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Advantages of Gene chips

-Biomarkers of exposure
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-Compound discrimination and quantification

-Bioavailability




The company- what we do.  tonray ®

EcoArray Inc. is a company that manufactures
gene chips and provides support and services
related to these products.

Our products and services are specifically
tailored to the toxicology field.




Existing technologies EcbAray
that can measure compounds

Technology Limitations
. e Fail to report on what is
* Water/sediment happening in an animal.

chemistry tests

e Can not report on

o In vitro assays ]
(ie. YES assay). metabolites of compounds.

e Whole animal bioassays. e Insensitive endpoints.




Existing technologies EcbAvray 2
that can measure compounds

Technology Limitations
. e Fail to report on what is
* Water/sediment happening in an animal.

chemistry tests

¢ Can not report on

o In vitro assays ]
(ie. YES assay). metabolites of compounds.

e Whole animal bioassays. e Insensitive endpoints.

... gene chips overcome these limitations.




Small glass slides or
membranes that contain
genetic material.
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How gene chips work- an overview — cinva ®
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How gene chips work
-In more detarl..

cell

@J/ mRNA (expressed genes)
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Very sensitive tests!!! 10
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Measure mRNA using gene chips

eThousands of genes can be spotted onto chips
¢ MRNA changes can be quantitated

¢ Changes in mRNA can be used for the early detection of
compounds BEFORE adverse effects are observed in animals.
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Early detection

== Protein

-
& 10000
S 1000 |
S
= 100 |
3
S 10
c
< Y
§ 01|
€ o001
2 0
>
mmmm RNA

10 20 30 40
Days of treatment

50

Constant Exposure to 100 ng/L E2

=
o
o

=
o

[y

o
=

0.01

— A .{JI(U‘ h
LcoArray -~

Plasma Vtg (mg/ml)

12

Denslow et al.

12



Percent Measured Effect

M # .‘: 1k
Early detection EcoAray

Monitor for contaminants
before irreversible effects occurs
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Irreversible
effects

Reversible

Concentration x Time of Exposure
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How gene chips are made

Robotics
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How gene chips work
-In more detaril..

mRNA
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mRNA (expressed gene)
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How gene chips are used

Extract tissue

: k

Label mRNA
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How gene chips are used EcAy B

Extract tissue

: k

Label mRNA

: k

Obtain genetic
fingerprint

17

17



{{ n 1. Y

MOdel SpCCies EcoAsray

Fathead minnow freshwater species that is commonly
used for toxicology testing.
Example: Biomarkers for exposure

Sheepshead minnow estuarine species that is
commonly used for toxicology testing.
Example: Compound discrimination and quantification

Largemouth bass important game fish found throughout
much of the United States.
Example: Bioavailability
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Experimental strategy

Controlled laboratory
exposures

|

Genetic fingerprint

database
. 30 .'..'.“.::. b e
Pollutant A Pollutant B Pollutant C

= TV ol
CcoArray ~
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Experimental strategy EcoAiray 2
Controlled laboratory
exposures
Field site
Genetic fingerprint
database

Pollutant A Pollutant B Pollutant C
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Fathead minnow

female
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FHMinnow chip

¢ 200 gene chip.

eGenes obtained from a variety of methods (cDNA
libraries, directed cloning, and
subtraction libraries).

¢ Genes are parts of multiple pathways.

- LU
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Fathead minnow experiments  rgas, »

FHMChips®
Un-exposed Un-exposed Male exposed to 400

female male

gIL of E, for r

Genetic biomarker for estrogens
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Fathead minnow experiments

We are developing a
2000+ oligonucleotide
based gene chip in
fathead minnows with
the EPA.
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Sheepshead minnow
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several estrogenic

compounds

Compound discrimination
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Quantification EchAy @
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Quantification

Pixel units
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OCPs levels in the

¥ muscles of fish :

:7 Eustis Muck Chlordane

o Fam Dieldrin
p’p’-DDD
p’p’-DDE
p’p’-DDT

toxaphene
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LMBass gene chip

¢ 500 gene chip.

eGenes obtained from a variety of methods (cDNA
libraries, directed cloning, differential display, and
subtraction libraries).

¢ Genes are parts of multiple pathways.
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Largemouth bass model

Laboratory exposure
» 17-B estradiol exposure (2.5 mg/kg inject, 48 hrs).

