1,2,3,4,7,8-HxCDD 37:32 8.002e+046.307e+041.27 yes no Unk 1,2,3,6,7,8-HxCDD 37:36 7.076e+04 5.592e+04 1.27 yes no VIS-1.27 5.783e+04no Unk 1,2,3,7,8,9-HxCDD 37:54 7.339e+04yes 1.06 1,2,3,4,6,7,8-HpCDD | 40:30 6.385e+046.011e+04 yes no Unk 6 1 7 Unk OCDD 43:40 1.076e+05 1.206e+05 0.89 yes no 13C-2,3,7,8-TCDF | 29:16 2.480e+05 3.163e+05 0.78 yes no IS 1.935e+051.60 no

1.004 1.001 1.000 1.000 1.000 1.008 1.000 1.000 0.981 1.119 13C-1,2,3,7,8-PeCDF | 33:24 3.097e+05 yes IS 1.59 no 1.143 IS 13C-2,3,4,7,8-PeCDF 34:06 2.857e+05 1.801e+05 yes 0.53 0.973 IS 13C-1,2,3,4,7,8-HxCDF 36:51 1.189e+05 2.264e+05 yes no **食乳剂**。 0.975 IS 13C-1,2,3,6,7,8-HxCDF 36:57 1.202e+05 2.301e+05 0.52 yes no 13C-2,3,4,6,7,8-HxCDF | 37:25 0.988 IS 1.001e+05 1.886e+05 0.53 yes no IS 13C-1,2,3,7,8,9-HxCDF | 38:07 9.315e+041.758e+05 0.53 yes no 1.006 IS13C-1,2,3,4,6,7,8-HpCDF | 39:35 7.864e+04 1.764e + 050.45 yes no 1.045 1.481e+05 IS13C-1,2,3,4,7,8,9-HpCDF | 40:56 6.520e+04 0.44 yes no 1.080 IS 13C-2,3,7,8-TCDD | 30:03 1.713e+05 2.180e+05 0.79 yes no 1.007 13C-1,2,3,7,8-PeCDD | 34:27 1.765e+05 1.108e+05 1.59 yes no 1.154 IS 1.26 0.990 13C-1,2,3,4,7,8-HxCDD 37:31 1.369e + 051.088e+05 yes no IS 1.27 no 0.992 13C-1,2,3,6,7,8-HxCDD | 37:36 1.490e+05 1.170e+05 yes IS 1.06 yes 1.069 1.148e+05 no IS13C-1,2,3,4,6,7,8-HpCDD | 40:29 1.219e+05 0.91 1.153 13C-OCDD 43:40 1.995e+05 2.182e+05 yes no 193RS/RT 0.80 13C-1,2,3,4-TCDD 29:50 1.896e+05 2.383e+05yes no 34RS/RT * 1.28 13C-1,2,3,7,8,9-HxCDD 37:53 1.381e+05 1.075e+05 yes no C/Up 1.008 37Cl-2,3,7,8-TCDD 30:04 3.972e+04

32

生变量。

33 to

. · · Æ

No E

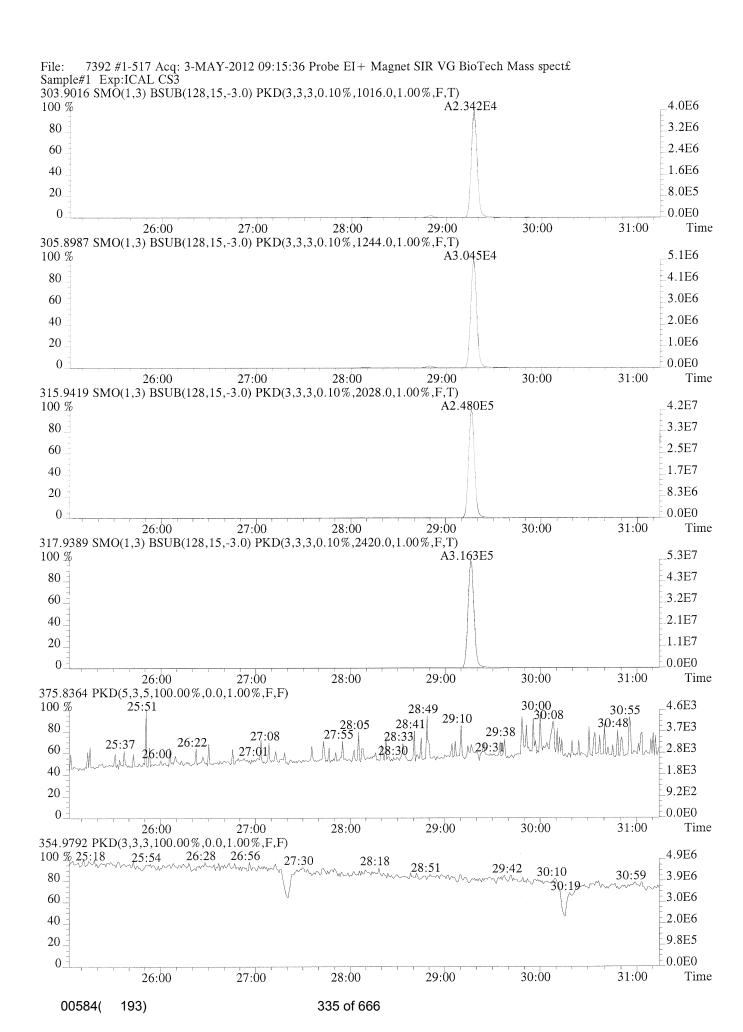
1.0

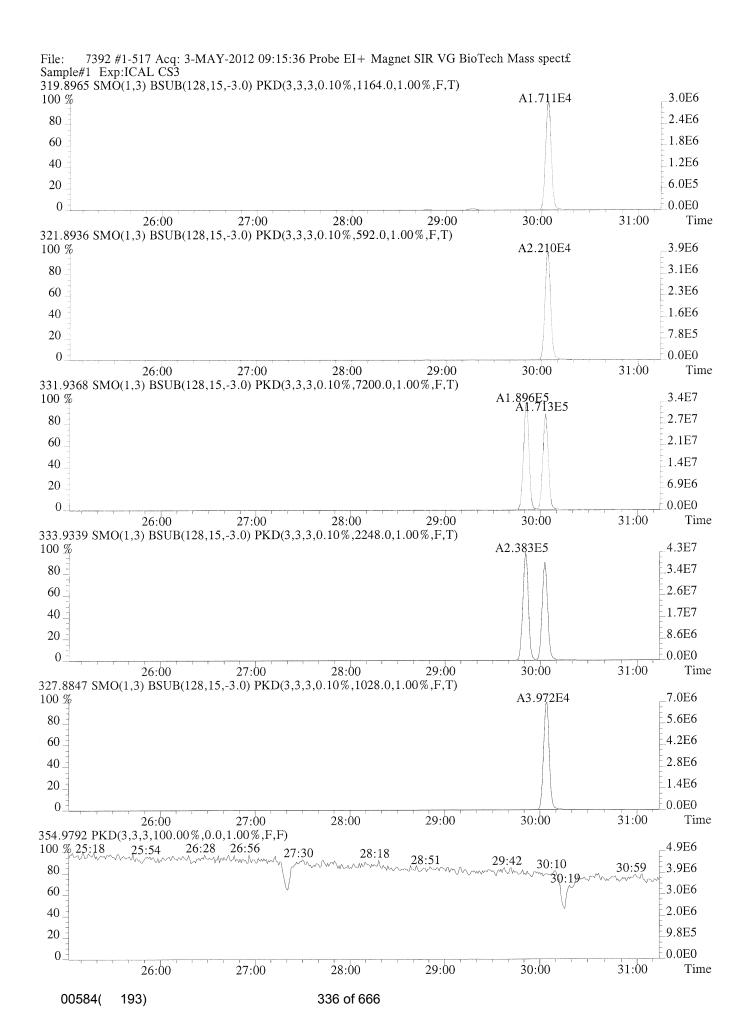
3 5

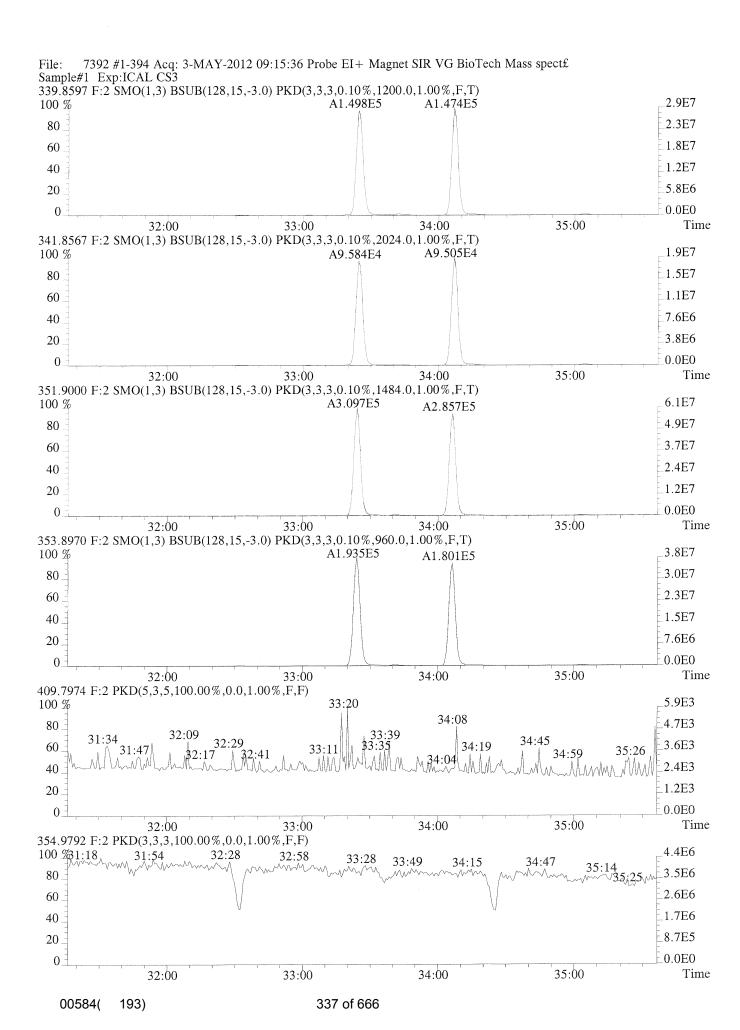
Run'#4 Filename

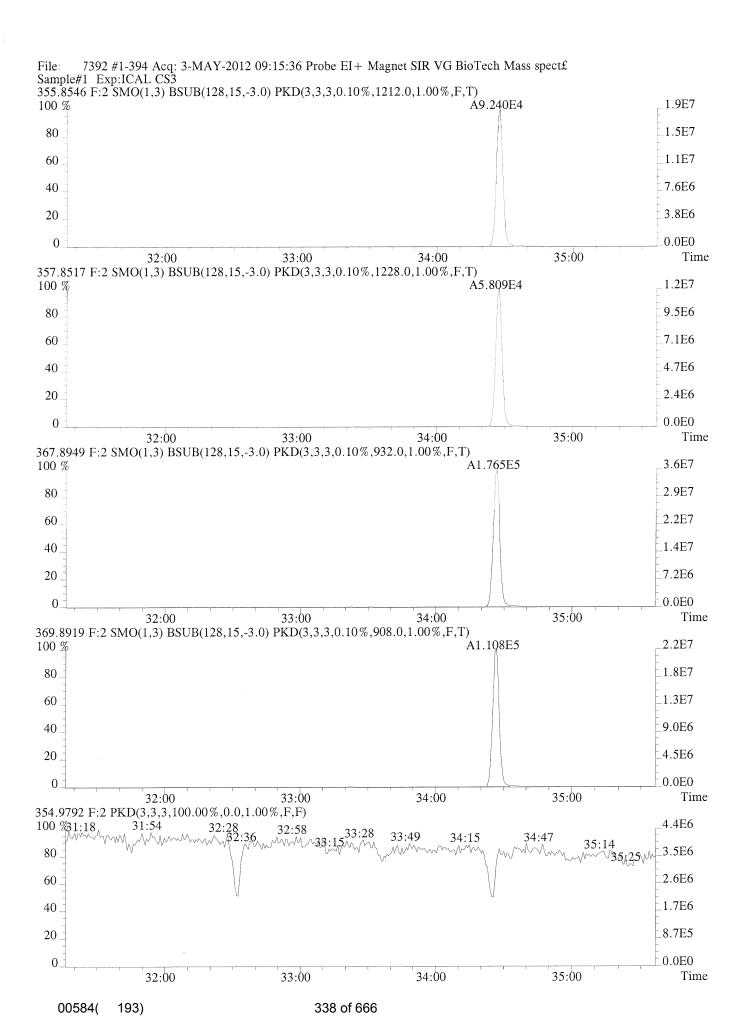
7392 #1

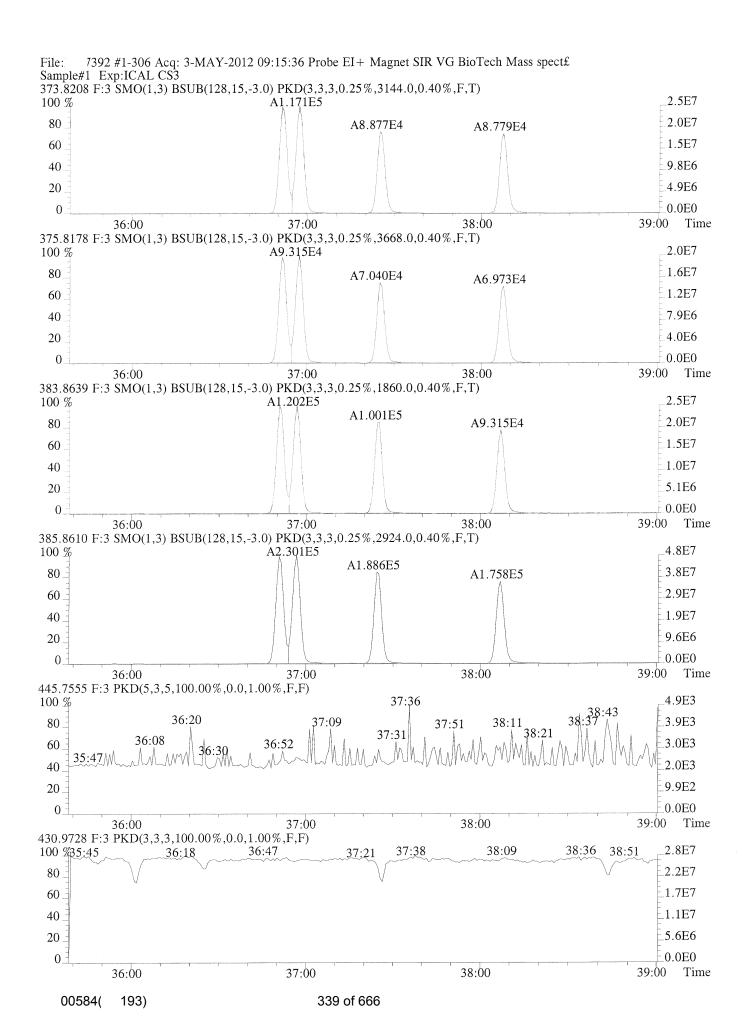
CLIENT ID. ICAL CS3

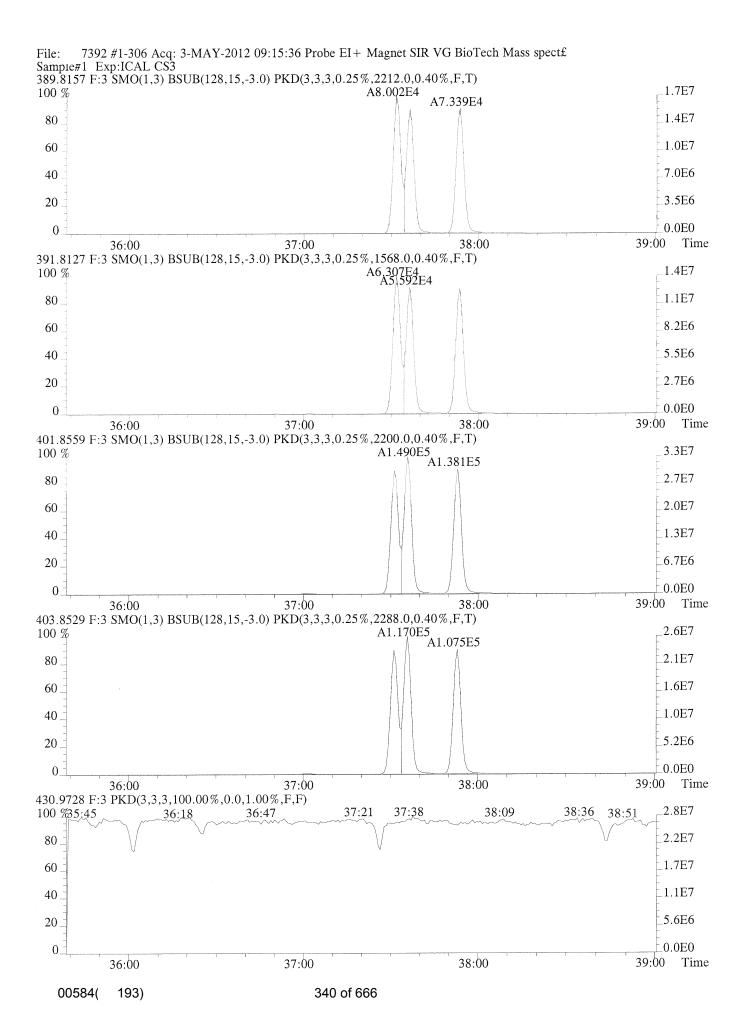

#4 Acquired: 3-MAY-12 09:15:36 Filename 7392 Samp: 1 Inj: 1 LAB. ID: ICAL CS3 Tocessed: 3-MAY-12 09:51:321 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 4.01e+06 | 1.02e+03 | 4.0e+03 | 5.07e+06 | 1.24e+03 | 4.1e+03 2.02e+03 9.0e + 031,2,3,7,8-PeCDF 2.86e+07 1.20e+03 2.4e+04 1.83e+07 2,3,4,7,8-PeCDF 2.92e+07 1.20e+03 2.4e+04 1.89e+07 2.02e+03 | 9.3e+03 3.14e+03 | 7.7e+03 | 1.96e+07 3.67e+03 | 5.3e+03 1,2,3,4,7,8-HxCDF 2.43e+07 -1,2,3,6,7,8-HxCDF 3.67e+03 5.4e+03 2.45e+07 3.14e+03 | 7.8e+03 | 1.98e+07 | 3.14e+03 | 5.9e+03 | 1.49e+07 | 3.67e+03 2,3,4,6,7,8-HxCDF 1.87e+07 1.42e+07 3.67e+03 3.9e + 031,2,3,7,8,9-HxCDF 1.83e+07 5.8e+03 3.14e+03 1.75e+07 1.76e+03 1.0e + 041,2,3,4,6,7,8-HpCDF 1.81e+07 4.75e+03 3.8e+03 1,2,3,4,7,8,9-HpCDF 1.39e+07 | 4.75e+03 | 1.35e+07 1.76e+03 7.7e + 032.9e+03 8.9e+03 OCDF | 1.80e+07 | 1.54e+03 | 1.2e+04 | 2.04e+07 | 2.30e+03 | 2,3,7,8-TCDD | 2.99e+06 | 1.16e+03 | 2.6e+03 | 3.87e+06 | 5.92e+02 | 6.5e+03 1.23e+03 9.6e + 031,2,3,7,8-PeCDD | 1.89e+07| 1.6e+04 1.18e+07 1.21e+03 1.57e+03 8.7e+03 1,2,3,4,7,8-HxCDD 1.74e+07 2.21e+03 7.9e+03 1.37e+07 1.57e+03 8.0e + 031,2,3,6,7,8-HxCDD 1.57e+07 2.21e+03 7.1e+03 1.26e+07 2.21e+03 7.1e+03 1.24e+07 1.57e+03 7.9e + 031,2,3,7,8,9-HxCDD 1.58e+07 1,2,3,4,6,7,8-HpCDD| 1.21e+07| 1.94e+03| 6.2e+03| 1.14e+07| 1.92e+03 5.9e+03 OCDD| 1.70e+07| 1.92e+03| 8.8e+03| 1.89e+07| 2.27e+03| 8.3e+03 13C-2,3,7,8-TCDF | 4.17e+07 | 2.03e+03 | 2.1e+04 | 5.31e+07 | 2.42e+03 2.2e + 0412C-1,2,3,7,8-PeCDF | 6.09e+07 | 1.48e+03 | 4.1e+04 3.79e+07 9.60e+02 4.0e + 041.48e+03 | 3.9e+04 | 3.60e+07 9.60e+02 3.8e + 045.73e+07 13C-2,3,4,7,8-PeCDF 13C+1,2,3,4,7,8-HxCDF 2.92e+03 1.6e + 042.51e+07 1.86e+03 1.3e+04 4.76e+07 13C-1,2,3,6,7,8-HxCDF 2.92e+03 1.6e + 042.52e+07 1.86e+03 1.4e+04 4.81e+07 4.07e+07 2.92e+03 1.4e + 0413C-2,3,4,6,7,8-HxCDF 1.1e+04 2.14e+07 1.86e+03 ት 13C-1,2,3,7,8,9-HxCDF 2.92e+03 1.3e + 041.96e+07 1.86e+03 1.1e+04 3.66e+07 38-13C-1,2,3,4,6,7,8-HpCDF 3.57e+07 2.78e+03 1.3e + 041.60e+07 7.86e+03 2.0e+03 2.78e+03 | 1.0e+04 3.3C-1,2,3,4,7,8,9-HpCDF| 1.22e+07| 7.86e+03| 1.5e+03| 2.77e+07| 13C-2,3,7,8-TCDD 3.06e+07 7.20e+03 4.2e+03 3.90e+07 2.25e+03 1.7e + 049.08e+02 2.5e + 043.62e+07 | 9.32e+02 3.9e+04 2.24e+07 13C-1,2,3,7,8-PeCDD 2.29e+03 2.35e+07 1.0e + 042.98e+07 2.20e+03 1.4e+04 13C-1,2,3,4,7,8-HxCDD 2.20e+03 2.29e+03 1.1e + 043.32e+07 1.5e+04 2.61e+07 13C-1,2,3,6,7,8-HxCDD 1.7e + 042.33e+07 | 1.51e+03 | 1.5e+04 | 2.18e+07 1.30e+03 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD | 3.18e+07 | 1.38e+03 | 2.3e+04 | 3.47e+07 | 1.38e+03 | 2.5e+04 13C-1,2,3,4-TCDD| 3.43e+07| 7.20e+03| 4.8e+03| 4.30e+07| 2.25e+03| 1.9e+04 3.02e+07 | 2.20e+03 | 1.4e+04 | 2.36e+07 | 2.29e+03 | 1.0e+04 13C-1,2,3,7,8,9-HxCDD 37Cl-2,3,7,8-TCDD | 6.98e+06 | 1.03e+03 | 6.8e+03

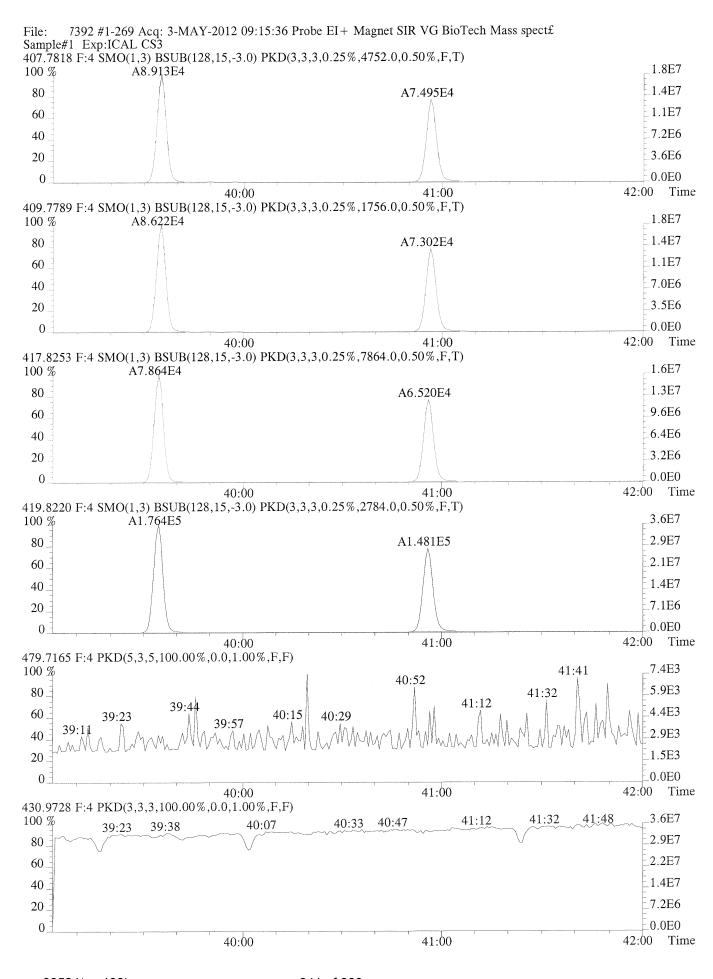

Herê a 0151

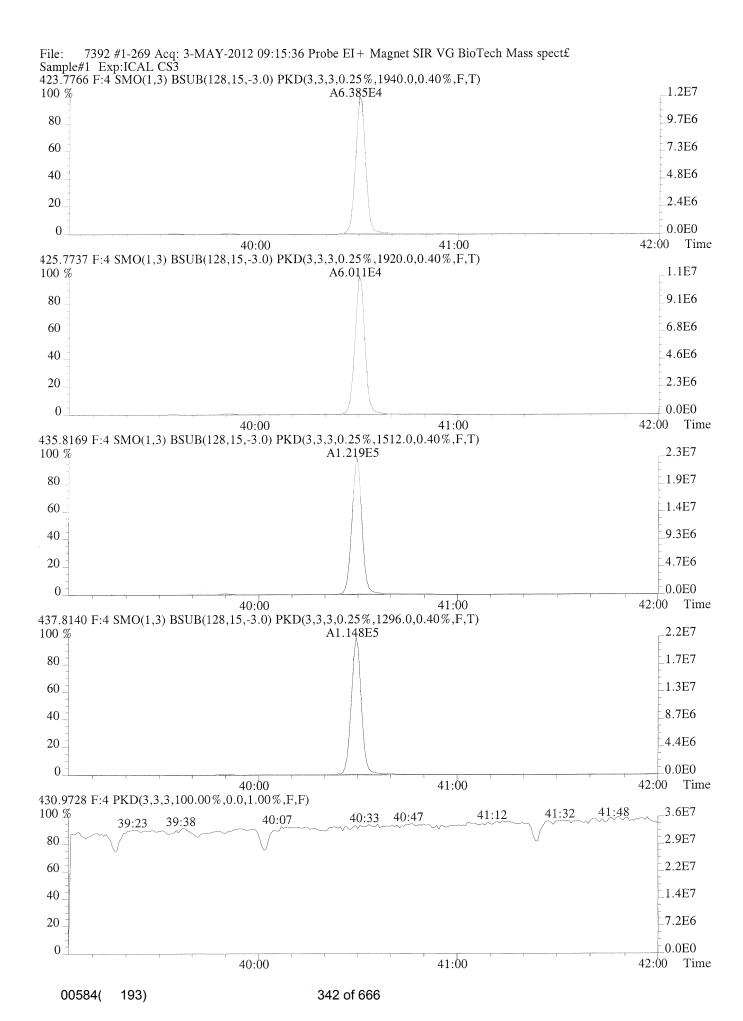

. 0

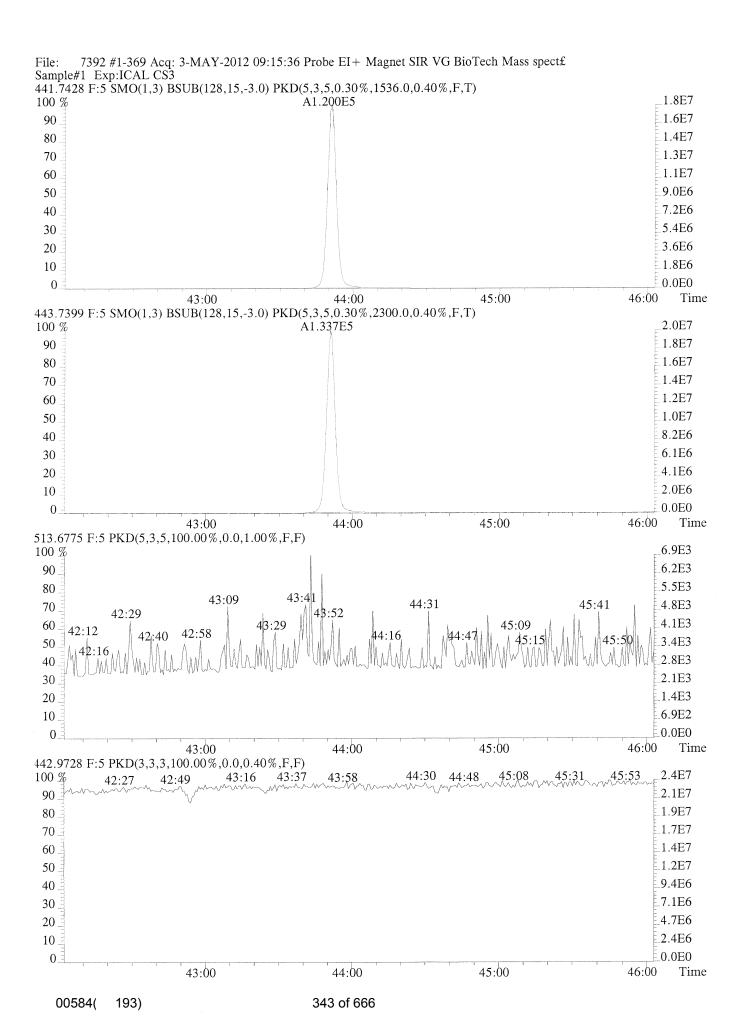

7

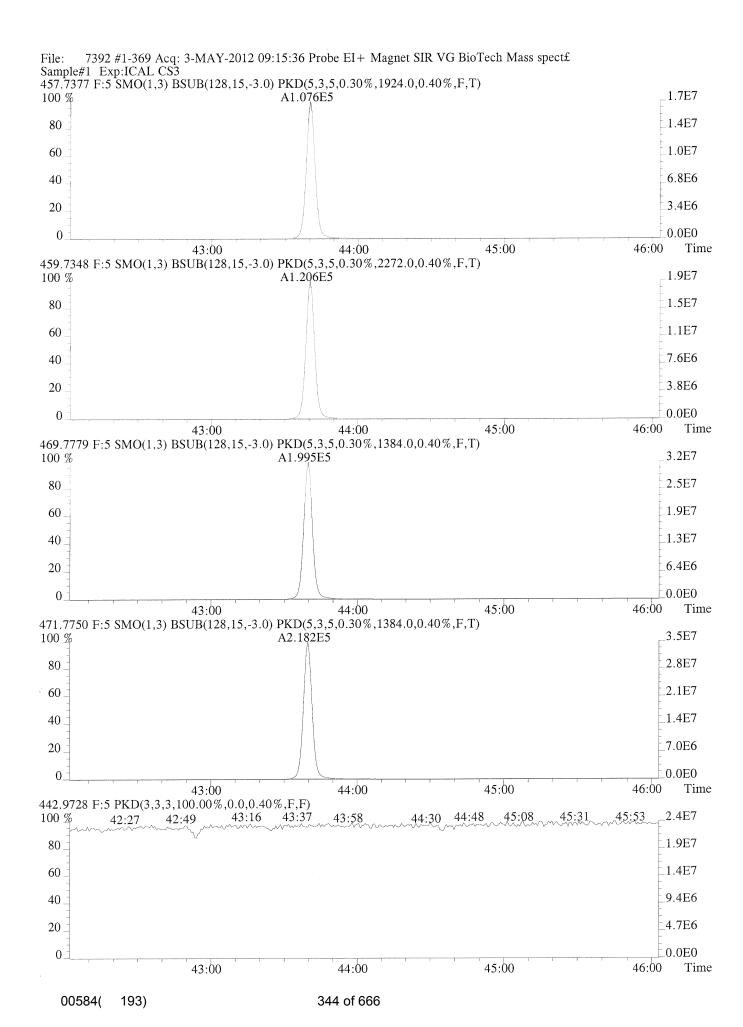

9 g 3 161 #10









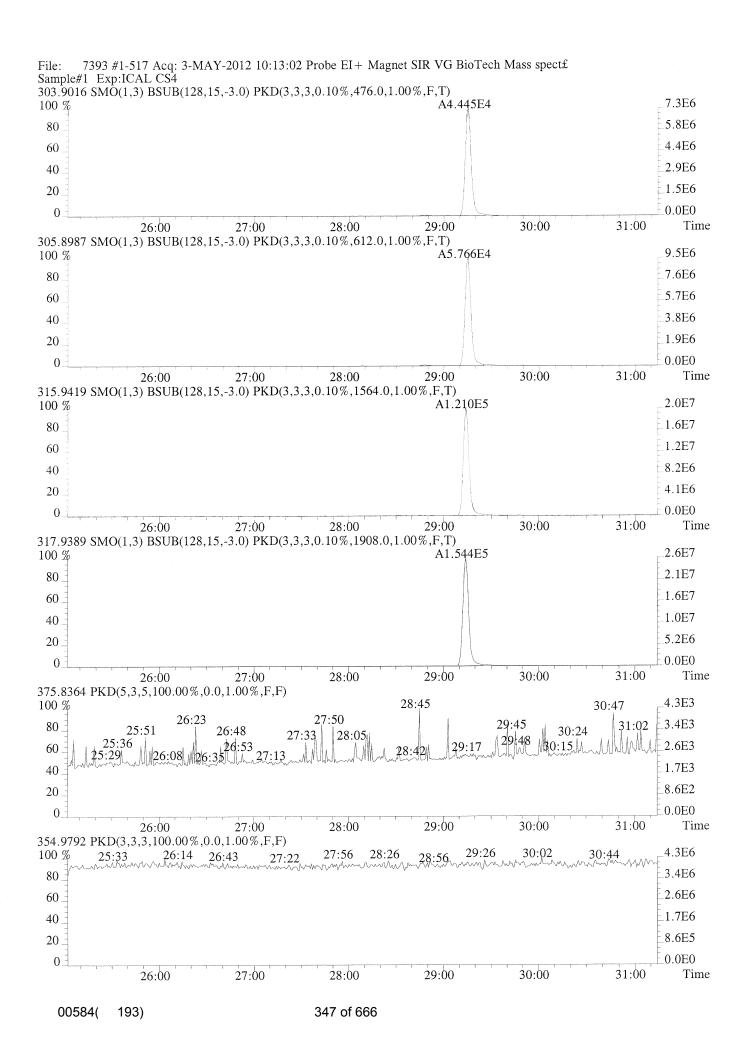


CLIENT ID. ICAL CS4

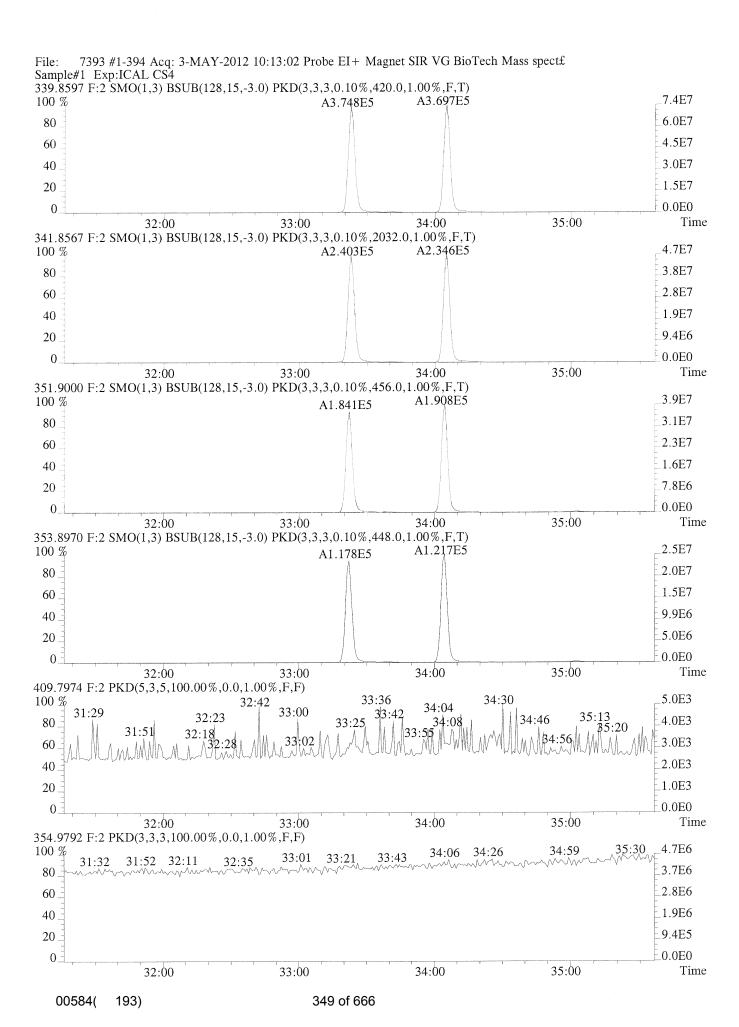
Acquired: 3-MAY-12 10:13:02 Filename 7393 #1 Samp: 1 Inj: 1 LAB. ID: ICAL CS4 jessed: 3-MAY-12 11:46:51 Ratio Meet Mod? RRT Name RT-1 Resp 1 Resp 2 Typ 1.001 2,3,7,8-TCDF 29:15 4.445e+04 5.766e+04 0.771yes no Unk 1.000 1,2,3,7,8-PeCDF | 33:23 2.403e+05 1.56 yes Unk 3.748e + 05no 2,3,4,7,8-PeCDF | 34:05 3.697e+05 2.346e+05 1.58 yes no 1.000 Unk 3.513e+05 2.803e+05 1.25 yes no 1.000 1,2,3,4,7,8-HxCDF | 36:49 Unk 1.26 no 1.000 1,2,3,6,7,8-HxCDF | 36:55 3.918e+05 3.100e+05 yes Unk 1.24 no 1.000 2,3,4,6,7,8-HxCDF 37:23 3.553e+05 2.861e+05 yes Unk 1,2,3,7,8,9-HxCDF | 38:06 1.25 yes no 1.000 3.083e+05 2.465e+05 Unk 1.000 1,2,3,4,6,7,8-HpCDF | 39:33 2.958e+05 1.03 no 3.057e+05 yes Unk 2.306e+05 1.03 yes no 1.000 Unk 1,2,3,4,7,8,9-HpCDF 40:55 2.365e+05 3.838e+05 OCDF | 43:49 0.90 yes no 1.004 Unk 3.447e+05 1.000 2,3,7,8-TCDD | 30:01 3.548e + 044.522e+04 0.78 yes no Unk 1.000 2.662e+05 1.701e+05 1.56 yes no 1,2,3,7,8-PeCDD 34:25 Unk 1.000 1.25 1.986e+05 yes no Unk 1,2,3,4,7,8-HxCDD 37:30 2.491e+05 2.130e+05 1.27 yes no 1.000 Unk 1,2,3,6,7,8-HxCDD 37:34 2.698e+05 yes 1.008 2.662e+05 2.122e+05 1.25 no Unk 1,2,3,7,8,9-HxCDD|37:52 1.000 1.05 yes no Unk. 1,2,3,4,6,7,8-HpCDD | 40:28 2.134e+05 2.034e+052.994e+05 3.343e+050.90 yes no 1.000 Unk OCDD 43:38 0.981 0.78 no IS 13C-2,3,7,8-TCDF 29:14 1.210e+05 1.544e+05 yes 1.120 IS 13C-1,2,3,7,8-PeCDF | 33:22 1.841e+05 1.178e+05 1.56 yes no 1.143 13C-2,3,4,7,8-PeCDF 34:04 1.908e+05 1.217e+05 1.57 yes no IS 0.973 8.603e+041.663e+05 0.52 yes no 13C-1,2,3,4,7,8-HxCDF | 36:49 1.035e+05 1.979e+05 0.52 yes no 0.975 13C-1,2,3,6,7,8-HxCDF | 36:55 IS 13C-2,3,4,6,7,8-HxCDF | 37:23 1.822e+05 0.52 yes no 0.988 9.518e+04 IS 1.006 0.52 no IS 13C-1,2,3,7,8,9-HxCDF | 38:05 8.067e + 041.562e + 05yes IS13C-1,2,3,4,6,7,8-HpCDF|39:33 1.500e+05 0.44 yes no 1.045 6.598e + 040.44 no 1.081 5.476e+04 1.241e+05 yes IS13C-1,2,3,4,7,8,9-HpCDF | 40:54 1.144e+05 0.79 yes no 1.007 13C-2,3,7,8-TCDD | 30:01 9.017e+04 IS 8.927e+04 1.57 yes no 1.154 13C-1,2,3,7,8-PeCDD 34:24 1.401e+05 IS 1.27 0.990 9.341e+04yes no 13C-1,2,3,4,7,8-HxCDD 37:29 1.184e+05IS 0.993 1.279e+05 1.020e+05 1.25 yes no 13C-1,2,3,6,7,8-HxCDD 37:34 IS 1.069 9.798e + 041.05 yes no 1.028e+05 IS13C-1,2,3,4,6,7,8-HpCDD 40:27 1.153 0.90 IS 1.468e+05 yes no 13C-OCDD 43:38 1.326e+05 * 1.200e+05 0.79 yes no S/RT 13C-1,2,3,4-TCDD 29:48 9.499e + 04* 13C-1,2,3,7,8,9-HxCDD 37:51 1.297e + 051.027e+05 1.26 yes no S/RT 1.007 C/Up 37Cl-2,3,7,8-TCDD 30:01 8.380e+04no

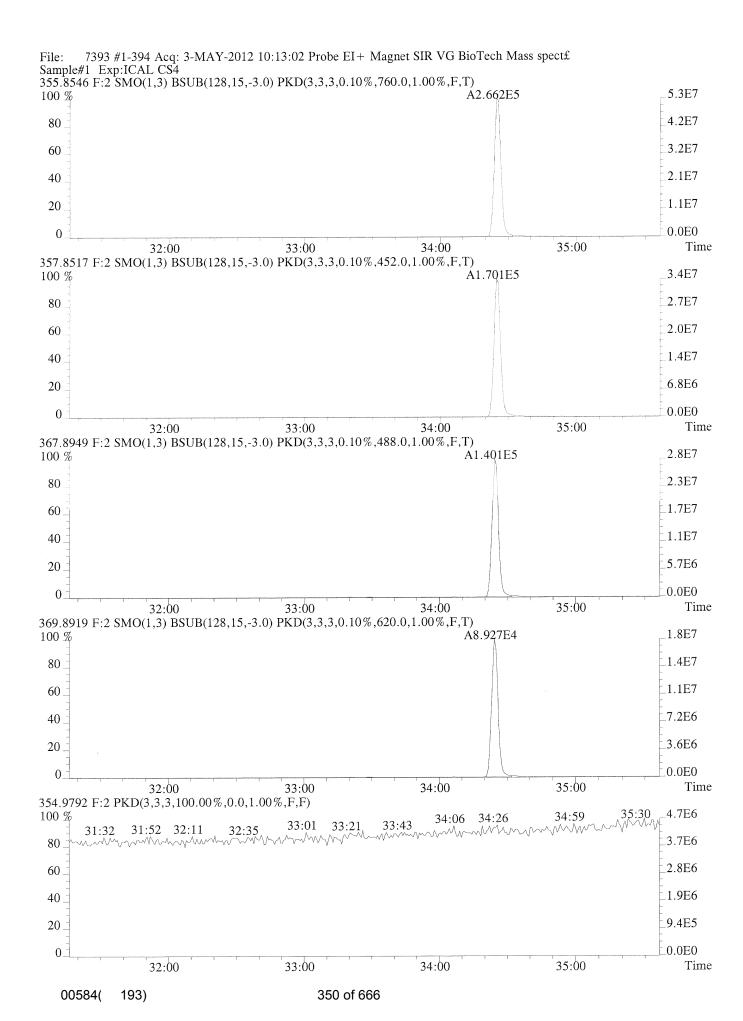
#5 Filename 7393 Samp: 1 Inj: 1 Acquired: 3-MAY-12 10:13:02 gressed: 3-MAY-12 11:46:511 LAB. ID: ICAL CS4 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 1.6e + 042,3,7,8-TCDF $7.29e+06 \mid 4.76e+02 \mid 1.5e+04 \mid 9.53e+06 \mid 6.12e+02 \mid$ 1,2,3,7,8-PeCDF 7.33e+07 4.20e+02 1.7e+05 4.69e+07 2.03e+03 2.3e + 044.20e+02 | 1.8e+05 | 4.71e+07 2.03e+03 2.3e + 047.44e+07 2,3,4,7,8-PeCDF 8.15e+03 7.8e + 032.62e+03 | 3.1e+04 | 6.39e+07 1,2,3,4,7,8-HxCDF 8.05e+07 2.62e+03 | 3.1e+04 | 6.42e+07 8.15e+03 7.9e + 031,2,3,6,7,8-HxCDF 8.15e+07 3.0e+04 6.29e+07 8.15e+03 7.7e + 032,3,4,6,7,8-HxCDF 7.80e+07 2.62e+03 5.05e+07 8.15e+03 6.2e + 036.37e+07 2.4e+04 1,2,3,7,8,9-HxCDF 2.62e+03 8.94e+03 7.0e+03 5.97e+07 2.17e+04 2.8e + 031,2,3,4,6,7,8-HpCDF 6.23e+07 8.94e+03| 4.9e+03 4.25e+07 2.17e+04 2.0e + 031,2,3,4,7,8,9-HpCDF 4.36e+07 1.0e+05 | 6.14e+07 | 7.92e+02 7.8e + 04OCDF | 5.48e+07 | 5.40e+02 1.8e + 042,3,7,8-TCDD| 6.18e+06| 5.60e+02| 1.1e+04 7.90e+06 4.48e+02 3.38e+07 4.52e+02 7.5e+04 1,2,3,7,8-PeCDD 5.26e+07 7.60e+02 6.9e+04 1,2,3,4,7,8-HxCDD 5.94e+07 6.76e+02 8.8e+04 4.68e+07 $7.52e+02 \mid 6.2e+04$ 1,2,3,6,7,8-HxCDD 5.65e+07 6.76e+02 8.4e+04 4.46e+07 7.52e+02 5.9e + 041,2,3,7,8,9-HxCDD 5.77e+07 6.76e+02 8.5e+04 4.57e+07 7.52e+02 | 6.1e+04 1,2,3,4,6,7,8-HpCDD 4.14e+07 | 1.14e+03 | 3.6e+04 | 3.99e+07 1.34e+03 3.0e + 04OCDD | 4.79e+07 | 8.40e+02 | 5.7e+04 | 5.39e+07 | 8.08e+02 | 6.7e+04 1.3e+04 2.61e+07 1.91e+03 1.4e + 0413C-2,3,7,8-TCDF 2.04e+07 | 1.56e+03 | 4.56e+02 | 8.0e+04 | 2.35e+07 4.48e+02 5.2e + 0415C-1,2,3,7,8-PeCDF 3.66e+07 4.48e+02 5.5e + 044.56e+02 8.6e+04 | 2.48e+07 | 1.C-2,3,4,7,8-PeCDF 3.91e+07 9.40e+02 2.1e+04 3.81e+07 1.84e+03 2.1e + 0413C-1,2,3,4,7,8-HxCDF 1.98e+07 13C-1,2,3,6,7,8-HxCDF 2.3e+04 4.14e+07 1.84e+03 2.2e + 042.17e+07 9.40e+02 4.02e+07 2.2e + 042.2e+04 1.84e+03 13C-2,3,4,6,7,8-HxCDF 2.09e+07 9.40e+0213C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 3C-1,2,3,4,6,7,8-HpCDF 1.84e+03 1.71e+07 9.40e+021.8e+04 3.26e+07 1.8e + 041.38e+07 3.88e+03 3.6e+03 3.08e+07 8.80e+03 3.5e + 031.02e+07 | 3.88e+03 | 2.6e+03 | 2.34e+07 | 8.80e+03 | 2.7e+03 3C-1,2,3,4,7,8,9-HpCDF 1.62e+07 | 6.25e+03 | 2.6e+03 | 2.05e+07 | 1.44e+03 1.4e + 0413C-2,3,7,8-TCDD 2.9e + 041.80e+07 6.20e+02 2.83e+07 4.88e+02 5.8e+04 13C-1,2,3,7,8-PeCDD 1.67e+03 2.47e+03 1.2e+04 2.24e+07 1.3e + 0413C-1,2,3,4,7,8-HxCDD 2.86e+07 13C-1,2,3,6,7,8-HxCDD 1.3e + 042.68e+07 2.47e+03 1.1e+04 2.14e+07 1.67e+03 313C-1,2,3,4,6,7,8-HpCDD 1.95e+07 1.56e+03 1.3e + 042.05e+07 1.32e+03 1.6e+04 13C-OCDD | 2.17e+07 | 7.00e+02 | 3.1e+04 | 2.39e+07 | 5.12e+02 | 4.7e+04 1.44e+03 13C-1,2,3,4-TCDD | 1.73e+07 | 6.25e+03 | 2.8e+03 2.19e+07 1.5e + 041.2e+04 | 2.27e+07 | 1.67e+03 | 1.4e+04 13C-1,2,3,7,8,9-HxCDD 2.88e+07 | 2.47e+03 | 37Cl-2,3,7,8-TCDD | 1.47e+07 | 8.32e+02 | 1.8e+04

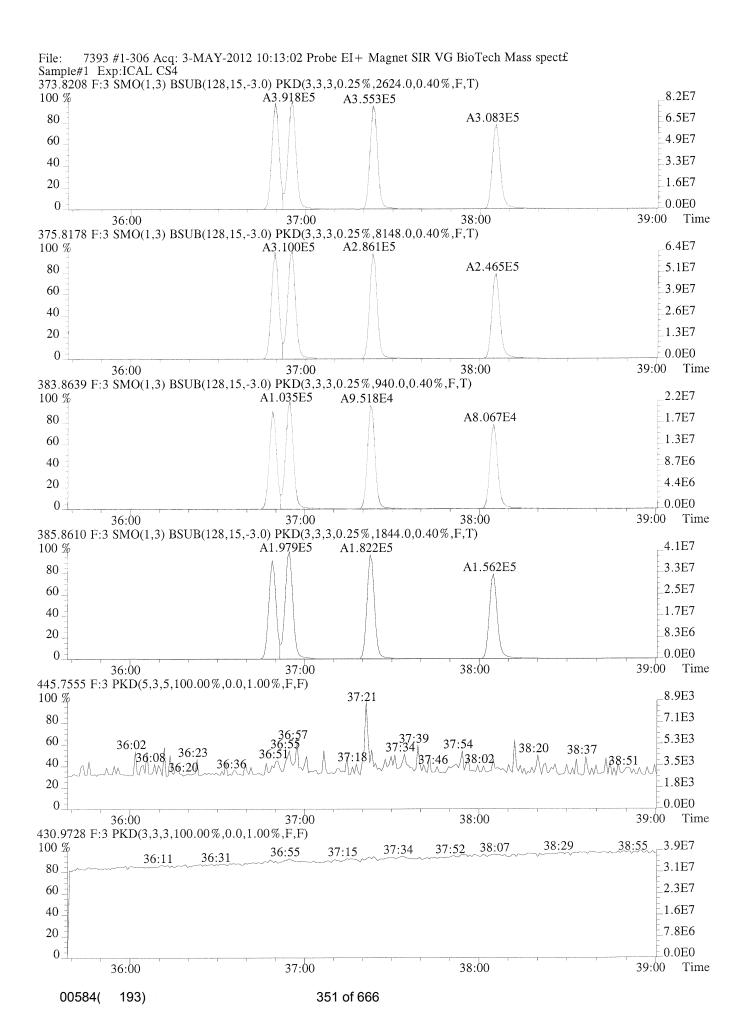
4-47

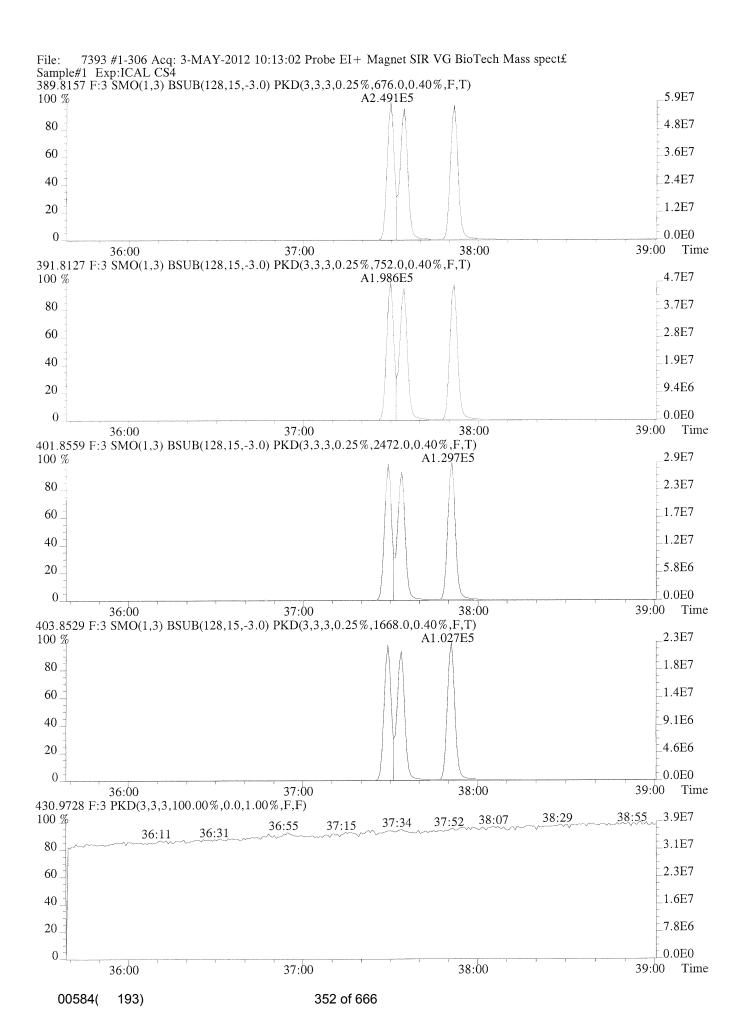

337

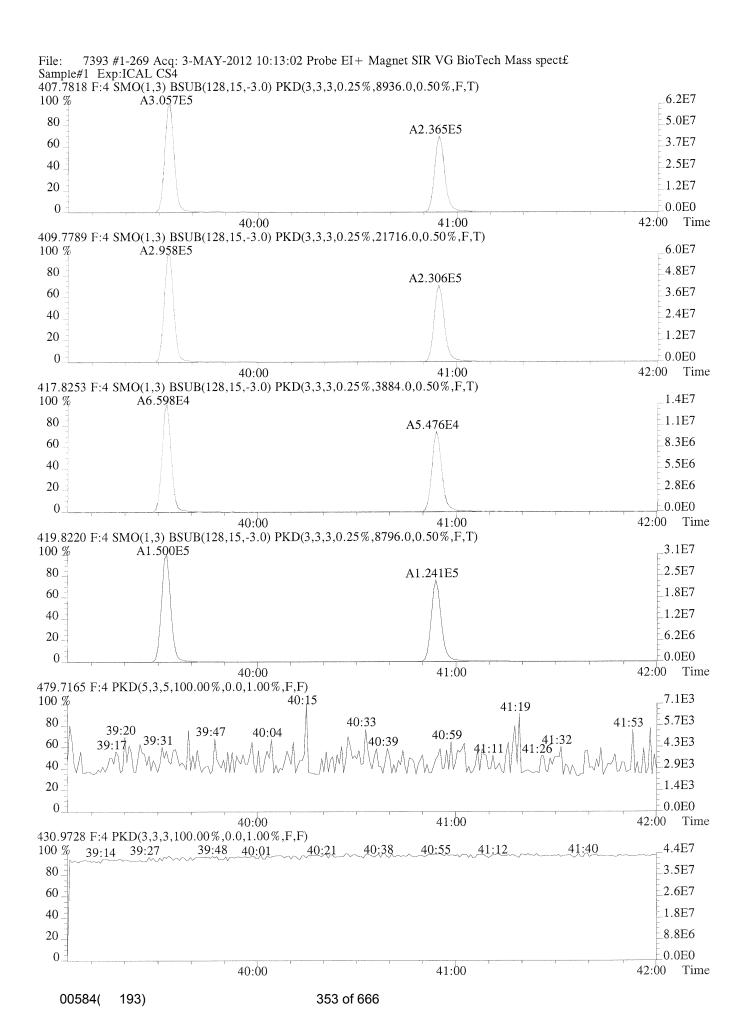
. 8

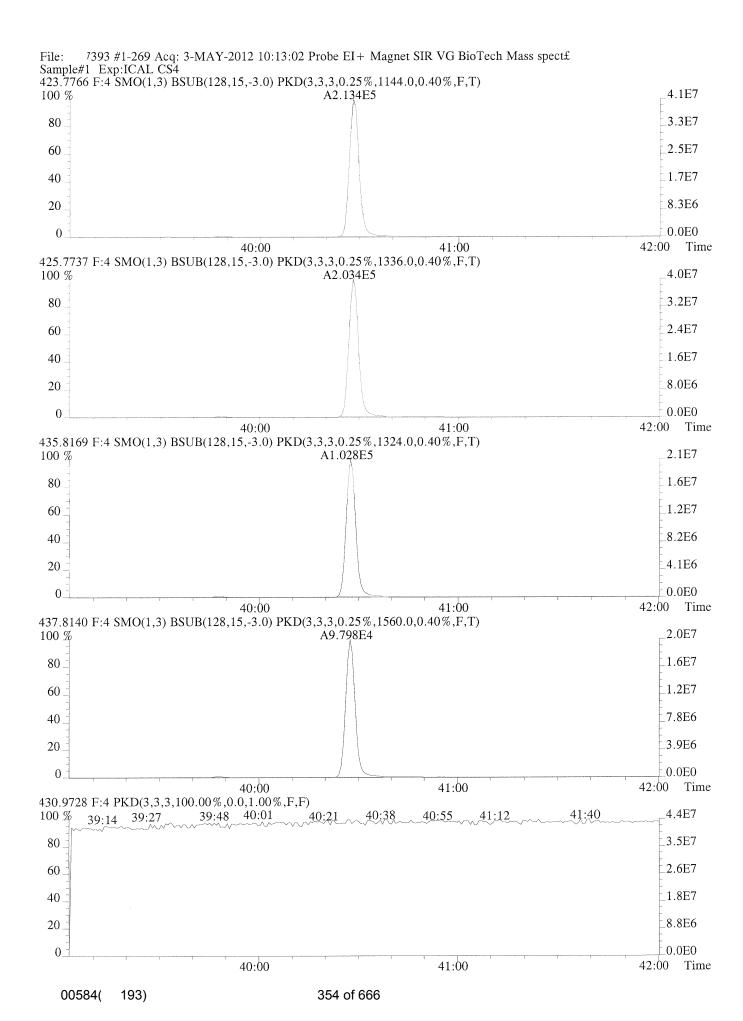

4.5

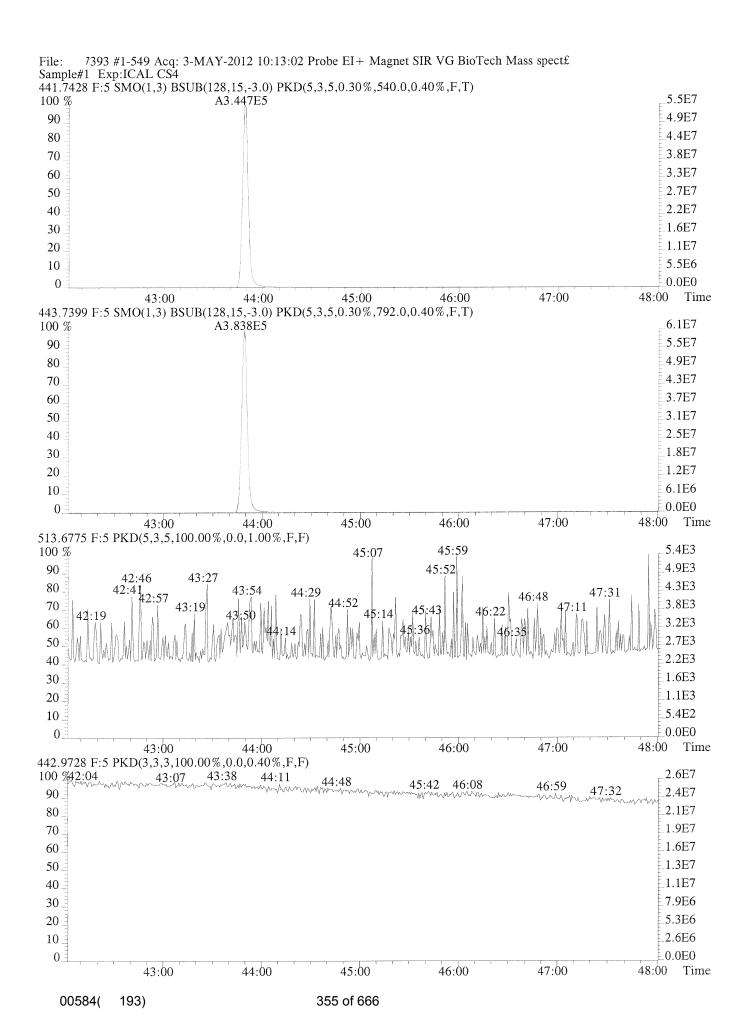

187

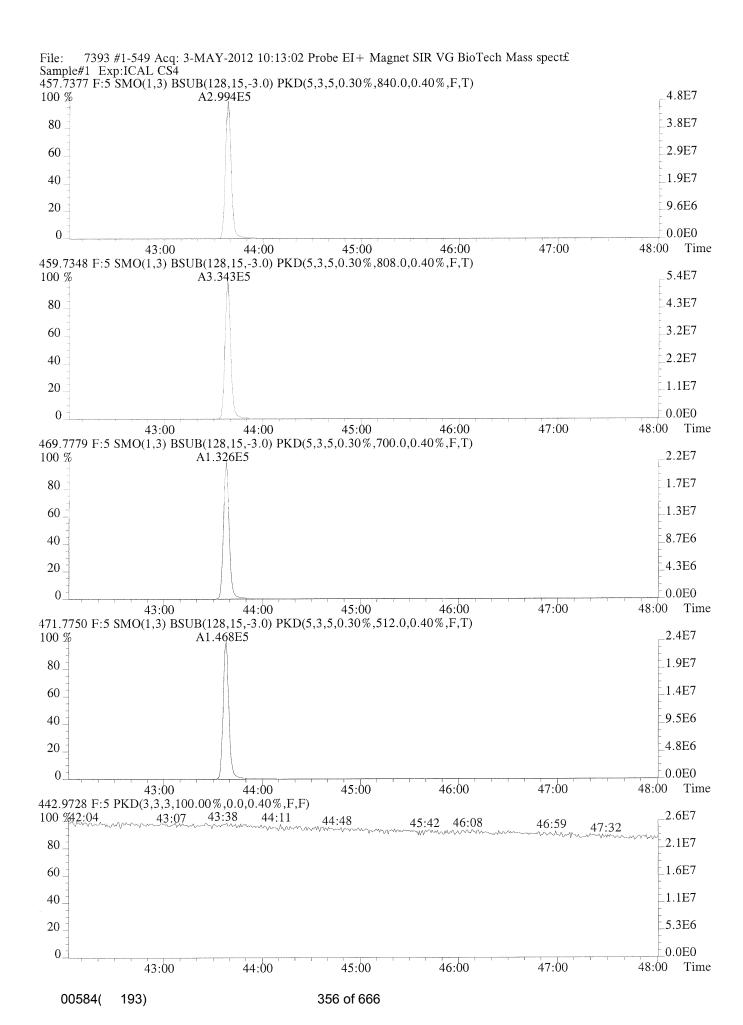

(Bas **以报题**是

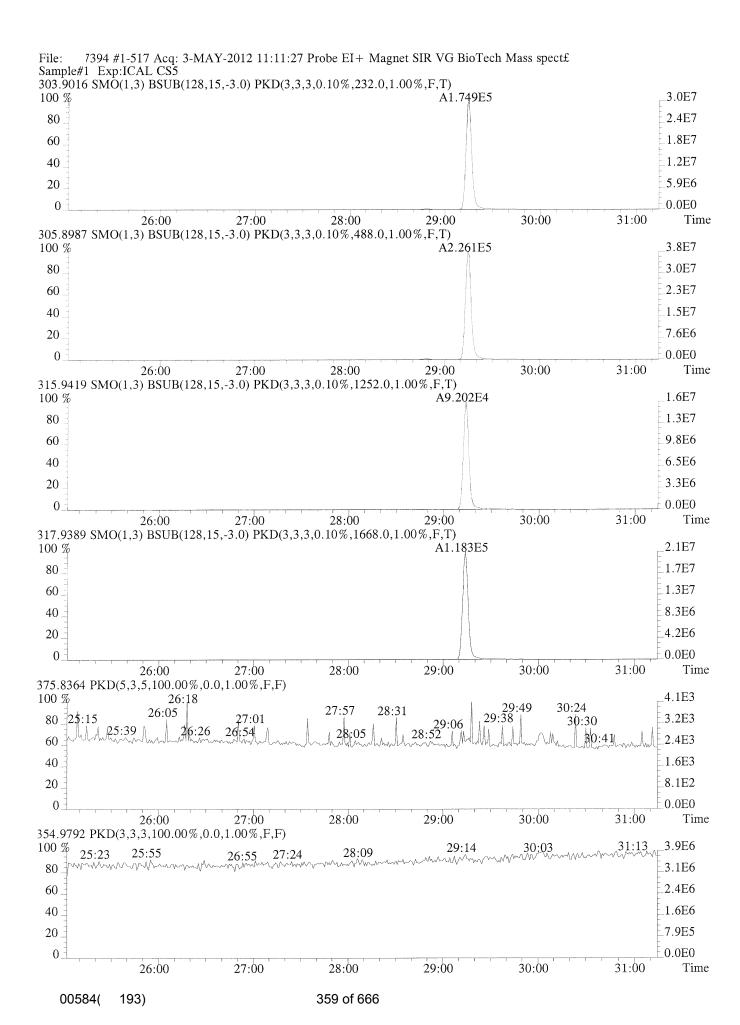


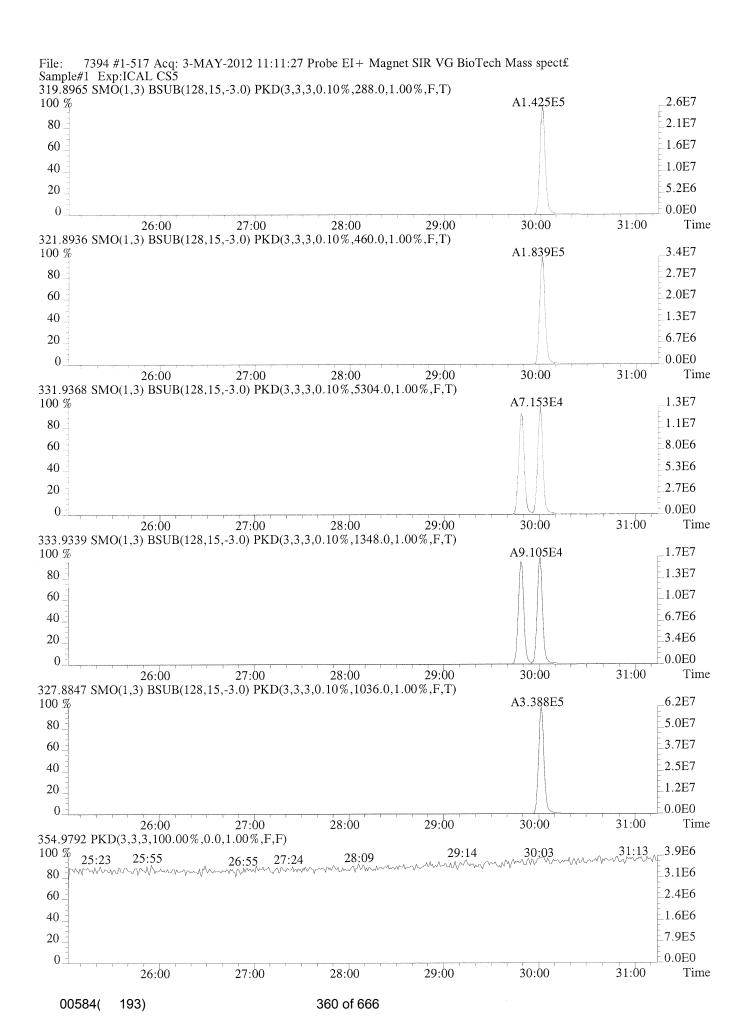


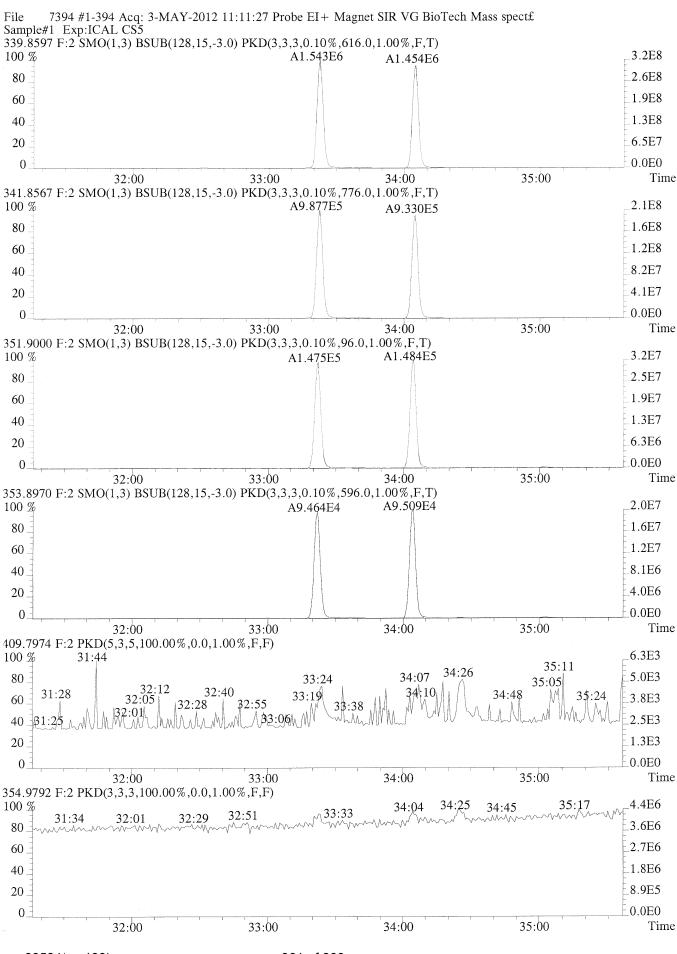


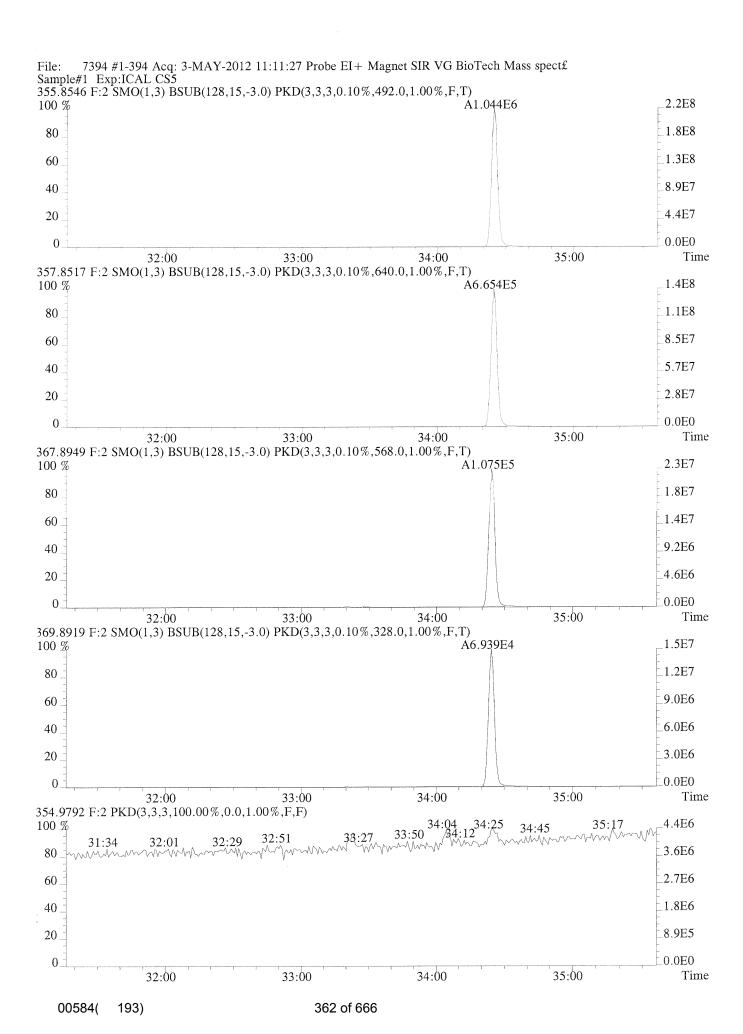


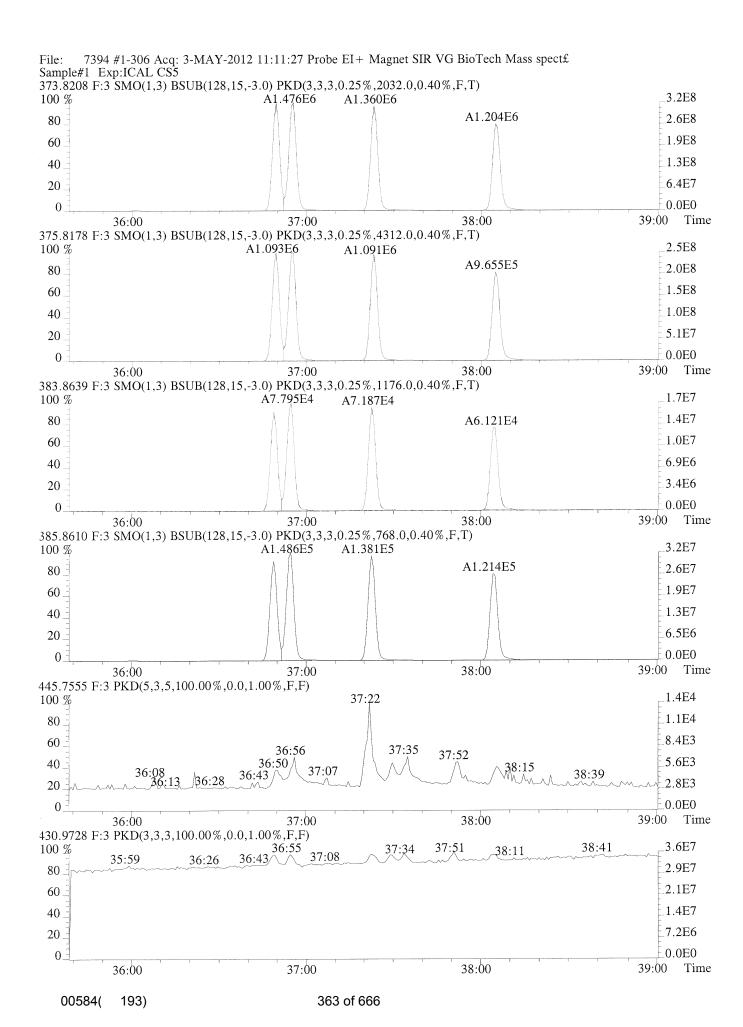


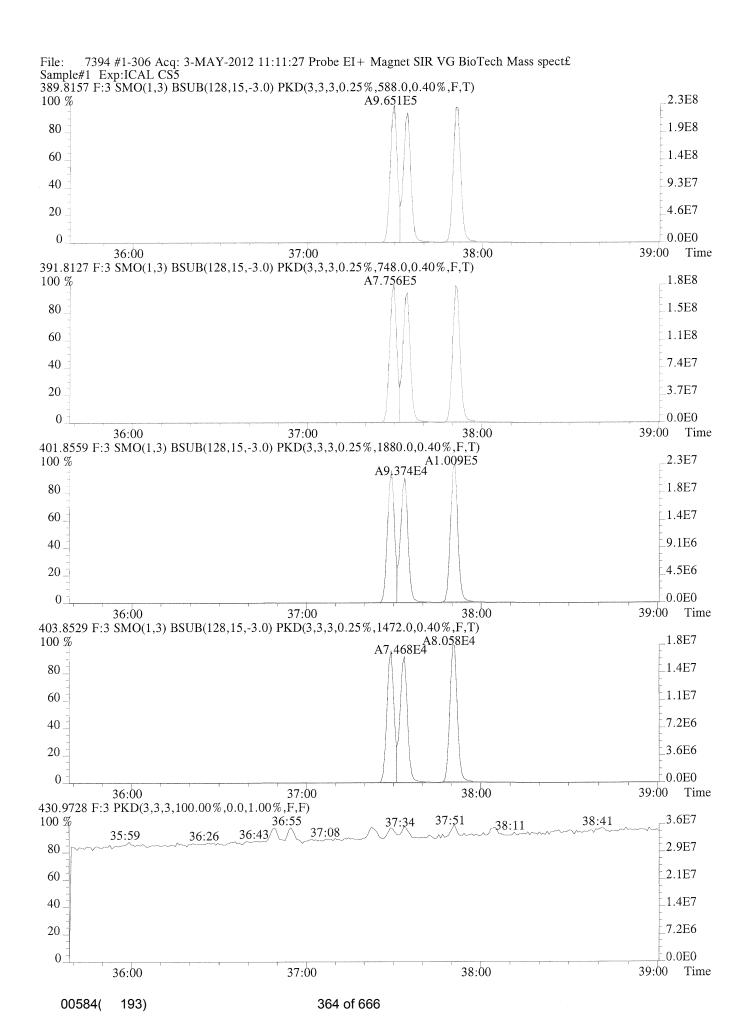

ICAL CS5

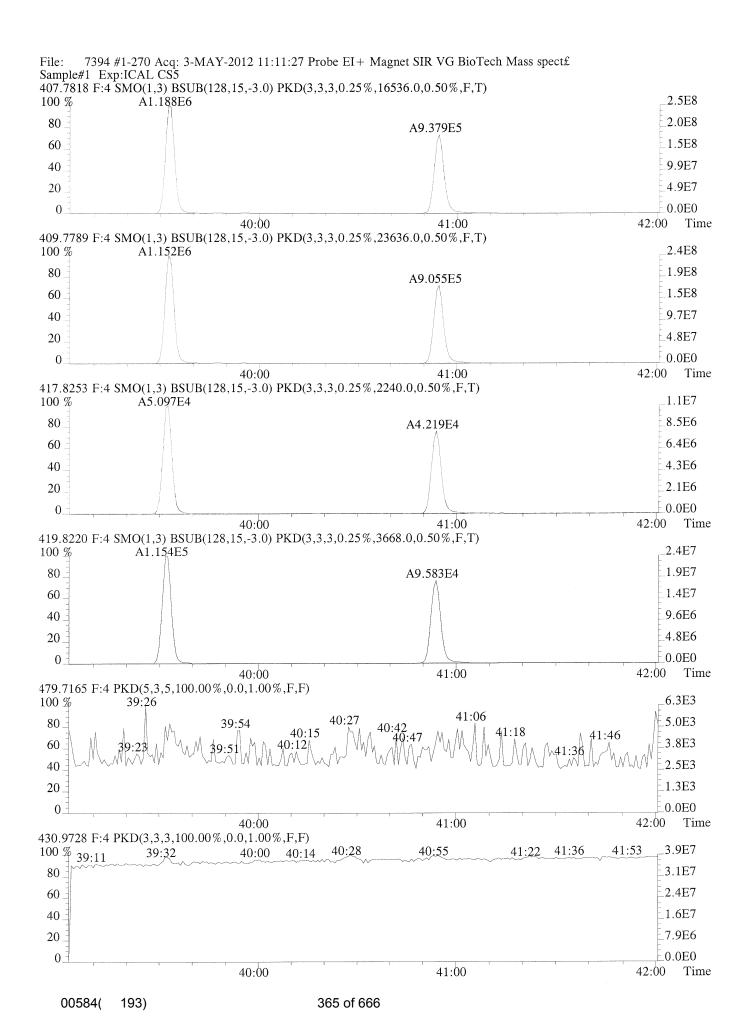

: ^{1,1} # 5⊛€e			7394 #1 11:46:53	Samp:		Inj: 1 ID: ICAL	Acquired: CS5	3-MAY-	12 13	L:11:2	7
135 186	Тур		Name	RT-1		Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
	Unk	2	,3,7,8-TCDF	29:15	1 1.7	749e+05	2.261e+05	0.77	yes	no	1.001
	Unk		3,7,8-PeCDF		1	543e+06	9.877e+05	1.56	yes	no	1.000
	Unk		4,7,8-PeCDF			154e+06	9.330e+05	1.56	yes	no	1.000
	Unk		4,7,8-HxCDF		1	369e+06	1.093e+06	1.25	yes	no	1.000
	Unk		6,7,8-HxCDF		1.4	176e+06	1.177e+06	1.25	yes	no	1.000
1	Unk		6,7,8-HxCDF		1.3	360e+06	1.091e+06	1.25	yes	no	1.000
	Unk		7,8,9-HxCDF		1.2	204e+06	9.655e+05	1.25	yes	no	1.000
	Unk		6,7,8-HpCDF		1.1	88e+06	1.152e+06	1.03	yes	no	1.000
	Unk	1,2,3,4,	7,8,9-HpCDF	40:55	9.3	379e+05	9.055e+05	1.04	yes	no	1.000
, ,	Unk			43:49	1.4	124e+06	1.577e+06	0.90	yes	no	1.004
3.5	Unk		,3,7,8-TCDD			25e+05	1.839e+05	0.77	yes	no	1.000
* 50	Unk		3,7,8-PeCDD		1)44e+06	6.654e+05	1.57	yes	no	1.000
	Unk	1,2,3,4	4,7,8-HxCDD	37:30	1	551e+05	7.756e+05	1.24	yes	no	1.000
\$ 44 - 1	Unk		6,7,8-HxCDD		1	07e+05	7.905e+05	1.25	yes	no	1.000
	Unk		7,8,9-HxCDD		1)22e+06	8.127e+05	1.26	yes	no	1.008
	Unk	1,2,3,4,6	6,7,8-HpCDD		i .	285e+05	8.024e+05	1.03	yes	no	1.000
1.50	Unk		OCDD	43:38	1.2	202e+06	1.344e+06	0.89	yes	no	1.000
	IS	13C-2	,3,7,8-TCDF	29:14	9.2	202e+04	1.183e+05	0.78	yes	no	0.981
\$ T.M.	IS		3,7,8-PeCDF	,	1	175e+05	9.464e+04	1.56	yes	no	1.120
	IS		4,7,8-PeCDF		1.4	84e+05	9.509e+04	1.56	yes	no	1.143
5 % E	IS		4,7,8-HxCDF		6.7	706e+04	1.290e+05	0.52	yes	no	0.973
2374	IS:		6,7,8-HxCDF		7.7	795e+04	1.486e+05	0.52	yes	no	0.975
	IS	13C-2,3,4,6	6,7,8-HxCDF	37:22	7.1	.87e+04	1.381e+05	0.52	yes	no	0.987
	IS		7,8,9-HxCDF		6.1	21e+04	1.214e+05	0.50	yes	no	1.006
3 to 1	ISL	3C-1,2,3,4,6	6,7,8-HpCDF	39:33	5.0)97e+04	1.154e+05	0.44	yes	no	1.045
1/1	IS1	3C-1,2,3,4,	7,8,9-HpCDF	40:54	4.2	219e+04	9.583e+04	0.44	yes	no	1.081
	IS	13C-2	,3,7,8-TCDD	30:01	7.1	.53e+04	9.105e+04	0.79	yes	no	1.007
28.	IS		3,7,8-PeCDD		1.0	75e+05	6.939e+04	1.55	yes	no	1.154
334	IS		4,7,8-HxCDD		9.0)22e+04	7.187e+04	1.26	yes	no	0.990
43	IS		6,7,8-HxCDD		9.3	374e+04	7.468e+04	1.26	yes	no	0.993
34381	IS1	3C-1,2,3,4,6	6,7,8-HpCDD	40:27	8.0)44e+04	7.560e+04	1.06	yes	no	1.069
1440 (36) 1 (4) 1 (4)	IS		13C-OCDD		1.0)55e+05	1.169e+05	0.90	yes	no	1.153
	/RT	13C-1	,2,3,4-TCDD	29:48	6.8	882e+04	8.859e+04	0.78	yes	no	*
s			7,8,9-HxCDD		1.0	09e+05	8.058e+04	1.25	yes	no	*
	/Up		,3,7,8-TCDD		3.3	888e+05				no	1.007

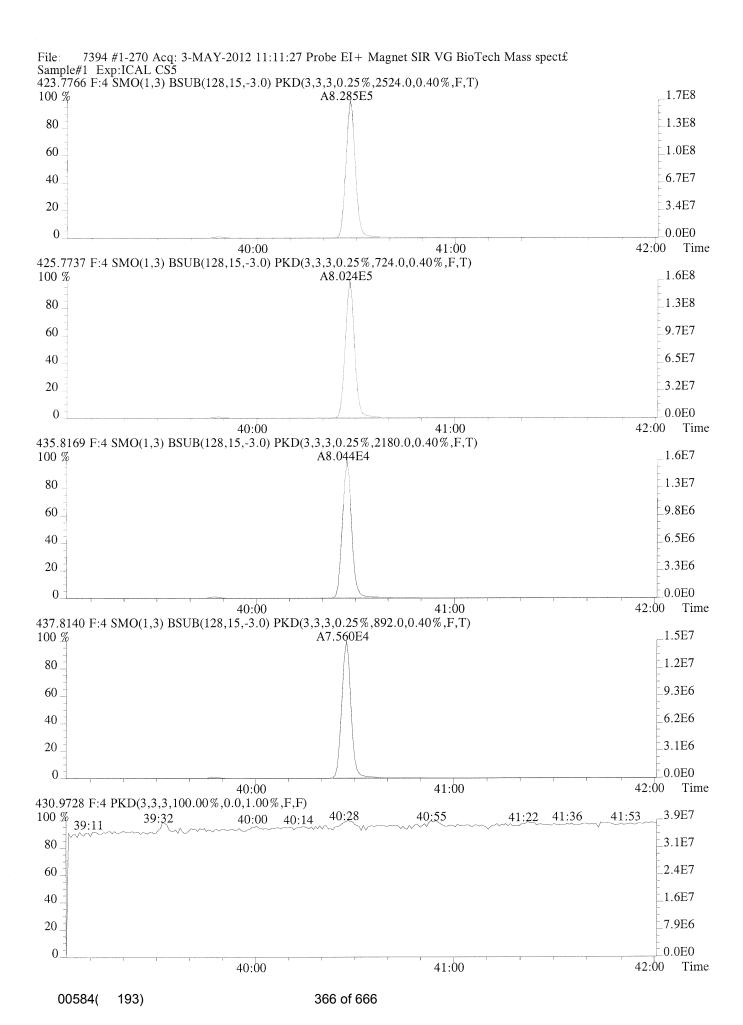

Inj: 1 Acquired: 3-MAY-12 11:11:27 #6. Filename 7394 Samp: 1 incessed: 3-MAY-12 LAB. ID: ICAL CS5 11:46:531 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 2.96e+07 | 2.32e+02 | 1.3e+05 | 3.80e+07 | 4.88e+02 7.8e + 041,2,3,7,8-PeCDF | 3.23e+08 | 6.16e+02 | 5.2e+05 2.06e+08 7.76e+02 2.7e + 052,3,4,7,8-PeCDF | 3.07e+08 | 6.16e+02 | 5.0e+05 | 1.96e+08 7.76e+02 2.5e + 051,2,3,4,7,8-HxCDF 3.19e+08 | 2.03e+03 | 1.6e+05 | 2.54e+08 4.31e+03 5.9e+04 1,2,3,6,7,8-HxCDF 2.03e+03 | 1.6e+05 | 2.53e+08 4.31e+03 5.9e+04 3.21e+08 4.31e+03 5.8e + 042,3,4,6,7,8-HxCDF 1.5e+05 2.50e+08 3.11e+08 2.03e+03 1,2,3,7,8,9-HxCDF 4.31e+03 2.03e+03 1.3e + 052.08e+08 4.8e + 042.58e+08 2.47e+08 | 1.65e+04 | 1.5e+04 2.42e+08 2.36e+04 1.0e + 041, 2, 3, 4, 6, 7, 8-HpCDF 1.73e+08 2.36e+04 7.3e + 031 2,3,4,7,8,9-HpCDF 1.80e+08 | 1.65e+04 | 1.1e+04 OCDF | 2.33e+08 | 7.32e+02 | 3.2e+05 | 2.60e+08 | 6.56e+02 | 4.0e+05 2,3,7,8-TCDD 2.62e+07 2.88e+02 | 9.1e+04 | 3.36e+07 | 4.60e+02 7.3e + 041,2,3,7,8-PeCDD 2.22e+08 4.92e+02 4.5e+05 1.42e+08 6.40e+02 2.2e + 051,2,3,4,7,8-HxCDD 2.31e+08 5.88e+02 3.9e+05 1.84e+08 7.48e+02 2.5e + 051,2,3,6,7,8-HxCDD| 2.18e+08| 5.88e+02| 3.7e+05| 1.73e+08 7.48e+02 2.3e + 052.26e+08 5.88e+02 3.8e+05 1.83e+08 7.48e+02 2.4e + 051,2,3,7,8,9-HxCDD 1.67e+08 2.52e+03 6.6e+04 1.61e+08 7.24e+02 2.2e + 051,2,3,4,6,7,8-HpCDD OCDD | 2.02e+08 | 6.12e+02 | 3.3e+05 | 2.27e+08 | 9.04e+02 | 2.5e+05 1.2e + 041.63e+07 | 1.25e+03 | 1.3e+04 2.08e+07 1.67e+03 13C-2,3,7,8-TCDF 3.12e+07 | 9.60e+01 | 3.2e+05 | 1.99e+07 | 5.96e+02 3.3e + 0413C-1,2,3,7,8-PeCDF 5.96e+02 | 3.4e+04 13C-2,3,4,7,8-PeCDF 3.16e+07 9.60e+01 3.3e+05 2.02e+07 $7.68e+02 \mid 3.9e+04$ 13C 1,2,3,4,7,8-HxCDF 1.57e+07 1.18e+03 1.3e+04 2.99e+07 13C-1,2,3,6,7,8-HxCDF 7.68e+02 | 4.2e+04 3.24e+07 1.72e+07 1.18e+03 1.5e+04 13C₂2,3,4,6,7,8-HxCDF 1.4e+04 1.64e+07 1.18e+03 3.16e+07 7.68e+02 4.1e + 0413C-1,2,3,7,8,9-HxCDF 1.18e+03 1.1e+04 2.61e+07 7.68e+02 3.4e + 041.32e+07 3C-1,2,3,4,6,7,8-HpCDF 4.8e+03 | 2.41e+07 | 3.67e+03 6.6e + 032.24e+03 1.07e+07 3C-1/2,3,4,7,8,9-HpCDF 8.11e+06 | 2.24e+03 | 3.6e+03 | 1.85e+07 | 3.67e+03 5.0e+03 1.35e+03 | 1.2e+04 1.33e+07 | 5.30e+03 | 13C-2,3,7,8-TCDD 2.5e+03 1.68e+07 13C-1,2,3,7,8-PeCDD 2.30e+07 5.68e+02 4.0e+04 1.50e + 073.28e+02 4.6e + 041.47e+03 13C-1,2,3,4,7,8-HxCDD 2.18e+07 1.88e+03 1.2e+04 1.72e+07 1.2e + 042.06e+07 1.88e+03 1.1e+04 | 1.64e+07 | 1.47e+03 1.1e + 0413C-1,2,3,6,7,8-HxCDD 3C-1,2,3,4,6,7,8-HpCDD| 1.64e+07| 2.18e+03| 7.5e+03 | 1.55e+07 8.92e+02 1.7e + 0413C-OCDD | 1.78e+07 | 4.12e+02 | 4.3e+04 | 1.96e+07 | 3.72e+02 | 5.3e+04 13C-1,2,3,4-TCDD| 1.24e+07| 5.30e+03| 2.3e+03| 1.60e+07| 1.35e+03| 1.2e + 0413C-1,2,3,7,8,9-HxCDD | 2.27e+07 | 1.88e+03 | 1.2e+04 | 1.79e+07 | 1.47e+03 | 1.2e+04 37Cl-2,3,7,8-TCDD | 6.20e+07 | 1.04e+03 | 6.0e+04

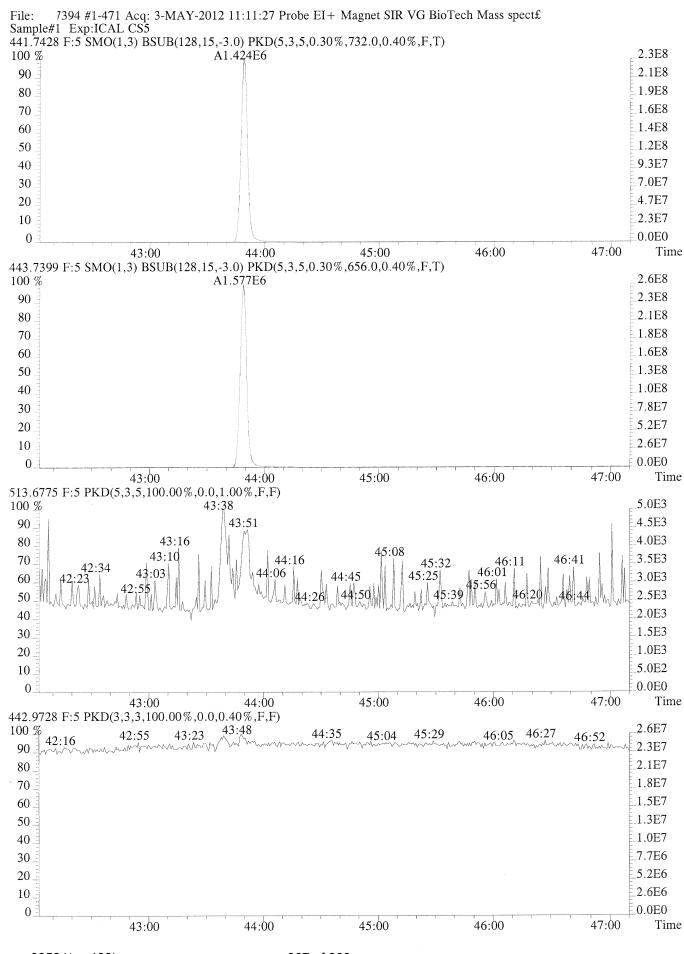

:34:C

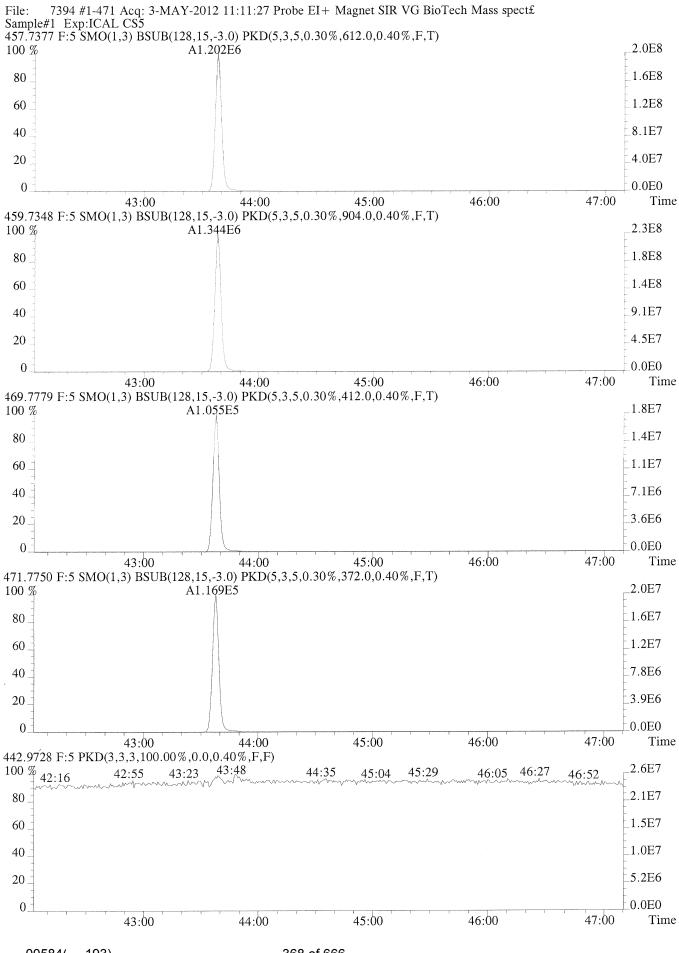

1...











