Verification and Review of Data for Chlorinated Dioxins, Furans and PCB Congeners by Isotope Dilution HRGC/HRMS

Presented By: Charles Appleby

Office of Superfund Remediation and Technology Innovation

Analytical Services Branch

July 29, 2015

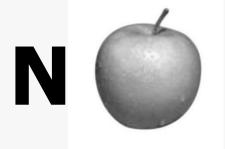
Agenda

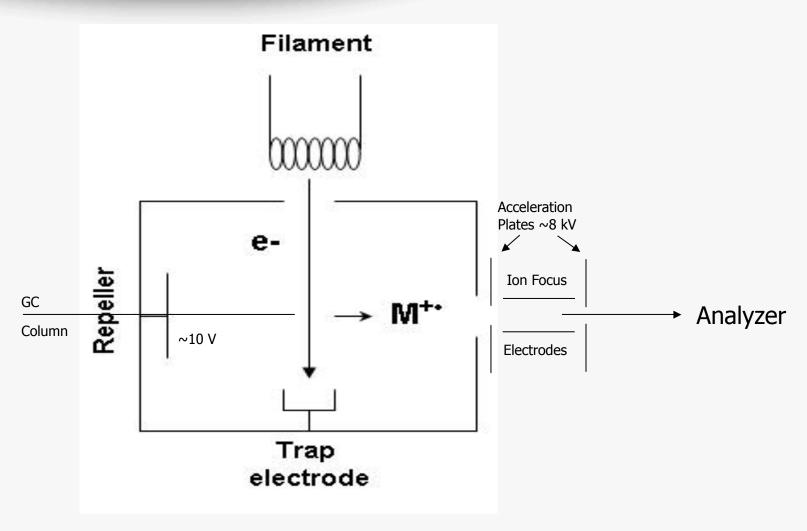
Overview

- What is Isotope Dilution, HRGC/HRMS?
- Preparing for the Review, laboratory documentation,
- Step by step process
- Documenting the Review
- Follow-up Actions

Themes:

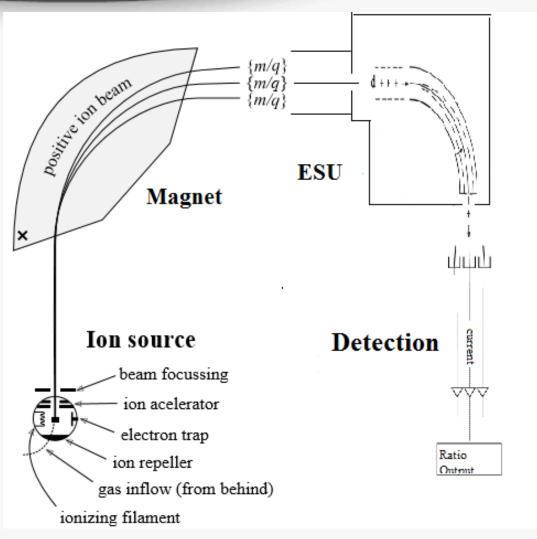
- Sample and Data Integrity
- Data Quality Elements


Isotope Dilution



July 29, 2015

U.S. Environmental Protection Agency


Electron Impact Ion Source

Magnetic Sector Mass Spectrometer

Initial Data Package Review

- Perform evidentiary or contract compliance audit
- Read Case Narrative and correspondence
- Review chain-of-custody
- Review QC summary forms, if present
- Review preservation and storage conditions
- Review sample analytical sequence information

Case Narrative Outline

- Sample Receipt and Storage
- Sample Preparation
- Analysis
- Reporting Conventions
- QA/QC Summary
- Analysis Discussion
- Sample Calculations
- Signed Statement

Initial Data Package Review

RRF Equation

$$RRF = \frac{(A_{s1} + A_{s2}) C_{IS}}{(A_{IS1} + A_{IS2}) C_{s}}$$

Sample Concentration Equations

$$C_n = \frac{(A_{s1} + A_{s2}) C_{IS}}{(A_{IS1} + A_{IS2}) RRF_n^* Vol \text{ or Mass}}$$

$$EDL = 2.5 * \underbrace{H_x} * Q_{IS}$$
$$H_{IS} * W * \underbrace{RRF_n}$$

Internal Standard Recovery

$$C_n = \frac{(A_{IS1} + A_{IS2}) Q_{RS}}{(A_{RS1} + A_{RS2}) RRF_{IS}}$$

$$%Recovery = \frac{C_{IS} *100}{Amount Spiked}$$

Preservation / Holding Time

			Action		
Evaluation	Sample Type	Criteria Exceedance	Detected Compounds	Non-Detected Compounds	
Toohnigal Holding Time	Aqueous/Soil	>1 year	J	UJ or R	
Technical Holding Time	Fish, Tissue	>1 year	Use profession	onal judgment	
	Aqueous/Soil	>4°C shipment and storage	J	UJ	
Storage Temperature	Fish, Tissue	>4°C shipment and <-10°C storage	J	UJ	
		Cl ₂ but no Thiosulfate	J	R	
Preservation	Aqueous	pH not adjusted when required	J	UJ	
Cample Extract Impresent Stored	All tunos	>35 days <1 year	J	UJ	
Sample Extract Improperly Stored	All types	>1 year	J	UJ or R	

Initial Data Package Review

ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

Lab Name: Contract:

Lab Code: Case No.: TO No.: SDG No.: 193

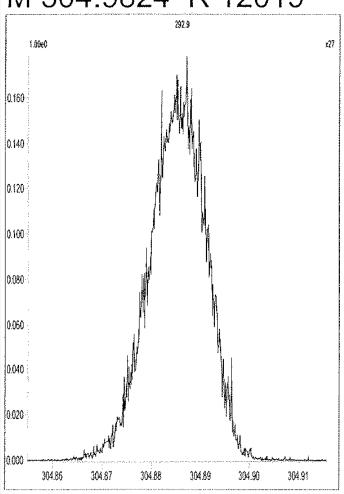
GC Column: DB-5 ID: 0.25 (mm) Instrument ID: E-HMS-04

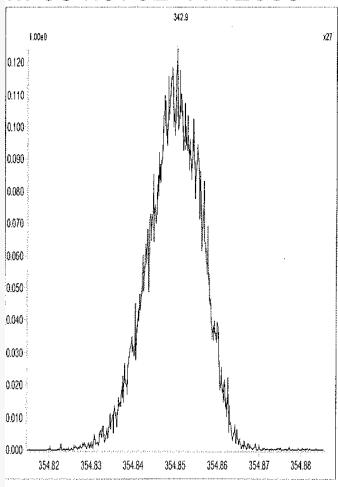
Init. Calib. Date(s): 05/03/2012

Initial Calib. Times: 05:17am

The Analytical Sequence of standards, samples, blanks, and Laboratory Control Samples(LCSs) is as follows:

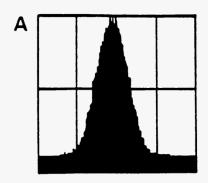
EPA SampleNo.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
PFK				05:06:21
Window Define		8230	6-JUL-12	05:14:35
CCAL CS3		8231	6-JUL-12	06:10:10
DLCS-	00313-01	8232	6-JUL-12	07:18:59
DLCS-	00313-02	8233	6-JUL-12	08:09:46
XXXXXXXX	XXXXXXXXX	8234	6-JUL-12	09:00:56
XXXXXXXXX	XXXXXXXXXX	8235	6-JUL-12	09:52:12
DFBLK-	00313-01	8236	6-JUL-12	11:11:40
XXXXXXXXX	XXXXXXXXX	8237	6-JUL-12	12:02:09
238	00584-002	8238	6-JUL-12	12:53:25
240	00584-003	8239	6-JUL-12	13:44:34
Window Define		8240	6-JUL-12	14:38:40
CCAL CS3		8241	6-JUL-12	15:27:23
PFK				15:32:06

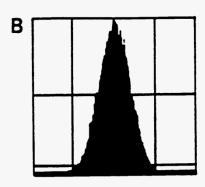

U.S. Environmental Protection Agency

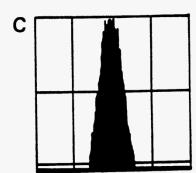

- Verify Mass Calibration and Resolution
 - Range of masses (should match descriptor)
 - Accurate masses of selected reference standard ions
 - Peak Matching Experiment
 - Documentation generated during PFK scan, not saved

M 304.9824 R 12019

M 354.9792 R 12889


July 29, 2015


U.S. Environmental Protection Agency

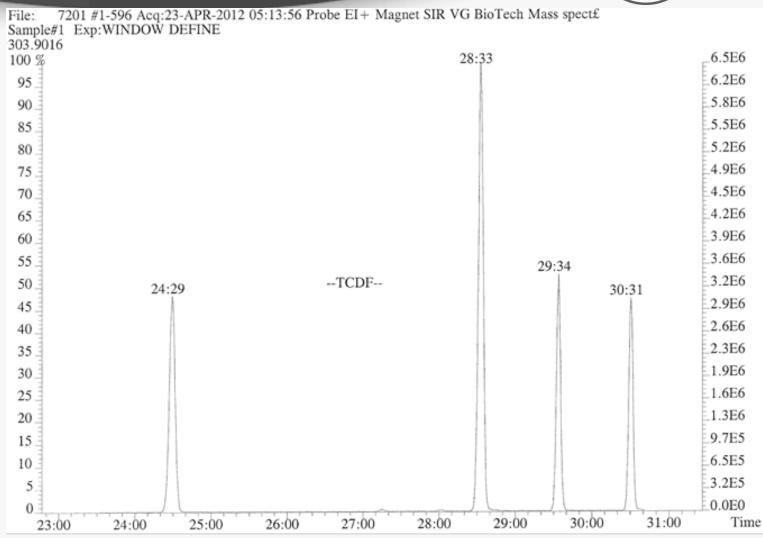

5,600

PEAK PROFILE DISPLAYS DEMONSTRATING THE EFFECT OF THE DETECTOR ZERO ON THE MEASURED RESOLVING POWER

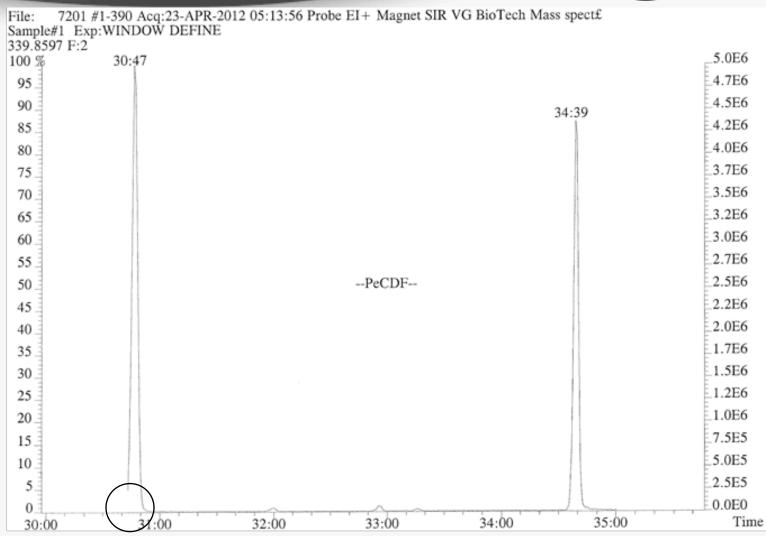
8,550

5,600

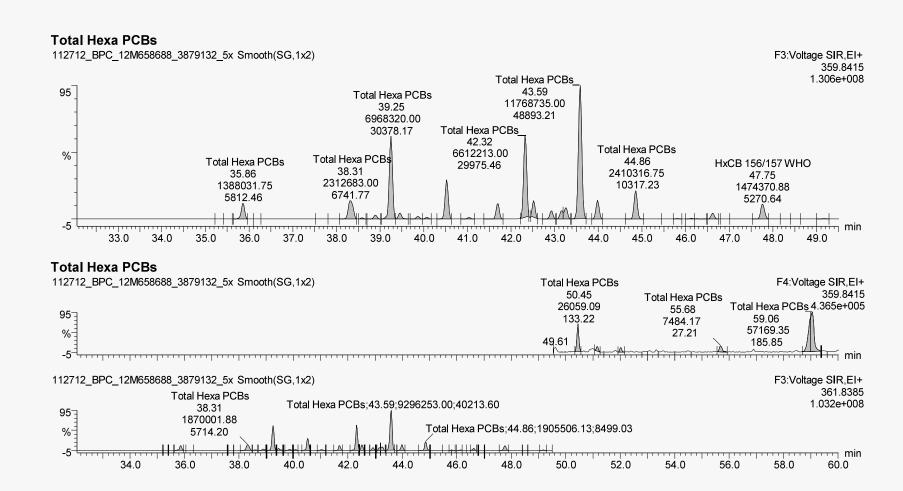
	Action ¹				
Criteria	Detected Associated Compounds	Non-Detected Associated Compounds			
Mass Spectrometer resolution of ≥ 10,000 is not demonstrated	R or professional judgment	No qualification			
Inability of the mass spectrometer to identify the upper mass fragment	R or professional judgment	R or professional judgment			