¢ p’p-DDE (100 mg/kg inject, 48 hrs).
* 11-ketotestosterone (2 mg/kg inject, 48 hrs).

¢ Characterize reproductive cycle

Field analysis

o Site of investigation

— .ﬂ{<{ ; .Y
CcoAuray
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Estradiol laboratory
exposures
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Larkin et al, CBP 2002
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Estradiol laboratory
exposures
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Need to define “normal” fingerprint pattern in bass before
one can identify atypical gene expression patterns in the field

Bass reproductive cycle

= .ﬂ{<{ o 1. Y
ECO}\TY&(} ad
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Bass reproductive cycle EcbAiray 2

Need to define “normal” fingerprint pattern in bass before
one can identify atypical gene expression patterns in the field

Study site
January April August
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Pixel units
(Fold change)

Bass reproductive cycle (.
(males)

Ecb,ixr?a( ]
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Field analysis EcbArray #

Deleon Springs
(clean site) —

Eustis o change in ZP’s

(study site)
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Field analysis EcoAvray 2

Digestive pathways
may be affected in
these animals
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Sum mary EcoArray

-Gene chips can be used for biomarkers for exposure.
-Gene chips can be used to discriminate between
compounds and can provide quantifiable data.

-Gene chips can provide information on bioavailability
of compounds.
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Additional information EcbAray

See www.ecoarray.com

Our website contains links to manuscripts using
this technology and other information
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Biosensing with Zebrafish

Elwood Linney, Ph. D.
Molecular Genetics and Microbiology

Duke University Medical Center

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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transgenesis

=

Laboratory of Molecular Development  Department of Molecular Genetics and Microbiology DUMC

gene discovery

imaging
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Assumptions we make:

1) foxicants are impacting upon normal, existing pathways
2) there can be a differential sensitivity to a foxicant
depending upon whether the organism or target organ

is developing or fully formed

3) there are common pathways in different organisms

4) differences between organisms should be represented
by "differences" in their genomes

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC
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Our changing view of "biosensors”

1) fransgenic indicator mice for snapshots of
“retinoic acid activity"

2) ftransgenic, fluorescent zebrafish for live
4-D studies of activity

3) using zebrafish themselves as indicators or
sensors for toxicant events

4) using discovery microarray analysis for identifying

genes affected
’\> Use results to design new

biosensor ftransgenics

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC

53

53



Reporter transgenic mice
using constructed retinoic acid
responsive promoter

Subset of retinoic acid receptor
activity in reporter
transgenic mouse:

RA
RXR — >

—— RARE -TKpr-§ gal

Laboratory of Molecular Development  Department of Molecular Genetics and Microbiology DUMC
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Time-lapse 2 cell to 17 hours
Size relationships, developmental time, changing R alstron and . Kane
in size with development:

Dlg][al Allas Of Bradley R. Smith

G. Allan Johnson

Mouse Embryology Elwood Linncy

]|
] mouse 9.5d to neonate
relative size
of embryos
Natonal Inutrtwtcs of Health
Natonal Re esource Conter
North Carolina Biowchnology Center
Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC 55
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Mouse and zebrafish homeobox genes:

5 Hox gens

Wioiise Hox vl gene
expiression domain Apression domains

Cc

Mouse Hox genes zebrafish fiox genes
f0%53 Q=
Hord Q@00 (., = g~
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e — UL - e e
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Laboratory of Molecular Development

Department of Molecular Genetics and Microbiology DUMC
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Parallels in axial development between vertebrate species:

Hox genes and the evolution of vertebrate axial morphology

Ann C. Burke, Craig E. Nelson, Bruce A. Morgan® and CIiff Tabin

Black bars denote
spinal nerves of
brachial plexus

Goosa  Xencpus  Zebrafish

level of curved line
represents the
level of limb or fin

shaded somites
represent level
of Hoxc-6 expression

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Syntenic relationships
between vertebrate genomes
--genes inherited as linked
clusters during speciation

Vol. 10, Issue 12, 1890-1902, December 2000

Zebrafish Comparative
Genomics and the Origins of
Vertebrate Chromosomes
John H. Postlethwait,1,3 Ian 6. Woods,2
Phuong Ngo-Hazelett,1 Yi-Lin Yan,1 Peter

D. Kelly,2 Felicia Chu,2 Hui Huang,2 Alicia
Hill-Force,1 and William S. Talbot2

Laboratory of Molecular Development

B.