USEPA - ITD Page 7 of 7

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 05/03/12

Instrument ID: E-HRMS-04 GC Column ID: DB-5

VER Data Filename: 7395 Analysis Date: 3-MAY-12 Time: 12:23:07

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC.	CONC. RANGE (3) (ng/mL)	%RSD (4)
TIVE ANALYTES	, ,					
.3,7,8-TCDD	M/M+2	0.77	0.65-0.89	10.0	7.8 - 12.	-0.2
2,3,7,8-PeCDD	M+2/M+4	1.55	1.32-1.78	54	39 - 65	7.4
,2,3,4,7,8-HxCDD ,2,3,6,7,8-HxCDD ,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.25 1.26 1.22	1.05-1.43 1.05-1.43 1.05-1.43	50 49 46	39 - 64 39 - 64 41 - 61	0.2 -2.9 -8.1
2,3,4,6,7,8-HpCDD	M+2/M+4	1.04	0.88-1.20	53	43 - 58	7.0
GDD	M+2/M+4	0.90	0.76-1.02	96	79 - 126	-3.8
3,7,8-TCDF	M/M+2	0.76	0.65-0.89	9.3	8.4 - 12.	-7.3
2,3,2,8-PeCDF 3,4,1,8-PeCDF	M+2/M+4 M+2/M+4	1.56 1.56	1.32-1.78 1.32-1.78	48 52	41 - 60 41 - 61	-3.5 3.4
2,3,4,7,8-HxCDF ,2,3,6,7,8-HxCDF ,2,3,7,8,9-HxCDF ,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.24	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	47 50 47 51	45 - 56 44 - 57 45 - 56 44 - 57	-6.3 -0.6 -6.5 1.4
2,3,4,6,7,8-HpCDF 2,3,4,7,8,9-HpCDF	M+2/M+4 M+2/M+4	1.03	0.88-1.20 0.88-1.20	50 54	45 - 55 43 - 58	0.0
CDF	M+2/M+4	0.91	0.76-1.02	101	63 - 159	0.7

⁾ See Table 8, Method 1613B, for m/z specifications.

a) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613B.

³⁾ Contract-required concentration range as specified in Table 6, Method 16 38, under VER.

The beginning CCAL %RSD for the 17 unlabeled standard must not exceed +/20% Section 7.7.4.1. The ending CCAL must not exceed +/-25%, Section 8.3.2.4,
Method 8290
3/2012

USEPA - ITD Page 1 of 1

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Episode No.: Lab Name:

Contract No.: SAS No.:

 ΣU

Initial Calibration Date: 05/03/12

Instrument ID: E-HRMS-04 GC Column ID: DB-5

Analysis Date: 3-MAY-12 Time: 12:23:07 VER Data Filename: 7395

ELEC COMPOUNDS	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE (3) (ng/mL)	%RSD (5)
-2,3,7,8-TCDD	M/M+2	0.78	0.65-0.89	100	82 - 121	-0.3
C-1,2,3,7,8-PeCDD	M+2/M+4	1.59	1.32-1.78	99	62 - 160	-1.5
%C-1,2,3,4,7,8-HxCDI		1.27	1.05-1.43 1.05-1.43	102 113	85 - 117 85 - 118	1.9 13.2
C-1,23,4,6,7,8-Hp0	CDD M+2/M+4	1.06	0.88-1.20	94	72 - 138	-5.8
d-ocdd	M+2/M+4	0.91	0.76-1.02	195	96 - 415	-2.4
0-2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	111	71 - 140	11.3
-1,2/3,7,8-PeCDF	M+2/M+4 M+2/M+4	1.58 1.60	1.32-1.78 1.32-1.78	104 103	76 - 130 77 - 130	4.2
-1,2,3,4,7,8-HxCDE -1,2,3,6,7,8-HxCDE -2,3,7,8,9-HxCDE	M/M+2 $M/M+2$	0.52 0.52 0.52 0.52	0.43-0.59 0.43-0.59 0.43-0.59 0.43-0.59	108 103 107 112	76 - 131 70 - 143 74 - 135 73 - 137	8.2 2.8 7.4 11.7
6-1,2,3,4,6,7,8-HpC		0.45	0.37-0.51 0.37-0.51	109 99	78 - 129 77 - 129	8.5 -1.2
STANDARD						
001-2,3,7,8-TCDD				10.4	7.8 - 12.7	4.1
t						

See Table 8, Method 1613B, for m/z specifications.

3/2012

⁾ See Table 8, Method 1013B, 101 M, 2 Specified in Table 9, Method 1613B.

Contract-required concentration range, as specified in Table 6, Method 1613B, under VER.

No lon abundance ratio; report concentration found.

The beginning CCAL %RSD for the labeled standard must not exceed +/- 30%

Section 7.7.4.2. The ending CCAL must not exceed +/- 35%. Sec 8.3.2.4 (82) Section 7.7.4.2. The ending CCAL must not exceed +/- 35%, Sec 8.3.2.4 (8290)

Sample Response Summary

CLIENT ID. 2ND SOURCE VER

no

1.007

#7 Filename 3-MAY-12 12:23:07 7395 #1 Samp: 1 Inj: 1 Acquired: LAB. ID: 2ND SOURCE VER modessed: 3-MAY-12 13:32:10 RRT Тур Name RT-1 Resp 1 Resp 2 Ratio Meet Mod? 2,3,7,8-TCDF 29:16 1.034e+041.355e+040.76 yes no 1.000 Unk 1,2,3,7,8-PeCDF | 33:23 4.762e+04 1.56 yes 1.000 Unk 7.410e + 04no Unk 2,3,4,7,8-PeCDF | 34:06 7.637e+04 4.910e+041.56 yes no 1.000 6.678e+04 5.211e+04 1.28 yes no 1.000 Unk 1,2,3,4,7,8-HxCDF | 36:50 1.18 no 1.000 1,2,3,6,7,8-HxCDF | 36:56 7.056e+04 5.999e + 04yes Unk 1.22 1.000 2,3,4,6,7,8-HxCDF | 37:24 6.993e+04 5.726e+04 yes no Unk yes 1.000 1,2,3,7,8,9-HxCDF|38:06 4.419e+041.24 no 5.472e + 04Unk 1.000 1,2,3,4,6,7,8-HpCDF | 39:34 6.021e+04 5.855e+041.03 yes no Unk 1,2,3,4,7,8,9-HpCDF | 40:55 1.000 4.630e+04 4.483e+041.03 yes no Unk 1.004 OCDF | 43:50 6.940e+040.91 6.326e + 04yes no Unk 1.020e+04 0.77 1.001 2,3,7,8-TCDD 30:03 7.836e+03 yes no Unk 3.533e+041.55 1.000 1,2,3,7,8-PeCDD 34:26 5.481e+04 yes no Unk 1.000 3.764e + 041.25 Unk 1,2,3,4,7,8-HxCDD 37:30 4.720e+04 yes no 4.186e+04 1.26 no 1.000 Unk 1,2,3,6,7,8-HxCDD 37:35 5.261e+04 yes 1,2,3,7,8,9-HxCDD | 37:52 4.685e+04 3.830e + 041.22 yes no 1.008 Unk 1.04 no 1.000 Unk 1,2,3,4,6,7,8-HpCDD | 40:29 3.924e+04 3.775e + 04yes 6.078e+04 0.90 no 1.000 Unk OCDD | 43:39 5.477e+04 yes 0.981 IS 13C-2,3,7,8-TCDF 29:15 1.189e+05 1.529e+05 0.78 yes no IS 13C-1,2,3,7,8-PeCDF | 33:23 1.566e+05 9.893e+04 1.58 yes no 1.119 9.777e+04 1.60 1.566e+05 yes no 1.143 IS 13C-2,3,4,7,8-PeCDF 34:05 1.350e+05 0.52 no 0.973 13C-1,2,3,4,7,8-HxCDF 36:49 6.964e + 04yes 1.481e+05 0.52 0.975 13C-1,2,3,6,7,8-HxCDF 36:55 7.721e+04yes no IS 1.421e+05 0.52 0.987 13C-2,3,4,6,7,8-HxCDF 37:23 7.386e + 04yes no IS 1.006 0.52 13C-1,2,3,7,8,9-HxCDF | 38:06 6.103e+041.173e + 05yes no 1.167e+05 0.45 no 1.045 IS13C-1,2,3,4,6,7,8-HpCDF | 39:33 5.245e+04yes 0.45 no 1.081 IS13C-1,2,3,4,7,8,9-HpCDF | 40:55 3.917e+04 8.699e+04yes 13C-2,3,7,8-TCDD | 30:01 1.006 7.773e+041.002e+05 0.78 yes no IS 1.154 1.073e+05 6.744e + 041.59 yes no 13C-1,2,3,7,8-PeCDD 34:26 IS 0.990 13C-1,2,3,4,7,8-HxCDD | 37:30 8.801e+04 6.955e+04 1.27 yes no IS 1.27 0.992 IS 13C-1,2,3,6,7,8-HxCDD 37:34 1.050e+05 8.245e+04 yes no 1.06 1.069 6.645e+04 no IS13C-1,2,3,4,6,7,8-HpCDD | 40:28 7.024e+04yes 1.153 0.91 IS: 13C-OCDD 43:38 9.639e+04 1.058e + 05yes no 1.075e+05 0.78 yes S/RT 13C-1,2,3,4-TCDD 29:50 8.402e+04no as/RT 13C-1,2,3,7,8,9-HxCDD 37:52 9.128e + 047.225e+041.26 yes no

37Cl-2,3,7,8-TCDD 30:03

4.36

134

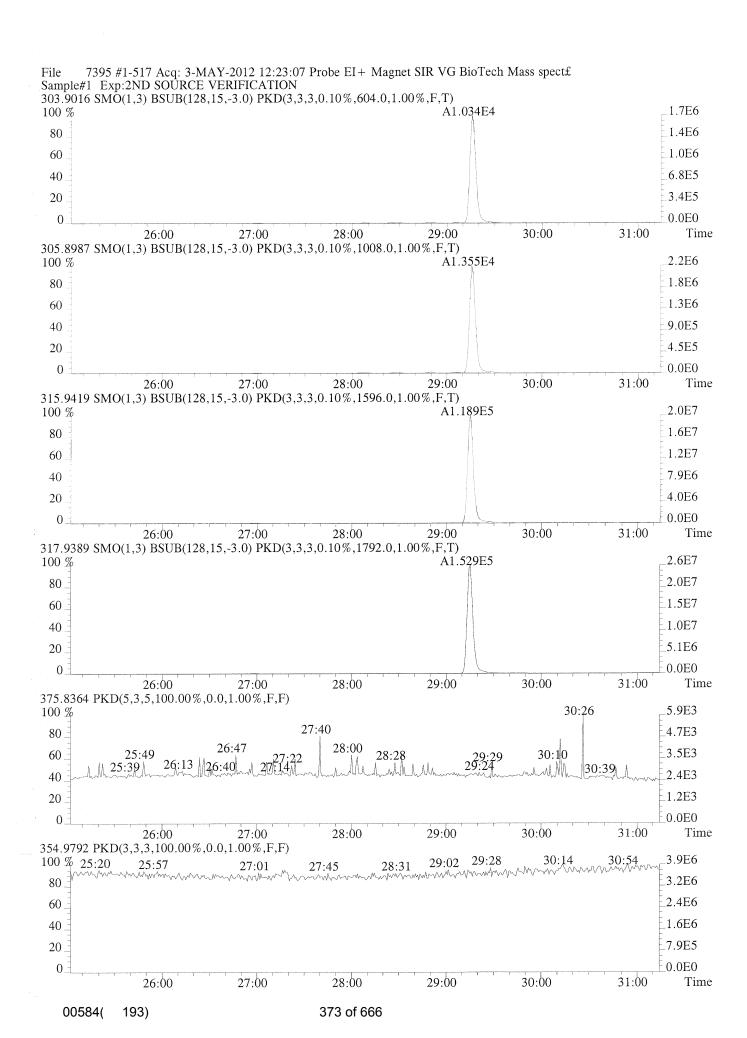
2 "

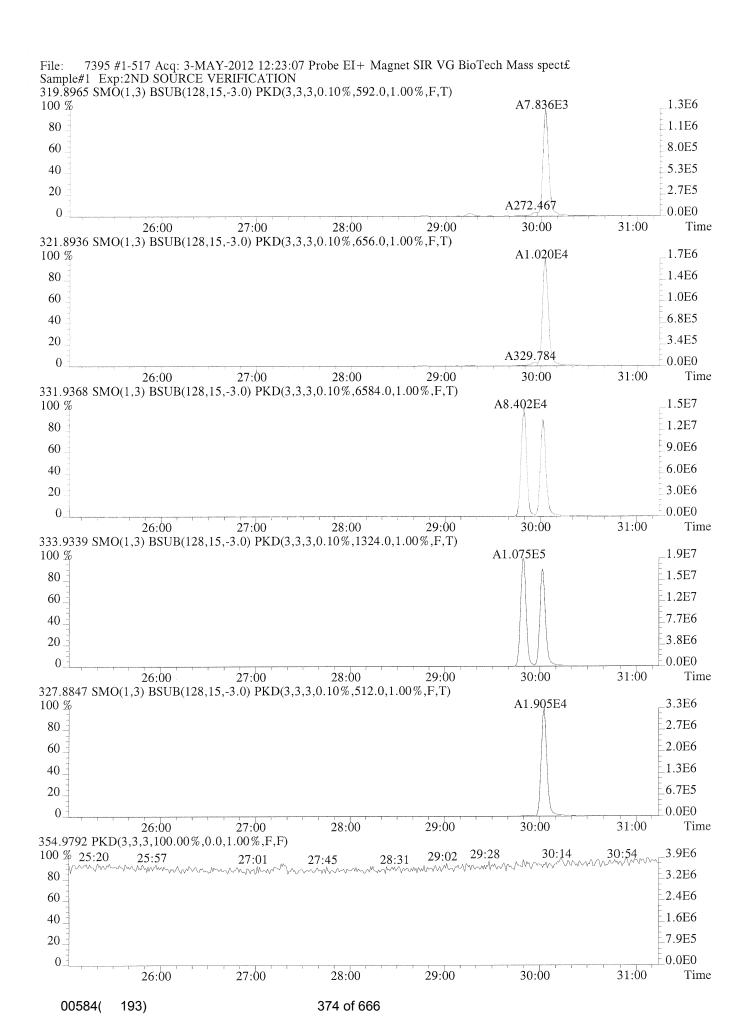
25

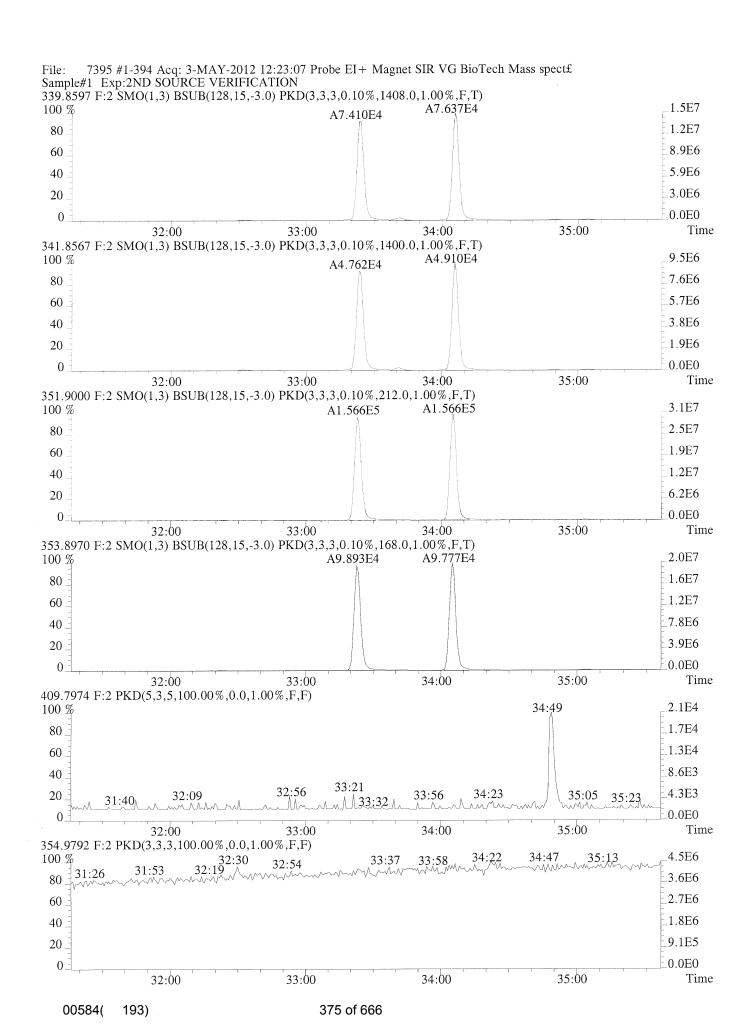
38

C/Up

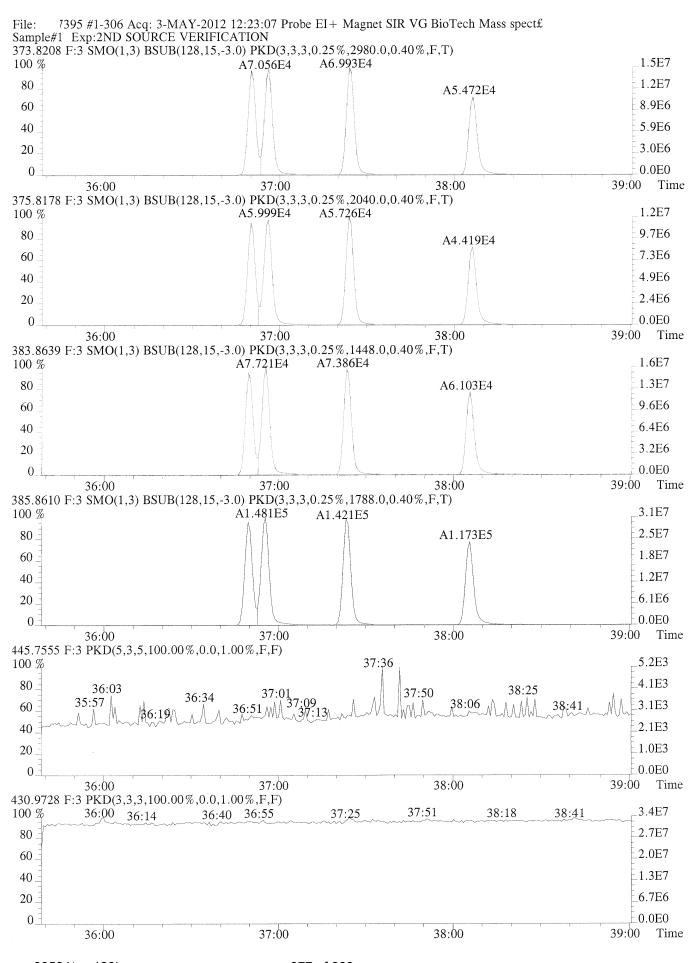
1.905e+04

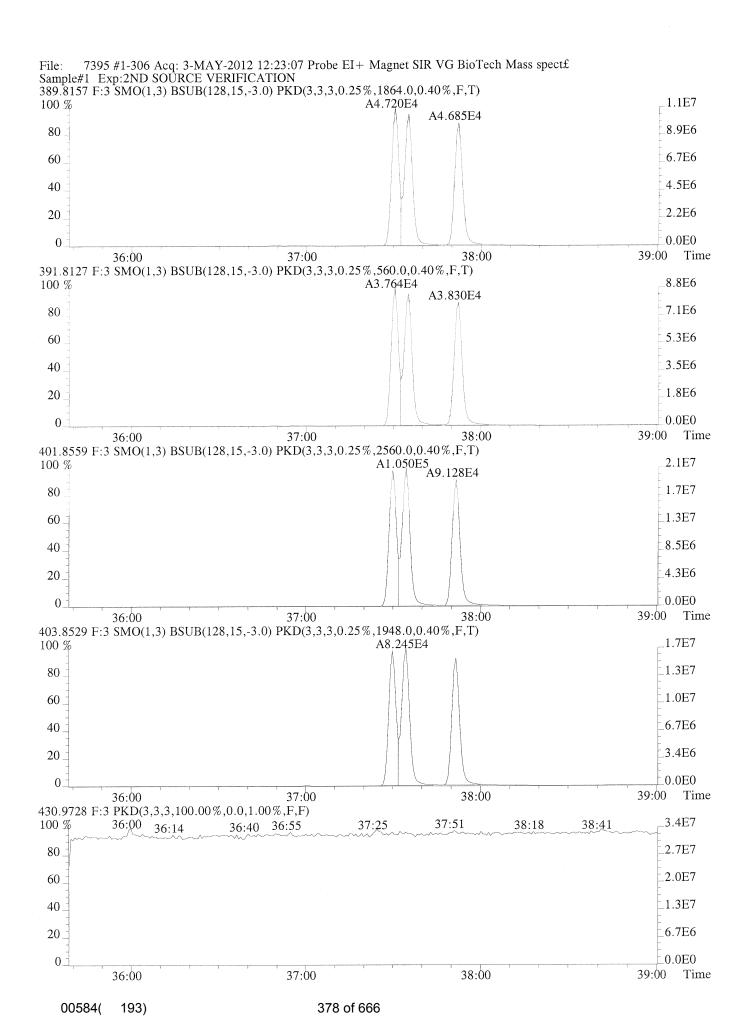

8136 Acquired: 3-MAY-12 12:23:07 7 #7 Filename 7395 Samp: 1 Inj: 1 mpcessed: 3-MAY-12 13:32:101 LAB. ID: 2ND SOURCE VER Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 12 2,3,7,8-TCDF 1.70e+06 | 6.04e+02 | 2.8e+03 2.25e+06 1.01e+03 2.2e + 038.79e+06 9.7e+03 1.40e+03 6.3e + 031,2,3,7,8-PeCDF 1.36e+07 1.41e+03 23 ĝis 2,3,4,7,8-PeCDF 9.51e+06 1.40e+03 6.8e + 031.48e+07 1.41e+03 1.0e+04 عريد ذا 2.04e+03 5.7e + 031,2,3,4,7,8-HxCDF 1.44e+07 2.98e+03 4.8e+03 1.16e+07 2.04e+03 5.8e + 034.9e+03 1.19e+07 1.46e+07 2.98e+03 1,2,3,6,7,8-HxCDF 5.9e + 031.48e+07 2.98e+03 5.0e+03 1.21e+07 2.04e+03 2,3,4,6,7,8-HxCDF 8.70e+06 2.04e+03 4.3e + 031.07e+07 2.98e+03 3.6e+03 1,2,3,7,8,9-HxCDF 1.6e+03 6.70e+03 1.7e + 031.15e+07 1.16e+07 7.28e+03 1,2,3,4,6,7,8-HpCDF 6.70e+03 1.2e + 031,2,3,4,7,8,9-HpCDF 8.20e+06 7.28e+03 1.1e+03 7.96e+06 OCDF | 9.42e+06 | 3.16e+02 | 3.0e+04 | 1.05e+07 | 8.16e+02 | 1.3e+04 2.6e + 032,3,7,8-TCDD 1.34e+06 5.92e+02 2.3e+03 1.69e+06 6.56e+02 3.28e+02 2.1e + 041.06e+07 8.24e+02 1.3e+04 6.84e+06 1,2,3,7,8-PeCDD 3/1 5.60e+02 1.6e + 046.0e+03 8.80e+06 1,2,3,4,7,8-HxCDD 1.11e+07 1.86e+03 1.409 1.5e + 048.42e+06 5.60e+02 1,2,3,6,7,8-HxCDD 1.06e+07 1.86e+03 5.7e+03 5.60e+02 1.4e + 041,2,3,7,8,9-HxCDD 9.88e+06 1.86e+03 5.3e+03 7.88e+06 7.04e+06 7.96e+02 8.8e + 037.24e+06 2.93e+03 2.5e+03 1,2,3,4,6,7,8-HpCDD 1.0e + 04OCDD 8.57e+06 1.00e+03 | 8.5e+03 9.46e+06 9.24e+02 3 \$ 2.55e+07 1.79e+03 1.4e + 041.60e+03 | 1.2e+04 | 13C-2,3,7,8-TCDF 1.98e+07 1.91e+07 1.68e+02 1.1e + 052.99e+07 2.12e+02 | 1.4e+05 | 13C-1,2,3,7,8-PeCDF 3.12e+07 1.96e+07 1.68e+02 1.2e + 0513C-2,3,4,7,8-PeCDF 2.12e+02 1.5e+05 1.79e+03 1.6e + 041.51e+07 1.45e+03 1.0e+04 2.93e+07 13C-1,2,3,4,7,8-HxCDF 1.7e + 041.59e+07 1.45e + 031.1e + 043.06e+07 1.79e+03 13C-1,2,3,6,7,8-HxCDF 1.79e+03 1.7e + 041.56e+07 1.45e+03 1.1e+04 3.01e+0713C-2,3,4,6,7,8-HxCDF 2.36e+07 1.79e+03 1.3e + 048.4e+03 1.22e+07 1.45e+03 13C-1,2,3,7,8,9-HxCDF % 13C-1,2,3,4,6,7,8-HpCDF 2.5e + 032.28e+07 9.11e+03 1.03e+07 5.66e+03 1.8e+03 35 13C-1,2,3,4,7,8,9-HpCDF 7.07e+06 5.66e+03 1.2e+03 1.58e+07 9.11e+03 1.7e+03 17 44 1.32e+03 1.3e + 046.58e+03 2.0e+03 1.74e+07 13C-2,3,7,8-TCDD 1.34e+07 2.6e + 047.84e+02 2.7e+04 1.30e+07 5.04e+02 13C-1,2,3,7,8-PeCDD 2.08e+07 WE J 1.95e+03 8.5e + 031.65e+07 13C-1,2,3,4,7,8-HxCDD 2.10e+07 2.56e+03 8.2e+03 1.95e+03 8.6e+03 13C-1,2,3,6,7,8-HxCDD 2.13e+07 2.56e+03 8.3e+03 1.68e+07 3C-1,2,3,4,6,7,8-HpCDD 1.33e+07 4.00e+02 1.25e+03 1.1e+04 1.26e+07 45 13C-OCDD| 1.52e+07| 3.16e+02| 4.8e+04| 1.66e+07| 3.20e+02| 5.2e+04 2.3e+03 | 1.92e+07 | 1.32e+03 | 1.5e+04 13C-1,2,3,4-TCDD 1.50e+07 | 6.58e+03 7.6e+03 | 1.55e+07 | 1.95e+03 | 7.9e+03 13C-1,2,3,7,8,9-HxCDD | 1.94e+07 | 2.56e+03 | 37Cl-2,3,7,8-TCDD 3.32e+06 5.12e+02 6.5e+03

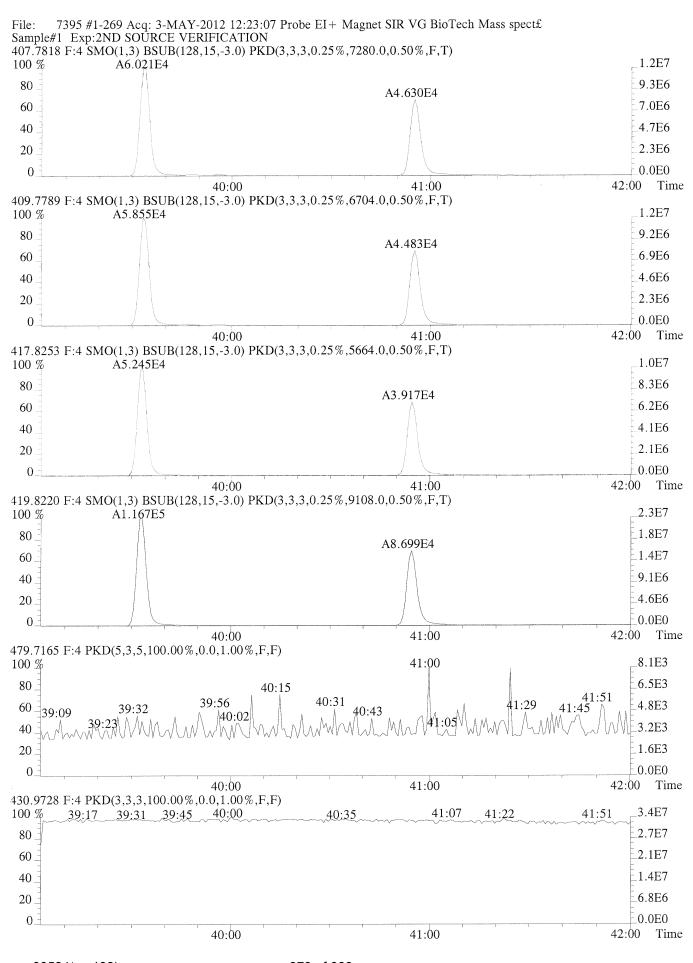

M.

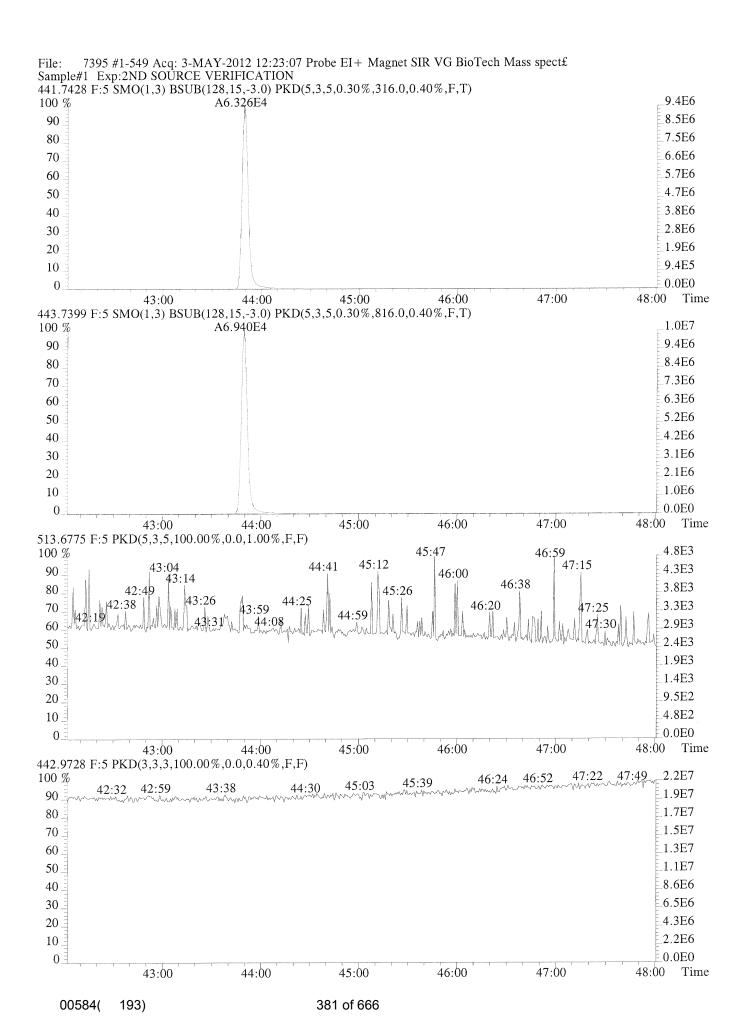

403

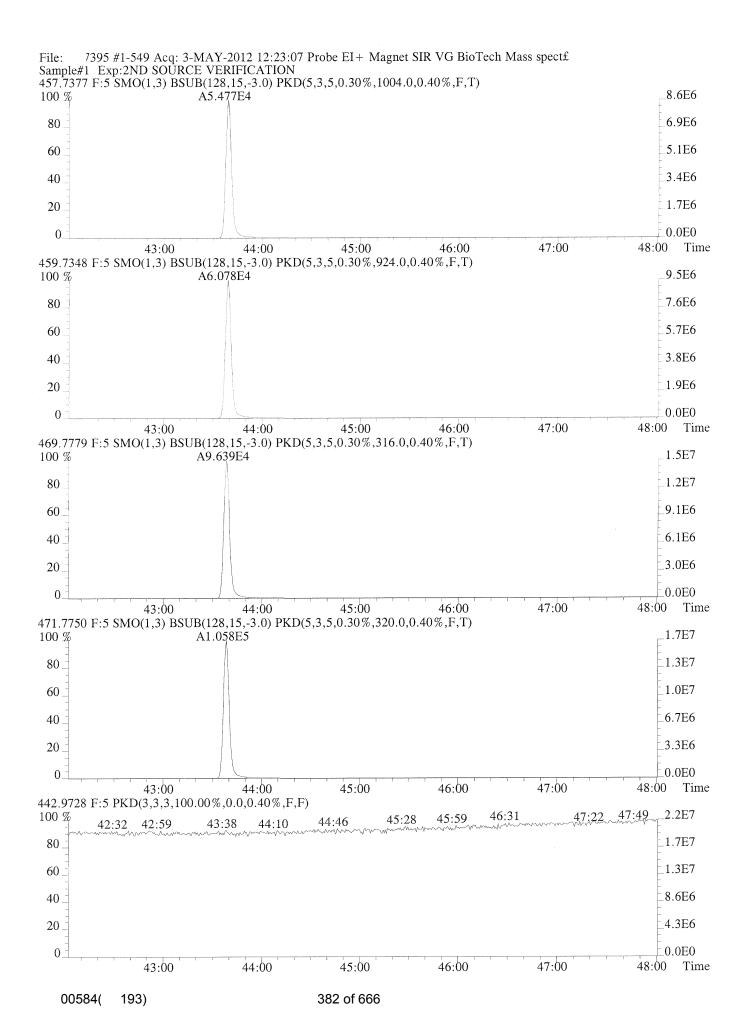
55fa


3









CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Lab Name: Contract No.:

Lab Code: Case No.: TO No.: SDG No.: 193

GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-03

Lab File TD: 3290 Analysis Date: 19-JUN-12 Time: 10:02:59

Lab File ID: 3290			lysis Dat			Time: 1	10:02	:59
Init. Calib. Time.: 05	5:13	Init.	Calib. D	ate(s).:	04/23/	12		
			MEAN				ION	
	SELECTED	RR/	RR/		%D		OITA	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG		FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	0.99	0.98	1.36		0.76		0.65-0.89
2,3,7,8-TCDF	304/306	0.91	0.93	-2.46		0.76		0.65-0.89
1,2,3,7,8-PeCDF	340/342	0.96	1.00	-4.42		1.54		1.32-1.78
	356/358	0.96	0.91	4.73		1.57		1.32-1.78
	340/342	1.02	0.96	5.66		1.51		1.32-1.78
	374/376	1.19	1.22	-2.71		1.20		1.05-1.43
	374/376	1.19	1.14	4.82		1.20		1.05-1.43
	390/392	1.11	1.00	11.22		1.28		1.05-1.43
	390/392	0.91	0.98	-6.82		1.24		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	1.08	1.04	4.03		1.26		1.05-1.43
	374/376	1.14	1.14	-0.24		1.19		1.05-1.43
	374/376	1.15	1.16	-1.14		1.23		1.05-1.43
	408/410	1.38	1.39	-1.03		1.01		0.88-1.20
	424/426	1.00	1.00	0.06		1.05		0.88-1.20
, , , , , , , , , , , , , , , , , , , ,	408/410	1.39	1.33	4.37		1.01		0.88-1.20
	458/460	0.98	1.05	-6.75		0.88		0.76-1.02
	442/444	1.19	1.23	-3.17		0.89		0.76-1.02
Labeled Compoubds	•							
	332/334	1.04	1.00	4.17		0.79		0.65-0.89
	368/370	0.93	0.82	13.37		1.57		1.32-1.78
	402/404	0.92	0.93	-0.97		1.27		1.05-1.43
	402/404	1.00	0.94	6.22		1.28		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD		0.89	0.82	8.74		1.06		0.88-1.20
	470/472	0.76	0.59	27.94		0.90		0.76-1.02
	316/318	1.36	1.28	6.04		0.78		0.65-0.89
, , ,	352/354	1.28	1.10	16.34		1.57		1.32-1.78
, , , ,	352/354	1.21	1.07	13.99		1.57		1.32-1.78
	384/386	1.11	1.06	4.53		0.52		0.43-0.59
	384/386	1.18	1.19	-0.75		0.52		0.43-0.59
, , ,	384/386	1.14	1.10	3.75		0.52		0.43-0.59
, , , , , , , , , , , , , , , , ,	384/386	1.07	0.98	8.86		0.53		0.43-0.59
	418/420	0.92	0.84	9.95		0.45		0.37-0.51
	418/420	0.79	0.71	12.05		0.44		0.37-0.51
CLEAN-UP	•							
	328/NA	1.06	1.04	1.65		NA		NA
Internal	•							
Standards								
	332/334	NA	NA	NA	NA	0.80		0.65-0.89
	402/404	NA	NA	NA	NA	1.26		1.05-1.43

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

FORM VII-HR CDD-1 DLM02.2

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Lab Name:

Contract No.:

TO No.: SDG No.: 193 Lab Code: Case No.: TO No.: SDG N
GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-03

Lab File ID: 8295 Analysis Date: 19-JUN-12 Time: 16:30:11

Init. Calib. Time.: 0	5:13	Init.	Calib. Da	ate(s).:	04/23/	12		
			MEAN	,	, ,		ION	
	SELECTED	RR/	RR/		%D	ION I	RATIO	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	1.00	0.98	2.51		0.78		0.65-0.89
2,3,7,8-TCDF	304/306	0.91	0.93	-1.66		0.76		0.65-0.89
1,2,3,7,8-PeCDF	340/342	0.95	1.00	-4.81		1.56		1.32-1.78
1,2,3,7,8-PeCDD	356/358	0.96	0.91	5.03		1.54		1.32-1.78
2,3,4,7,8-PeCDF	340/342	1.02	0.96	6.45		1.55		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.20	1.22	-1.45		1.23		1.05-1.43
1,2,3,6,7,8-HxCDF	374/376	1.22	1.14	7.00		1.23		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.11	1.00	11.05		1.26		1.05-1.43
1,2,3,6,7,8-HxCDD	390/392	0.91	0.98	-7.36		1.31		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	1.04	1.04	-0.02		1.27		1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	1.14	1.14	0.06		1.20		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	1.15	1.16	-1.52		1.24		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.40	1.39	0.24		1.03		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.00	0.19		1.07		0.88-1.20
1,2,3,4,7,8,9-HpCDF	408/410	1.44	1.33	7.56		1.05		0.88-1.20
OCDD	458/460	0.98	1.05	-7.32		0.89		0.76-1.02
OCDF	442/444	1.16	1.23	-5.07		0.90		0.76-1.02
Labeled Compoubds								
13C-2,3,7,8-TCDD	332/334	1.07	1.00	6.88		0.79		0.65-0.89
13C-1,2,3,7,8-PeCDD	368/370	0.93	0.82	13.90		1.58		1.32-1.78
13C-1,2,3,4,7,8-HxCDD	402/404	1.04	0.93	11.77		1.28		1.05-1.43
13C-1,2,3,6,7,8-HxCDD	402/404	1.07	0.94	14.38		1.27		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD	424/426	0.99	0.82	21.19		1.07		0.88-1.20
13C-OCDD	470/472	0.78	0.59	31.20		0.91		0.76-1.02
13C-2,3,7,8-TCDF	316/318	1.33	1.28	3.92		0.78		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.26	1.10	14.32		1.58		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.20	1.07	12.55		1.59		1.32-1.78
13C-1,2,3,4,7,8-HxCDF	384/386	1.29	1.06	21.67		0.53		0.43-0.59
13C-1,2,3,6,7,8-HxCDF	384/386	1.26	1.19	5.44		0.53		0.43-0.59
13C-2,3,4,6,7,8-HxCDF	384/386	1.21	1.10	9.72		0.53		0.43-0.59
13C-1,2,3,7,8,9-HxCDF	384/386	1.11	0.98	13.73		0.53		0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF	418/420	0.81	0.84	-2.69		0.46		0.37-0.51
13C-1,2,3,4,7,8,9-HpCDF CLEAN-UP	418/420	0.81	0.71	14.72		0.46		0.37-0.51
37Cl-2,3,7,8-TCDD	328/NA	1.11	1.04	6.78		NA		NA
Internal Standards								
13C-1,2,3,4-TCDD	332/334	NA	NA	NA	NA	0.80		0.65-0.89
13C-1,2,3,4-1CDD 13C-1,2,3,7,8,9-HxCDD	402/404	NA NA	NA	NA	NA	1.30		1.05-1.43
13C-1,2,3,7,0,9-HACDD	-102/404	TATJ	TAL	TAL	747.7	1.00		

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Contract No.: Lab Name: 192 Case No.: TO No.: SDG No.: Lab Code: Instrument ID: E-HRMS-04 ID: 0.25 (mm)GC Column: DB-5 Time: 09:27:51 Analysis Date: 12-JUL-12 Lab File ID: 8344 Init. Calib. Date(s).: 05/03/12 Init. Calib. Time.: 05:17 ION MEAN RATIO ION RATIO RR/ 응D ION SELECTED RR/ QC lIMITS Target Analytes IONS RRF RRF 응D FLAG RATIO FLAG 0.65-0.89 2,3,7,8-TCDD 320/322 1.00 1.01 -1.58 0.78 0.65-0.89 2,3,7,8-TCDF 304/306 0.92 0.95 -2.85 0.78 1,2,3,7,8-PeCDF 340/342 0.92 0.99 -6.38 1.53 1.32 - 1.78356/358 1,2,3,7,8-PeCDD 0.94 0.96 -1.99 1.58 1.32 - 1.781.32-1.78 340/342 0.99 0.95 3.42 1.56 2,3,4,7,8-PeCDF 374/376 1.14 1.24 -8.00 1.21 1.05-1.43 1,2,3,4,7,8-HxCDF 1.17 -0.82 1.23 1.05-1.43 374/376 1.16 1,2,3,6,7,8-HxCDF 1.05-1.43 390/392 1.22 1.07 13.22 1.25 1,2,3,4,7,8-HxCDD 390/392 0.87 1.04 -15.71 1.24 1.05-1.43 1,2,3,6,7,8-HxCDD 1.05-1.43 -9.11 1.22 390/392 0.98 1.07 1,2,3,7,8,9-HxCDD 1.05-1.43 -7.13 1.21 2,3,4,6,7,8-HxCDF 374/376 1.08 1.16 -7.66 1.23 1.05-1.43 1,2,3,7,8,9-HxCDF 374/376 1.09 1.19 1.40 -9.29 1.01 0.88 - 1.201,2,3,4,6,7,8-HpCDF 408/410 1.27 0.88-1.20 1,2,3,4,6,7,8-HpCDD 424/426 1.02 1.05 -2.85 1.04 408/410 1.34 -2.23 1.00 0.88-1.20 1,2,3,4,7,8,9-HpCDF 1.31 458/460 0.90 0.76-1.02 1.02 1.19 -14.40 OCDD 0.76-1.02 442/444 -8.96 OCDF 1.19 1.30 0.89 Labeled Compoubds 0.93 1.05 0.78 0.65-0.89 13C-2,3,7,8-TCDD 332/334 0.94 1.32-1.78 13C-1,2,3,7,8-PeCDD 368/370 0.79 0.93 -14.29 1.60 402/404 13C-1,2,3,4,7,8-HxCDD 0.93 0.95 -1.93 1.28 1.05-1.43 402/404 1.14 12.17 1.27 1.05-1.43 13C-1,2,3,6,7,8-HxCDD 1.01 13C-1,2,3,4,6,7,8-HpCDD 424/426 0.88 - 1.200.87 0.89 -2.23 1.06 0.76 - 1.0213C-OCDD 470/472 0.77 0.63 21.15 0.91 1.28 0.65-0.89 13C-2,3,7,8-TCDF 316/318 1.40 9.92 0.78 13C-1,2,3,7,8-PeCDF 352/354 1.21 1.28 -5.73 1.61 1.32 - 1.7813C-2,3,4,7,8-PeCDF 352/354 1.18 1.29 -8.61 1.59 1.32-1.78 1.16 0.52 0.43-0.59 384/386 1.22 5.55 13C-1,2,3,4,7,8-HxCDF 0.43-0.59 13C-1,2,3,6,7,8-HxCDF 384/386 1.24 1.34 -7.74 0.52 0.52 0.43-0.59 13C-2,3,4,6,7,8-HxCDF 384/386 1.18 1.18 0.19 0.43-0.59 0.53 384/386 1.02 1.02 0.77 13C-1,2,3,7,8,9-HxCDF 0.37-0.51 13C-1,2,3,4,6,7,8-HpCDF 418/420 1.08 0.95 12.83 0.44 0.78 5.34 0.43 0.37 - 0.5113C-1,2,3,4,7,8,9-HpCDF 418/420 0.82 CLEAN-UP 37Cl-2,3,7,8-TCDD 328/NA 0.96 0.96 0.76 NANA Internal Standards

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

NA

NA

NA

NA

NA

NA

332/334

402/404

FORM VII-HR CDD-1 DLM02.2

NA

NA

0.80

1.27

0.65-0.89

1.05-1.43

13C-1,2,3,4-TCDD

13C-1,2,3,7,8,9-HxCDD

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Contract No.: Lab Name:

TO No.: SDG No.: 193 Lab Code: Case No.: TO No.: SDG No.: GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-04

Lab File ID: 8349 Analysis Date: 12-JUL-12 Time: 16:15:34 Init. Calib. Time.: 05:17 Init. Calib. Date(s).: 05/03/12

Init. Calib. Time.: 0	5:17	Init.	Calib.	Date(s).:	05/03/	12		
			MEAN				ION	
	SELECTED	RR/	RR/		$^{ m \$D}$	ION	RATIO	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	1.01	1.01	L -0.03		0.79		0.65-0.89
2,3,7,8-TCDF	304/306	0.94	0.95	-0.76		0.76		0.65-0.89
1,2,3,7,8-PeCDF	340/342	0.94	0.99	-5.19		1.53		1.32-1.78
1,2,3,7,8-PeCDD	356/358	0.97	0.96	0.44		1.55		1.32-1.78
2,3,4,7,8-PeCDF	340/342	1.00	0.95	4.67		1.56		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.15	1.24	-6.88		1.23		1.05-1.43
1,2,3,6,7,8-HxCDF	374/376	1.15	1.17	7 -1.36		1.25		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.10	1.07	7 2.03		1.26		1.05-1.43
1,2,3,6,7,8-HxCDD	390/392	0.94	1.04	1 -9.39		1.25		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	1.04	1.07	7 -2.94		1.26		1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	1.10	1.16	5 -5.54		1.27		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	1.11	1.19	-6.04		1.23		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.30	1.40	7.42		1.01		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.05	-5.00		1.05		0.88-1.20
1,2,3,4,7,8,9-HpCDF	408/410	1.32	1.34	-1.01		0.98		0.88-1.20
OCDD	458/460	1.00	1.19	-15.85		0.89		0.76-1.02
OCDF	442/444	1.17	1.30	-10.02		0.89		0.76-1.02
Labeled Compoubds								
13C-2,3,7,8-TCDD	332/334	0.90	0.93	3 -3.96		0.78		0.65-0.89
13C-1,2,3,7,8-PeCDD	368/370	0.67	0.93	-28.01		1.61		1.32-1.78
13C-1,2,3,4,7,8-HxCDD	402/404	0.96	0.95	1.68		1.28		1.05-1.43
13C-1,2,3,6,7,8-HxCDD	402/404	1.03	1.01	2.11		1.29		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD	424/426	0.88	0.89	-1.00		1.05		0.88-1.20
13C-OCDD	470/472	0.63	0.63	-0.65		0.91		0.76-1.02
13C-2,3,7,8-TCDF	316/318	1.31	1.28	3.01		0.80		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.06	1.28	-16.88		1.61		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	0.98	1.29	-24.19		1.60		1.32-1.78
13C-1,2,3,4,7,8-HxCDF	384/386	1.33	1.16	15.34		0.53		0.43-0.59
13C-1,2,3,6,7,8-HxCDF	384/386	1.36	1.34	1.24		0.52		0.43-0.59
13C-2,3,4,6,7,8-HxCDF	384/386	1.28	1.18	8.02		0.53		0.43-0.59
13C-1,2,3,7,8,9-HxCDF	384/386	1.04	1.02	2.24		0.53		0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF	418/420	1.02	0.95	6.59		0.44		0.37-0.51
13C-1,2,3,4,7,8,9-HpCDF CLEAN-UP		0.74	0.78	3 -4.75		0.44		0.37-0.51
37Cl-2,3,7,8-TCDD Internal	328/NA	0.91	0.96	-4.62		NA		NA
Standards	332/334	N.T. 7\	N.T.7N	1\T 7\	7, 7.7.	0.78		0.65-0.89
13C-1,2,3,4-TCDD		NA	NA	NA NA	NA NA	1.27		1.05-1.43
13C-1,2,3,7,8,9-HxCDD	402/404	NA	NA	MA	INH	⊥.∠/		1.05-1.45

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Lab Name:

Contract No.: SDG No.: 193 Lab Code: Case No.: TO No.: SDG No.: GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-03

Lab File ID: 8290 Analysis Date: 19-JUN-12 Time: 10:02:59
Init. Calib. Time.: 05:13 Init. Calib. Date(s).: 04/23/12

Target Analytes	RRT	RT
2,3,7,8-TCDD	1.001	29:11
2,3,7,8-TCDF	1.001	28:19
1,2,3,7,8-PeCDF	1.001	32:47
1,2,3,7,8-PeCDD	1.000	33:53
2,3,4,7,8-PeCDF	1.000	33:31
1,2,3,4,7,8-HxCDF	1.000	36:23
1,2,3,6,7,8-HxCDF	1.000	36:29
1,2,3,4,7,8-HxCDD	1.000	37:05
1,2,3,6,7,8-HxCDD	1.000	37:09
1,2,3,7,8,9-HxCDD	1.008	37:26
2,3,4,6,7,8-HxCDF	1.000	36:57
1,2,3,7,8,9-HxCDF	1.000	37:40
1,2,3,4,6,7,8-HpCDF	1.000	39:07
1,2,3,4,6,7,8-HpCDD	1.000	40:00
1,2,3,4,7,8,9-HpCDF	1.000	40:23
OCDD	1.000	43:01
OCDF	1.004	43:10
Labeled Compoubds		
13C-2,3,7,8-TCDD	1.007	29:10
13C-1,2,3,7,8-PeCDD	1.170	33:52
13C-1,2,3,4,7,8-HxCDD	0.990	37:04
13C-1,2,3,6,7,8-HxCDD	0.992	37:09
13C-1,2,3,4,6,7,8-HpCDD	1.068	39:59
13C-OCDD	1.149	43:00
13C-2,3,7,8-TCDF	0.978	28:18
13C-1,2,3,7,8-PeCDF	1.132	32:46
13C-2,3,4,7,8-PeCDF	1.158	33:31
13C-1,2,3,4,7,8-HxCDF	0.972	36:22
13C-1,2,3,6,7,8-HxCDF	0.974	36:28
13C-2,3,4,6,7,8-HxCDF	0.987	36:57
13C-1,2,3,7,8,9-HxCDF	1.006	37:39
13C-1,2,3,4,6,7,8-HpCDF	1.045	39:06
13C-1,2,3,4,7,8,9-HpCDF	1.079	40:23
CLEAN-UP		
37Cl-2,3,7,8-TCDD	NA	29:11
Internal		
Standards		
13C-1,2,3,4-TCDD	NA	28:57
13C-1,2,3,7,8,9-HxCDD	NA	37:26

RRT = (RT of analyte)/(rt of appropriate labeled compound)

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Contract No.: Lab Name:

Lab Code: Case No.: TO No.: SDG No.: 193
GC Column: DB-5 ID: 0.25 (mm) Instrument ID: E-HRMS-03

Lab File ID: 8295 Analysis Date: 19-JUN-12 Time: 16:30:11 Init. Calib. Time.: 05:13 Init. Calib. Date(s).: 04/23/12

Target Analytes	RRT	RT
2,3,7,8-TCDD	1.001	29:14
2,3,7,8-TCDF	1.001	28:22
1,2,3,7,8-PeCDF	1.001	32:49
1,2,3,7,8-PeCDD	1.000	33:55
2,3,4,7,8-PeCDF	1.000	33:33
1,2,3,4,7,8-HxCDF	1.000	36:25
1,2,3,6,7,8-HxCDF	1.000	36:30
1,2,3,4,7,8-HxCDD	1.000	37:07
1,2,3,4,7,6 HXCDD	1.000	37:11
1,2,3,7,8,9-HxCDD	1.008	37:11
2,3,4,6,7,8-HxCDF	1.000	36:59
	1.000	37:42
1,2,3,7,8,9-HxCDF	1.000	
1,2,3,4,6,7,8-HpCDF		39:09
1,2,3,4,6,7,8-HpCDD	1.000	40:02
1,2,3,4,7,8,9-HpCDF	1.000	40:25
OCDD	1.000	43:02
OCDF	1.003	43:11
Labeled Compoubds		
13C-2,3,7,8-TCDD	1.007	29:12
13C-1,2,3,7,8-PeCDD	1.170	33:54
13C-1,2,3,4,7,8-HxCDD	0.990	37:06
13C-1,2,3,6,7,8-HxCDD	0.992	37:11
13C-1,2,3,4,6,7,8-HpCDD	1.068	40:01
13C-OCDD	1.149	43:02
13C-2,3,7,8-TCDF	0.978	28:20
13C-1,2,3,7,8-PeCDF	1.132	32:48
13C-2,3,4,7,8-PeCDF	1.158	33:33
13C-1,2,3,4,7,8-HxCDF	0.972	36:24
13C-1,2,3,6,7,8-HxCDF	0.974	36:30
13C-2,3,4,6,7,8-HxCDF	0.987	36:59
13C-1,2,3,7,8,9-HxCDF	1.006	37:41
13C-1,2,3,4,6,7,8-HpCDF	1.044	39:08
13C-1,2,3,4,7,8,9-HpCDF	1.079	40:25
CLEAN-UP		
37Cl-2,3,7,8-TCDD	NA	29:14
Internal		
Standards		
13C-1,2,3,4-TCDD	NA	28:59
13C-1,2,3,4 1CDD	NA	37:28
130 1/2/3///0/3 IMCDD	1411	57.20

RRT = (RT of analyte)/(rt of appropriate labeled compound)

FORM VII-HR CDD-2 DLM02.2

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Lab Name: Contract No.:

Lab Code: Case No.: TO No.: SDG No.: 192

GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-04

Lab File ID: 8344 Analysis Date: 12-JUL-12 Time: 09:27:51 Init. Calib. Time:: 05:17 Init. Calib. Date(s).: 05/03/12

_		
Target Analytes	RRT	RT
2,3,7,8-TCDD	1.001	29:05
2,3,7,8-TCDF	1.001	28:12
1,2,3,7,8-PeCDF	1.001	32:48
1,2,3,7,8-PeCDD	1.001	34:00
2,3,4,7,8-PeCDF	1.000	33:36
1,2,3,4,7,8-HxCDF	1.000	36:45
1,2,3,6,7,8-HxCDF	1.000	36:51
1,2,3,4,7,8-HxCDD	1.000	37:36
1,2,3,6,7,8-HxCDD	1.000	37:42
1,2,3,7,8,9-HxCDD	1.009	38:02
2,3,4,6,7,8-HxCDF	1.000	37:27
1,2,3,7,8,9-HxCDF	1.000	38:15
1,2,3,4,6,7,8-HpCDF	1.000	40:04
1,2,3,4,6,7,8-HpCDD	1.001	41:18
1,2,3,4,7,8,9-HpCDF	1.000	41:42
OCDD	1.000	45:25
OCDF	1.001	45:28
Labeled Compoubds		
13C-2,3,7,8-TCDD	1.008	29:04
13C-1,2,3,7,8-PeCDD	1.177	33:58
13C-1,2,3,4,7,8-HxCDD	0.989	37:36
13C-1,2,3,6,7,8-HxCDD	0.991	37:41
13C-1,2,3,4,6,7,8-HpCDD	1.085	41:16
13C-OCDD	1.195	45:25
13C-2,3,7,8-TCDF	0.976	28:10
13C-1,2,3,7,8-PeCDF	1.136	32:47
13C-2,3,4,7,8-PeCDF	1.164	33:35
13C-1,2,3,4,7,8-HxCDF	0.966	36:44
13C-1,2,3,6,7,8-HxCDF	0.969	36:51
13C-2,3,4,6,7,8-HxCDF	0.985	37:26
13C-1,2,3,7,8,9-HxCDF	1.006	38:14
13C-1,2,3,4,6,7,8-HpCDF	1.054	40:04
13C-1,2,3,4,7,8,9-HpCDF	1.096	41:41
CLEAN-UP		
37Cl-2,3,7,8-TCDD	NA	29:05
Internal		
Standards		
13C-1,2,3,4-TCDD	NA	28:51
13C-1,2,3,4-1CDD 13C-1,2,3,7,8,9-HxCDD	NA	38:01
130 1/2/3/1/0/3 IIACDD	7.47.7	50.01

RRT = (RT of analyte)/(rt of appropriate labeled compound)

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Contract No.: Lab Name:

Lab Code: Case No.: TO No.: SDG No.: 193
GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-04

Lab File ID: 8349 Analysis Date: 12-JUL-12 Time: 16:15:34 Init. Calib. Time:: 05:17 Init. Calib. Date(s):: 05/03/12

Target Analytes	RRT	RT
2,3,7,8-TCDD	1.001	29:04
2,3,7,8-TCDF	1.000	28:10
1,2,3,7,8-PeCDF	1.001	32:48
1,2,3,7,8-PeCDD	1.000	33:59
2,3,4,7,8-PeCDF	1.000	33:36
1,2,3,4,7,8-HxCDF	1.000	36:45
1,2,3,6,7,8-HxCDF	1.000	36:51
1,2,3,4,7,8-HxCDD	1.000	37:36
1,2,3,4,7,0 HXCDD	1.000	37:42
1,2,3,6,7,8-HxCDD	1.000	38:02
2,3,4,6,7,8-HxCDF	1.000	37:26
	1.000	38:14
1,2,3,7,8,9-HxCDF		
1,2,3,4,6,7,8-HpCDF	1.000	40:03
1,2,3,4,6,7,8-HpCDD	1.000	41:16
1,2,3,4,7,8,9-HpCDF	1.001	41:41
OCDD	1.000	45:27
OCDF	1.001	45:29
Labeled Compoubds		
13C-2,3,7,8-TCDD	1.008	29:03
13C-1,2,3,7,8-PeCDD	1.178	33:58
13C-1,2,3,4,7,8-HxCDD	0.989	37:36
13C-1,2,3,6,7,8-HxCDD	0.991	37:41
13C-1,2,3,4,6,7,8-HpCDD	1.085	41:15
13C-OCDD	1.195	45:26
13C-2,3,7,8-TCDF	0.977	28:10
13C-1,2,3,7,8-PeCDF	1.137	32:47
13C-2,3,4,7,8-PeCDF	1.165	33:35
13C-1,2,3,4,7,8-HxCDF	0.966	36:44
13C-1,2,3,6,7,8-HxCDF	0.969	36:51
13C-2,3,4,6,7,8-HxCDF	0.985	37:26
13C-1,2,3,7,8,9-HxCDF	1.005	38:13
13C-1,2,3,4,6,7,8-HpCDF	1.053	40:02
13C-1,2,3,4,7,8,9-HpCDF	1.096	41:39
CLEAN-UP	1.000	11.00
37Cl-2,3,7,8-TCDD	NA	29:04
Internal	1411	23.01
Standards		
13C-1,2,3,4-TCDD	NA	28:50
	NA	38:01
13C-1,2,3,7,8,9-HxCDD	INT	30:UI

RRT = (RT of analyte)/(rt of appropriate labeled compound)

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Contract No.: Lab Name:

TO No.: SDG No.: 193 Lab Code: Lab Code: Case No.: TO No.: SDG No.: 1

GC Column: DB-5 ID: 0.25 (mm) Instrument ID: E-HRMS-04

Lab File ID: 8231 Analysis Date: 6-JUL-12 Time: 06:10:10

Lab File ID: 8231			rysis Dat				. 00.10	. 10
Init. Calib. Time.: 0	5:13	Init.	Calib. D	ate(s).:	05/03/	12	T 031	
		/	MEAN		0.70	T 0.17	ION	TON DAMEO
_	SELECTED	RR/	RR/	0.77	%D	ION	RATIO	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	2.06	1.01	103.16		0.77		0.65-0.89
2,3,7,8-TCDF	304/306	2.02	0.95	113.57		0.76		0.65-0.89
1,2,3,7,8-PeCDF	340/342	2.02	0.99	104.80		1.59		1.32-1.78
1,2,3,7,8-PeCDD	356/358	2.03	0.96	111.50		1.58		1.32-1.78
2,3,4,7,8-PeCDF	340/342	2.12	0.95	122.51		1.59		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	2.43	1.24	95.87		1.25		1.05-1.43
1,2,3,6,7,8-HxCDF	374/376	2.43	1.17	108.45		1.24		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	2.43	1.07	126.09		1.27		1.05-1.43
1,2,3,6,7,8-HxCDD	390/392	1.92	1.04	85.27		1.28		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	2.33	1.07	116.44		1.27		1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	2.32	1.16	99.87		1.24		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	2.32	1.19	95.58		1.26		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	2.77	1.40	97.12		1.04		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	2.09	1.05	98.37		1.05		0.88-1.20
1,2,3,4,7,8,9-HpCDF	408/410	2.78	1.34	108.32		1.04		0.88-1.20
OCDD	458/460	2.06	1.19	73.48		0.91		0.76-1.02
OCDF	442/444	2.67	1.30	104.90		0.89		0.76-1.02
Labeled Compoubds	,			No.				
13C-2,3,7,8-TCDD	332/334	0.96	0.93	2.45		0.79		0.65-0.89
13C-1,2,3,7,8-PeCDD	368/370	0.83	0.93	-10.88		1.60		1.32-1.78
13C-1,2,3,4,7,8-HxCDD	402/404	0.89	0.95	-6.19		1.38		1.05-1.43
13C-1,2,3,6,7,8-HxCDD	402/404	0.99	1.01	-1.76		1.18		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD		0.96	0.89	8.72		1.06		0.88-1.20
13C-OCDD	470/472	0.79	0.63	25.11		0.90		0.76-1.02
13C-2,3,7,8-TCDF	316/318	1.45	1.28	13.49		0.79		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.36	1.28	5.91		1.59		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.29	1.29	-0.54		1.58		1.32-1.78
13C-1,2,3,4,7,8-HxCDF	384/386	1.34	1.16	15.62		0.52		0.43-0.59
13C-1,2,3,4,7,6 HxCDF	384/386	1.40	1.34	4.54		0.52		0.43-0.59
13C-2,3,4,6,7,8-HxCDF	384/386	1.34	1.18	13.11		0.53		0.43-0.59
13C-1,2,3,7,8,9-HxCDF	384/386	1.21	1.02	19.54		0.52		0.43-0.59
13C-1,2,3,7,8,9-HACDF		1.14	0.95	20.03		0.44		0.37-0.51
13C-1,2,3,4,6,7,8-HpCDF		0.93	0.78	19.66		0.44		0.37-0.51
CLEAN-UP	410/420	0.93		17.00				
37Cl-2,3,7,8-TCDD Internal	328/NA	1.95	0.96	104.13		NA		NA
Standards	332/334	NA	NA	NA	NA	0.79		0.65-0.89
13C-1,2,3,4-TCDD	402/404	NA NA	NA NA	NA	NA	1.27		1.05-1.43
13C-1,2,3,7,8,9-HxCDD	402/404	INH	IVM	TAY.7	TALZ	1.41		<u>.</u>

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

FORM VII-HR CDD-1

DLM02.2

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Contract No.: Lab Name:

TO No.: SDG No.: 193 Lab Code: Case No.: TO No.: SDG N GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-04 Lab Code: Case No.:

Lab File ID: 8240 Analysis Date: 6-JUL-12 Time: 14:38:40

Lab File ID: 8240			lysis Dat				: 14:38	: 40
Init. Calib. Time.: 0	5:17	Init.	Calib. D	ate(s).:	05/03/	12		
			MEAN				ION	
	SELECTED	RR/	RR/		%D	ION	RATIO	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	2.08	1.01	104.66		0.79		0.65-0.89
2,3,7,8-TCDF	304/306	2.02	0.95	113.24		0.74		0.65-0.89
1,2,3,7,8-PeCDF	340/342	2.02	0.99	104.55		1.56		1.32-1.78
1,2,3,7,8-PeCDD	356/358	2.03	0.96	110.81		1.60		1.32-1.78
2,3,4,7,8-PeCDF	340/342	2.15	0.95	125.11		1.58		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	2.45	1.24	97.71		1.24		1.05-1.43
1,2,3,6,7,8-HxCDF	374/376	2.44	1.17	109.44		1.27		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	2.32	1.07	115.67		1.26		1.05-1.43
1,2,3,6,7,8-HxCDD	390/392	1.96	1.04	88.47		1.28		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	2.19	1.07	104.07		1.25		1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	2.33	1.16	100.28		1.25		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	2.35	1.19	98.03		1.27		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	2.76	1.40	96.27		1.05		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	2.08	1.05	97.87		1.05		0.88-1.20
1,2,3,4,7,8,9-HpCDF	408/410	2.80	1.34	109.80		1.05		0.88-1.20
OCDD	458/460	2.10	1.19	76.67		0.91		0.76-1.02
OCDF	442/444	2.67	1.30	105.07		0.91		0.76-1.02
Labeled Compoubds								
13C-2,3,7,8-TCDD	332/334	0.90	0.93	-3.93		0.78		0.65-0.89
13C-1,2,3,7,8-PeCDD	368/370	0.72	0.93	-21.75		1.61		1.32-1.78
13C-1,2,3,4,7,8-HxCDD	402/404	0.96	0.95	1.04		1.26		1.05-1.43
13C-1,2,3,6,7,8-HxCDD	402/404	1.03	1.01	2.12		1.27		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD	424/426	0.95	0.89	6.67		1.06		0.88-1.20
13C-OCDD	470/472	0.74	0.63	16.85		0.90		0.76-1.02
13C-2,3,7,8-TCDF	316/318	1.39	1.28	9.00		0.79		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.23	1.28	-4.26		1.61		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.14	1.29	-11.56		1.60		1.32-1.78
13C-1,2,3,4,7,8-HxCDF	384/386	1.40	1.16	21.33		0.52		0.43-0.59
13C-1,2,3,6,7,8-HxCDF	384/386	1.46	1.34	9.25		0.52		0.43-0.59
13C-2,3,4,6,7,8-HxCDF	384/386	1.36	1.18	15.38		0.52		0.43-0.59
13C-1,2,3,7,8,9-HxCDF	384/386	1.18	1.02	15.87		0.53		0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF	418/420	1.19	0.95	24.81		0.45		0.37-0.51
13C-1,2,3,4,7,8,9-HpCDF CLEAN-UP		0.90	0.78	14.88		0.43		0.37-0.51
37Cl-2,3,7,8-TCDD Internal	328/NA	1.81	0.96	89.76		NA		NA
Standards	332/334	NA	NA	NA	NA	0.80		0.65-0.89
13C-1,2,3,4-TCDD	402/404	NA NA	NA NA	NA -	NA NA	1.28		1.05-1.43
13C-1,2,3,7,8,9-HxCDD	702/404	T/17_7	1/1/7	INT.	TAL.7	1.20		

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

RW/CS3 Daily Calibration QC Checklist

Calibration File Name 3290— 829	Circle or	ne:
Date: 06 19 12	beginning /	Lituing
Method: 1613 / 1613F / VCP / Tetra / TCDD Only / TC	DF Conf / VCP Conf / 8280	/ M23 / TO-9A
Retention Window/Column Performance Check:	Analyst	Second Check
Windows in and first and last eluters labeled	\checkmark	V
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and its closest eluters	√	
No QC ion deflections affect column specific 2378 isomer or its closest eluters (HRMS Only)	\	
CS3 Continuing Calibration	Analyst	Second Check
Percent RSD within method criteria	V	V
All relative abundance ratios meet method criteria	\checkmark	
No QC ion deflections of greater than 20% (HRMS Only)	\checkmark	V
Mass spectrometer resolution greater than or equal to 10,000 and documented (HRMS Only)	✓	
2378-TCDD elutes at 25 minutes or later on the DB-5 column	✓	
Signal-to-noise of all target analytes and their labeled standards at least 10:1	✓	J
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50% (LRMS Only)	NA	NA
Ending Calibration injected prior to end of 12 hour clock		
Analyst:	Second QC:	

ccalqc.xls 02/08/00

USEPA - Page 1 of 1

5DFC
PCDD/PCDF/PCB ANALYTICAL SEQUENCE SUMMARY

Lab Name: Contract:

Lab Code: Case No.: SDG No.: 3

GC Column: DB-5 ID: 0.25 (mm) Instrument ID: E-HRMS-03

Init. Calib. Date: 04/23/12

Init. Calib.Times: 05:13:56

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, AND LABORATORY CONTROL SAMPLES (LCSs) IS AS FOLLOWS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
WINDOW DEFINE		8289	19-JUN-12	07:55:52
CCAL CS3	CCAL CS3	8290	19-JUN-12	10:02:59
METHOD BLANK	200341-01	8291	19-JUN-12	11:19:02
LCS	200341-02	8292	19-JUN-12	12:05:47
DLCS	200341-03	8293	19-JUN-12	12:53:28
193	00584-001RE	8294	19-JUN-12	15:25:50
CCAL CS3	CCAL CS3	8295	19-JUN-12	16:30:11
WINDOW DEFINE		8296	19-JUN-12	17:41:15

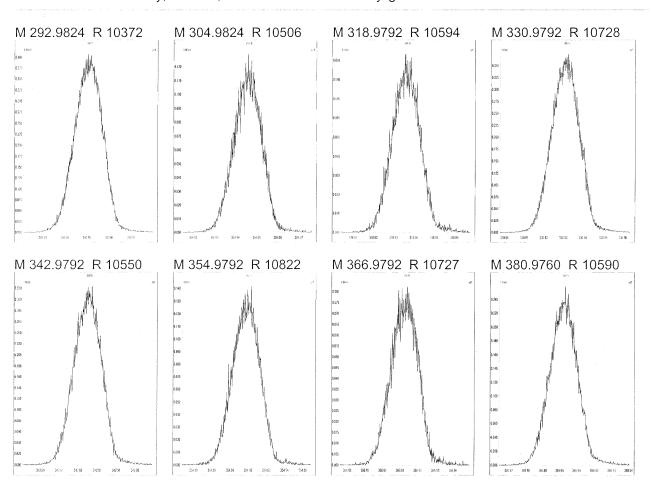
DLM01.3

Sample List Report	eport			NATIONAL CONTRACT CONTRACTOR AND A STATE OF THE ACT OF	Mass	MassLynx 4.1			l		
Sample List: Last Modified:	C:\Mas Tuesda	C:∖MassLynx∖ Tuesday, June 19,	C:\MassLynx\\ Tuesday, June 19, 2012 15:16:24 Central Daylight Time	pleDB\21 Daylight Ti	20619.SPL Time					Page 1 of 2	
Printed:	Tuesd	19,	2012 18:35:42	Central Daylight Time	me					Page Position (1, 1)	
Φ		83901	res								
Date ,	Time	File Name	Sample ID	Client ID	Analyst	Comments		GC Met	Acq Met	Column	
1 06/19/12	07:55	8289	WINDOW DEFINE	D12-56-2	1	s check	07:29	8290	8290	DB-5	
3	(0)::: 	8290 8291	CCAL CS3 200341-01	D12-83-1 MB		HKMS Check C	. 1 1	8290, 8290,	8290 8290	DB-5 DB-5	
5	הים הים הים הים הים הים הים הים הים הים	8292 8293	200341-02 200341-03	LCS				8290. 8290.	8290 8290	DB-5 DB-5	
9	50.	8294)0584-001RE	193		-		8290	8290	DB-5	
8	1.5 2.7	8296	CCAL CSS WINDOW DEFINE	D12-83-1		Check	18:31	8290 8290	8290 8290	UB-5 DB-5	
10			1 1	1 1				8290. 8290.	8290 8290	DB-5 DB-5	
11		1	1	1			Minimum	8290	8290	DB-5	
12			•					8290	8290	DB-5	
2 4			! !	}				8290 8290	8290 8290	DB-5 DB-5	
15		!	!	1				8290	8290	DB-5	
16		-	!	-			Victoria de la companya de la compan	8290	8290	DB-5	
18		1 1	: : : :				Management of the second of th	8290	8290	DB-5	
19		į	-	-			No. of the last of	8290	8290	DB-5	
20		!	1					8290	8290		
21		t :	-	# !				-	1		
23		# # 		: :						- 1	
24		# 	-					8290	8290_		
25			***	‡ 1			N and the second	8290	8290_		
27				I I				8290 8290	8290_ 8290_		
28						***	and the second s	8290	8290	***	
29	1	4 5 6	1	!	1	1		8290	8290_		
31								0230 8290	0230_ 8290_	I 9	
32	}	!	1	-	1			8290	8290_ 8290_		
33	1	1	ļ	1 1	1 2 5	1		8290	8290_	!	
34	-		•	*****	!	-		8290	8290	1	
35	1	!		* • •	1	Reviewed By: _	_	8290	8290_	1	
37			-			! !	6//00	8290	8290_ 8290_	! !	
38	1	!	1	1	1		0 5	8290	8290_		
39	1		1		1		•	8290	8290	***	
					0						

00584(193) 395 of 666

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

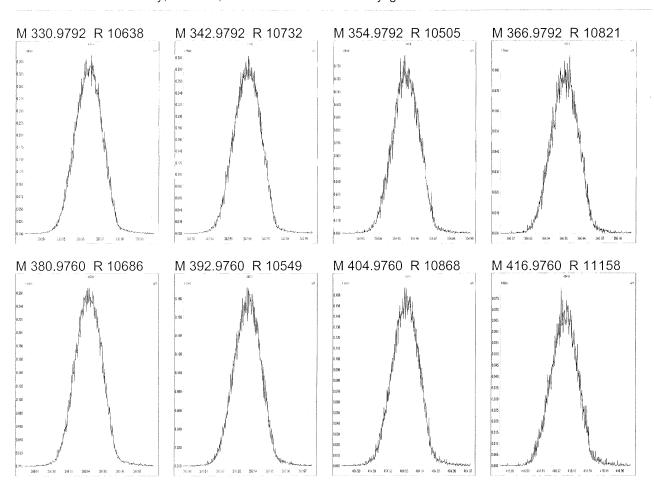
.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 07:29:27 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

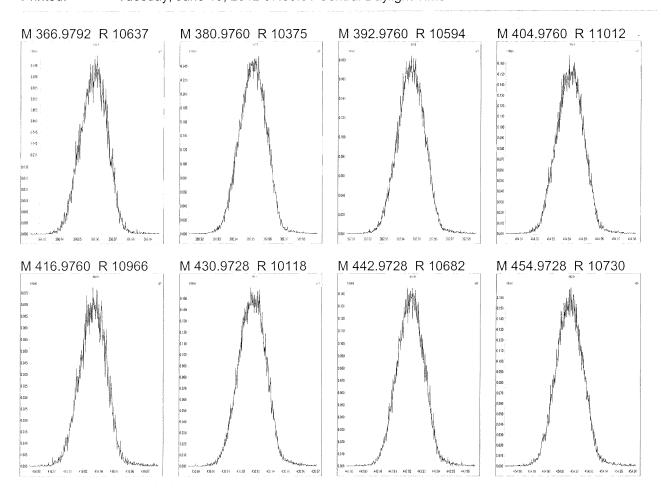
exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 07:30:07 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

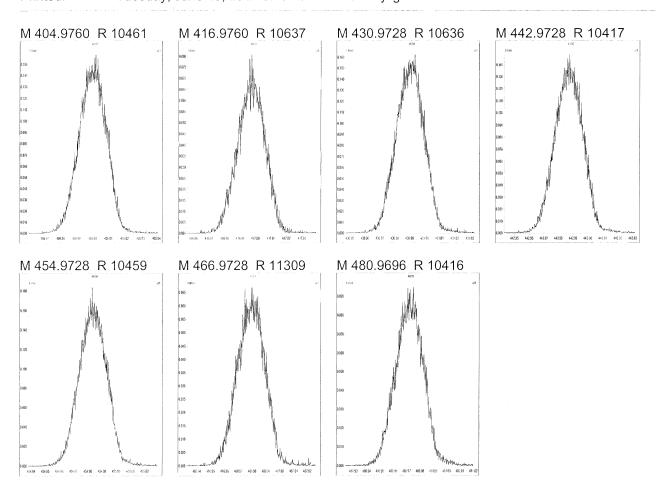
exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 07:30:51 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

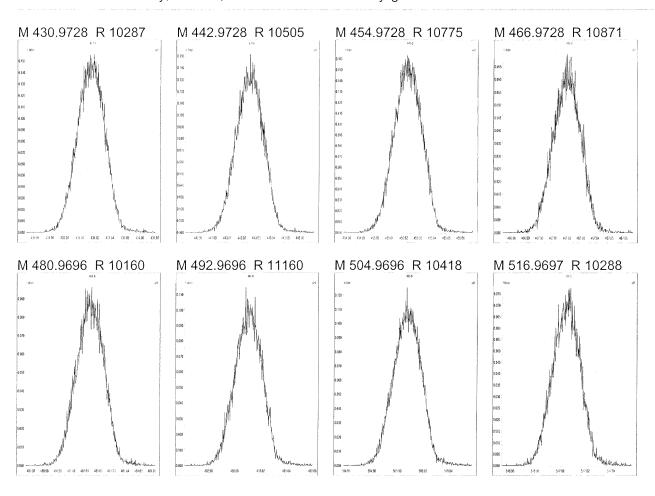
.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 07:31:32 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

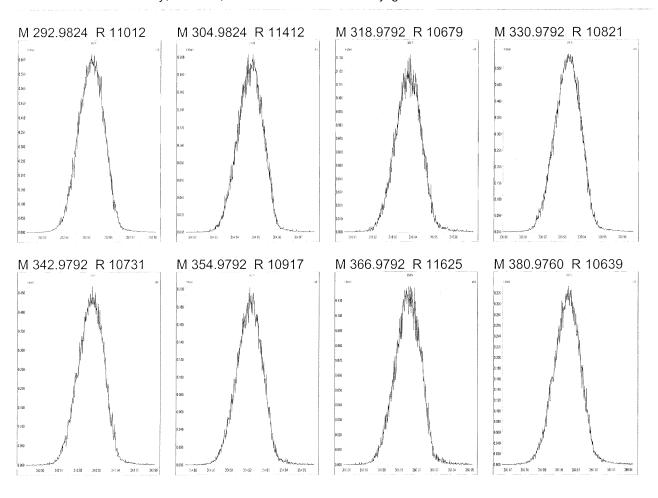
.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 07:32:16 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