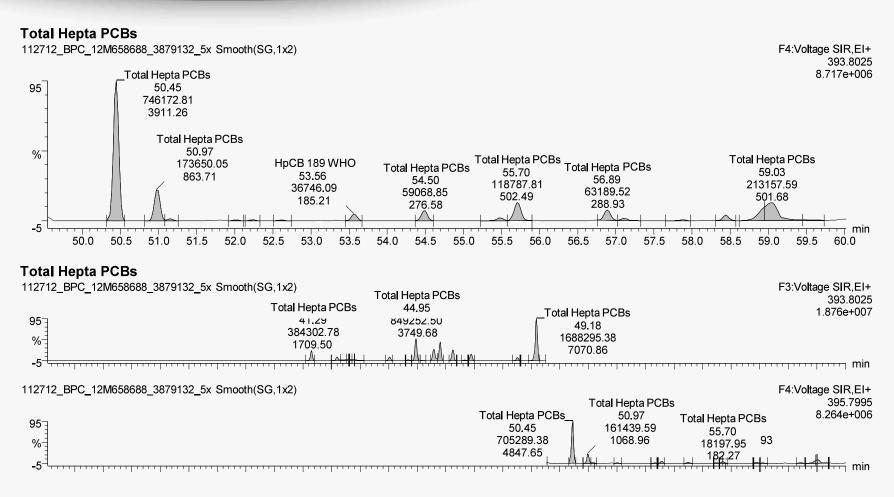


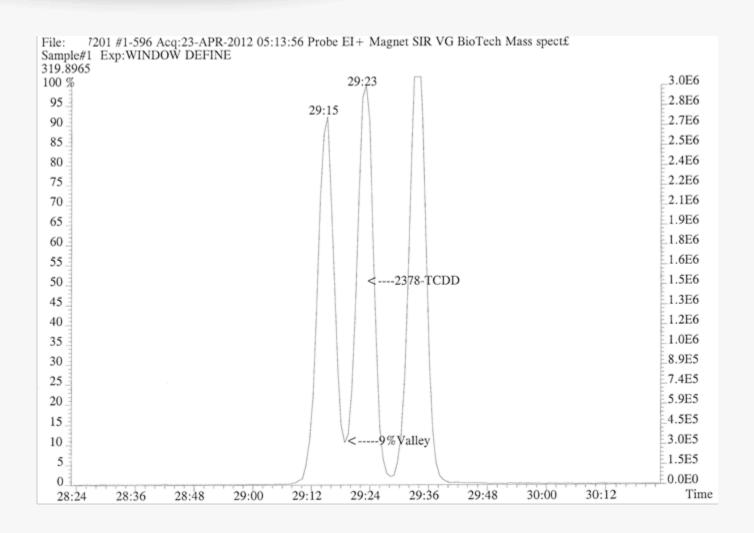
- Verify WDM Analyzed After PFK but Before Calibration.
 - First / Last of descriptor must elute within window
 - Tetra / penta descriptors
 - CBC Descriptors
- Verify GC Resolution with ISC
 - May be combined with WDM
- If Lab Uses a Different GC column,
 - Must define (and meet) criteria
 - Provide tabular information in Narrative

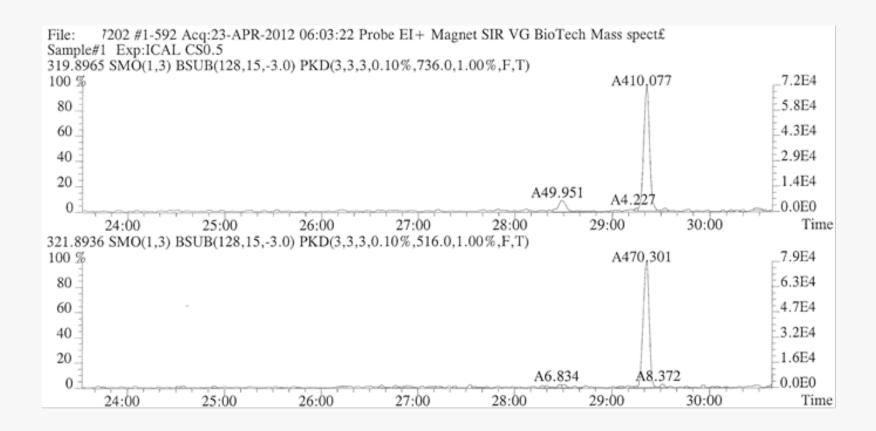


Fi	tention Time rst uting		Retention Time Last Eluting
TCDF	24:29		30:31
TCDD	26:17		30:29
PeCDF	30:47		34:39
PeCDD	32:09		34:30
HxCDF	35:31		37:50
HxCDD	36:02		37:31
HpCDF	39:13		40:31
HpCDD	39:27		40:06
c			
% Valley 2378-TCDD	:	9 %	

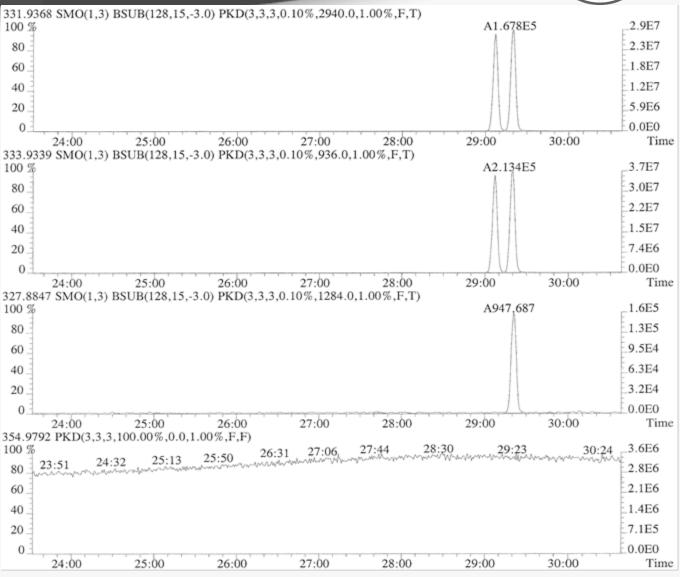








	Action ¹			
Criteria	Detected Associated Compounds	Non-Detected Associated Compounds		
WDM fails, or WDM adjustments are not made, or WDM is not reported, and Calibration standard performance is acceptable	J-Homologue Totals Only	UJ-Homologue Totals Only		
WDM fails, and WDM adjustments are not made, and Calibration standards indicate a problem in detecting 2,3,7,8-substituted congeners because of gross errors in the scan descriptor times	R	R		
ISC fails (GC Resolution (% Valley) of >25%), or ISC adjustments are not made	J all tetra – hexa-congeners	Not qualified		
ISC fails, or ISC adjustments are not made, and Calibration standards or samples indicate a problem in resolving 2,3,7,8-substituted congeners	R	R		
RT changes >15 seconds or RRT changes not within the values in Table A.3		qualification of target analytes; ls as estimated (J, UJ).		