L5 LG LG LG
21 8

e

Department of Molecular Genetics and Microbiology
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Heatde | pall Mens g
o :

M7 g

DUMC 58
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Retinoic acid indicator embryos

RA
O !AR! -promoter-Bgal/GFP/YFP ~ o>

sizes approximately to scale

24 hr live zebrafish embryo expressing

YFP from RARE z6T2 basal promoter sequence
retinoic acid responsive day 8.5

mouse embryo expressing lacZ

from RARE TKpr sequences

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC
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Vitamin A-Retinoid Relationships:

vitamin A(all-trans retinol)

l I retinol dehydrogenase

retinaldehyde

o
l retinal dehydrogenase(RALDH) RA synthesis

retinoic acid [ligand for transcription factors]
l cytochrome p450RAI(cyp26)———

4-oxoretinoic acid

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

RA metabolism

DUMC 60

60



Dual in situ hybridization for RALDH2(purple) and cyp26al(red-orange):

/\»

head
RALDH2 in somites
tail
[cyp26 in growing
caudal end]
Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC 61
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Model of some of the retinoid events occurring in the trunk neural tube:

18hpf Embryo

Somites
(D :
B Raidh2  RAV

Neural tube tail bud
[ ]-ra

RA
- cypoen: 4

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC 62
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RALDH inhibitor Neckless mutant in
[our work] RALDH?2

Begemann, Schilling, Rauch, Geisler and Ingham

untreated

Either chemical inhibition of Raldh's
in zebrafish with DEAB or an isolated
Raldh2 zebrafish mutant produced
phenotypes paralleling the mouse
Raldh2 knockout phenotypes:
hindbrain changes
forelimb or fin inhibition

A DEAB

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC 63
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In situs of zebrafish Raldh2 at different developmental stages[Kari Yacisin]:

20 somites~<20h

9

Laboratory of Molecular Development

Point:

apparent turn-off
of RALDH2 as
neural tube ceases
to grow

Department of Molecular Genetics and Microbiology DUMC 64
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Two mouse KO studies of
cyp26A1 revealed caudal truncations
and occasional exencephaly

cyp26 knockout mice Abu-Abed, Dolle, Metzger
Beckett, Chambon and Petkovich
[somewhat similar phenotypes from these authors]

cyp 26 knockout mice Sakai, Meno, Fujii, Nishino,
Shiratori, Saijoh, Rossant, and Hamada

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC 65
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Summary:

1)Raldh2 and cyp26éal(and cyp26b1l) can be found adjacent
to each other in the developing embryo creating functional
“microgradients" of RA ligand for RAR activity

2)expression patterns and available mutants for these
genes in mouse and zebrafish show consider homology

3)in zebrafish the Raldh2 promoter is directly repressed
by RA and the cyp26al promoter is directly induced by
RA

4)this system is being studied to determine whether there

might be a genetic and/or environmental basis for neural
tube defects

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Developmental changes flanking and including neural tube growth
which we are analysing with 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h, 24h
microarray analysis:

8h 10h
0 IG |
17h 15h

11.3h 13h 15.5h

21.5h

L

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC 67
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Progression of microarray development:

1) oligos from 500 selected zebrafish genes
2)16k oligomer library from Compugen arrayed
3)now examining 22k zebrafish oligomer array

produced by Agilent, bioinformatics through
Paradigm

Affymetrix has produced zebrafish arrays but
we have yet o use them

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Laboratory of Molecular Development

Genes requlated during segmentation

[work done in collaboration with R. Malek at TIGR]

expression TrrEErrr L L EGEOERY
log base 2

NS N U A T IO NN N DN BN N - B

Department of Molecular Genetics and Microbiology

upregulated
at 12 hpf

downregulated
at 12hpf

DUMC 69
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Some elements of our zebrafish toolbox:

1) live, fluorescent, transgenic embryos

2) anti-sense morpholino knockdown of
gene expression

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Some transgenic lines we made:

GFP of f constitutive promoter

GFP off artificial construct--lights up
cells migrating along pronephric ducts

YFP of zHuC promoter that lights
up developing nervous system

71

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC

71



Four transgenic lines for examining nervous system:

MNauro Neuro

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC
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Antisense morpholino approaches use by
zebrafish researchers to "knockdown" genes