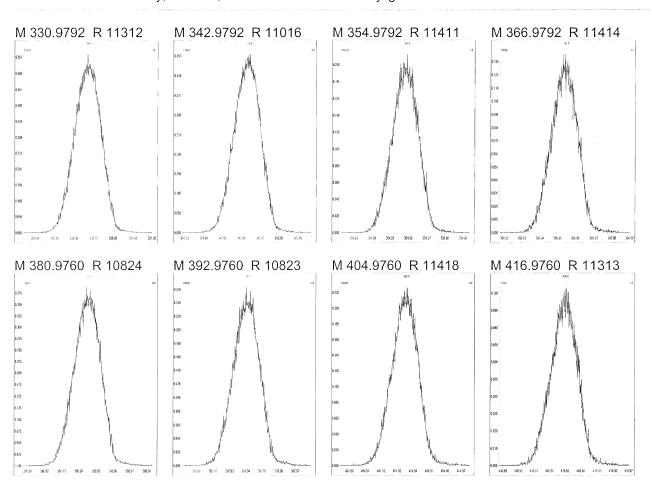
.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 09:59:15 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

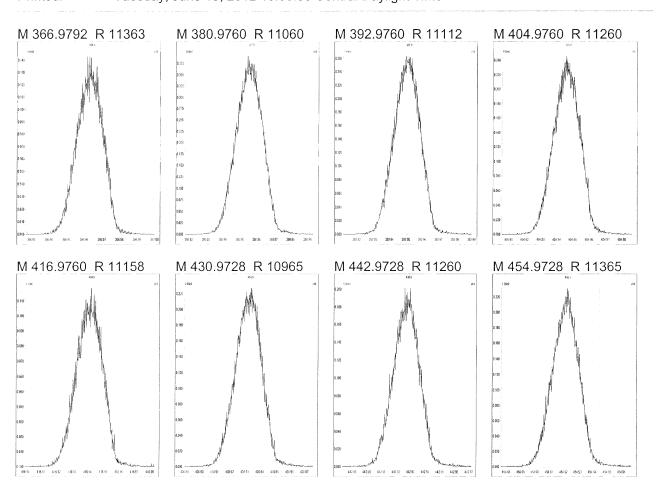
.exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 10:00:12 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

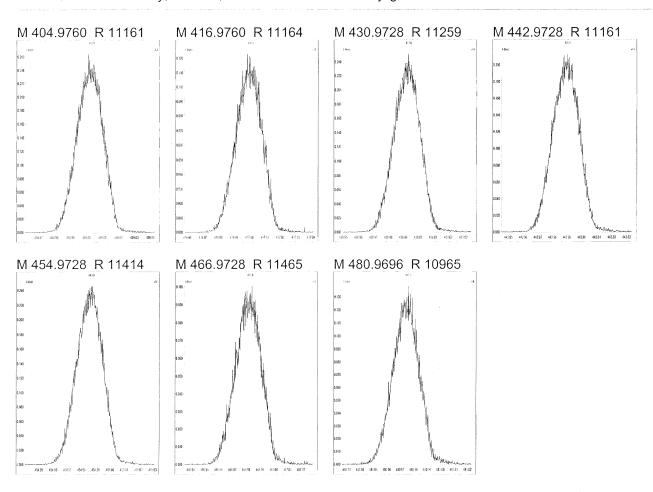
.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 10:00:55 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

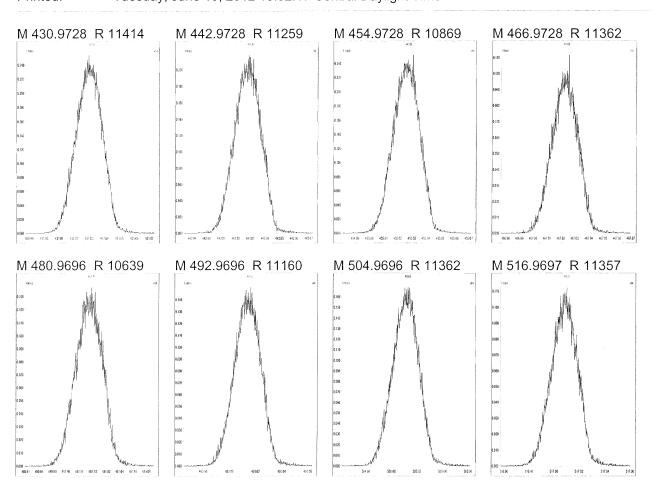
.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 10:01:37 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

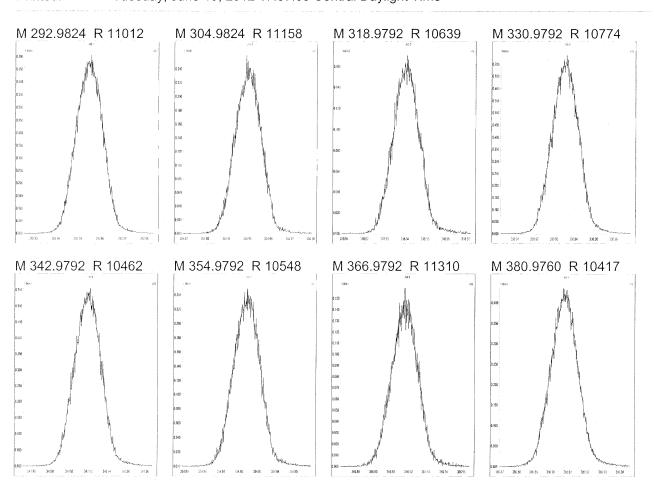
exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 10:02:17 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

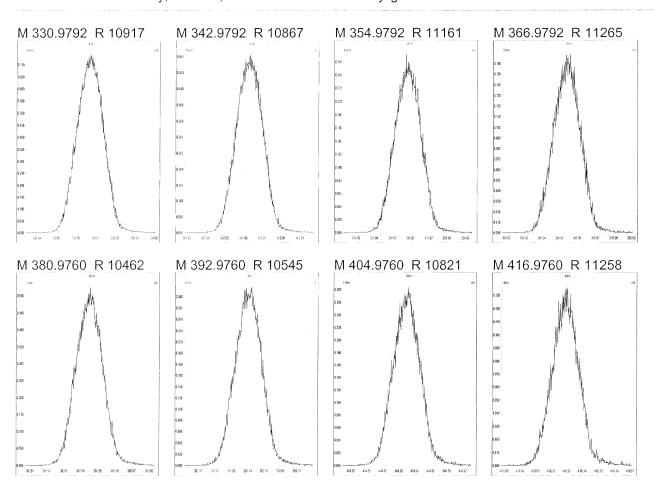
exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 17:37:05 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

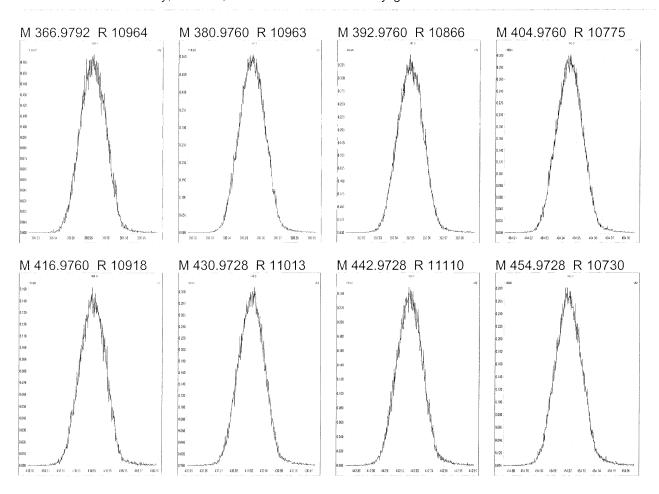
exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 17:37:53 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

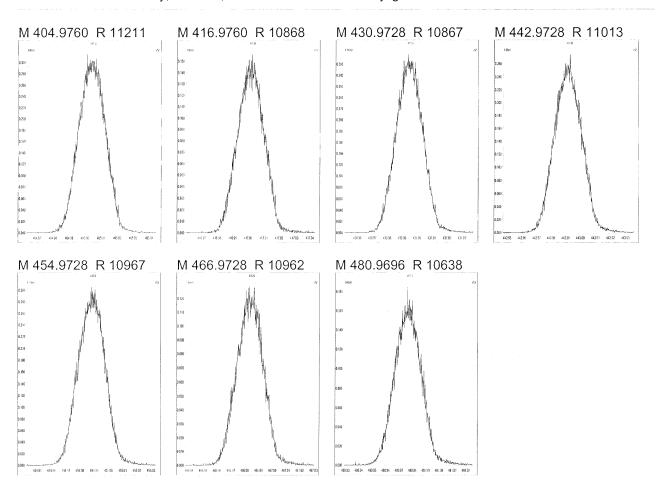
.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 17:38:58 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

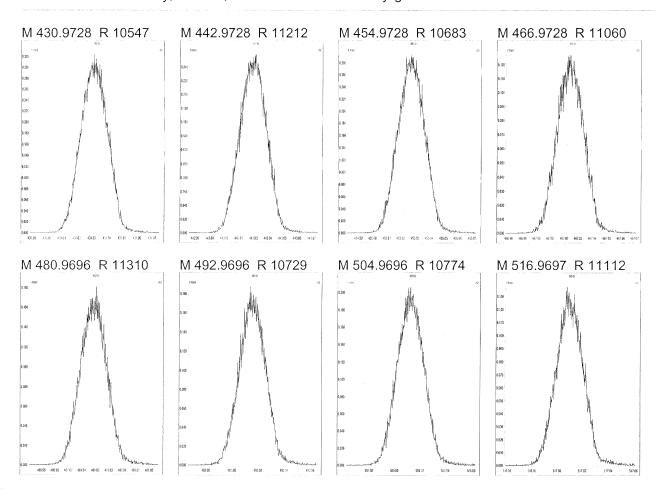
.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 17:39:43 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

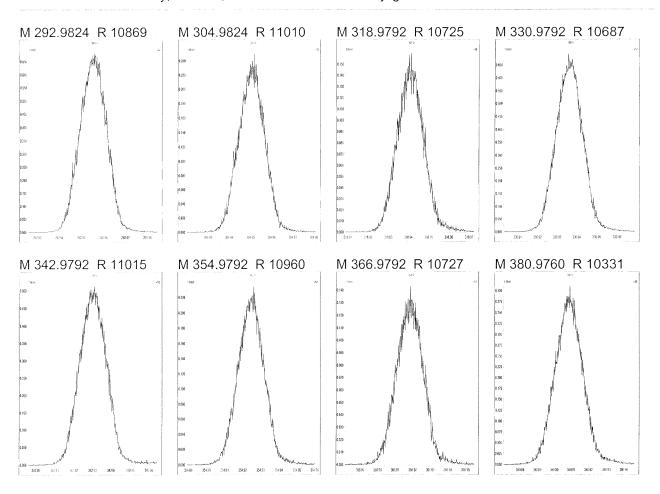
.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 17:40:32 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

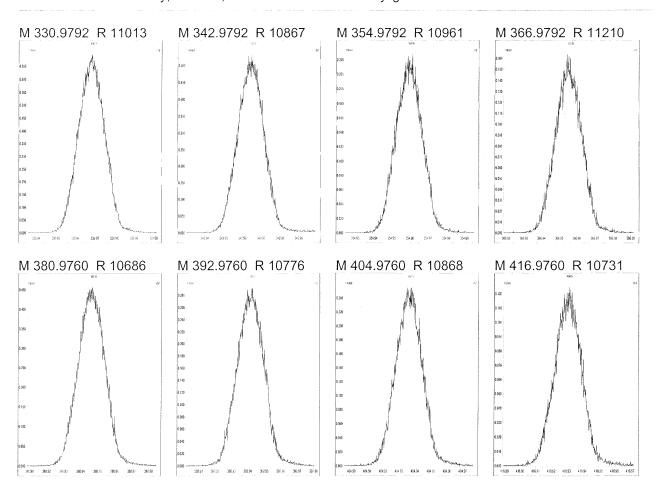
.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 18:31:01 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

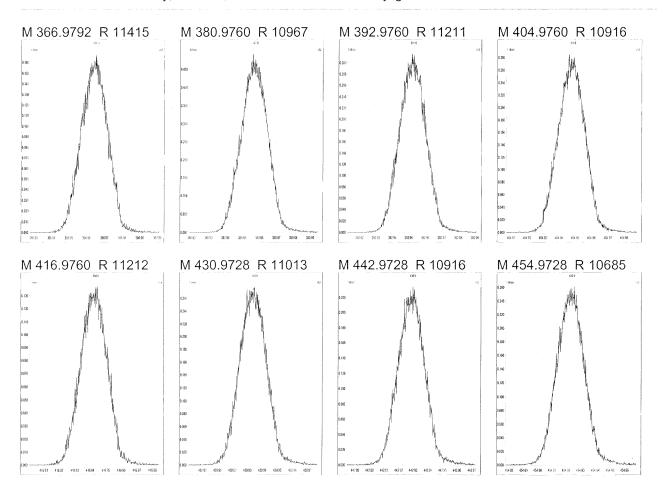
.exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 18:31:45 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

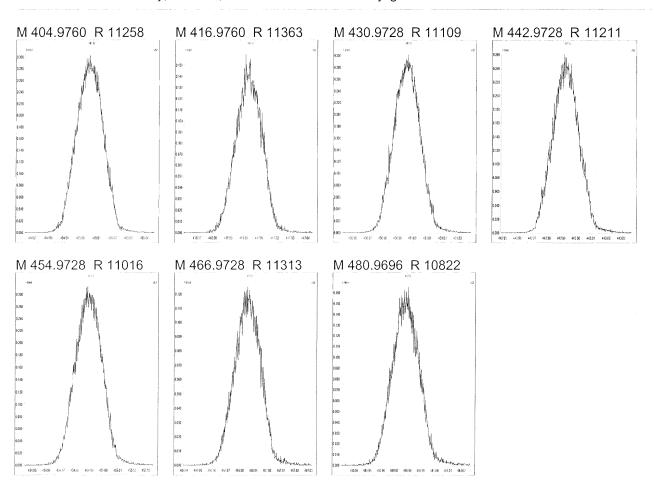
.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 18:32:41 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

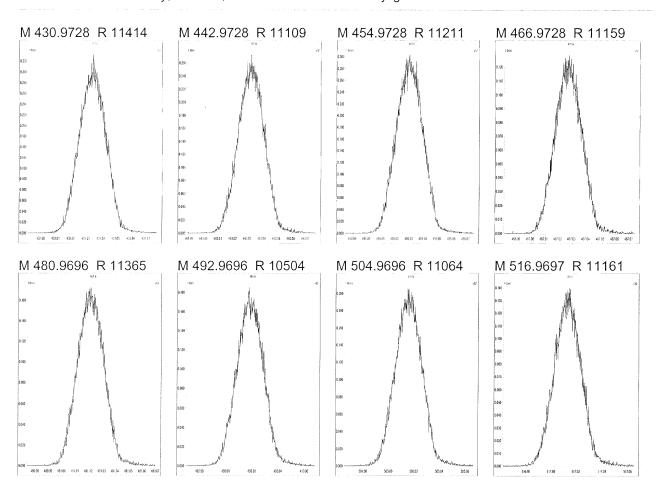
.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 18:33:36 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Tuesday, June 19, 2012 18:34:27 Central Daylight Time

5DFA

WINDOW DEFINING MIX SUMMARY

CLIENT :	ID:
WDM	

Lab Name:

Lab Code:

GC Column: DB-5

Case No.:

ID: 0.25 (mm)

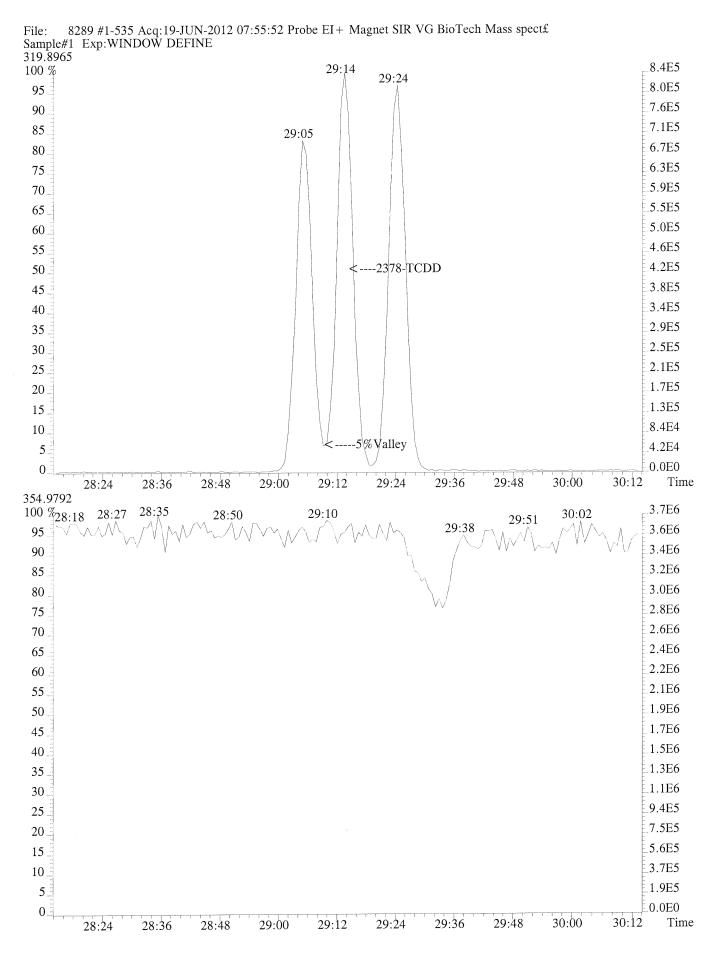
SDG No.:

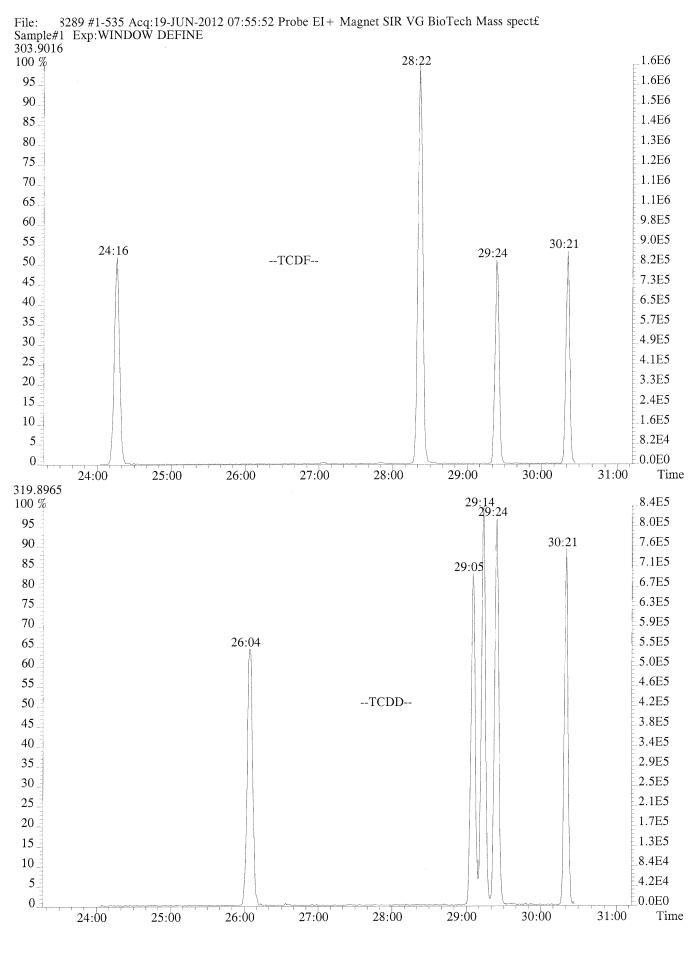
Lab File ID: 8289

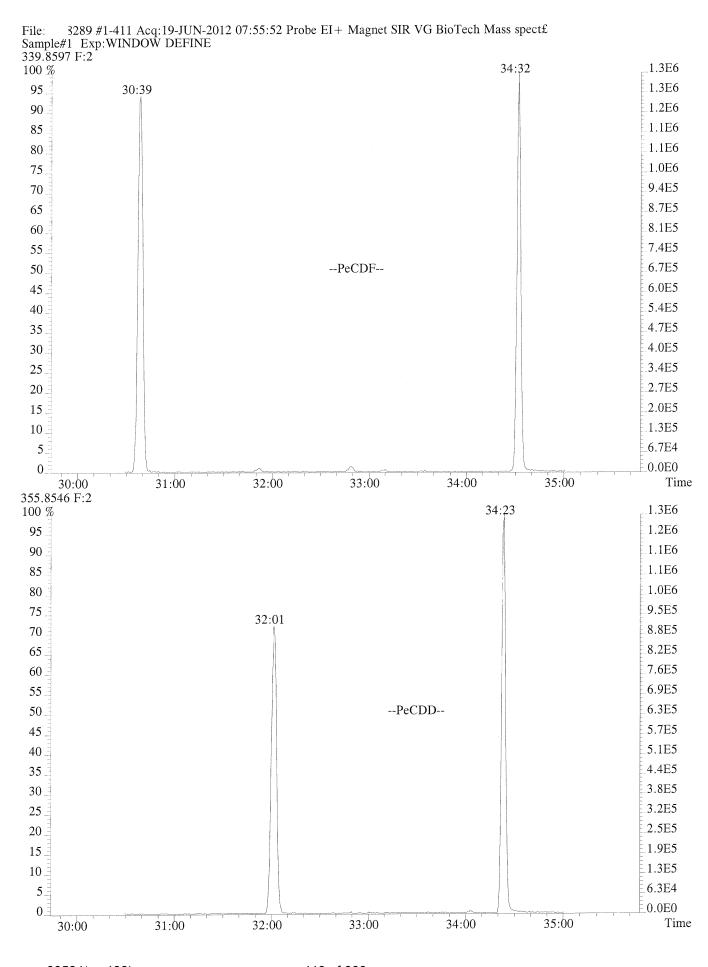
Date Analyzed: 19-JUN-2012 Time Analyzed: 07:55:52

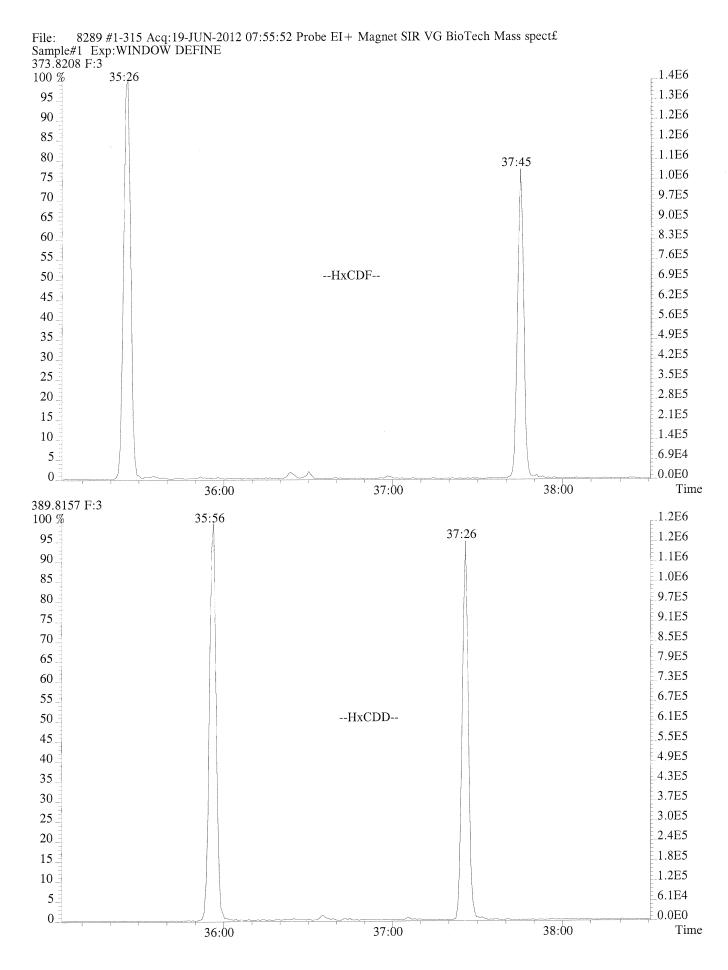
Retention Time Retention Time First Last Eluting Congener Eluting 30:21 TCDF 24:16 30:21 TCDD 26:04 30:39 34:32 PeCDF 34:23 32:01 PeCDD 37:45 HxCDF 35:26 37:26 35:56 HxCDD39:08 40:25

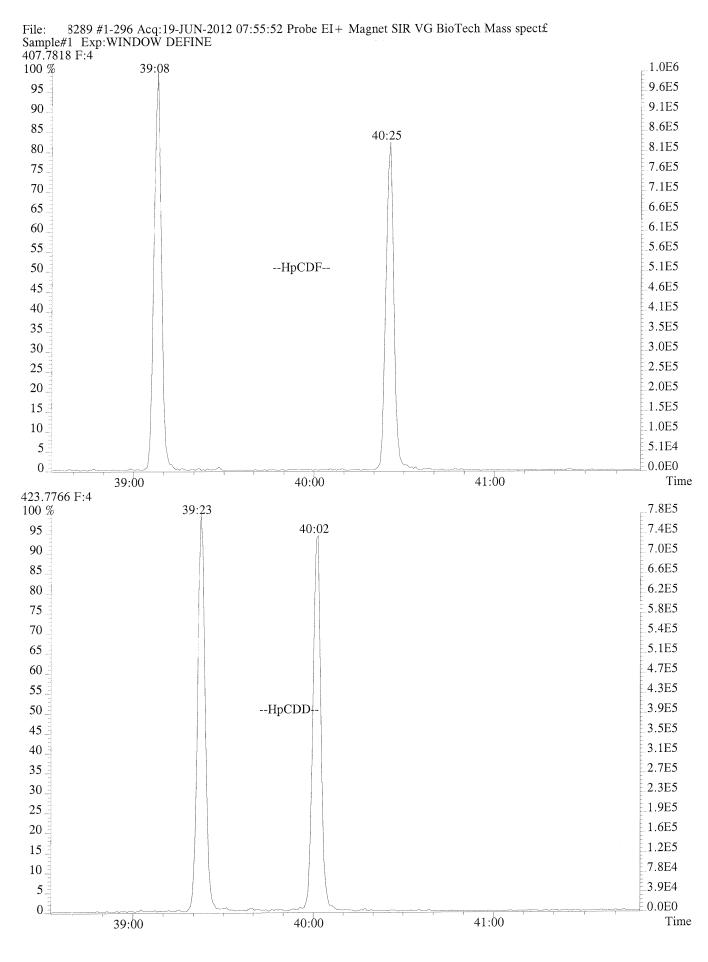
% Valley 2378-TCDD:


HpCDF


HpCDD


5 %


39:23


40:02

7DFA

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Contract:
TO NO.: SDG NO.: Lab Name:

Lab Code: CASE NO.: TO NO.: SDG NO.: GC Column: DB-5 ID: 0.25 (mm) Instrument ID: AutoSpec-Premier Lab File ID: 8290 Analysis Date: 19-JUN-12 Time: 10:02:59

Lab File ID: 8290			ysis Date				: 10:02	:59
Init. Calib. Time.: 0	5:13	Init.	Calib. Da	ate(s).:	04/23/	12		
			MEAN				ION	
	SELECTED	RR/	RR/		%D	ION	RATIO	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	0.99	0.98	1.36		0.76		0.65-0.89
2,3,7,8-TCDF	304/306	0.91	0.93	-2.46		0.76		0.65-0.89
1,2,3,7,8-PeCDF	340/342	0.96	1.00	-4.42		1.54		1.32-1.78
1,2,3,7,8-PeCDD	356/358	0.96	0.91	4.73		1.57		1.32-1.78
2,3,4,7,8-PeCDF	340/342	1.02	0.96	5.66		1.51		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.19	1.22	-2.71		1.20		1.05-1.43
1,2,3,6,7,8-HxCDF	374/376	1.19	1.14	4.82		1.20		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.11	1.00	11.22		1.28		1.05-1.43
1,2,3,6,7,8-HxCDD	390/392	0.91	0.98	-6.82		1.24		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	1.08	1.04	4.03		1.26		1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	1.14	1.14	-0.24		1.19		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	1.15	1.16	-1.14		1.23		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.38	1.39	-1.03		1.01		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.00	0.06		1.05		0.88-1.20
1,2,3,4,7,8,9-HpCDF	408/410	1.39	1.33	4.37		1.01		0.88-1.20
OCDD	458/460	0.98	1.05	-6.75		0.88		0.76-1.02
OCDF	442/444	1.19	1.23	-3.17		0.89		0.76-1.02
Labeled Compounds								
13C-2,3,7,8-TCDD	332/334	1.04	1.00	4.17		0.79		0.65-0.89
13C-1,2,3,7,8-PeCDD	368/370	0.93	0.82	13.37		1.57		1.32-1.78
13C-1,2,3,4,7,8-HxCDD	402/404	0.92	0.93	-0.97		1.27		1.05-1.43
13C-1,2,3,6,7,8-HxCDD	402/404	1.00	0.94	6.22		1.28		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD	424/426	0.89	0.82	8.74		1.06		0.88-1.20
13C-OCDD	470/472	0.76	0.59	27.94		0.90		0.76-1.02
13C-2,3,7,8-TCDF	316/318	1.36	1.28	6.04		0.78		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.28	1.10	16.34		1.57		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.21	1.07	13.99		1.57		1.32-1.78
13C-1,2,3,4,7,8-HxCDF	384/386	1.11	1.06	4.53		0.52		0.43-0.59
13C-1,2,3,6,7,8-HxCDF	384/386	1.18	1.19	-0.75		0.52		0.43-0.59
13C-2,3,4,6,7,8-HxCDF	384/386	1.14	1.10	3.75		0.52		0.43-0.59
13C-1,2,3,7,8,9-HxCDF	384/386	1.07	0.98	8.86		0.53		0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF	418/420	0.92	0.84	9.95		0.45		0.37-0.51
13C-1,2,3,4,7,8,9-HpCDF CLEAN-UP		0.79	0.71	12.05		0.44		0.37-0.51
37Cl-2,3,7,8-TCDD Internal	328/NA	1.06	1.04	1.65		NA		NA
Standards	222/224	NT 7N	TAT 7A	NA	NA	0.80		0.65-0.89
13C-1,2,3,4-TCDD	332/334 402/404	NA NA	AN AN	NA NA	NA NA	1.26		1.05-1.43
13C-1,2,3,7,8,9-HxCDD	402/404	INA	INA	IVA	INH	1.40		T.00-T.40

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

FORM VII-HR CDD-1 DLM02.0(5/05)

7DFB-FORM

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Lab Name:

Contract:
TO NO.: SDG No.: Lab Code: CASE NO.: TO NO.: SDG No.: GC Column: DB-5 ID: 0.25(mm) Instrument ID: AutoSpec-Premier

Analysis Date: 19-JUN-12 Time: 10:02:59

Lab File ID: 8290

Init. Calib. Time.: 05:13
Init. Calib. Date(s).: 04/23/12

Γ:	rme.: 05:13	Init. Calib.	Date(s).:	04/23/12
	Target Analytes	5	RRT	RT
	2,3,7,8-TCDD		1.001	29:11
	2,3,7,8-TCDF		1.001	28:19
	1,2,3,7,8-PeCDF		1.001	32:47
	1,2,3,7,8-PeCDD		1.000	33:53
	2,3,4,7,8-PeCDF		1.000	33:31
	1,2,3,4,7,8-HxCI	F	1.000	36:23
	1,2,3,6,7,8-HxCI		1.000	36:29
	1,2,3,4,7,8-HxCI		1.000	37:05
	1,2,3,6,7,8-HxCI		1.000	37:09
	1,2,3,7,8,9-HxCI		1.008	37:26
	2,3,4,6,7,8-HxCI		1.000	36:57
	1,2,3,7,8,9-HxCI		1.000	37:40
	1,2,3,4,6,7,8-Hp		1.000	39:07
	1,2,3,4,6,7,8-Hp		1.000	40:00
	1,2,3,4,7,8,9-Hp		1.000	40:23
	OCDD		1.000	43:01
	OCDF		1.004	43:10
	Labeled Compour	nds		
	13C-2,3,7,8-TCDI		1.007	29:10
	13C-1,2,3,7,8-Pe		1.170	33:52
	13C-1,2,3,4,7,8-		0.990	37:04
	13C-1,2,3,6,7,8-		0.992	37:09
	13C-1,2,3,4,6,7,	8-HpCDD	1.068	39:59
	13C-OCDD	_	1.149	43:00
	13C-2,3,7,8-TCDE	?	0.978	28:18
	13C-1,2,3,7,8-Pe	eCDF	1.132	32:46
	13C-2,3,4,7,8-Pe		1.158	33:31
	13C-1,2,3,4,7,8-		0.972	36:22
	13C-1,2,3,6,7,8-		0.974	36:28
	13C-2,3,4,6,7,8-		0.987	36:57
	13C-1,2,3,7,8,9-		1.006	37:39
	13C-1,2,3,4,6,7,		1.045	39:06
	13C-1,2,3,4,7,8,		1.079	40:23
	CLEAN-UP	_		
	37Cl-2,3,7,8-TCI	DD	NA	29:11
	Internal			
	Standards			
	13C-1,2,3,4-TCDI		NA	28:57
	13C-1,2,3,7,8,9-		NA	37:26

RRT = (RT of analyte)/(RT of appropriate labeled compound)

DLM02.0(5/05)

FORM VII-HR CDD-2

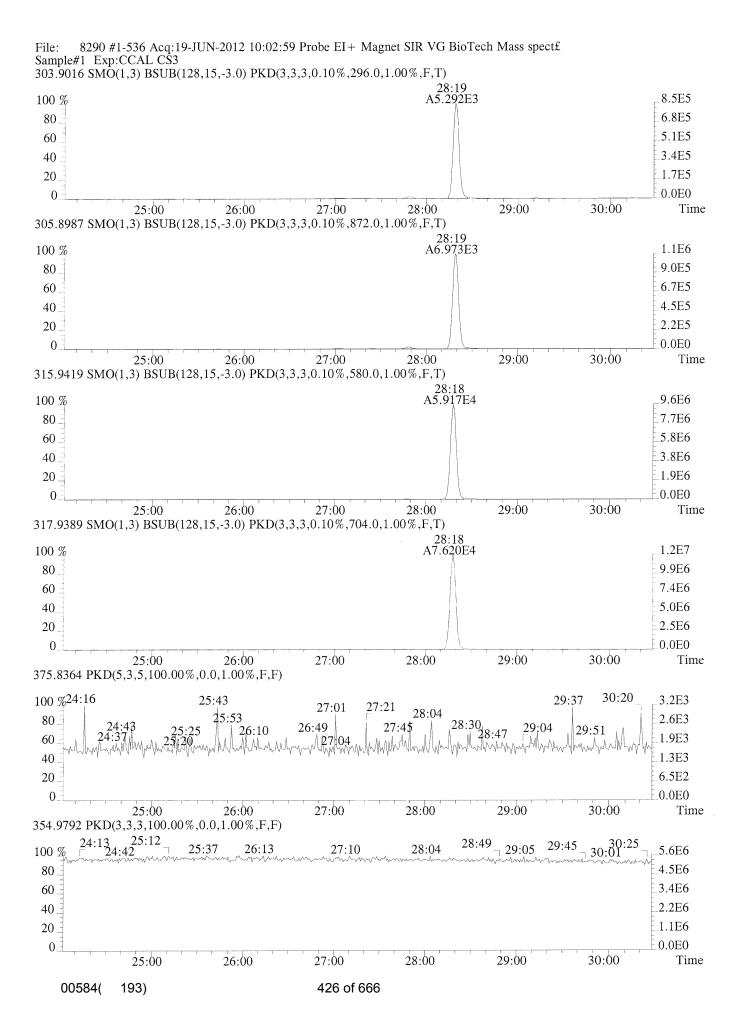
CLIENT ID. CCAL CS3

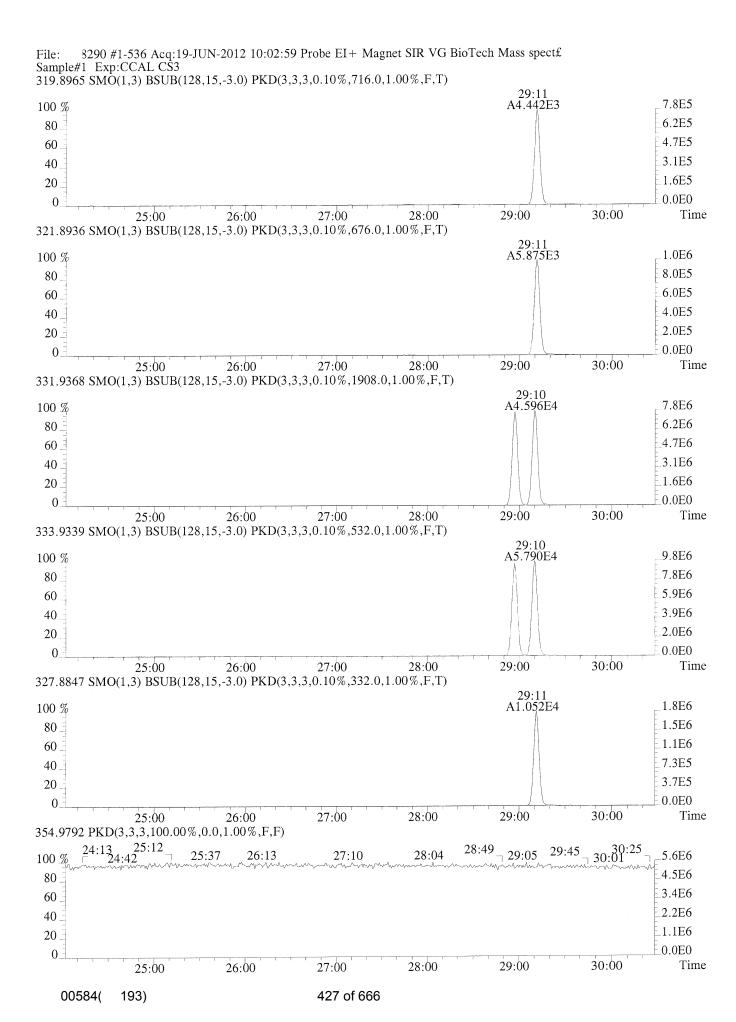
Run #7 Filename 8290 Samp: 1 Inj: 1 Acquired: 19-JUN-12 10:02:59
Processed: 20-JUN-12 11:08:59 Sample ID: CCAL CS3

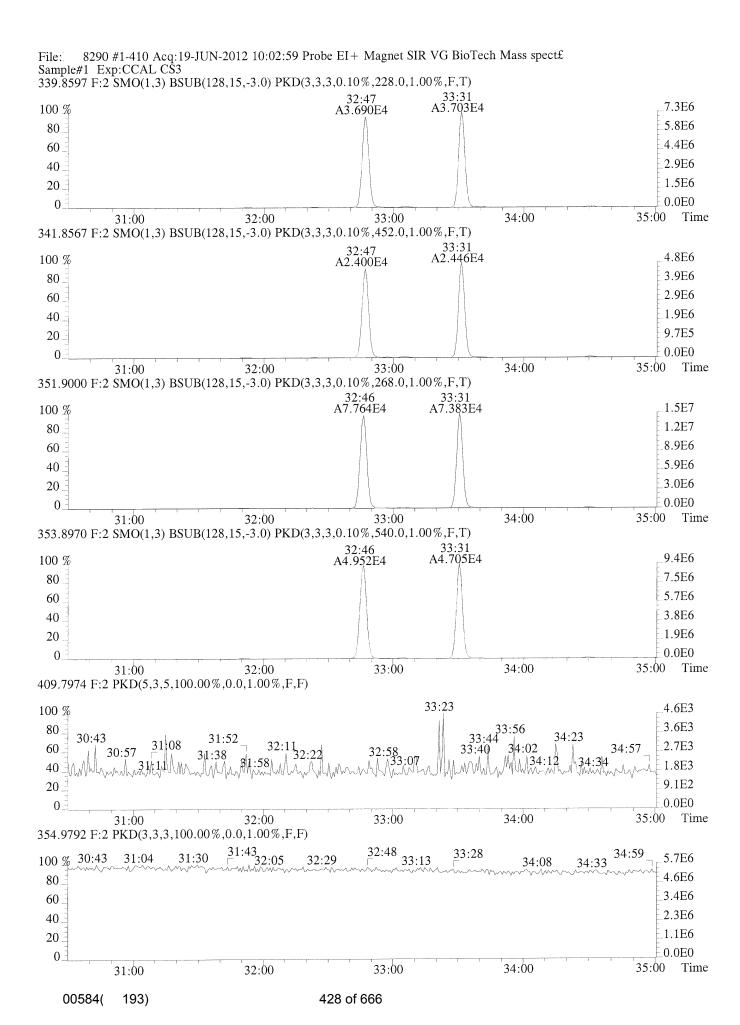
Тур	Name	RT-1	Resp 1	Resp 2	Ratio Meet	Mod?	RRF
1 Unk	2,3,7,8-TCDF	28:19	5.292e+03	6.973e+03	0.76 yes	lno	0.929
2 Unk	1,2,3,7,8-PeCDF		3.690e+04	2.400e+04	1.54 yes	no	1.002
3 Unk	2,3,4,7,8-PeCDF		3.703e+04	2.446e+04	1.51 yes	no	0.963
4 Unk	1,2,3,4,7,8-HxCDF		3.383e+04	2.819e+04	1.20 yes	no	1.221
5 Unk	1,2,3,6,7,8-HxCDF		3.623e+04	3.015e+04	1.20 yes	no	1.139
6 Unk	2,3,4,6,7,8-HxCDF		3.312e+04	2.778e+04	1.19 yes	no	1.139
7 Unk	1,2,3,7,8,9-HxCDF		3.183e+04	2.593e+04	1.23 yes	no	1.165
8 Unk	1,2,3,4,6,7,8-HpCDF		3.011e+04	2.966e+04	1.01 yes	no	1.394
9 Unk	1,2,3,4,7,8,9-HpCDF		2.613e+04	2.583e+04	1.01 yes	no	1.334
10 Unk		43:10	3.991e+04	4.509e+04	0.89 yes	no	1.227
10 01111	3 3 2 2 1				1 14	1	ı
11 Unk	2,3,7,8-TCDD	29:11	4.442e+03	5.875e+03	0.76 yes	no	0.980
12 Unk	1,2,3,7,8-PeCDD		2.703e+04	1.724e+04	1.57 yes	no	0.915
13 Unk	1,2,3,4,7,8-HxCDD		2.706e+04	2.110e+04	1.28 yes	yes	1.001
14 Unk	1,2,3,6,7,8-HxCDD		2.362e+04	1.904e+04	1.24 yes	yes	0.978
15 Unk	1,2,3,7,8,9-HxCDD		2.720e+04	2.157e+04	1.26 yes	no	1.041
16 Unk	1,2,3,4,6,7,8-HpCDD		2.143e+04	2.047e+04	1.05 yes	no	1.002
17 Unk		43:01	3.298e+04	3.736e+04	0.88 yes	no	1.054
	'		,		, , , , ,		•
18 IS	13C-2,3,7,8-TCDF	28:18	5.917e+04	7.620e+04	0.78 yes	no	1.282
19 IS	13C-1,2,3,7,8-PeCDF	32:46	7.764e+04	4.953e+04	1.57 yes	no	1.098
20 IS	13C-2,3,4,7,8-PeCDF	33:31	7.383e+04	4.705e+04	1.57 yes	no	1.065
21 IS	13C-1,2,3,4,7,8-HxCDF	36:22	3.557e+04	6.883e+04	0.52 yes	no	1.062
22 IS	13C-1,2,3,6,7,8-HxCDF	36:28	3.812e+04	7.306e+04	0.52 yes	no	1.191
23 IS	13C-2,3,4,6,7,8-HxCDF	36:57	3.684e+04	7.035e+04	0.52 yes	no	1.098
24 IS	13C-1,2,3,7,8,9-HxCDF	37:39	3.454e+04	6.578e+04	0.53 yes	no	0.980
25 IS	13C-1,2,3,4,6,7,8-HpCDF	39:06	2.697e+04	5.965e+04	0.45 yes	no	0.837
26 IS	13C-1,2,3,4,7,8,9-HpCDF	40:23	2.296e+04	5.166e+04	0.44 yes	no	0.708
27 IS	13C-2,3,7,8-TCDD		4.596e+04	5.790e+04	0.79 yes	no	1.002
28 IS	13C-1,2,3,7,8-PeCDD	33:52	5.648e+04	3.593e+04	1.57 yes	no	0.819
29 IS	13C-1,2,3,4,7,8-HxCDD		4.835e+04	3.819e+04	1.27 yes	yes	0.929
30 IS	13C-1,2,3,6,7,8-HxCDD	37:09	5.259e+04	4.101e+04	1.28 yes	yes	0.937
31 IS	13C-1,2,3,4,6,7,8-HpCDD	39:59	4.291e+04	4.066e+04	1.06 yes	no	0.817
32 IS	13C-OCDD	43:00	6.771e+04	7.543e+04	0.90 yes	no	0.595
						1	
33 RS/I			4.438e+04	5.517e+04	0.80 yes	no	-
34 RS/F			5.252e+04	4.155e+04	1.26 yes	no	-
35 C/Ur	37Cl-2,3,7,8-TCDD	29:11	1.052e+04			no	1.039

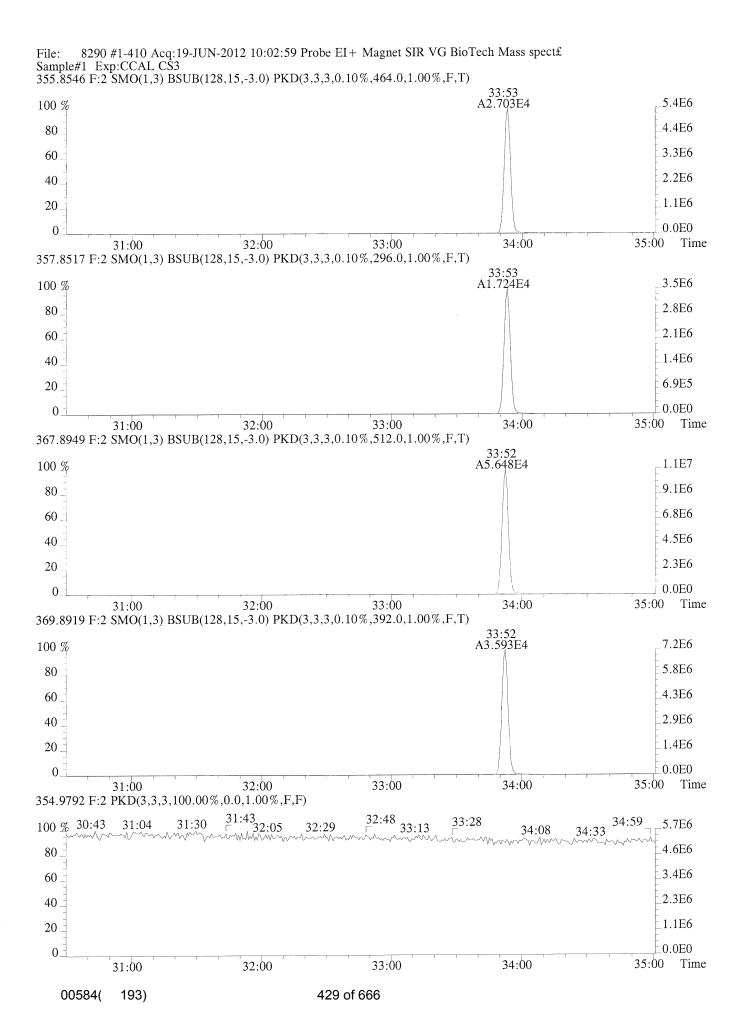
CLIENT ID. CCAL CS3

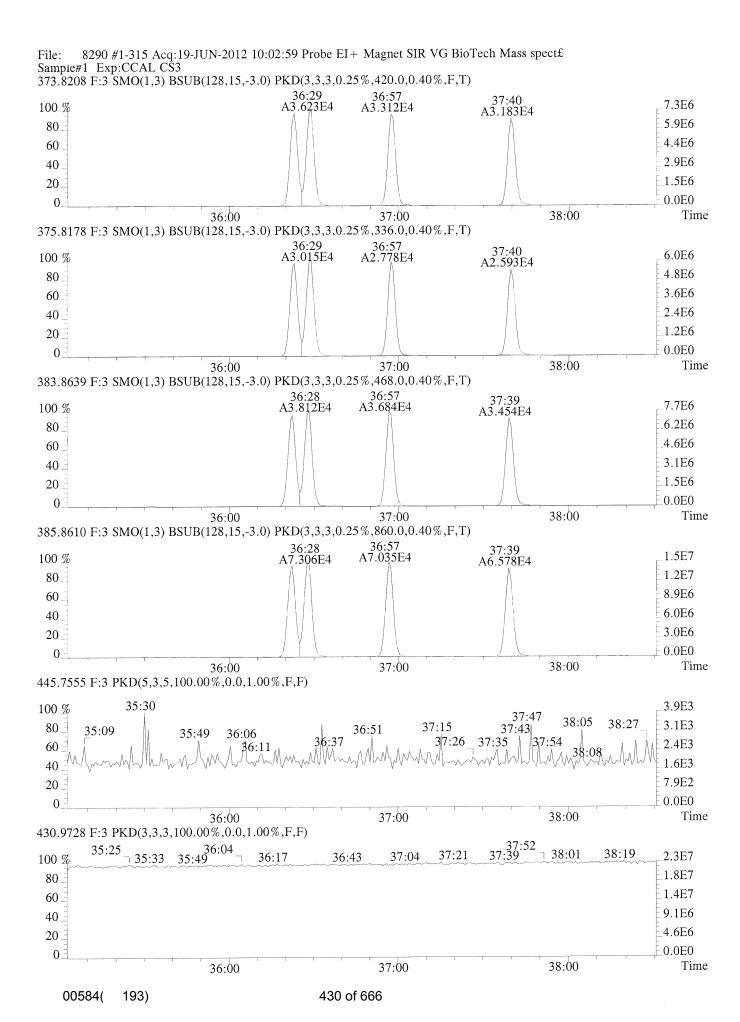
Acquired: 19-JUN-12 10:02:59 Inj: 1 Run #7 Filename 8290 Samp: 1 LAB. ID: CCAL CS3 Processed: 20-JUN-12 11:08:591 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2.96e+02 2.9e+03 1.12e+06 8.72e+02 1.3e + 031 2,3,7,8-TCDF 8.49e+05 2.28e+02 3.0e+04 4.53e+06 4.52e+02 1.0e + 042 1,2,3,7,8-PeCDF 6.92e+06 4.52e+02 1.1e + 043 2,3,4,7,8-PeCDF 7.26e+06 2.28e+02 | 3.2e+04 | 4.84e+06 4 1,2,3,4,7,8-HxCDF 7.12e+06 4.20e+02 1.7e+04 5.88e+06 3.36e+02 1.8e + 045 1,2,3,6,7,8-HxCDF 7.33e+06 4.20e+02 1.7e+04 6.03e+06 3.36e+02 1.8e+04 1.8e+04 2,3,4,6,7,8-HxCDF 7.03e+06 4.20e+02 1.7e+04 5.96e+06 3.36e+02 6 7 1,2,3,7,8,9-HxCDF 6.68e+06 4.20e+02 1.6e+04 5.45e + 063.36e+02 | 1.6e+04 1.10e+03 5.1e+03 5.53e+06 1.09e+03 | 5.1e+03 1,2,3,4,6,7,8-HpCDF 5.66e+06 8 4.1e+03 4.57e+06 1.09e+03 4.2e + 034.56e+06 1.10e+03 9 1,2,3,4,7,8,9-HpCDF 1.09e+03 4.8e + 03OCDF 4.71e+06 | 3.76e+02 | 1.3e+04 5.24e+06 10 9.97e+05 6.76e+02 | 1.5e+03 2,3,7,8-TCDD 7.78e+05 7.16e+02 1.1e+03 11 1,2,3,7,8-PeCDD 2.96e+02 | 1.2e+04 5.44e+06 4.64e+02 1.2e+04 3.45e+06 12 4.80e+02 | 9.4e+03 2.80e+02 | 2.1e+04 | 4.53e+06 1,2,3,4,7,8-HxCDD 5.76e+06 13 4.80e+02 | 8.8e+03 1,2,3,6,7,8-HxCDD 5.16e+06 2.80e+02 1.8e+04 4.21e+06 14 4.80e+02 9.7e + 031,2,3,7,8,9-HxCDD 5.87e+06 2.80e+02 2.1e+04 4.68e+06 15 1.1e+04 1,2,3,4,6,7,8-HpCDD 3.90e+06 4.36e+02 8.9e+03 3.70e+06 3.36e+02 16 OCDD | 3.37e+06 | 3.56e+02 | 9.5e+03 3.87e+06 | 2.36e+02 | 1.6e+0417 7.04e+02 1.8e + 0418 13C-2,3,7,8-TCDF 9.61e+06 5.80e+02 1.7e+04 1.24e+07 5.40e+02 | 1.7e+04 19 13C-1,2,3,7,8-PeCDF 1.44e+07 2.68e+02 5.4e+04 9.26e+06 1.7e + 0413C-2,3,4,7,8-PeCDF 1.48e+07 2.68e+02 5.5e+04 9.43e+06 5.40e+02 20 21 4.68e+02 1.6e+04 1.42e+07 8.60e+02 | 1.7e+04 13C-1,2,3,4,7,8-HxCDF 7.40e+06 4.68e+02 1.6e+04 1.46e+07 8.60e+02 | 1.7e+04 13C-1,2,3,6,7,8-HxCDF 7.69e+06 22 1.6e+04 1.49e+07 8.60e+02 | 1.7e+04 7.72e+06 4.68e+02 13C-2,3,4,6,7,8-HxCDF 23 8.60e+02 | 1.6e+04 1.37e+07 2.4 13C-1,2,3,7,8,9-HxCDF 7.11e+06 4.68e+02 1.5e+04 1.05e+03 4.8e+03 1.12e+07 1.18e+03 | 9.5e+03 25 13C-1,2,3,4,6,7,8-HpCDF 5.06e+06 4.05e+06 | 1.05e+03 | 3.9e+03 9.05e+06 | 1.18e+03 | 7.7e+03 26 13C-1,2,3,4,7,8,9-HpCDF 13C-2,3,7,8-TCDD 4.1e+03 9.78e+06 5.32e+02 | 1.8e+04 27 7.80e+06 | 1.91e+03 | 2.2e+04 7.24e+06 3.92e+02 | 1.8e+04 1.13e+07 5.12e+02 28 13C-1,2,3,7,8-PeCDD 5.72e+02 8.09e+06 1.4e + 0413C-1,2,3,4,7,8-HxCDD 1.02e+07 4.64e+02 2.2e+04 29 13C-1,2,3,6,7,8-HxCDD 9.16e+06 5.72e+02 1.6e + 041.16e+07 4.64e + 022.5e+04 30 7.24e+06 4.64e+02 1.6e + 045.28e+02 1.4e+04 31 13C-1,2,3,4,6,7,8-HpCDD 7.65e+06 7.83e+06 2.32e+02 | 3.4e+04 32 13C-OCDD 6.94e+06 4.24e+02 1.6e+04 9.52e+06 5.32e+02 1.8e + 0413C-1,2,3,4-TCDD 7.70e+06 | 1.91e+03 | 4.0e+03 33 2.4e+04 | 8.87e+06 | 5.72e+02 | 1.6e+04

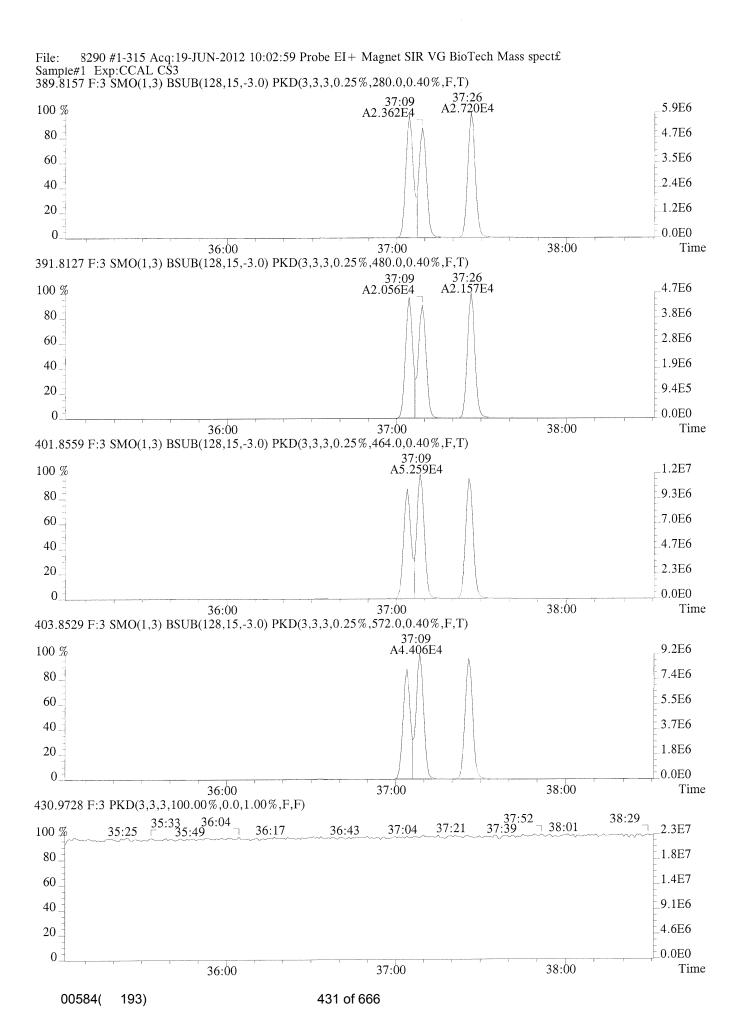

4.64e+02


5.5e + 03


13C-1,2,3,7,8,9-HxCDD


34 35 1.12e+07


37Cl-2,3,7,8-TCDD | 1.82e+06 | 3.32e+02 |



8290 #1-315 Acq:19-JUN-2012 10:02:59 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp:CCAL CS3 389.8157 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,280.0,0.40%,F,T) 37:05 A2.706E4 5.8E6 100 % 5.5E6 95 37:09 A2.362E4 5.2E6 90 4.9E6 85 4.6E6 80 4.3E6 75 4.0E6 70 3.7E6 65 3.5E6 60 _3.2E6 55 2.9E6 50 2.6E6 45 2.3E6 40 2.0E6 35 1.7E6 30 1.4E6 25 1.2E6 20 8.6E5 15 .5.8E5 10 2.9E5 5 0.0E0 36:54 37:06 37:12 37:18 Time 37:00 391.8127 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,480.0,0.40%,F,T) 37:05 A2.110E4 4.5E6 100 % 37:09 A1.904E4 4.3E6 95 4.1E6 90 3.9E6 85 3.6E6 80 WEST SHIPS HOLD TAIL TAIL ON 3.4E6 75 3.2E6 70 3.0E6 65 2.7E6 60 06/2/12^{2.5E6} 55 16/20/12 2.3E6 50 2.0E6 45 1.8E6 40 1.6E6 35 1.4E6 30

37:06

432 of 666

1.1E6

9.1E5

6.8E5

.4.5E5

_2.3E5

.0.0E0

Time

37:18

37:12

36:54

37:00

25

20

15

10

5

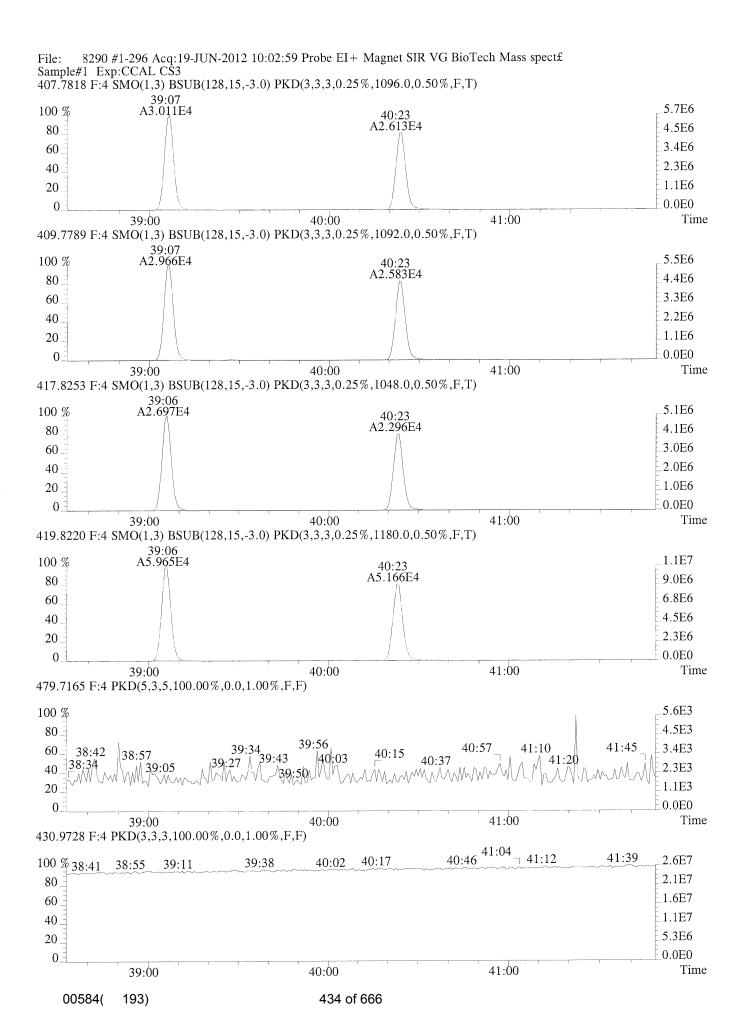
0

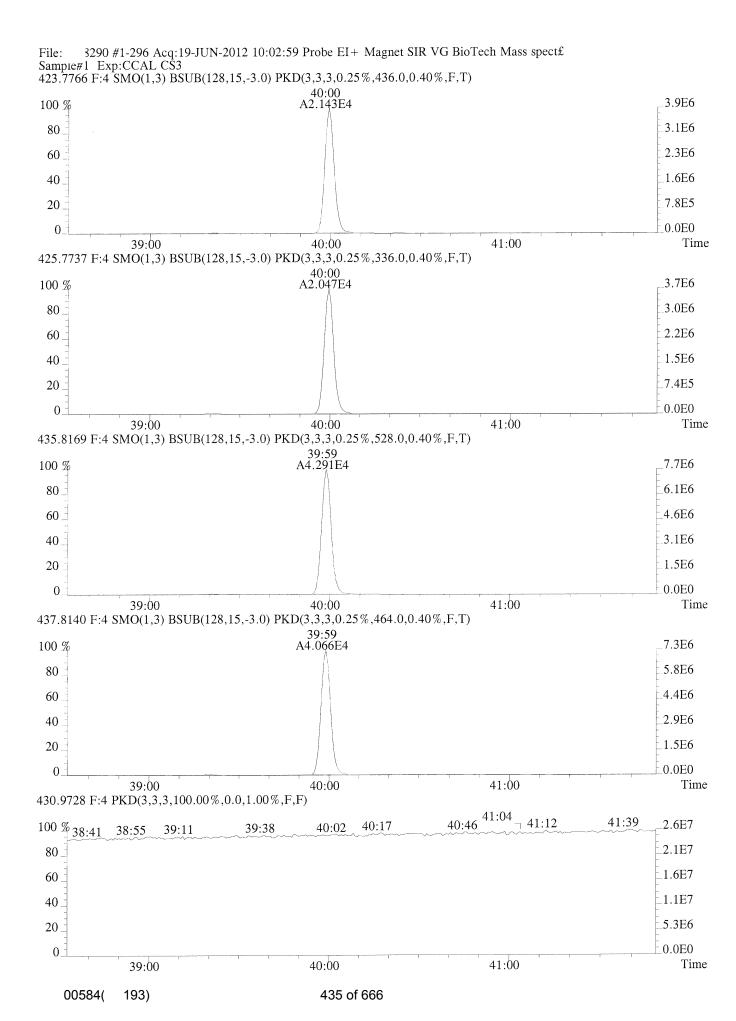
8290 #1-315 Acq:19-JUN-2012 10:02:59 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp:CCAL CS3 401.8559 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,464.0,0.40%,F,T) 37:09 A5.259E4 1.2E7 100 % 1.1E7 95 37:04 A4.835E4 1.1E7 90 9.9E6 85 9.3E6 80 8.8E6 75 .8.2E6 70 65 7.6E6 7.0E6 60 6.4E6 55 5.8E6 50 5.3E6 45 4.7E6 40 4.1E6 35 3.5E6 30 2.9E6 25 2.3E6 20 1.8E6 15 _1.2E6 10 5.8E5 5 .0.0E0 0. 37:18 37:00 37:06 37:12 Time 36:54 403.8529 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,572.0,0.40%,F,T) 37:09 A4.101E4 9.2E6 100 % 8.7E6 95 37:04 A3.819E4 8.3E6 90 7.8E6 85 7.4E6 80 6.9E6 75 THARCA LEOCHDING FINACHATED 3 OF THE REPORT SUCH 6.4E6 70 6.0E6 5.5E6 13.1E6 4.6E6 4.1E6 3.7E6 3.2E6 2.8E6 2.3T 6.0E6 65 4. With all 60 55 50 45 40 35 30 25 20 15 9.2E5 10 4.6E5 5

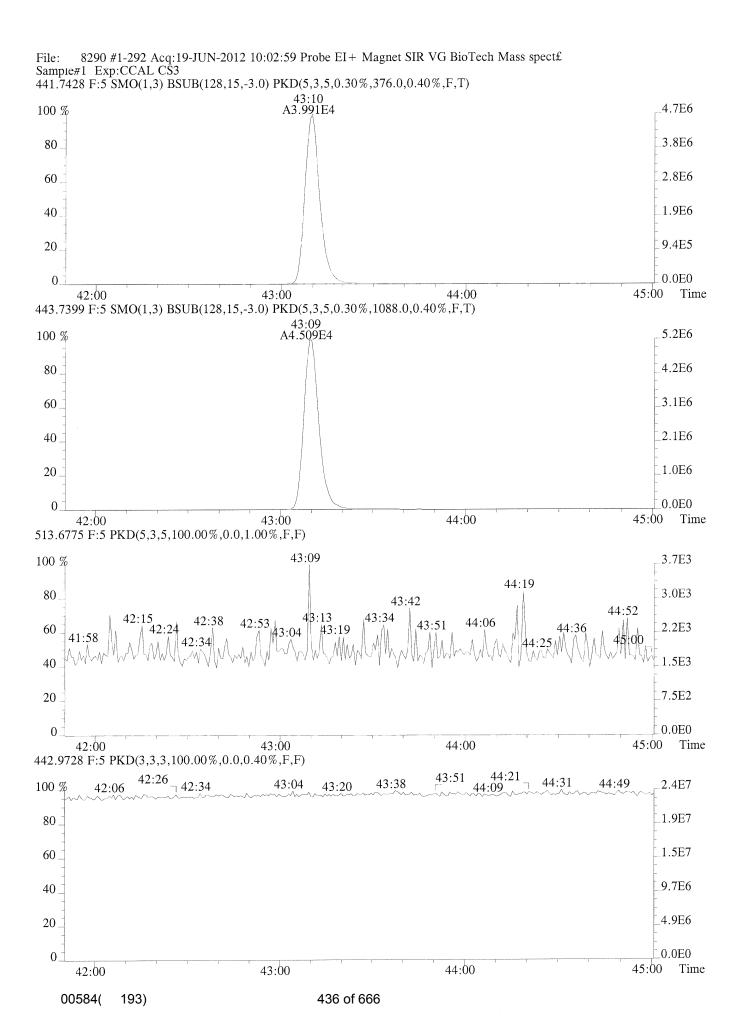
36:54

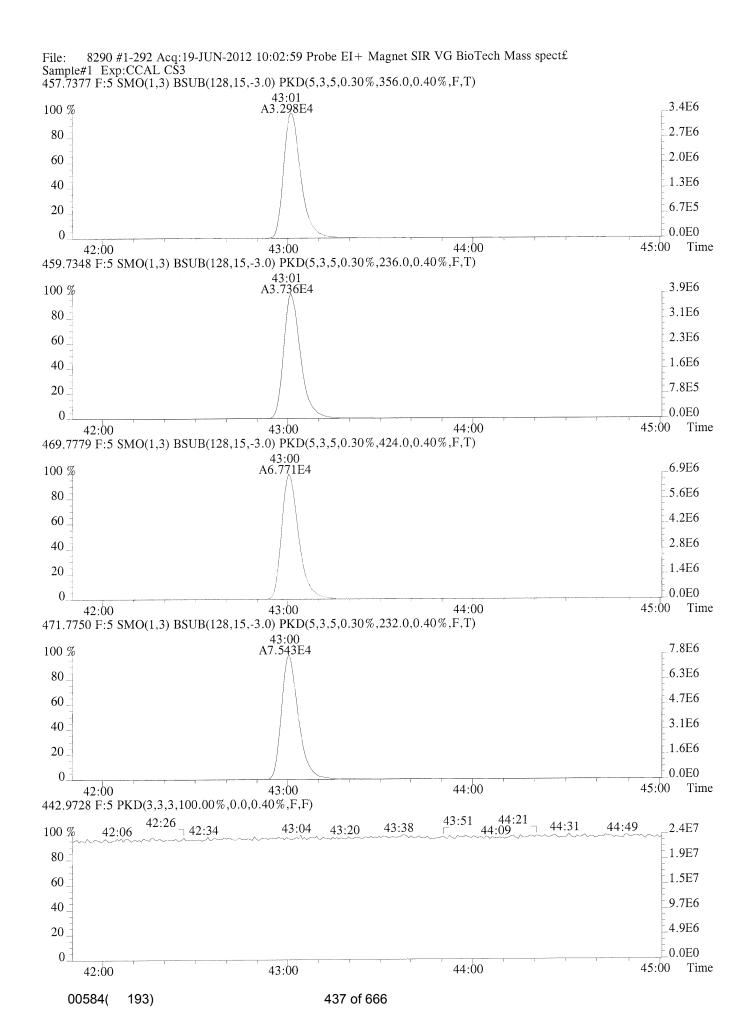
37:00

0.


37:06


37:12


.0.0E0


Time

37:18

USEPA -7DFA

CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Lab Name: Contract:

Lab Code: CASE NO.: TO NO.: SDG NO.: 3

GC Column: DB-5 ID: 0.25 (mm) Instrument ID: AutoSpec-Premier

Lab File ID: 8295 Analysis Date: 19-JUN-12 Time: 16:30:11

Lab File ID: 8295			lysis Date				: 16:30	:11
Init. Calib. Time.: 0	5:13	Init.	Calib. Da	ate(s).:	04/23/	12		
			MEAN				ION	
	SELECTED	RR/	RR/		%D	ION	RATIO	ION RATIO
Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
2,3,7,8-TCDD	320/322	1.00	0.98	2.51		0.78		0.65-0.89
2,3,7,8-TCDF	304/306	0.91	0.93	-1.66		0.76		0.65-0.89
1,2,3,7,8-PeCDF	340/342	0.95	1.00	-4.81		1.56		1.32-1.78
1,2,3,7,8-PeCDD	356/358	0.96	0.91	5.03		1.54		1.32-1.78
2,3,4,7,8-PeCDF	340/342	1.02	0.96	6.45		1.55		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.20	1.22	-1.45		1.23		1.05-1.43
1,2,3,6,7,8-HxCDF	374/376	1.22	1.14	7.00		1.23		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.11	1.00	11.05		1.26		1.05-1.43
1,2,3,6,7,8-HxCDD	390/392	0.91	0.98	-7.36		1.31		1.05-1.43
1,2,3,7,8,9-HxCDD	390/392	1.04	1.04	-0.02		1.27		1.05-1.43
2,3,4,6,7,8-HxCDF	374/376	1.14	1.14	0.06		1.20		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	1.15	1.16	-1.52		1.24		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.40	1.39	0.24		1.03		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.00	0.19		1.07		0.88-1.20
1,2,3,4,7,8,9-HpCDF	408/410	1.44	1.33	7.56		1.05		0.88-1.20
OCDD	458/460	0.98	1.05	-7.32		0.89		0.76-1.02
OCDF	442/444	1.16	1.23	-5.07		0.90		0.76-1.02
Labeled Compounds	·							
13C-2,3,7,8-TCDD	332/334	1.07	1.00	6.88		0.79		0.65-0.89
13C-1,2,3,7,8-PeCDD	368/370	0.93	0.82	13.90		1.58		1.32-1.78
13C-1,2,3,4,7,8-HxCDD	402/404	1.04	0.93	11.77		1.28		1.05-1.43
13C-1,2,3,6,7,8-HxCDD	402/404	1.07	0.94	14.38		1.27		1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD	*.	0.99	0.82	21.19		1.07		0.88-1.20
13C-OCDD	470/472	0.78	0.59	31.20		0.91		0.76-1.02
13C-2,3,7,8-TCDF	316/318	1.33	1.28	3.92		0.78		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.26	1.10	14.32		1.58		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.20	1.07	12.55		1.59		1.32-1.78
13C-1,2,3,4,7,8-HxCDF	384/386	1.29	1.06	21.67		0.53		0.43-0.59
13C-1,2,3,6,7,8-HxCDF	384/386	1.26	1.19	5.44		0.53		0.43-0.59
13C-2,3,4,6,7,8-HxCDF	384/386	1.21	1.10	9.72		0.53		0.43-0.59
13C-1,2,3,7,8,9-HxCDF	384/386	1.11	0.98	13.73		0.53		0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF		0.81	0.84	-2.69		0.46		0.37-0.51
13C-1,2,3,4,7,8,9-HpCDF	418/420	0.81	0.71	14.72		0.46		0.37-0.51
CLEAN-UP	•							
37Cl-2,3,7,8-TCDD	328/NA	1.11	1.04	6.78		NA		NA
Internal	•							
Standards								
13C-1,2,3,4-TCDD	332/334	NA	NА	NA	NA	0.80		0.65-0.89
13C-1,2,3,7,8,9-HxCDD	402/404	NA	AK	NA	NA	1.30		1.05-1.43
	•							

The laboratory must flag any analyte which does not meet criteria for percent Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate flag column.

FORM VII-HR CDD-1

DLM02.0(5/05)

7DFB-FORM

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Lab Name:

Lab Name: Contract:

Lab Code: CASE NO.: TO NO.: SDG No.: 3

GC Column: DB-5 ID: 0.25 (mm) Instrument ID: AutoSpec-Premier

Analysis Date: 19-JUN-12 Time: 16:30:11

Lab File ID: 8295

Init. Calib. Time.: 05:13
Init. Calib. Date(s).: 04/23/12

Target Analytes	RRT	RT	
2,3,7,8-TCDD	1.001	29:14	
2,3,7,8-TCDF	1.001	28:22	
1,2,3,7,8-PeCDF	1.001	32:49	
1,2,3,7,8-PeCDD	1.000	33:55	
2,3,4,7,8-PeCDF	1.000	33:33	
1,2,3,4,7,8-HxCDF	1.000	36:25	
1,2,3,6,7,8-HxCDF	1.000	36:30	
1,2,3,4,7,8-HxCDD	1.000	37:07	
1,2,3,6,7,8-HxCDD	1.000	37:11	
1,2,3,7,8,9-HxCDD	1.008	37:28	
2,3,4,6,7,8-HxCDF	1.000	36:59	
1,2,3,7,8,9-HxCDF	1.000	37:42	
1,2,3,4,6,7,8-HpCDF	1.000	39:09	
1,2,3,4,6,7,8-HpCDD	1.000	40:02	
1,2,3,4,7,8,9-HpCDF	1.000	40:25	
OCDD	1.000	43:02	
OCDF	1.003	43:11	
Labeled Compounds			
13C-2,3,7,8-TCDD	1.007	29:12	
13C-1,2,3,7,8-PeCDD	1.170	33:54	
13C-1,2,3,4,7,8-HxCDD	0.990	37:06	
13C-1,2,3,6,7,8-HxCDD	0.992	37:11	
13C-1,2,3,4,6,7,8-HpCDD	1.068	40:01	
13C-OCDD	1.149	43:02	
13C-2,3,7,8-TCDF	0.978	28:20	
13C-1,2,3,7,8-PeCDF	1.132	32:48	
13C-2,3,4,7,8-PeCDF	1.158	33:33	
13C-1,2,3,4,7,8-HxCDF	0.972	36:24	
13C-1,2,3,6,7,8-HxCDF	0.974	36:30	
13C-2,3,4,6,7,8-HxCDF	0.987	36:59	
13C-1,2,3,7,8,9-HxCDF	1.006	37:41	
13C-1,2,3,4,6,7,8-HpCDF	1.044	39:08	
13C-1,2,3,4,7,8,9-HpCDF	1.079	40:25	
CLEAN-UP			
37Cl-2,3,7,8-TCDD	NA	29:14	
Internal			
Standards			
13C-1,2,3,4-TCDD	NA	28:59	
13C-1,2,3,7,8,9-HxCDD	NA	37:28	

RRT = (RT of analyte) / (RT of appropriate labeled compound)

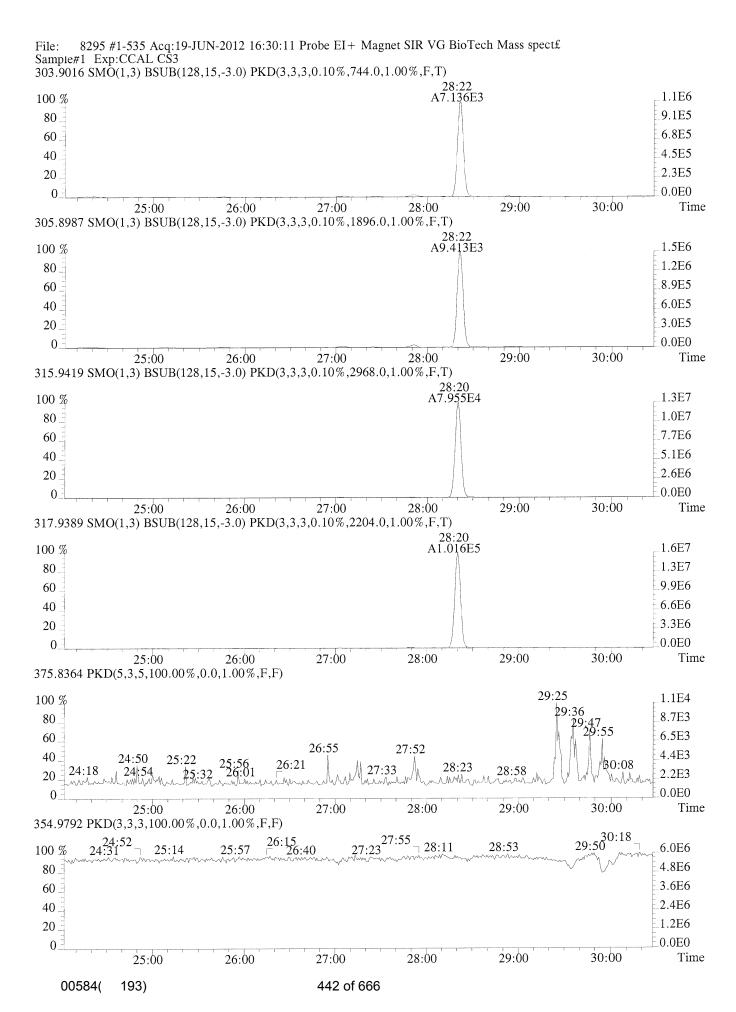
DLM02.0(5/05)

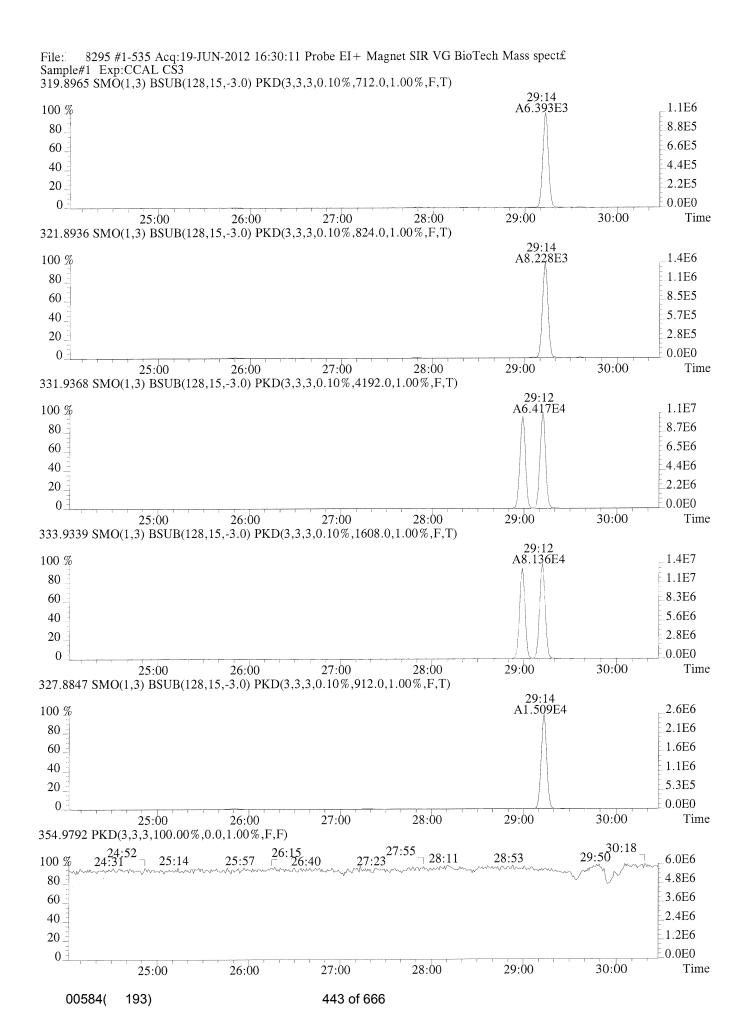
FORM VII-HR CDD-2

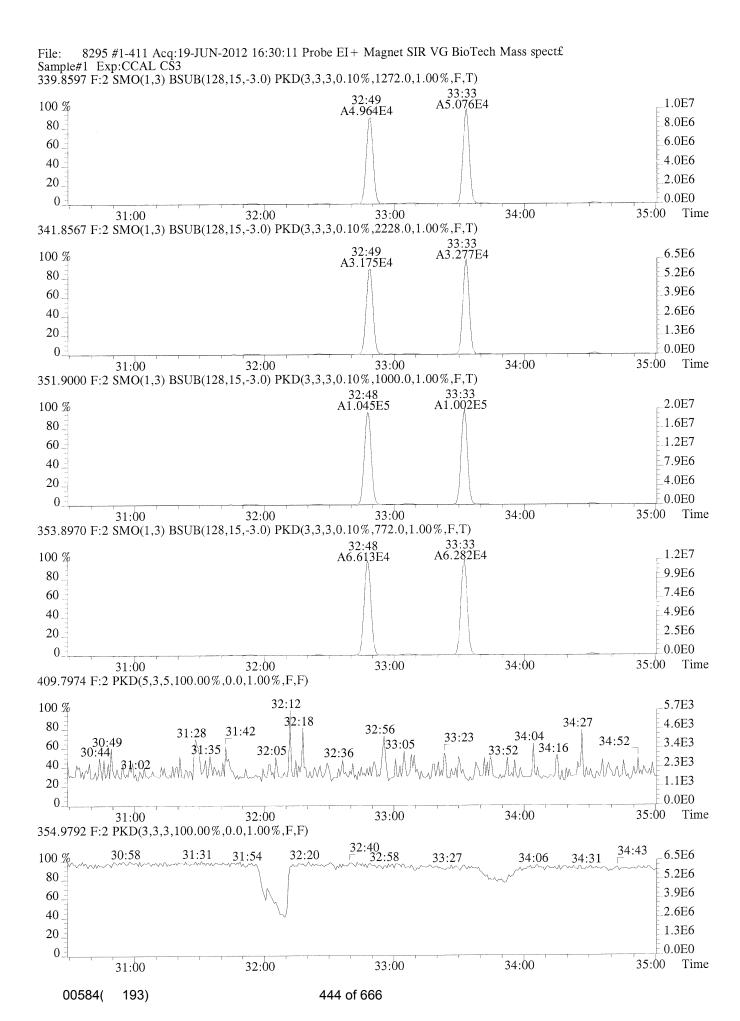
CCAL CS3

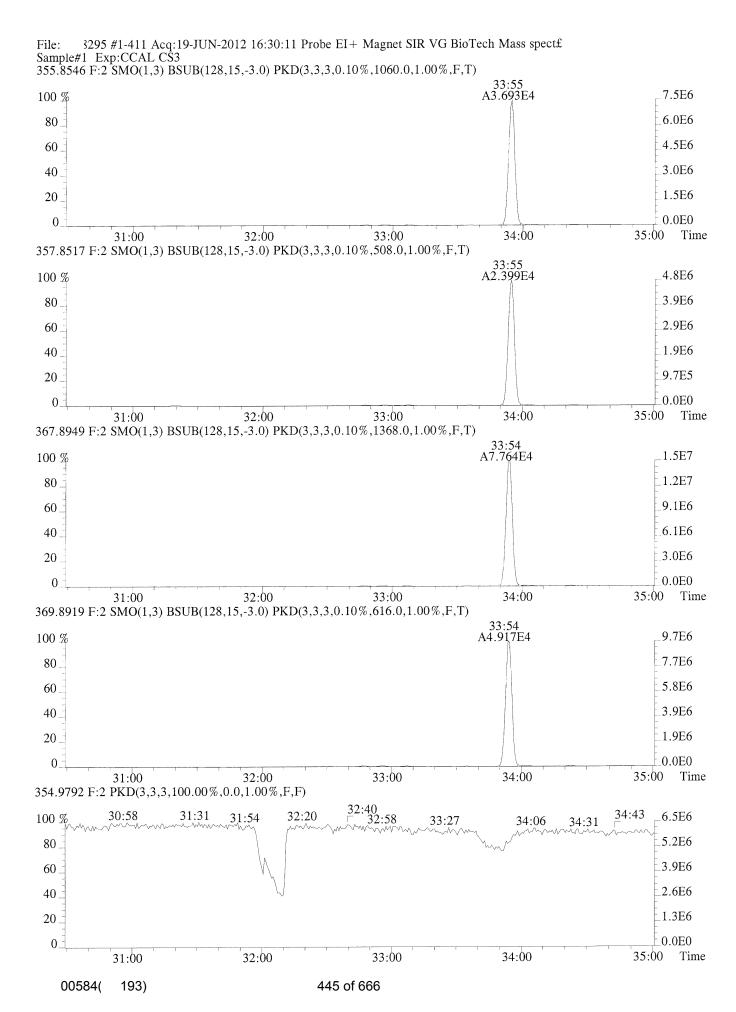
 Run #12
 Filename
 8295
 Samp: 1
 Inj: 1
 Acquired: 19-JUN-12
 16:30:11