- Review initial calibration levels and frequency, checking % RSD or linearity
- Verify calculations for initial calibration
- Verify sensitivity (i.e. examine low standard)

July 29, 2015

U.S. Environmental Protection Agency

		IOI	N ABUNDA	NCE RAT	'IO				
	SELECTED								ION RATIO
Target Analytes	IONS	CS0.5	CS1	CS2	CS3	CS4	CS5	FLAG	QC lIMITS
2,3,7,8-TCDF	304/306	0.77	0.72	0.76	0.77	0.79	0.79		0.65-0.89
1,2,3,7,8-PeCDF	340/342	1.51	1.59	1.53	1.56	1.56	1.57		0.65-0.89
2,3,4,7,8-PeCDF	340/342	1.51	1.55	1.56	1.55	1.57	1.56		1.32-1.78
1,2,3,4,7,8-HxCDF	374/376	1.24	1.24	1.31	1.30	1.27	1.26		1.32-1.78
1,2,3,6,7,8-HxCDF	374/376	1.23	1.23	1.21	1.22	1.29	1.28		1.32-1.78
2,3,4,6,7,8-HxCDF	374/376	1.24	1.19	1.25	1.25	1.26	1.28		1.05-1.43
1,2,3,7,8,9-HxCDF	374/376	1.30	1.27	1.25	1.25	1.27	1.27		1.05-1.43
1,2,3,4,6,7,8-HpCDF	408/410	1.04	1.03	1.03	1.03	1.04	1.04		1.05-1.43
1,2,3,4,7,8,9-HpCDF	408/410	1.09	1.03	1.03	1.05	1.04	1.04		1.05-1.43
OCDF	442/444	0.89	0.91	0.91	0.90	0.91	0.91		1.05-1.43
2,3,7,8-TCDD	320/322	0.87	0.76	0.76	0.76	0.78	0.77		1.05-1.43
1,2,3,7,8-PeCDD	356/358	1.53	1.59	1.53	1.57	1.56	1.55		1.05-1.43
1,2,3,4,7,8-HxCDD	390/392	1.22	1.21	1.24	1.24	1.24	1.21		0.88-1.20
1,2,3,6,7,8-HxCDD	390/392	1.18	1.23	1.26	1.27	1.24	1.24		0.88-1.20
1,2,3,7,8,9-HxCDD	390/392	1.31	1.23	1.22	1.24	1.24	1.23		0.88-1.20
1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.02	1.04	1.04	1.04	1.04		0.76-1.02
OCDD	458/460	0.92	0.89	0.88	0.90	0.89	0.89		0.76-1.02
13C-2,3,7,8-TCDF	316/318	0.77	0.78	0.77	0.77	0.77	0.77		0.65-0.89
13C-1,2,3,7,8-PeCDF	352/354	1.56	1.57	1.55	1.56	1.56	1.56		1.32-1.78
13C-2,3,4,7,8-PeCDF	352/354	1.57	1.57	1.56	1.56	1.55	1.57		1.05-1.43
13C-1,2,3,4,7,8-Hx7	384/385	0.52	0.53	0.54	0.54	0.52	0.52		1.05-1.43
13C-1,2,3,6,7,8-Hx7	384/385	0.53	0.51	0.51	0.50	0.52	0.52		0.88-1.20
13C-2,3,4,6,7,8-Hx	384/385	0.52	0.52	0.52	0.52	0.52	0.52		0.76-1.02
13C-1,2,3,7,8,9-Hxn	384/385	0.52	0.52	0.52	0.52	0.52	0.52		0.65-0.89
13C-1,2,3,4,6,7,8-∏	418/420	0.45	0.45	0.45	0.45	0.44	0.45		1.32-1.78
13C-1,2,3,4,7,8,9-	418/420	0.45	0.45	0.45	0.45	0.45	0.45		1.32-1.78
13C-2,3,7,8-TCDD	332/334	0.79	0.78	0.78	0.79	0.78	0.79		0.43-0.59
13C-1,2,3,7,8-PeCDD	368/370	1.58	1.58	1.57	1.58	1.56	1.56		0.43-0.59
13C-1,2,3,4,7,8-Hx	402/404	1.26	1.25	1.26	1.26	1.24	1.24		0.43-0.59
13C-1,2,3,6,7,8-Hx	402/404	1.25	1.26	1.25	1.25	1.24	1.25		0.43-0.59
13C-1,2,3,4,6,7,8-n	436/438	1.06	1.06	1.05	1.04	1.04	1.05		0.37-0.51
13C-OCDD	470/472	0.90	0.90	0.89	0.90	0.89	0.89		0.37-0.51

6DFA6 CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY HIGH RESOLUTION

Lab Name: Contract No.:

Lab Code: Case No.: TO No.: SDG No.: 193

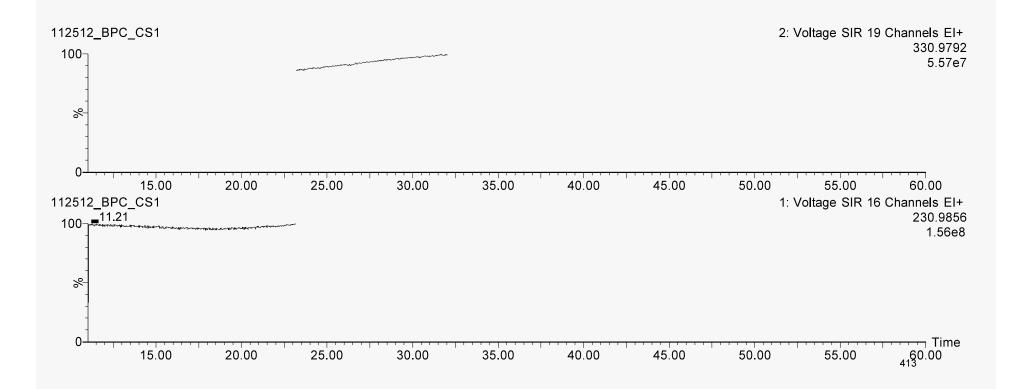
GC Column: DB-5 ID: 0.25(mm) Instrument ID: E-HRMS-03

Init. Calib. Date(s) .: 04/23/12

Init. Calib. Time.: 05:13

RR/RRF

								MEAN	
Target Analytes	CS0.5	CS1	CS2	CS3	CS4	CS5	RR/RRF	%RSD	QC LIMITS
2,3,7,8-TCDD	0.92	0.99	0.99	0.96	1.01	1.01	0.98	3.29	+/-20%
2,3,7,8-TCDF	0.93	0.94	0.93	0.91	0.93	0.93	0.93	0.96	+/-20%
1,2,3,7,8-PeCDF	0.96	1.02	1.02	0.93	1.04	1.04	1.00	4.37	+/-20%
1,2,3,7,8-PeCDD	0.85	0.92	0.91	0.92	0.94	0.94	0.91	3.60	+/-20%
2,3,4,7,8-PeCDF	0.90	0.96	0.96	1.00	0.97	0.98	0.96	3.40	+/-20%
1,2,3,4,7,8-HxCDF	1.16	1.26	1.26	1.19	1.25	1.21	1.22	3.41	+/-20%
1,2,3,6,7,8-HxCDF	1.09	1.14	1.16	1.15	1.15	1.14	1.14	2.08	+/-20%
1,2,3,4,7,8-HxCDD	0.93	0.99	1.02	1.06	1.01	1.00	1.00	4.40	+/-20%
1,2,3,6,7,8-HxCDD	0.95	1.03	1.01	0.88	1.01	1.00	0.98	5.84	+/-20%
1,2,3,7,8,9-HxCDD	1.01	1.05	1.04	1.04	1.05	1.05	1.04	1.62	+/-20%
2,3,4,6,7,8-HxCDF	1.09	1.18	1.16	1.12	1.16	1.12	1.14	3.13	+/-20%
1,2,3,7,8,9-HxCDF	1.13	1.20	1.18	1.13	1.19	1.16	1.16	2.56	+/-20%
1,2,3,4,6,7,8-HpCDF	1.33	1.44	1.41	1.34	1.43	1.41	1.39	3.46	+/-20%
1,2,3,4,6,7,8-HpCDD	0.95	1.02	1.02	0.97	1.03	1.02	1.00	3.14	+/-20%
1,2,3,4,7,8,9-HpCDF	1.28	1.34	1.33	1.37	1.36	1.34	1.33	2.38	+/-20%
OCDD	1.00	1.08	1.06	0.99	1.09	1.11	1.05	4.75	+/-20%
OCDF	1.19	1.23	1.24	1.09	1.29	1.32	1.23	6.52	+/-20%