A. Morpholinoto inhibit translation

5

\\ AUG/\/\
Qc - AAAAAAAAAA

morpholino

B. Morpholino to inhibit splicing

(morpholinoagains( splice acceptor

| exon al | exon b| | exon c| | exon dl
abnormal spliced
product due
to
. normal spliced mRNA
morpholino

exon al exon b | exon al exon b| exon c| exon dl

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC
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no-tail (T-allele) morpholino we injected into a 1-cell
zebrafish embryo--these are 4 day larvae after
hatching--the phenotype is what is seen with real
mutants in no-tail

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Chlorpyrifos studies

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Acetycholinesterase

classical function of hydrolysing the
neurotransmitter, acetylcholine

mice have AChE plus a butyrylcholinesterase
so mouse KOs in AChE allow animals to at
least be born and live ~21 days

zebrafish only has AChE, so AChE-/-
embryos show defects in muscle

fiber formation, innervation, and
primary sensory neurons die
prematurely--embryos are initially
motile and then develop paralysis and die

a Peripheral
binding eite

Active site
| gorge

~Ser-CHE

A:anrl—M}hE

from Soreq and Seidman, Nature
Reviews Neuroscience(2001)

Laboratory of Molecular Development  Department of Molecular Genetics and Microbiology DUMC
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Chlorpyrifos treating zebrafish embryos--our work, high dose(500ng/ml):

Laboratory of Molecular Development  Department of Molecular Genetics and Microbiology DUMC




Experimental Plan:

1) expose embryos for 5 days with
chlorpyrifos

2) adult learning studies in E. Levin's
lab

3) acetylcholine esterase assays
during embryogenesis

4) AChE morpholino titration to CPF
inhibition studies

5) adult learning studies and
microarray analysis

Laboratory of Molecular Development Department of Molecular Genetics and Microbiology

DUMC
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Acetylcholine esterase activity/chlorpyrifos exposure:

Averaged AChE Activity (0-5day exposure, 3 sets)
45
40
35
22 301 —o— 0 ng/ml CPF
% 5 25 | —=— 10 ng/m| CPF
<2 —o0— 100 ng/ml CPF
g5 201
[S -]
<& 15+
10 1
5
0 T T T T T T T T
1 2 3 4 5 6 7 8 9
Age at Extraction
Laboratory of Molecular Development Department of Molecular Genetics and Microbiology DUMC
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Collaborative work with E. Levin and E. Chrysanthis:

As part of our Superfund program we chlorpyrifos

treated embryos for 5 days, released them and grew them up and they tested

for learning in maze designed by E. Levin in our Psychiatry department:

Developmental Chlorpyrifos Exposure
Effects on Average Choice Accuracy

Tracks for Sliding Partitions
Partition in Restricting Pasition

70
Dark Back Panel
651 |
60| .
Left Start Right -
Choice Chamber hoice 55-] T
Chamber Chamber 1 "'
Vertlcal/ 50 l
Sliding
Doors I———
; 45
Tracks far Sliding Partitions. Lengthwise 40 (‘) 1‘0 1‘00
sliding
Partitions Chlorpyrifos (ng/ml)
Laboratory of Molecular Development Department of Molecular Genetics and Microbiology
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Targeting acetylcholine esterase with a morpholino:

Contol, MO, 100ng/ml CPF £.5/19/03
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Delayed Spatial Alternation Choice Accuracy
with Developmental Chlorpyrifosor Morphoino Zebrafish

[work done in 5
collaboration
with E. Levin I
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* p<0.05 # p<0.025
** p<0.01
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Preliminary comparison of expression of MO-AChE, 100ng/ml CPF

10ng/ml CPF versus control using filter of 2x or above expression:

[3 day treated and untreated embryos]
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Future--Biosensors:

1) the generation of a series of responsive transgenics
to small molecules (in progress, estrogen inducibility)

2) the use of the Sanger Centre zebrafish DNA assembly

to identify clones for genes which show distinct responsiveness
to environmental toxicants so that transgenics can be derived
from their regulatory sequences

3) the analysis of the 22k array data to formulate potential
pathways that toxicants are impacting upon

line 1 with 1 uM RA (18h-22h)

our zCyp26Alpr
transgenics with

RA inducible promoter
—_—

/
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Thank You

After viewing the links to additional resources, please
complete our online feedback form.
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