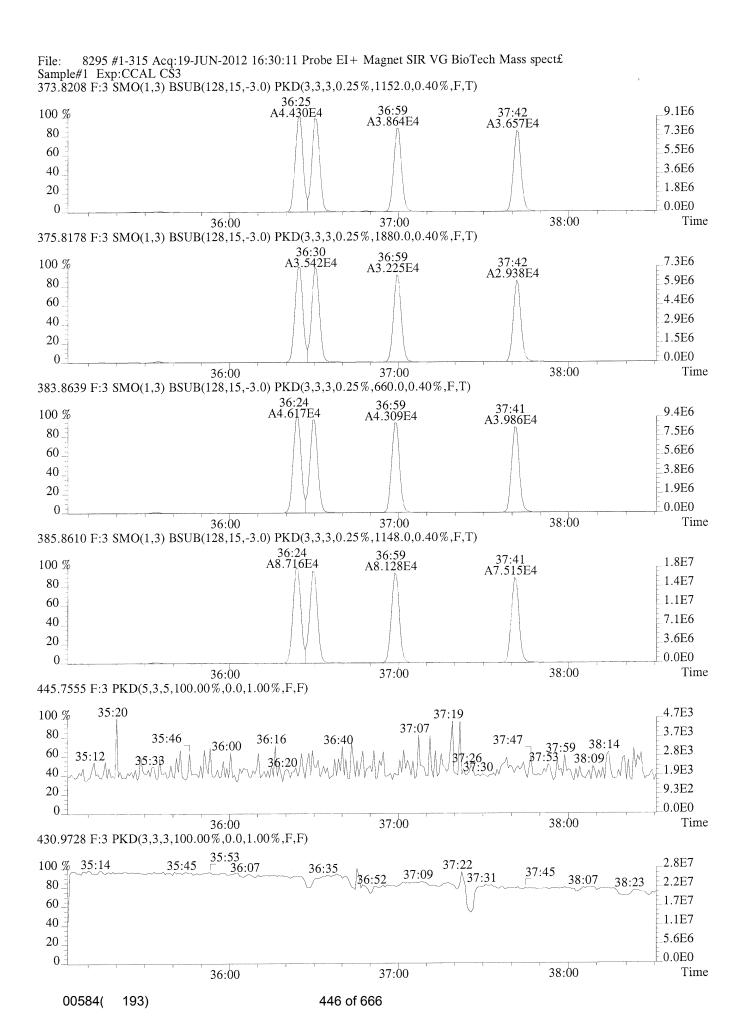
 Processed: 20-JUN-12
 11:09:27
 Sample ID: CCAL CS3

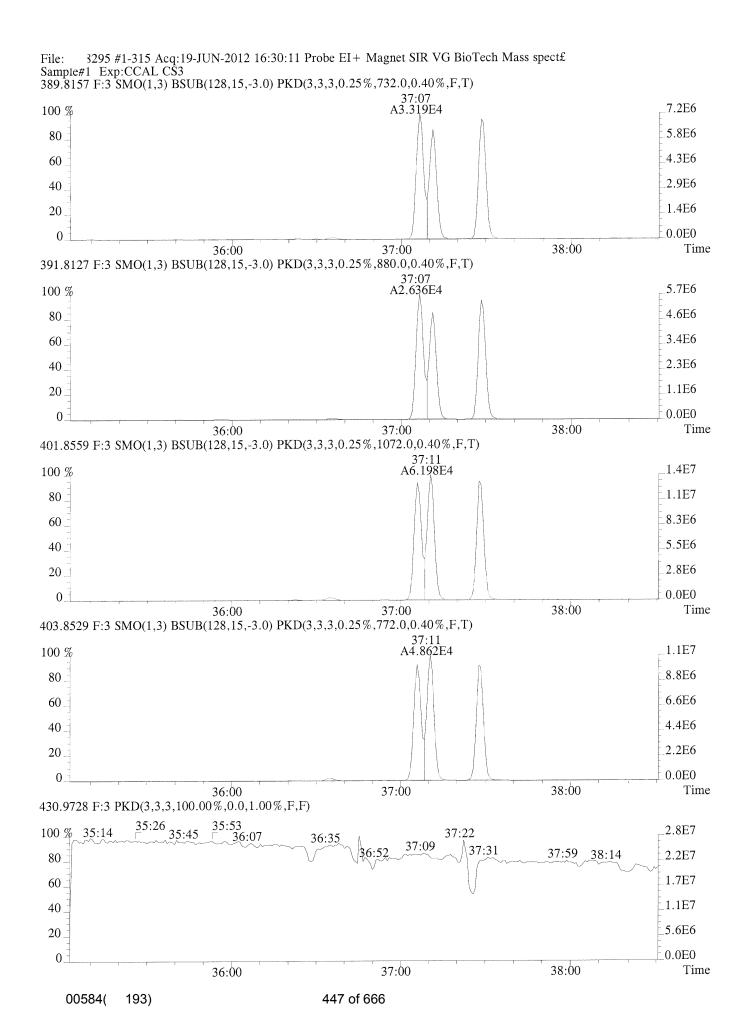

1100001	.ca. 20 0011 12 11.05.12.		2 3 p 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Тур	Name	RT-1	Resp 1	Resp 2	Ratio Meet	Mod?	RRF
1 Unk	2,3,7,8-TCDF	28:22	7.136e+03	9.413e+03	0.76 yes	no	0.929
2 Unk	1,2,3,7,8-PeCDF	32:49	4.964e+04	3.175e+04	1.56 yes	no	1.002
3 Unk	2,3,4,7,8-PeCDF		5.076e+04	3.277e+04	1.55 yes	no	0.963
4 Unk	1,2,3,4,7,8-HxCDF	36:25	4.430e+04	3.594e+04	1.23 yes	no	1.221
5 Unk	1,2,3,6,7,8-HxCDF		4.357e+04	3.542e+04	1.23 yes	no	1.139
6 Unk	2,3,4,6,7,8-HxCDF		3.864e+04	3.225e+04	1.20 yes	no	1.139
7 Unk	1,2,3,7,8,9-HxCDF		3.657e+04	2.938e+04	1.24 yes	no	1.165
8 Unk	1,2,3,4,6,7,8-HpCDF		2.990e+04	2.889e+04	1.03 yes	no	1.394
9 Unk	1,2,3,4,7,8,9-HpCDF		3.080e+04	2.937e+04	1.05 yes	no	1.334
10 Unk	OCDF	43:11	4.447e+04	4.930e+04	0.90 yes	no	1.227
11 Unk	2,3,7,8-TCDD	29:14	6.393e+03	8.228e+03	0.78 yes	lno	0.980
12 Unk	1,2,3,7,8-PeCDD		3.693e+04	2.399e+04	1.54 yes	no	0.915
13 Unk	1,2,3,4,7,8-HxCDD		3.319e+04	2.636e+04	1.26 yes	no	1.001
14 Unk	1,2,3,6,7,8-HxCDD		2.840e+04	2.171e+04	1.31 yes	no	0.978
15 Unk	1,2,3,7,8,9-HxCDD		3.170e+04	2.496e+04	1.27 yes	no	1.041
16 Unk	1,2,3,4,6,7,8-HpCDD		2.655e+04	2.475e+04	1.07 yes	no	1.002
17 Unk		43:02	3.698e+04	4.169e+04	0.89 yes	no	1.054
18 IS	13C-2,3,7,8-TCDF	120.20	7.955e+04	1.016e+05	0.78 yes	no	1.282
10 IS 19 IS	13C-1,2,3,7,8-PeCDF		1.045e+05	6.613e+04	1.58 yes	no	1.098
20 IS	13C-2,3,4,7,8-PeCDF		1.002e+05	6.282e+04	1.59 yes	no	1.065
20 IS 21 IS	13C-1,2,3,4,7,8-HxCDF		4.617e+04	8.716e+04	0.53 yes	no	1.062
21 IS 22 IS	13C-1,2,3,6,7,8-HxCDF		4.505e+04	8.455e+04	0.53 yes	no	1.191
23 IS	13C-2,3,4,6,7,8-HxCDF		4.309e+04	8.128e+04	0.53 yes	no	1.098
24 IS	13C-1,2,3,7,8,9-HxCDF		3.986e+04	7.515e+04	0.53 yes	no	0.980
25 IS	13C-1,2,3,4,6,7,8-HpCDF		2.635e+04	5.776e+04	0.46 yes	no	0.837
26 IS	13C-1,2,3,4,7,8,9-HpCDF		2.632e+04	5.751e+04	0.46 yes	no	0.708
	120 2 2 7 0 000	100 10	6.417e+04	8.136e+04	0.79 yes	lno	1.002
27 IS	13C-2,3,7,8-TCDD		7.764e+04	4.917e+04	1.58 yes	no	0.819
28 IS	13C-1,2,3,7,8-PeCDD		6.016e+04	4.702e+04	1.28 yes	no	0.929
29 IS	13C-1,2,3,4,7,8-HxCDD		6.198e+04	4.862e+04	1.28 yes	no	0.937
30 IS	13C-1,2,3,6,7,8-HxCDD		5.290e+04	4.862e+04 4.930e+04	1.07 yes	no	0.817
31 IS 32 IS	13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		7.683e+04	8.424e+04	0.91 yes	no	0.595
32 15	13C-OCDD	143:02	/.0036+04	0.4246704	1 0.71/1968	1110	10.555
33 RS/R	T 13C-1,2,3,4-TCDD	28:59	6.034e+04	7.561e+04	0.80 yes	no	-
34 RS/R			5.835e+04	4.486e+04	1.30 yes	no	-
35 C/Up			1.509e+04			no	1.039

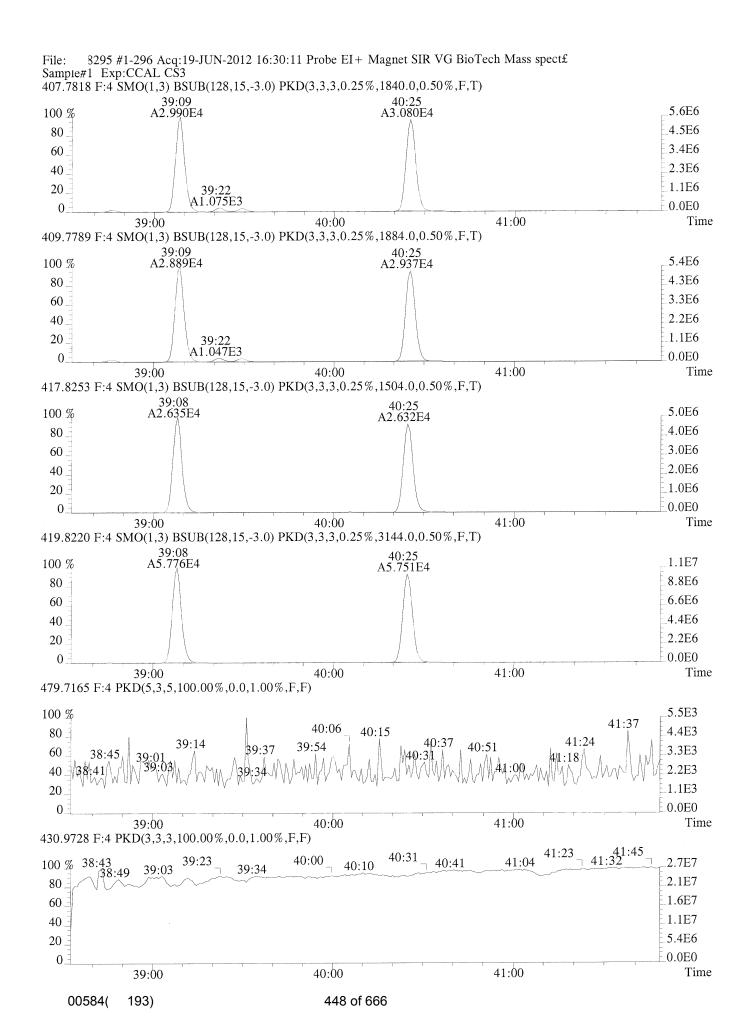

Acquired: 19-JUN-12 16:30:11 Run #12 Filename Samp: 1 Inj: 1 3295 LAB. ID: CCAL CS3 Processed: 20-JUN-12 11:09:271 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 1.90e+03 7.8e + 021.14e+06 7.44e+02 1.5e+03 1.49e+06 1 2,3,7,8-TCDF 5.80e+06 2.23e+03 2.6e + 031,2,3,7,8-PeCDF 9.13e+06 1.27e+03 7.2e+03 2 2.23e+03 | 2.9e+03 7.9e+03 6.50e+06 3 2,3,4,7,8-PeCDF 1.00e + 071.27e+03 3.9e+03 4 1,2,3,4,7,8-HxCDF 9.09e+06 1.15e + 037.9e + 037.33e+06 1.88e+03 3.9e + 035 1,2,3,6,7,8-HxCDF 8.94e+06 1.15e+03 7.8e + 037.33e + 061.88e + 033.6e+03 6 2,3,4,6,7,8-HxCDF 7.96e+06 1.15e+03 6.9e+03 6.70e + 061.88e+03 7 1,2,3,7,8,9-HxCDF 7.75e+06 1.15e+03 6.7e+03 6.27e+06 1.88e+03 | 3.3e+03 1,2,3,4,6,7,8-HpCDF 5.63e+06 1.84e+03 3.1e+03 5.41e+06 1.88e+03 2.9e+03 8 3.0e+03 5.18e+06 1.88e+03 2.8e + 039 1,2,3,4,7,8,9-HpCDF 5.44e+06 1.84e+03 5.66e+06 1.16e+03 4.9e+03 OCDF 5.07e+06 6.56e+02 7.7e+03 10 8.24e+02 1.7e + 037.12e+02 | 1.5e+03 | 1.41e+06 2,3,7,8-TCDD 1.10e+06 11 1,2,3,7,8-PeCDD 5.08e+02 | 9.5e+03 1.06e+03 7.1e+03 4.83e+06 7.48e+06 12 6.5e+03 7.32e+029.8e+03 5.71e+06 8.80e+02 7.20e+06 1,2,3,4,7,8-HxCDD 13 8.80e+02 5.5e + 034.87e+06 1,2,3,6,7,8-HxCDD 6.29e+06 7.32e + 028.6e+03 14 1,2,3,7,8,9-HxCDD 5.43e + 068.80e+02 6.2e + 0315 6.88e+06 7.32e + 029.4e+03 4.27e+06 7.96e + 025.4e + 031,2,3,4,6,7,8-HpCDD 4.63e+06 9.84e + 024.7e+03 16 4.10e+06 | 1.18e+03 | 3.5e+03 3.67e+06 | 5.28e+02 | 7.0e+03 17 OCDD 2.20e+03 7.5e + 032.97e+03 | 4.3e+03 | 1.64e+07 18 13C-2,3,7,8-TCDF 1.28e+07 7.72e+02 1.6e + 041.00e+03 1.22e+07 19 13C-1,2,3,7,8-PeCDF 1.92e+07 1.9e+04 7.72e+02 1.6e + 0413C-2,3,4,7,8-PeCDF 1.98e+07 1.00e+03 2.0e+04 1.24e+07 20 1.15e+03 1.5e + 049.37e+06 6.60e+02 1.4e+04 1.78e + 0713C-1,2,3,4,7,8-HxCDF 1.5e + 049.11e+06 6.60e+02 | 1.4e+04 | 1.72e+07 1.15e+03 13C-1,2,3,6,7,8-HxCDF 22 13C-2,3,4,6,7,8-HxCDF 6.60e+02 | 1.3e+04 | 1.67e+07 1.15e+03 1.5e + 048.80e+06 23 1.59e+07 1.15e+03 1.4e + 046.60e+02 1.3e+04 13C-1,2,3,7,8,9-HxCDF 8.39e+06 1.09e+07 3.14e+03 3.5e + 035.02e+06 1.50e+03 3.3e + 0325 13C-1,2,3,4,6,7,8-HpCDF 4.65e+06 | 1.50e+03 | 3.1e+03 | 1.02e+07 | 3.14e+03 | 3.2e+03 26 13C-1,2,3,4,7,8,9-HpCDF 1.39e+07 | 1.61e+03 | 8.6e+03 1.09e+07 | 4.19e+03 | 2.6e+03 | 27 13C-2,3,7,8-TCDD 1.37e+03 1.1e+04 9.67e+06 6.16e+02 | 1.6e+04 13C-1,2,3,7,8-PeCDD 1.52e+07 28 7.72e+02 1.3e + 041.01e+07 1.29e+07 1.07e+03 1.2e + 0429 13C-1,2,3,4,7,8-HxCDD 7.72e+02 13C-1,2,3,6,7,8-HxCDD 1.07e+03 1.3e+04 1.09e+07 1.4e + 041.38e+07 30 1.3e+04 9.24e+02 9.2e + 037.08e+02 8.50e+06 9.18e+06 31 13C-1,2,3,4,6,7,8-HpCDD 8.31e+06 | 6.04e+02 | 1.4e + 047.62e+06 | 1.24e+03 | 6.1e+03 | 32 13C-OCDD 1.32e+07 1.61e+03 8.2e + 031.05e+07 | 4.19e+03 | 2.5e+03 | 13C-1,2,3,4-TCDD 33 1.01e+07 | 7.72e+02 | 1.3e+04 13C-1,2,3,7,8,9-HxCDD 1.31e+07 1.07e+03 | 1.2e+04 | 34

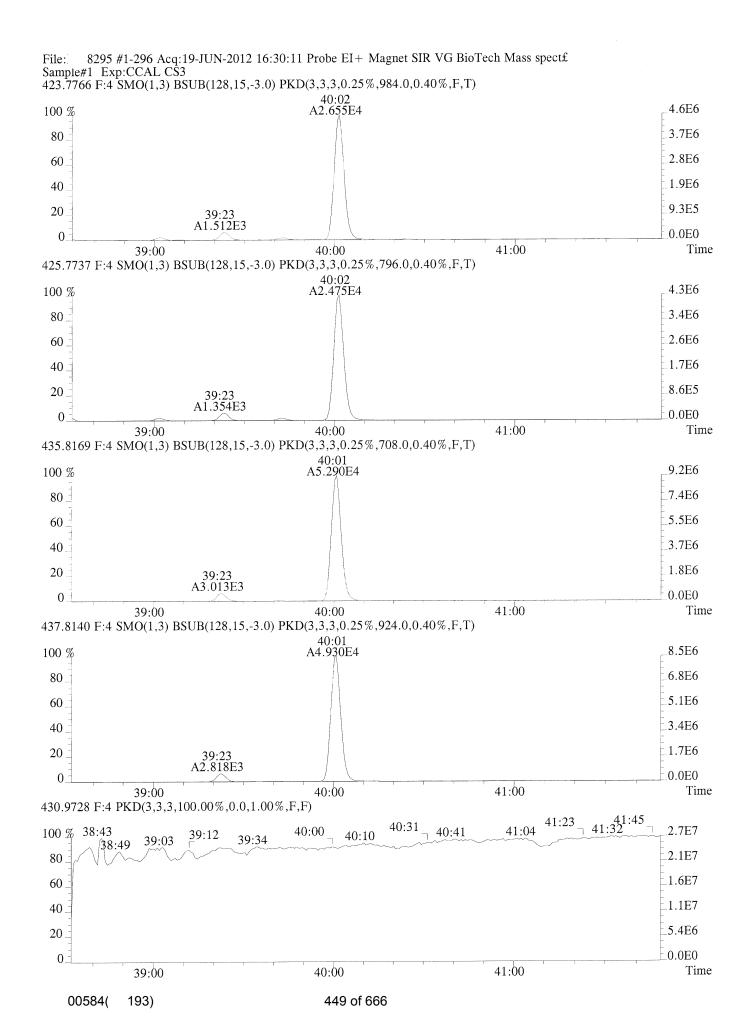

2.62e+06 | 9.12e+02 | 2.9e+03

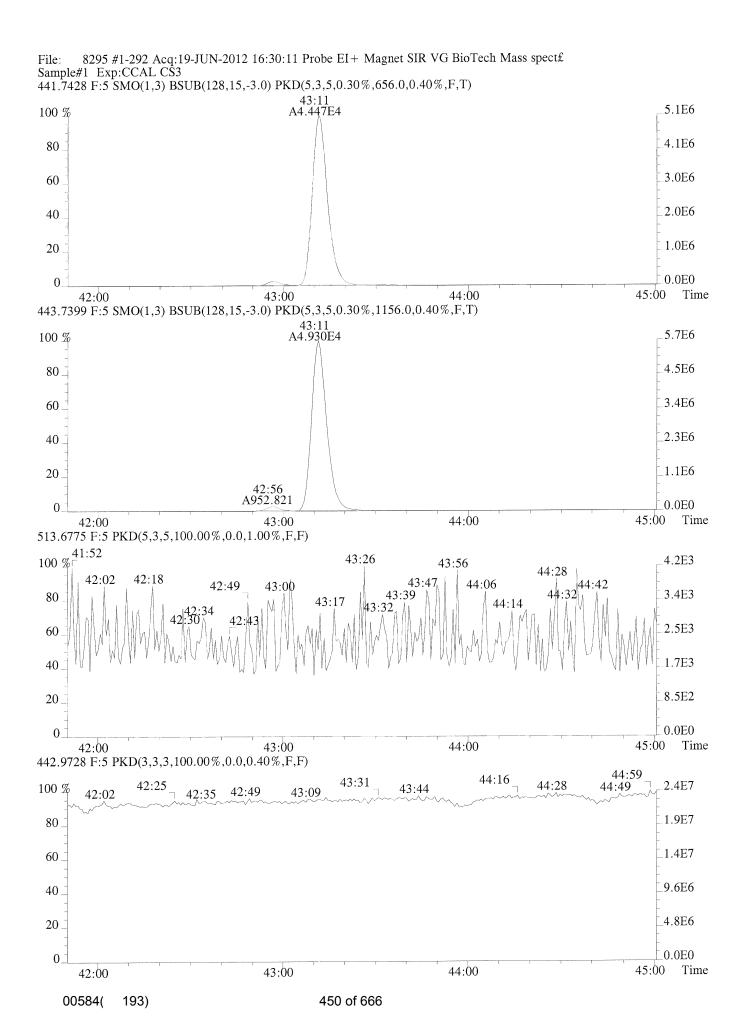

37Cl-2,3,7,8-TCDD

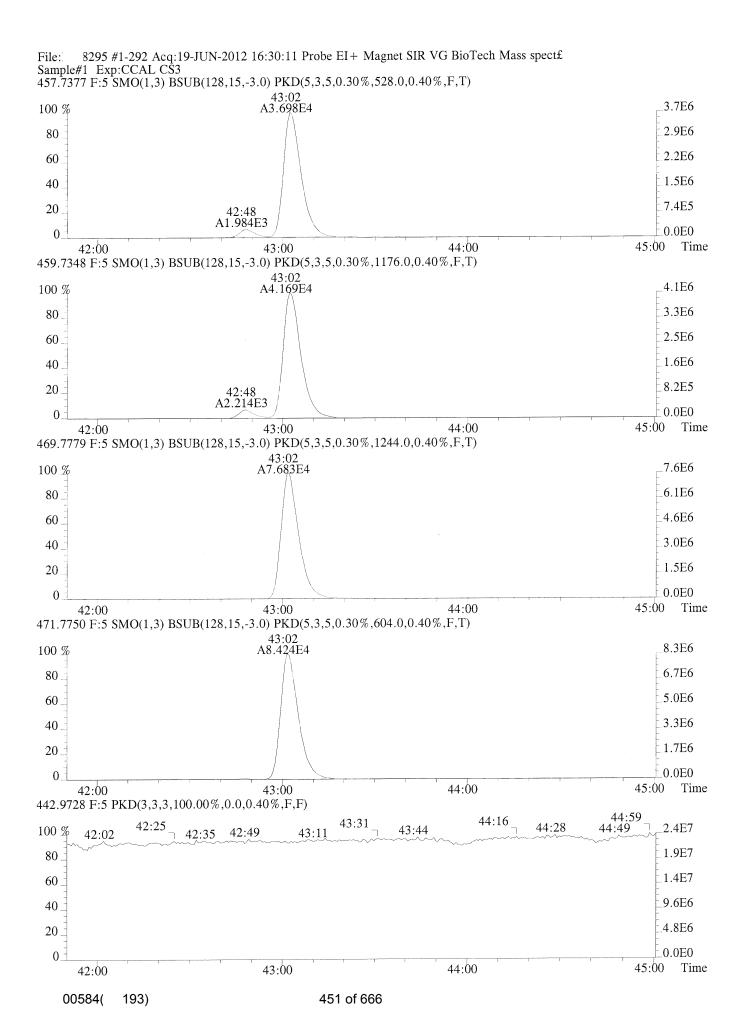

35









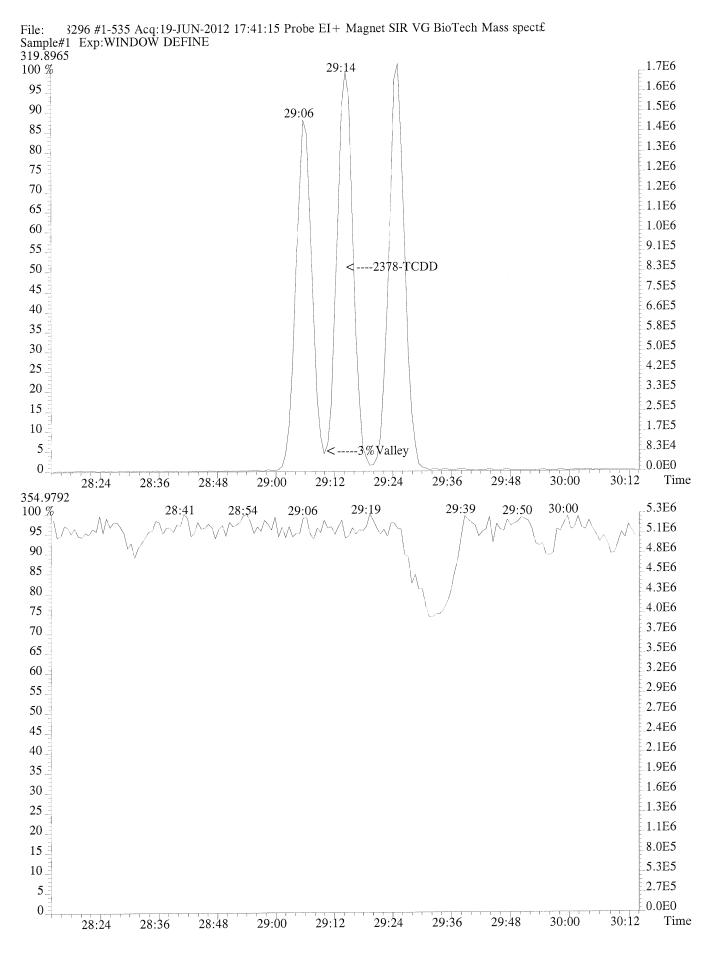


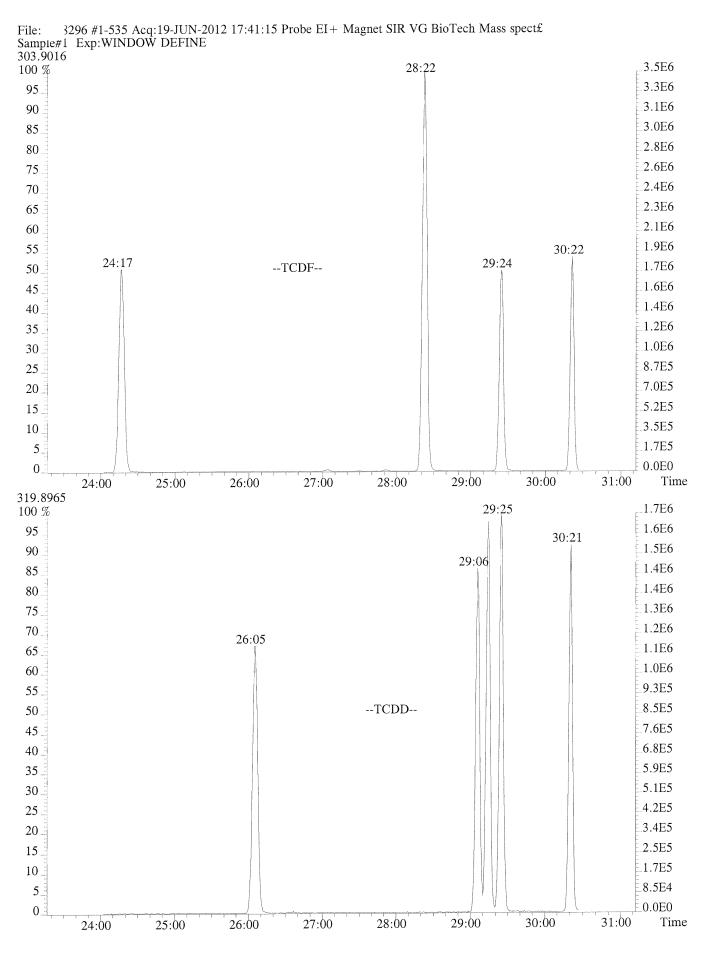
5DFA

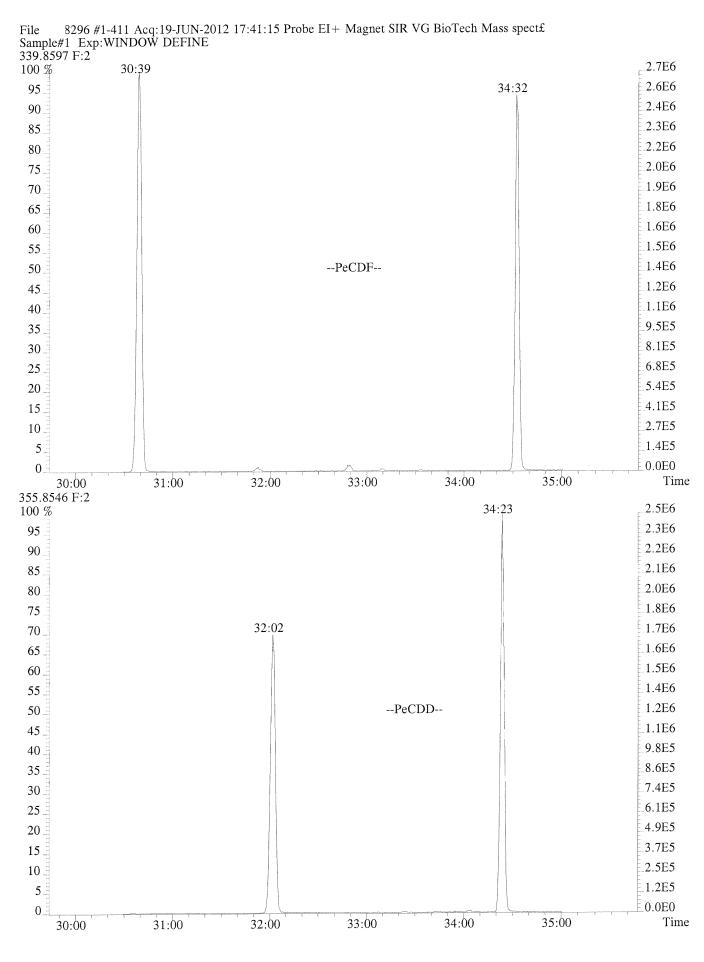
WINDOW DEFINING MIX SUMMARY

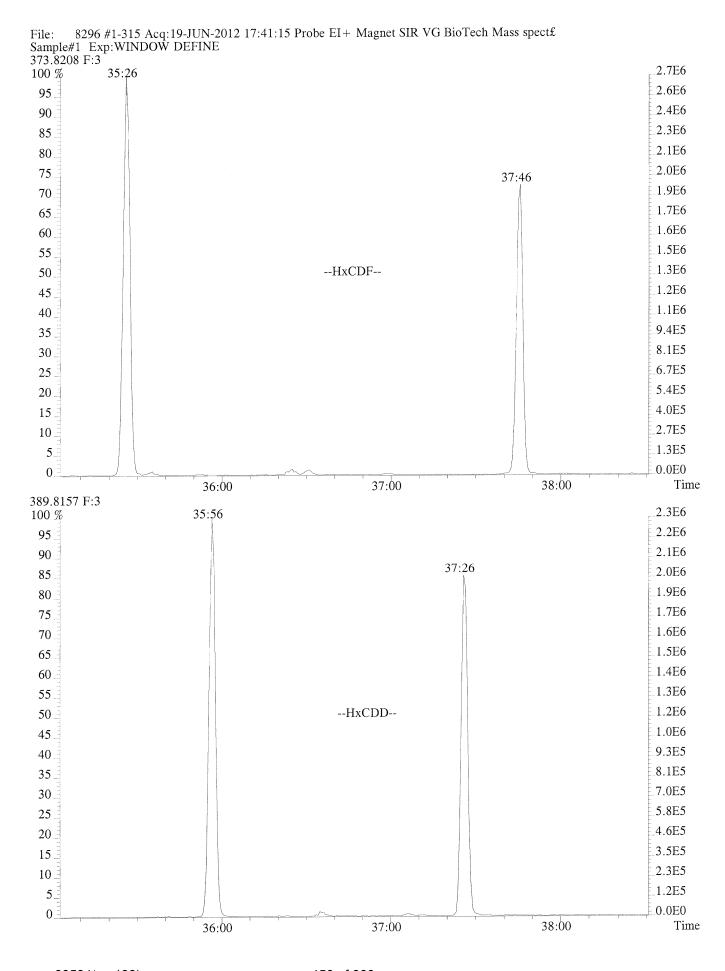
CLIENT	ID:
WDM	

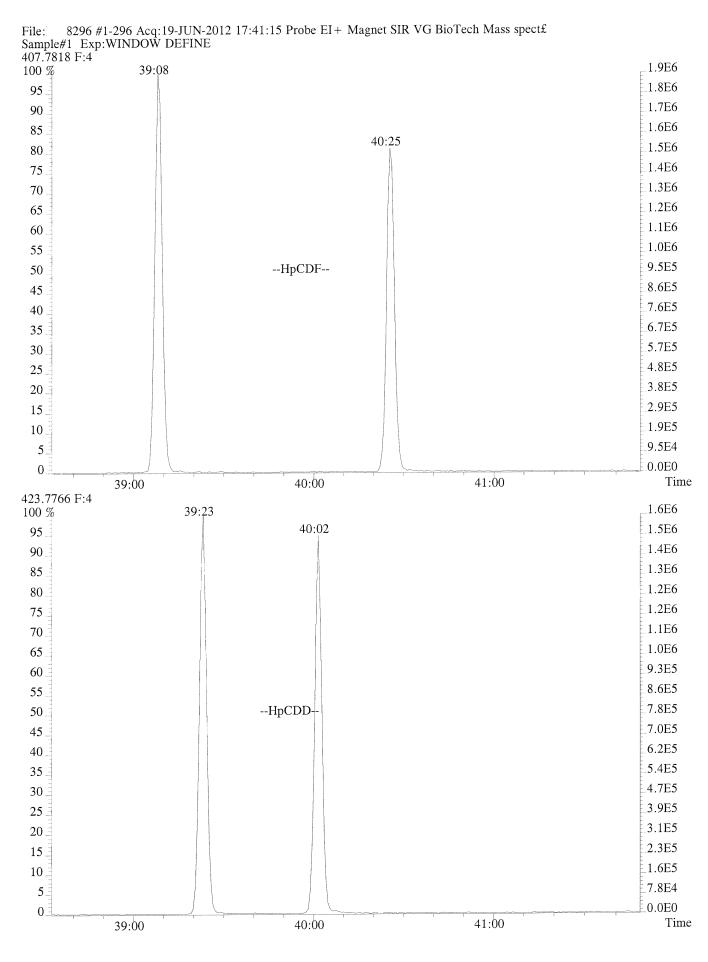
Lab Name: Lab Code:


GC Column: DB-5


Case No.: SDG No.:
ID: 0.25 (mm) Lab File ID: 8296 Date Analyzed: 19-JUN-2012


Time Analyzed: 17:41:15


Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:17	30:22
TCDD	26:05	30:21
PeCDF	30:39	34:32
PeCDD	32:02	34:23
HxCDF	35:26	37:46
HxCDD	35:56	37:26
HpCDF	39:08	40:25
HpCDD	39:23	40:02


[%] Valley 2378-TCDD:

RW/CS3 Daily Calibration QC Checklist

Calibration File Name: 1977 - 799	Circle or	ne: Ending
Date: 06/21/12	Beginning	Linding
Method: 1613 / 1613E / VCP / Tetra / TCDD Only	CDF Conf / VCP Conf / 8280	0 / M23 / TO-9A
Retention Window/Column Performance Check:	Analyst	Second Check
Windows in and first and last eluters labeled	NA	NA
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and its closest eluters		V
No QC ion deflections affect column specific 2378 isomer or its closest eluters (HRMS Only)	\checkmark	
CS3 Continuing Calibration	Analyst	Second Check
Percent RSD within method criteria		
All relative abundance ratios meet method criteria		V
No QC ion deflections of greater than 20% (HRMS Only)	✓	
Mass spectrometer resolution greater than or equal to 10,000 and documented (HRMS Only)		J
2378-TCDD elutes at 25 minutes or later on the DB-5 column	NA	NA
Signal-to-noise of all target analytes and their labeled standards at least 10:1	✓	
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50% (LRMS Only)	NA	NA
Ending Calibration injected prior to end of 12 hour clock		
Analyst: _	Second QC:	

ccalqc.xls 02/08/00

Page 1 of USEPA -

5DFC PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY

Lab Name:

Contract:

Lab Code:

Case No.: Client No.:

SDG No.:

Init. Calib. Date: 09/09/11

Init. Calib.Times: 10:55:41

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, AND LABORATORY CONTROL

SAMPLES (LCSs) IS AS FOLLOWS:

============ OLUMN PERFORM			
	7976	21-JUN-12	06:41:55
CAL CS3 NST BLANK 00584-001RE 00709-001 00709-003 00610-016 00610-017 00610-013 200303-03 200303-04 00626-002 00651-001 CAL CS3	7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7988 7989	21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12 21-JUN-12	07:20:49 08:13:02 08:44:39 09:19:02 09:53:24 10:27:46 11:02:09 11:36:31 12:10:54 12:45:19 13:19:42 14:04:24 14:35:06 15:14:58 16:23:09
	NST BLANK 00584-001RE 00709-001 00709-002 00709-003 00610-016 00610-017 00610-013 200303-03 200303-04 00626-002 00651-001	NST BLANK 7978 00584-001RE 7979 00709-001 7980 00709-002 7981 00709-003 7982 00610-016 7983 00610-017 7984 00610-013 7985 200303-03 7986 200303-04 7987 00626-002 7988 00651-001 7989 CAL CS3 7990	NST BLANK 7978 21-JUN-12 00584-001RE 7979 21-JUN-12 00709-001 7980 21-JUN-12 00709-002 7981 21-JUN-12 00709-003 7982 21-JUN-12 00610-016 7983 21-JUN-12 00610-017 7984 21-JUN-12 00610-013 7985 21-JUN-12 200303-03 7986 21-JUN-12 200303-04 7987 21-JUN-12 00626-002 7988 21-JUN-12 00651-001 7989 21-JUN-12 CAL CS3 7990 21-JUN-12

FORM V-HR CDD-3

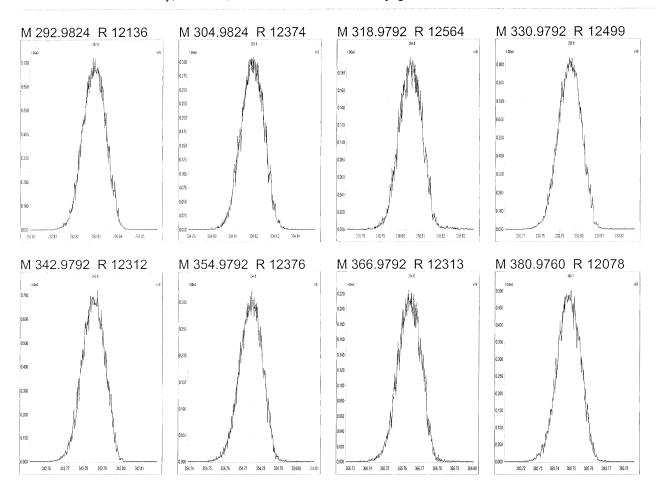
DLM02.0(5/05)

8290F5p (5-6 point ical)

Sample List Report	port			MassLynx 4.1		
Sample List: Last Modified:	C:\Mas Thursc	C:\MassLynx\ Thursday, June 21	C:\MassLynx\ Thursday, June 21, 2012 16:59:29 Central Daylight Time	20621.SPL ht Time		Page 1 of 2
Printed:	Thursc	day, June 21	Thursday, June 21, 2012 17:00:25 Central Daylight Time	ht Time		Page Position (1, 1)
			6:1 79	2977 RES		
Date	Time	File Name	Sample ID	Client ID	Comments	GC Met
1 06/01/19	111-50	7076	COLLIMNI BEBEODWANICE	07 10 7		
200	7,97	7970	COLOMIN PERTURMANON	D4-58-1	HAMS CARCK CO. 41	8290
1 8	1000	7978	INST BLANK	1613MB		82901 TCDE
4	12.00	6262	00584-001RF	193		
2	4000	7980	00709-001	Battelle 6811 BT		TOD!
9	52.00	7981	00709-002	Battelle 6811 MT		TCDF
7	00:01	7982	00709-003	Battelle 6811 TT	THE PROPERTY OF THE PROPERTY O	TCDF
8	10:11	7983	00610-016	24087-16 (SED-4)		TCDF
6	95:11	7984	00610-017	24087-17 (SED Dup)		TCDF
10	12:10	7985	00610-013	24087-13 (SED-1)		TCDF
	12:45	7986	200303-03			TCDF
12	13.60	7987	200303-04	24087-13 (SED-1) DMS		TCDF
2.7	かのこと	7000	J626-UUZ	GF-B-15A-1-2.5		TCDF
15	12.7	7990	1001-1001	GF-B-10-1-1.25		- ICDF
16	16:23	7991	COAL COS	D4-59-1	AD JOHO SWALL	100F
17					DEIS LINERA 16	TCDE
18		-		Transmission and the second se		TCDF
19		!		1		TCDF
20		1 1	1	*		TCDF
21		1		****		TCDF
22		1	-			TCDF
23	1	1	1			TCDF
24		1	1		1 2 2	
25		1				-
26	-	-		-		TCDF
27		1		!		TCDF
28	!	1	-	!		TCDF
29		-	-	1		
30		ŀ	;		-	8290
31	-	1 1		!		8290
32		1	-		Reviewed by:	
					1,0/1	

Experiment Calibration Report

MassLynx 4.1


Page 1 of 1

File:

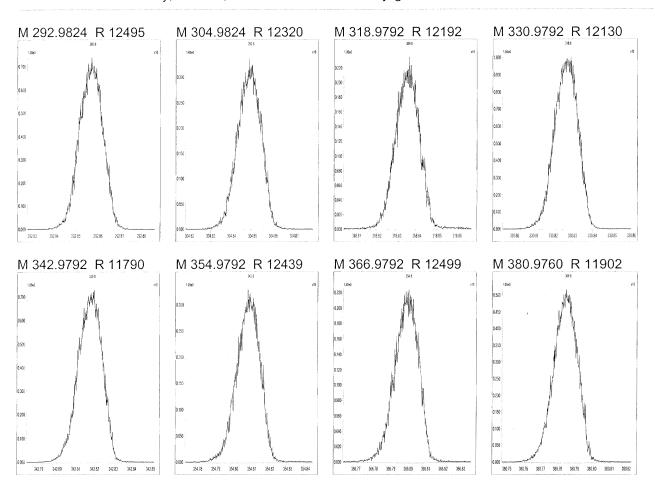
Experiment: tcdf.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Thursday, June 21, 2012 06:41:13 Central Daylight Time

Experiment Calibration Report

MassLynx 4.1

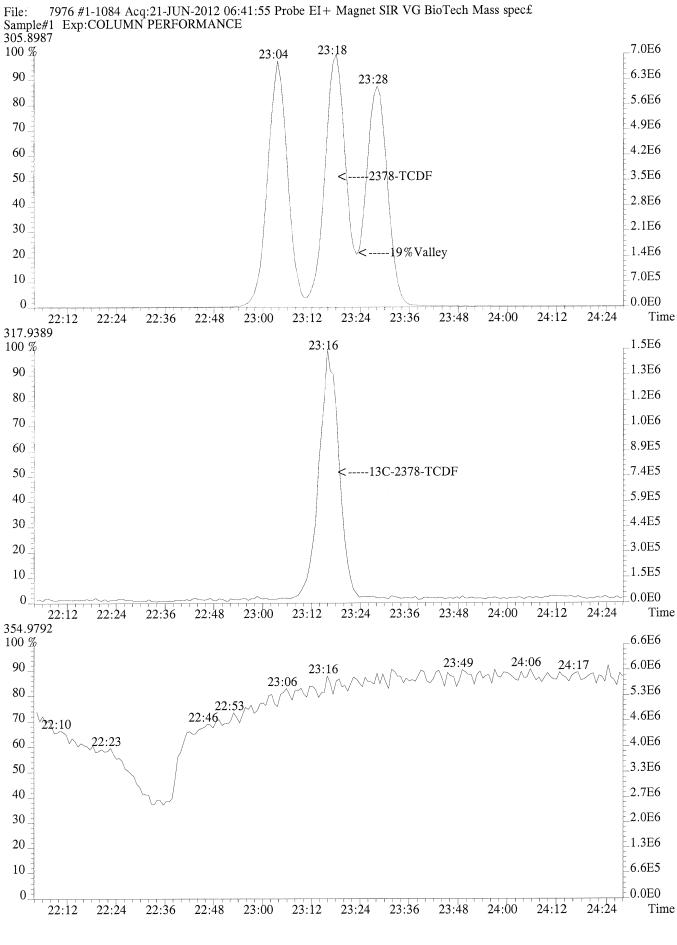

Page 1 of 1

File:

Experiment: tcdf.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Thursday, June 21, 2012 16:58:35 Central Daylight Time


USEPA -5DFB

PCDD/PCDF WINDOW DEFINING MIX SUMMARY

EPA SAMPLE NO

COLUMN PERFORMANCE

Lab Name: Lab Code: GC Column: DB-2	225	Case No.:	SDG No.: Lab File ID: Date Analyzed:	21-JUN-2012
Instrument ID:	E-HRMS-04		Time Analyzed:	06:41:55
	determination for Performance Solut			
1478-TCDD/2378	-TCDD: na			
QUALITY CONTRO	L (QC) LIMITS: na			
Percent Valley	between the TCDD	isomers must be]	less than or equal	to 25%
Percent Valley For the Column	determination for Performance Solut	DB-225 (or equivion beginning the	valent) column- e 12-hour period:	
2347-TCDF/2378	-TCDF/1239-TCDF:	19 %		
QUALITY CONTRO	L (QC) LIMITS:			
Percent Valley	between the TCDF/	TCDF isomers must	be less than or e	equal to 25%
D. C.	15 4 0 % 1	. J. 1612		
Reference: Sec	ction 15.4.2 Metho	oa 1613		
Analyst:				

Page 1 of 1 USEPA - ITD

FORM 4A TCDF CALIBRATION VERIFICATION

Lab Name:

Contract No.:

Lab Code: Case No.: Client No: SDG No.:

Initial Calibration Date: 09/09/11

Instrument ID.: AutoSpec_Premier GC COLUMN ID: DB-225

VER Data Filename: 7977 Analysis Date: 21-JUN-12 Time: 07:20:49

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
2,3,7,8-TCDF	M/M+2	0.73	0.65-0.89	1.00	0.88	14.01
Labeled Compounds						
13C-2,3,7,8-TCDF	M/M+2	0.81	0.65-0.89	1.12	1.29	-13.02
Cleanup Standard						
37Cl-2,3,7,8-TCDD				0.82	0.97	-15.52

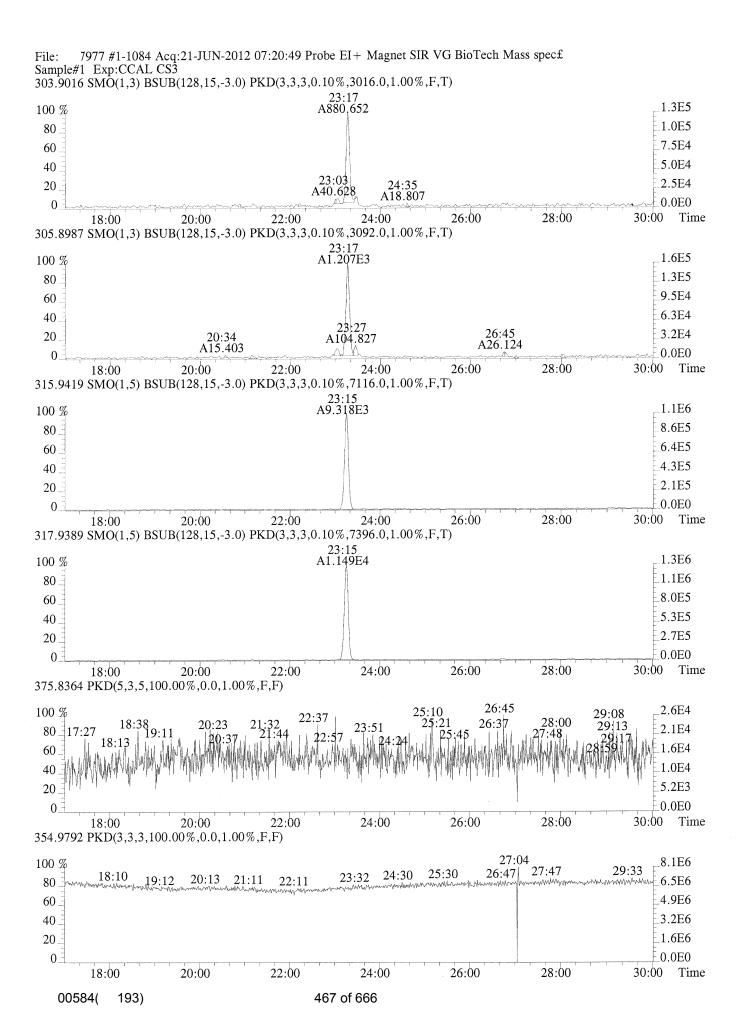
FORM VII-HR CDD1

DLM01.3

EPA SAMPLE NO. CCAL CS3

CCAL C53

Run #7 Filename 7977 Samp: 1 Inj: 1 Acquired: 21-JUN-12 07:20:49 Processed: 21-JUN-12 10:44:49 Sample ID: CCAL CS3


Тур	Name RT-	1 Resp 1	Resp 2	Ratio	Meet	Mod?
1 Unk	2,3,7,8-TCDF 23:	17 8.807e+02	1.207e+03	0.73	yes	no
2 IS	13C-2,3,7,8-TCDF 23:	:	1.149e+04	0.81	yes	no
3 RS/RT	13C-1,2,3,4-TCDD 21:	36 8.163e+03	1.034e+04	0.79	yes	no
4 C/Up	37Cl-2,3,7,8-TCDD 21:	22 1.519e+03	·			no

Signal/Noise Height Ratio Summary

| Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N

Name

1	2,3,7,8-TCDF	1.18e+05	3.02e+03	3.9e+01	1.53e+05	3.09e+03	5.0e+01
2	13C-2,3,7,8-TCDF	1.06e+06	7.12e+03	1.5e+02	1.32e+06	7.40e+03	1.8e+02
3	13C-1,2,3,4-TCDD	1.12e+06	7.37e+03	1.5e+02	1.42e+06	5.89e+03	2.4e+02
4	37Cl-2,3,7,8-TCDD	1.96e+05	3.32e+03	5.9e+01			

7977 #1-1084 Acq:21-JUN-2012 07:20:49 Probe EI+ Magnet SIR VG BioTech Mass spec£ Sample#1 Exp:CCAL CS3 331.9368 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,7368.0,1.00%,F,T) 1.1E6 100 % 21:21 A6.396E3 9.0E5 80 6.8E5 60. 4.5E5 40 2.3E5 20 0.0E0 0 28:00 30:00 Time 18:00 20:00 22:00 24:00 26:00 333.9339 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,5888.0,1.00%,F,T) 21:36 A1.034E4 100 % 1.4E6 21:20 A8.230E3 1.1E6 80 8.5E5 60 5.7E5 40 2.8E5 20 0.0E0 24:00 26:00 28:00 30:00 Time 18:00 20:00 22:00 327.8847 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3316.0,1.00%,F,T) 21:22 A1.519E3 100 % 2.0E5 _1.6E5 80 1.2E5 60 7.9E4 40 20 4.0E4 18:37 A15.297 0.0E0 30:00 18:00 20:00 22:00 24:00 26:00 28:00 Time 354.9792 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 27:04 8.1E6 100 % 27:47 29:33 26:47 25:30 24:30 18:10 23:23 around what was a state of the was the form of the way of th 23:25 my hyprophyman 19:12 21:11 _4.9E6 60 40 _3.2E6 20 1.6E6 0. 0.0E0 18:00 20:00 22:00 24:00 26:00 28:00 30:00 Time

468 of 666

00584(

193)

Page 14 of 14 USEPA - ITD

FORM 4A TCDF CALIBRATION VERIFICATION

Lab Name:

Contract No.:

Lab Code: Case No.: Client No: SDG No.:

Initial Calibration Date: 09/09/11

Instrument ID.: AutoSpec_Premier GC COLUMN ID: DB-225

VER Data Filename: 7990 Analysis Date: 21-JUN-12 Time: 15:14:58

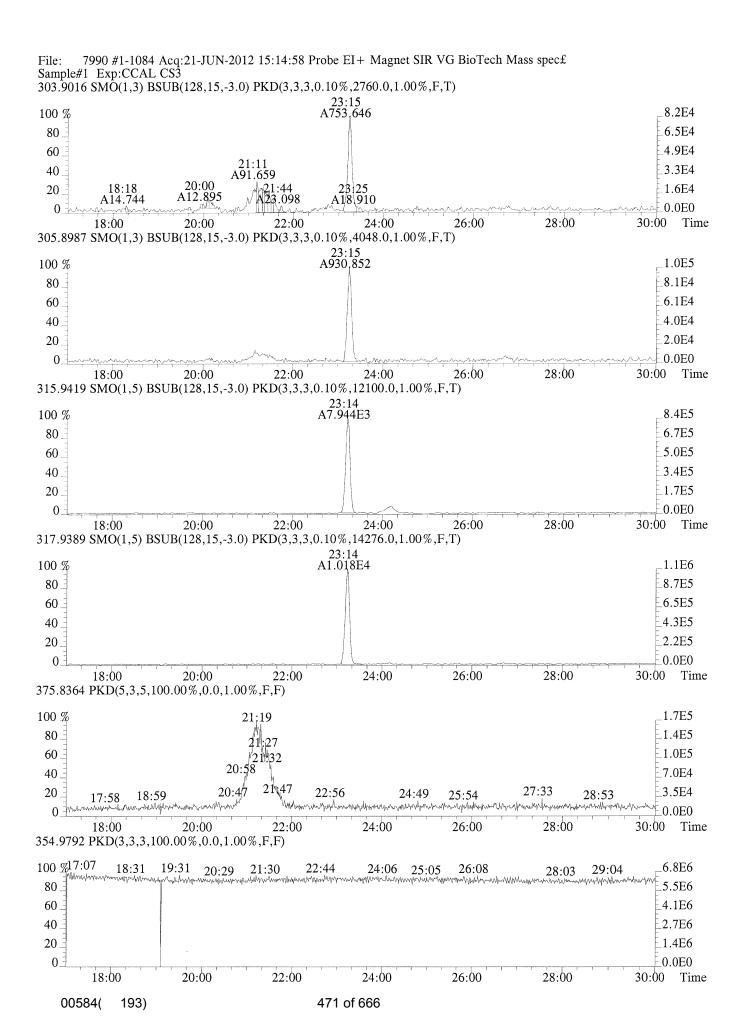
NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CCAL. RRF	MEAN RRF	%D (3)
2,3,7,8-TCDF	M/M+2	0.81	0.65-0.89	0.93	0.88	5.62
Labeled Compounds						
13C-2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	1.12	1.29	-13.18
Cleanup Standard						
37Cl-2,3,7,8-TCDD				0.93	0.97	-4.21

FORM VII-HR CDD1

DLM01.3

Sample Response Summary

EPA SAMPLE NO. CCAL CS3


Run #20	Filename	7990	Samp: 1	Inj: 1	Acquired:	21-JUN-12	15:14:58
Processed.	21 - TIIN - 12	14:09:35	Sample	TD: CCA	L CS3		

Тур	Name RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?
1 Unk	2,3,7,8-TCDF 23:15	7.536e+02	9.309e+02	0.81	yes	no
2 IS	13C-2,3,7,8-TCDF 23:14	7.944e+03	1.018e+04	0.78	yes	no
3 RS/RT	13C-1,2,3,4-TCDD 21:34	7.182e+03	8.965e+03	0.80	yes	no
4 C/Up	37Cl-2,3,7,8-TCDD 21:21	1.503e+03	•			no

Signal/Noise Height Ratio Summary

| Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N

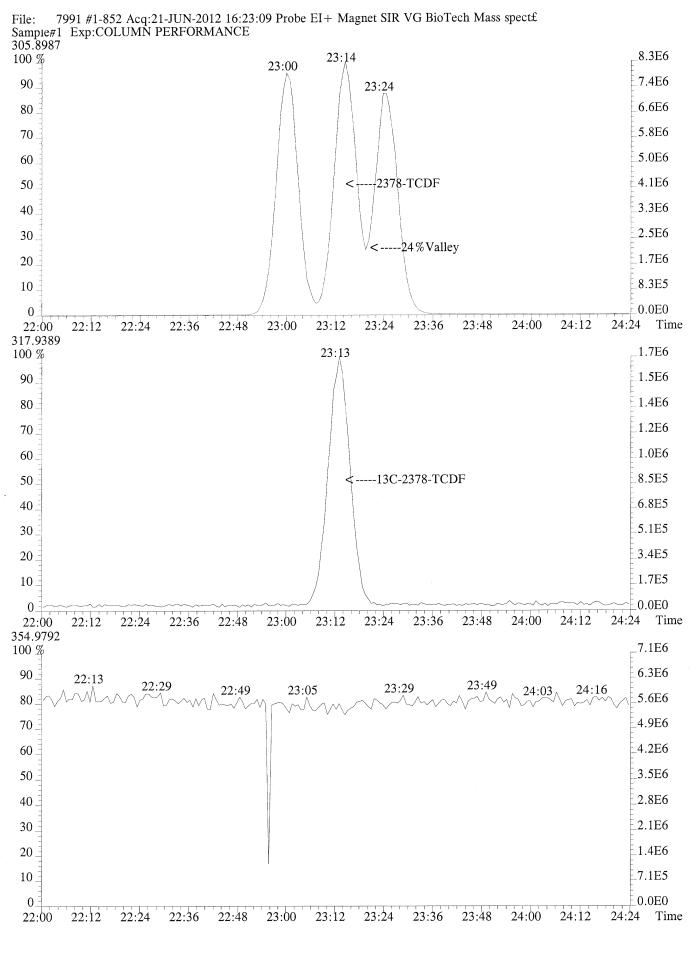
	Name						
1	2,3,7,8-TCDF	8.12e+04	2.76e+03	2.9e+01	9.88e+04	4.05e+03	2.4e+01
2	13C-2,3,7,8-TCDF	8.28e+05	1.21e+04	6.8e+01	1.08e+06	1.43e+04	7.5e+01
3	13C-1,2,3,4-TCDD	8.63e+05	9.21e+03	9.4e+01	1.07e+06	6.11e+03	1.7e+02
4	37Cl-2,3,7,8-TCDD	1.80e+05	4.46e+03	4.0e+01			

7990 #1-1084 Acq:21-JUN-2012 15:14:58 Probe EI+ Magnet SIR VG BioTech Mass spec£ Sample#1 Exp:CCAL CS3 331.9368 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,9212.0,1.00%,F,T) 21:34 A7.182E3 8.7E5 100 % A5.853E3 7.0E5 80 5.2E5 60 3.5E5 40 1.7E5 20. 0.0E0 0 22:00 26:00 28:00 30:00 Time 20:00 24:00 18:00 333.9339 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,6112.0,1.00%,F,T) 21:34 A8.965E3 1.1E6 100 % 21:19 A7.488E3 8.6E5 80 6.4E5 60 4.3E5 40 2.1E5 20 0.0E0 0 28:00 30:00 Time 26:00 20:00 22:00 24:00 18:00 327.8847 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4456.0,1.00%,F,T) 21:21 A1.503E3 100 % _1.8E5 _1.4E5 80 1.1E5 60 40 7.2E4 3.6E4 20 28:19 A20.639 21:36 19.416 26:45 A12.544 _0.0E0 28:00 30:00 Time 22:00 24:00 26:00 18:00 20:00 354.9792 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 100 %17:07 6.8E6 18:31 19:31 20:29 22:44 24:06 25:05 26:08 21:30 29:04 28:03 Many may make the first of the control of the contr 5.5E6 80 4.1E6 60 2.7E6 40 20 _1.4E6 0.0E0 0 20:00 22:00 24:00 26:00 28:00 30:00 Time 18:00

472 of 666

00584(

193)


USEPA -5DFB

PCDD/PCDF WINDOW DEFINING MIX SUMMARY

EPA	SAMPLE	NO.	

COLUMN PERFORMANCE

Lab Name: Lab Code: GC Column: DB-2	225	Case No.: ID: 0.25	(mm)	SDG No.: Lab File ID: Date Analyzed:	21-JUN-2012
Instrument ID:	E-HRMS-04			Time Analyzed:	16:23:09
Percent Valley For the Column	determination for Performance Solut	DB-5 (or ion beginn	equivalent ning the 12	c) column- 2-hour period:	
1478-TCDD/2378-	TCDD: na				
QUALITY CONTROI	. (QC) LIMITS: na				
Percent Valley	between the TCDD	isomers mu	ist be less	s than or equal	to 25%
					-
	determination for Performance Solut				
2347-TCDF/2378-	TCDF/1239-TCDF:	24 %			
QUALITY CONTROI	QC) LIMITS:				
Percent Valley	between the TCDF/	TCDF isome	ers must be	e less than or o	equal to 25%
Reference: Sec	tion 15.4.2 Metho	d 1613			
Analyst:					

RW/CS3 Daily Calibration QC Checklist

Calibration File Name: 8331^ 8340 Date:	Beginning Circle or	e: Ending
Method: 1613 11613E / VCP / Tetra / TCDD Only / To	CDF Conf / VCP Conf / 8280 Analyst	/ M23 / TO-9A Second Check
Windows in and first and last eluters labeled		V
Column Performance shows less than or equal to 25% valley between column specific 2378 isomer and its closest eluters		
No QC ion deflections affect column specific 2378 isomer or its closest eluters (HRMS Only)		/
CS3 Continuing Calibration	Analyst	Second Check
Percent RSD within method criteria		V
All relative abundance ratios meet method criteria		
No QC ion deflections of greater than 20% (HRMS Only)		
Mass spectrometer resolution greater than or equal to 10,000 and documented (HRMS Only)		V
2378-TCDD elutes at 25 minutes or later on the DB-5 column		
Signal-to-noise of all target analytes and their labeled standards at least 10:1		
Valley between labeled 123478 and 123678 HxCDD peaks less than or equal to 50% (LRMS Only)	N.A.	AN
Ending Calibration injected prior to end of 12 hour clock		
Analyst:	Second QC:	

ccalqc.xls 02/0

00584(

193)

USEPA - Page 1 of 1

5DFC PCDD/PCDF ANALYTICAL SEQUENCE SUMMARY

Lab Name: Contract:

Lab Code: Case No.: SDG No.:

GC Column: DB-5 ID: 0.25 (mm) Instrument ID: AutoSpec-Ultima

Init. Calib. Date: 05/03/12

Init. Calib.Times: 05:17

THE ANALYTICAL SEQUENCE OF STANDARDS, SAMPLES, BLANKS, AND LABORATORY CONTROL SAMPLES (LCSs) IS AS FOLLOWS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
window define		8230	6-JUL-12	05:14:35
CCAL CS3		8231	6-JUL-12	06:10:10
LCS	200313-02	8232	6-JUL-12	07:18:59
DLCS	200313-03	8233	6-JUL-12	08:09:46
LCS	200360-02	8234	6-JUL-12	09:00:56
DLCS	200360-03	8235	6-JUL-12	09:52:12
METHOD BLANK	200313-01	8236	6-JUL-12	11:11:40
METHOD BLANK	200360-01	8237	6-JUL-12	12:02:09
238	00584-002	8238	6-JUL-12	12:53:25
240	00584-003	8239	6-JUL-12	13:44:34
CCAL CS3		8240	6-JUL-12	14:38:40

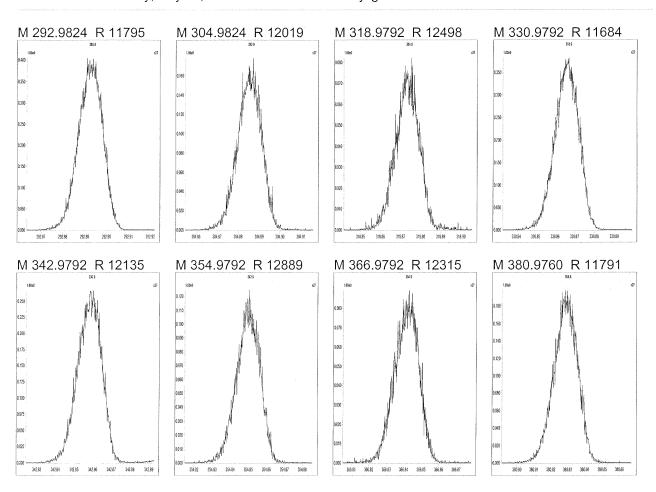
Page 1 of 1 Page Position (1, 1) Acq Met tcdf 8290 8290 ---8290 8280 --tcdf GC Met TCDF TCDF TCDF TCDF 8290 8290 8290 01:50 07:91 Check **Preci** Reviewed t Comments HRMS HRMS MassLynx 4.1 20706.SPL Friday, July 06, 2012 14:38:23 Central Daylight Time Friday, July 06, 2012 16:45:10 Central Daylight Time D12-56-2 D12-83-1 D12-83-1 D12-56-2 Client ID CS DLCS PRO\SampleDB' WB WB WINDOW DEFINE CCAL CS3 1200313-02 1200313-03 1200360-02 1200360-03 1200313-01 1200360-01 00584-002 WINDOW DEFINE 00584-003 CCAL CS3 File Name Sample ID 8230 8231 8232 8233 8233 8235 8236 8236 8238 8238 8238 8238 C:\MassLynx\ Sample List Report Last Modified: Sample List: Printed: 107 2 3 4 6 2 7

60

Colpula

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

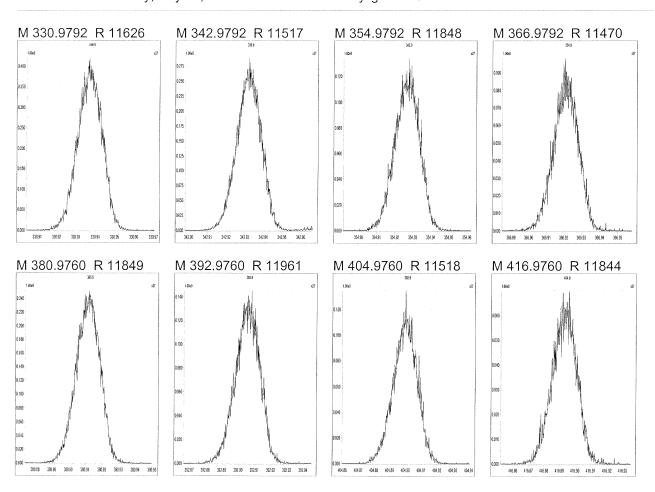
exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Friday, July 06, 2012 05:10:46 Central Daylight Time

MassLynx 4.1

Page 1 of 1

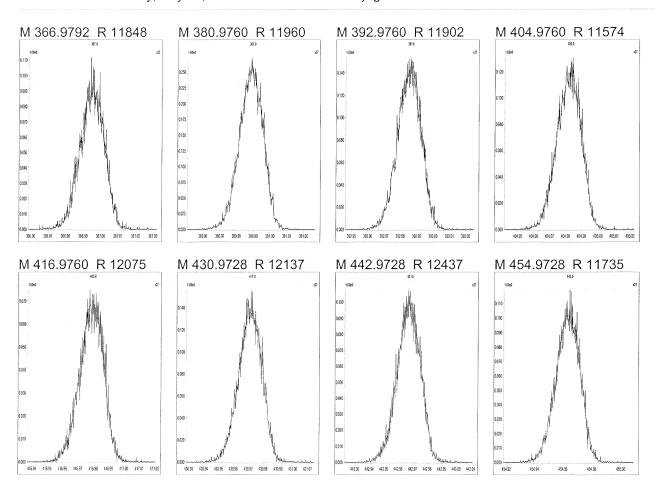

File:

Experiment: 8290

.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed:

Friday, July 06, 2012 05:11:13 Central Daylight Time


File:

Experiment: 8290

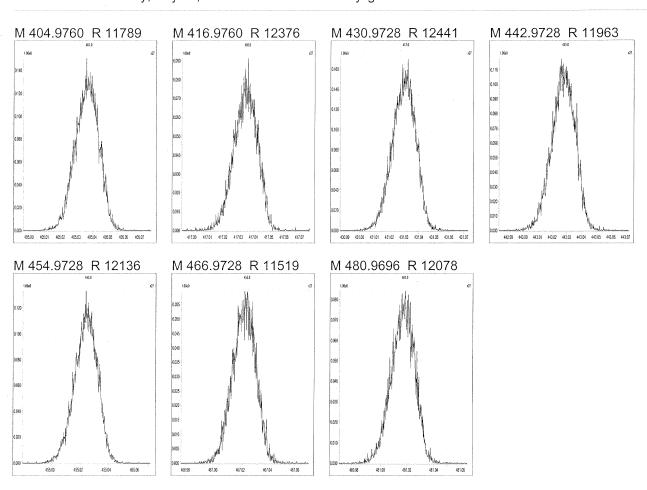
exp Reference: pfk.ref Function: 3 @ 200 (ppm)

Printed:

Friday, July 06, 2012 05:12:26 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

exp Reference: pfk.ref Function: 4 @ 200 (ppm)

Printed:

Friday, July 06, 2012 05:13:02 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

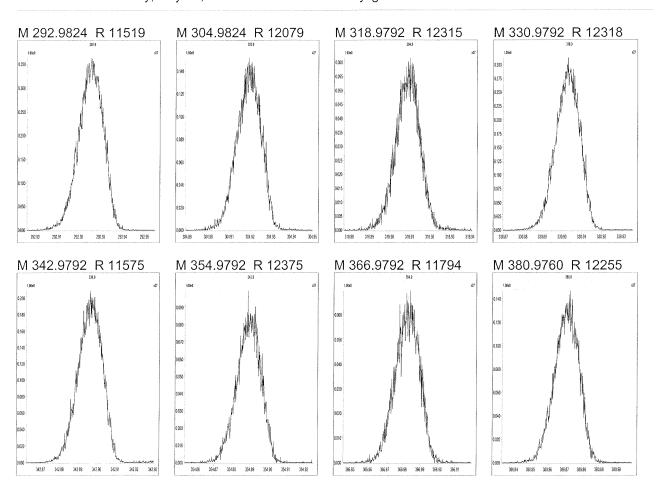
exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed:

Friday, July 06, 2012 05:13:36 Central Daylight Time

MassLynx 4.1

Page 1 of 1

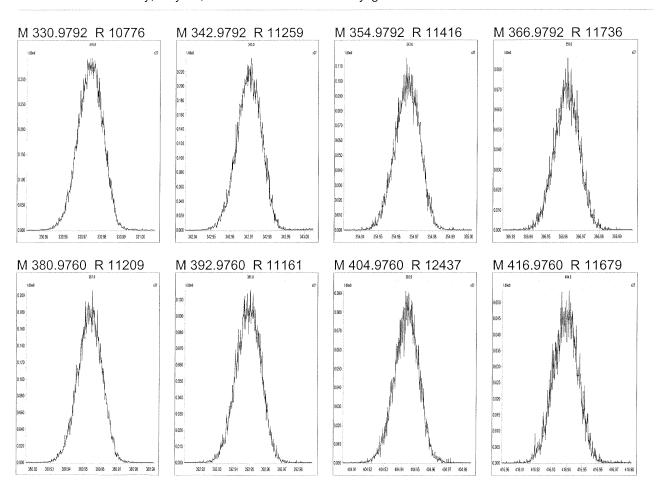

File:

Experiment: 8290

.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed:

Friday, July 06, 2012 16:40:01 Central Daylight Time

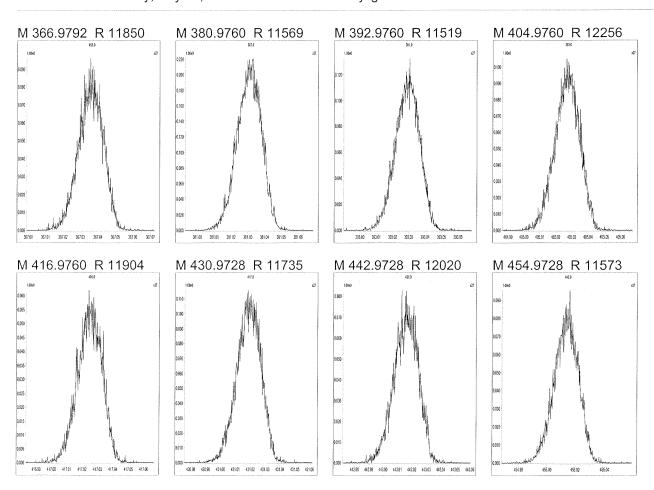

File:

Experiment: 8290

exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed:

Friday, July 06, 2012 16:41:02 Central Daylight Time


File:

Experiment: 8290

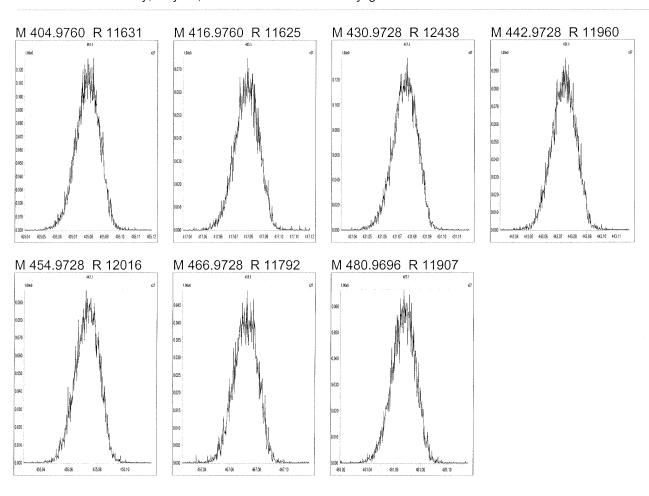
.exp Reference: pfk.ref Function: 3 @ 200 (ppm)

Printed:

Friday, July 06, 2012 16:41:58 Central Daylight Time

MassLynx 4.1

Page 1 of 1


File:

Experiment: 8290

.exp Reference: pfk.ref Function: 4 @ 200 (ppm)

Printed:

Friday, July 06, 2012 16:43:06 Central Daylight Time

File:

Experiment: 8290

exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed:

Friday, July 06, 2012 16:44:11 Central Daylight Time

5DFA

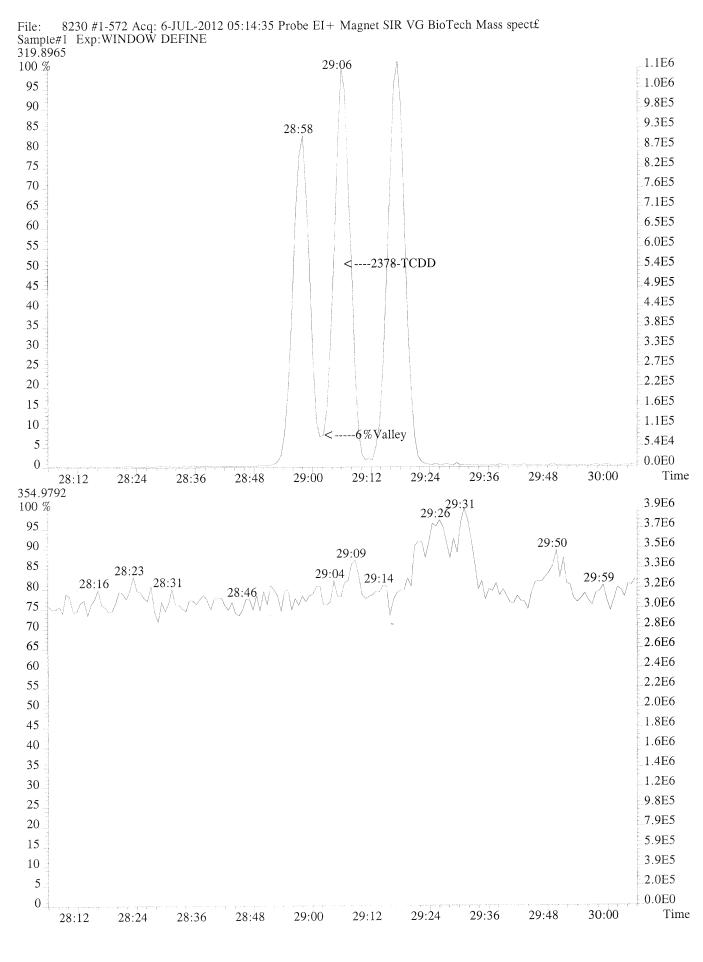
WINDOW DEFINING MIX SUMMARY

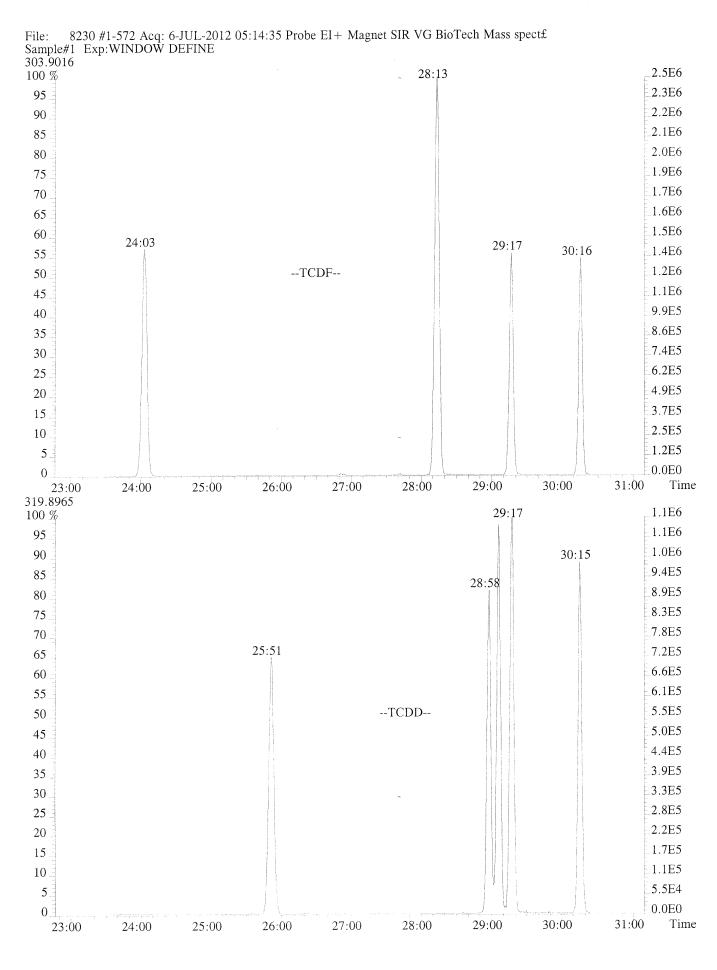
CLIENT	ID:
WDM	

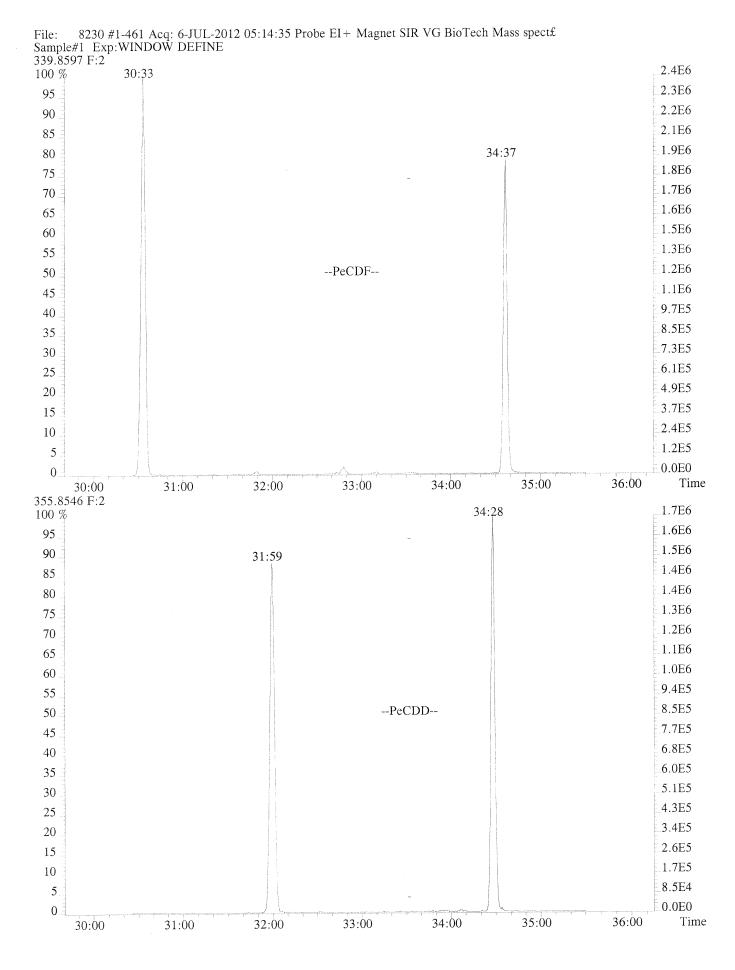
Lab Name:

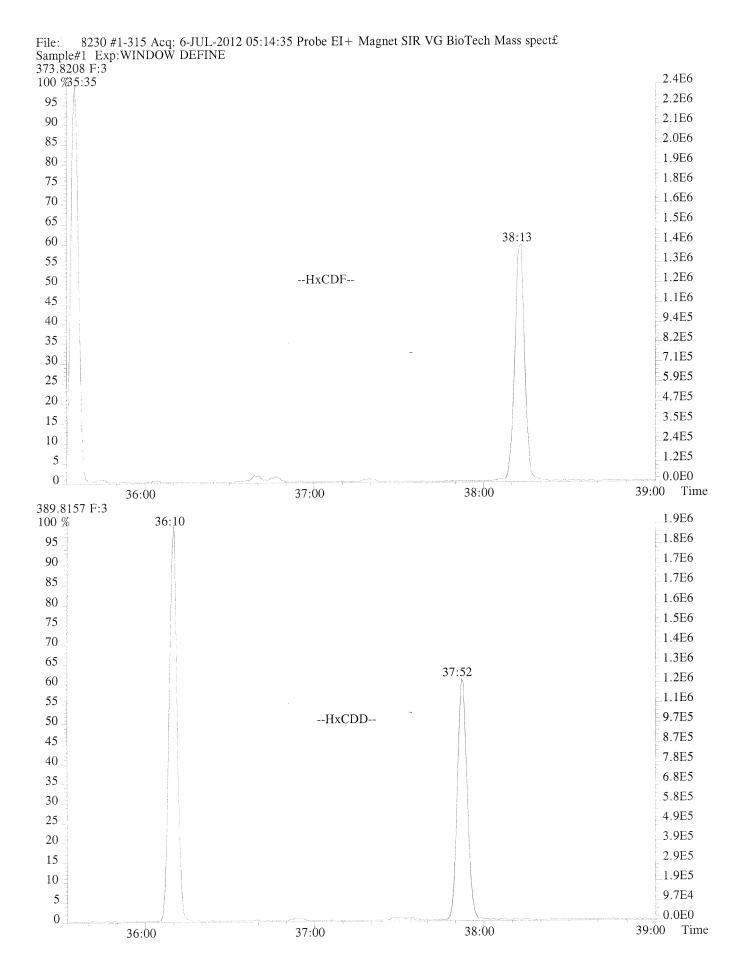
Lab Code:

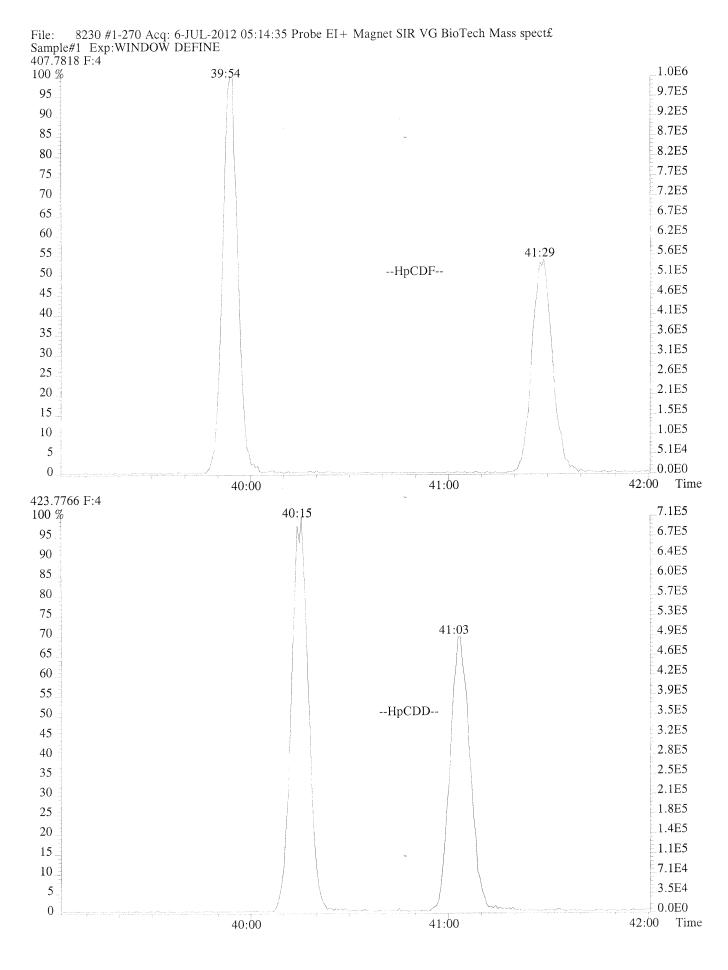
GC Column: DB-5


SDG No.:


Lab File ID: 8230


Date Analyzed: 6-JUL-2012 Time Analyzed: 05:14:35


Retention Time Retention Time Last First Eluting Eluting Congener 30:16 24:03 TCDF TCDD 25:51 30:15 34:37 30:33 PeCDF 34:28 31:59 PeCDD HxCDF 35:35 38:13 37:52 36:10 HxCDD 41:29 39:54 HpCDF 41:03 HpCDD 40:15


[%] Valley 2378-TCDD:

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: 8231 Analysis Date: 6-JUL-12 Time: 06:10:10

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE (3) (ng/mL)
2,3,7,8-TCDD	M/M+2	0.77	0.65-0.89	10.2	7.8 - 12.9
1,2,3,7,8-PeCDD	M+2/M+4	1.58	1.32-1.78	53	39 - 65
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.27 1.28 1.27	1.05-1.43 1.05-1.43 1.05-1.43	57 46 54	39 - 64 39 - 64 41 - 61
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.05	0.88-1.20	50	43 - 58
OCDD	M+2/M+4	0.91	0.76-1.02	87	79 - 126
2,3,7,8-TCDF	M/M+2	0.76	0.65-0.89	10.7	8.4 - 12.0
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.59 1.59	1.32-1.78 1.32-1.78	51 56	41 - 60 41 - 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.25 1.24 1.26 1.24	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	49 52 49 50	45 - 56 44 - 57 45 - 56 44 - 57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		1.04	0.88-1.20 0.88-1.20	49 52	45 - 55 43 - 58
OCDF	M+2/M+4	0.89	0.76-1.02	102	63 - 159

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

6/90

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613, under VER.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: 8231 Analysis Date: 6-JUL-12 Time: 06:10:10

LABELED COMPOUNDS	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE (3) (ng/mL)
13C-2,3,7,8-TCDD	M/M+2	0.79	0.65-0.89	102	82 - 121
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.60	1.32-1.78	89	62 - 160
13C-1,2,3,4,7,8-HxCDI 13C-1,2,3,6,7,8-HxCDI		1.38	1.05-1.43 1.05-1.43	94 98	85 - 117 85 - 118
13C-1,2,3,4,6,7,8-HpC	CDD M+2/M+4	1.06	0.88-1.20	109	72 - 138
13C-OCDD	M+2/M+4	0.90	0.76-1.02	250	96 - 415
13C-2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89	113	71 - 140
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.59 1.58	1.32-1.78 1.32-1.78	106 99	76 - 130 77 - 130
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	M/M+2 M/M+2	0.52 0.52 0.52 0.53	0.43-0.59 0.43-0.59 0.43-0.59 0.43-0.59	116 105 120 113	76 - 131 70 - 143 74 - 135 73 - 137
13C-1,2,3,4,6,7,8-HpC		0.44	0.37-0.51 0.37-0.51	120 120	78 - 129 77 - 129
CLEANUP STANDARD					
37Cl-2,3,7,8-TCDD				10.2	7.9 - 12.7

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

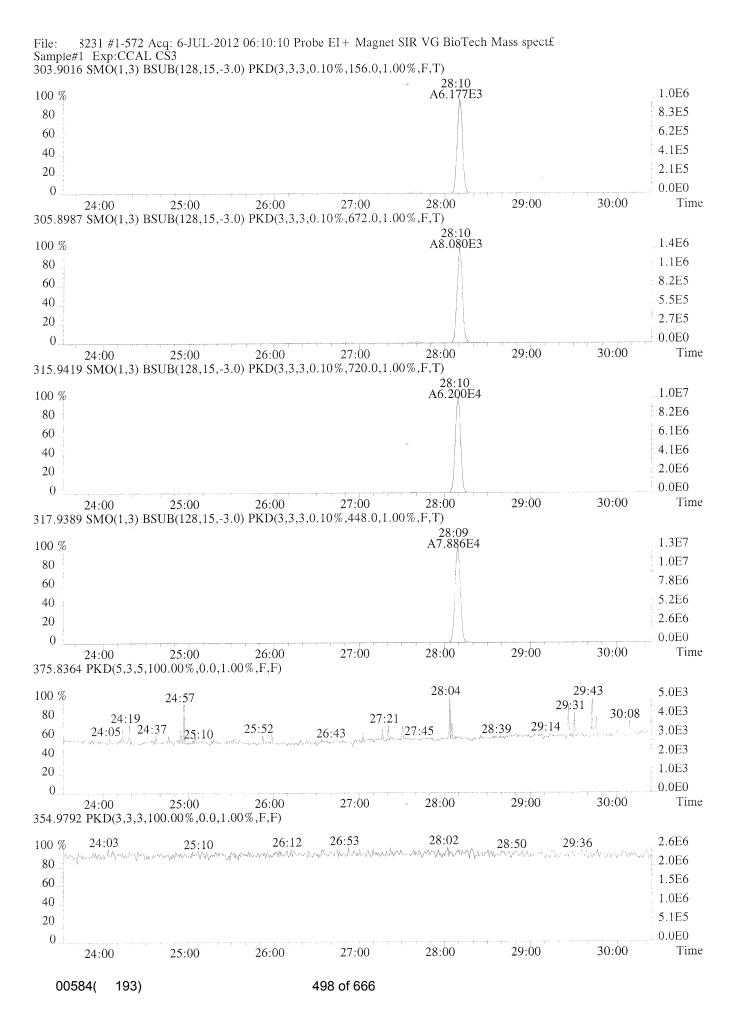
6/90

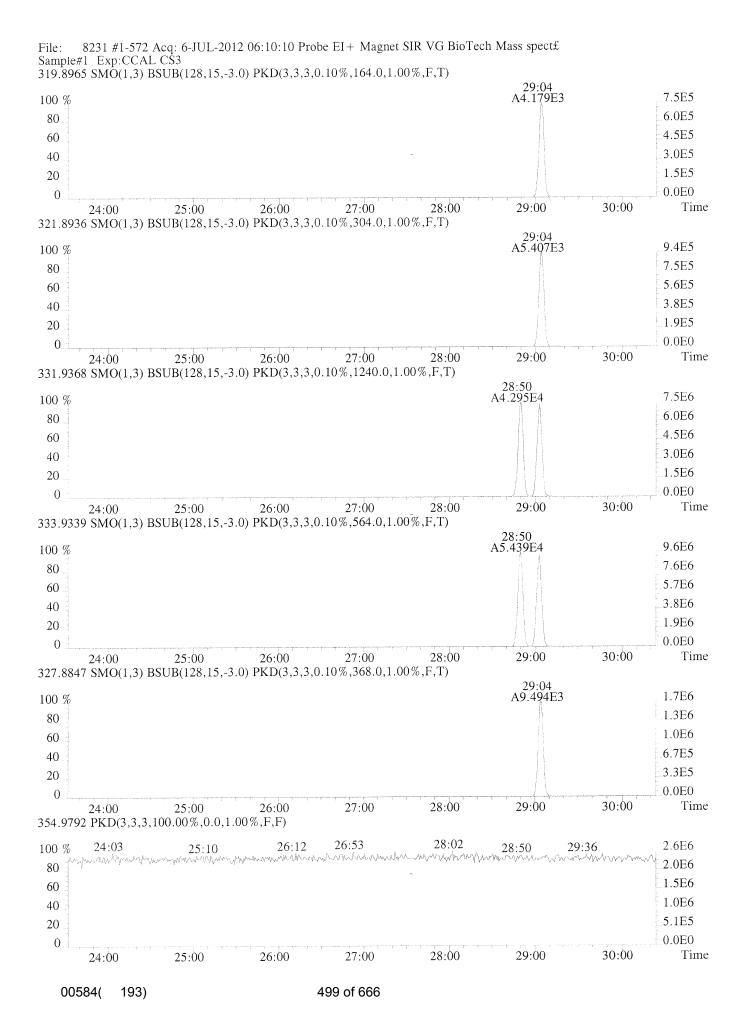
⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

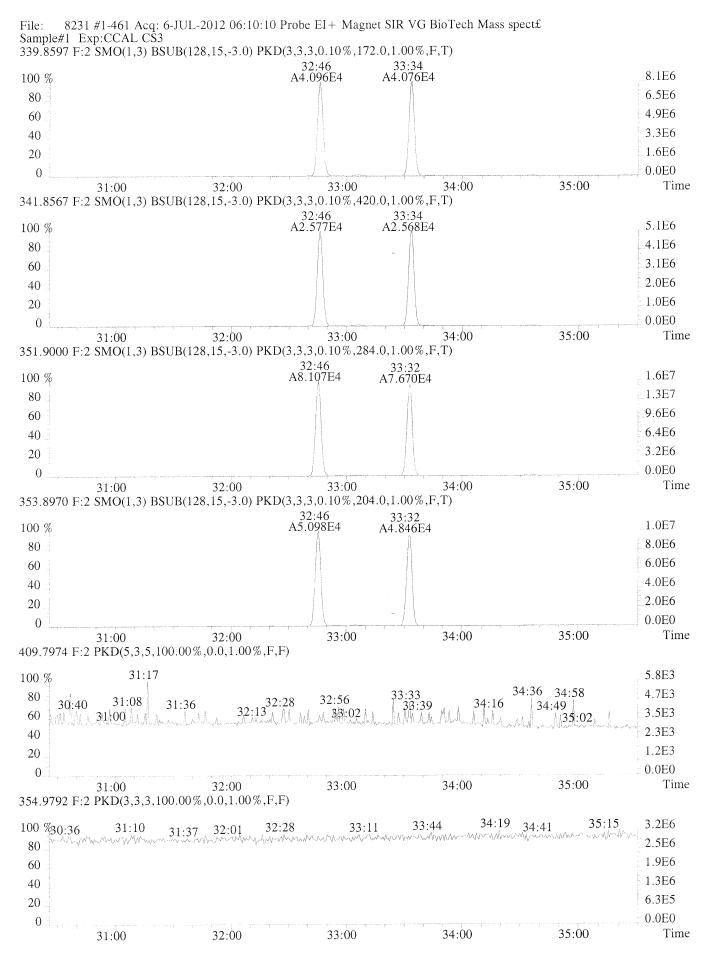
⁽³⁾ Contract-required concentration range, as specified in Table 6, Method 1613, under VER.