						Vra		
	Name	RT-1	Resp 1	Resp 2	Ratio	Meet	Mod?	RRT
ŀ	2,3,7,8-TCDF	28:31	1.117e+03	1.557e+03	0.72	yes	no	1.001
	1,2,3,7,8-PeCDF	32:55	7.190e+03	4.529e+03	1.59	yes	no	1.001
	2,3,4,7,8-PeCDF	33:39	6.413e+03	4.148e+03	1.55	yes	no	1.000
	1,2,3,4,7,8-HxCDF	36:29	5.746e+03	4.635e+03	1.24	yes	no	1.000
	1,2,3,6,7,8-HxCDF		5.979e+03	4.867e+03	1.23	yes	no	1.000
	2,3,4,6,7,8-HxCDF	37:04	5.534e+03	4.663e+03	1.19	yes	no	1.000
	1,2,3,7,8,9-HxCDF	37:46	5.168e+03	4.077e+03	1.27	yes	no	1.000
	1,2,3,4,6,7,8-HpCDF	39:12	4.787e+03	4.657e+03	1.03	yes	no	1.000
	1,2,3,4,7,8,9-HpCDF	40:30	3.775e+03	3.673e+03	1.03	yes	no	1.000
	OCDF	43:15	5.272e+03	5.801e+03	0.91	yes	no	1.004
	2,3,7,8-TCDD	29:22	9.344e+02	1.233e+03	0.76	yes	no	1.001
	1,2,3,7,8-PeCDD	34:01	4.866e+03	3.062e+03	1.59	yes	no	1.001
	1,2,3,4,7,8-HxCDD	37:10	4.053e+03	3.339e+03	1.21	yes	no	1.000
	1,2,3,6,7,8-HxCDD	37:15	4.085e+03	3.329e+03	1.23	yes	no	1.000
-3	1,2,3,7,8,9-HxCDD	37:32	4.271e+03	3.460e+03	1.23	yes	no	1.008
	1,2,3,4,6,7,8-HpCDD		3.271e+03	3.210e+03	1.02	yes	no	1.000
1.		43:05	4.582e+03	5.162e+03	0.89	yes	no	1.000
	13C-2,3,7,8-TCDF	28:30	2.487e+05	3.208e+05	0.78	yes	no	0.978
	13C-1,2,3,7,8-PeCDF		2.802e+05	1.781e+05	1.57	yes	no	1.129
	13C-2,3,4,7,8-PeCDF		2.685e+05	1.710e+05	1.57	yes	no	1.154
	13C-1,2,3,4,7,8-HxCDF		1.146e+05	2.150e+05	0.53	yes	no	0.972
	13C-1,2,3,6,7,8-HxCDF		1.273e+05	2.519e+05	0.51	yes	no	0.975
	13C-2,3,4,6,7,8-HxCDF		1.186e+05	2.259e+05	0.52	yes	no	0.988
	13C-1,2,3,7,8,9-HxCDF		1.049e+05	2.031e+05	0.52	yes	no	1.006
1	3C-1,2,3,4,6,7,8-HpCDF	39:11	8.125e+04	1.803e+05	0.45	yes	no	1.044
	3C-1,2,3,4,7,8,9-HpCDF		6.924e+04	1.534e+05	0.45	yes	no	1.079
	13C-2,3,7,8-TCDD	29:21	1.925e+05	2.452e+05	0.78	ves	no	1.007
	13C-1,2,3,7,8-PeCDD		2.112e+05	1.339e+05	1.58	yes	no	1.166
	13C-1,2,3,4,7,8-HxCDD		1.659e+05	1.324e+05	1.25	yes	no	0.991
	13C-1,2,3,6,7,8-HxCDD		1.611e+05	1.279e+05	1.26	yes	no	0.992
1	3C-1,2,3,4,6,7,8-HpCDD		1.303e+05	1.234e+05	1.06	yes	no	1.068
3	13C-OCDD		1.715e+05	1.900e+05	0.90	yes	no	1.148
	230 0000		1					
	13C-1,2,3,4-TCDD	29:08	1.964e+05	2.473e+05	0.79	yes	no	*
	13C-1,2,3,7,8,9-HxCDD	37:31	1.735e+05	1.389e+05	1.25	yes	no	*
	37Cl-2,3,7,8-TCDD	29:22	2.319e+03				no	1.008

						AL PRI	OTEC
	Name	Signal 1	Noise 1	S/N Rat.1	Signal 2	Noise 2 S	S/N Rat.2
	2,3,7,8-TCDF	1.87e+05	3.80e+02	4.9e+02	2.61e+05	5.68e+02	4.6e+02
F.	1,2,3,7,8-PeCDF	1.42e+06	4.16e+02	3.4e+03	8.89e+05	1.24e+03	7.2e+02
30	2,3,4,7,8-PeCDF	1.26e+06	4.16e+02	3.0e+03	8.28e+05	1.24e+03	6.7e+02
	1,2,3,4,7,8-HxCDF	1.25e+06	7.20e+02	1.7e+03	9.88e+05	3.80e+02	2.6e+03
ì	1,2,3,6,7,8-HxCDF	1.30e+06	7.20e+02	1.8e+03	1.05e+06	3.80e+02	2.8e+03
	2,3,4,6,7,8-HxCDF	1.21e+06	7.20e+02	1.7e+03	1.03e+06	3.80e+02	2.7e+03
	1,2,3,7,8,9-HxCDF	1.09e+06	7.20e+02	1.5e+03	8.47e+05	3.80e+02	2.2e+03
	1,2,3,4,6,7,8-HpCDF	1.03e+06	1.59e+03	6.5e+02	9.98e+05	1.26e+03	7.9e+02
	1,2,3,4,7,8,9-HpCDF	7.28e+05	1.59e+03	4.6e+02	7.20e+05	1.26e+03	5.7e+02
	OCDF	8.52e+05	4.40e+02	1.9e+03	9.60e+05	5.48e+02	1.8e+03
t	,						•
	2,3,7,8-TCDD	1.63e+05	5.60e+02	2.9e+02	2.04e+05	3.80e+02	5.4e+02
1,2	1,2,3,7,8-PeCDD	9.68e+05	5.44e+02	1.8e+03	6.20e+05	2.52e+02	2.5e+03
0	1,2,3,4,7,8-HxCDD	9.05e+05	6.60e+02	1.4e+03	7.43e+05	6.68e+02	1.1e+03
her."	1,2,3,6,7,8-HxCDD	9.02e+05	6.60e+02	1.4e+03	7.41e+05	6.68e+02	1.1e+03
1875	1,2,3,7,8,9-HxCDD	9.01e+05	6.60e+02	1.4e+03	7.35e+05	6.68e+02	1.1e+03
1	1,2,3,4,6,7,8-HpCDD	6.40e+05	4.24e+02	1.5e+03	6.44e+05	2.80e+02	2.3e+03
	OCDD	7.86e+05	3.84e+02	2.0e+03	8.58e+05	2.68e+02	3.2e+03
	13C-2,3,7,8-TCDF	4.13e+07	3.98e+03	1.0e+04	5.32e+07	9.12e+02	5.8e+04
	13C-1,2,3,7,8-PeCDF	5.44e+07	2.88e+02	1.9e+05	3.47e+07	4.60e+02	7.5e+04
125	13C-2,3,4,7,8-PeCDF	5.39e+07	2.88e+02	1.9e+05	3.42e+07	4.60e+02	7.4e+04
1	3C-1,2,3,4,7,8-HxCDF	2.45e+07	4.80e+02	5.1e+04	4.72e+07	1.12e+03	4.2e+04
1	3C-1,2,3,6,7,8-HxCDF	2.76e+07	4.80e+02	5.7e+04	5.26e+07	1.12e+03	4.7e+04
	3C-2,3,4,6,7,8-HxCDF	2.58e+07	4.80e+02	5.4e+04	4.90e+07	1.12e+03	4.4e+04
1	3C-1,2,3,7,8,9-HxCDF	2.22e+07	4.80e+02	4.6e+04	4.24e+07	1.12e+03	3.8e+04
	-1,2,3,4,6,7,8-HpCDF	1.73e+07	5.04e+03	3.4e+03	3.80e+07	7.10e+03	5.4e+03
	-1,2,3,4,7,8,9-HpCDF	1.34e+07	5.04e+03	2.6e+03	2.96e+07	7.10e+03	4.2e+03
	13C-2,3,7,8-TCDD	3.35e+07	3.08e+03	1.1e+04	4.25e+07	1.37e+03	3.1e+04
	13C-1,2,3,7,8-PeCDD	4.20e+07	4.48e+02	9.4e+04	2.67e+07	3.48e+02	7.7e+04
1	3C-1,2,3,4,7,8-HxCDD	3.70e+07	2.38e+03	1.6e+04	2.95e+07	1.45e+03	2.0e+04
	3C-1,2,3,6,7,8-HxCDD	3.44e+07	2.38e+03	1.4e+04	2.75e+07	1.45e+03	1.9e+04
30	-1,2,3,4,6,7,8-HpCDD	2.58e+07	1.24e+03	2.1e+04	2.46e+07	6.84e+02	3.6e+04
401	13C-OCDD	2.87e+07	5.72e+02	5.0e+04	3.19e+07	5.28e+02	6.0e+04
	121						
-	13C-1,2,3,4-TCDD	3.48e+07	3.08e+03	1.1e+04	4.39e+07	1.37e+03	
1	3C-1,2,3,7,8,9-HxCDD	3.73e+07	2.38e+03	1.6e+04	3.00e+07	1.45e+03	2.1e+04
3.	37C1-2,3,7,8-TCDD	3.90e+05	8.68e+02	4.5e+02			

	Action				
Criteria	Detected Compounds	Non-Detected Compounds			
Initial calibrations are not performed	R	R			
Initial calibration not at proper frequency	J	UJ			
Ion Abundance Ratio out	R or professional judgment	R or professional judgment			
GC Resolution (% Valley) >25%	J	UJ			
Linearity : RRF %RSDs; RR %RSDs out	J	UJ			
Sensitivity <10:1 S/N ratio for all SICPs	J	R or professional judgment			
RTs outside criteria	R	R			

- Review daily beginning and ending continuing calibration verification standard performance
 - Usually measured in % difference
 - Check S/N
 - Check Relative Retention Times
- Check calculations for verification standards
- Verify that system has adequate stability
 - Absolute RT criteria
 - RRT criteria
 - Ion abundance ratio criteria

_			_					PROT	
				MEAN				ION	
		SELECTED	RR/	RR/		%D	ION	RATIO	ION RATIO
	Target Analytes	IONS	RRF	RRF	%D	FLAG	RATIO	FLAG	QC lIMITS
	2,3,7,8-TCDD	320/322	0.99	0.98	1.36		0.76		0.65-0.89
	2,3,7,8-TCDF	304/306	0.91	0.93	-2.46		0.76		0.65-0.89
	1,2,3,7,8-PeCDF	340/342	0.96	1.00	-4.42		1.54		1.32-1.78
	1,2,3,7,8-PeCDD	356/358	0.96	0.91	4.73		1.57		1.32-1.78
	2,3,4,7,8-PeCDF	340/342	1.02	0.96	5.66		1.51		1.32-1.78
	1,2,3,4,7,8-HxCDF	374/376	1.19	1.22	-2.71		1.20		1.05-1.43
	1,2,3,6,7,8-HxCDF	374/376	1.19	1.14	4.82		1.20		1.05-1.43
	1,2,3,4,7,8-HxCDD	390/392	1.11	1.00	11.22		1.28		1.05-1.43
	1,2,3,6,7,8-HxCDD	390/392	0.91	0.98	-6.82		1.24		1.05-1.43
	1,2,3,7,8,9-HxCDD	390/392	1.08	1.04	4.03		1.26		1.05-1.43
	2,3,4,6,7,8-HxCDF	374/376	1.14	1.14	-0.24		1.19		1.05-1.43
	1,2,3,7,8,9-HxCDF	374/376	1.15	1.16	-1.14		1.23		1.05-1.43
	1,2,3,4,6,7,8-HpCDF	408/410	1.38	1.39	-1.03		1.01		0.88-1.20
	1,2,3,4,6,7,8-HpCDD	424/426	1.00	1.00	0.06		1.05		0.88-1.20
	1,2,3,4,7,8,9-HpCDF	408/410	1.39	1.33	4.37		1.01		0.88-1.20
	OCDD	458/460	0.98	1.05	-6.75		0.88		0.76-1.02
	OCDF	442/444	1.19	1.23	-3.17		0.89		0.76-1.02
	Labeled Compoubds								
	13C-2,3,7,8-TCDD	332/334	1.04	1.00	4.17		0.79		0.65-0.89
	13C-1,2,3,7,8-PeCDD	368/370	0.93	0.82	13.37		1.57		1.32-1.78
	13C-1,2,3,4,7,8-HxCDD	402/404	0.92	0.93	-0.97		1.27		1.05-1.43
	13C-1,2,3,6,7,8-HxCDD	402/404	1.00	0.94	6.22		1.28		1.05-1.43
	13C-1,2,3,4,6,7,8-HpCDD		0.89	0.82	8.74		1.06		0.88-1.20
	13C-OCDD	470/472	0.76	0.59	27.94		0.90		0.76-1.02
	13C-2,3,7,8-TCDF	316/318	1.36	1.28	6.04		0.78		0.65-0.89
	13C-1,2,3,7,8-PeCDF	352/354	1.28	1.10	16.34		1.57		1.32-1.78
	13C-2,3,4,7,8-PeCDF	352/354	1.21	1.07	13.99		1.57		1.32-1.78
	13C-1,2,3,4,7,8-HxCDF	384/386	1.11	1.06	4.53		0.52		0.43-0.59
	13C-1,2,3,6,7,8-HxCDF	384/386	1.18	1.19	-0.75		0.52		0.43-0.59
	13C-2,3,4,6,7,8-HxCDF	384/386	1.14	1.10	3.75		0.52		0.43-0.59
	13C-1,2,3,7,8,9-HxCDF	384/386	1.07	0.98	8.86		0.53		0.43-0.59
	13C-1,2,3,4,6,7,8-HpCDF	418/420	0.92	0.84	9.95		0.45		0.37-0.51
	13C-1,2,3,4,7,8,9-HpCDF	418/420	0.79	0.71	12.05		0.44		0.37-0.51