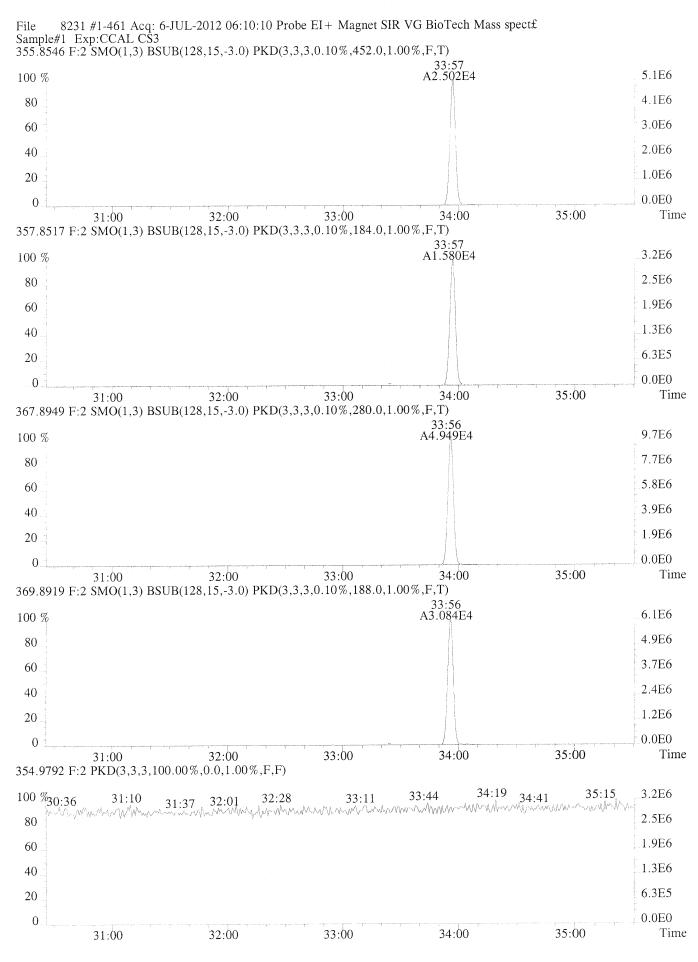
⁽⁴⁾ No ion abundance ratio; report concentration found.

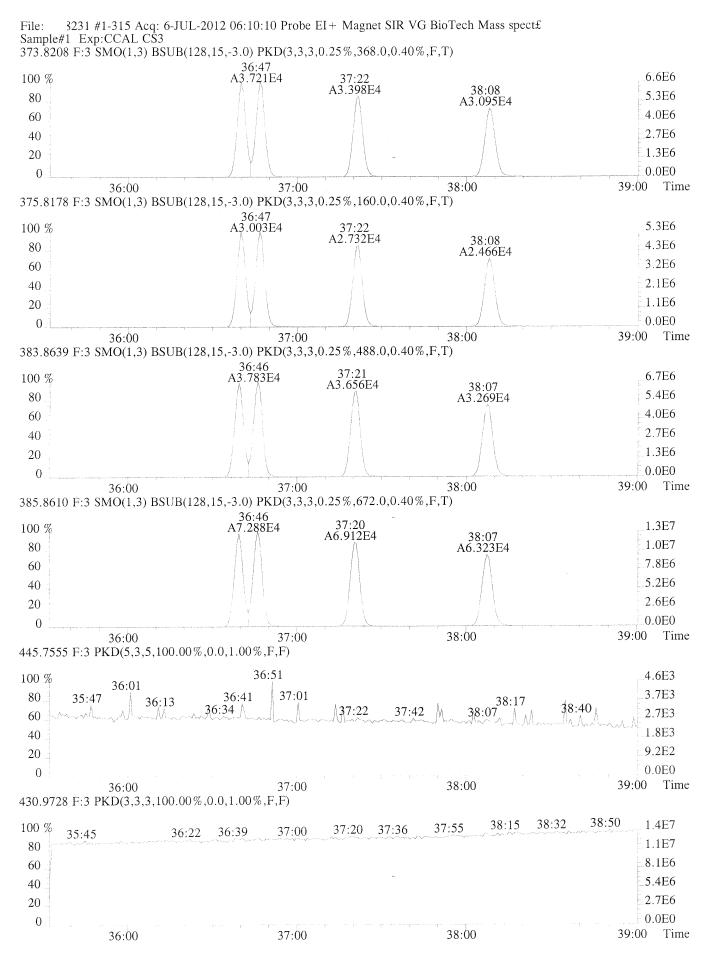
Run #7 Filename 8231 #1 Samp: 1 Inj: 1 Acquired: 6-JUL-12 06:10:10

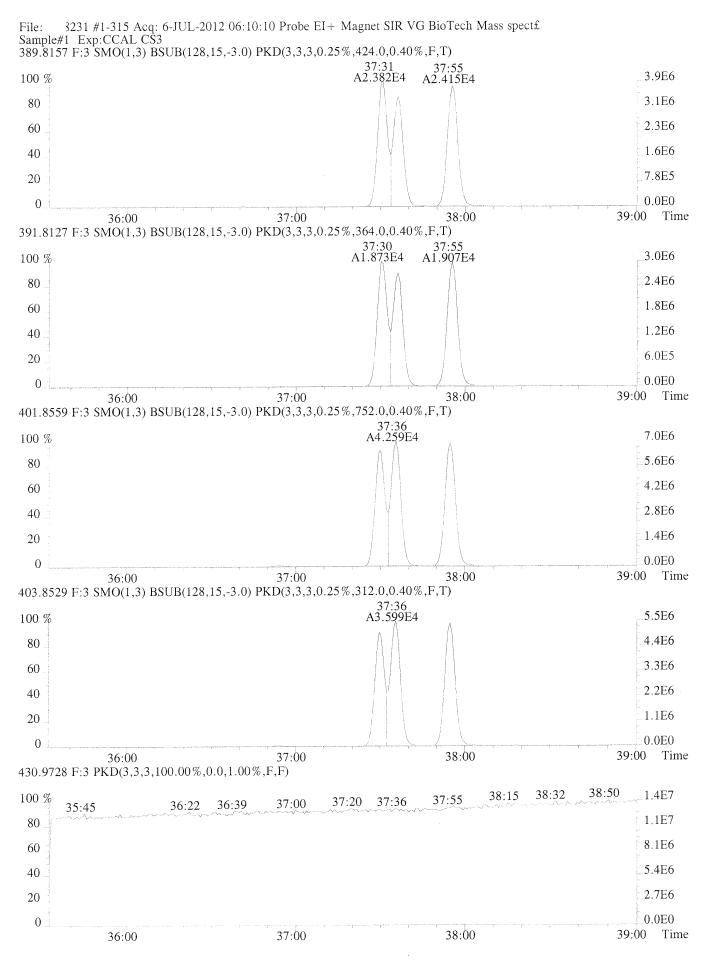

Processed: 14-JUL-12 09:	22:54 LAB.	. ID: CCAL CS3
--------------------------	------------	----------------

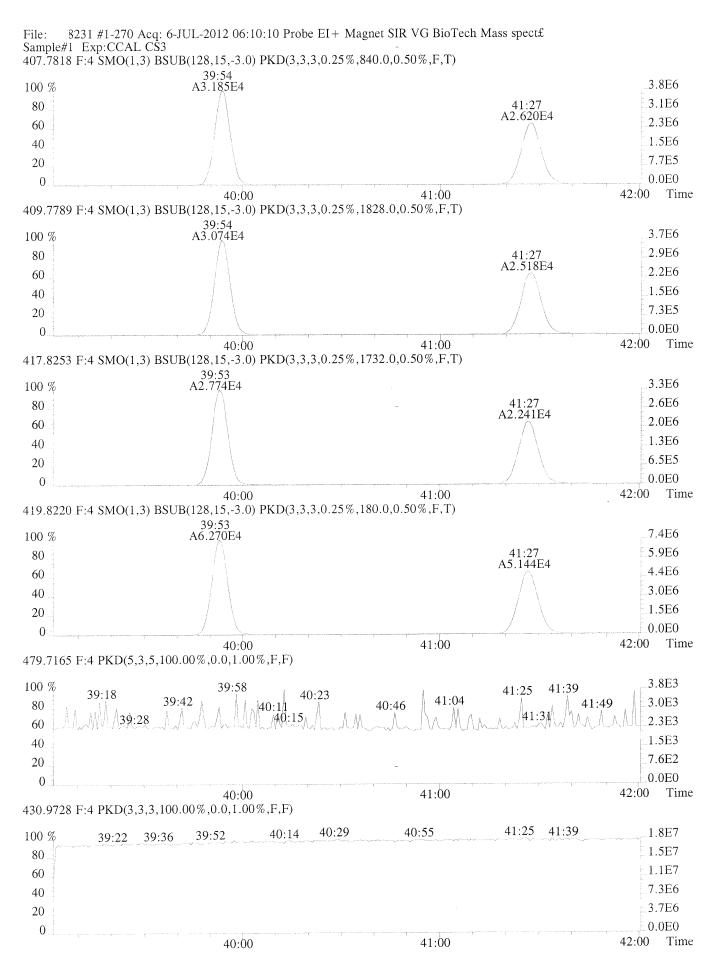

	Тур	Name R	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF 2	28:10	6.177e+03	8.080e+03	0.76	yes	no	1.000
2	Unk	1,2,3,7,8-PeCDF 3		4.096e+04	2.577e+04	1.59	yes	no	1.000
3	Unk	2,3,4,7,8-PeCDF 3		4.076e+04	2.568e+04	1.59	yes	no	1.001
4	Unk	1,2,3,4,7,8-HxCDF 3		3.565e+04	2.854e+04	1.25	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF 3		3.721e+04	3.003e+04	1.24	yes	no	1.000
6	Unk	2,3,4,6,7,8-HxCDF 3		3.398e+04	2.732e+04	1.24	yes	no	1.000
7	Unk	1,2,3,7,8,9-HxCDF 3		3.095e+04	2.466e+04	1.26	yes	no	1.000
8	Unk	1,2,3,4,6,7,8-HpCDF 3	39:54	3.185e+04	3.074e+04	1.04	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF 4	1:27	2.620e+04	2.518e+04	1.04	yes	no	1.000
10	Unk	OCDF 4	15:02	3.948e+04	4.415e+04	0.89	yes	no	1.002
11	Unk	2,3,7,8-TCDD 2	29:04	4.179e+03	5.407e+03	0.77	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD 3		2.502e+04	1.580e+04	1.58	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD 3		2.382e+04	1.873e+04	1.27	yes	no	1.000
14	Unk	1,2,3,6,7,8-HxCDD 3		2.119e+04	1.659e+04	1.28	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD 3		2.415e+04	1.907e+04	1.27	yes	no	1.008
16	Unk	1,2,3,4,6,7,8-HpCDD 4		2.043e+04	1.939e+04	1.05	yes	no	1.001
17	Unk	OCDD 4		3.076e+04	3.380e+04	0.91	yes	no	1.001
18	IS	13C-2,3,7,8-TCDF 2	8·10	6.200e+04	7.886e+04	0.79	yes	no	0.977
19	IS	13C-1,2,3,7,8-PeCDF 3		8.107e+04	-5.098e+04	1.59	yes	no	1.136
20	IS	13C-2,3,4,7,8-PeCDF 3		7.670e+04	4.846e+04	1.58	yes	no	1.163
21	IS	13C-1,2,3,4,7,8-HxCDF 3		3.628e+04	6.943e+04	0.52	yes	no	0.967
22	IS		6:46	3.783e+04	7.288e+04	0.52	yes	no	0.970
23	IS		37:21	3.656e+04	6.912e+04	0.53	yes	no	0.985
24	IS		88:07	3.269e+04	6.323e+04	0.52	yes	no	1.005
25		3C-1,2,3,4,6,7,8-HpCDF 3		2.774e+04	6.270e+04	0.44	yes	no	1.052
26		3C-1,2,3,4,7,8,9-HpCDF 4		2.241e+04	5.144e+04	0.44	yes	no	1.093
27	IS	13C-2,3,7,8-TCDD 2	29:03	4.096e+04	5.202e+04	0.79	yes	no	1.008
28	IS	13C-1,2,3,7,8-PeCDD 3		4.949e+04	3.084e+04	1.60	yes	no	1.177
29	IS	13C-1,2,3,4,7,8-HxCDD 3		4.058e+04	2.950e+04	1.38	yes	no	0.989
30	IS		7:36	4.259e+04	3.599e+04	1.18	yes	no	0.992
31		3C-1,2,3,4,6,7,8-HpCDD 4		3.929e+04	3.695e+04	1.06	yes	no	1.082
32	IS	13C-OCDD 4		5.928e+04	6.601e+04	0.90	yes	no	1.185
225	S/RT	13C-1,2,3,4-TCDD 2	00.50	4.295e+04	5.439e+04	0.79	yes	no	*
	S/RT S/RT	13C-1,2,3,4-1CDD 2 13C-1,2,3,7,8,9-HxCDD 3		4.426e+04	3.476e+04	1.27	yes	no	*
	S/RI C/Up	37C1-2,3,7,8-TCDD 3		9.494e+03	3.4/00104	1.4/	y C D	no	1.008
35	c/ ub	3/CI-2,3,7,6-1CDD 2		J.4J4CTU3			I	110	

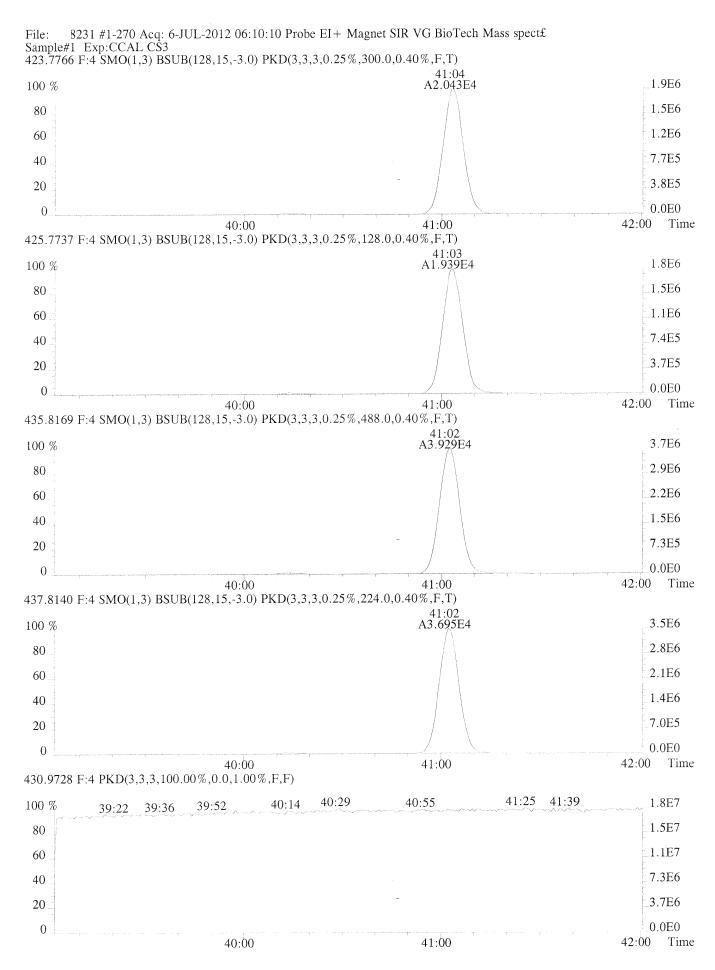

Acquired: 6-JUL-12 06:10:10 Samp: 1 Inj: 1 Run #7 Filename 8231 LAB. ID: CCAL CS3 Processed: 14-JUL-12 09:22:541 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF | 1.03e+06 | 1.56e+02 | 6.6e+03 | 1.36e+06 | 6.72e+02 | 2.0e+03 1 1,2,3,7,8-PeCDF | 8.14e+06 | 1.72e+02 | 4.7e+04 | 5.10e+06 | 1.2e+04 4.20e+02 2 2,3,4,7,8-PeCDF| 8.14e+06| 1.72e+02| 4.7e+04| 5.09e+06| 4.20e+02| 1.2e+04 3 6.61e+06 | 3.68e+02 | 1.8e+04 | 5.31e+06 | 1.60e+02 | 3.3e+04 4 1,2,3,4,7,8-HxCDF 6.64e+06 | 3.68e+02 | 1.8e+04 | 5.34e+06 | 1.60e+02 | 3.3e+04 5 1,2,3,6,7,8-HxCDF 5.62e+06 | 3.68e+02 | 1.5e+04 | 4.55e+06 | 1.60e+02 | 2.8e+04 2,3,4,6,7,8-HxCDF 4.81e+06 | 3.68e+02 | 1.3e+04 | 3.81e+06 | 1.60e+02 | 2.4e+04 7 1,2,3,7,8,9-HxCDF 3.83e+06 | 8.40e+02 | 4.6e+03 | 3.66e+06 | 1.83e+03 | 2.0e+03 8 1,2,3,4,6,7,8-HpCDF 2.48e+06 | 8.40e+02 | 3.0e+03 | 2.35e+06 | 1.83e+03 | 1.3e+03 9 1,2,3,4,7,8,9-HpCDF OCDF | 2.25e+06 | 1.24e+02 | 1.8e+04 | 2.59e+06 | 2.84e+02 | 9.1e+03 10 2,3,7,8-TCDD | 7.46e+05 | 1.64e+02 | 4.5e+03 | 9.39e+05 | $3.04e+02 \mid 3.1e+03$ 11 1.7e + 041,2,3,7,8-PeCDD | 5.06e+06 | 4.52e+02 | 1.1e+04 | 3.17e+06 | 1.84e+02 12 3.89e+06 | 4.24e+02 | 9.2e+03 | 2.98e+06 | 3.64e+02 | 8.2e+03 1,2,3,4,7,8-HxCDD 13 3.42e+06 | 4.24e+02 | 8.1e+03 | 2.71e+06 | 3.64e+02 | 7.4e+03 1,2,3,6,7,8-HxCDD 14 3.74e+06 | 4.24e+02 | 8.8e+03 | 2.97e+06 | 3.64e+02 | 8.2e+03 1,2,3,7,8,9-HxCDD 15 3.00e+02 | 6.4e+03 | 1.83e+06 | 1.28e+02 | 1.4e+04 1.92e+06 16 1,2,3,4,6,7,8-HpCDD OCDD | 1.65e+06 | 1.56e+02 | 1.1e+04 | 1.86e+06 | 1.08e+02 | 1.7e+04 17 7.20e+02 | 1.4e+04 | 1.30e+07 | 4.48e+02 | 2.9e+04 13C-2,3,7,8-TCDF | 1.02e+07| 18 13C-1,2,3,7,8-PeCDF | 1.59e+07 | 2.84e+02 | 5.6e+04 | 1.00e+07 | 2.04e+02 | 4.9e+04 19 1.51e+07 | 2.84e+02 | 5.3e+04 | 9.57e+06 | 2.04e+02 | 4.7e+04 13C-2,3,4,7,8-PeCDF 20 1.27e+07 | 6.72e+02 | 1.9e+04 4.88e+02 1.4e+04 13C-1,2,3,4,7,8-HxCDF 6.62e+06 21 6.72e+02 | 1.9e+04 1.30e+07 6.74e+06 | 4.88e+02 | 1.4e+04 22 13C-1,2,3,6,7,8-HxCDF 1.7e + 046.03e+06 | 4.88e+02 | 1.2e+04 | 1.14e+07 | 6.72e+02 23 13C-2,3,4,6,7,8-HxCDF 1.4e + 045.06e+06 | 4.88e+02 | 1.0e+04 | 9.73e+06 | 6.72e+02 13C-1,2,3,7,8,9-HxCDF 3.26e+06 | 1.73e+03 | 1.9e+03 | 7.40e+06 | 1.80e+02 | 4.1e+04 25 13C-1,2,3,4,6,7,8-HpCDF 26 13C-1,2,3,4,7,8,9-HpCDF| 2.14e+06| 1.73e+03| 1.2e+03| 4.88e+06| 1.80e+02| 2.7e+04 13C-2,3,7,8-TCDD | 7.30e+06 | 1.24e+03 | 5.9e+03 | 9.19e+06 | 5.64e+02 | 1.6e+04 27 13C-1,2,3,7,8-PeCDD| 9.67e+06| 2.80e+02| 3.5e+04| 6.11e+06| 1.88e+02 3.3e+04 28 6.48e+06 | 7.52e+02 | 8.6e+03 | 5.03e+06 | 3.12e+02 1.6e+04 13C-1,2,3,4,7,8-HxCDD 29 6.96e+06 | 7.52e+02 | 9.3e+03 | 5.52e+06 | 3.12e+02 | 1.8e+04 13C-1,2,3,6,7,8-HxCDD 30 3.66e+06 | 4.88e+02 | 7.5e+03 | 3.51e+06 | 2.24e+02 | 1.6e+04 31 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 3.21e+06 1.40e+02 2.3e+04 3.59e+06 1.00e+02 3.6e+04 32 13C-1,2,3,4-TCDD| 7.51e+06| 1.24e+03| 6.1e+03| 9.56e+06| 5.64e+02| 1.7e+04 33 13C-1,2,3,7,8,9-HxCDD | 6.92e+06 | 7.52e+02 | 9.2e+03 | 5.44e+06 | 3.12e+02 | 1.7e+04 34

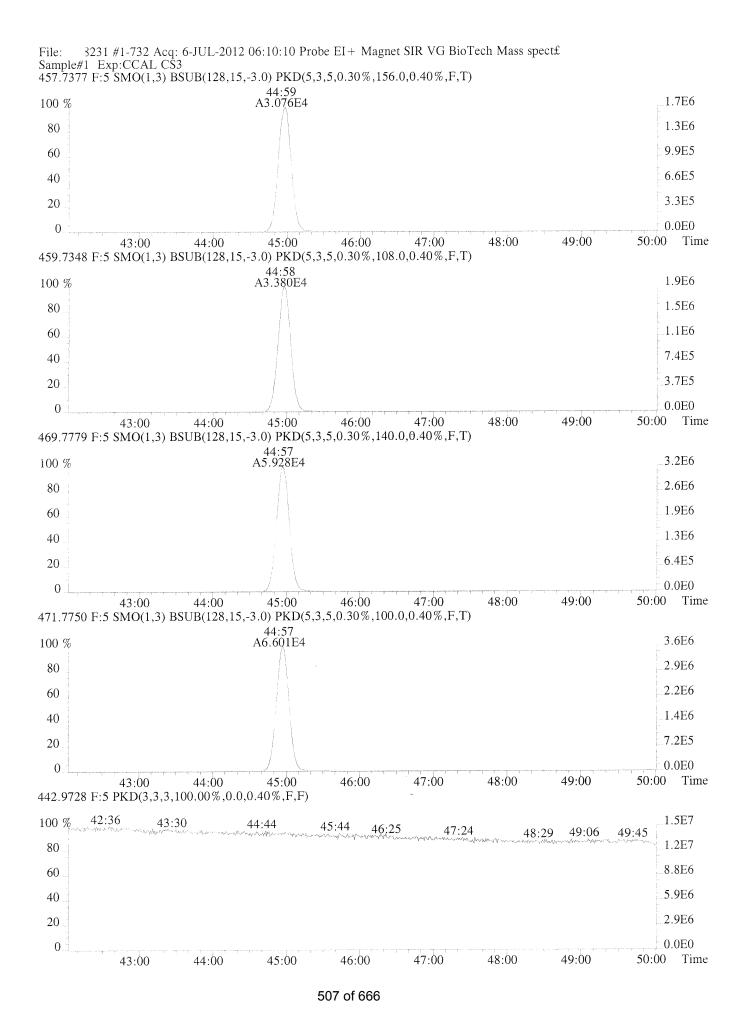

37Cl-2,3,7,8-TCDD | 1.67e+06 | 3.68e+02 | 4.5e+03


35









File 8231 #1-732 Acq: 6-JUL-2012 06:10:10 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp:CCAL CS3 441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,124.0,0.40%,F,T) 45:02 A3.948E4 2.3E6 100 % 1.8E6 80 60 1.4E6 9.0E5 40 4.5E5 20 0.0E0 0 44:00 45:00 46:00 47:00 48:00 49:00 50:00 Time 43:00 443.7399 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,284.0,0.40%,F,T) 45:02 2.6E6 A4.415E4 100 % 80 2.1E6 1.6E6 60 1.0E6 40 5.2E5 20 0.0E0 0 48:00 49:00 50:00 Time 44:00 45:00 46:00 47:00 43:00 513.6775 F:5 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 5.4E3 100 % 4.3E3 80 48:27 48:19 48:04 49:10 46:53 45:33 3.2E3 60 47:30 49:45 43:16 44:15 44:53 46:40 45:40 43:08 44:23 42:30 2.1E3 40 1.1E3 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 43:00 44:00 45:00 46:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 42:36 1.5E7 100 % 43:30 44:44 45:44 46:25 47:24 48:13 49:06 49:45 1.2E7 80 8.8E6 60 5.9E6 40 2.9E6 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 44:00 45:00 46:00 43:00

506 of 666

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: 8240 Analysis Date: 6-JUL-12 Time: 14:38:40

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE (3) (ng/mL)
NATIVE ANALYTES					
2,3,7,8-TCDD	M/M+2	0.79	0.65-0.89	10.2	7.8 - 12.9
1,2,3,7,8-PeCDD	M+2/M+4	1.60	1.32-1.78	53	39 - 65
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.26 1.28 1.25	1.05-1.43 1.05-1.43 1.05-1.43	54 47 51	39 - 64 39 - 64 41 - 61
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.05	0.88-1.20	49	43 - 58
OCDD	M+2/M+4	0.91	0.76-1.02	88	79 - 126
2,3,7,8-TCDF	M/M+2	0.74	0.65-0.89	10.7	8.4 - 12.0
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.56 1.58	1.32-1.78 1.32-1.78	51 56	41 - 60 41 - 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.24 1.27 1.27 1.25	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	49 52 50 50	45 - 56 44 - 57 45 - 56 44 - 57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	M+2/M+4 M+2/M+4	1.05 1.05	0.88-1.20 0.88-1.20	49 52	45 - 55 43 - 58
OCDF	M+2/M+4	0.91	0.76-1.02	103	63 - 159

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

6/90

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613, under VER.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 05/03/12

Instrument ID: AutoSpec-Premier GC Column ID: DB-5

VER Data Filename: 8240 Analysis Date: 6-JUL-12 Time: 14:38:40

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	~	CONC. FOUND	CONC. RANGE (3) (ng/mL)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	M/M+2	0.78	0.65-0.89		96	82 - 121
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.61	1.32-1.78		78	62 - 160
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD		1.26 1.27	1.05-1.43 1.05-1.43		101 102	85 - 117 85 - 118
13C-1,2,3,4,6,7,8-HpC	DD M+2/M+4	1.06	0.88-1.20		107	72 - 138
13C-OCDD	M+2/M+4	0.90	0.76-1.02		234	96 - 415
13C-2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89		109	71 - 140
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.61	1.32-1.78 1.32-1.78		96 88	76 - 130 77 - 130
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	M/M+2 M/M+2 M/M+2 M/M+2	0.52 0.52 0.53 0.52	0.43-0.59 0.43-0.59 0.43-0.59 0.43-0.59		121 109 116 115	76 - 131 70 - 143 74 - 135 73 - 137
13C-1,2,3,4,6,7,8-HpC		0.45	0.37-0.51 0.37-0.51		125 115	78 - 129 77 - 129
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD					9.5	7.9 - 12.7

- (1) See Table 8, Method 1613, for m/z specifications.
- (2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (3) Contract-required concentration range, as specified in Table 6, Method 1613, under VER.
- (4) No ion abundance ratio; report concentration found.

6/90

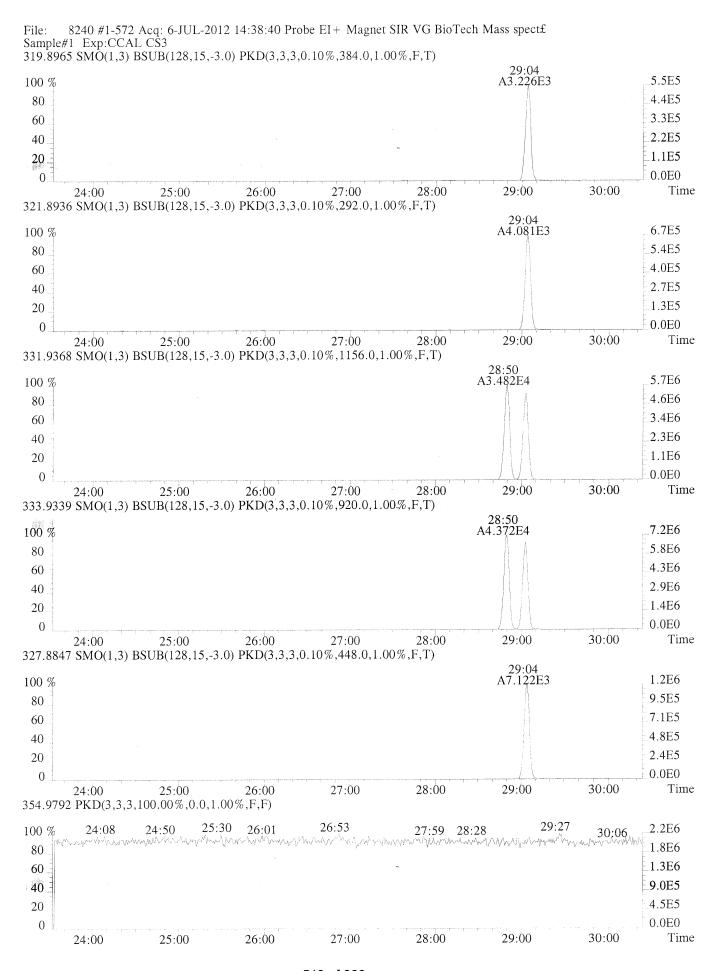
Sample Response Summary CLIENT ID. CCAL CS3

Run #16 Filename 8240 #1 Samp: 1 Inj: 1 Acquired: 6-JUL-12 14:38:40 Processed: 14-JUL-12 09:23:14 LAB. ID: CCAL CS3

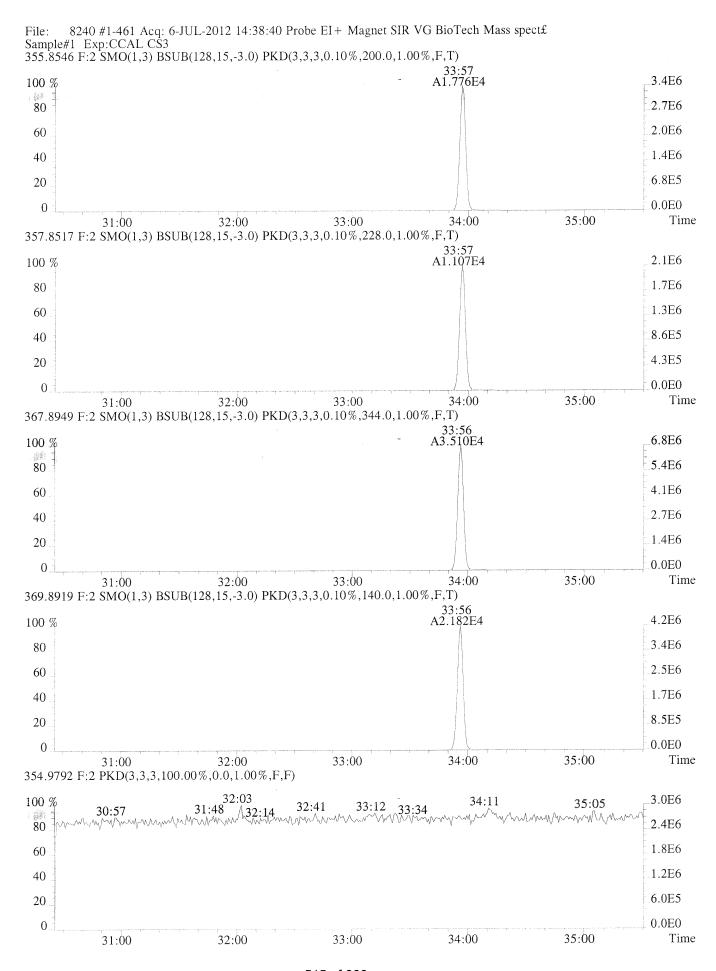
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet M	Mod?	RRT
1	Unk	2,3,7,8-TCDF	28:10	4.697e+03	6.336e+03	0.74	yes	no	1.001
2	Unk	1,2,3,7,8-PeCDF	1	2.962e+04	1.899e+04	1.56	yes	no	1.000
3	Unk	2,3,4,7,8-PeCDF		2.953e+04	1.870e+04	1.58	yes	no	1.000
4	Unk	1,2,3,4,7,8-HxCDF		2.494e+04	2.003e+04	1.24	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF		2.612e+04	2.059e+04	1.27	yes	no	1.000
6	Unk	2,3,4,6,7,8-HxCDF		2.301e+04	1.844e+04	1.25	yes	no	1.000
7	Unk	1,2,3,7,8,9-HxCDF		2.016e+04	1.594e+04	1.27	yes	no	1.000
8	Unk	1,2,3,4,6,7,8-HpCDF		2.199e+04	2.088e+04	1.05	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF		1.682e+04	1.604e+04	1.05	yes	no	1.000
10	Unk		45:00	2.459e+04	2.712e+04	0.91	yes	no	1.003
						1	1		
11	Unk	2,3,7,8-TCDD		3.226e+03	4.081e+03	0.79	yes	no	1.001
12	Unk	1,2,3,7,8-PeCDD		1.776e+04	1.107e+04	1.60	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD		1.613e+04	1.279e+04	1.26	yes	no	1.000
14	Unk	1,2,3,6,7,8-HxCDD		1.485e+04	1.158e+04	1.28	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD		1.586e+04	1.265e+04	1.25	yes	no	1.009
16	Unk	1,2,3,4,6,7,8-HpCDD		1.321e+04	1.257e+04	1.05	yes	no	1.000
17	Unk	OCDD	44:55	1.931e+04	-2.131e+04	0.91	yes	no	1.001
18	IS	13C-2,3,7,8-TCDF	128.09	4.823e+04	6.093e+04	0.79	yes	no	0.976
19	IS	13C-1,2,3,7,8-PeCDF	1	5.940e+04	3.692e+04	1.61	yes	no	1.136
20	IS	13C-2,3,4,7,8-PeCDF		5.520e+04	3.460e+04	1.60	yes	no	1.164
21	IS	13C-1,2,3,4,7,8-HxCDF		2.513e+04	4.825e+04	0.52	yes	no	0.967
22	IS	13C-1,2,3,4,7,6 HXCDF		2.634e+04	5.020e+04	0.52	yes	no	0.970
23	IS	13C-2,3,4,6,7,8-HxCDF		2.432e+04	4.700e+04	0.52	yes	no	0.985
24	IS	13C-1,2,3,7,8,9-HxCDF		2.140e+04	4.010e+04	0.53	yes	no	1.006
25		3C-1,2,3,4,6,7,8-HpCDF		1.931e+04	4.290e+04	0.45	yes	no	1.052
26		3C-1,2,3,1,6,7,8,9-HpCDF		1.416e+04	3.274e+04	0.43	yes	no	1.093
20	101	30 1/2/3/1///0/3 11 <u>P</u> 321	1			, ,	4 ,		
27	IS	13C-2,3,7,8-TCDD	29:03	3.083e+04	3.952e+04	0.78	yes	no	1.008
28	IS	13C-1,2,3,7,8-PeCDD		3.510e+04	2.182e+04	1.61	yes	no	1.177
29	IS	13C-1,2,3,4,7,8-HxCDD		2.779e+04	2.213e+04	1.26	yes	no	0.989
30	IS	13C-1,2,3,6,7,8-HxCDD		3.022e+04	2.382e+04	1.27	yes	no	0.992
31	IS1	3C-1,2,3,4,6,7,8-HpCDD		2.548e+04	2.401e+04	1.06	yes	no	1.082
32	IS	13C-OCDD		3.677e+04	4.064e+04	0.90	yes	no	1.184
	~ /		100 50	1 2 400 - 04	4 270-:04	1 0 001		no	*
	S/RT	13C-1,2,3,4-TCDD	1	3.482e+04	4.372e+04	0.80	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		2.935e+04	2.292e+04	1.28	yes	no no	1.008
35	C/Up	37C1-2,3,7,8-TCDD	29:04	7.122e+03			I	110	1.008

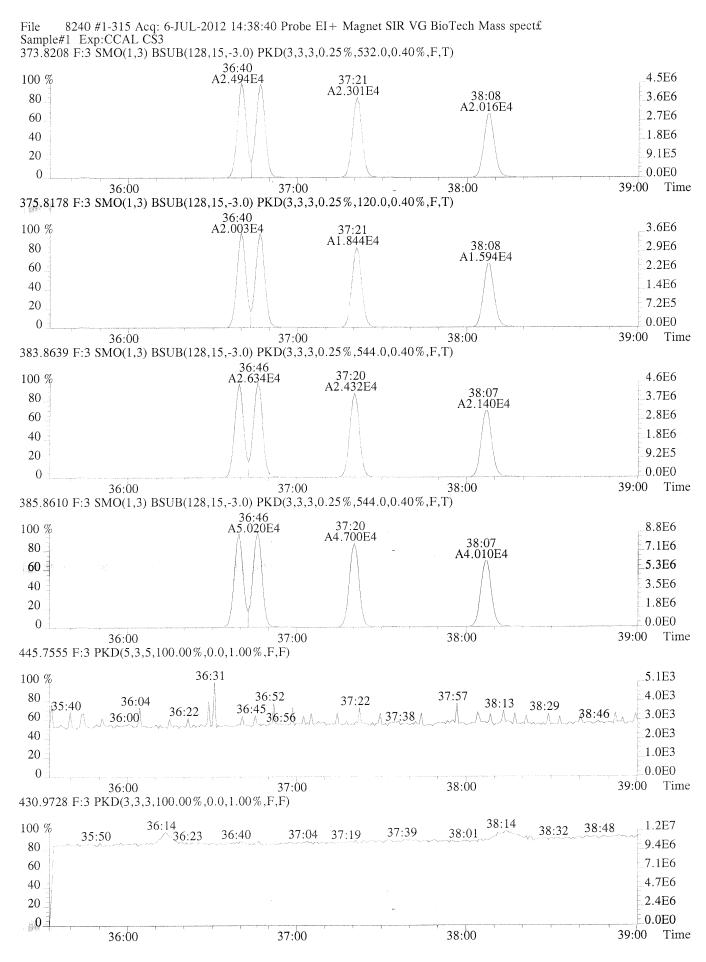
Run #16 Filename 8240 Samp: 1 Inj: 1 Acquired: 6-JUL-12 14:38:40 Processed: 14-JUL-12 09:23:141 LAB. ID: CCAL CS3 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2,3,7,8-TCDF| 7.47e+05| 4.40e+02| 1.7e+03| 1.01e+06| 6.12e+02| 1.6e+03 1 5.44e+06 | 5.88e+02 | 9.2e+03 | 3.51e+06 | 8.00e+02 | 4.4e+03 1,2,3,7,8-PeCDF 5.68e+06 | 5.88e+02 | 9.7e+03 | 3.57e+06 | 8.00e+02 | 4.5e+03 3 2,3,4,7,8-PeCDF 4.54e+06 | 5.32e+02 | 8.5e+03 | 3.60e+06 | 1.20e+02 | 3.0e+04 1,2,3,4,7,8-HxCDF 4 4.48e+06 | 5.32e+02 | 8.4e+03 | 3.57e+06 | 1.20e+02 | 3.0e+04 1,2,3,6,7,8-HxCDF 5 3.82e+06 5.32e+02 7.2e+03 3.03e+06 1.20e+02 2.5e+04 2,3,4,6,7,8-HxCDF 6 3.05e+06 | 5.32e+02 | 5.7e+03 | 2.41e+06 | 1.20e+02 | 2.0e+04 7 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF | 2.67e+06 | 1.23e+03 | 2.2e+03 | 2.50e+06 | 3.56e+02 | 7.0e+03 8 1,2,3,4,7,8,9-HpCDF| 1.61e+06| 1.23e+03| 1.3e+03| 1.48e+06| 3.56e+02| 4.2e+03 9 OCDF | 1.44e+06 | 1.40e+02 | 1.0e+04 | 1.51e+06 | 6.52e+02 | 2.3e+03 10 2,3,7,8-TCDD| 5.54e+05| 3.84e+02| 1.4e+03| 6.70e+05| 2.92e+02| 2.3e+03 11 2.28e+02 | 9.4e+03 3.40e+06 | 2.00e+02 | 1.7e+04 | 2.14e+06 12 1,2,3,7,8-PeCDD 2.08e+06 | 3.04e+02 | 6.9e+03 2.63e+06 | 3.68e+02 | 7.2e+03 13 1,2,3,4,7,8-HxCDD 2.30e+06 | 3.68e+02 | 6.2e+03 | 1.81e+06 | 3.04e+02 | 6.0e+03 1,2,3,6,7,8-HxCDD 14 2.42e+06 | 3.68e+02 | 6.6e+03 | 1.95e+06 | 3.04e+02 | 6.4e+03 1,2,3,7,8,9-HxCDD 15 1.27e+06 | 2.84e+02 | 4.5e+03 | 1.19e+06 | 2.04e+02 | 5.8e+03 16 1,2,3,4,6,7,8-HpCDD OCDD | 1.07e+06 | 2.56e+02 | 4.2e+03 | 1.14e+06 | 3.92e+02 | 2.9e+03 17 7.49e+06 | 1.52e+03 | 4.9e+03 | 9.49e+06 | 5.56e+02 | 1.7e+04 13C-2,3,7,8-TCDF 18 13C-1,2,3,7,8-PeCDF 1.11e+07 | 2.56e+02 | 4.4e+04 | 6.92e+06 | 3.04e+02 | 2.3e+04 19 1.05e+07 | 2.56e+02 | 4.1e+04 | 6.59e+06 | 3.04e+02 | 2.2e+04 20 13C-2,3,4,7,8-PeCDF 4.50e+06 | 5.44e+02 | 8.3e+03 | 8.67e+06 | 5.44e+02 | 1.6e+04 13C-1,2,3,4,7,8-HxCDF 21 4.58e+06 | 5.44e+02 | 8.4e+03 | 8.80e+06 | 5.44e+02 | 1.6e+04 22 13C-1,2,3,6,7,8-HxCDF 4.04e+06 | 5.44e+02 | 7.4e+03 | 7.73e+06 | 5.44e+02 1.4e + 0413C-2,3,4,6,7,8-HxCDF 23 1.1e+04 3.19e+06 | 5.44e+02 | 5.9e+03 | 6.09e+06 | 5.44e+02 13C-1,2,3,7,8,9-HxCDF 25 13C-1,2,3,4,6,7,8-HpCDF| 2.26e+06| 1.96e+03| 1.2e+03| 5.08e+06| 1.62e+03| 3.1e+03 26 13C-1,2,3,4,7,8,9-HpCDF| 1.34e+06| 1.96e+03| 6.9e+02| 3.07e+06| 1.62e+03| 1.9e+03 13C-2,3,7,8-TCDD | 5.21e+06 | 1.16e+03 | 4.5e+03 | 6.70e+06 | 9.20e+02 | 7.3e+03 27 6.77e+06 | 3.44e+02 | 2.0e+04 | 4.23e+06 | 1.40e+02 | 3.0e+04 13C-1,2,3,7,8-PeCDD 28 13C-1,2,3,4,7,8-HxCDD| 4.53e+06| 8.88e+02| 5.1e+03| 3.55e+06| 3.28e+02| 1.1e+04 29 30 13C-1,2,3,6,7,8-HxCDD 4.76e+06 8.88e+02 5.4e+03 3.80e+06 3.28e+02 1.2e+04 2.43e+06 | 3.00e+02 | 8.1e+03 | 2.29e+06 | 2.64e+02 | 8.7e+03 31 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD | 2.07e+06 | 2.76e+02 | 7.5e+03 | 2.26e+06 | 2.48e+02 | 9.1e+03 32 13C-1,2,3,4-TCDD | 5.72e+06 | 1.16e+03 | 4.9e+03 | 7.20e+06 | 9.20e+02 | 7.8e+03 33

13C-1,2,3,7,8,9-HxCDD 4.43e+06 8.88e+02 5.0e+03 3.54e+06 3.28e+02 1.1e+04

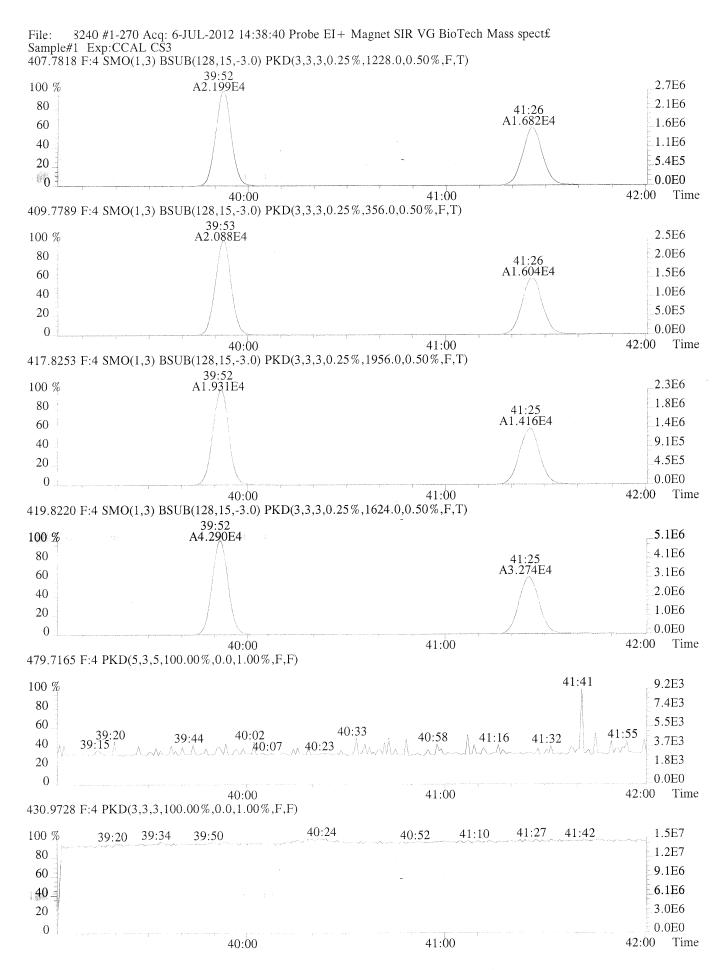

37Cl-2,3,7,8-TCDD | 1.19e+06 | 4.48e+02 | 2.6e+03

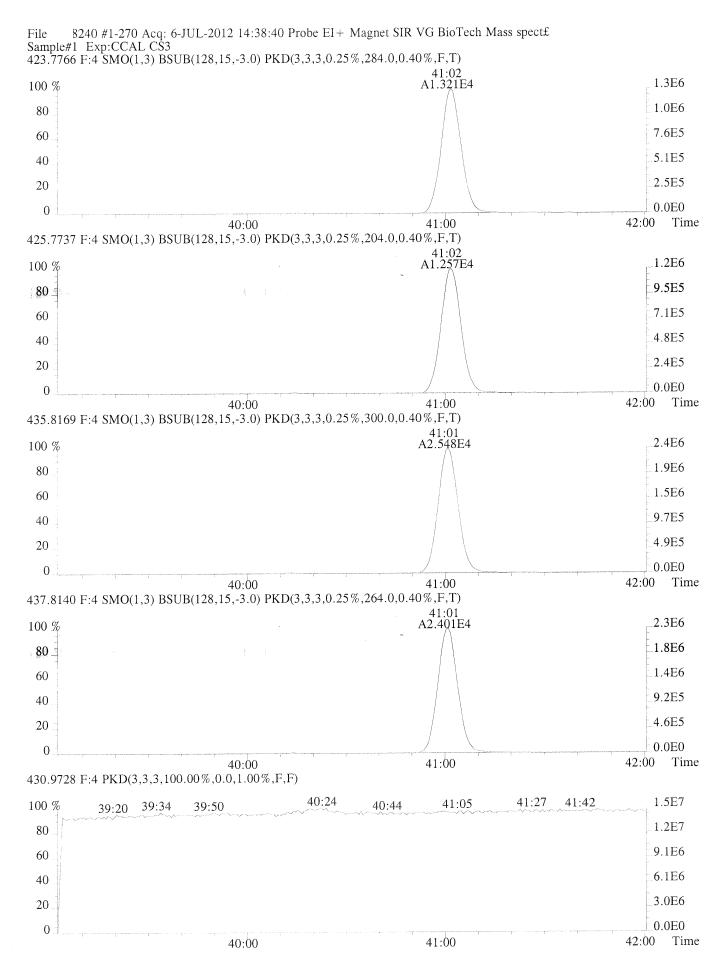
34

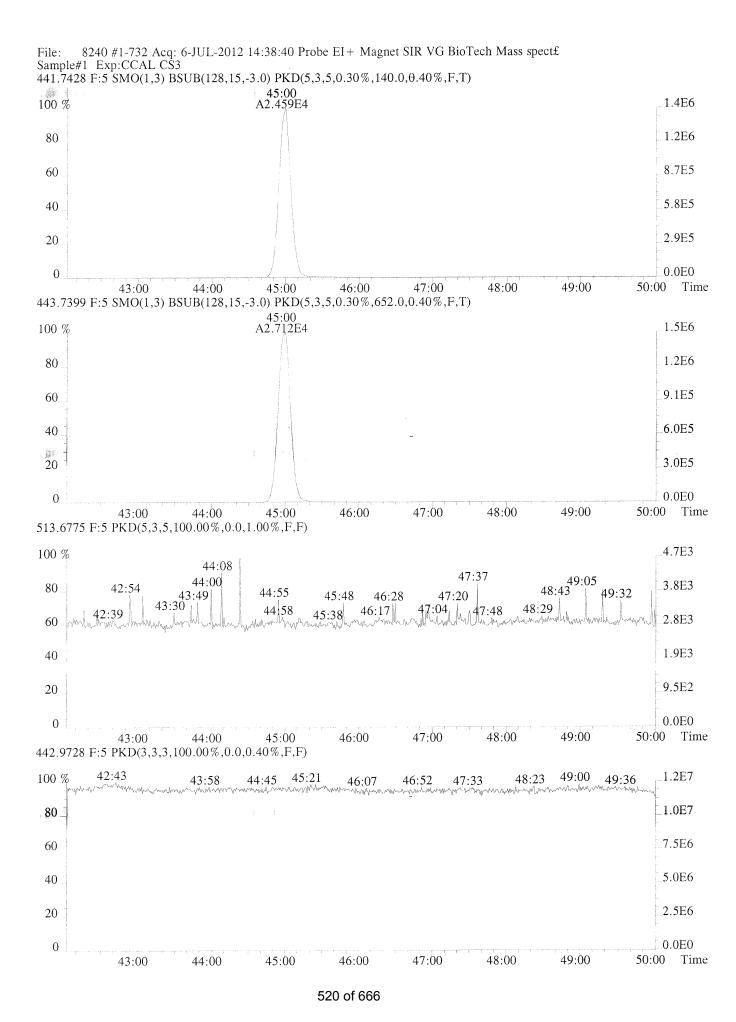

35


8240 #1-572 Acq: 6-JUL-2012 14:38:40 Probe EI+ Magnet SIR VG BioTech Mass spect£ File Sample#1 Exp:CCAL CŜ3 303.9016 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,440.0,1.00%,F,T) 28:10 7.5E5 A4.697E3 100 % 6.0E5 80 4.5E5 60 3.0E5 40 1.5E5 20 0.0E0 0 28:00 29:00 30:00 Time 24:00 25:00 26:00 27:00 305.8987 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,612.0,1.00%,F,T) 28:10 A6.336E3 1.0E6 100 % 8.1E5 80 6.0E5 60 40 4.0E5 2.0E5 20 0.0E0 30:00 Time 28:00 29:00 25:00 26:00 27:00 315.9419 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1520.0,1.00%,F,T) 28:09 A4.823E4 .7.5E6 100 % 6.0E6 80 4.5E6 60 3.0E6 40 1.5E6 20 0.0E0 0 29:00 30:00 Time 26:00 27:00 28:00 24:00 25:00 317.9389 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,556.0,1.00%,F,T) 28:09 9.5E6 A6.093E4 100 % 7.6E6 80 5.7E6 60 3.8E6 40 1.9E6 20 0.0E0 0 29:00 30:00 Time 27:00 28:00 24:00 25:00 26:00 375.8364 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 4.4E3 100 % 26:06 27:23 29:31 28:51 3.5E3 80 26:12 29:53 24:44 26:48 29:15 24:04 25:20 28:13 2.6E3 60 1.7E3 40 8.7E2 20 0.0E0 0 29:00 30:00 Time 27:00 28:00 25:00 26:00 24:00 354.9792 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 25:30 26:53 29:27 2.2E6 24:50 26:01 100 % 24:08 27:59 28:28 30:06 1.8E6 80 1.3E6 60 9.0E5 40 4.5E5 20 0.0E0 0. 28:00 29:00 30:00 Time 24:00 25:00 26:00 27:00

512 of 666


8240 #1-461 Acq: 6-JUL-2012 14:38:40 Probe EI + Magnet SIR VG BioTech Mass spect£ Sample#1 Exp:CCAL CS3 339.8597 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,588.0,1.00%,F,T) 32:46 A2.962E4 5.7E6 100 % 4.5E6 80 3.4E6 60 .2.3E6 40 1.1E6 20 0.0E0 0 35:00 34:00 Time 31:00 32:00 33:00 341.8567 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,800.0,1.00%,F,T) 33:34 A1.870E4 32:46 A1.899E4 3.6E6 100 % 2.9E6 80 2.1E6 60 1.4E6 40 7.1E5 20 0 0.0E0 34:00 35:00 Time 32:00 33:00 31:00 351.9000 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,256.0,1.00%,F,T) 32:46 A5.940E4 33:33 A5.520E4 1.1E7 100 % 8.9E6 80 6.7E6 60 4.5E6 40 2.2E6 20 0.0E0 0 35:00 Time 33:00 34:00 32:00 31:00 353.8970 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,304.0,1.00%,F,T) 32:46 A3.692E4 33:33 6.9E6 A3.460E4 100 % 5.5E6 80 4.2E6 60 2.8E6 40 1.4E6 20 0.0E0 34:00 35:00 Time 33:00 31:00 32:00 409.7974 F:2 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 35:00 6.9E3 100 % 80 5.6E3 31:29 31:45 32:53 34:43 4.2E3 35:14 60 33:53 32:44 33:08 2.8E3 40 1.4E3 20 0.0E0 0 32:00 33:00 34:00 35:00 Time 31:00 354.9792 F:2 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 34:11 3.0E6 35:05 100 % 32:41 33:12 2.4E6 80 1.8E6 60 1.2E6 40 6.0E5 20 0.0E0 0 34:00 35:00 Time 32:00 33:00 31:00





8240 #1-315 Acq: 6-JUL-2012 14:38:40 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp:CCAL CS3 389.8157 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25 %,368.0,0.40 %,F,T) 37:30 A1.613E4 37:55 A1.586E4 2.6E6 100 % 2.1E6 80 1.6E6 60 1.1E6 40 5.3E5 20 0.0E0 0 39:00 Time 37:00 38:00 36:00 391.8127 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,304.0,0.40%,F,T) 37:30 A1.279E4 37:55 A1.265E4 2.1E6 100 % 1.7E6 80 1.3E6 60 8.3E5 40 4.2E5 20 0.0E0 0 38:00 39:00 Time 37:00 36:00 401.8559 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,888.0,0.40%,F,T) 37:35 A3.022E4 4.8E6 100 % 3.8E6 80 2.9E6 60 1.9E6 40 9.5E5 20 0.0E0 38:00 39:00 Time 36:00 37:00 403.8529 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,328.0,0.40%,F,T) 37:35 A2.382E4 3.8E6 100 % 3.0E6 80 2.3E6 60 _1.5E6 40 7.6E5 20 0.0E0 0 38:00 39:00 Time 37:00 36:00 430.9728 F:3 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 38:14 1.2E7 100 % 38:48 38:32 37:39 38:01 37:04 37:19 36:40 35:50 36:23 9.4E6 80 7.1E6 60 4.7E6 40 2.4E6 20 0.0E0 0 39:00 Time 36:00 37:00 38:00

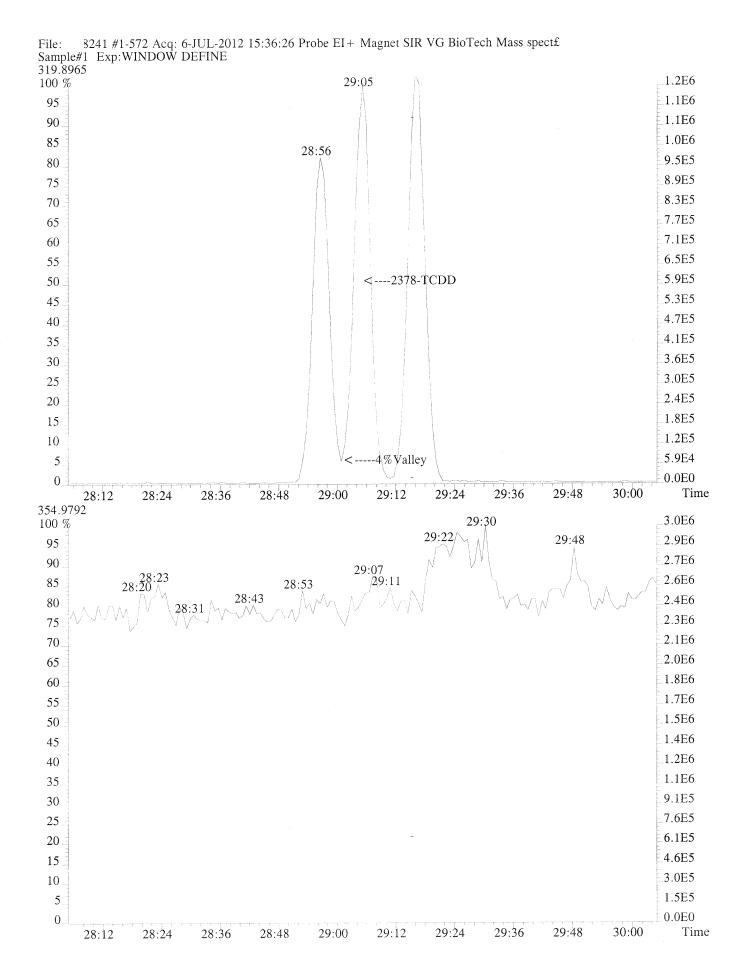
517 of 666

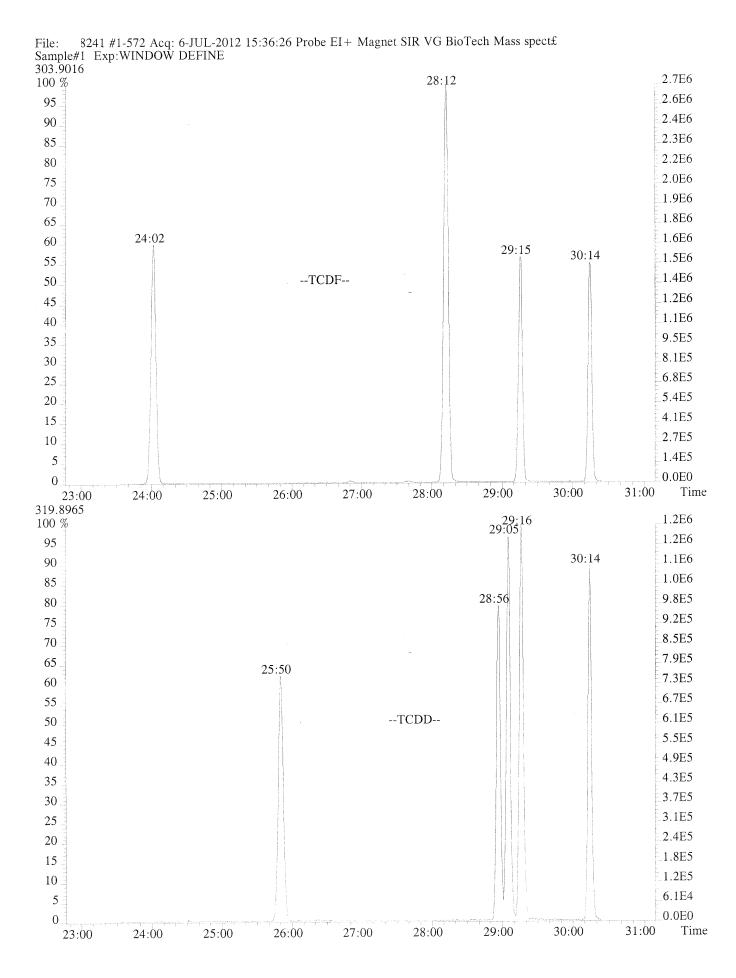
File: 8240 #1-732 Acq: 6-JUL-2012 14:38:40 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp:CCAL CS3 457.7377 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,256.0,0.40%,F,T) 44:55 A1.931E4 1.1E6 100 % 8.6E5 80 6.5E5 60 4.3E5 40 2.2E5 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 44:00 45:00 46:00 43:00 459.7348 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,392.0,0.40%,F,T) 44:55 A2.131E4 1.1E6 100 % 9.1E5 80 6.8E5 60 .4.5E5 40 2.3E5 20 0.0E0 0 45:00 47:00 48:00 49:00 50:00 Time 46:00 43:00 44:00 469.7779 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,276.0,0.40%,F,T) 44:53 A3.677E4 2.1E6 100 % 1.7E6 80 1.2E6 60 8.3E5 40 4.2E5 20 0.0E00 47:00 48:00 49:00 50:00 Time 43:00 44:00 45:00 46:00 471.7750 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,248.0,0.40%,F,T) 44:54 2.3E6 A4.064E4 100 % 1.8E6 80 1.4E6 60 9.1E5 40 4.5E5 20 0.0E0 0 50:00 Time 46:00 47:00 48:00 49:00 43:00 44:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 42:43 44:45 45:21 49:00 1.2E7 100 % 43:58 46:52 47:33 48:23 49:36 46:07 1.0E7 80 7.5E6 60 5.0E6 40 2.5E6 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 44:00 45:00 46:00 43:00 14W To 1

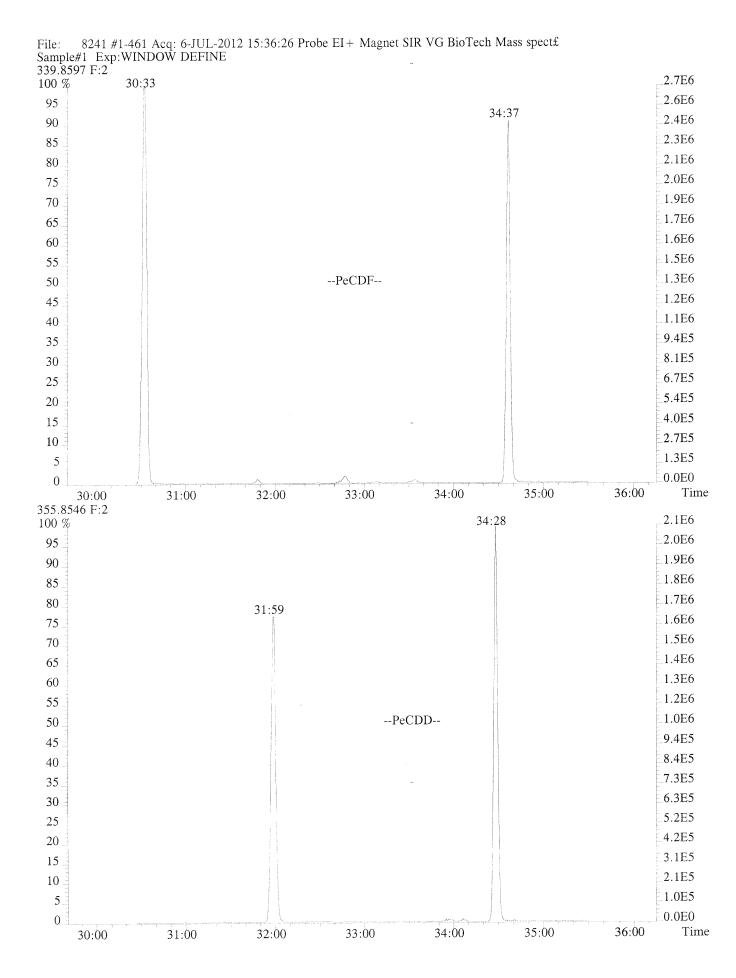
5DFA WINDOW DEFINING MIX SUMMARY

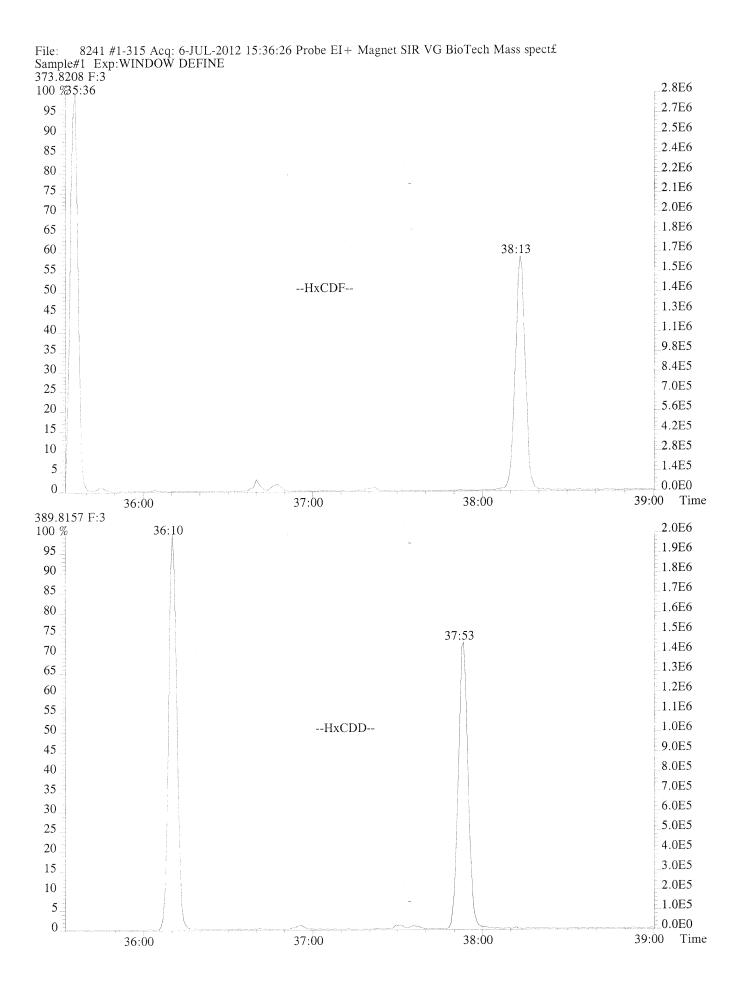
CL1EMT.	ID:
MDM	

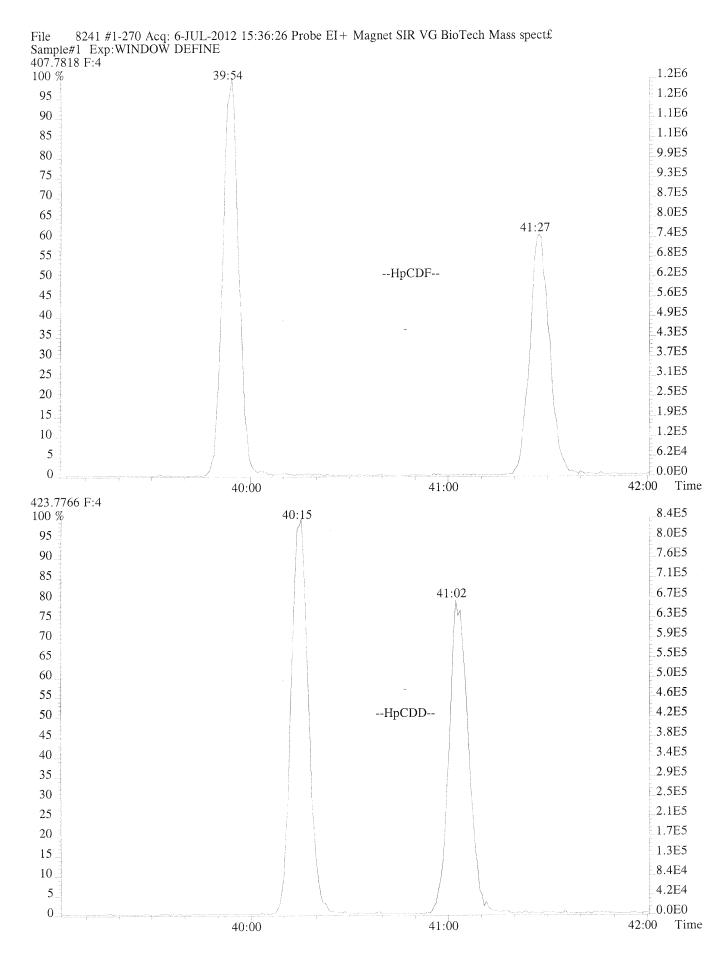
Lab Name: Lab Code: GC Column: DB-5


% Valley 2378-TCDD:


Case No.: SDG No.:
ID: 0.25 (mm) Lab File ID: 8241
Date Analyzed: 6-JUL-2012


Time Analyzed: 15:36:26


Congener	Retention Time First Eluting	Retention Time Last Eluting
TCDF	24:02	30:14
TCDD	25:50	30:14
PeCDF	30:33	34:37
PeCDD	31:59	34:28
HxCDF	35:36	38:13
HxCDD	36:10	37:53
HpCDF	39:54	41:27
HpCDD	40:15	41:02


4 %

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units:
 pg/L

 Lab Code:
 00313-01
 Basis:
 NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method:D/F DLM02.2Date Analyzed:7/6/12 1111Prep Method:MethodDate Extracted:6/6/12

Sample Amount: 1000mL Instrument Name: E-HRMS-04

 Data File Name:
 8236
 Blank File Name:
 8236

 ICAL Date:
 05/03/12
 Cal Ver. File Name:
 8231

					Ion		Dilution	
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	ND	U	0.659	10.0			1	
1,2,3,7,8-PeCDD	ND	U	0.692	50.0			1	
1,2,3,4,7,8-HxCDD	ND	U	0.768	50.0			1	
1,2,3,6,7,8-HxCDD	ND	U	0.877	50.0			1	
1,2,3,7,8,9-HxCDD	ND	U	0.806	50.0			1	
1,2,3,4,6,7,8-HpCDD	ND	U	0.805	50.0			1	
OCDD	4.54	J	2.35	100	0.84	1.001	1	
2,3,7,8-TCDF	ND	U	0.892	10.0			1	
1,2,3,7,8-PeCDF	ND	U	0.581	50.0			1	
2,3,4,7,8-PeCDF	ND	U	0.666	50.0			1	
1,2,3,4,7,8-HxCDF	ND	U	0.488	50.0			1	
1,2,3,6,7,8-HxCDF	ND	U	0.437	50.0			1	
1,2,3,7,8,9-HxCDF	ND	U	0.660	50.0			1	
2,3,4,6,7,8-HxCDF	ND	U	0.589	50.0			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.874	50.0			1	
1,2,3,4,7,8,9-HpCDF	ND	U	1.98	50.0			1	
OCDF	ND	U	2.17	100			1	
Total Tetra-Dioxins	ND	U	0.659	10.0			1	
Total Penta-Dioxins	ND	U	0.692	50.0			1	
Total Hexa-Dioxins	ND		0.768	50.0			1	
Total Hepta-Dioxins	ND	U	0.805	50.0			1	
Total Tetra-Furans	ND	U	0.892	10.0			1	
Total Penta-Furans	ND	U	0.666	50.0			1	
Total Hexa-Furans	ND	U	0.488	50.0			1	
Total Hepta-Furans	ND	U	0.874	50.0			1	

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/Furans/Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits:PercentLab Code:00313-01Basis:NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method: D/F DLM02.2 Date Analyzed: 7/6/12 1111

 Prep Method:
 Method
 Date Extracted:
 6/6/12

 Sample Amount:
 1000mL
 Instrument Name:
 E-HRMS-04

 GC Column:
 DB-5

 Data File Name:
 8236

 ICAL Date:
 05/03/12

 Blank File Name:
 8236

 Cal Ver. File Name:
 8231

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1218.377	61	25-164	0.77	1.008
13C-1,2,3,7,8-PeCDD	2000	1235.277	62	25-181	1.61	1.177
13C-1,2,3,4,7,8-HxCDD	2000	1384.481	69	32-141	1.26	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1187.730	59	28-130	1.28	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1621.141	81	23-140	1.08	1.082
13C-OCDD	4000	2062.228	52	17-157	0.92	1.185
13C-2,3,7,8-TCDF	2000	1128.354	56	24-169	0.79	0.977
13C-1,2,3,7,8-PeCDF	2000	1448.856	72	24-185	1.60	1.136
13C-2,3,4,7,8-PeCDF	2000	1270.133	64	21-178	1.58	1.164
13C-1,2,3,4,7,8-HxCDF	2000	1080.585	54	26-152	0.51	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1146.020	57	26-123	0.53	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1135.188	57	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	963.874	48	28-136	0.53	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1722.503	86	28-143	0.44	1.052
13C-1,2,3,4,7,8,9-HpCDF	2000	1233.194	62	26-138	0.45	1.093
37Cl-2,3,7,8-TCDD	800	537.244	67	35-197	NA	1.008

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/Furans/Date Collected:NASample Matrix:SedimentDate Received:NA

 Sample Name:
 Method Blank
 Units:
 ng/Kg

 Lab Code:
 00341-01
 Basis:
 Dry

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

 Analytical Method:
 D/F DLM02.2
 6/19/12 1119

 Prep Method:
 Method
 Date Extracted:
 6/12/12

 Sample Amount:
 10.554g
 Instrument Name:
 E-HRMS-03

 Data File Name:
 8291
 Blank File Name:
 8291

 ICAL Date:
 04/23/12
 Cal Ver. File Name:
 8290

					Ion		Dilution	
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	ND	U	0.0572	0.948			1	
1,2,3,7,8-PeCDD	ND	U	0.0505	4.74			1	
1,2,3,4,7,8-HxCDD	ND	U	0.0338	4.74			1	
1,2,3,6,7,8-HxCDD	ND	U	0.0635	4.74			1	
1,2,3,7,8,9-HxCDD	ND	U	0.0426	4.74			1	
1,2,3,4,6,7,8-HpCDD	0.0938	JK	0.0527	4.74	1.98	1.000	1	
OCDD	ND	U	0.128	9.48			1	
2,3,7,8-TCDF	ND	U	0.0500	0.948			1	
1,2,3,7,8-PeCDF	ND	U	0.0375	4.74			1	
2,3,4,7,8-PeCDF	ND	U	0.0416	4.74			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0288	4.74			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0316	4.74			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0350	4.74			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0292	4.74			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.0603	4.74			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.0560	4.74			1	
OCDF	ND	U	0.177	9.48			1	
Total Tetra-Dioxins	ND	U	0.0572	0.948			1	
Total Penta-Dioxins	ND	U	0.0505	4.74			1	
Total Hexa-Dioxins	ND	U	0.0338	4.74			1	
Total Hepta-Dioxins	ND	U	0.0527	4.74			1	
Total Tetra-Furans	ND	U	0.0500	0.948			1	
Total Penta-Furans	ND	U	0.0416	4.74			1	
Total Hexa-Furans	0.282	J	0.0288	4.74	1.11		1	
Total Hepta-Furans	ND	U	0.0603	4.74			1	

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:SedimentDate Received:NA

Sample Name:Method BlankUnits:PercentLab Code:00341-01Basis:Dry

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method: D/F DLM02.2 Date Analyzed: 6/19/12 1119