Target Analytes	RRT	RT
2,3,7,8-TCDD	1.001	29:11
2,3,7,8-TCDF	1.001	28:19
1,2,3,7,8-PeCDF	1.001	32:47
1,2,3,7,8-PeCDD	1.000	33:53
2,3,4,7,8-PeCDF	1.000	33:31
1,2,3,4,7,8-HxCDF	1.000	36:23
1,2,3,6,7,8-HxCDF	1.000	36:29
1,2,3,4,7,8-HxCDD	1.000	37:05
1,2,3,6,7,8-HxCDD	1.000	37:09
1,2,3,7,8,9-HxCDD	1.008	37:26
2,3,4,6,7,8-HxCDF	1.000	36:57
1,2,3,7,8,9-HxCDF	1.000	37:40
1,2,3,4,6,7,8-HpCDF	1.000	39:07
1,2,3,4,6,7,8-HpCDD	1.000	40:00
1,2,3,4,7,8,9-HpCDF	1.000	40:23
OCDD	1.000	43:01
OCDF	1.004	43:10
Labeled Compoubds		
13C-2,3,7,8-TCDD	1.007	29:10
13C-1,2,3,7,8-PeCDD	1.170	33:52
13C-1,2,3,4,7,8-HxCDD	0.990	37:04
13C-1,2,3,6,7,8-HxCDD	0.992	37:09
13C-1,2,3,4,6,7,8-HpCDD	1.068	39:59
13C-OCDD	1.149	43:00
13C-2,3,7,8-TCDF	0.978	28:18
13C-1,2,3,7,8-PeCDF	1.132	32:46
13C-2,3,4,7,8-PeCDF	1.158	33:31
13C-1,2,3,4,7,8-HxCDF	0.972	36:22
13C-1,2,3,6,7,8-HxCDF	0.974	36:28
13C-2,3,4,6,7,8-HxCDF	0.987	36:57
13C-1,2,3,7,8,9-HxCDF	1.006	37:39
13C-1,2,3,4,6,7,8-HpCDF	1.045	39:06
13C-1,2,3,4,7,8,9-HpCDF	1.079	40:23
CLEAN-UP		
37Cl-2,3,7,8-TCDD	NA	29:11
Internal		
Standards		
13C-1,2,3,4-TCDD	NA	28:57
13C-1,2,3,7,8,9-HxCDD	NA	37:26

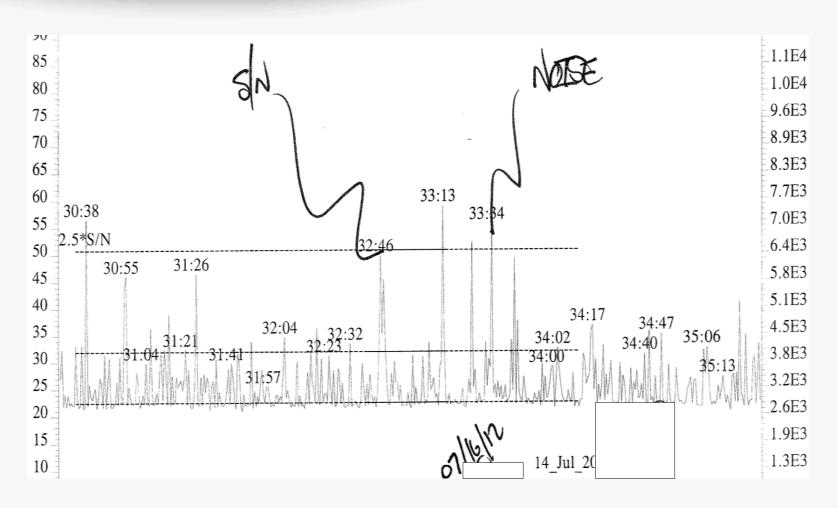
CL No.	Labeled Congener	Mean RRT	RRT (CS3)	Q	RRT QC Limit
4	PCB-77L	1.34724	1.3476		1.3513-1.3629
4	PCB-81L	1.32704	1.3274		1.3287-1.3403
5	PCB-105L	1.17692	1.1768		1.1808-1.1900
5	PCB-114L	1.15864	1.1588		1.1590-1.1683
5	PCB-118L	1.14326	1.1433		1.1424-1.1516
5	PCB-123L	1.13384	1.134		1.1331-1.1424
5	PCB-126L	1.26494	1.2649		1.2700-1.2792
6	PCB-156L/157L	1.0961	1.0962		1.0981-1.1003
6	PCB-167L	1.0694	1.0695		1.0664-1.0739
6	PCB-169L	1.17066	1.1707		1.1738-1.1761
7	PCB-189L	0.96226	0.9621		0.9587-0.9645
Labeled Cleanup Standard					
3	PCB-28L	0.9319	0.9328		0.9209-0.9324
5	PCB-111L	1.07736	1.0776		1.0730-1.0823
7	PCB-178L	1.0104	1.0106	_	1.0052-1.0127

Continuing Calibration Data

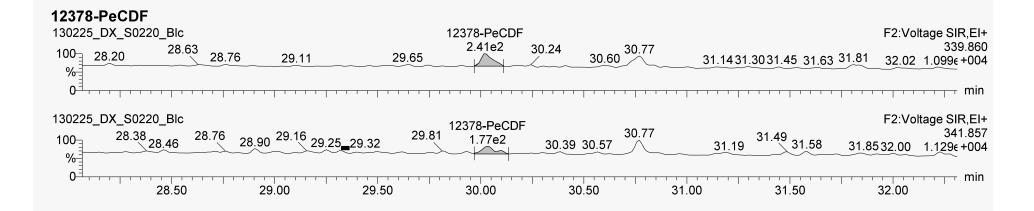
	Action		
Calibration Verification Criteria	Detected Compounds	Non-Detected Compounds	
Ion abundance ratios not within ± 15% window	J	R	
Absolute RT of ¹³ C ₁₂ -1,2,3,4-TCDD >25 minutes on DB-5 column, or >15 minutes on DB-225 (or equivalent) column	Use professional judgment		
Internal standards in the calibration verification not within 15 seconds of the RT in the initial calibration	Use professional judgment for qualification of target analytes; qualify homologues as estimated (J, UJ).		
RRTs in the calibration verification not within the limits defined in Table A.3	Use professional judgment		
Sensitivity: S/N <10 for all compounds	J	R	
%D for RRs not within ± 25%, %D for RRFs not within ± 35%	J	UJ	
RT changes >15 seconds or RRT changes not within the values in Table A.3	Use professional judgment for qualification of target analytes; qualify homologue totals as estimated (J, UJ).		
Relative ion abundance criteria is not within windows in CS3 (12-hour) standard	J	UJ	

- Examine method blank data for:
 - Appropriate frequency
 - Presence of target analytes
 - Presence of interferences
- Check instrument blanks for evidence of carry-over of high-level contaminants.
- Evaluate blank performance relative to data quality needs.

4DF	- F	'ORM	IV-HR	CDD
CDD/CDF	MET	HOD	BLANK	SUMMARY
П	тсн	DEC		N


EPA Sample No.

DFBLK


Lab Name:			Contract:	W001071
Lab Code: Case No.	:		TO No.:	SDG No.:193
Matrix: (Soil/Water/Ash/Tissue	/Oil)Sc	oil	Lab Sample ID:	00341-01
Sample wt/vol: 10.554	(g/mL)	q	Lab File ID:	8291
Water Sample Prep:	(SI	EPF/SPE)	Date Received:	
GC Column: DB-5 ID:	0.25	(mm)	Date Extracted:	06/12/2012
Instrument ID: E	-HRMS-03		Date Analyzed:	06/19/2012

EPA Sample No.	Lab Sample ID	Lab File ID	Date Analyzed
DFBLK	00341-01	8291	06/19/2012
DLCS	00341-02	8292	06/19/2012
DLCS	00341-03	8293	06/19/2012
193	00584-001	8294	06/19/2012

Method Blank

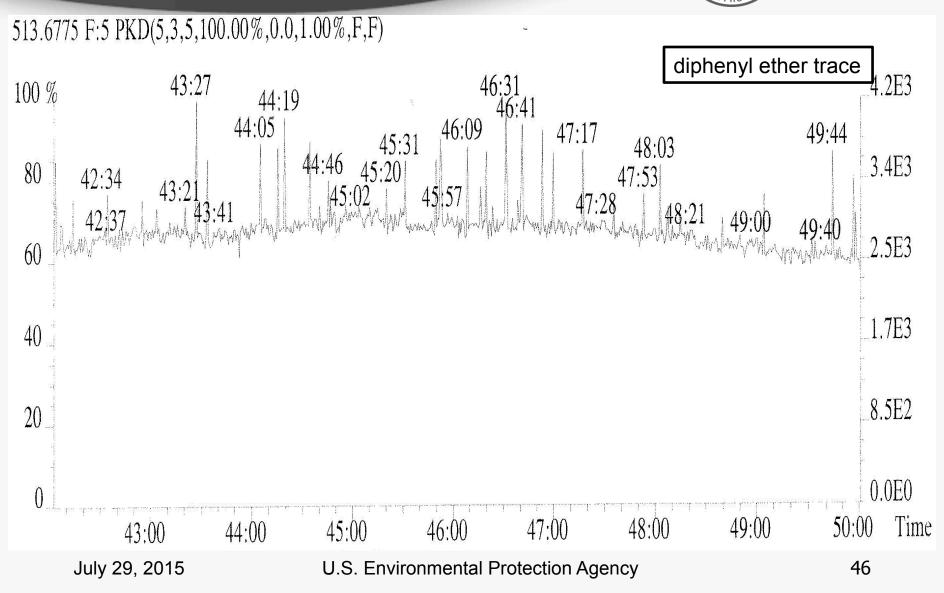
Method Blank Result	Sample Result	Action	
	Not detected	No qualification	
< < CRQL or EDL	≥CRQL or EDL and >> Blank Result	No qualification or use professional judgment to avoid false pos. or neg. (see E.2.b above)	
	Not detected	No qualification	
≥ CRQL or EDL	≥CRQL or EDL and < Blank Result	U*	
	> CRQL or EDL and ≥ Blank Result	J or use professional judgment	
Gross contamination	Positive	R	

Laboratory Control Spike

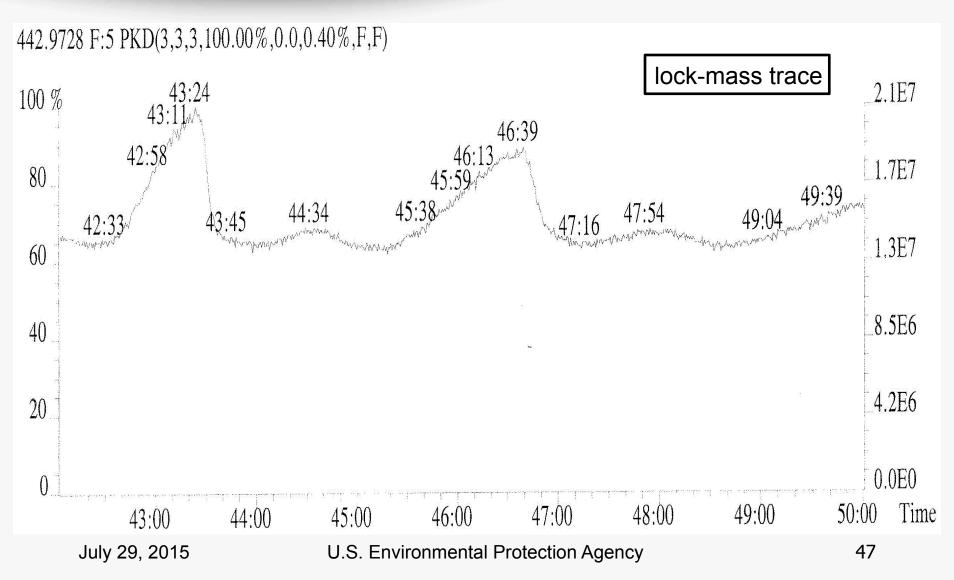
- Examine LCS, or On-Going Precision and Recovery (OPR) data for:
 - Appropriate frequency
 - Recovery of target analytes
 - Presence of interferences
 - Appropriate matrices

Laboratory Control Spike

	Action		
Laboratory Control Sample Performance Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
%R > Upper Acceptance Limit	J	No qualification	
% R >10% but < Lower Acceptance Limit	J	UJ	
% R <10%	J	R	
LCS performed but not at required frequency	J	Use professional judgment	
LCS not performed	J	Use professional judgment	


Sample Data

- Review sample extraction and analysis run logs, reporting forms, processed data and raw data.
- Examine sample data for:
 - reported analytes as well as non-detects
 - chromatography
 - retention time match
 - ion ratios
 - both ions meeting S/N criteria
 - abnormal labeled compound recovery
 - diphenyl ether interference
 - lock mass stability
- Verify calculations of sample results.
- Check for transcription errors.


System Performance

System Performance

Final Evaluation of Data

Note all deviations from the method and all QC deficiencies

Evaluate the impact on all data and on individual samples

Apply data qualifiers as appropriate

Contact Information:

Charles Appleby
USEPA ASB
CLP SOM COR & NRAS COR
(703) 347-0266
appleby.charlie@epa.gov