 Prep Method:
 Method
 Date Extracted:
 6/12/12

 Sample Amount:
 10.554g
 Instrument Name:
 E-HRMS-03

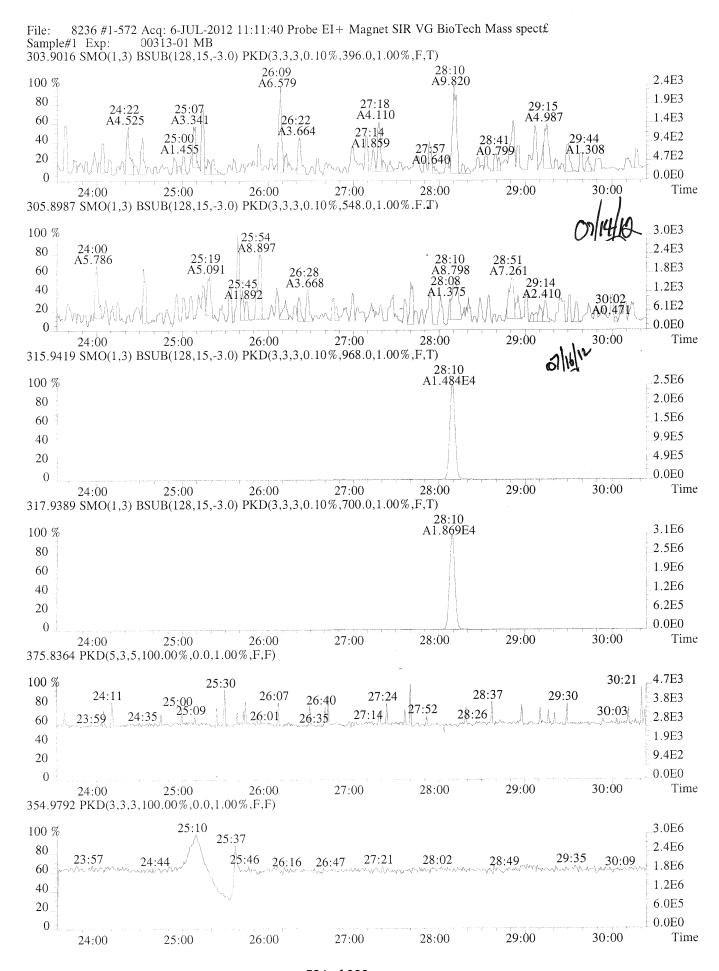
 GC Column:
 DB-5

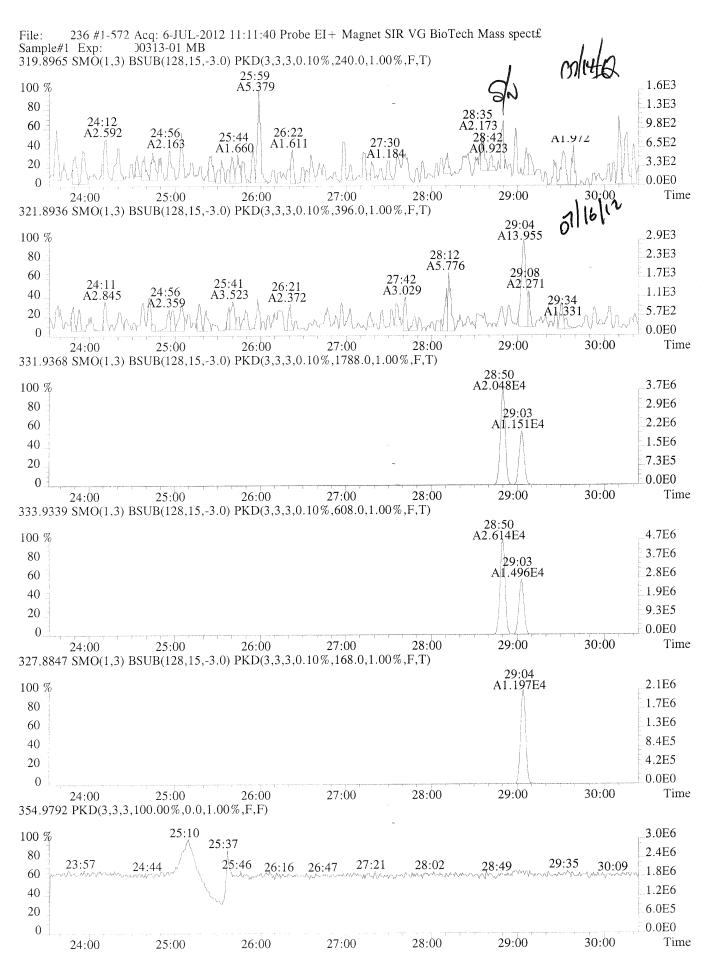
 Data File Name:
 8291

 ICAL Date:
 04/23/12

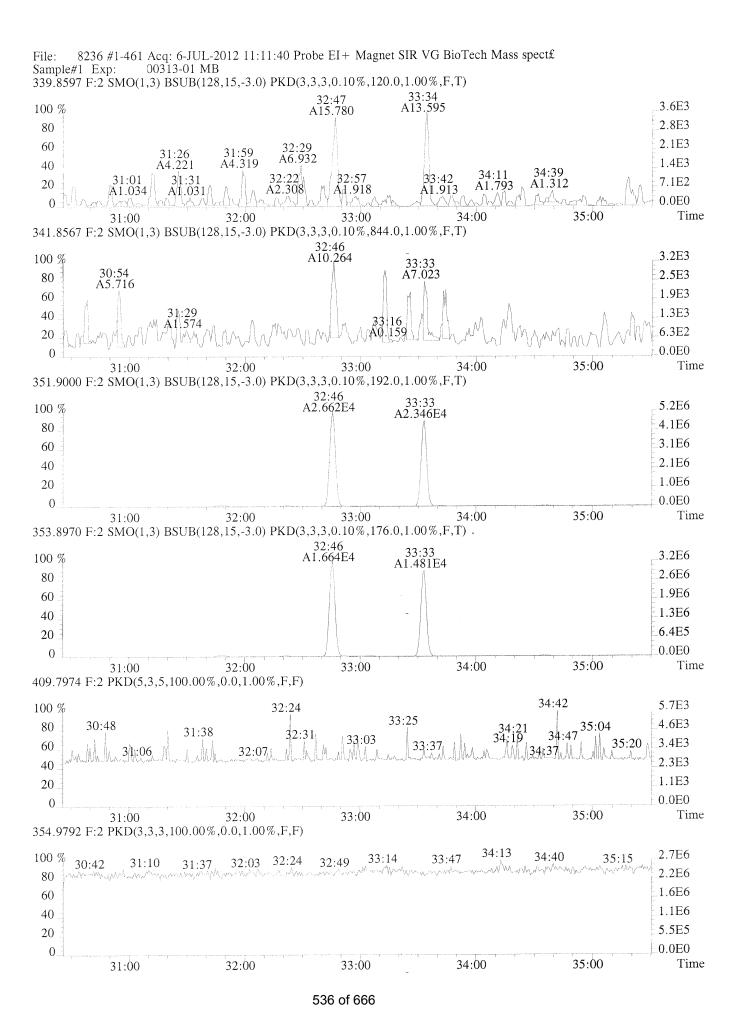
 Blank File Name:
 8291

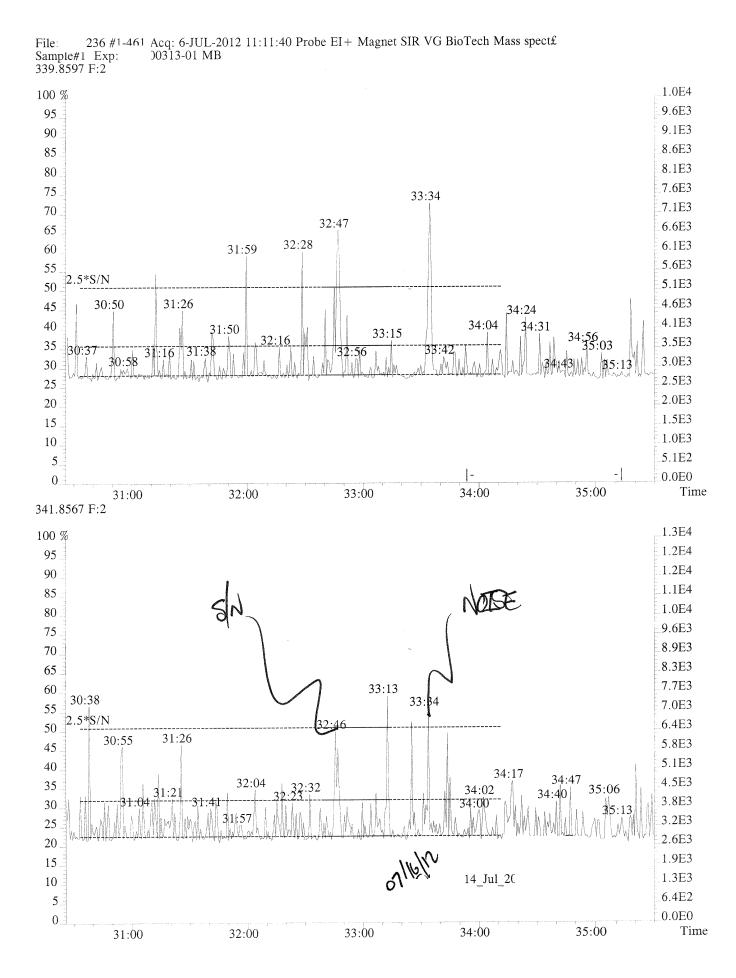
 Cal Ver. File Name:
 8290


Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1160.928	58	25-164	0.79	1.007
13C-1,2,3,7,8-PeCDD	2000	1341.792	67	25-181	1.57	1.170
13C-1,2,3,4,7,8-HxCDD	2000	1245.362	62	32-141	1.28	0.990
13C-1,2,3,6,7,8-HxCDD	2000	733.105	37	28-130	1.23	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1347.945	67	23-140	1.08	1.068
13C-OCDD	4000	2683.421	67	17-157	0.90	1.149
13C-2,3,7,8-TCDF	2000	1087.033	54	24-169	0.78	0.978
13C-1,2,3,7,8-PeCDF	2000	1409.404	70	24-185	1.56	1.132
13C-2,3,4,7,8-PeCDF	2000	1288.030	64	21-178	1.56	1.158
13C-1,2,3,4,7,8-HxCDF	2000	1265.184	63	26-152	0.52	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1093.225	55	26-123	0.52	0.975
13C-1,2,3,7,8,9-HxCDF	2000	1178.640	59	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1268.008	63	28-136	0.52	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	1073.545	54	28-143	0.45	1.045
13C-1,2,3,4,7,8,9-HpCDF	2000	1473.124	74	26-138	0.45	1.079
37Cl-2,3,7,8-TCDD	800	525.884	66	35-197	NA	1.008

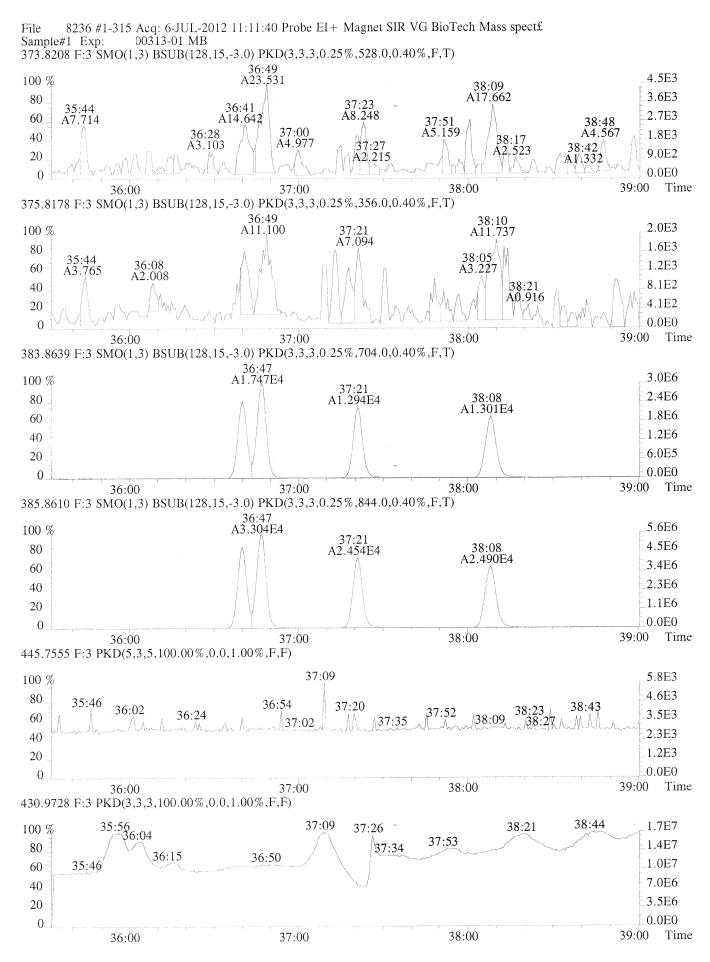

Run #12 Filename 8236 #1 Samp: 1 Inj: 1 Acquired: 6-JUL-12 11:11:40 Processed: 14-JUL-12 09:23:05 LAB. ID: 00313-01

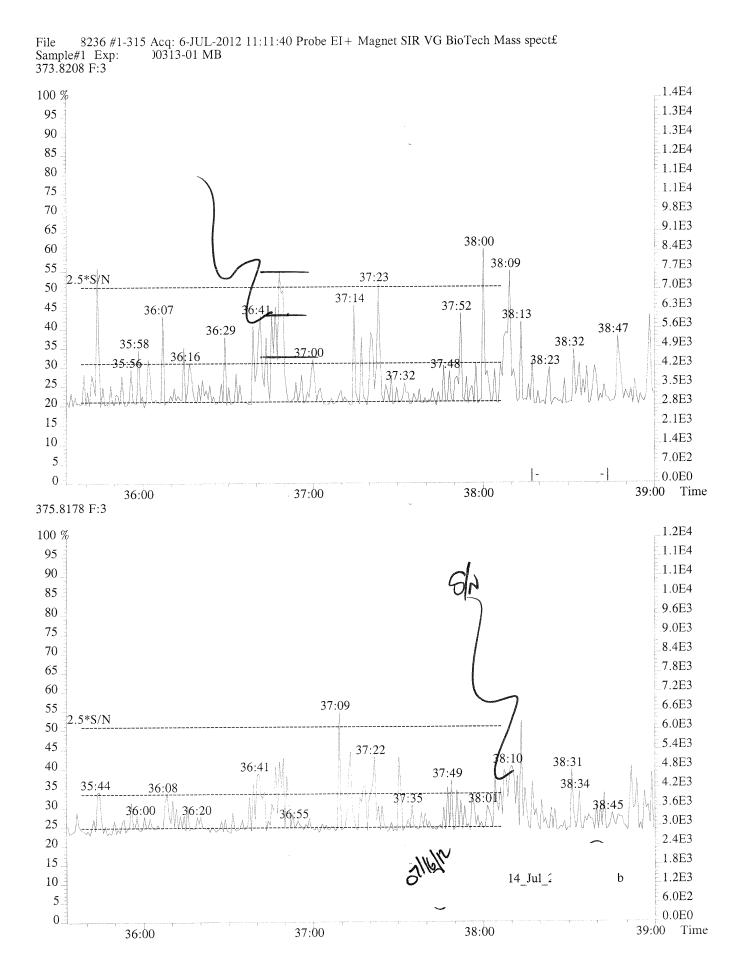
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF	Not End	*	*	*	nol	yes	*
2	Unk	1,2,3,7,8-PeCDF		*	*	*	no	yes	*
3	Unk	2,3,4,7,8-PeCDF		 *	*	*	no	yes	*
3 4	Unk	1,2,3,4,7,8-PeCDF		*	*	*	no	yes	*
5	Unk	1,2,3,4,7,8-HXCDF		*	*	*	no	yes	*
5 6	Unk	2,3,4,6,7,8-HxCDF		*	*	*	no	yes	*
7	Unk	1,2,3,7,8,9-HxCDF		 *	*	*	no	yes	*
	Unk	1,2,3,7,8,9-HXCDF 1,2,3,4,6,7,8-HpCDF		*	*	*	no	yes	*
8		1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		*	*	*	no	no	*
9	Unk		NotFnd	*	*	*	no	yes	*
10	Unk	OCDF	NOCFIIG				110	700	
11	Unk	2,3,7,8-TCDD	NotFnd	*	*	*	no	yes	*
12	Unk	1,2,3,7,8-PeCDD	NotFnd	*	*	*	no	no	*
13	Unk	1,2,3,4,7,8-HxCDD	NotFnd	*	*	*	no	no	*
14	Unk	1,2,3,6,7,8-HxCDD		*	*	*	no	yes	*
15	Unk	1,2,3,7,8,9-HxCDD	NotFnd	*	*	*	no	yes	*
16	Unk	1,2,3,4,6,7,8-HpCDD	NotFnd	*	*	*	no	yes	*
17	Unk		44:59	2.645e+01	3.155e+01	0.84	yes	yes	1.001
18	IS	13C-2,3,7,8-TCDF		1.484e+04	1.869e+04	0.79	yes	no	0.977
19	IS	13C-1,2,3,7,8-PeCDF		2.662e+04	1.664e+04	1.60	yes	no	1.136
20	IS	13C-2,3,4,7,8-PeCDF		2.346e+04	1.481e+04	1.58	yes	no	1.164
21	IS	13C-1,2,3,4,7,8-HxCDF		1.387e+04	2.725e+04	0.51	yes	no	0.967
22	IS	13C-1,2,3,6,7,8-HxCDF		1.747e+04	3.304e+04	0.53	yes	no	0.970
23	IS	13C-2,3,4,6,7,8-HxCDF		1.294e+04	2.454e+04	0.53	yes	no	0.985
24	IS	13C-1,2,3,7,8,9-HxCDF		1.301e+04	2.490e+04	0.52	yes	no	1.006
25	IS1	3C-1,2,3,4,6,7,8-HpCDF	39:54	1.639e+04	3.763e+04	0.44	yes	no	1.052
26	IS1	3C-1,2,3,4,7,8,9-HpCDF	41:27	9.828e+03	2.185e+04	0.45	yes	no	1.093
		100 0 0 T 0 TGDD	100 00	1 1 1 1 1 - 1 0 4	1.496e+04	0.77	yes	no	1.008
27	IS	13C-2,3,7,8-TCDD		1.151e+04	1.496e+04 1.023e+04	1.61	yes	no	1.177
28	IS	13C-1,2,3,7,8-PeCDD		1.644e+04	1.023e+04 1.902e+04	1.26	yes	no	0.989
29	IS	13C-1,2,3,4,7,8-HxCDD		2.403e+04		,		no	0.992
30	IS	13C-1,2,3,6,7,8-HxCDD		2.222e+04	1.732e+04	1.28	yes		1.082
31		3C-1,2,3,4,6,7,8-HpCDD		2.452e+04	2.280e+04	1.08	yes	no	
32	IS	13C-OCDD	44:55	2.055e+04	2.243e+04	0.92	yes	no	1.185
2 2 m	S/RT	13C-1,2,3,4-TCDD	28.50	2.048e+04	2.614e+04	0.78	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD	1	3.657e+04	2.921e+04	1.25	yes	no	*
	C/Up	37Cl-2,3,7,8-TCDD		1.197e+04	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	1 - 2	no	1.008
33	c) ob	3/01-2,3,7,0-1000	22.04	1.10/0104			i		

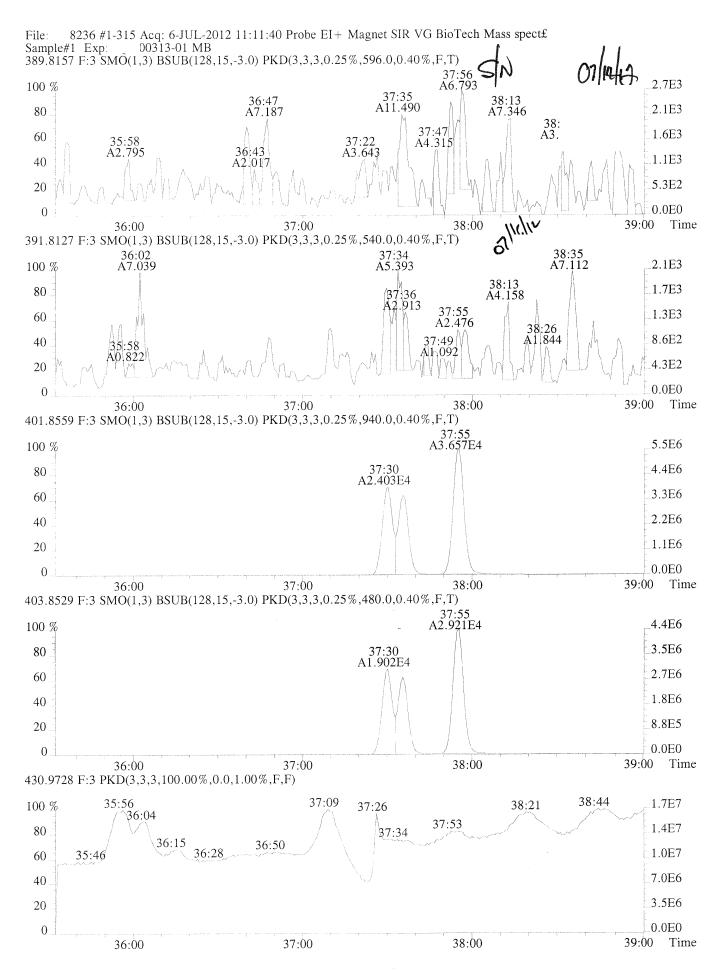

Acquired: 6-JUL-12 11:11:40 Run #12 Filename 8236 Samp: 1 Inj: 1 Processed: 14-JUL-12 09:23:051 LAB. ID: 00313-01 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 3.96e+02 5.48e+02 1 2,3,7,8-TCDF 1.20e+02 8.44e+022 1,2,3,7,8-PeCDF * 8.44e + 021.20e+02 3 2,3,4,7,8-PeCDF * 3.56e+02 5.28e+02 1,2,3,4,7,8-HxCDF 4 3.56e+02 5.28e+02 1,2,3,6,7,8-HxCDF 5 3.56e+02 2,3,4,6,7,8-HxCDF 5.28e+02 6 3.56e+02 * * 5.28e+02 7 1,2,3,7,8,9-HxCDF 5.28e + 021.00e + 031,2,3,4,6,7,8-HpCDF 8 1,2,3,4,7,8,9-HpCDF 5.28e+02 9 1.00e+03 OCDF | 4.24e+02 2.32e+02 10 2,3,7,8-TCDD * 3.96e+02 2.40e+02 11 1.80e+02 5.32e + 0212 1,2,3,7,8-PeCDD 5.40e + 025.96e+02 13 1,2,3,4,7,8-HxCDD 5.40e + 021,2,3,6,7,8-HxCDD 5.96e+02 14 5.40e + 021,2,3,7,8,9-HxCDD 5.96e+02 15 3.60e+02 4.08e+02 16 1,2,3,4,6,7,8-HpCDD OCDD 3.96e+03 4.00e+02 9.9e+00 5.16e+03 2.48e+02 2.1e+01 17 2.47e+06 | 9.68e+02 | 2.6e+03 | 3.09e+06 | 7.00e+02 4.4e+03 13C-2,3,7,8-TCDF 18 1.76e+02 1.8e + 0413C-1,2,3,7,8-PeCDF 5.16e+06 | 1.92e+02 | 2.7e+04 | 3.22e+06 | 19 1.76e+02 | 1.7e+04 4.66e+06 | 1.92e+02 | 2.4e+04 | 2.90e+06 | 13C-2,3,4,7,8-PeCDF 20 2.45e+06 | 7.04e+02 | 3.5e+03 | 4.85e+06 | 8.44e+02 | 5.7e+03 13C-1,2,3,4,7,8-HxCDF 21 7.04e+02 | 4.3e+03 | 5.62e+06 | 8.44e+02 | 6.7e+03 3.00e+06 13C-1,2,3,6,7,8-HxCDF 22 7.04e+02 | 3.2e+03 | 4.18e+06 8.44e+02 | 5.0e+03 2.25e+06 13C-2,3,4,6,7,8-HxCDF 23 1.96e+06 | 7.04e+02 | 2.8e+03 | 3.65e+06 8.44e+02 4.3e + 0313C-1,2,3,7,8,9-HxCDF 4.30e+06 | 1.88e+03 | 2.3e + 031.89e+06 | 2.41e+03 | 7.8e+02 | 25 13C-1,2,3,4,6,7,8-HpCDF 26 13C-1,2,3,4,7,8,9-HpCDF| 8.93e+05| 2.41e+03| 3.7e+02| 1.99e+06| 1.88e+03| 1.1e+03 2.68e+06 | 6.08e+02 | 4.4e+03 2.06e+06 | 1.79e+03 | 1.2e+03 | 13C-2,3,7,8-TCDD 27 1.84e+02 | 1.1e+04 3.31e+06 | 2.76e+02 | 1.2e+04 | 2.03e+06 | 13C-1,2,3,7,8-PeCDD 28 3.83e+06 | 9.40e+02 | 4.1e+03 | 3.02e+06 | 4.80e+02 6.3e + 0329 13C-1,2,3,4,7,8-HxCDD 3.48e+06 | 9.40e+02 | 3.7e+03 | 2.73e+06 | 4.80e+02 | 5.7e+03 13C-1,2,3,6,7,8-HxCDD 30 2.35e+06 | 6.44e+02 | 3.6e+03 | 2.16e+06 | 3.72e+02 5.8e+03 31 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD | 1.12e+06 | 2.56e+02 | 4.4e+03 | 1.20e+06 | 2.68e+02 | 4.5e+03 32 13C-1,2,3,4-TCDD | 3.67e+06 | 1.79e+03 | 2.1e+03 | 4.65e+06 | 6.08e+02 | 7.6e+03 33 13C-1,2,3,7,8,9-HxCDD| 5.45e+06| 9.40e+02| 5.8e+03| 4.41e+06| 4.80e+02| 9.2e+03 37Cl-2,3,7,8-TCDD | 2.09e+06 | 1.68e+02 | 1.2e+04

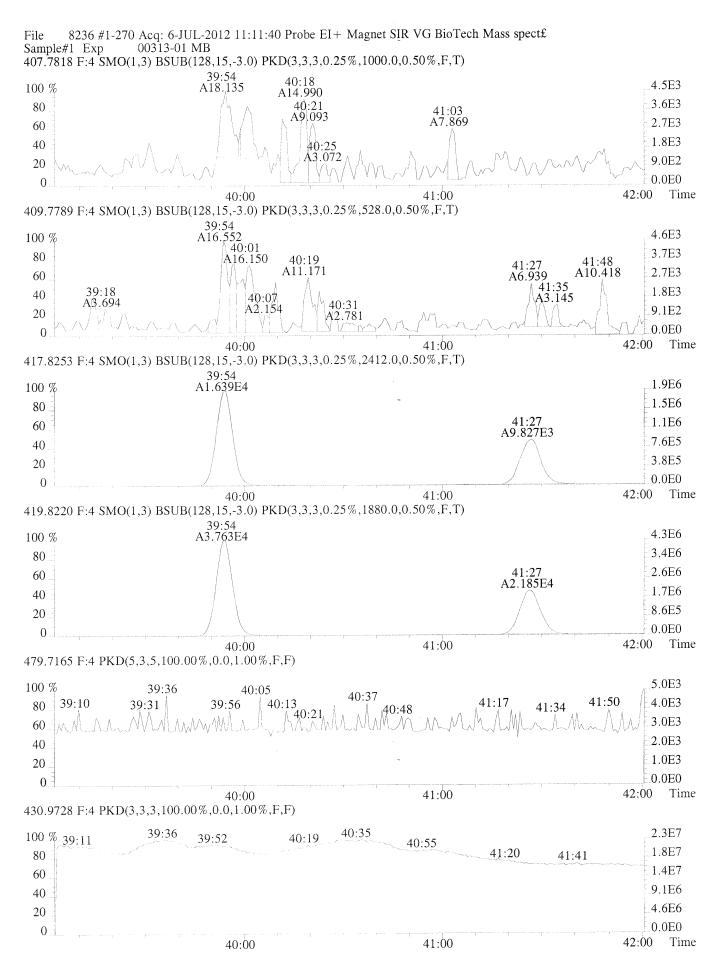

35

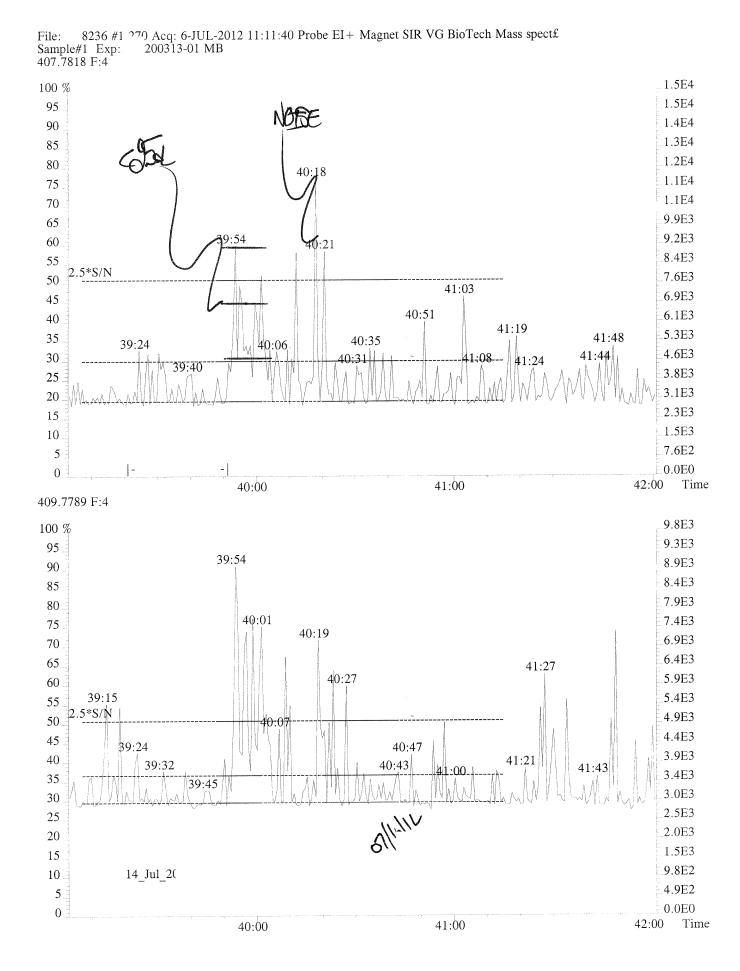


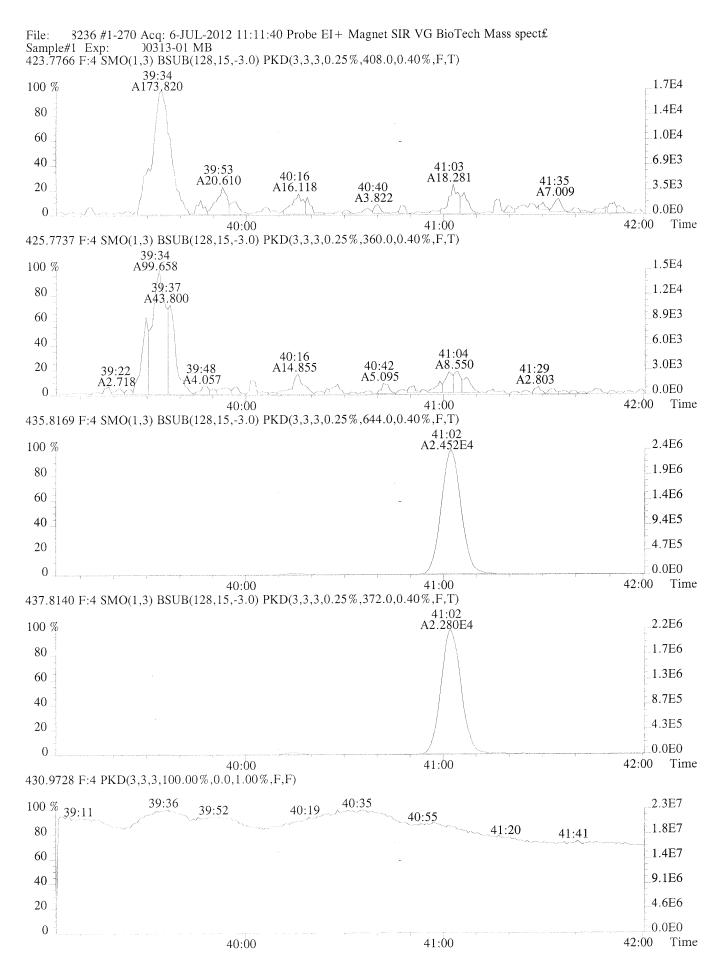

535 of 666

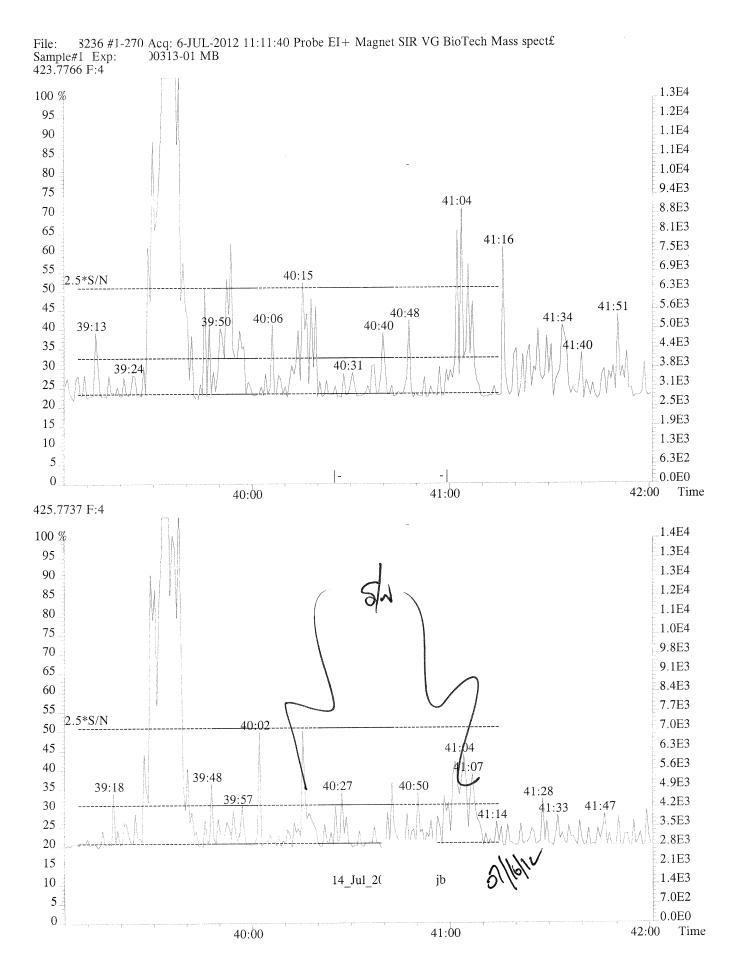



File: 8236 #1-461 Acq: 6-JUL-2012 11:11:40 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00313-01 MB

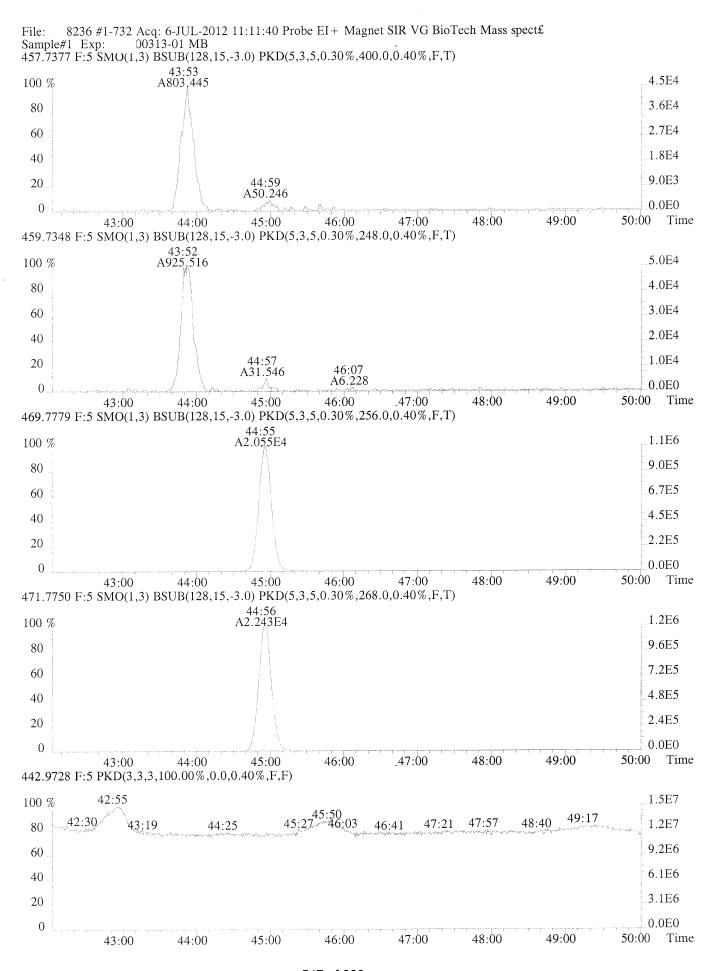


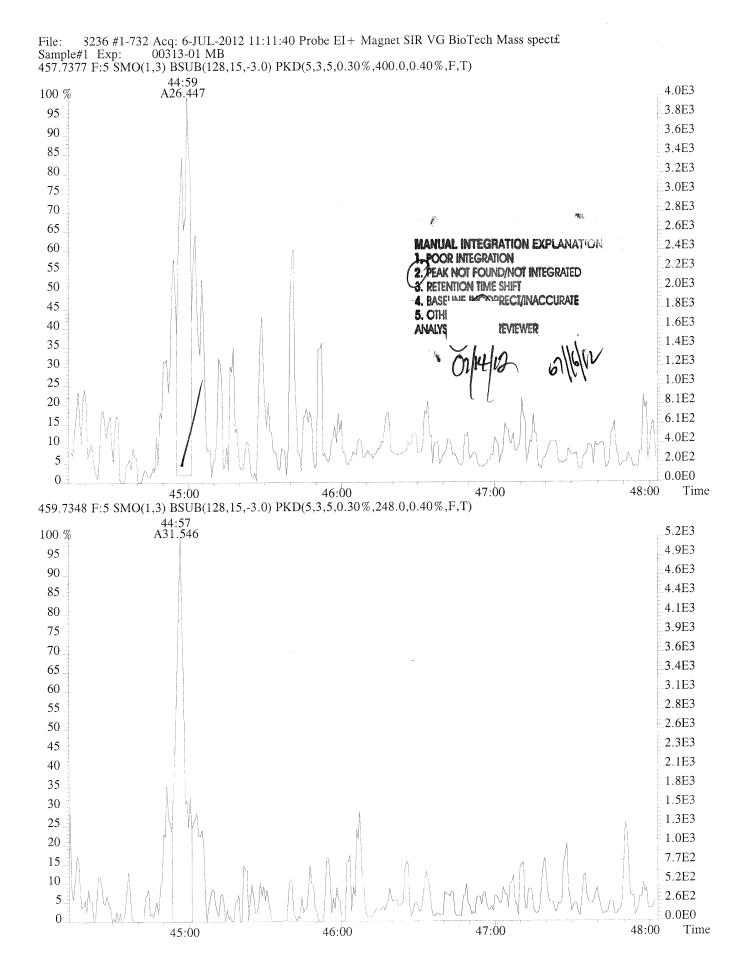

539 of 666





542 of 666




544 of 666

8236 #1-732 Acq: 6-JUL-2012 11:11:40 Probe EI+ Magnet SIR VG BioTech Mass spect£ File Sample#1 Exp: 00313-01 MB 441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,232.0,0.40%,F,T) 43:59 6.4E3 100 % 43:51 A37.445 5.1E3 80 3.8E3 60 2.6E3 40 45: A5. 1.3E3 20 43:29 A2.708 A3.230 48:05 A0.554 2 March 1 0.0E0 0 43:00 46:00 47:00 48:00 49:00 50:00 Time 45:00 44:00 443.7399 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,424.0,0.40%,F,T) 43:55 A127,586 8.2E3 100 % 6.6E3 80 4.9E3 60 44:59 A32.454 3.3E3 40 1.6E3 20 43:12 A2.460 49:04 A4.221 0.0E0 0 50:00 45:00 46:00 47:00 48:00 49:00 Time 43:00 44:00 513.6775 F:5 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 43:23 4.2E3 100 % 46;16 45:33 42:46 45:25 47:54 48:38 44:04 46:50 3.4E3 80 42:56 46:20 49:13 48:07 45:36 2.5E3 60 1.7E3 40 8.4E2 20 0.0E0 0 49:00 46:00 47:00 48:00 50:00 Time 45:00 43:00 44:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 42:55 42:48\ 1.5E7 100 % 45:50 49:17 42:3047:57 48:40 43:19 44:25 46:03 47:21 1.2E7 80 46:41 9.2E6 60 6.1E6 40 3.1E6 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 43:00 44:00 45:00 46:00

546 of 666

Sample Response Summary

CLIENT ID.
METHOD BLANK

Acquired: 19-JUN-12 11:19:02 Run #8 Filename 8291 Samp: 1 Inj: 1 00341-01 Processed: 20-JUN-12 11:09:05 Sample ID: Mod? RRF Resp 2 Ratio Meet Name RT-1 Resp 1 Тур 0.929 * * no no 1 Unk 2,3,7,8-TCDF | NotFnd 1.002 no no 2 Unk 1,2,3,7,8-PeCDF | NotFnd 0.963 * no 3 Unk 2,3,4,7,8-PeCDF | NotFnd no 4 Unk 1,2,3,4,7,8-HxCDF | NotFnd * no yes 1.221 1,2,3,6,7,8-HxCDF | NotFnd no yes 1.139 5 Unk * no 2,3,4,6,7,8-HxCDF | NotFnd yes 1.139 6 Unk 1,2,3,7,8,9-HxCDF | NotFnd * no yes 1.165 7 Unk * no no 1.394 1,2,3,4,6,7,8-HpCDF | NotFnd 8 Unk 1,2,3,4,7,8,9-HpCDF | NotFnd *|no no 1.334 9 Unk * no yes 1.227 OCDF | NotFnd 10 Unk * * no 0.980 no 2,3,7,8-TCDD | NotFnd 11 Unk 1,2,3,7,8-PeCDD | NotFnd * no no 0.915 12 Unk 1.001 * no yes 13 Unk 1,2,3,4,7,8-HxCDD|NotFnd 0.978 1,2,3,6,7,8-HxCDD | NotFnd * no yes 14 Unk * no no 1.041 1,2,3,7,8,9-HxCDD | NotFnd 15 Unk 1.98 no 1.417e+01 1.002 no16 Unk 1,2,3,4,6,7,8-HpCDD | 40:01 2.802e+01 1.054 * no no 17 Unk OCDD NotFnd 0.78 yes 1.282 no 18 IS 13C-2,3,7,8-TCDF | 28:20 3.749e+044.809e+041.098 13C-1,2,3,7,8-PeCDF|32:47 1.56 yes no 19 IS 5.785e+043.716e+04 1.56 yes 1.065 13C-2,3,4,7,8-PeCDF | 33:32 5.133e+043.291e+04no 20 IS 0.52|yes 1.062 2.427e+04 4.681e+04 nο 13C-1,2,3,4,7,8-HxCDF | 36:23 21 IS 0.52 | yes 2.359e+044.529e+04 no 1.191 13C-1,2,3,6,7,8-HxCDF | 36:30 22 IS 2.531e+04 4.838e+040.52 yes no 1.098 13C-2,3,4,6,7,8-HxCDF | 36:58 23 IS 0.52 yes no 0.980 2.090e+04 4.019e+04 24 IS 13C-1,2,3,7,8,9-HxCDF | 37:40 0.837 25 IS 1.468e+04 3.289e + 040.45 yes no 13C-1,2,3,4,6,7,8-HpCDF | 39:07 0.708 3.818e + 040.45 yes no 13C-1,2,3,4,7,8,9-HpCDF | 40:24 1.701e+04 26 IS 3.148e+04 3.991e+04 0.79 yes no 1.002 27 IS 13C-2,3,7,8-TCDD 29:11 1.57 yes no 0.819 13C-1,2,3,7,8-PeCDD | 33:53 4.124e+04 2.622e+04 28 IS 0.929 1.28 yes no 2.690e+04 13C-1,2,3,4,7,8-HxCDD 37:05 3.431e+0429 IS 2.004e+041.630e+04 1.23 yes no 0.937 13C-1,2,3,6,7,8-HxCDD 37:10 30 IS 2.803e+041.08 yes no 0.817 3.024e+0431 IS 13C-1,2,3,4,6,7,8-HpCDD | 40:00 0.595 13C-OCDD | 43:02 0.90 yes no 32 IS 4.003e+04 4.441e+046.816e+04 0.80 yes no 13C-1,2,3,4-TCDD 28:58 5.464e+0433 RS/RT 13C-1,2,3,7,8,9-HxCDD 37:27 5.899e + 044.684e + 041.26 yes no 34 RS/RT 1.039 37Cl-2,3,7,8-TCDD 29:12 3.356e + 04no 35 C/Up

Signal/Noise Height Ratio Summary CLIENT ID. METHOD BLANK

Run #8 Filename 3291 Samp: 1 Inj: 1 Acquired: 19-JUN-12 11:19:02 Processed: 20-JUN-12 11:09:051 LAB. ID: 00341-01

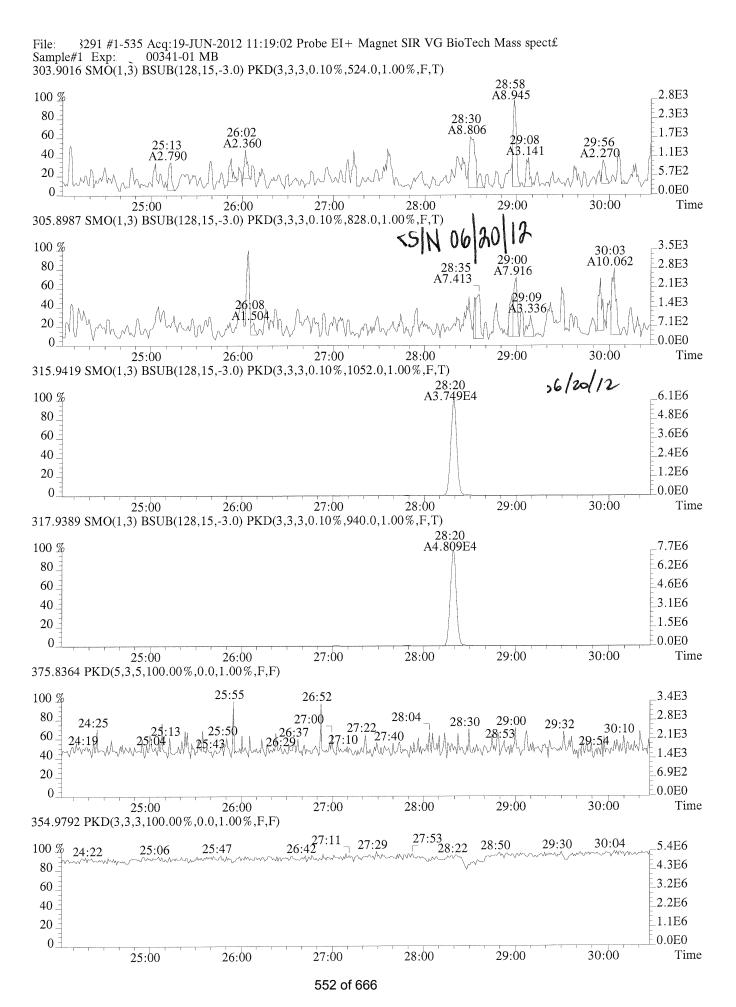
Plocessed. Zu-bon-12 11.03	7.031	THD. II	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 01		
Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2 S	/N Rat.2
1 2,3,7,8-TCDF	*	5.24e+02	*	*	8.28e+02	*
2 1,2,3,7,8-PeCDF	*	5.84e+02	*	*	8.08e+02	*
3 2,3,4,7,8-PeCDF	*	5.84e+02	*	*	8.08e+02	*
4 1,2,3,4,7,8-HxCDF	*	8.00e+02	*	*	3.04e+02	*
5 1,2,3,6,7,8-HxCDF	*	8.00e+02	*	*	3.04e+02	*
6 2,3,4,6,7,8-HxCDF	*	8.00e+02	*	*	3.04e+02	*
7 1,2,3,7,8,9-HxCDF	*	8.00e+02	*	*	3.04e+02	*
8 1,2,3,4,6,7,8-HpCDF	*	9.32e+02	*	*	6.60e+02	*
9 1,2,3,4,7,8,9-HpCDF	*	9.32e+02	*	*	6.60e+02	*
10 OCDF	*	4.72e+02	*	*	1.54e+03	*
'	,	,			·	
11 2,3,7,8-TCDD	*	7.08e+02	*	*	7.64e+02	*
12 1,2,3,7,8-PeCDD	*	9.52e+02	*	*	3.64e+02	*
13 1,2,3,4,7,8-HxCDD	*	3.48e+02	*	*	5.68e+02	*
14 1,2,3,6,7,8-HxCDD	*	3.48e+02	*	*	5.68e+02	*
15 1,2,3,7,8,9-HxCDD	*	3.48e+02	*	*	5.68e+02	*
16 1,2,3,4,6,7,8-HpCDD	6.67e+03	6.88e+02	9.7e+00	2.39e+03	4.92e+02	4.9e+00
17 OCDD	*	1.00e+03	*	*	2.44e+02	*
18 13C-2,3,7,8-TCDF	6.05e+06	1.05e+03	5.7e+03	7.71e+06	9.40e+02	8.2e+03
19 13C-1,2,3,7,8-PeCDF	1.07e+07	5.24e+02	2.0e+04	6.85e+06	8.84e+02	7.8e+03
20 13C-2,3,4,7,8-PeCDF	1.00e+07	5.24e+02	1.9e+04	6.40e+06	8.84e+02	7.2e+03
21 13C-1,2,3,4,7,8-HxCDF	5.06e+06	1.12e+03	4.5e+03	9.78e+06	2.04e+03	4.8e+03
22 13C-1,2,3,6,7,8-HxCDF	5.00e+06	1.12e+03	4.5e+03	9.47e+06	2.04e+03	4.6e+03
23 13C-2,3,4,6,7,8-HxCDF	5.38e+06	1.12e+03	4.8e+03	1.03e+07	2.04e+03	5.1e+03
24 13C-1,2,3,7,8,9-HxCDF	4.38e+06	1.12e+03	3.9e+03	8.44e+06	2.04e+03	4.1e+03
25 13C-1,2,3,4,6,7,8-HpCDF	2.75e+06	1.60e+03	1.7e+03	6.20e+06	2.60e+03	2.4e+03
26 13C-1,2,3,4,7,8,9-HpCDF	3.14e+06	1.60e+03	2.0e+03	6.90e+06	2.60e+03	2.6e+03
27 13C-2,3,7,8-TCDD	5.51e+06	1.78e+03	3.1e+03	6.88e+06	6.12e+02	1.1e+04
28 13C-1,2,3,7,8-PeCDD	8.19e+06	5.00e+02	1.6e+04	5.25e+06	4.32e+02	1.2e+04
29 13C-1,2,3,4,7,8-HxCDD	7.24e+06	8.12e+02	8.9e+03	5.59e+06	7.48e+02	7.5e+03
30 13C-1,2,3,6,7,8-HxCDD	3.87e+06	8.12e+02	4.8e+03	3.09e+06	7.48e+02	4.1e+03
31 13C-1,2,3,4,6,7,8-HpCDD	5.46e+06	4.24e+02	1.3e+04	5.08e+06	4.80e+02	1.1e+04
32 13C-OCDD	4.13e+06	3.24e+02	1.3e+04	4.60e+06	6.92e+02	6.7e+03
,					c 10 00 l	1 0. 0.
33 13C-1,2,3,4-TCDD	9.45e+06	1.78e+03	5.3e+03	1.17e+07	6.12e+02	1.9e+04
34 13C-1,2,3,7,8,9-HxCDD	1.37e+07	8.12e+02	1.7e+04	1.08e+07	7.48e+02	1.4e+04
35 37Cl-2,3,7,8-TCDD	5.78e+06	6.36e+02	9.1e+03			

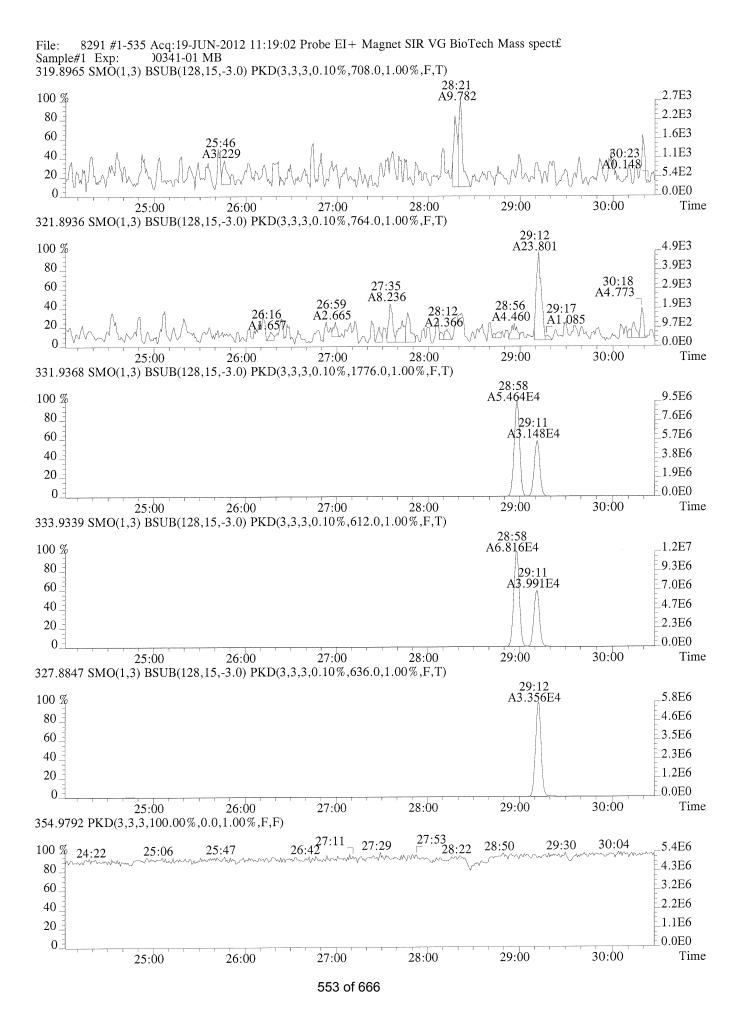
Peak List Summary

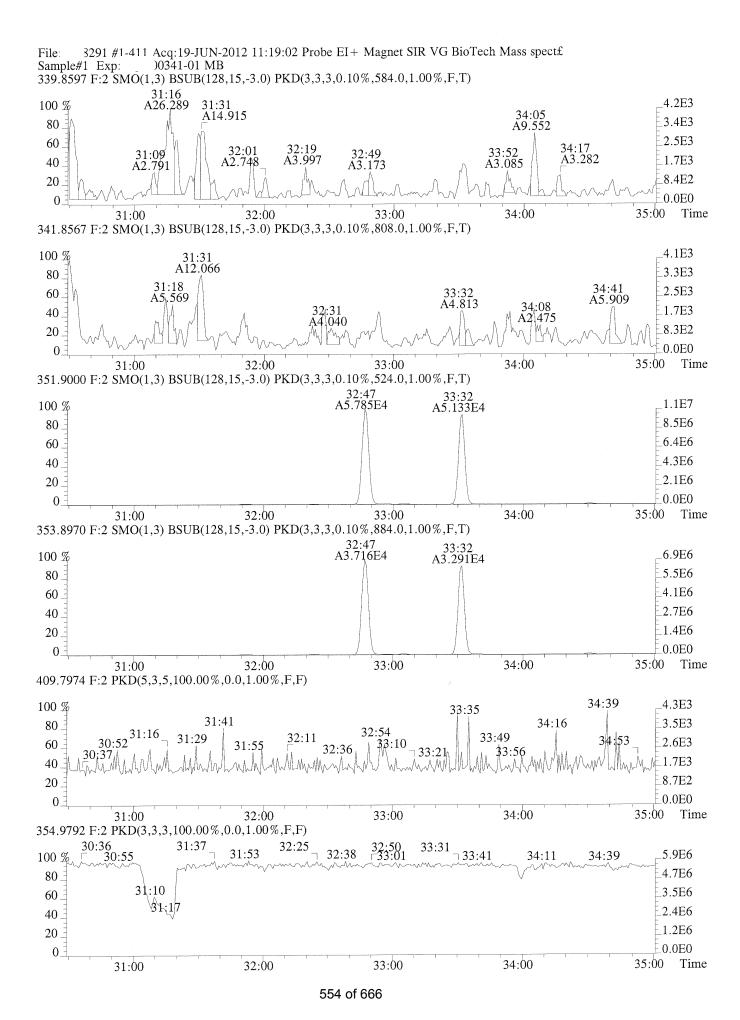
CLIENT ID.

METHOD BLANK

Entry: 40 Totals Name: Total Hexa-Furans


Run: 8 File: 8291 Sample:1 Injection:1 Function:3


Acquired: 19-JUN-12 11:19:02 Processed: 20-JUN-12 11:09:05


Mass: 373.8208 375.8178 Response:

RT Resp Resp Ratio Meet Tot Resp Name Mod1? Mod2

1 35:54 6.26e+01 5.65e+01 1.11 yes 1.19e+02 Y Y

3291 #1-411 Acq:19-JUN-2012 11:19:02 Probe EI+ Magnet SIR VG BioTech Mass spect£ 00341-01 MB Sample#1 Exp: 339.8597 F:2 7.7E3 100 % 31:16 7.4E3 95 7.0E3 90 _6.6E3 85 6.2E3 80. 31:30 5.8E3 75 5.4E3 70 5.0E3 65 4.6E3 31:54 60 34:16 _4.3E3 55 2.5*S/N 33:31---3.9E3 50 32:18 3.5E3 45 31:09 32:50 33:19 33:53 32:01 35:00 32:36 _3.1E3 40 33:01 31:49 2.7E3 35 30:50 30:53 34:38 34:27 2.3E3 30 1.9E3 25 1.5E3 20 1.2E3 15 7.7E2 10 3.9E2 5 0.0E0 0. 34:00 35:00 Time 31:00 32:00 33:00 341.8567 F:2 _8.8E3 100 % _8.3E3 95 .7.9E3 90 7.4E3 85 _7.0E3 80 _6.6E3 75 32:28 6.1E3 70 5.7E3 65 34:41 30:33 31:1 5.3E3 60 34:04 55 31:1 4.8E3 33:32 5*S/N 31:50 -33:53 4.4E3 50 34:57 _3.9E3 45 32:46 31:10 3.5E3 40 30:45 32:23 3.1E3 35 34:31 31:03 33:27 31:36 _2.6E3 30 2.2E3 25 1.8E3 20 1.3E3 15 06/20/12

33:00

8.8E2

4.4E2

0.0E0

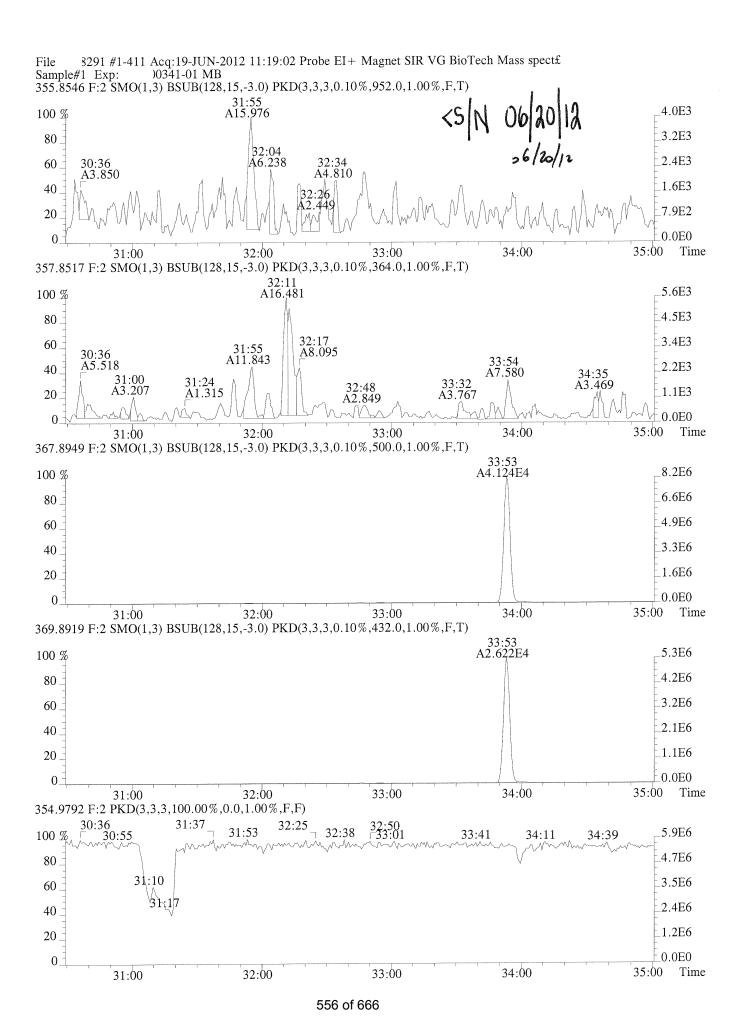
Time

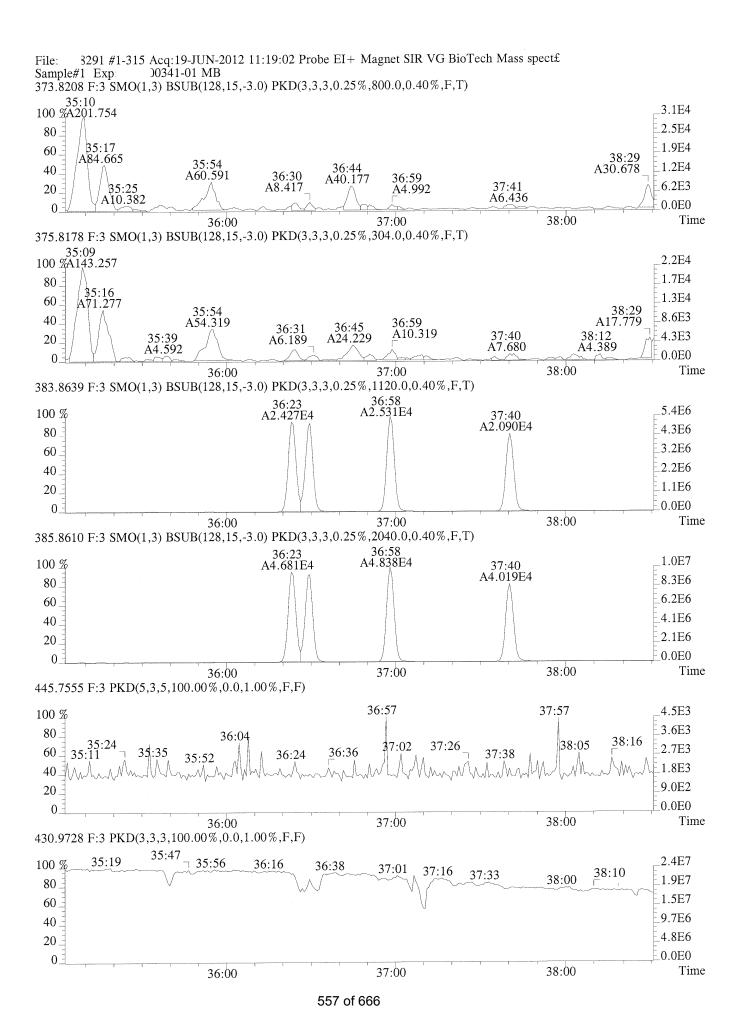
35:00

34:00

₹C

32:00


10


5.

0_

20 Jun_201

31:00

8291 #1-315 Acq:19-JUN-2012 11:19:02 Probe EI+ Magnet SIR VG BioTech Mass spect£ 00341-01 MB Sample#1 Exp: 373.8208 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,800.0,0.40%,F,T) 35:54 A62.560 9.6E3 100 % 9.1E3 95 8.6E3 90 36:44 A42.308 8.1E3 85 7.7E3 80 7.2E3 75 6.7E3 70 6.2E3 65 5.7E3 60 5.3E3 55 _4.8E3 50 .4.3E3 45 _3.8E3 40 _3.3E3 35 2.9E3 30 _2.4E3 25 1.9E3 20. 1.4E3 15 9.6E2 10 4.8E2 5 0.0E0 0 36:30 36:36 36:42 36:48 36:54 Time 35:54 36:00 36:06 36:12 36:18 36:24 35:48 375.8178 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,304.0,0.40%,F,T) 35:54 A56.480 7.4E3 100 % 95 7.0E3 _6.6E3 90 _6.3E3 85 5.9E3 80 5.5E3 ANUAL INTEGRATION EXPLANATION 75 OOR INDEGRATION 5.2E3 70 FAR MOTEOUND/NOT INTEGRATED 4.8E3 65 _4.4E3 60 36:45 A23.060 _4.1E3 55 _3.7E3 50 _3.3E3 45 2.9E3 40 2.6E3 35 2.2E3 30 1.8E3 25 1.5E3 20 1.1E3 15 7.4E2 10 3.7E2 5

36:18

36:24

36:30

36:36

36:42

0.

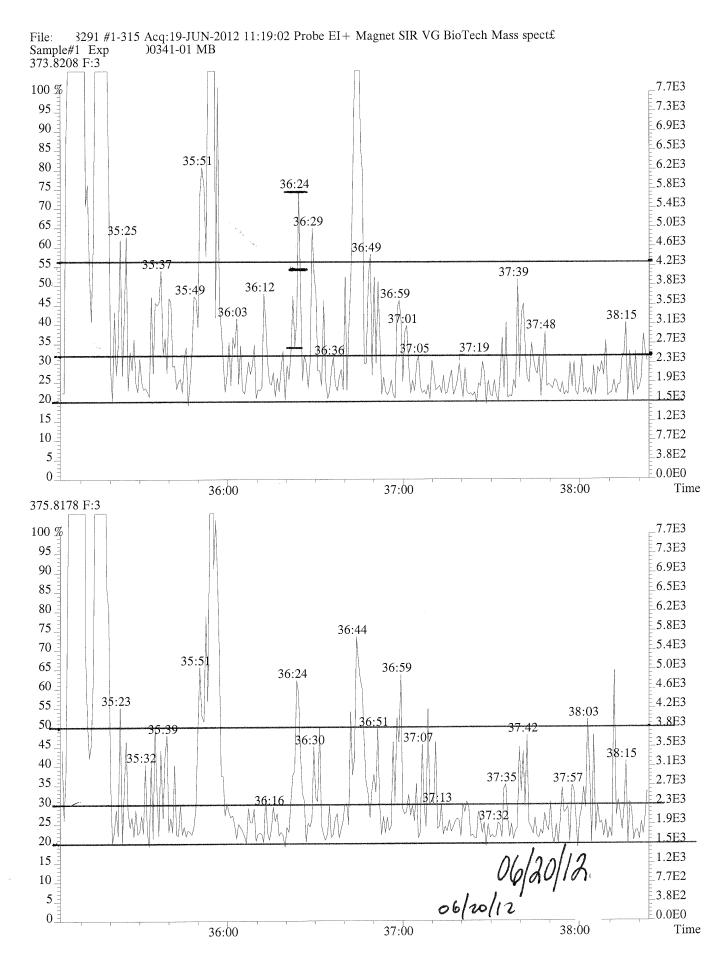
35:42

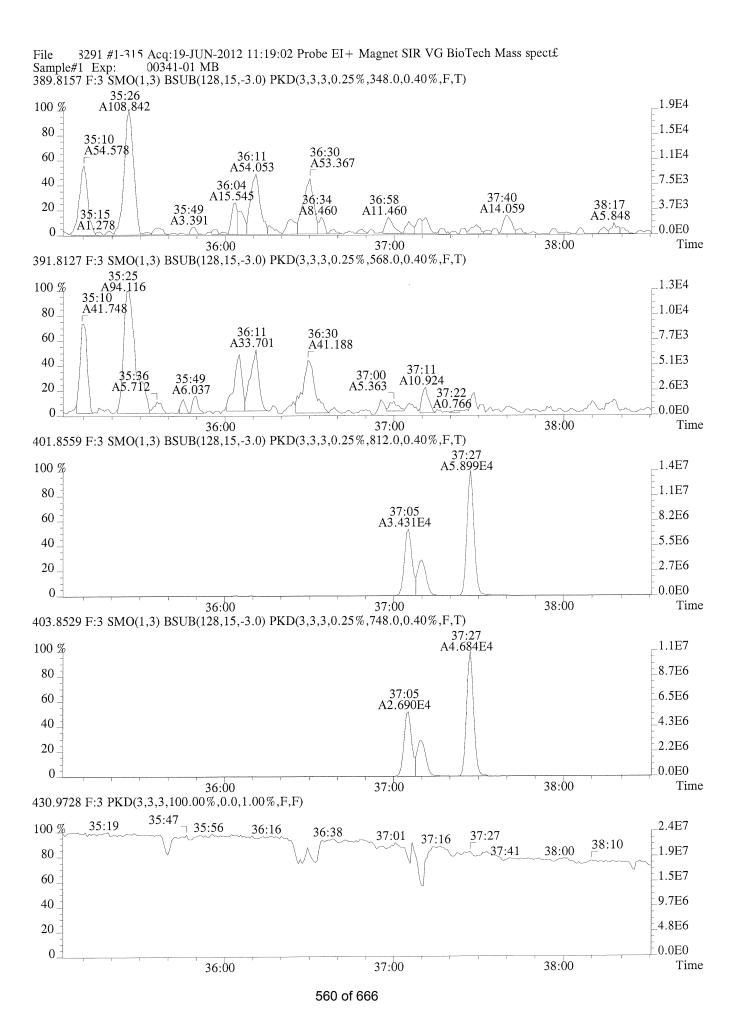
35:54

35:48

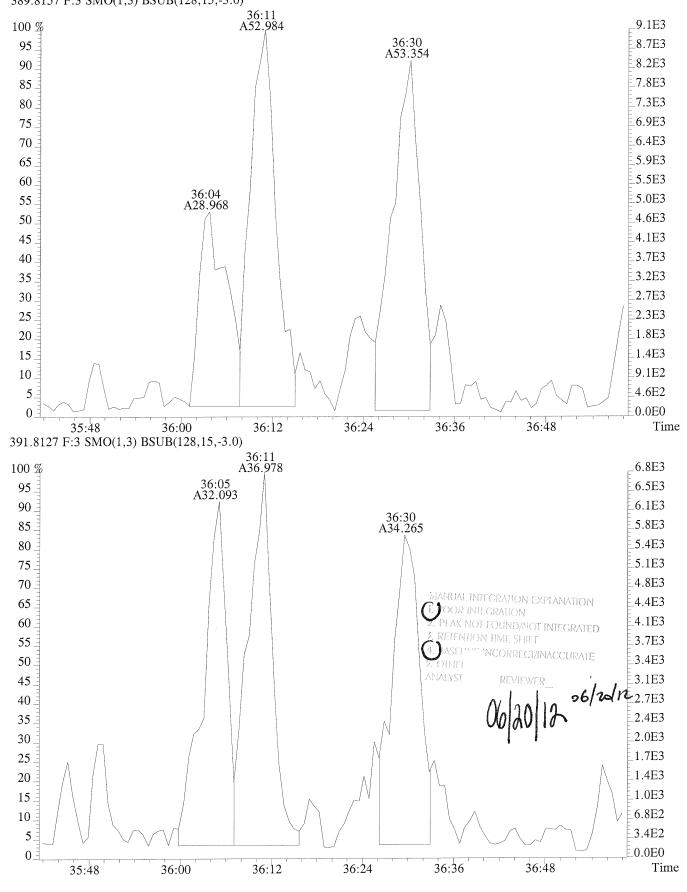
36:00

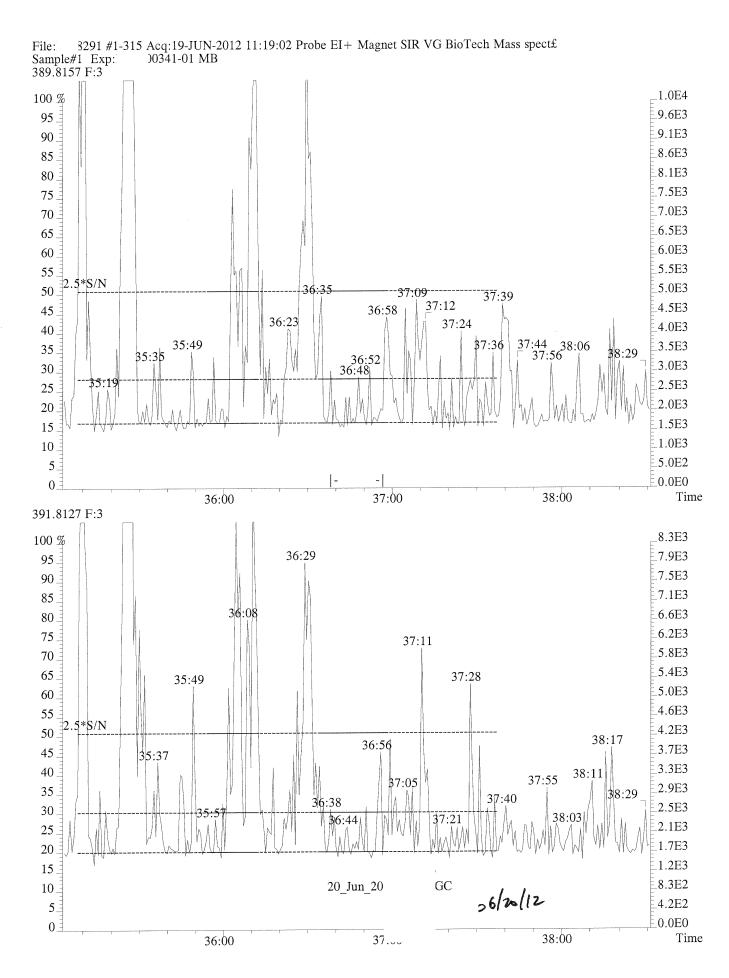
36:06

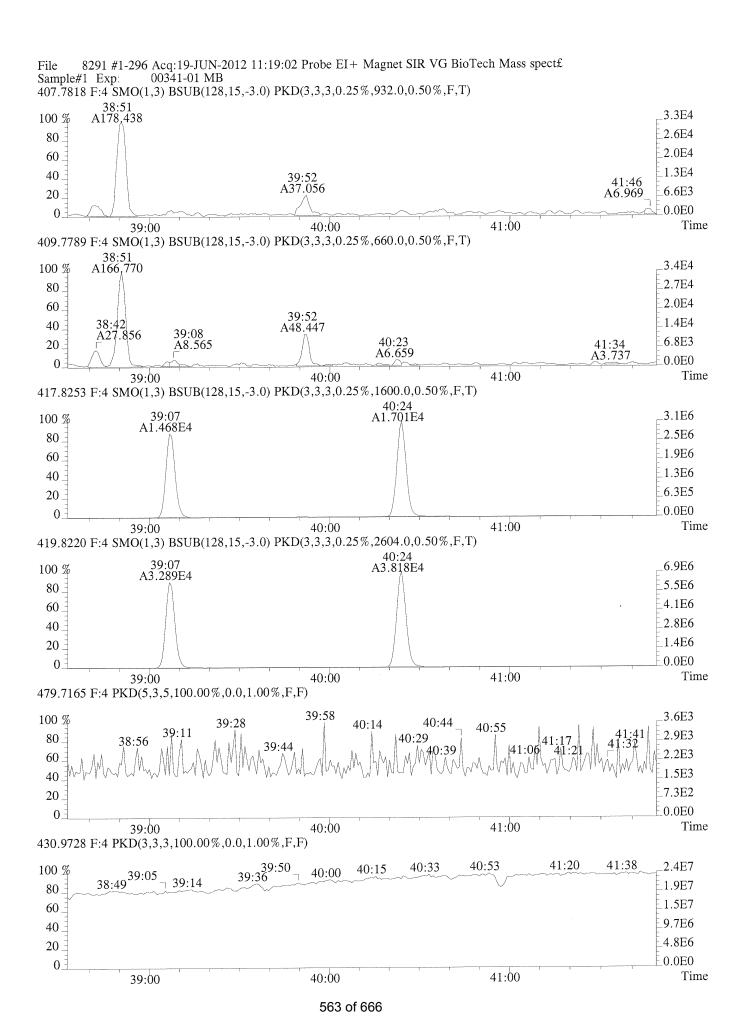

36:12


_0.0E0

Time


36:48


36:54



File 8291 #1-315 Acq:19-JUN-2012 11:19:02 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00341-01 MB 389.8157 F:3 SMO(1,3) BSUB(128,15,-3.0)

3291 #1-296 Acq:19-JUN-2012 11:19:02 Probe EI+ Magnet SIR VG BioTech Mass spect£ File 00341-01 MB Sample#1 Exp: 407.7818 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,932.0,0.50%,F,T) 39:52 A33.659 .7.4E3 100 % 7.0E3 95 _ _6.6E3 90 6.3E3 85 _5.9E3 80 _5.5E3 75 _5.2E3 70 _4.8E3 65 _4.4E3 60 4.1E3 55 3.7E3 50 3.3E3 45 _3.0E3 40 2.6E3 35 2.2E3 30 1.8E3 25 _1.5E3 20 1.1E3 15 7.4E2 10 3.7E2 5. 0.0E0 40:06 40:12 Time 39:54 40:00 39:36 39:42 39:48 409.7789 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,660.0,0.50%,F,T) 39:52 A45,439 _1.2E4 100 % _1.1E4 95 _1.0E4 90 9.9E3 85 9.3E3 80 8.7E3 75 8.1E3 70 MANUAL INTEGRATION EXPLANATION .7.6E3 65 _7.0E3 PLAK NOT FOUND/NOT INTEGRATED 60 **基**RELEINIKON RIME SHIFT 6.4E3 55 5.8E3 50 5.2E3 45 4.7E3 40 4.1E3 35 _3.5E3 30 2.9E3 25

39:54

40:00

40:06

20

15

10

5

0_

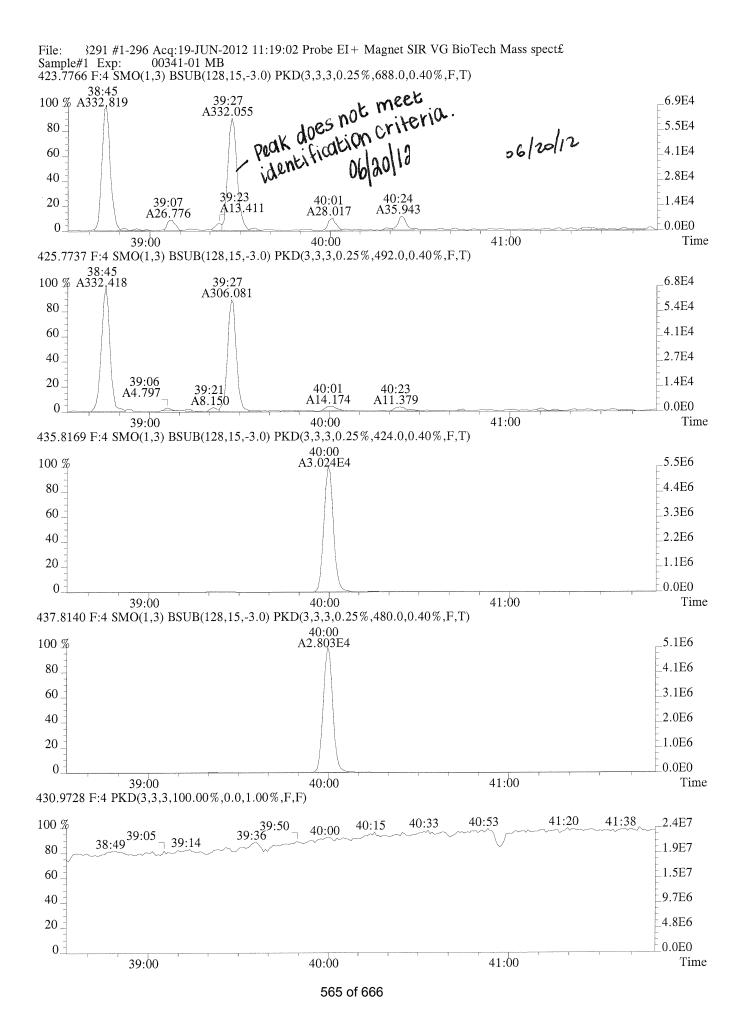
39:36

39:42

39:48

2.3E3

1.7E3


1.2E3

5.8E2

0.0E0

Time

40:12

8291 #1-292 Acq:19-JUN-2012 11:19:02 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp 00341-01 MB 441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,472.0,0.40%,F,T) Zd.1., 2/4 0/0/20/18 26/20/12 42:45 A840,185 9.5E4 100 % _7.6E4 80 _5.7E4 60 _3.8E4 40 1.9E4 20 43:45 A12.020 43:10 A20.412 0.0E0 0. 45:00 43:00 Time 42:00 44:00 443.7399 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,1536.0,0.40%,F,T) 42:45 A1.014E3 1.1E5 100 % 9.1E4 80 _6.8E4 60 4.6E4 40 2.3E4 20 43:09 A13.373 0.0E0 0 45:00 Time 42:00 43:00 44:00 513.6775 F:5 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 2.8E3 42:45 44:23 100 % 43:04 43:30 44:57 43:46 43:15 2.2E3 80 42:58 44:17 44:32 44:00 1.7E3 1.1E3 40 5.6E2 20 0.0E0 0 43:00 44:00 45:00 Time 42:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) $43:59^{\textstyle 44:15} \neg \ \ 44:25^{\textstyle \ \ } ^{\textstyle 44:43}$ 2.3E7 100 % 43:37 43:11 42:44 42:03 42:26 80 _1.8E7 _1.4E7 60 9.1E6 40 -4.6E6 20 0.0E0 0 45:00 Time 43:00 44:00 42:00

566 of 666

8291 #1-292 Acq:19-JUN-2012 11:19:02 Probe EI+ Magnet SIR VG BioTech Mass spect£ File 00341-01 MB Sample#1 Exp: 457.7377 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,1000.0,0.40%,F,T) 42:37 A1.785E3 1.9E5 100 % 6/20/12 1.5E5 80 7 Aseconds DRT from Resp 2. 06/20/12 _1.1E5 60 7.5E4 40 3.7E4 20 43:04 A85.580 0.0E0 0 45:00 Time 43:00 42:00 459.7348 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,244.0,0.40%,F,T) 42:36 A2.052E3 _2.1E5 100 % _1.7E5 80 1.2E5 60 8.3E4 40 _4.1E4 20 43:01 A88.868 0.0E0 43:00 44:00 45:00 Time 42:00 469.7779 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,324.0,0.40%,F,T) 43:02 A4.003E4 _4.1E6 100 % 3.3E6 80 _2.5E6 60 1.7E6 40 8.3E5 20 0.0E0 0 45:00 Time 42:00 43:00 44:00 471.7750 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,692.0,0.40%,F,T) 43:01 A4.441E4 _4.6E6 100 % _3.7E6 80 2.8E6 60 1.8E6 40 9.2E5 20 0.0E0 44:00 45:00 Time 43:00 42:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 44:25 44:43 43:59 44:15 44:53 2.3E7 43:37 100 % 43:11 42:03 42:44 42:26 1.8E7 80 _1.4E7 60 9.1E6 40 4.6E6 20 0.0E0 0. 45:00 Time 44:00 42:00 43:00

567 of 666

Analytical Report

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Lab Control SampleUnits:pg/LLab Code:00313-02Basis:NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method: D/F DLM02.2 Date Analyzed: 7/6/12 0718

 Prep Method:
 Method
 Date Extracted:
 6/6/12

 Sample Amount:
 1000mL
 Instrument Name:
 E-HRMS-04

 GC Column:
 DB-5

 Data File Name:
 8232

 ICAL Date:
 05/03/12

 Blank File Name:
 8236

 Cal Ver. File Name:
 8231

				Ion		Dilution	
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	222	0.683	10.0	0.81	1.000	1	
1,2,3,7,8-PeCDD	1120	0.403	50.0	1.65	1.000	1	
1,2,3,4,7,8-HxCDD	1040	0.469	50.0	1.26	1.001	1	
1,2,3,6,7,8-HxCDD	1100	0.515	50.0	1.28	1.000	1	
1,2,3,7,8,9-HxCDD	1070	0.483	50.0	1.26	1.009	1	
1,2,3,4,6,7,8-HpCDD	1060	0.739	50.0	1.05	1.000	1	
OCDD	1990	1.04	100	0.90	1.000	1	
2,3,7,8-TCDF	236	0.448	10.0	0.79	1.001	1	
1,2,3,7,8-PeCDF	1130	0.318	50.0	1.56	1.001	1	
2,3,4,7,8-PeCDF	1190	0.367	50.0	1.57	1.000	1	
1,2,3,4,7,8-HxCDF	1170	0.229	50.0	1.32	1.000	1	
1,2,3,6,7,8-HxCDF	1070	0.206	50.0	1.22	1.000	1	
1,2,3,7,8,9-HxCDF	1070	0.333	50.0	1.31	1.000	1	
2,3,4,6,7,8-HxCDF	1040	0.250	50.0	1.24	1.000	1	
1,2,3,4,6,7,8-HpCDF	1110	1.46	50.0	1.03	1.000	1	
1,2,3,4,7,8,9-HpCDF	1000	2.20	50.0	1.01	1.000	1	
OCDF	2010	1.54	100	0.92	1.001	1	
Total Tetra-Dioxins	224	0.683	10.0	0.68		1	
Total Penta-Dioxins	1120	0.403	50.0	1.65		1	
Total Hexa-Dioxins	3200	0.469	50.0	1.26		1	
Total Hepta-Dioxins	1060	0.739	50.0	0.94		1	
Total Tetra-Furans	242	0.448	10.0	0.67		1	
Total Penta-Furans	2360	0.367	50.0	1.58		1	
Total Hexa-Furans	4370	0.229	50.0	1.20		1	
Total Hepta-Furans	2130	1.46	50.0	1.03		1	

Analytical Report

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Lab Control SampleUnits:PercentLab Code:00313-02Basis:NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method: D/F DLM02.2 Date Analyzed: 7/6/12 0718

 Prep Method:
 Method
 Date Extracted:
 6/6/12

 Sample Amount:
 1000mL
 Instrument Name:
 E-HRMS-04

 GC Column:
 DB-5

 Data File Name:
 8232

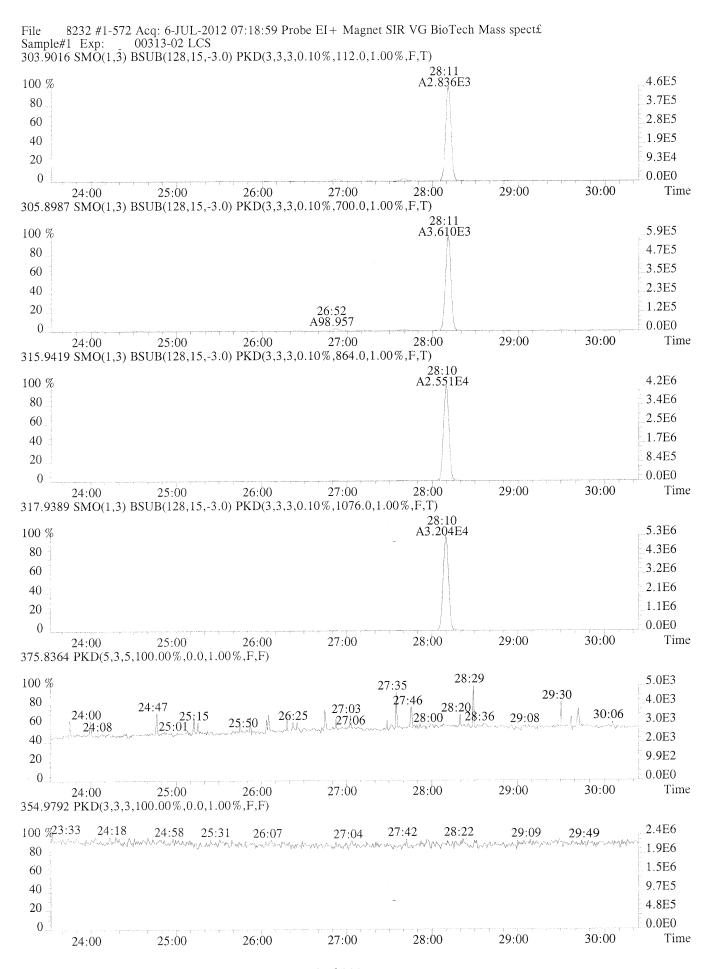
 ICAL Date:
 05/03/12

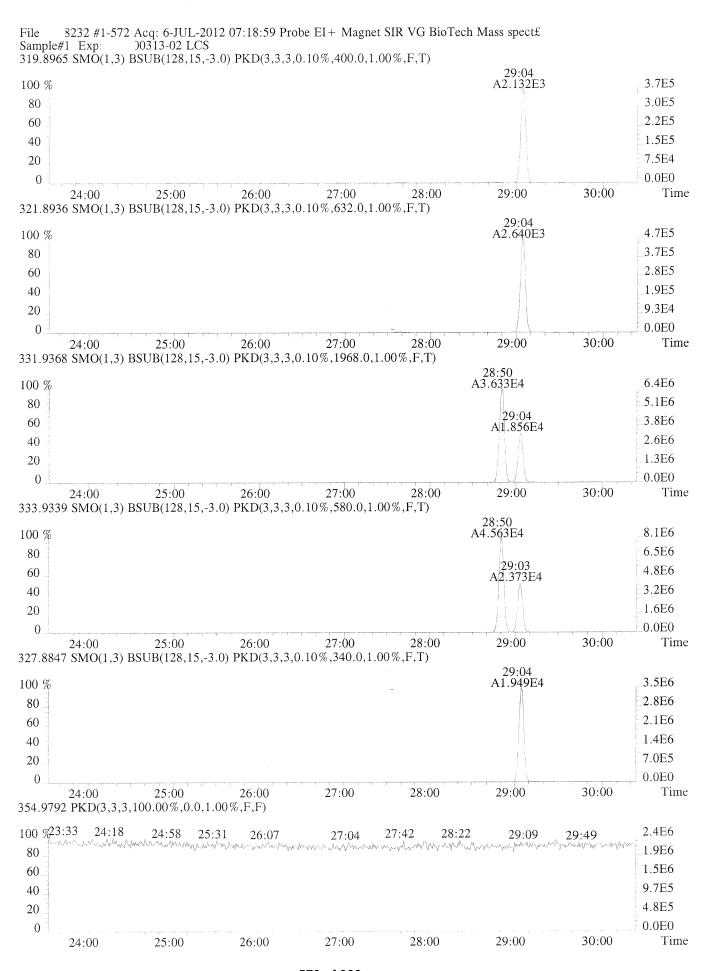
 Blank File Name:
 8236

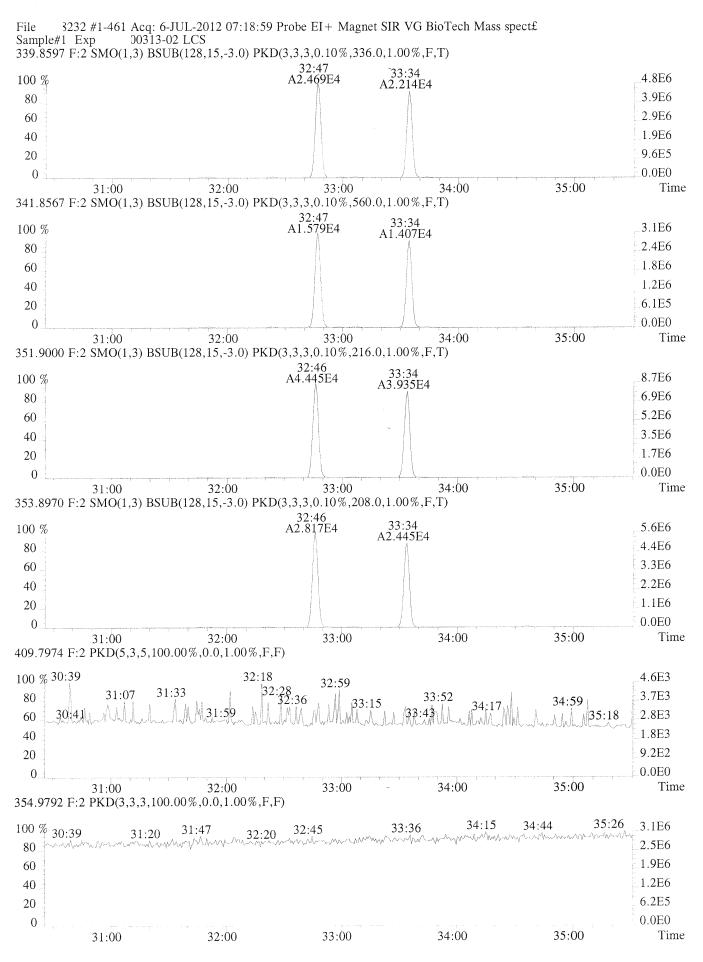
 Cal Ver. File Name:
 8231

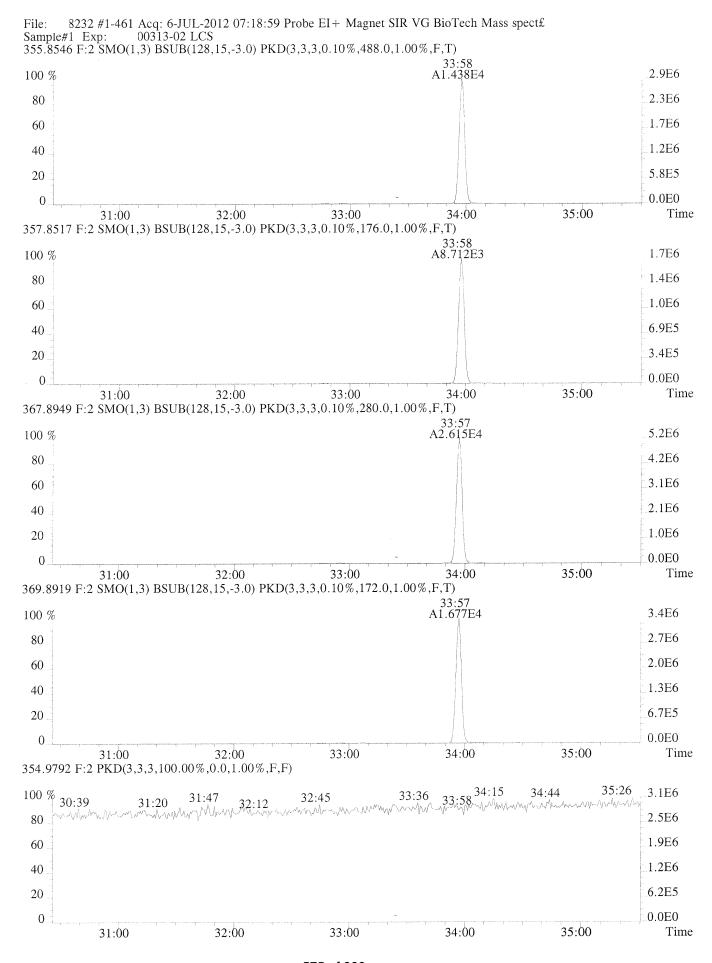
Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1106.827	55	25-164	0.78	1.008
13C-1,2,3,7,8-PeCDD	2000	1130.890	57	21-227	1.56	1.177
13C-1,2,3,4,7,8-HxCDD	2000	1209.245	60	21-193	1.27	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1047.634	52	25-163	1.26	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1390.995	70	26-166	1.08	1.083
13C-OCDD	4000	2855.464	71	13-199	0.90	1.188
13C-2,3,7,8-TCDF	2000	1101.391	55	22-152	0.80	0.977
13C-1,2,3,7,8-PeCDF	2000	1383.232	69	21-192	1.58	1.136
13C-2,3,4,7,8-PeCDF	2000	1204.249	60	13-328	1.61	1.164
13C-1,2,3,4,7,8-HxCDF	2000	1147.631	57	19-202	0.52	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1235.973	62	21-159	0.53	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1105.986	55	17-205	0.51	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1204.695	60	22-176	0.53	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1230.980	62	21-158	0.44	1.052
13C-1,2,3,4,7,8,9-HpCDF	2000	1341.197	67	20-186	0.44	1.094
37Cl-2,3,7,8-TCDD	800	497.583	62	31-191	NA	1.008

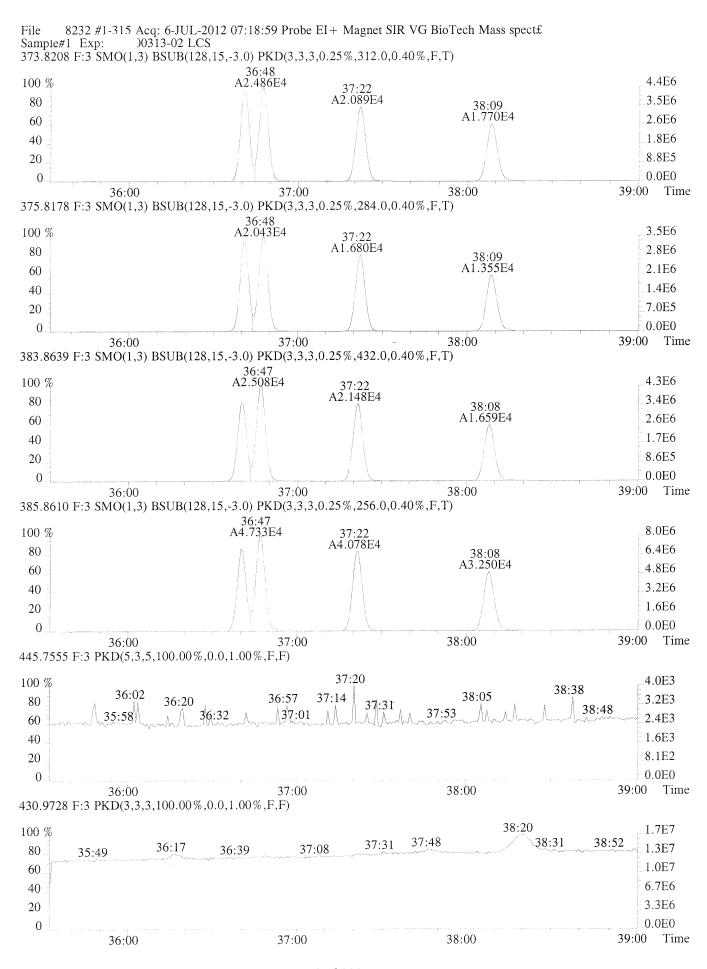
Run #8 Filename 8232 #1 Samp: 1 Inj: 1 Acquired: 6-JUL-12 07:18:59
Processed: 14-JUL-12 09:22:57 LAB. ID: 00313-02

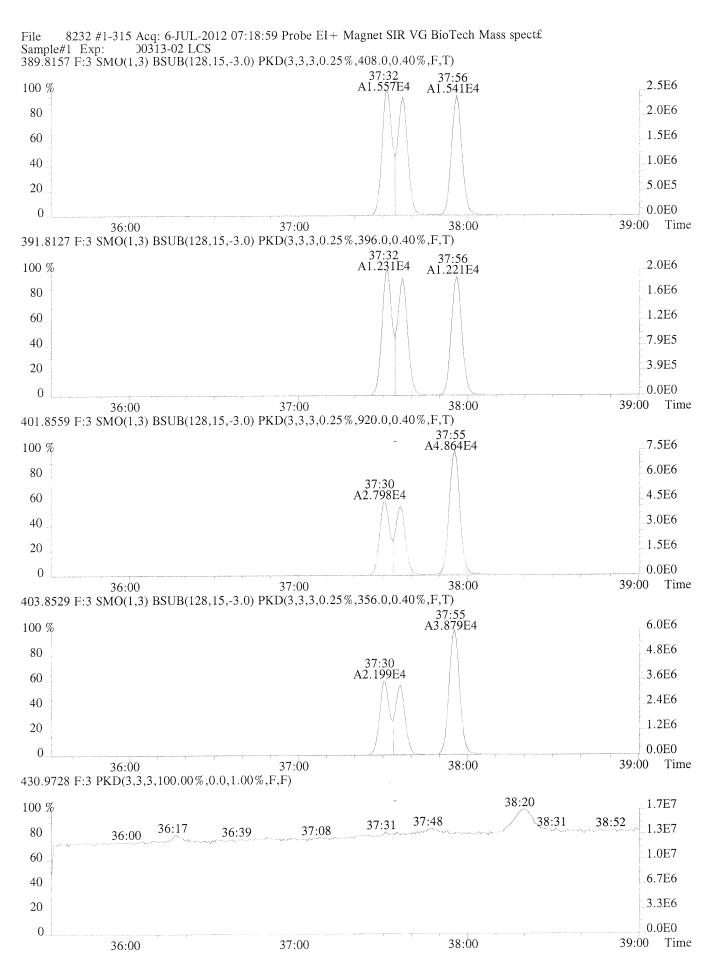

2200									
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
1	Unk	2,3,7,8-TCDF	28:11	2.836e+03	3.610e+03	0.79	yes	no	1.001
2	Unk	1,2,3,7,8-PeCDF	32:47	2.469e+04	1.579e+04	1.56	yes	no	1.001
3	Unk	2,3,4,7,8-PeCDF		2.214e+04	1.407e+04	1.57	yes	no	1.000
4	Unk	1,2,3,4,7,8-HxCDF	36:41	2.395e+04	1.820e+04	1.32	yes	no	1.000
5	Unk	1,2,3,6,7,8-HxCDF		2.486e+04	2.043e+04	1.22	yes	no	1.000
6	Unk	2,3,4,6,7,8-HxCDF	37:22	2.089e+04	1.680e+04	1.24	yes	no	1.000
7	Unk	1,2,3,7,8,9-HxCDF		1.770e+04	1.355e+04	1.31	yes	no	1.000
8	Unk	1,2,3,4,6,7,8-HpCDF	39:54	2.032e+04	1.977e+04	1.03	yes	no	1.000
9	Unk	1,2,3,4,7,8,9-HpCDF	41:29	1.542e+04	1.526e+04	1.01	yes	no	1.000
10	Unk	OCDF	45:06	2.472e+04	2.701e+04	0.92	yes	no	1.001
11	Unk	2,3,7,8-TCDD	29:04	2.132e+03	2.640e+03	0.81	yes	no	1.000
12	Unk	1,2,3,7,8-PeCDD		1.438e+04	8.712e+03	1.65	yes	no	1.000
13	Unk	1,2,3,4,7,8-HxCDD		1.557e+04	1.231e+04	1.26	yes	no	1.001
14	Unk	1,2,3,6,7,8-HxCDD		1.482e+04	1.161e+04	1.28	yes	no	1.000
15	Unk	1,2,3,7,8,9-HxCDD		1.541e+04	1.221e+04	1.26	yes	no	1.009
16	Unk	1,2,3,4,6,7,8-HpCDD		1.535e+04	1.464e+04	1.05	yes	no	1.000
17	Unk	OCDD	45:03	2.210e+04	2.460e+04	0.90	yes	no	1.000
							1		
18	IS	13C-2,3,7,8-TCDF		2.551e+04	3.204e+04	0.80	yes	no	0.977
19	IS	13C-1,2,3,7,8-PeCDF		4.445e+04	2.817e+04	1.58	yes	no	1.136
20	IS	13C-2,3,4,7,8-PeCDF		3.935e+04	2.445e+04	1.61	yes	no	1.164
21	IS	13C-1,2,3,4,7,8-HxCDF		1.989e+04	3.815e+04	0.52	yes	no	0.967
22	IS	13C-1,2,3,6,7,8-HxCDF	1	2.508e+04	4.733e+04	0.53	yes	no	0.970
23	IS	13C-2,3,4,6,7,8-HxCDF		2.148e+04	4.078e+04	0.53	yes	no	0.985
24	IS	13C-1,2,3,7,8,9-HxCDF		1.659e+04	3.250e+04	0.51	yes	no	1.006
25		3C-1,2,3,4,6,7,8-HpCDF		1.576e+04	3.554e+04	0.44	yes	no	1.052
26	IS1	3C-1,2,3,4,7,8,9-HpCDF	41:28	1.404e+04	3.175e+04	0.44	yes	no	1.094
				f.		1	1		1 000
27	IS	13C-2,3,7,8-TCDD		1.856e+04	2.373e+04	0.78	yes	no	1.008
28	IS	13C-1,2,3,7,8-PeCDD		2.615e+04	1.677e+04	1.56	yes	no	1.177
29	IS	13C-1,2,3,4,7,8-HxCDD		2.798e+04	2.199e+04	1.27	yes	no	0.989
30	IS	13C-1,2,3,6,7,8-HxCDD		2.585e+04	2.051e+04	1.26	yes	no	0.992
31		3C-1,2,3,4,6,7,8-HpCDD		2.797e+04	2.600e+04	1.08	yes	no	1.083
32	IS	13C-OCDD	45:02	3.751e+04	4.159e+04	0.90	yes	no	1.188
	- /		100	1 2 622 24	1 4 500 00	1 0 001			*
	S/RT	13C-1,2,3,4-TCDD		3.633e+04	4.563e+04	0.80	yes	no	*
	S/RT	13C-1,2,3,7,8,9-HxCDD		4.864e+04	3.879e+04	1.25	yes	no	1.008
35	C/Up	37Cl-2,3,7,8-TCDD	29:04	1.949e+04				no	1.000


CLIENT ID.


Acquired: 6-JUL-12 07:18:59 Run #8 Filename 8232 Samp: 1 Inj: 1 Processed: 14-JUL-12 09:22:571 LAB. ID: 00313-02 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 4.63e+05 | 1.12e+02 | 4.1e+03 | 5.87e+05 | 7.00e+02 | 8.4e + 021 2,3,7,8-TCDF 3.06e+06 5.60e+02 5.5e + 031.4e+04 2 1,2,3,7,8-PeCDF 4.81e+06 3.36e+02 5.0e + 032,3,4,7,8-PeCDF 4.42e+06 | 3.36e+02 | 1.3e+04 2.79e+06 5.60e+02 3 2.84e+02 1.2e + 044.19e+06 | 3.12e+02 | 1.3e+04 3.28e+06 1,2,3,4,7,8-HxCDF 4 1.2e + 041.4e+04 | 3.48e+06 | 2.84e+02 3.12e+02 5 1,2,3,6,7,8-HxCDF 4.38e+06 2.84e+02 | 9.8e+03 3.12e+02 1.1e+04 2.79e+06 6 2,3,4,6,7,8-HxCDF 3.46e+06 7.3e + 032.68e+06| 3.12e+02| 2.06e+06 2.84e + 028.6e+03 7 1,2,3,7,8,9-HxCDF 2.36e+06 | 1.04e+03 | 2.3e+03 | 2.27e+06 | 1.37e+03 1.7e + 031,2,3,4,6,7,8-HpCDF 1.0e + 031.45e+06 | 1.04e+03 | 1.4e+03 | 1.41e+06 | 1.37e+03 9 1,2,3,4,7,8,9-HpCDF OCDF | 1.30e+06 | 1.76e+02 | 7.4e+03 | 1.46e+06 | 6.12e+02 | 2.4e+03 10 6.32e+02 7.4e + 022,3,7,8-TCDD $3.73e+05 \mid 4.00e+02 \mid 9.3e+02 \mid 4.65e+05 \mid$ 11 1.71e+06 1.76e+02 9.7e + 032.87e+06 | 4.88e+02 | 5.9e+03 1,2,3,7,8-PeCDD 12 3.96e+02 5.0e + 036.1e+03 1.97e+06 13 1,2,3,4,7,8-HxCDD 2.50e+06 4.08e+02 4.7e + 033.96e+02 1,2,3,6,7,8-HxCDD 2.37e+06 4.08e+02 5.8e+03 1.84e+06 14 2.40e+06 | 4.08e+02 | 5.9e+03 | 1.86e+06 3.96e+02 | 4.7e+03 1,2,3,7,8,9-HxCDD 15 $3.12e+02 \mid 4.3e+03$ 1.41e+06 4.72e+02 3.0e+03 1.35e+06 1,2,3,4,6,7,8-HpCDD 16 OCDD | 1.09e+06 | 2.40e+02 | 4.5e+03 | 1.20e+06 | 2.44e+02 | 4.9e+03 17 4.21e+06 | 8.64e+02 | 4.9e+03 | 5.33e+06 | 1.08e+03 5.0e + 0318 13C-2,3,7,8-TCDF 8.65e+06 | 2.16e+02 | 4.0e+04 | 5.55e+06 | 2.08e+02 2.7e + 0419 13C-1,2,3,7,8-PeCDF 2.08e+02 2.4e + 0413C-2,3,4,7,8-PeCDF 7.85e+06 2.16e+02 3.6e+04 4.91e+06 20 2.56e+02 2.7e + 044.32e+02 8.2e+03 6.91e+06 21 13C-1,2,3,4,7,8-HxCDF 3.56e+06 3.1e + 044.32e+02 1.0e+04 8.03e+06 2.56e+02 13C-1,2,3,6,7,8-HxCDF 4.30e+06 22 2.56e+02 2.6e + 043.51e+06 | 4.32e+02 | 8.1e+03 6.73e+06 13C-2,3,4,6,7,8-HxCDF 23 2.56e+02 1.9e + 045.9e+03 4.98e+06 2.54e+06 | 4.32e+02 | 13C-1,2,3,7,8,9-HxCDF 1.6e+03 2.62e+03 1.80e+06 | 1.23e+03 | 1.5e+03 | 4.11e+06 25 13C-1,2,3,4,6,7,8-HpCDF 26 13C-1,2,3,4,7,8,9-HpCDF| 1.24e+06| 1.23e+03| 1.0e+03| 2.88e+06| 2.62e+03| 1.1e+03 5.80e+02 7.1e + 033.27e+06 | 1.97e+03 | 1.7e+03 | 4.14e+06 | 13C-2,3,7,8-TCDD 2.7 1.9e + 043.35e+06 1.72e+02 5.18e+06 2.80e+02 1.9e+04 28 13C-1,2,3,7,8-PeCDD 3.56e+02 1.0e + 043.54e+06 4.39e+06 | 9.20e+02 | 4.8e+03 29 13C-1,2,3,4,7,8-HxCDD 9.4e + 034.14e+06 | 9.20e+02 | 4.5e+03 | 3.34e+06 | 3.56e+02 30 13C-1,2,3,6,7,8-HxCDD 1.5e + 043.4e+03 | 2.41e+06 | 1.56e+02 31 13C-1,2,3,4,6,7,8-HpCDD 2.62e+06 7.64e+02 13C-OCDD | 1.84e+06 | 4.76e+02 | 3.9e+03 | 2.10e+06 | 3.72e+02 5.6e+03 32 13C-1,2,3,4-TCDD | 6.38e+06 | 1.97e+03 | 3.2e+03 | 8.07e+06 | 5.80e+02 1.4e+04 33 13C-1,2,3,7,8,9-HxCDD| 7.47e+06| 9.20e+02| 8.1e+03| 5.96e+06| 3.56e+02| 1.7e+04 34


37Cl-2,3,7,8-TCDD | 3.51e+06 | 3.40e+02 | 1.0e+04


35





8232 #1-270 Acq: 6-JUL-2012 07:18:59 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: 00313-02 LCS Sample#1 Exp: 407.7818 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25 %,1044.0,0.50 %,F,T) 39:54 A2.032E4 .2.4E6 100 % 1.9E6 80 41:29 A1.542E4 1.4E6 60 9.5E5 40 4.7E5 20 0.0E0 0 42:00 Time 40:00 409.7789 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,1372.0,0.50%,F,T) 39:54 A1.977E4 2.3E6 100 % 80 1.8E6 41:29 A1.526E4 1.4E6 60 9.1E5 40 4.6E5 20 0.0E0 0 42:00 Time 41:00 40:00 417.8253 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,1232.0,0.50%,F,T) 39:54 A1.576E4 1.8E6 100 % 41:28 1.4E6 80 A1.404E4 1.1E6 60 7.2E5 40 3.6E5 20 0.0E0 0 42:00 Time 41:00 40:00 419.8220 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,2616.0,0.50%,F,T) 39:54 A3.554E4 4.1E6 100 % 41:28 A3.175E4 3.3E6 80 2.5E6 60 40 1.6E6 8.2E5 20 0.0E0 0 42:00 Time 41:00 479.7165 F:4 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 40:46 6.4E3 100 % 41:18 5.2E3 80 40:31 39:52 41:40 40:19 40:40 3.9E3 60 39:26 40:54 41:13 39:15 39:57 2.6E3 40 1.3E3 20 0.0E0 0 41:00 42:00 Time 40:00 430.9728 F:4 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 40:44 2.8E7 100 % 2.3E7 80 41:49 41:27 39:38 40:02 39:17 1.7E7 60 1.1E7 40 5.7E6 20 0.0E0 0 41:00 42:00 Time 40:00

8232 #1-270 Acq: 6-JUL-2012 07:18:59 Probe EI+ Magnet SIR VG BioTech Mass spect£ #1 Exp: 00313-02 LCS File: Sample#1 Exp: 423.7766 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,472.0,0.40%,F,T) 1.4E6 100 % 1.1E6 80 8.4E5 60 5.6E5 40 2.8E5 20 0.0E0 0 42:00 Time 40:00 41:00 425.7737 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,312.0,0.40%,F,T) 1.4E6 A1.464E4 100 % 80 1.1E6 8.1E5 60 5.4E5 40 2.7E5 20 0.0E0 42:00 Time 40:00 41:00 435.8169 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,764.0,0.40%,F,T) 41:03 A2.797E4 2.6E6 100 % 2.1E6 80 1.6E6 60 1.0E6 40 5.2E5 20 0.0E0 0 42:00 Time 40:00 437.8140 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,156.0,0.40%,F,T) 41:03 A2.600E4 2.4E6 100 % 1.9E6 80 1.4E6 60 9.7E5 40 4.8E5 20 0.0E0 42:00 Time 41:00 430.9728 F:4 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 40:44 2.8E7 100 % 2.3E7 80 41:49 41:27 40:02 39:38 39:17 1.7E7 60 1.1E7 40 5.7E6 20 0.0E0 0 41:00 42:00 Time 40:00

8232 #1-732 Acq: 6-JUL-2012 07:18:59 Probe EI+ Magnet SIR VG BioTech Mass spect£ 00313-02 LCS Sample#1 Exp: 457.7377 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,240.0,0.40%,F,T) 45:03 A2.210E4 1.1E6 100 % .8.7E5 80 6.5E5 60 4.4E5 40 2.2E5 20 0.0E0 0 47:00 49:00 50:00 Time 43:00 44:00 45:00 46:00 48:00 459.7348 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,244.0,0.40%,F,T) 45:03 1.2E6 100 % A2.460E4 9.7E5 80 .7.2E5 60 4.8E5 40 2.4E5 20 0.0E0 0 49:00 48:00 50:00 Time 46:00 47:00 43:00 44:00 45:00 469.7779 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,476.0,0.40%,F,T) 45:02 A3.751E4 1.8E6 100 % 1.5E6 80 1.1E6 60 7.4E5 40 3.7E5 20 0.0E0 47:00 48:00 49:00 50:00 Time 43:00 44:00 45:00 46:00 471.7750 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,372.0,0.40%,F,T) 45:02 A4.159E4 2.1E6 100 % 1.7E6 80 1.3E6 60 8.4E5 40 4.2E5 20 0.0E0 0 49:00 48:00 50:00 Time 44:00 46:00 47:00 43:00 442,9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 43:24 .2.1E7 100 % 46:39 42:58 45:59 1.7E7 80 49:39 44:34 47:54 43:45 49:04 42:33~ 47:16 1.3E7 60 .8.5E6 40 4.2E6 20 0.0E0 0 47:00 48:00 49:00 50:00 Time 43:00 44:00 45:00 46:00

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Duplicate Lab Control Sample Units: pg/L

Lab Code: 00313-03 Basis: NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method:D/F DLM02.2Date Analyzed:7/6/12 0809Prep Method:MethodDate Extracted:6/6/12

Sample Amount: 1000mL Instrument Name: E-HRMS-04
GC Column: DB-5

 Data File Name:
 8233
 Blank File Name:
 8236

 ICAL Date:
 05/03/12
 Cal Ver. File Name:
 8231

MDI				
MRL	Ratio	RRT	Factor	
10.0	0.81	1.001	1	
50.0	1.57	1.000	1	
50.0	1.26	1.000	1	
50.0	1.28	1.000	1	
50.0	1.24	1.009	1	
50.0	1.06	1.000	1	
100	0.92	1.001	1	
10.0	0.78	1.001	1	
50.0	1.56	1.000	1	
50.0	1.56	1.000	1	
50.0	1.25	1.000	1	
50.0	1.26	1.000	1	
50.0	1.22	1.000	1	
50.0	1.26	1.000	1	
50.0	1.03	1.000	1	
50.0	1.04	1.000	1	
100	0.91	1.001	1	
10.0	0.81		1	
50.0	1.60		1	
50.0	1.26		1	
50.0	1.02		1	
10.0	0.84		1	
50.0	1.51		1	
50.0	1.14		1	
50.0	1.03		1	
	10.0 50.0 50.0 50.0 50.0 50.0 100 10.0 5	10.0 0.81 50.0 1.57 50.0 1.26 50.0 1.28 50.0 1.24 50.0 1.06 100 0.92 10.0 0.78 50.0 1.56 50.0 1.56 50.0 1.25 50.0 1.26 50.0 1.26 50.0 1.03 50.0 1.04 100 0.91 10.0 0.81 50.0 1.26 50.0 1.26 50.0 1.26 50.0 1.26 50.0 1.26 50.0 1.26 50.0 1.26 50.0 1.51 50.0 1.51 50.0 1.14	10.0 0.81 1.001 50.0 1.57 1.000 50.0 1.26 1.000 50.0 1.28 1.000 50.0 1.24 1.009 50.0 1.06 1.000 100 0.92 1.001 10.0 0.78 1.001 50.0 1.56 1.000 50.0 1.56 1.000 50.0 1.25 1.000 50.0 1.26 1.000 50.0 1.26 1.000 50.0 1.03 1.000 50.0 1.04 1.000 50.0 1.04 1.000 10.0 0.81 50.0 1.60 50.0 1.26 50.0 1.02 10.0 0.84 50.0 1.51 50.0 1.14 1.00	10.0 0.81 1.001 1 50.0 1.57 1.000 1 50.0 1.26 1.000 1 50.0 1.28 1.000 1 50.0 1.24 1.009 1 50.0 1.06 1.000 1 100 0.92 1.001 1 10.0 0.78 1.001 1 50.0 1.56 1.000 1 50.0 1.56 1.000 1 50.0 1.25 1.000 1 50.0 1.26 1.000 1 50.0 1.26 1.000 1 50.0 1.03 1.000 1 50.0 1.04 1.000 1 100 0.91 1.001 1 10.0 0.81 1 1 50.0 1.26 1 1 50.0 1.26 1 1 50.0 1.26 1 1 50.0 1.26 1 1

00584

Service Request:

Client: US Environmental Protection Agency

Dioxins/Furans **Project:** Date Collected: NA **Sample Matrix:** Water Date Received: NA

Sample Name: Duplicate Lab Control Sample Units: Percent

Lab Code: 00313-03 Basis: NA

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

D/F DLM02.2 **Date Analyzed:** 7/6/12 0809 **Analytical Method:**

Method **Date Extracted:** 6/6/12 **Prep Method:** 1000mL **Instrument Name:** E-HRMS-04 **Sample Amount:** GC Column: DB-5

Data File Name: 8233 Blank File Name: 8236 **ICAL Date:** 05/03/12 Cal Ver. File Name: 8231

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1199.543	60	25-164	0.78	1.008
13C-1,2,3,7,8-PeCDD	2000	1251.662	63	21-227	1.60	1.178
13C-1,2,3,4,7,8-HxCDD	2000	1277.270	64	21-193	1.26	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1183.981	59	25-163	1.26	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1416.160	71	26-166	1.07	1.083
13C-OCDD	4000	2772.208	69	13-199	0.89	1.186
13C-2,3,7,8-TCDF	2000	1262.324	63	22-152	0.79	0.977
13C-1,2,3,7,8-PeCDF	2000	1582.411	79	21-192	1.58	1.137
13C-2,3,4,7,8-PeCDF	2000	1335.989	67	13-328	1.60	1.164
13C-1,2,3,4,7,8-HxCDF	2000	1330.242	67	19-202	0.52	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1362.986	68	21-159	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1211.558	61	17-205	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1330.399	67	22-176	0.52	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1297.521	65	21-158	0.44	1.052
13C-1,2,3,4,7,8,9-HpCDF	2000	1340.888	67	20-186	0.44	1.094
37Cl-2,3,7,8-TCDD	800	547.605	68	31-191	NA	1.009

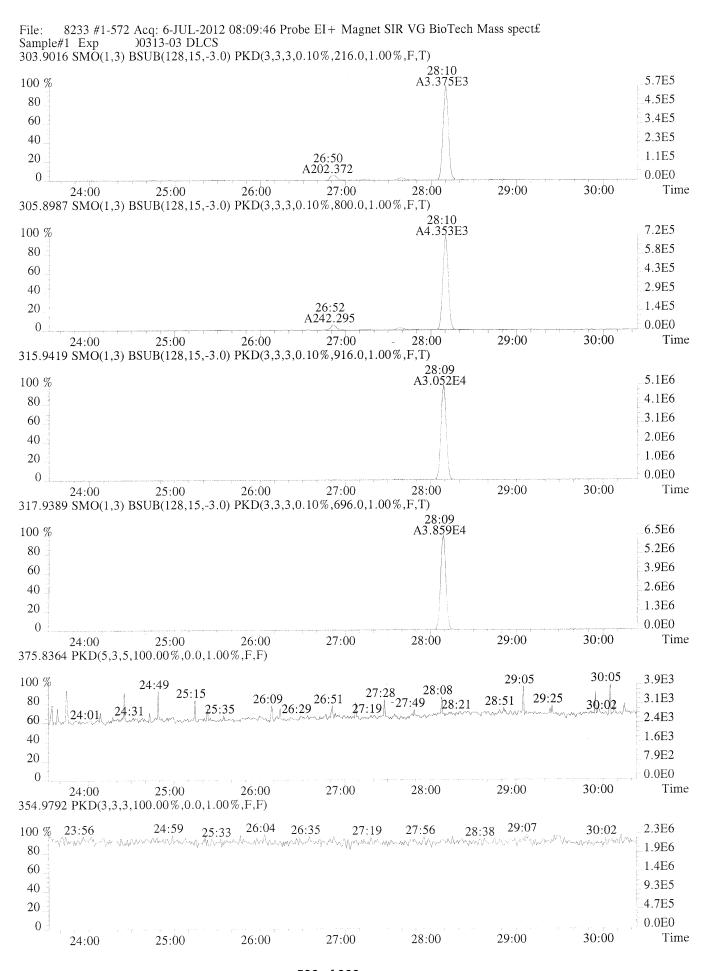
Sample Response Summary CLIENT ID.

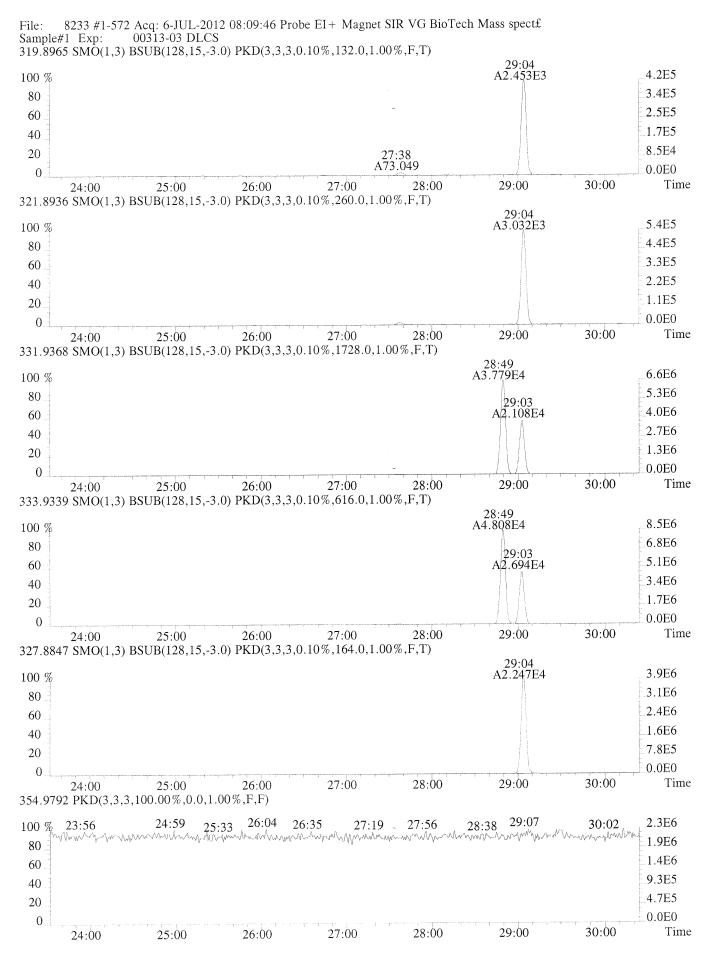
Run #9 Filename 8233 #1 Samp: 1 Inj: 1 Acquired: 6-JUL-12 08:09:46 Processed: 14-JUL-12 09:22:59 LAB. ID: 00313-03

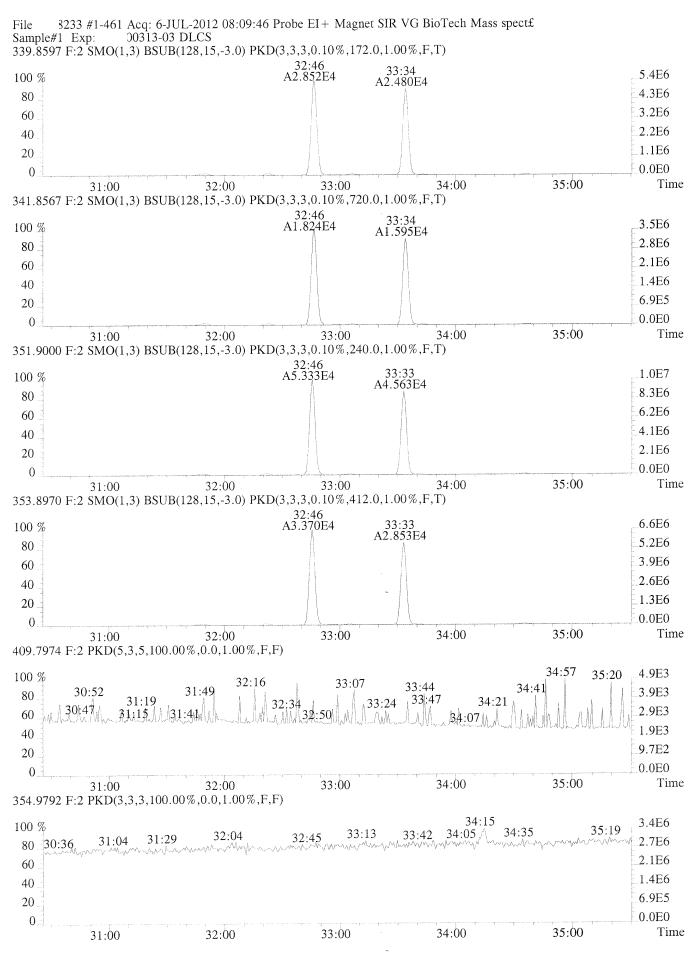
	Тур	Name	RT-1	Resp 1	Resp 2	Ratio	Meet Mod?	RRT
1	Unk	2,3,7,8-TCDF	28:10	3.375e+03	4.353e+03	0.78	yes no	
2	Unk	1,2,3,7,8-PeCDF	32:46	2.852e+04	1.824e+04	1.56	yes no	
3	Unk	2,3,4,7,8-PeCDF		2.480e+04	1.595e+04	1.56	yes no	
4	Unk	1,2,3,4,7,8-HxCDF	36:41	2.606e+04	2.084e+04	1.25	yes no	
5	Unk	1,2,3,6,7,8-HxCDF	36:47	2.794e+04	2.213e+04	1.26	yes no	
6	Unk	2,3,4,6,7,8-HxCDF	37:22	2.284e+04	1.816e+04	1.26	yes no	
7	Unk	1,2,3,7,8,9-HxCDF		1.882e+04	1.541e+04	1.22	yes no	
8	Unk	1,2,3,4,6,7,8-HpCDF	39:54	2.355e+04	2.284e+04	1.03	yes no	
9	Unk	1,2,3,4,7,8,9-HpCDF		1.578e+04	1.514e+04	1.04	yes no	
10	Unk	OCDF	45:03	2.265e+04	2.485e+04	0.91	yes no	1.001
							1	
11	Unk	2,3,7,8-TCDD		2.453e+03	3.032e+03	0.81	yes no	
12	Unk	1,2,3,7,8-PeCDD		1.594e+04	1.014e+04	1.57	yes no	
13	Unk	1,2,3,4,7,8-HxCDD		1.624e+04	1.285e+04	1.26	yes no	
14	Unk	1,2,3,6,7,8-HxCDD		1.688e+04	1.322e+04	1.28	yes no	
15	Unk	1,2,3,7,8,9-HxCDD		1.736e+04	1.396e+04	1.24	yes no	
16	Unk	1,2,3,4,6,7,8-HpCDD		1.546e+04	1.460e+04	1.06	yes no	
17	Unk.	OCDD	45:01	2.195e+04	2.376e+04	0.92	yes no	1.001
			100 00	1 2 252 24	2 05004	0.79	roal no	0.977
18	IS	13C-2,3,7,8-TCDF		3.052e+04	3.859e+04		yes no	
19	IS	13C-1,2,3,7,8-PeCDF		5.333e+04	3.370e+04	1.58	2 1	
20	IS	13C-2,3,4,7,8-PeCDF		4.563e+04	2.853e+04	1.60	yes no	
21	IS	13C-1,2,3,4,7,8-HxCDF		2.344e+04	- 4.531e+04 5.372e+04	0.52	4 " !	
22	IS	13C-1,2,3,6,7,8-HxCDF		2.787e+04	4.617e+04	0.52	yes no	
23	IS	13C-2,3,4,6,7,8-HxCDF		2.409e+04	3.581e+04	0.52	yes no	
24	IS	13C-1,2,3,7,8,9-HxCDF		1.914e+04	3.827e+04	0.53	yes no	
25		3C-1,2,3,4,6,7,8-HpCDF		1.699e+04	3.827e+04 3.245e+04	0.44	yes no	
26	151	3C-1,2,3,4,7,8,9-HpCDF	41:28	1.433e+04	3.2450+04	0.44	yes no	1.004
27	T C	13C-2,3,7,8-TCDD	120.03	2.108e+04	2.694e+04	0.78	yes no	1.008
27	IS IS	13C-1,2,3,7,8-PeCDD		3.061e+04	1.916e+04	1.60	yes no	
28 29	IS	13C-1,2,3,7,8-PeCDD		3.001e+04	2.387e+04	1.26	yes no	
30	IS	13C-1,2,3,4,7,8-HXCDD		2.984e+04	2.369e+04	1.26	yes no	
31		3C-1,2,3,4,6,7,8-HACDD		2.904e+04	2.710e+04	1.07	yes no	
31 32	ISI	13C-OCDD		3.694e+04	4.153e+04	0.89	yes no	
34	12	13C-0CDD	124.00	J.0746+04	1.1000104	1 0.05	100 110	
מגצ	S/RT	13C-1,2,3,4-TCDD	28:49	3.779e+04	4.808e+04	0.79	yes no	*
	S/RT	13C-1,2,3,4-1CDD		4.995e+04	3.938e+04	1.27	yes no	
	C/Up	37Cl-2,3,7,8-TCDD		2.247e+04		[no	
ر ر	C/ UP	5,01 2,5,1,0 1000	1 0 1	1 - 1 - 1 - 1 - 1 - 1			1	

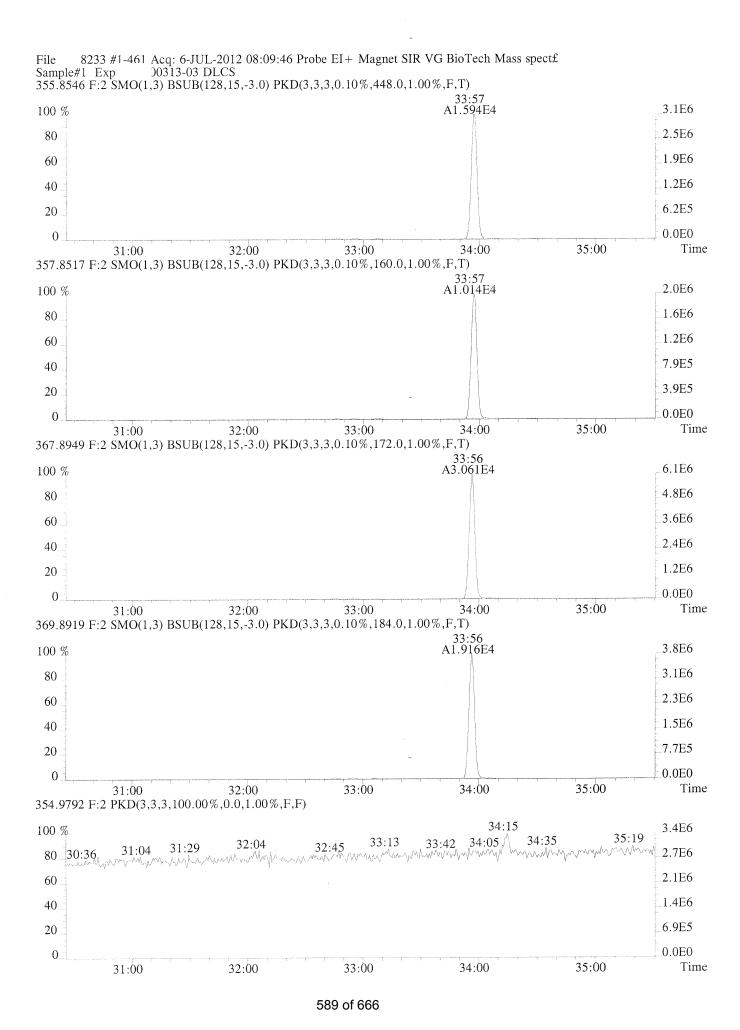
Acquired: 6-JUL-12 08:09:46 Run #9 Filename 8233 Samp: 1 Inj: 1 LAB. ID: 00313-03 Processed: 14-JUL-12 09:22:591 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 5.67e+05 | 2.16e+02 | 2.6e+03 | 7.23e+05 | 8.00e+02 | 9.0e+02 1 2,3,7,8-TCDF 1.72e+02| 3.1e+04| 7.20e+02 | 4.8e+03 2 1,2,3,7,8-PeCDF 5.40e+06 3.45e+06 2,3,4,7,8-PeCDF 3 4.93e+06 1.72e+02 2.9e+04 3.15e+06 7.20e+02 4.4e + 031.17e+03 | 4.0e+03 | 4.64e+06 3.71e+06 4.12e+02 9.0e + 034 1,2,3,4,7,8-HxCDF 4.12e+02 9.5e + 034.94e+06 | 1.17e+03 | 4.2e+03 | 3.91e+06 | 5 1,2,3,6,7,8-HxCDF 3.82e+06 | 1.17e+03 | 3.3e+03 | 3.05e+06 | 4.12e+02 7.4e + 036 2,3,4,6,7,8-HxCDF 2.89e+06 | 1.17e+03 | 2.5e+03 | 2.35e+06 | 4.12e+02 | 5.7e+03 7 1,2,3,7,8,9-HxCDF 1.9e+03 2.74e+06 | 7.52e+02 | 3.6e+03 | 2.67e+06 | 1.38e+03 8 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1.47e+06 | 7.52e+02 | 1.9e+03 | 1.42e+06 | 1.38e+03 1.0e + 039 1.22e+06 | 2.00e+02 | 6.1e+03 | 1.35e+06 | 4.16e+02 | 3.2e+03 OCDF 4.23e+05 | 1.32e+02 | 3.2e+03 | 5.44e+05 | 2.60e+02 | 2.1e+03 11 2,3,7,8-TCDD 3.08e+06 | 4.48e+02 | 6.9e+03 | 1.96e+06 | 1.60e+02 | 1.2e+04 12 1,2,3,7,8-PeCDD 2.68e+02 | 1.0e+04 3.32e+02 6.5e+03 2.77e+06 2.14e+06 13 1,2,3,4,7,8-HxCDD 3.32e+02 | 6.0e+03 1,2,3,6,7,8-HxCDD 2.52e+06 2.68e+02 9.4e+03 1.98e+06 14 6.3e + 032.63e+06 2.68e+02 | 9.8e+03 | 2.10e+06 3.32e+02 15 1,2,3,7,8,9-HxCDD 1.16e+02 | 1.3e+04 | 1.37e+06 4.04e+02 3.4e + 031,2,3,4,6,7,8-HpCDD 1.46e+06 16 1.17e+06 | 2.68e+02 | 4.4e+03 | 1.26e+06 | 1.16e+02 | 1.1e+04 OCDD 17 9.4e+03 5.11e+06 | 9.16e+02 | 5.6e+03 | 6.52e+06 | 6.96e+02 13C-2,3,7,8-TCDF 18 2.40e+02 | 4.3e+04 | 6.55e+06 | 4.12e+02 | 1.6e + 0413C-1,2,3,7,8-PeCDF 1.04e+07 19 9.10e+06 | 2.40e+02 | 3.8e+04 | 5.65e+06 4.12e+02 1.4e + 0420 13C-2,3,4,7,8-PeCDF 7.94e+06 | 6.04e+02 | 1.3e+04 4.10e+06 | 3.24e+02 | 1.3e+04 | 21 13C-1,2,3,4,7,8-HxCDF 4.97e+06 | 3.24e+02 | 1.5e+04 | 9.60e+06 | 6.04e+02 | 1.6e+04 13C-1,2,3,6,7,8-HxCDF 22 4.03e+06 | 3.24e+02 | 1.2e+04 | 7.72e+06 | 6.04e+02 | 1.3e+04 13C-2,3,4,6,7,8-HxCDF 23 2.91e+06 | 3.24e+02 | 9.0e+03 | 5.43e+06 | 6.04e+02 | 9.0e+03 24 13C-1,2,3,7,8,9-HxCDF 4.46e+06 | 2.34e+03 | 1.9e + 0325 13C-1,2,3,4,6,7,8-HpCDF 2.00e+06 1.66e+03 | 1.2e+03 26 13C-1,2,3,4,7,8,9-HpCDF| 1.34e+06| 1.66e+03| 8.1e+02| 2.98e+06| 2.34e+03| 1.3e+03 13C-2,3,7,8-TCDD 3.75e+06 | 1.73e+03 | 2.2e+03 | 4.68e+06 6.16e+02 7.6e + 0327 6.06e+06 | 1.72e+02 | 3.5e+04 | 3.83e+06 | 1.84e+02 | 2.1e+04 13C-1,2,3,7,8-PeCDD 28 5.08e+06 | 8.60e+02 | 5.9e+03 | 4.00e+06 | 5.00e+02 | 8.0e + 0313C-1,2,3,4,7,8-HxCDD 29 4.50e+06 | 8.60e+02 5.2e+03 3.66e+06 5.00e+02 7.3e + 0313C-1,2,3,6,7,8-HxCDD 30 2.68e+06 | 2.28e+02 | 1.2e+04 | 2.54e+06 1.72e+02 1.5e + 0431 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD| 1.95e+06| 4.80e+02| 4.1e+03| 2.23e+06| 1.68e+02| 1.3e+04 32

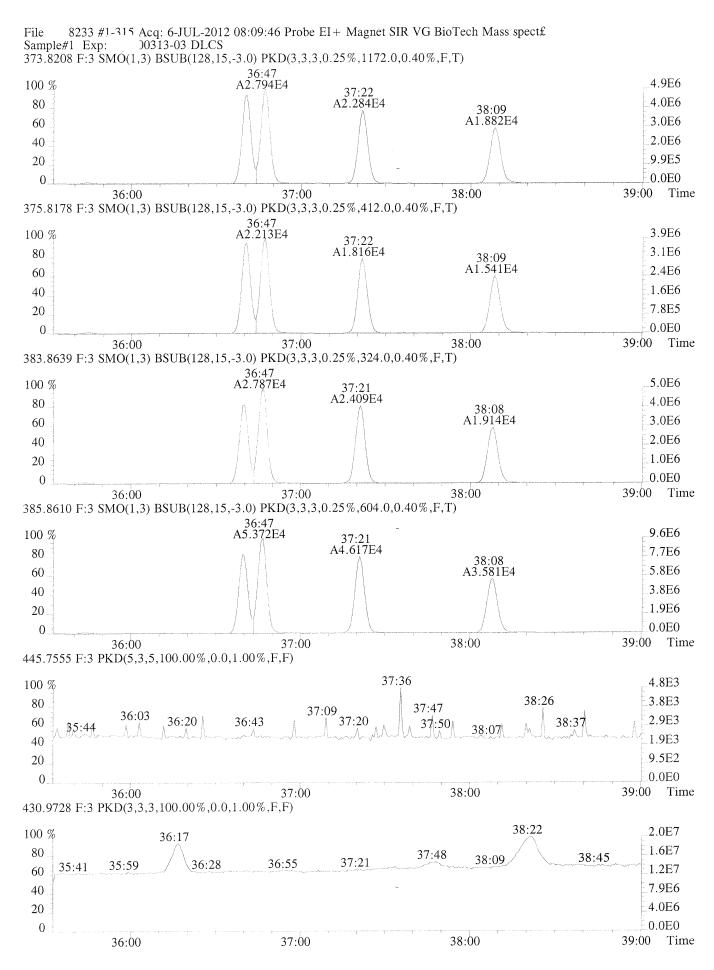
13C-1,2,3,4-TCDD| 6.63e+06| 1.73e+03| 3.8e+03| 8.48e+06| 6.16e+02| 1.4e+04

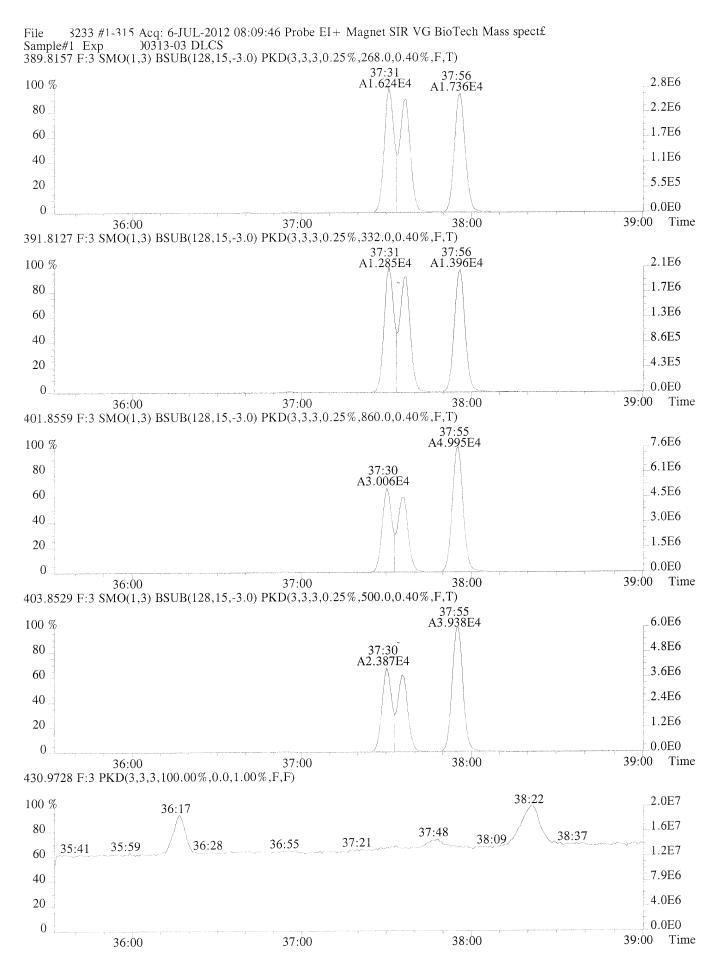

13C-1,2,3,7,8,9-HxCDD 7.55e+06 8.60e+02 8.8e+03 5.94e+06 5.00e+02 1.2e+04

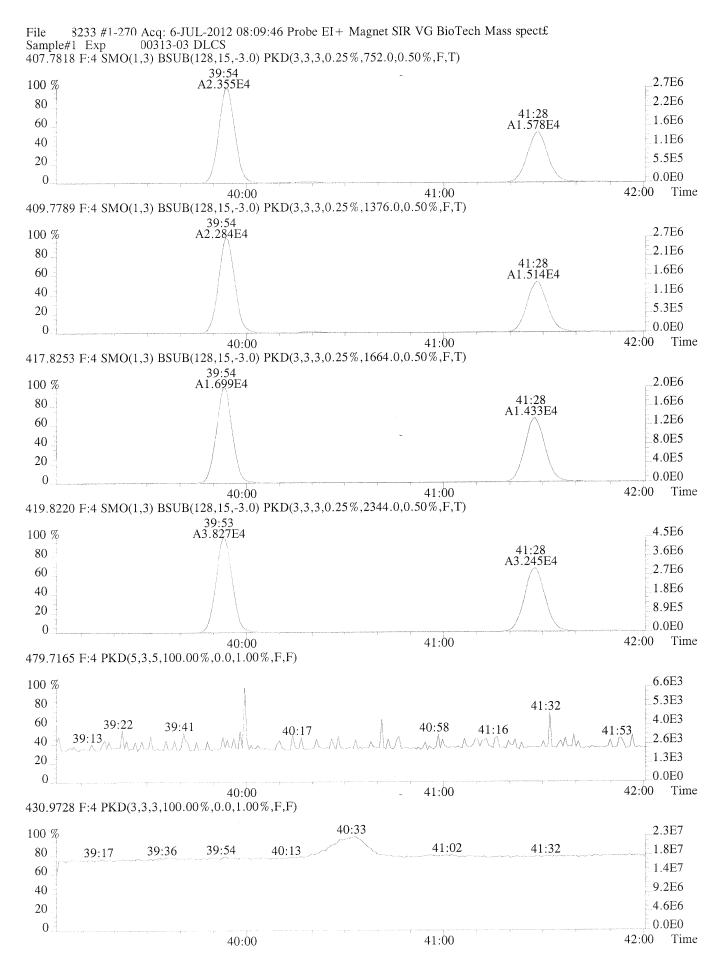

37Cl-2,3,7,8-TCDD | 3.92e+06 | 1.64e+02 | 2.4e+04

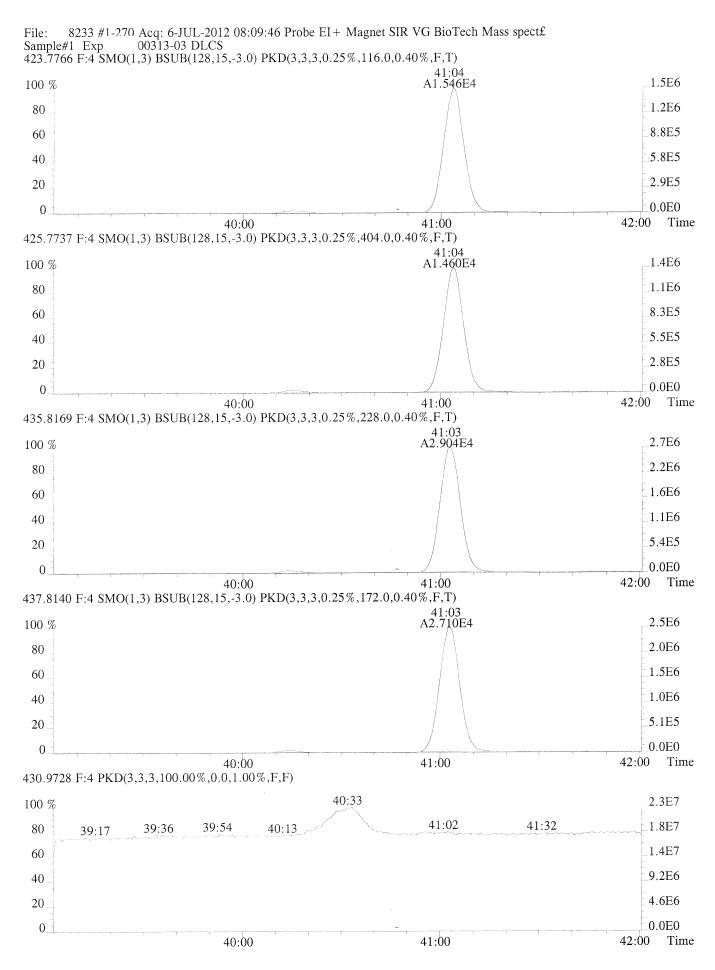

33

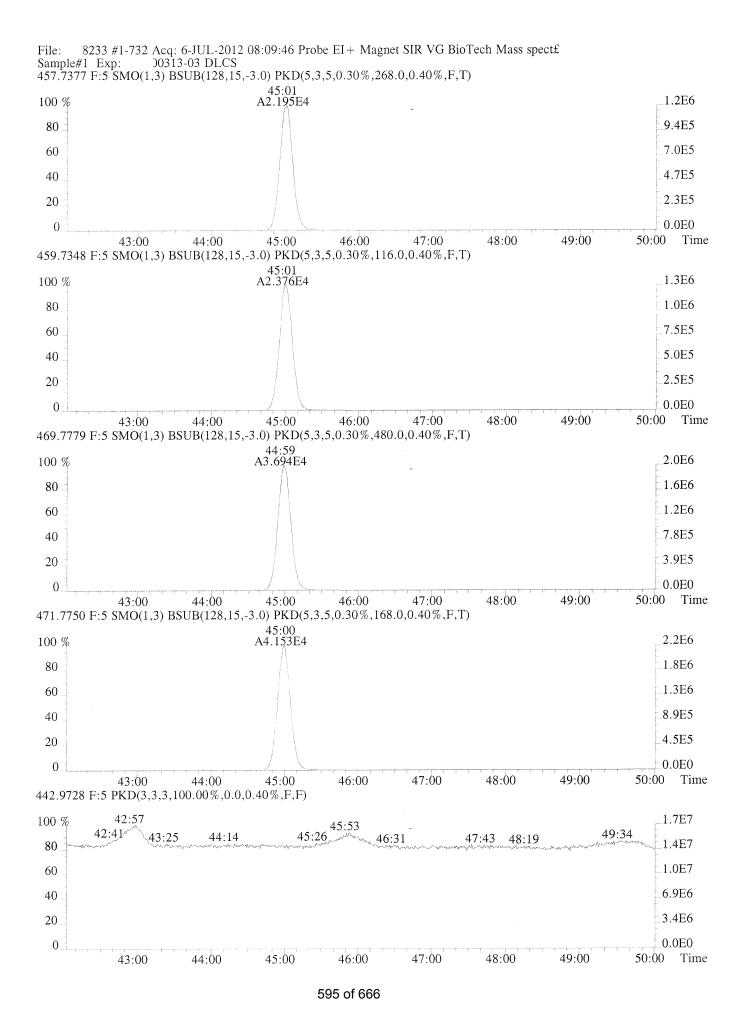

34


35









3233 #1-732 Acq: 6-JUL-2012 08:09:46 Probe EI+ Magnet SIR VG BioTech Mass spect£ Sample#1 Exp: 00313-03 DLCS 441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,200.0,0.40%,F,T) 45:03 A2.265E4 1.2E6 100 % 9.8E5 80 7.3E5 60 4.9E5 40 2.4E5 20 0.0E0 0 49:00 48:00 50:00 Time 44:00 45:00 46:00 47:00 43:00 $443.7399 \; F:5 \; SMO(1,3) \; BSUB(128,15,-3.0) \; PKD(5,3,5,0.30\%,416.0,0.40\%,F,T)$ 45:03 _1.4E6 A2.485E4 100 % 1.1E6 80 8.1E5 60 5.4E5 40 2.7E5 20 0.0E0 0 48:00 49:00 50:00 Time 47:00 43:00 44:00 45:00 46:00 513.6775 F:5 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 47:18 4.9E3 100 % 43:02 49:36 45:35 3.9E3 80 47:06 45:42 48:02 46:16 43:32 42:50 49:33 49:41 48:19 48:42 48:53 3.0E3 60 45:46 44:02 46:48 47:34 45:02 2.0E3 40 9.9E2 20 0.0E0 0 46:00 47:00 48:00 49:00 50:00 Time 43:00 44:00 45:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 1.7E7 42:57 100 % 45:53 45:37 42:41 49:34 43:25 44:14 47:31 48:09 1.4E7 80 1.0E7 60 .6.9E6 40 3.4E6 20 0.0E0 0 49:00 50:00 Time 47:00 48:00 43:00 44:00 45:00 46:00

Service Request:

00584

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:SedimentDate Received:NA

Sample Name:Lab Control SampleUnits:ng/KgLab Code:00341-02Basis:Dry

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

 Analytical Method:
 D/F DLM02.2
 Date Analyzed:
 6/19/12 1205

 Prep Method:
 Method
 Date Extracted:
 6/12/12

 Sample Amount:
 10.692g
 Instrument Name:
 E-HRMS-03

 Data File Name:
 8292
 Blank File Name:
 8291

 ICAL Date:
 04/23/12
 Cal Ver. File Name:
 8290

Ion Dilution **EDL** Ratio RRT **Factor Analyte Name** Result Q **MRL** 20.8 0.0383 0.935 0.80 1.001 1 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 104 0.0297 4.68 1.57 1.000 1 95.5 0.0252 4.68 1.25 1.000 1,2,3,4,7,8-HxCDD 1 1,2,3,6,7,8-HxCDD 101 0.0266 4.68 1.25 1.000 99.5 4.68 1.23 1.008 1 1,2,3,7,8,9-HxCDD 0.0246 1,2,3,4,6,7,8-HpCDD 95.1 0.0367 4.68 1.04 1.000 1 0.88OCDD 198 0.0647 9.35 1.000 1 0.0302 0.935 0.76 1.001 2,3,7,8-TCDF 19.7 1,2,3,7,8-PeCDF 98.3 0.0139 4.68 1.55 1.001 2,3,4,7,8-PeCDF 103 0.0150 4.68 1.51 1.000 1 1,2,3,4,7,8-HxCDF 0.0275 4.68 1.22 1.000 106 1,2,3,6,7,8-HxCDF 0.0254 4.68 1.20 1.000 100 0.0295 4.68 1,2,3,7,8,9-HxCDF 99.6 1.20 1.000 4.68 1.23 2,3,4,6,7,8-HxCDF 96.2 0.0268 1.000 1,2,3,4,6,7,8-HpCDF 101 0.0502 4.68 1.01 1.000 1,2,3,4,7,8,9-HpCDF 95.2 0.0534 4.68 1.01 1.000 **OCDF** 213 0.100 9.35 0.90 1.003 1 **Total Tetra-Dioxins** 20.8 0.0383 0.935 0.80 **Total Penta-Dioxins** 104 0.0297 4.68 1.57 **Total Hexa-Dioxins** 296 0.0252 4.68 1.25 Total Hepta-Dioxins 95.1 0.0367 4.68 1.04 Total Tetra-Furans 19.7 0.0302 0.935 0.76 **Total Penta-Furans** 203 0.0150 4.68 1.59 1 Total Hexa-Furans 402 0.0275 1.22 1 4.68 Total Hepta-Furans 196 0.0502 4.68 1.01

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Lab Control Sample Units: Percent

Sample Name:Lab Control SampleUnits: PercerLab Code:00341-02Basis: Dry

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method:D/F DLM02.2Date Analyzed:6/19/12 1205Prep Method:MethodDate Extracted:6/12/12

Sample Amount: 10.692g Instrument Name: E-HRMS-03

 Data File Name:
 8292
 Blank File Name:
 8291

 ICAL Date:
 04/23/12
 Cal Ver. File Name:
 8290

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1273.377	64		20-175	0.79	1.008
13C-1,2,3,7,8-PeCDD	2000	1513.609	76		21-227	1.57	1.171
13C-1,2,3,4,7,8-HxCDD	2000	1333.313	67		21-193	1.28	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1284.878	64		25-163	1.26	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1349.877	67		26-166	1.07	1.068
13C-OCDD	4000	2593.526	65		13-199	0.90	1.149
13C-2,3,7,8-TCDF	2000	1160.830	58		22-152	0.78	0.978
13C-1,2,3,7,8-PeCDF	2000	1508.773	75		21-192	1.56	1.132
13C-2,3,4,7,8-PeCDF	2000	1373.986	69		13-328	1.57	1.158
13C-1,2,3,4,7,8-HxCDF	2000	1230.872	62		19-202	0.53	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1317.408	66		21-159	0.53	0.974
13C-1,2,3,7,8,9-HxCDF	2000	1354.164	68		17-205	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1321.113	66		22-176	0.52	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	1232.841	62		21-158	0.45	1.045
13C-1,2,3,4,7,8,9-HpCDF	2000	1488.761	74		20-186	0.44	1.079
37Cl-2,3,7,8-TCDD	800	579.344	72		31-191	NA	1.009

LCS

Run #9 Processed	Filename : 20-JUN-12	8292 11:09:10	Samp:	1 Inj: 1 Sample ID:	Acquired: 00341-02	19-JUN-12 1	2:05:4	7
Тур		Name	RT-1	Resp 1	Resp 2	Ratio Meet	Mod?	RRF
1 Unk	2,	3,7,8-TCDF	28:19	3.855e+03	5.040e+03	0.76 yes	no	0.929
2 Unk		,7,8-PeCDF		3.233e+04	2.082e+04	1.55 yes	no	1.002
3 Unk		,7,8-PeCDF		2.854e+04	1.885e+04	1.51 yes	no	0.963
4 Unk		,7,8-HxCDF		2.886e+04	2.360e+04	1.22 yes	no	1.221
5 Unk		7,8-HxCDF		3.041e+04	2.529e+04	1.20 yes	no	1.139
6 Unk		7,8-HxCDF		2.722e+04	2.220e+04	1.23 yes	no	1.139
7 Unk		,8,9-HxCDF		2.605e+04	2.177e+04	1.20 yes	no	1.165
8 Unk		7,8-HpCDF		2.274e+04	2.241e+04	1.01 yes	no	1.394
9 Unk		,8,9-HpCDF		2.092e+04	2.070e+04	1.01 yes	no	1.334
10 Unk			43:10	2.968e+04	3.288e+04	0.90 yes	no	1.227
11 Unk		3,7,8-TCDD		3.763e+03	4.703e+03	0.80 yes	no	0.980
12 Unk		,7,8-PeCDD		2.347e+04	1.499e+04	1.57 yes	no	0.915
13 Unk		,7,8-HxCDD		2.042e+04	1.640e+04	1.25 yes	no	1.001
14 Unk		,7,8-HxCDD		2.055e+04	1.649e+04	1.25 yes	no	0.978
15 Unk		,8,9-HxCDD		2.170e+04	1.761e+04	1.23 yes	no	1.041
16 Unk	1,2,3,4,6	,7,8-HpCDD		1.668e+04	1.601e+04	1.04 yes	no	1.002
17 Unk		OCDD	43:02	2.339e+04	2.652e+04	0.88 yes	no	1.054
18 IS	13C-2,	3,7,8-TCDF	28:17	3.984e+04	5.088e+04	0.78 yes	no	1.282
19 IS		,7,8-PeCDF		6.150e+04	3.946e+04	1.56 yes	no	1.098
20 IS		,7,8-PeCDF		5.447e+04	3.473e+04	1.57 yes	no	1.065
21 IS	13C-1,2,3,4			2.620e+04	4.980e+04	0.53 yes	no	1.062
22 IS	13C-1,2,3,6			3.147e+04	5.977e+04	0.53 yes	no	1.191
23 IS	13C-2,3,4,6			2.904e+04	5.534e+04	0.52 yes	no	1.098
24 IS	13C-1,2,3,7			2.646e+04	5.069e+04	0.52 yes	no	0.980
25 IS 1	3C-1,2,3,4,6	,7,8-HpCDF	39:06	1.861e+04	4.144e+04	0.45 yes	no	0.837
	3C-1,2,3,4,7			1.883e+04	4.247e+04	0.44 yes	no	0.708
27 IS	13C-2,	3,7,8-TCDD	29:10	3.423e+04	4.349e+04	0.79 yes	no	1.002
28 IS	13C-1,2,3	,7,8-PeCDD	33:52	4.620e+04	2.934e+04	1.57 yes	no	0.819
29 IS	13C-1,2,3,4	,7,8-HxCDD	37:04	4.041e+04	3.163e+04	1.28 yes	no	0.929
30 IS	13C-1,2,3,6			3.899e+04	3.101e+04	1.26 yes	no	0.937
31 IS 1	3C-1,2,3,4,6			3.311e+04	3.103e+04	1.07 yes	no	0.817
32 IS	· · ·	13C-OCDD		4.248e+04	4.722e+04	0.90 yes	no	0.595
33 RS/RT	13C-1.	2,3,4-TCDD	28:56	5.378e+04	6.811e+04	0.79 yes	no	-
34 RS/RT	13C-1,2,3,7			6.470e+04	5.162e+04	1.25 yes	no	-
35 C/Up		3,7,8-TCDD		3.670e+04	I	, , , ,	no	1.039
- · · · · <u>-</u>	,		1	1				•

Acquired: 19-JUN-12 12:05:47 Run #9 Filename Samp: 1 Inj: 1 8292 LAB. ID: 00341-02 Processed: 20-JUN-12 11:09:101 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 2.1e + 034.68e+02 | 1.4e+03 | 8.05e+05 3.92e+02 2,3,7,8-TCDF 6.33e+05 1 9.9e + 033.87e+06 3.92e+02 2 6.06e+06 1.56e+02 | 3.9e+04 | 1,2,3,7,8-PeCDF 9.6e + 031.56e+02 | 3.6e+04 | 3.92e+02 3 2,3,4,7,8-PeCDF 5.69e + 063.76e+06 1,2,3,4,7,8-HxCDF 6.13e+06 5.56e+02 1.1e+04 4.99e+06 5.92e+02 8.4e + 034 6.19e+06 5.56e + 021.1e+04 5.11e+06 5.92e + 028.6e + 035 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 5.61e+06 5.56e + 021.0e+04 4.63e+06 5.92e+02 7.8e + 03б 5.33e+06 5.56e+02 9.6e+03 4.40e+06 5.92e+02 7.4e + 037 1,2,3,7,8,9-HxCDF 7.32e+02 5.7e+03 4.08e+06 | 9.24e+02 | 4.4e + 031,2,3,4,6,7,8-HpCDF 4.14e+06 8 3.64e+06 | 9.24e+02 | 3.9e + 033.73e + 067.32e+02 5.1e+03 9 1,2,3,4,7,8,9-HpCDF 3.67e+06 | 5.80e+02 | 6.3e + 033.33e+06 5.80e+02 | 5.7e+03 OCDF 10 1.8e + 032,3,7,8-TCDD | 6.27e+05 | 6.28e+02 | 7.78e+05 4.32e+02 1.0e+03 11 3.01e+06 3.48e+02 8.6e + 034.67e+06 5.20e+02 9.0e+03 1,2,3,7,8-PeCDD 12 8.1e + 033.56e+06 4.40e+02 4.12e+02 | 1.1e+04 | 13 1,2,3,4,7,8-HxCDD 4.49e + 068.2e + 034.40e+02 4.49e+06 4.12e + 021.1e+04 3.62e+06 14 1,2,3,6,7,8-HxCDD 4.40e+02 8.2e + 034.49e+06 4.12e+02 1.1e+04 3.63e + 0615 1,2,3,7,8,9-HxCDD 4.72e+02 6.1e + 034.32e+026.9e+03 2.86e+06 16 1,2,3,4,6,7,8-HpCDD 2.98e+06 2.60e+06 | 4.20e+02 | 6.2e+03 2.28e+06 | 2.24e+02 | 1.0e+04 | 17 OCDD 1.16e+03 | 6.9e+03 8.06e+06 13C-2,3,7,8-TCDF 6.27e+06 6.92e+02 9.1e+03 18 2.2e + 042.24e+02 5.0e+04 3.24e+02 13C-1,2,3,7,8-PeCDF 1.12e+07 7.14e+06 19 2.24e+02 6.87e+06 3.24e+02 2.1e + 041.08e+07 4.8e+04 13C-2,3,4,7,8-PeCDF 20 1.2e + 041.0e+04 1.04e+07 8.40e + 0213C-1,2,3,4,7,8-HxCDF 5.50e+06 5.44e+02 21 5.44e+02 1.2e+04 1.21e+07 8.40e+02 1.4e + 0413C-1,2,3,6,7,8-HxCDF 6.41e+06 22 1.1e+04 1.16e+07 8.40e+02 1.4e + 045.44e+02 13C-2,3,4,6,7,8-HxCDF 5.99e+06 23 8.40e+02 | 1.2e+04 9.8e+03 1.02e+07 24 13C-1,2,3,7,8,9-HxCDF 5.34e + 065.44e + 022.4e+03 7.66e+06 1.95e+03 | 3.9e+03 25 13C-1,2,3,4,6,7,8-HpCDF 3.40e+06 1.44e + 037.46e+06 | 1.95e+03 | 3.8e+03 3.36e+06 | 1.44e+03 | 2.3e+03 | 26 13C-1,2,3,4,7,8,9-HpCDF 1.46e+03 | 4.0e+03 | 7.36e+06 6.16e+02 | 1.2e+04 13C-2,3,7,8-TCDD 5.80e+06 27 5.78e+06 3.24e+02 | 1.8e+04 6.48e+02 | 1.4e+04 | 9.11e+06 28 13C-1,2,3,7,8-PeCDD 4.40e+02 1.6e + 046.91e+06 13C-1,2,3,4,7,8-HxCDD 8.86e+06 6.40e + 021.4e+04 29

6.40e + 02

5.88e+02

6.40e+02

6.19e+06 | 6.48e+02 | 9.6e+03

8.46e+06

5.91e+06

9.12e+06

1.32e+07

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,7,8,9-HxCDD | 37Cl-2,3,7,8-TCDD |

13C-1,2,3,4-TCDD

31 13C-1,2,3,4,6,7,8-HpCDD

32

33

34

35

1.3e+04

1.0e+04

13C-OCDD | 4.19e+06 | 4.56e+02 | 9.2e+03 | 4.62e+06 | 4.88e+02 | 9.5e+03

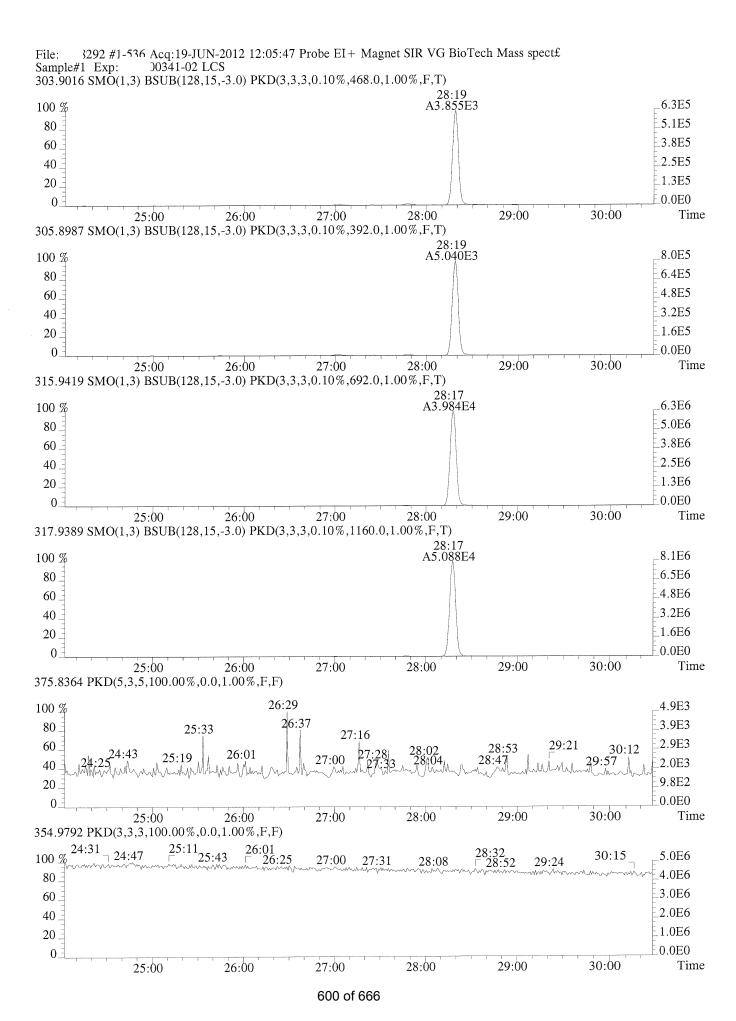
1.46e+03 6.2e+03

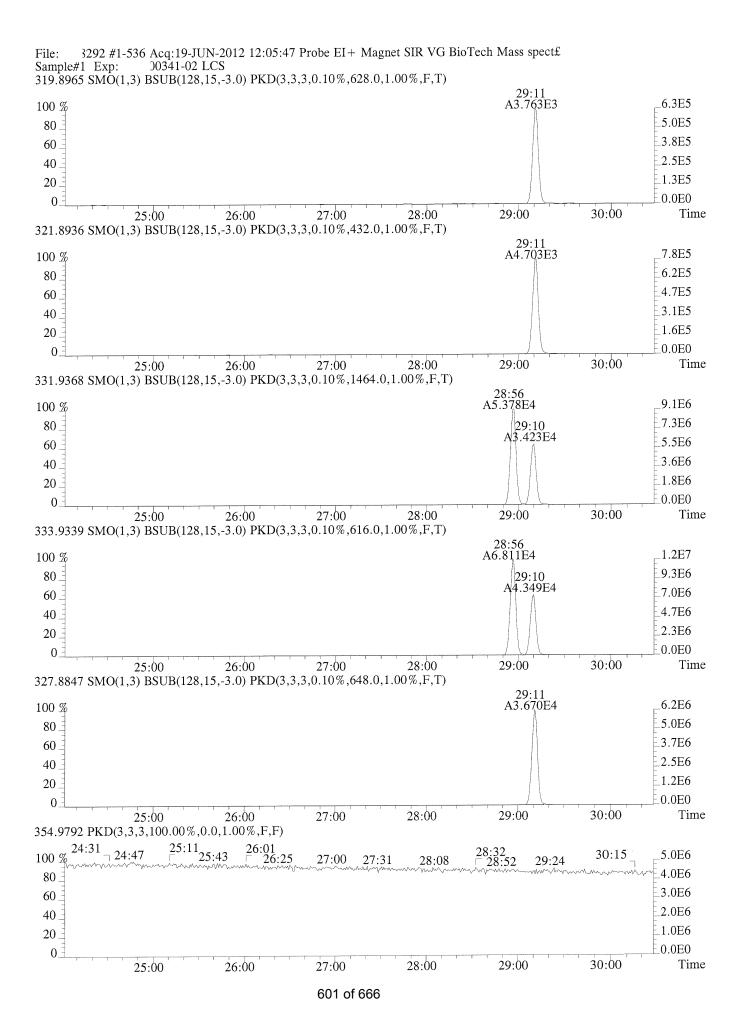
6.80e+06

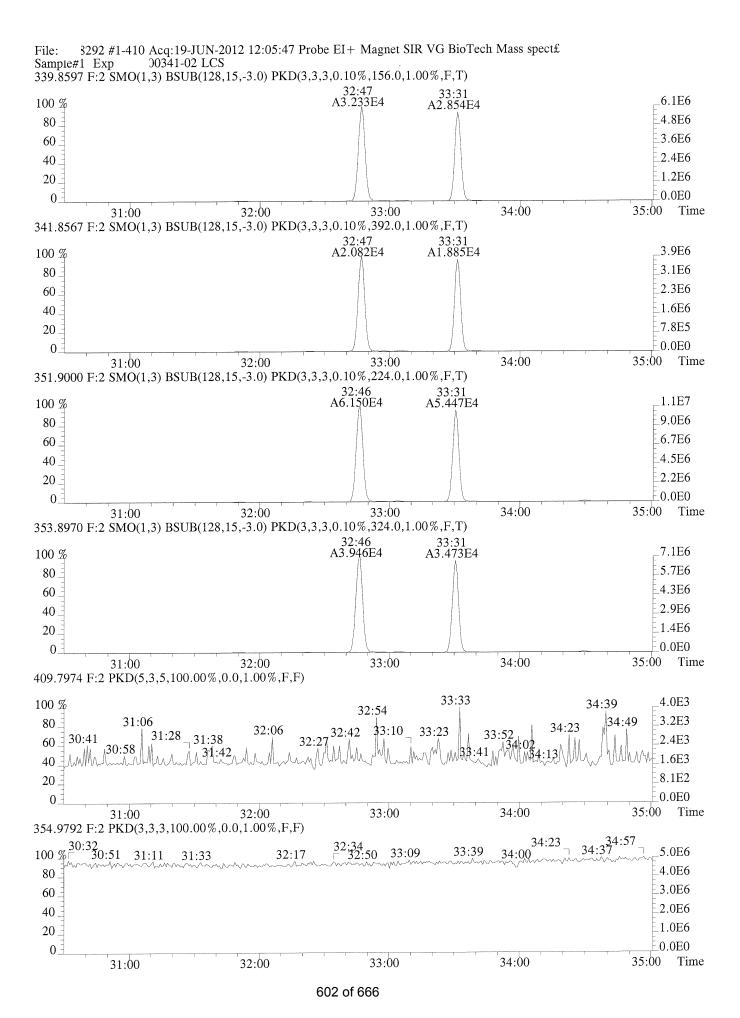
5.56e+06

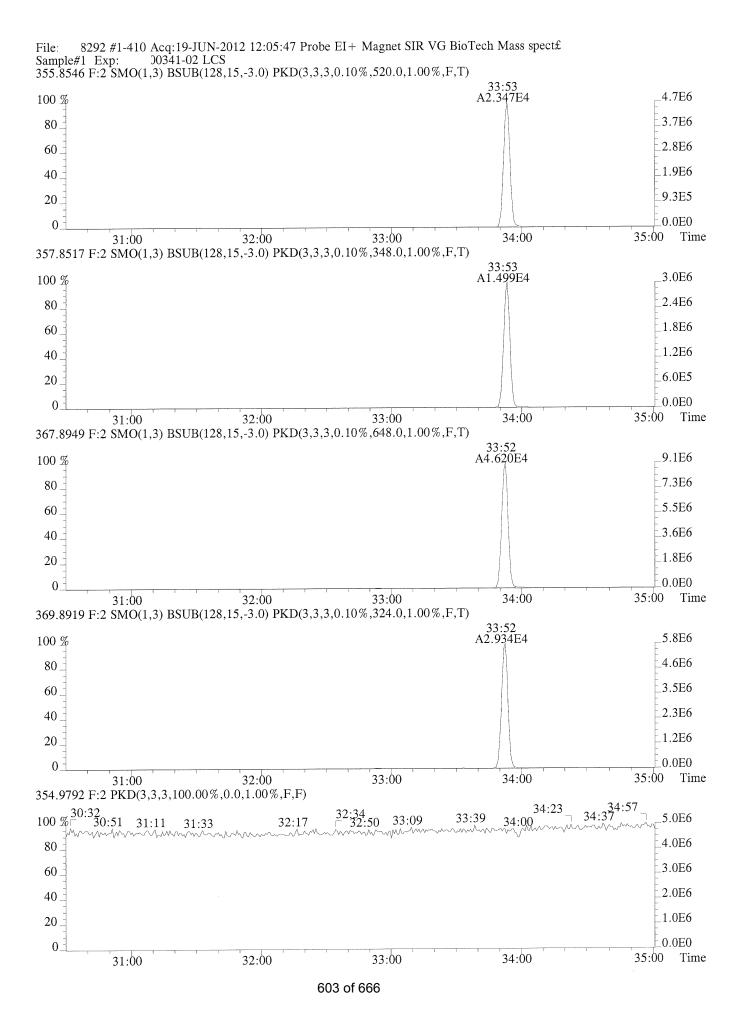
4.40e+02

5.76e+02

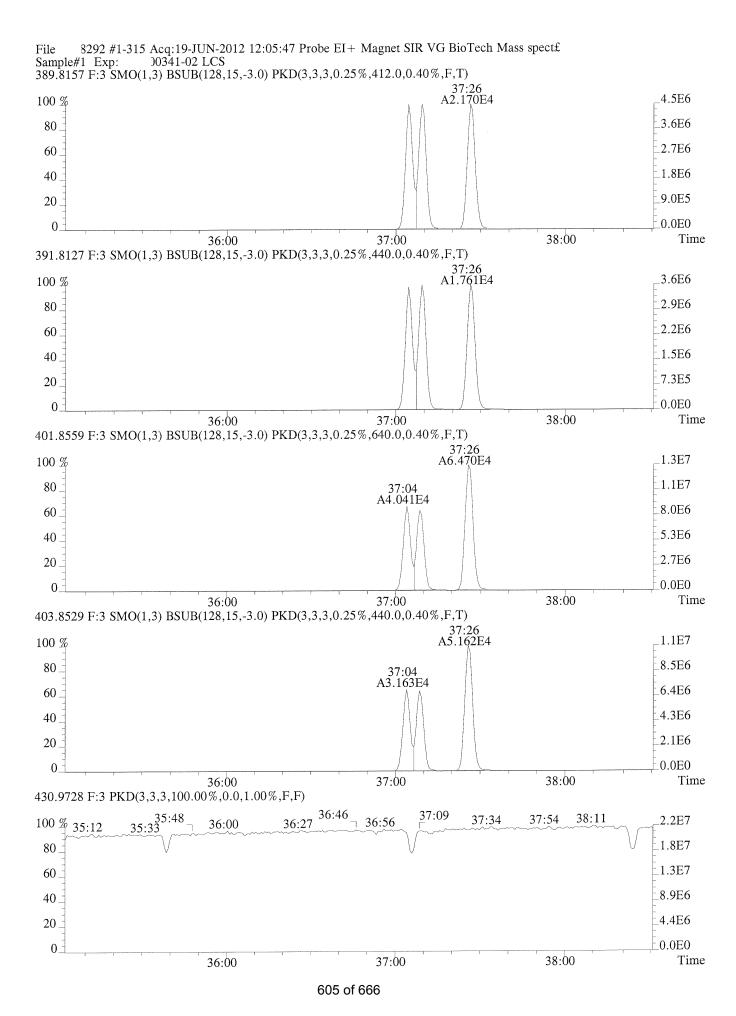

1.17e+07 | 6.16e+02

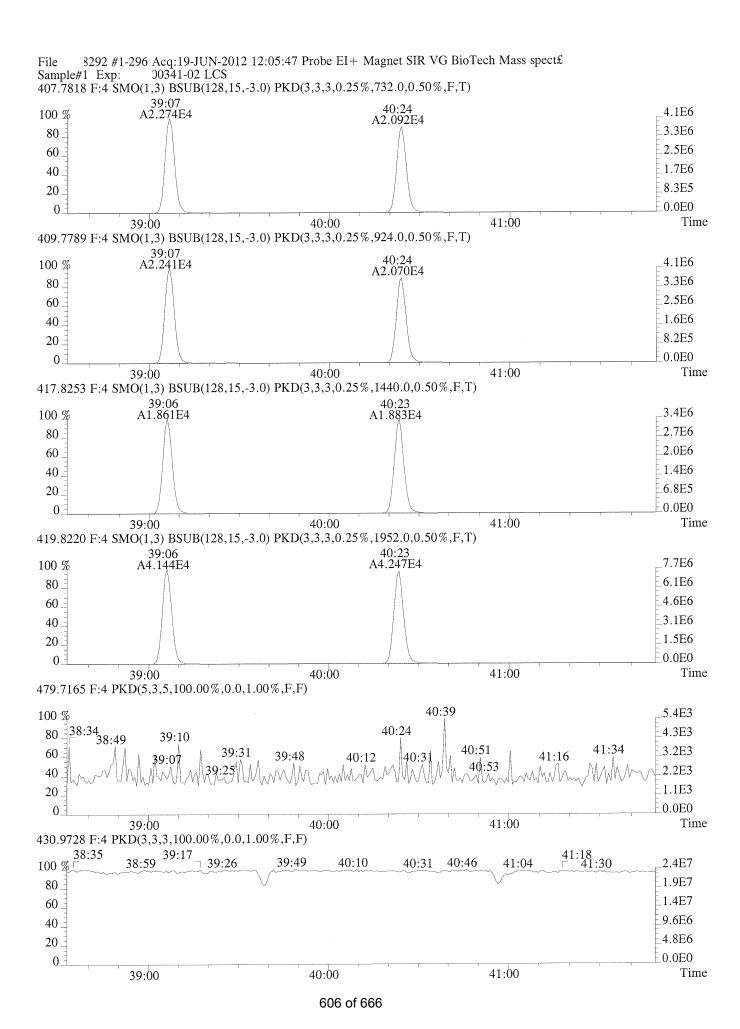

2.1e+04 | 1.06e+07 | 4.40e+02 | 2.4e+04

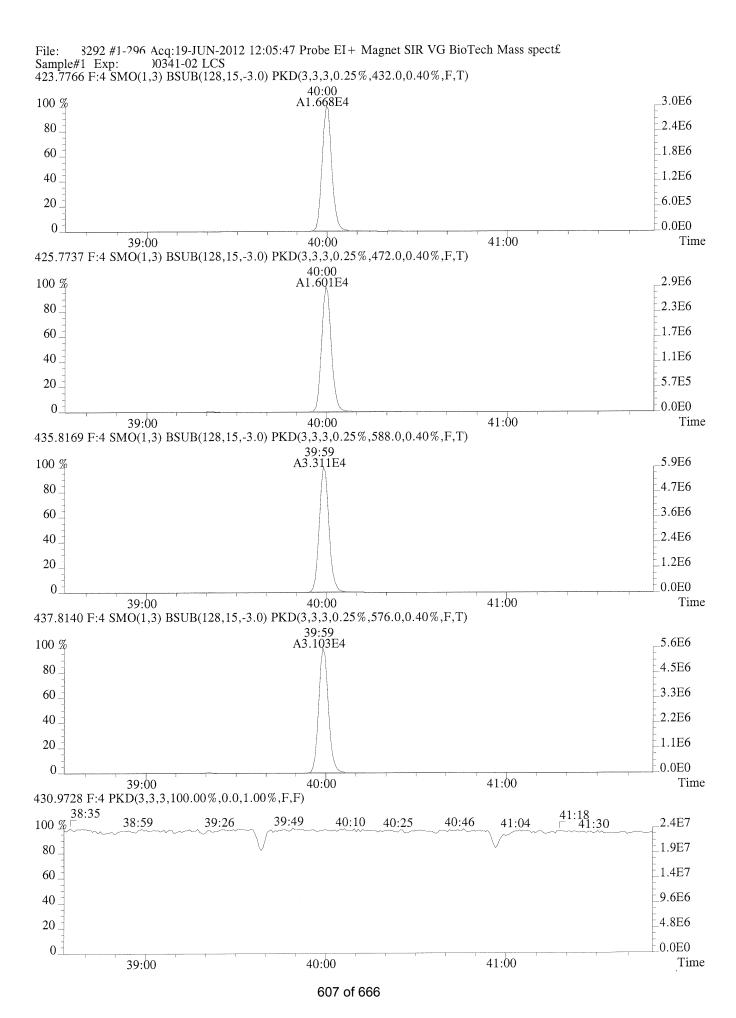

1.5e + 04

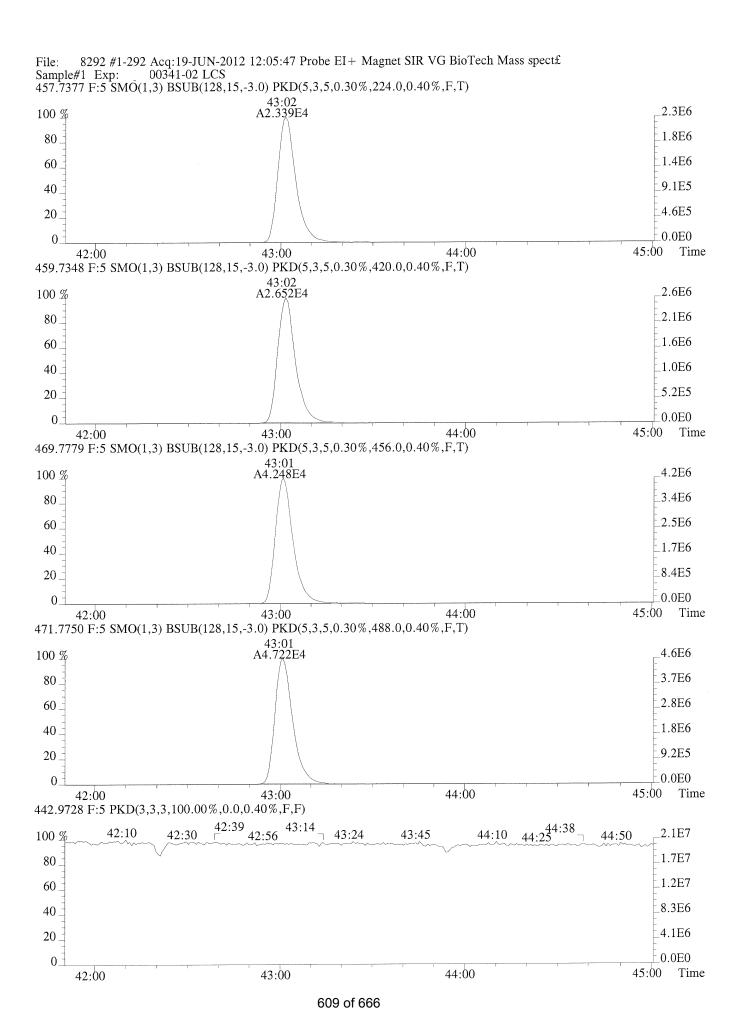

9.6e + 03

1.9e + 04








8292 #1-315 Acq:19-JUN-2012 12:05:47 Probe EI+ Magnet SIR VG BioTech Mass spect£ File: Sample#1 Exp: 00341-02 LCS 373.8208 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,556.0,0.40%,F,T) 36:29 A3.041E4 36:57 A2.722E4 37:40 A2.605E4 6.2E6 100 % 80 5.0E6 _3.7E6 60 _2.5E6 40 1.2E6 20 0.0E0 0 36:00 37:00 38:00 Time 375.8178 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,592.0,0.40%,F,T) 36:29 A2.529E4 36:57 A2.220E4 37:40 A2.177E4 5.1E6 100 % _4.1E6 80 _3.1E6 60 2.0E6 40 1.0E6 20 0.0E0 Time 36:00 37:00 38:00 383.8639 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,544.0,0.40%,F,T) 36:28 A3.147E4 36:57 A2.904E4 6.4E6 37:39 A2.646E4 100 % 5.1E6 80 _3.8E6 60 _2.6E6 40 _1.3E6 20 0.0E0 38:00 Time 36:00 37:00 385.8610 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.25%,840.0,0.40%,F,T) 36:28 A5.977E4 36:57 A5.534E4 37:39 A5.069E4 _1.2E7 100 % 9.7E6 80 _7.3E6 60 4.8E6 40 2.4E6 20 0.0E0 0 38:00 Time 36:00 37:00 445.7555 F:3 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 3.9E3 100 % 37:26 3.1E3 36:34 38:17 80 38:07 37:09 35:37 35:18 2.3E3 60 1.5E3 40 7.7E2 20 _0.0E0 38:00 Time 36:00 37:00 430.9728 F:3 PKD(3,3,3,100.00%,0.0,1.00%,F,F) 35:33 37:09 36:27 37:34 37:54 38:11 2.2E7 36:56 100 % 35:12 36:00 1.8E7 80 _1.3E7 60 8.9E6 40 4.4E6 20 0.0E0 0 38:00 Time 37:00 36:00

3292 #1-292 Acq:19-JUN-2012 12:05:47 Probe EI+ Magnet SIR VG BioTech Mass spect£ File 00341-02 LCS Sample#1 Exp: 441.7428 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,580.0,0.40%,F,T) 43:10 A2.968E4 _3.3E6 100 % 2.7E6 80 2.0E6 60 1.3E6 40 _6.7E5 20 _0.0E0 0 43:00 44:00 45:00 Time 42:00 443.7399 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(5,3,5,0.30%,580.0,0.40%,F,T) 43:10 A3.288E4 _3.7E6 100 % 2.9E6 80 2.2E6 60 1.5E6 40 7.3E5 20 _0.0E0 0 43:00 44:00 45:00 Time 42:00 513.6775 F:5 PKD(5,3,5,100.00%,0.0,1.00%,F,F) 42:07 _3.4E3 100 % 42:47 _2.7E3 80 43:26 43:36 42:42 44:35 43:00 44:09 2.0E3 60 _1.3E3 40 6.7E2 20 0.0E0 0 45:00 Time 43:00 44:00 42:00 442.9728 F:5 PKD(3,3,3,100.00%,0.0,0.40%,F,F) 42:39 42:56 42:10 2.1E7 42:30 43:24 43:45 100 % 44:10 44:50 _1.7E7 80 _1.2E7 60 _8.3E6 40 4.1E6 20 _0.0E0 0 44:00 45:00 Time 43:00 42:00

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Duplicate Lab Control Sample Units: ng/Kg

Lab Code: 00341-03 Basis: Dry

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method:D/F DLM02.2Date Analyzed:6/19/12 1253Prep Method:MethodDate Extracted:6/12/12Sample Amount:11.376gInstrument Name:E-HRMS-03

Data File Name: 8293 GC Column: DB-5
Blank File Name: 8291

 Data File Name:
 8293
 Blank File Name:
 8291

 ICAL Date:
 04/23/12
 Cal Ver. File Name:
 8290

				Ion		Dilution	
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	19.0	0.0483	0.879	0.77	1.001	1	
1,2,3,7,8-PeCDD	97.0	0.0311	4.40	1.55	1.001	1	
1,2,3,4,7,8-HxCDD	88.6	0.0223	4.40	1.26	1.000	1	
1,2,3,6,7,8-HxCDD	93.7	0.0232	4.40	1.26	1.000	1	
1,2,3,7,8,9-HxCDD	90.1	0.0216	4.40	1.23	1.008	1	
1,2,3,4,6,7,8-HpCDD	90.5	0.0240	4.40	1.06	1.000	1	
OCDD	183	0.0966	8.79	0.90	1.000	1	
2,3,7,8-TCDF	18.4	0.0391	0.879	0.77	1.001	1	
1,2,3,7,8-PeCDF	93.1	0.0210	4.40	1.56	1.001	1	
2,3,4,7,8-PeCDF	96.6	0.0232	4.40	1.58	1.000	1	
1,2,3,4,7,8-HxCDF	99.0	0.0128	4.40	1.22	1.000	1	
1,2,3,6,7,8-HxCDF	95.7	0.0119	4.40	1.23	1.000	1	
1,2,3,7,8,9-HxCDF	93.0	0.0135	4.40	1.25	1.000	1	
2,3,4,6,7,8-HxCDF	90.9	0.0120	4.40	1.22	1.000	1	
1,2,3,4,6,7,8-HpCDF	95.3	0.0751	4.40	1.01	1.000	1	
1,2,3,4,7,8,9-HpCDF	88.6	0.0790	4.40	1.04	1.000	1	
OCDF	196	0.139	8.79	0.90	1.003	1	
Total Tetra-Dioxins	19.0	0.0483	0.879	0.77		1	
Total Penta-Dioxins	97.0	0.0311	4.40	1.55		1	
Total Hexa-Dioxins	272	0.0223	4.40	1.26		1	
Total Hepta-Dioxins	90.9	0.0240	4.40	1.03		1	
Total Tetra-Furans	18.6	0.0391	0.879	0.83		1	
Total Penta-Furans	191	0.0232	4.40	1.56		1	
Total Hexa-Furans	379	0.0128	4.40	1.22		1	
Total Hepta-Furans	184	0.0751	4.40	1.01		1	

Analytical Report

00584

Service Request:

Client: US Environmental Protection Agency

Project:Dioxins/FuransDate Collected:NASample Matrix:SedimentDate Received:NA

Sample Matrix. Seament Date Received. NA

Sample Name:Duplicate Lab Control SampleUnits:PercentLab Code:00341-03Basis:Dry

Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) by HRGC/HRMS

Analytical Method: D/F DLM02.2 Date Analyzed: 6/19/12 1253

Prep Method:MethodDate Extracted:6/12/12Sample Amount:11.376gInstrument Name:E-HRMS-03GC Column:DB-5

 Data File Name:
 8293

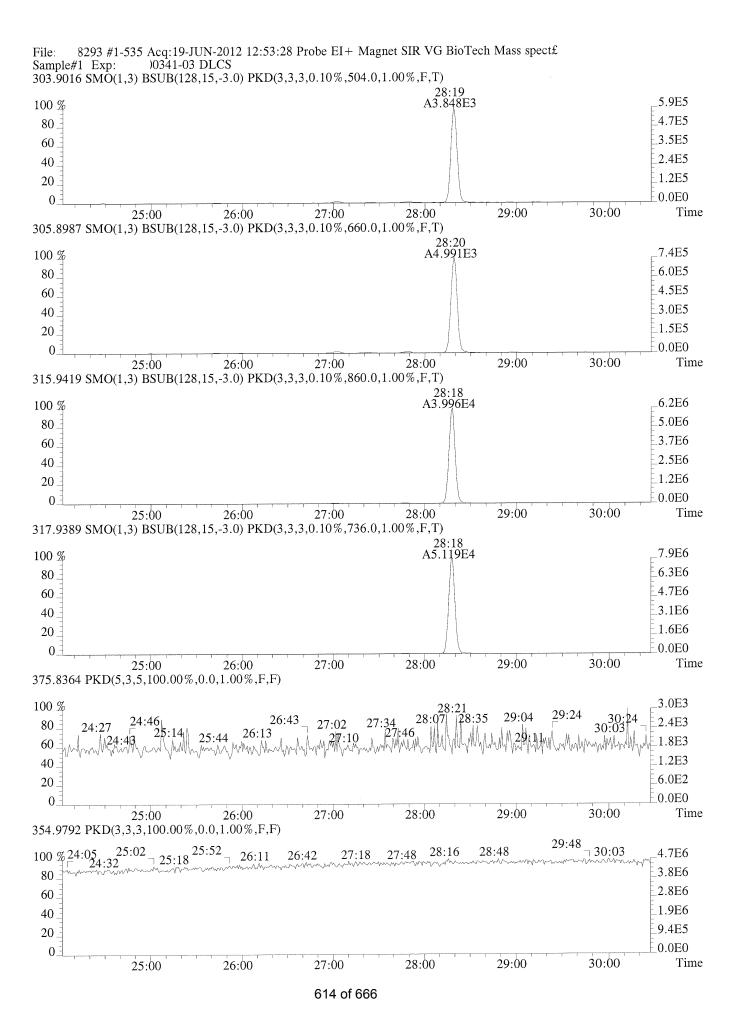
 ICAL Date:
 04/23/12

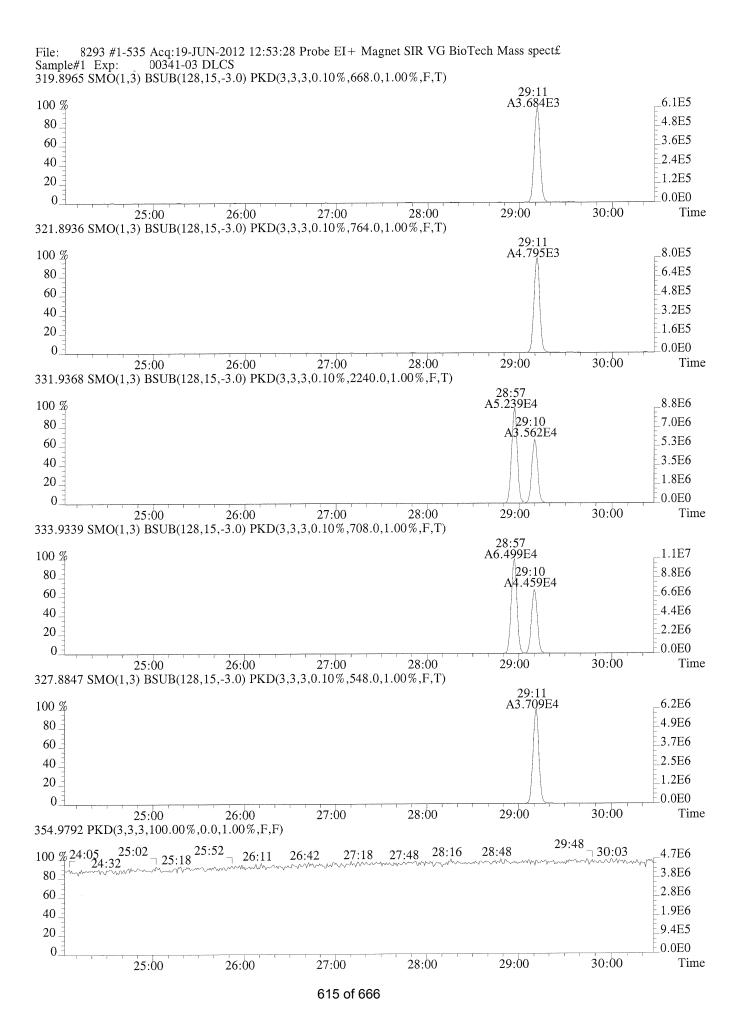
 Blank File Name:
 8291

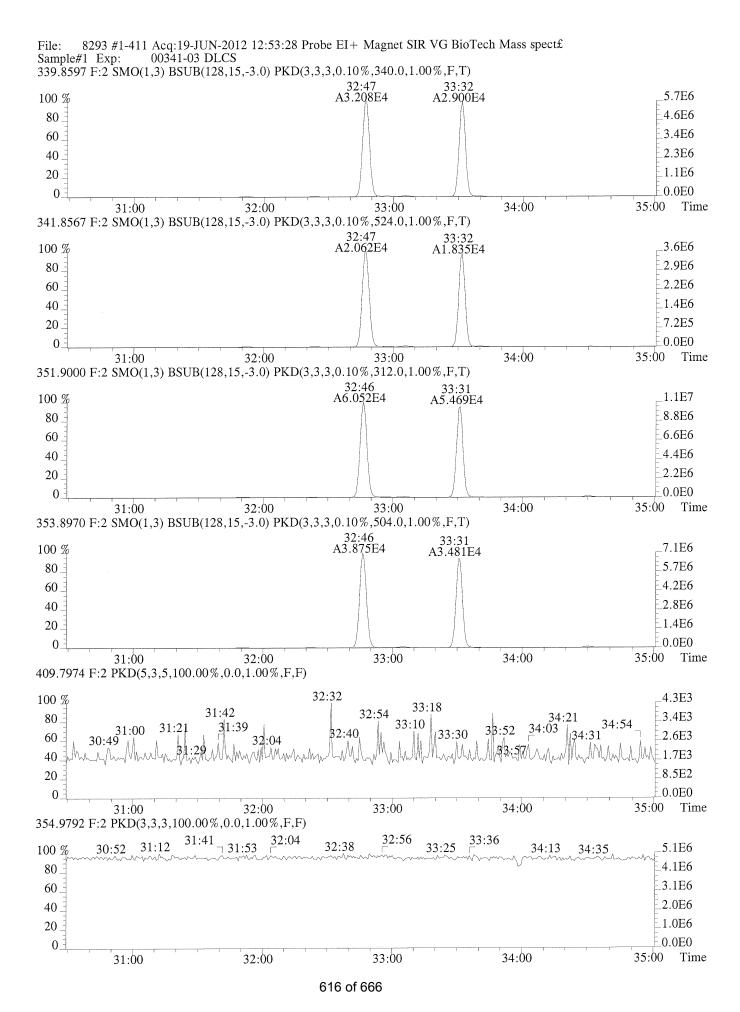
 Cal Ver. File Name:
 8290

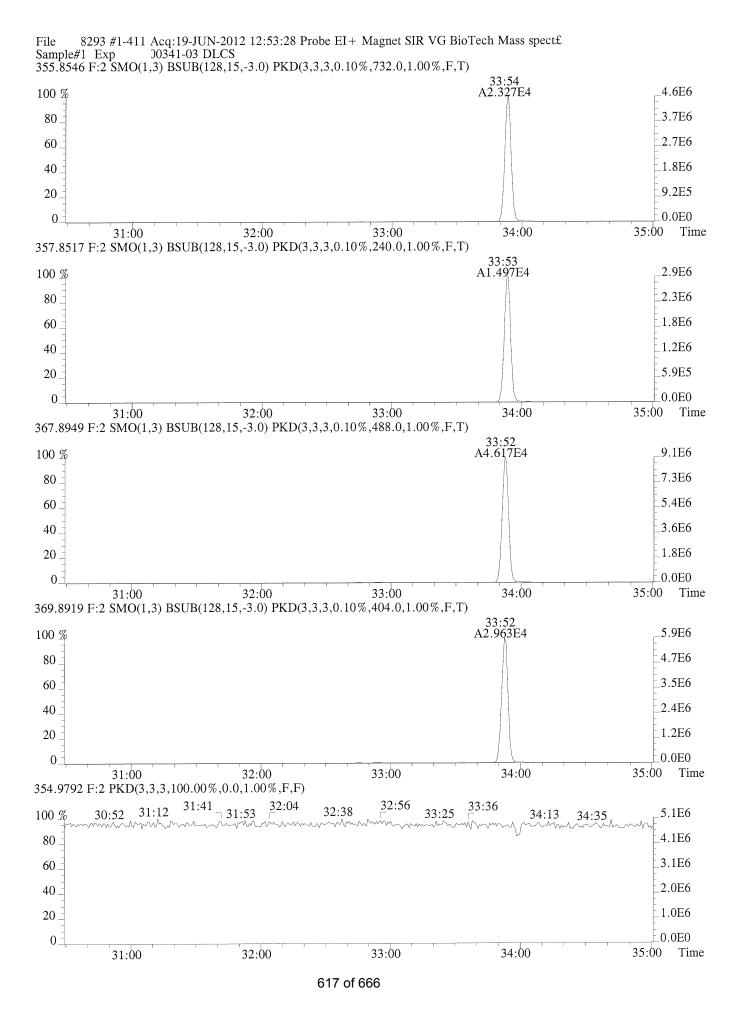
Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	2000	1364.567	68	20-175	0.80	1.007	
13C-1,2,3,7,8-PeCDD	2000	1577.312	79	21-227	1.56	1.170	
13C-1,2,3,4,7,8-HxCDD	2000	1390.149	70	21-193	1.26	0.991	
13C-1,2,3,6,7,8-HxCDD	2000	1457.887	73	25-163	1.28	0.992	
13C-1,2,3,4,6,7,8-HpCDD	2000	1406.517	70	26-166	1.05	1.069	
13C-OCDD	4000	2522.162	63	13-199	0.89	1.150	
13C-2,3,7,8-TCDF	2000	1211.128	61	22-152	0.78	0.978	
13C-1,2,3,7,8-PeCDF	2000	1540.634	77	21-192	1.56	1.132	
13C-2,3,4,7,8-PeCDF	2000	1431.636	72	13-328	1.57	1.158	
13C-1,2,3,4,7,8-HxCDF	2000	1355.161	68	19-202	0.52	0.972	
13C-1,2,3,6,7,8-HxCDF	2000	1399.779	70	21-159	0.52	0.974	
13C-1,2,3,7,8,9-HxCDF	2000	1431.935	72	17-205	0.52	1.006	
13C-2,3,4,6,7,8-HxCDF	2000	1443.719	72	22-176	0.53	0.987	
13C-1,2,3,4,6,7,8-HpCDF	2000	1305.430	65	21-158	0.45	1.045	
13C-1,2,3,4,7,8,9-HpCDF	2000	1578.865	79	20-186	0.45	1.079	
37Cl-2,3,7,8-TCDD	800	607.947	76	31-191	NA	1.008	

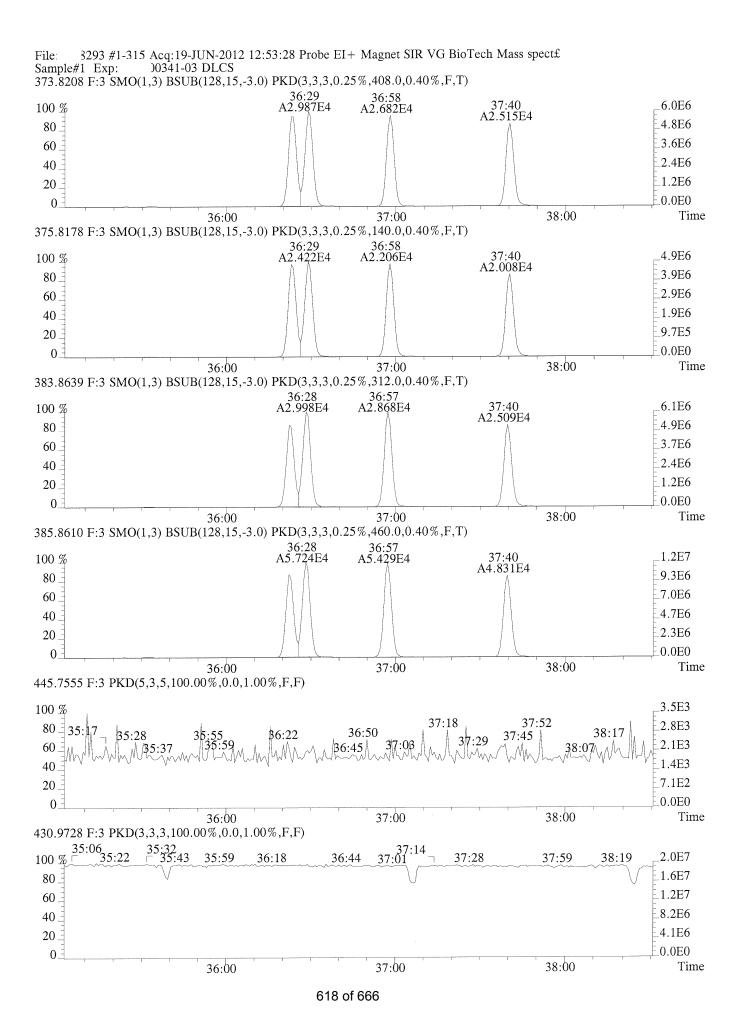
DLCS

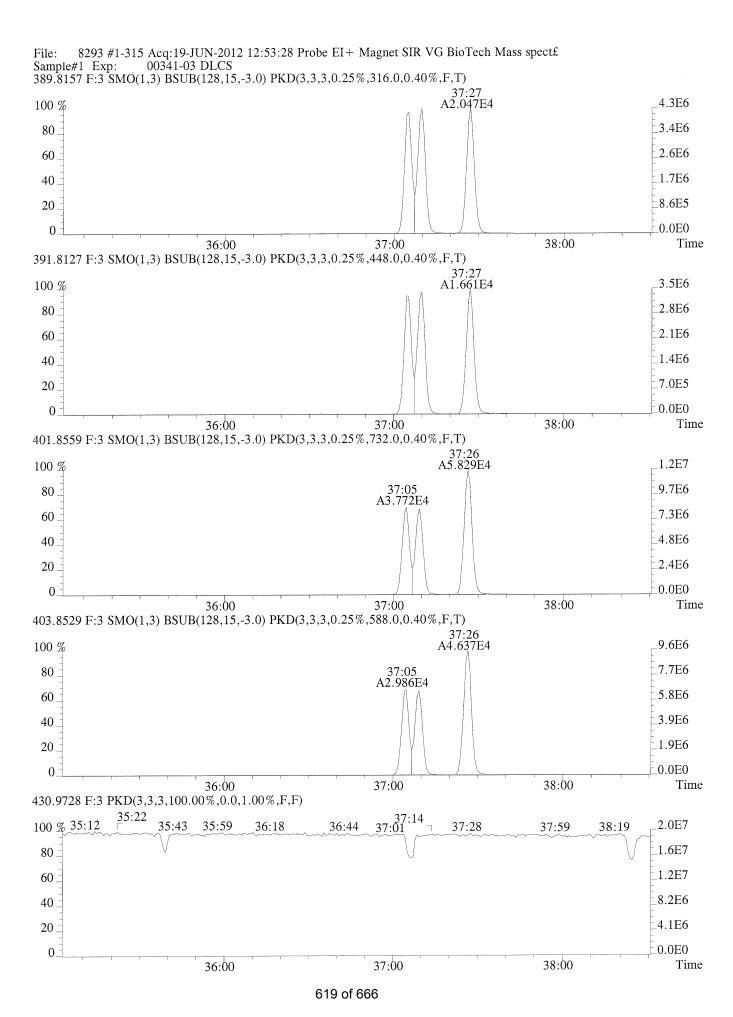

Run #10 Processe	Filename d: 20-JUN-12	8293 11:09:16		: 1 Sample		0 C	Acquired: 341-03	19-JUI	N-12 1	2:53:28	3
Тур		Name	RT-1		Resp 1		Resp 2	Ratio	Meet	Mod?	RRF
1 Unk	2	3,7,8-TCDF	28:19	1 3.8	848e+03		4.991e+03	0.77	ves	no	0.929
2 Unk		,7,8-PeCDF			208e+04		2.062e+04	1.56		no	1.002
3 Unk		,7,8-PeCDF			900e+04		1.835e+04	1.58		no	0.963
4 Unk		,7,8-HxCDF			350e+04		2.328e+04	1.22		no	1.221
5 Unk		,7,8-HxCDF		!	987e+04		2.422e+04	1.23	, -	no	1.139
6 Unk	2,3,4,6	,7,8-HxCDF	36:58		582e+04	İ	2.206e+04	1.22		no	1.139
7 Unk		,8,9-HxCDF		1	515e+04		2.008e+04	1.25		no	1.165
8 Unk		,7,8-HpCDF	!	2.1	L68e+04	İ	2.157e+04	1.01	yes	no	1.394
9 Unk		,8,9-HpCDF		2.0	004e+04		1.931e+04	1.04	yes	no	1.334
10 Unk	, , , .		43:11	2.5	541e+04		2.836e+04	0.90	yes	no	1.227
11 Unk		3,7,8-TCDD		3.6	584e+03		4.795e+03	0.77		no	0.980
12 Unk		,7,8-PeCDD		1	327e+04	1	1.497e+04	1.55		no	0.915
13 Unk		,7,8-HxCDD		1	398e+04		1.509e+04	1.26		no	1.001
14 Unk		,7,8-HxCDD		4)77e+04		1.651e+04	1.26		no	0.978
15 Unk		,8,9-HxCDD		1)47e+04	1	1.661e+04	1.23		no	1.041
16 Unk	1,2,3,4,6	,7,8-HpCDD		1	597e+04		1.506e+04	1.06	_	no	1.002
17 Unk		OCDD	43:02	2.0)33e+04		2.268e+04	0.90	yes	no	1.054
18 IS	13C-2,	3,7,8-TCDF	28:18	3.9	996e+04		5.119e+04	0.78	yes	no	1.282
19 IS		,7,8-PeCDF		6.0)52e+04		3.875e+04	1.56	yes	no	1.098
20 IS		,7,8-PeCDF		5.4	169e+04		3.481e+04	1.57	yes	no	1.065
21 IS	13C-1,2,3,4			2.5	573e+04		4.955e+04	0.52		no	1.062
22 IS	13C-1,2,3,6			2.9	998e+04	İ	5.724e+04	0.52		no	1.191
23 IS	13C-2,3,4,6			2.8	868e+04	İ	5.429e+04	0.53	yes	no	1.098
24 IS	13C-1,2,3,7			2.5	509e+04	İ	4.831e+04	0.52	yes	no	0.980
25 IS	13C-1,2,3,4,6	,7,8-HpCDF	39:07	1.7	773e+04	Ì	3.947e+04	0.45	yes	no	0.837
	13C-1,2,3,4,7			1.8	315e+04	İ	4.035e+04	0.45	yes	no	0.708
27 IS		3,7,8-TCDD			562e+04		4.459e+04	0.80		no	1.002
28 IS		,7,8-PeCDD		1	517e+04		2.963e+04	1.56		no	0.819
29 IS	13C-1,2,3,4	,7,8-HxCDD	37:05		772e+04	1	2.986e+04	1.26		no	0.929
30 IS	13C-1,2,3,6				10e+04		3.137e+04	1.28		no	0.937
31 IS	13C-1,2,3,4,6	,7,8-HpCDD	40:00	3.0	79e+04		2.933e+04	1.05		no	0.817
32 IS		13C-OCDD	43:02	3.6	85e+04		4.163e+04	0.89	yes	no	0.595
33 RS/RT	13C-1.	2,3,4-TCDD	28:57	5.2	239e+04		6.499e+04	0.81	yes	no	-
34 RS/RT					329e+04	1	4.637e+04	1.26		no	-
35 C/Up		3,7,8-TCDD			709e+04	ı		, '	-	no	1.039
0, 0p		, , <u> </u>		1							•

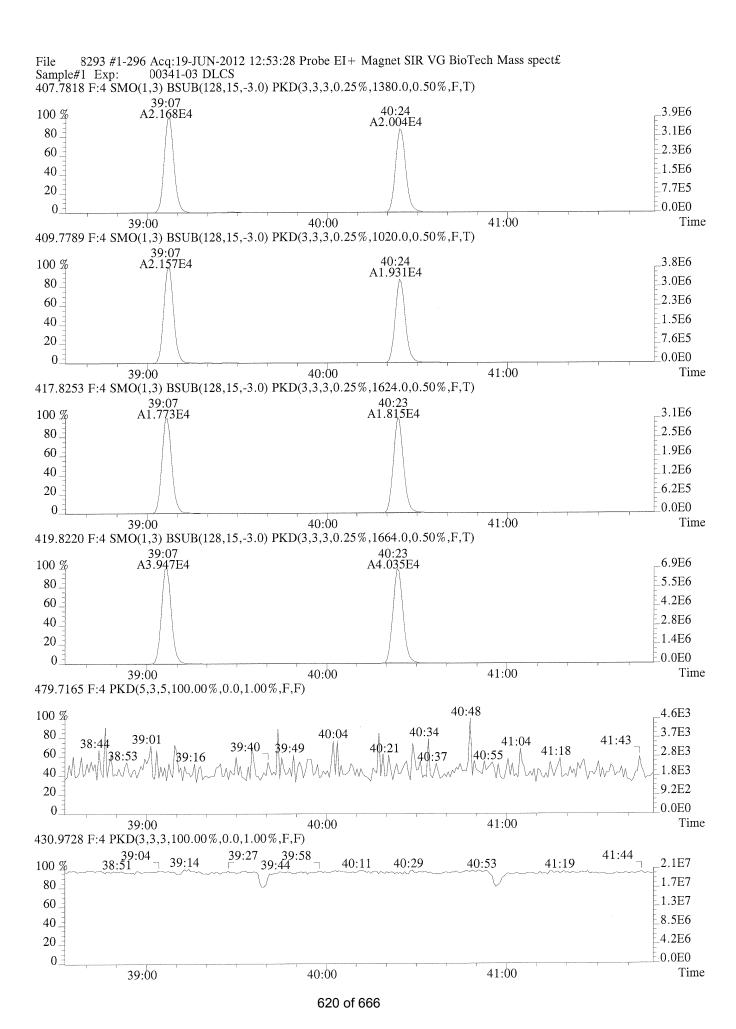

CLIENT ID. DLCS

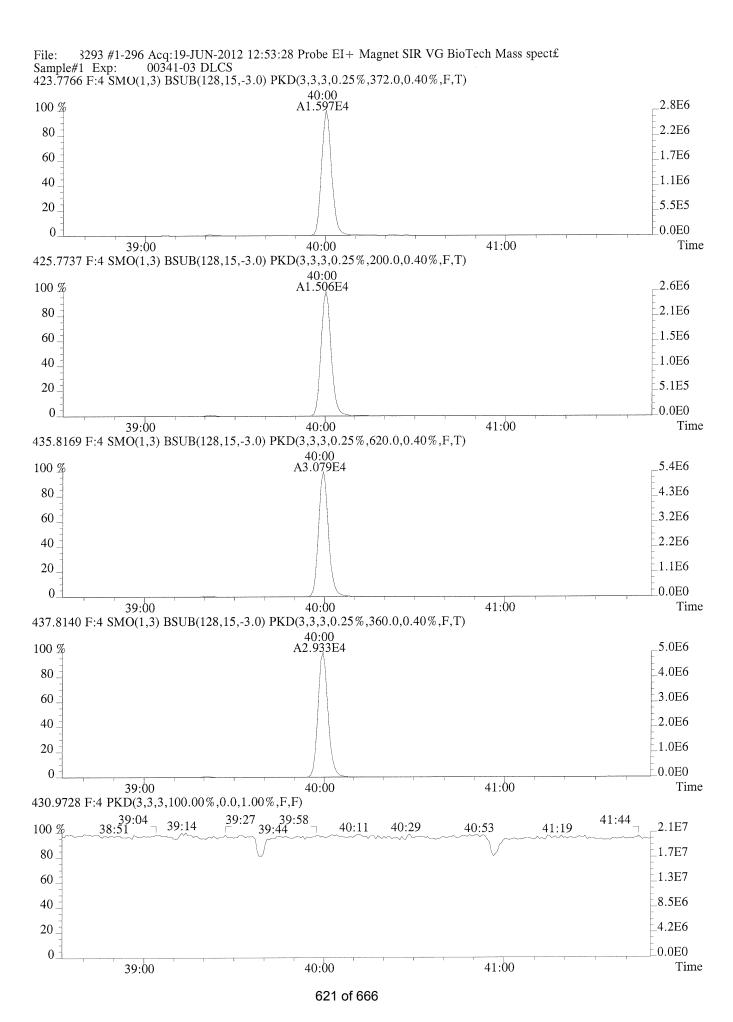

Acquired: 19-JUN-12 12:53:28 Run #10 Filename Samp: 1 Inj: 1 8293 00341-03 LAB. ID: Processed: 20-JUN-12 11:09:161 Name | Signal 1 | Noise 1 | S/N Rat.1 | Signal 2 | Noise 2 | S/N Rat.2 | 5.04e+02 | 1.2e+03 | 7.44e+05 6.60e+02 1.1e + 032,3,7,8-TCDF 5.88e+05 1 3.61e+06| 5.24e+02 6.9e + 032 5.68e+06 3.40e+02 | 1.7e+04 | 1,2,3,7,8-PeCDF 3.40e+02 | 1.7e+04 | 6.8e + 033 2,3,4,7,8-PeCDF 5.66e+06 3.54e+06 5.24e+02 4 1,2,3,4,7,8-HxCDF 5.71e+06 4.08e+02 1.4e+04 4.71e+06 1.40e+02 3.4e + 045 6.03e+06 4.08e+02 1.5e+04 4.86e+06 1.40e+02 3.5e + 041,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 5.76e+06 4.08e+02 1.4e+04 4.72e+06 1.40e+02 3.4e + 046 7 1,2,3,7,8,9-HxCDF 5.25e+06 4.08e+02 | 1.3e+04 | 4.19e+06 1.40e+02 3.0e + 041.38e+03 2.8e+03 3.78e+06 1.02e+03 3.7e + 031,2,3,4,6,7,8-HpCDF 3.86e+06 8 1.02e+03 3.2e + 033.40e+06 1.38e+03 2.5e+03 3.31e+06 9 1,2,3,4,7,8,9-HpCDF 2.67e+06 | 5.08e+02 | 5.2e+03 | 3.02e+06 | 8.40e+02 3.6e + 03OCDF 10 1.0e + 037.99e+05 7.64e+02 2,3,7,8-TCDD 6.06e+05 | 6.68e+02 | 9.1e+02 11 2.93e+06 2.40e+02 1.2e + 044.58e+06 7.32e+02 6.3e+03 1,2,3,7,8-PeCDD 12 3.29e+06 4.48e+02 7.3e + 033.16e+02 | 1.3e+04 | 13 1,2,3,4,7,8-HxCDD 4.16e+06 7.6e + 034.29e+06 3.16e+02 1.4e + 043.40e + 064.48e+02 14 1, 2, 3, 6, 7, 8-HxCDD4.48e+02 7.8e + 031,2,3,7,8,9-HxCDD 4.29e+06 3.16e + 021.4e+04 3.49e + 0615 2.00e+021.3e + 043.72e + 027.4e+03 2.57e + 0616 1,2,3,4,6,7,8-HpCDD 2.75e+06 2.02e+06 | 4.12e+02 | 4.9e+03 1.87e+06 | 3.96e+02 | 4.7e+03 17 OCDD 1.1e + 047.85e+06 7.36e+02 13C-2,3,7,8-TCDF 6.21e+06 8.60e+02 7.2e+03 18 1.4e+04 5.04e+02 13C-1,2,3,7,8-PeCDF 1.09e+07 3.12e+02 3.5e+04 7.05e+06 19 3.12e+02 5.04e+02 1.3e + 041.04e+07 3.3e+04 6.61e+06 13C-2,3,4,7,8-PeCDF 20 2.2e+04 1.7e + 041.02e+07 4.60e+02 13C-1,2,3,4,7,8-HxCDF 5.23e+06 3.12e+02 21 3.12e+02 2.0e+04 1.16e+07 4.60e+02 | 2.5e+04 13C-1,2,3,6,7,8-HxCDF 6.09e+06 22 3.12e+022.0e+04 1.15e+07 4.60e+02 | 2.5e+04 13C-2,3,4,6,7,8-HxCDF 6.10e+06 23 1.7e+04| 1.00e+07 4.60e+02 | 2.2e+04 24 13C-1,2,3,7,8,9-HxCDF 5.27e+06 3.12e + 021.62e+03 1.9e+03 6.91e+06 1.66e+03 | 4.2e+03 25 13C-1,2,3,4,6,7,8-HpCDF 3.12e+06 3.10e+06 | 1.62e+03 | 1.9e+03 | 6.86e+06 1.66e+03 | 4.1e+03 26 13C-1,2,3,4,7,8,9-HpCDF 2.24e+03 | 2.6e+03 | 7.38e+06 7.08e+02 | 1.0e+04 13C-2,3,7,8-TCDD 5.87e+06 27 4.88e+02 | 1.9e+04 | 5.90e+06 4.04e+02 1.5e+04 9.06e+06 13C-1,2,3,7,8-PeCDD 28 5.88e+02 1.1e + 047.32e+021.2e+04 6.59e + 0613C-1,2,3,4,7,8-HxCDD 8.44e + 0629 7.32e+021.1e+04 6.49e + 065.88e+02 1.1e + 048.28e+06 13C-1,2,3,6,7,8-HxCDD 8.7e+03 5.04e + 063.60e+02 1.4e + 046.20e+02 31 13C-1,2,3,4,6,7,8-HpCDD 5.38e+06 8.3e+03 13C-OCDD | 3.22e+06 | 6.64e+02 | 4.9e+03 | 3.74e+06 | 4.52e+02 | 32 1.10e+07 7.08e+02 1.6e + 0413C-1,2,3,4-TCDD 8.79e+06 2.24e+03 | 3.9e+03 33 1.6e+04 9.63e+06 | 5.88e+02 | 1.6e+04 13C-1,2,3,7,8,9-HxCDD 1.21e + 077.32e+02 34

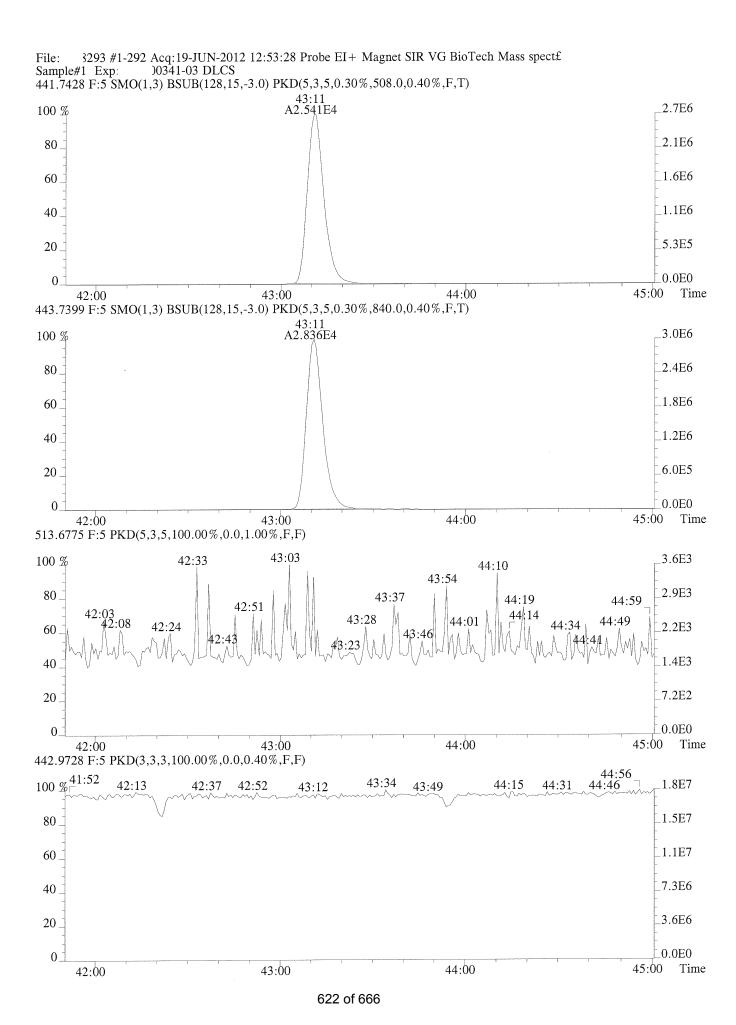

37Cl-2,3,7,8-TCDD 6.18e+06 5.48e+02 1.1e+04

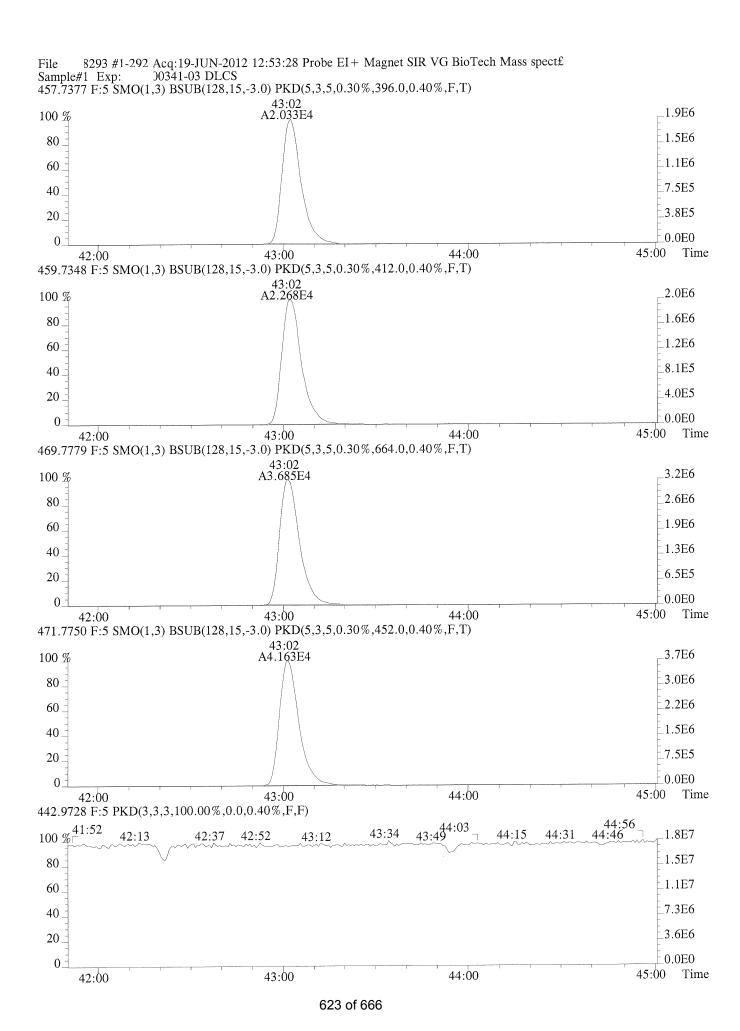

35











Prep Run#:159461Prep WorkFlow: OrgExtAq(365)Status: Prepped

Team: Prep Method: Method Prep Date/Time: 6/6/12 04:13 PM

#	L	ab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
	1	00584-002	238	.01	D/F DLM02.2/Dioxins	7	Water	1040mL	clear colorless liquid with green filtrate
	2	00584-003	240	.01	D/F DLM02.2/Dioxins	7	Water	1040mL	clear colorless liquid with brown filtrate
3	3	00313-01	MB		D/F DLM02.2/Dioxins	5	Liquid	1000mL	
4	4	00313-02	LCS		-D/F DLM02.2/Dioxins	5	Liquid	1000mL	
4	5	00313-03	DLCS		-D/F DLM02.2/Dioxins	5	Liquid	1000mL	

Spiking Solutions

Name: 1613B Matrix Work	king Standard	Inventory ID 45106	Logbook Ref: D13-25-3 (45)	106)	Expires On: 05/19/2013
00313-02 100.00μL	00313-03 100.00μL				
Name: 8290/1613B Cleanu	p Working Standard	Inventory ID 45536	Logbook Ref: D13-30-3 (45:	536)	Expires On: 05/31/2013
00584-002 100.00μL	00584-003 100.00μL	00313-01 100.00μL	00313-02 100.00μL	00313-03 100.00μL	
Name: 1613B Labeled Wo	rking Standard	Inventory ID 45698	Logbook Ref: D13-31-5 (450	698)	Expires On: 06/05/2013
00584-002 1,000.00μL	00584-003 1,000.00μL	00313-01 1,000.00μL	00313-02 1,000.00μL	00313-03 1,000.00μL	
Preparation Materials					
ensafe Free Chlorine WTR	C2-68-6 (42516)	Acetone 99.5% Minimum	C2-58-7 (32783)	Carbon, High Purity	C2-75-4 (3107003) (44972)
thyl Acetate 99.9% Minimum	C2-73-5 (51294) (44839)	Glass Wool	C2-74-4 (K93168686) (44833)	Sulfuric Acid Reagent Grade H2SO4	C2-74-2 (51299) (44837)
ichloromethane (Methylene hloride) 99.9% MeCl2	C2-74-5 (51308) (45348)	Sodium Thiosulfate Anhydrous Reagent Grade NaS2O3	C2-69-2 (MKBH7658V) (40798)	Sodium Chloride Reagent Grade NaCl	C2-65-5 (38670)
odium Hydroxide Reagent rade NaOH	C2-63-6 (37033)	Sodium Sulfate Anhydrous Reagent Grade Na2SO4	C2-74-1 (06010505) (44838)	Tridecane (n-Tridecane)	C2-73-1 (MKBG6777V) (44841)
exane (n-Hexane) 98.5%	C2-75-1 (51300) (44828)	ColorpHast pH-Indicator Strips	C2-71-4 (43218)	Silica Gel Reagent Grade	C2-75-5 (TH02HZEMS) (45349)
Oluene 99.9% Minimum Preparation Steps	C2-74-6 (51195) (44831)				
tep: Extraction	Step: Acid Clean	Step: Silica Ge	l Clean Step: F	Final Volume	
tarted: 6/6/12 16:13	Started: 6/7/12 10:35	Started: 6/7/12 12	2:30 Started: 6	5/8/12 05:30	
inished: 6/7/12 07:00	Finished: 6/7/12 10:50	Finished: 6/7/12 14	Finished: 6	/8/12 08:25	
y:	By:	By:	By:		
Comments	Comments	Comments	Comments		

Prep Run#:159461Prep WorkFlow:OrgExtAq(365)Status:PreppedTeam:Prep Method:MethodPrep Date/Time:6/6/12 04:13 PM

Comments:

Reviewed By: Date: 6/19/12

Chain of Custody

Relinquished By: Date: Extracts Examined Yes No

Prep Run#: 160278 Prep WorkFlow: OrgExtS(365) Status: Prepped

Team: Prep Method: Method Prep Date/Time: 6/12/12 03:34 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	00584-001RE	193	.03	D/F DLM02.2/Dioxins		Sediment	30.272g	wet, black semi-solid
2	00617-001RE	1T4	.02	D/F DLM02.2/Dioxins		Sediment	13.563g	gray, dry solid
3	00617-002RE	1T5	.02	D/F DLM02.2/Dioxins		Sediment	20.101g	wet, black semi-solid
4	00617-003RE	1T7	.02	D/F DLM02.2/Dioxins		Sediment	26.980g	wet, black semi-solid
5	00673-001	1W1	.01	D/F DLM02.2/Dioxins		Sediment	35.028g	dark brown sediment
6	00673-002	1W2	.02	D/F DLM02.2/Dioxins		Misc. Solid	35.922g	dark brown sand
7	00341-01	MB		D/F DLM02.2/Dioxins		Solid	10.554g	
8	00341-02	LCS		D/F DLM02.2/Dioxins		Solid	10.692g	
9	00341-03	DLCS		D/F DLM02.2/Dioxins		Solid	11.376g	

Spiking Solutions

Name: 8290	/1613B Cleanup Working Standard	Inventory ID 44461	Logbook Ref: D13-13-4 (44461)	Expires On: 05/02/2013					
00584-001 00341-01	100.00μL 00617-001 100.00μL 00341-02	100.00μL 00617-002 100.00μL 100.00μL 00341-03 100.00μL	00617-003 100.00μL	00673-001 100.00μL	00673-002 100.00μL				
Name: 1613B Labeled Working Standard Inventory ID 45535			Logbook Ref: D13-30-2 (45535)		Expires On: 05/31/2013				
00584-001 00341-01	1,000.00μL 00617-001 1,000.00μL 00341-02	1,000.00μL 00617-002 1,000.00μL 1,000.00μL 00341-03 1,000.00μL	00617-003 1,000.00μL	00673-001 1,000.00μL	00673-002 1,000.00μL				
Name: 1613	B Matrix Working Standard	Inventory ID 45770	Logbook Ref: D13-32-1 (45770) Expires On: 06/06						
00341-02	100.00μL 00341-03	100.00μL							

Preparation Materials

Acetone 99.5% Minimum	C2-58-7 (32783)	Carbon, High Purity	C2-75-4 (3107003) (44972)	Ethyl Acetate 99.9% Minimum	C2-73-5 (51294) (44839)
Cl. W. I	C2 72 5 (V221(20(0)) (42552)	G IC : A :ID A C I	(2) 74 2 (51200) (44027)	EtOAc	(22.74.5.(51200).(45240)
Glass Wool	C2-72-5 (K93168686) (43552)	Sulfuric Acid Reagent Grade H2SO4	C2-74-2 (51299) (44837)	Dichloromethane (Methylene Chloride) 99.9% MeCl2	C2-74-5 (51308) (45348)
				,	
Sodium Chloride Reagent Grade	C2-65-5 (38670)	Sodium Hydroxide Reagent	C2-63-6 (37033)	Sodium Sulfate Anhydrous	C2-74-1 (06010505) (44838)
NaCl		Grade NaOH		Reagent Grade Na2SO4	
Tridecane (n-Tridecane)	C2-69-3 (MKBG6777V) (40799)	Hexane (n-Hexane) 98.5%	C2-75-1 (51300) (44828)	Nonane (n-Nonane) 99%	C2-48-7 (STBB5477) (39812)
		Minimum			
Silica Gel Reagent Grade	C2-75-5 (TH02HZEMS) (45349)	Toluene 99.9% Minimum	C2-74-6 (51195) (44831)		

Prep Run#:160278Prep WorkFlow:OrgExtS(365)OrgExtS(365)Status:PreppedTeam:Prep Method:MethodPrep Date/Time:6/12/12 03:34 PM

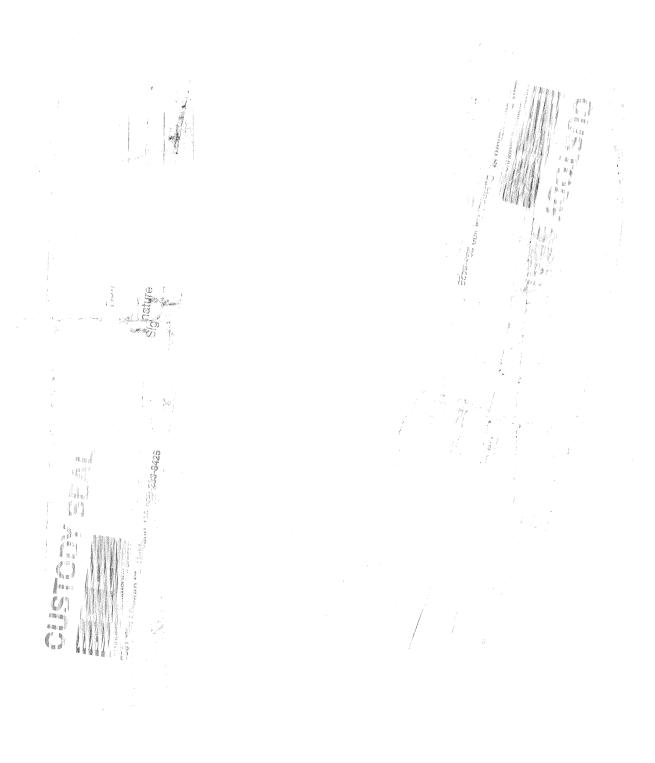
Preparation Steps

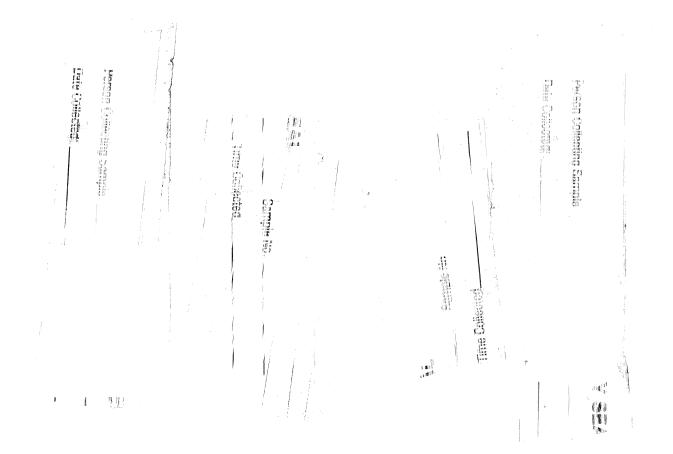
Step: Extraction Step: Acid Clean Step: Silica Gel Clean Step: Final Volume Started: 6/12/12 15:34 Started: 6/13/12 10:35 Started: 6/13/12 13:25 Started: 6/14/12 09:10 Finished: 6/13/12 07:45 Finished: 6/13/12 10:50 Finished: 6/13/12 15:00 Finished: 6/14/12 11:20

By:By:By:By:CommentsCommentsCommentsComments

Comments:		
Reviewed By:	Date: 6/19/12	
Chain of Custody		
Relinquished By:	Date:	Extracts Examined
Received By:	Date:	Yes No

Chain of Custody Report


Service Request:


00584

Client: US Environmental Protection Agency

Project: Dioxins/Furans

ottle ID	Tests	Date	Time	Sample Location / User	Disposed On
00584-001.03					
	SOP, D/I	F DLM02.2			
		5/17/12	1553	/	
		5/17/12	1632	E-WIC01 /	
		5/31/12	2153	SampleCustodian /	
		5/31/12	2156	In Lab /	
		6/5/12	1704	E-WIC02-Box 34 /	
		6/14/12	1529	E-WICO2-Box 33 /	
00584-002.01					
	D/F DLM02.2				
		5/17/12	1553	/	
		5/17/12	1632	E-WIC01 /	
		5/31/12	2153	SampleCustodian /	
		5/31/12	2155	In Lab /	
		6/8/12	1524	E-Disposed /	
					6/8/12
00584-002.02					
		5/17/12	1630	/	
		5/17/12	1632	E-WIC01-D7 /	
00584-003.01					
	D/F DLM02.2				
		5/17/12	1553	/	
		5/17/12	1632	E-WIC01 /	
		5/31/12	2153	SampleCustodian /	
		5/31/12	2155	In Lab /	
		6/8/12	1524	E-Disposed /	
					6/8/12

5.9.12

SHIP TO:

Origin ID: PCTA

BILL SENDER

Ship Date: 09MAY12 ActWat: 20.0 LB CAD:

Delivery Address Bar Code

Ref#

Invoice # P0# Dept#

> THU - 10 MAY A2 PRIORITY OVERNIGHT

TRK# 0201

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

CUSTODY SEAL Person Collecting Sample	
Title had	
Date Collection	
	_

	no foliona	
Person Collecting S	ämnie	USTODY SEAL
Date Collected:	1	felo.
		and the second s
es de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		

After printing this label:

Samples Transferred From Chain of Custody # Inorganic Sample # Shipment for Case Complete? N Received by 05/08/2012 14:16 Collected Date metides. Bubbleway nascals 10c Relinquished By Station Location C0512-Tag/Preservative/Bottles 1136 (ice), 1137 (ice) (2) Items/Reason CHAIN OF CUSTODY RECORD PCB Consener Case #: Cooler #: Time Analysis/Turnaround Date D/F(42), Cong(42) Analysis Key: D/F=Dioxin/Furans, Cong=209 CBC-PCB Congeners Received by Special Instructions: please disregard tag numbers Coll. Method Grab Organics COC (LAB COPY) Matrix/Sampler 13614 DateShipped: 5/8/2012 CarrierName: FedEx Salinity 22.77ppt Organic Sample # 236 Page 1 of 1 AirbillNo: USEPA 634 of 666

Time

Date

5001 Sec

For Lab Use Only

Page 1 of 1

USEPA Organics COC (LAB COPY)

DateShipped: 5/10/2012 CarrierName: FedEx

AirbillNo: 34795

.....

CHAIN OF CUSTODY RECORD

Case #: Cooler #:

										3	
For Lab Use Only						Marie Branch Branch			「「「「「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」		
Inorganic Sample #	240							1 - 2 200 20 - 20			
Collected	05/10/2012 14:04				Afonton abbrosenta part della						
Station	C0512- A-RS				The state of the s						
Tag/Preservative/Bottles	1155 (ice), 1156 (ice) (2)				Contraction Agents of the contraction of the contraction		Constitution and the constitution of the const	SACTOR AND STATE OF THE SACTOR		And the second s	
Analysis/Turnaround	D/F(42), Cong(42)				AND AND AND AND AND AND AND AND AND AND			おものはないとなった。 これには持って			
Coll.	Grab										
Matrix/Sampler					THE REAL PROPERTY OF THE PARTY						
Organic Sample #	240										

Samples Transferred From Chain of Custody # Shipment for Case Complete? N Cong=209 CBC-PCB Congeners Mod Special Instructions: please disregard tag numbers Analysis Key: D/F=Dioxin/Furans Mod NC046-22.01 Salinity (ppt)

950 Date Time 5/1/12 Date Received by Relinquished By Items/Reason Time Date Received by Date Hanne Manney

2 sals 2 sals water-bubbleung-baggis fedex 34

operich @ 1033 Time Sholls book For Lab Use Samples Transferred From Chain of Custody # Date Inorganic Sample # Shipment for Case Complete? N Received by 05/09/2012 11:13 Collected Date Items/Reason Relinquished By Station Location C0512-000014 Tag/Preservative/Bottles 1192 (ice), 1193 (ice) (2) Case # Time D/F=Dioxin/Furans Mod Date Analysis/Turnaround Cong(42), D/F(42) Received by Analysis Key: Cong= 209 CBC- PCB Congeners Mod Special Instructions: please disregard tag numbers Coll. Method Date Grab Matrix/Sampler sediment/ Organic Sample # 93 AirbillNo:

CHAIN OF CUSTODY RECORD

Organics COC (LAB COPY)

Page 1 of 1

DateShipped: 5/9/2012 CarrierName: FedEx

Page 1 of 1

USEPA Organics COC (LAB COPY)

DateShipped: 5/9/2012 CarrierName: FedEx AirbillNo: 1948

CHAIN OF CUSTODY RECORD

Case #: Cooler #:

						OLEVITED P. (1925)	Charleton	two ceals	Endor	238 - Special Instructions: please disregard tag numbers	Samples Transferred From Chain of Custody #	
-	_									Special Instructions: please disrega		
**				F. S. ST. C. S. S. T. SECTOR.						used for Lab QC:	salinity 21.95 ppt	

Time 1007 0/10/10 Date Received by Date Relinquished By Items/Reason Time Date Received by

	Coole	er Receip	ot Form	Project Che	emist		
Client/Project USEPA Organics; 2-0	50912-13259-	0050	Sei	rvice Request	00584		
Date/Time Received: 05/11/12	09:58:00		Date/Time Logo	ged in: 05/11/1	2 13	3:13:00	
Technician		T	echnician	,			
1. Method of delivery: OUS Mail	Fed Ex	○ UPS	ODHL C	Courier Cli	ient		
2. Samples received in: • Cooler	○Box ○En	velope Oth	er				
3. Were custody seals on coolers?	Yes \(\cap \text{No} \)	○N/A	If yes, how ma	ny			
Were they intact?	Yes \(\) No		and where?				
Were they signed and dated?	Yes \(\cap \) No	○N/A					
4. Method of delivery:	s 🕜 Rubble Wi	rap ()Gel Pac	ks 🕜 Wet lo	ce O Sleeves	Other		
	JW DUDDIC W		_	Siccves	O other		
5. Foreign or Regulated Soil?	Yes No	Location of	Sampling:				
Cooler Tracking Number	COC ID	Date Opened	Time Opened	Opened By	Temp. ° C	Temp Blank?	Filed
4795		May 11, 2012	1013		0/0		
6. Were custody papers properly filled out (ir	nk signed date	ed etc)?		• Yes	No ON/A		
7. Did all bottles arrive in good condition (no	•				No ON/A		
8. Were all sample labels complete (i.e., samp		•			No ON/A		
9. Were appropriate bottles/containers and v	•	•			No N/A		
10. Did sample labels and tags agree with cu					No ON/A		
Sample ID on Bottle		Sample ID on C	OC		Identified by:		
Sample II)		ottle Out of ype Temp	Broken	Date	To	echnician	า
Notes, Discrepancies, & Resolutions:							

638 of 666

Reset Form

Print For

	Co	oler R	eceip	t Form	Project Che	emist			
Client/Project USEPA Organics	; 2-050812-15	3626-0041		Se	rvice Request	00584			
Date/Time Received: 5/9/12	10:04:	00	Da	te/Time Log	ged in: 5/9/12	16	5:55:00		
Technician			Te	chnician					
1. Method of delivery: OUS Ma	il © Fed	Ex (UPS	ODHL (Courier Cli	ent			
2. Samples received in: © Cooler	Box C	Envelope	○ Other						
3. Were custody seals on coolers? • Yes • No • N/A If yes, how many and where? • Yes • No • N/A and where?									
Were they signed and dated?	• Yes	No C	N/A						
4. Method of delivery:	ggies 🕢 Bubbl	e Wrap	Gel Packs	Wet lo	ce C Sleeves	Other			
5. Foreign or Regulated Soil?	○ Yes	o Lo	ocation of Sa	ampling:					
Cooler Tracking Number	COC	ID Date	e Opened	Time Opened	Opened By	Temp. °C	Temp Blank?	Filed	
13614		May	9, 2012	1109		1/1			
6. Were custody papers properly filled ou	ut (ink, signed,	dated, etc)	?		• Yes •	No ON/A			
7. Did all bottles arrive in good condition	(not broken, i	no signs of	leakage)?		Yes	No ON/A			
8. Were all sample labels complete (i.e., s	•	•				No ON/A			
9. Were appropriate bottles/containers a			the request	ed tests?		No			
10. Did sample labels and tags agree with	h custody doc	uments?			Yes	No			
Sample ID on Bottle		Samp	le ID on CO	С		Identified by:			
Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Date	Т	echnician	1	
Notes, Discrepancies, & Resolutions:									

639 of 666

Reset Form

Print For

		Coole	er Re	ceip	t Form	Project Che	emist				
Client/Project USEPA	Organics; 2-050	912-13259-0	0067		Se	rvice Request	00584				
Date/Time Received:	05/10/12	10:04:00		Da	te/Time Log	ged in: 05/10/1	2 11	:03:00			
Technician	Technician Technician										
1. Method of delivery:	OUS Mail	Fed Ex	\circ	UPS	ODHL (Courier Cl	ient				
2. Samples received in:	Cooler	Box CEnv	velope	Other							
3. Were custody seals on coolers? Were they intact? Yes No N/A If yes, how many and where? Were they signed and dated? Yes No N/A											
						_	_				
4. Method of delivery: O	Inserts (Baggies (Bubble Wi	rap (Gel Packs	s 🕜 Wet lo	ce C Sleeves	Other				
5. Foreign or Regulated Soil	?	s No	Loca	ation of Sa	ampling:						
Cooler Tracking	Number	COC ID	Date (Opened	Time Opened	Opened By	Temp. ° C	Temp Blank?	Filed		
97000			May 17	, 2012	1023		1/1				
6. Were custody papers pro	perly filled out (ink,	signed, date	ed, etc)?		1	• Yes	No (N/A				
7. Did all bottles arrive in go		_		akage)?			No ON/A				
8. Were all sample labels co	mplete (i.e., sample	ID, analysis,	preserva	ation, etc)	?	Yes	No ON/A				
9. Were appropriate bottles	/containers and vol	umes receiv	ed for the	e request	ed tests?	Yes	No ON/A				
10. Did sample labels and ta	ags agree with custo	ody docume	nts?			Yes	No ON/A				
Sample ID on E	Bottle		Sample	ID on CO	C		Identified by:				
Sample ID			ottle	Out of	Broken	Date	Т	echniciar	1		
2000	Cor	unt T	ype	Temp							
Notes, Discrepancies, & Res	solutions:										

640 of 666

Reset Form

Print For

CDD/CDF SAMPLE LOG-IN SHEET(DC-1)

Lab Name					Page 1 of	1
Received By (Print Name					Log-In Date	e
Recevied by (Signature)						5/9/2012
Contract No.						5/11/2012
Case No.		SDG No.	00584-		TO No.)0584-003
Remarks:				responding		
		EPA Sample	Sample	Assigned Lab	B	Condition of
		No.	Tag No.	No.	sample, sl	hipment, etc.
Custody Seal(s)	Present/Absent			N.1.A	0 111	
	Intact/Broken/	236		NA	Cancelled	per client, not
2. Custody Seal Nos.	NA	400		10594 004 0		
O Objects of Overlands	Present/Absent	193		<u>)0584-001.01</u>		
3. Chain of Custody	Present/Absent	238		I)0584-002.01	1	
Records 4. Traffic Reports or		230		70304-002.0	1	
Packing Lists		240)0584-003.0°	1	
5. Airbill	Airbill			70001 000.0	1	
0.7410111	Present/Absent					
6. Airbill No.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	was and of the second of the s	1				
7. Sample Tags	Present/Absent					
Sample Tag Nos.	Listed/ Not					
	Listed on Chain					
	of Custody					
	Record					
8. Sample Condition	Intact/Broken/					
	Leaking					
9. Cooler Temperature	0-1oC (SN:101915976)					
10. Does information on	Yes/No					
custody records and						
sample tags agree?	T/0/40 T/44/40					
11. Date Received at	5/9/12-5/11/12					
Laboratory	1004 1004 0050					
12. Time Received	1004, 1004, 0958					
Sample	Transfer					
Fraction	Fraction					
Area #	Area #	1				
Ву	Ву					
On	Ón					
D : 15		Logbook No				
Reviewed By		Logbook No. Logbook Page	No			
Date		Irognook Page	INU.			

Sample Delivery Group (SDG) Cover Sheet

SDG Number Case N Lab Code SDG T			PA Number MO Solicitation	
First Sample Re First Sample Re	eceipt Date _ 5/9	eceived in SDG eceipt Date	240 5/10/12-5/11/12	
	USEPA Sample Nu	umbers in SDG (Listed in Nu	imerical Order)	
Sample ID		Requested Analysis	Purchase Order	RFQ Reference Number(s)
1 193	Sediment	Dioxin		· · · · · · · · · · · · · · · · · · ·
2 238	WAter	Dioxin		
3 240	WAter	Dioxin		
4				
5				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18	'			
20				
20				
Note: Attach TR	/CQC Records to this form in	alphanumeric order (the order list		n).
Signature			8/12	

file:///C|/Documents%20and%20Settings /Desktop/Cases%20for%20EPA /RE%20case%20 %20and%20 %20lab%20issues.htm From: Wednesday, June 20, 2012 9:22 AM Sent: To: Subject: RE: case lab issues and I do not need to be included on these issues. Just let me know if there is going to be a delay in the data delivery once all the details are ironed out. Thanks, This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose. From: Sent: Wednesday, June 20, 2012 10:13 AM To: Cc: **Subject**: case lab issues and 193, we re-extracted the sample using the 10 gram dry weight but the For case 193 using 5 gram wet weight and the recoveries are recoveries are low. We have the data still for better. May we use the data for the 5 gram wet weight?

wet weight and the recoveries are still bad. We have two options: to report the re-extracted data as is, or

re-extract using an even smaller sample size of 1 gram. Re-extraction will cause a delay in reporting.

, samples

1T5 and

Ηi

Ηi

For case

Thanks,

1T7, were re-extracted using a smaller sample size of 2-3 gram

$file: /\!//C /Documents \%20 and \%20 Settings/$	/Desktop/Cases%20for%20EPA	/RE%20case%20	%20and%20	%20lab%20issues.htm

P Please consider the environment before printing this email.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

file:///C|/Documents%20and%20Settings /Desktop/Cases%20for%20EPA /RE%20case%20 .htm

From:

Sent: Thursday, June 21, 2012 11:05 AM

To:

Subject: RE: case

And will SDG 193 be shipped out on Monday (meaning a Tuesday delivery), or delivered by Monday?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 21, 2012 11:57 AM

To:

Subject: RE: case

Hi .

For the congeners July 2.

Thanks,

file:///C|/Documents%20and%20Settings

/Desktop/Cases%20for%20EPA/

/RE%20case%20

.htm

P Please consider the environment before printing this email.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Thursday, June 21, 2012 10:39 AM

To:

Subject: RE: case

So SDG 193 (Dioxin) could be shipped out by Monday (6/25), or delivered by Monday? And when do you expect to deliver SDG 238 (Congeners)?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 21, 2012 11:28 AM

To:

Subject: case

Hi

Unfortunately case will not be ready by Monday. We have to re-extract a sample again for the PCB portion. For the dioxin portion we might still be able to reach the Monday due date, we are re-running the control samples.

If you have any questions, please let me know.

Thanks,

file:///C /Documents%20and%20Settings	/Desktop/Cases%20for%20EPA/	/RE%20case%20	.htm
P Please consider the environment be	efore printing this email.		
NOTICE THE STATE OF THE STATE O			
specific individual and purpose, and is communication and any attachments communication, or the taking of any	s protected by law. If you are and are hereby notified that a	not the intended r any disclosure, cop	ying or distribution of this
	647 of 666	ñ	

From:

Thursday, May 10, 2012 11:25 AM Sent:

To: Cc:

Subject: Region | Case Lab | Issue Non-

sampler issues | FINAL

Attachments: _5_8_12.pdf

Follow up Follow Up Flag: Flag Status: Flagged

Good afternoon,

Summary Start

Issue: The Region informed 236 (Station Location C0512--A) needs to be that sample

discarded due to a shipment issue.

Resolution; Per Region , the laboratory will not analyze sample 236 (Station Location

-A); the sample is canceled. A sample from the location will be recollected on 5/10 and shipped to the laboratory; however, the sample will have a new number and the new Station -A-RS. The laboratory will note the issue in the SDG Narrative and Location will be 12proceed with the analysis of the samples.

Summary End

Please let me know if you have any questions or problems. To waive any defect(s) associated with this issue, please contact your PO.

Thank you,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, May 10, 2012 12:05 PM

To: Cc:

Subject: Fw: [x] : Sample 12--A and[x]

informed me late last night that

Please see below, and notify the labs as requested below.

Thanks.

---- Forwarded by

on 05/10/2012 12:03 PM ----

From:

To: Cc:

05/10/2012 11:24 AM Date:

Subject: FW: [x] : Sample 512-

Good morning

Can you please request to not analyze samples [x] and 236 for Case ? The sample was collected on Tuesday May 8, 2012. The PRP has to discard their sample and recollect due to a shipment issue. We plan to recollect the split sample today and resend to the lab for delivery tomorrow morning.

Please let me know if you have any questions. I have attached the COCs for your reference.

-A and [x]

Thanks,

From:

Sent: Thursday, May 10, 2012 10:13 AM

To: Cc:

their

Subject: [x] : Sample 12--A [x]

Please note we will be resampling this location today.

649 of 666

046 sample for the A location arrived at their labs with no ice and they were instructed by their

QA person to resample the A and C locations.

Old Sample Info

[x]

Sample name 512- N -A and [x]

We are recollecting this sample today. This sample will have a new number and will be called 512- -A-RS and [x]

FYI this sample also has PCB Congeners and Dioxin/Furans analyses associated with it

Thank You

file:///Cl/Documents%20and%20Settings /Desktop/Cases%20...%20Lab%20

%20%20Issue%20Data%20delivery%20%20FINA%20L.htm

From:

Sent: Friday, June 15, 2012 3:07 PM

To:

Subject: Region | Lab | Issue Data delivery |

FINAL

-Updated Record of Communication-

Thank you for the updated information. will note that SDGs 193 and 238 for Case are due today (6/15); however, the laboratory is unable to run their re-extract samples due to a instrument problem. The laboratory's P2 instrument for Dioxin analysis is down. The technicians were at the laboratory on 6/13 to order the part, but the wrong part was ordered. The technicians were at the laboratory again on 6/14 assessing the issue and the new part will be delivered on Monday (6/18). The laboratory expects to deliver the data for SDGs 193 and 238 on Monday, 6/25.

Please let me know if there are any additional updates. Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Friday, June 15, 2012 3:37 PM

To:

Subject: RE: Request for Quote for Solicitation 1816 (1947.2)

/Desk...

Hi

Monday June 25 is when we will report the data.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Friday, June 15, 2012 3:07 PM

To:

Subject: FW: case

Hi

I just wanted to follow up with you about this. Can you please provide an estimated delivery date for SDGs 193 and 238 if they are going to be late?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

/Desk...

From:

Sent: Thursday, June 14, 2012 2:17 PM

To:

Subject: RE: case

Dioxin

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Thursday, June 14, 2012 1:20 PM

To:

Subject: RE: case

Thanks ! And is "P2" your Dioxin or Congener instrument?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 14, 2012 2:12 PM

To: Cc:

Subject: RE: case

Hi

The SDGs that are affected are 193 and 238. Our instrument P2 is down. I will speak with my group to confirm what day we will be able to report the data and get back to you.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Thursday, June 14, 2012 1:11 PM

To: Cc:

Subject: RE: case

Hi

Yes, you would always want to inform me of issues like this since I am your data delivery contact. Can you please advise which instrument is down, which SDGs will be affected, and when you expect to deliver the data for those SDGs? will inform the appropriate Region/people of this issue once I have all the information.

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 14, 2012 2:01 PM

To:

Subject: case

Desk...

Importance: High

Hi ,

The report for case is due tomorrow, however we are unable to run our re-extract samples due to a instrument problem. The technicians were here yesterday to order the part but the wrong part was ordered. They are here again today assessing the issue and the new part will be delivered Monday. This will delay the report a few days. Is there anyone else I need to notify about the lab issue?

Thanks,

P Please consider the environment before printing this email.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Tuesday, June 12, 2012 1:59 PM

To:

Subject: Region | Lab | Issue Data delivery | FINAL

/Desk...

Thank you for the information. will note the addition of the following SDGs to the attached spreadsheet. If you have not already done so, please submit the coversheets for the SDGs below as soon as possible.

			1 0	200	
Region	Lab	Case	Contract	SDG	Lab Rec Date

 $file: ///C // Documents \% 20 and \% 20 Settings \qquad / Desktop/Cases \% 20 ... \% 20 Lab \% 20 \qquad \% 20 \% 20 Issue \% 20 Data \% 20 delivery \% 20 \% 20 FINA \% 20 L. htm$

		1W1	6/5/2012
		1W2	6/5/2012
		046	6/5/2012
		065	6/5/2012

Please let me know if there are any updates throughout the week. Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Tuesday, June 12, 2012 1:15 PM

To:

Subject: RE: Region | Lab | Issue Data delivery

Please see attached.

Thanks,

P Please consider the environment before printing this email.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this

communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Tuesday, June 12, 2012 11:22 AM

To:

Subject: RE: Region | Lab | Issue Data delivery

Hi .

Which "form" are you talking about? You sent me an updated spreadsheet? If so, yes, can you please resend it?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Tuesday, June 12, 2012 12:15 PM

To:

Subject: RE: Region | Lab | Issue Data delivery

Hi

I actually emailed you the form this morning. Would you like me to re-send it again?

/Desk...

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Tuesday, June 12, 2012 11:17 AM

To: Cc:

Subject: FW: Region | Lab | Issue Data delivery

Hi

I just wanted to follow up with you about this. Can you please advise if there are any additional in-house SDGs that should be added to the attached spreadsheet? Also, please advise if any SDGs are expected to be delivered late. If so, which SDGs, why, and when you expect to deliver them?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

whiteh agreement or government initiative expressity permitting the deep of a main for each p

From:

Sent: Monday, June 11, 2012 9:48 AM

To:

Subject: Region | Lab | Issue Data delivery

Good morning,

Attached is data that has identified as in-house at your laboratory. Please review the information in the table and notify immediately of any inaccurate information in the table or problems at the laboratory. The table includes the "Lab Rec Date" (the date that the SDG was closed) and the "Data Due Date" which indicates the date that data is due. Please verify that the Data Due Date is accurate for each

/Desktop/Cases%20...%20Lab%20 %20%20Issue%20Data%20delivery%20%20FINA%20L.htm

file:///C|/Documents%20and%20Settings/

SDG and enter any SDGs (complete or open) into the table that are in-house but do not appear in the attached table. Please note that per the SOW, SDG coversheets shall be submitted to within three working days following the receipt of the last sample in the SDG.

Cases that shipped to your laboratory the week of 6/4: and

Please submit coversheets for any in-house SDGs not appearing in the attached spreadsheet immediately.

I will be following-up this email with a call later today to discuss the status of in-house samples and any problems you may be facing if I have not heard back from you by email.

Please let me know if you have any questions. Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 21, 2012 11:26 AM

To:

Subject: Region | Lab | Issue Data delivery |

FINAL

-Updated Record of Communication-

Thank you for the updated information. will note that SDGs 193 (Dioxin) and 238 (Congeners) will not be delivered on Monday (6/25) as previously indicated. The laboratory has to re-extract a sample again for the PCB portion and is re-running the control samples for the dioxin portion. The laboratory expects to deliver SDG 193 by Tuesday (6/26) and SDG 238 by 7/2.

Please let me know if there are any additional updates throughout the week. Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 21, 2012 12:11 PM

To:

Subject: RE: case

HI

Honestly we are not sure at the moment, but as of right now tentatively Tuesday.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Thursday, June 21, 2012 11:05 AM

To:

Subject: RE: case

And will SDG 193 be shipped out on Monday (meaning a Tuesday delivery), or delivered by Monday?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 21, 2012 11:57 AM

To:

Subject: RE: case

Hi

For the congeners July 2.

Thanks,

Desk...

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Thursday, June 21, 2012 10:39 AM

To:

Subject: RE: case

So SDG 193 (Dioxin) could be shipped out by Monday (6/25), or delivered by Monday? And when do you expect to deliver SDG 238 (Congeners)?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Thursday, June 21, 2012 11:28 AM

To:

Subject: case

Hi

Unfortunately case will not be ready by Monday. We have to re-extract a sample again for the PCB portion. For the dioxin portion we might still be able to reach the Monday due date, we are re-running the control samples.

If you have any questions, please let me know.

Thanks,

P Please consider the environment before printing this email.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Monday, June 18, 2012 11:27 AM

To:

Subject: Region | Lab | Issue Data delivery | FINAL

Thank you for the information. will note that the laboratory is waiting for the new part for the P2 instrument for Dioxin analysis from FedEx, the laboratory still plans to deliver the data for SDGs 193 and 238 by 6/25, and the addition of the following SDGs to the attached spreadsheet. If you have not already done so, please submit the coversheets for the SDGs below as soon as possible.

Region	Lab	Case	Contract	SDG	Lab Rec Date
				1W8	6/14/2012
_				1W9	6/15/2012

Please let me know if there are any updates throughout the week. Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Monday, June 18, 2012 11:03 AM

To:

Subject: RE: Region | Lab | Issue Data delivery

HI

We are waiting for the part, it normally comes by Fed Ex and Fed Ex has not shown up yet. We still plan to deliver the data by 6/25.

Thanks,

P Please consider the environment before printing this email.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Monday, June 18, 2012 10:02 AM

To:

Subject: RE: Region | Lab | Issue Data delivery

Hi

No, you do not need to re-submit the handwritten SDG coversheets that were previously submitted.

Are there any updates on the laboratory's P2 instrument for Dioxin analysis? Can you please confirm that the laboratory still expects to deliver the data for SDGs 193 and 238 on Monday, 6/25?

Thanks,

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From:

Sent: Monday, June 18, 2012 10:53 AM

To:

Subject: RE: Region | Lab | Issue Data delivery

Hi Jackie,

Please see attached.

I do have another question, so I read that the SDG coversheets have to be typed? Would I need to redo the coversheets that I have sent in? The previous ones were all hand written. The one that I am sending in today has been typed up.

NOTICE: This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and any attachments and are hereby notified that any disclosure, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited. Thank you.

From:

Sent: Monday, June 18, 2012 9:21 AM

To:

Subject: Region | Lab | Issue Data delivery

Good morning,

Attached is data that has identified as in-house at your laboratory. Please review the information in the table and notify immediately of any inaccurate information in the table or problems at the laboratory. The table includes the "Lab Rec Date" (the date that the SDG was closed) and the "Data Due Date" which indicates the date that data is due. Please verify that the Data Due Date is accurate for each SDG and enter any SDGs (complete or open) into the table that are in-house but do not appear in the attached table. Please note that per the SOW, SDG coversheets shall be submitted to within three working days following the receipt of the last sample in the SDG.

Cases that shipped to your laboratory the week of 6/11:

Please submit coversheets for any in-house SDGs not appearing in the attached spreadsheet immediately.

I will be following-up this email with a call later today to discuss the status of in-house samples and any problems you may be facing if I have not heard back from you by email.

Please let me know if you have any questions.

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.
