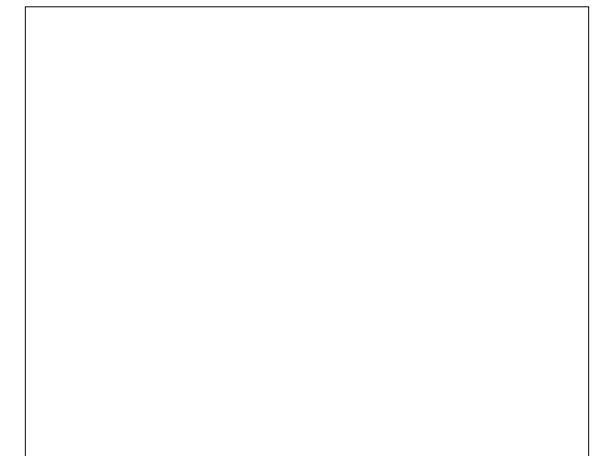

Comparative Validation of Innovative Capping Technologies Anacostia River, Washington DC

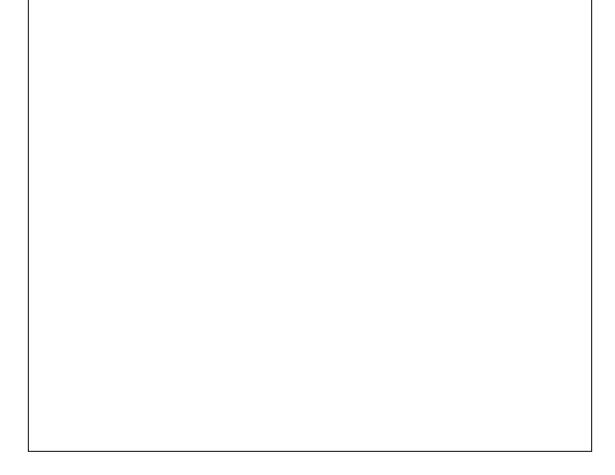
Presented by


Danny D. Reible

Chevron Professor and Director Hazardous Substance Research Center/South & Southwest Louisiana State University

19 February 2003

- Primarily regional in scope
- Driven by community interests and problems



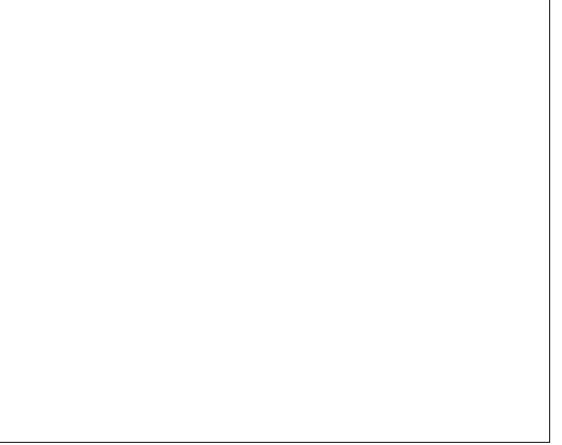
Selecting Remedial Options

NAS Committee On PCB Contaminated Sediments

- Recommended framework of Presidential and Congressional Commission on Risk Assessment and Management
- Key points
 - Manage the risks not simply surrogates of risk like concentration or mass
 - Engage stakeholders early and often

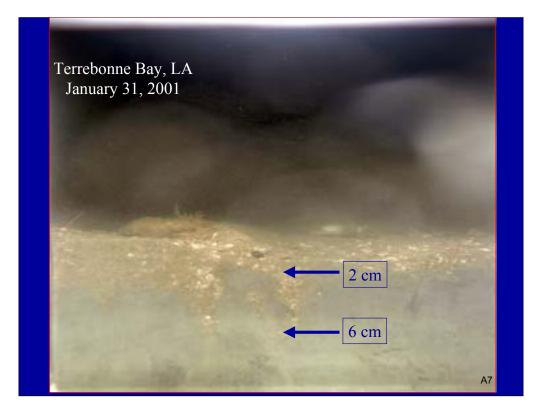
Sediment Management

- Risk controlled by relatively small well defined areas (hot spots) in dynamic sediment environment with defined on-shore disposal options?
 - Encourages removal options
- Risk defined by diffuse contamination in stable sediment environment?
 - Encourages in situ management options
- What about other sites?
 - Requires site specific assessment and conceptual model development
 - There are no default options; site specific assessment necessary!


In Situ Capping - Advantages

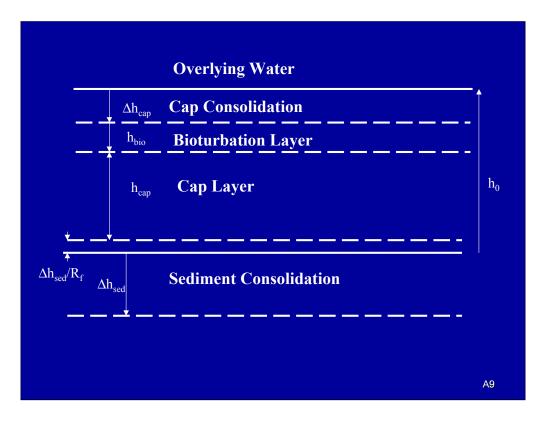
Armors sediment for containment

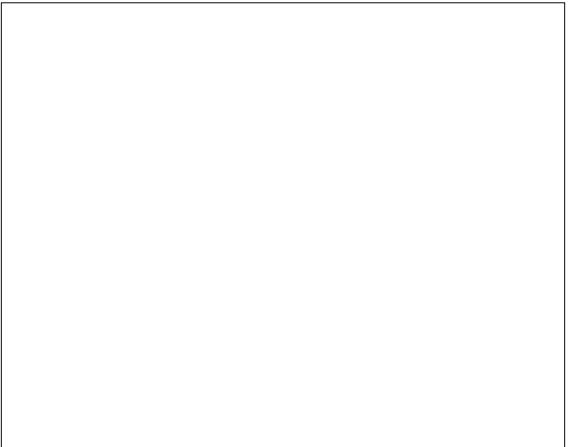
- Can be designed to be stable in high flow conditions
- High confidence in describing dynamics of noncohesive, granular media
- Eliminates uncertainty of existing sediment dynamics


Separates contaminants from benthic organisms

- Eliminates bioturbation (primary source of exposure and risk in stable sediments)
- Typical flux reduction at steady state by factor of 1000
- Reduces diffusive/advective flux
 - Increased transport path and sorption-related retardation
 - Time to achieve steady state may be thousands of years
- Provides opportunities for habitat development

Cap Effectiveness


- Replaces particle transport processes with porewater processes
 - Elimination of erosion and bioturbation as transport processes
 - Diffusion (always present)
 - Advection if seepage significant (highly variable)
- Reduces steady state contaminant flux
- Additional reduction in transient in flux
 - Reduces migration during transient consolidation of sediment and cap materials
 - Reduces transient migration through cap
 - Partition coefficient, K_{sw} (Organics- $K_{sw} \sim f_{oc}Koc$)
 - $R_f = \epsilon + \rho_b K_{sw}$



Sandy shell in thin layer – significant organism activity limited to upper 6 cm – event horizon only 2 cm for relatively large hurricane on the stronger east side of the hurricane

Steady State Cap Performance

- Diffusion dominated system
 - Flux prior to capping
 - $N_A/\rho_bW_s \sim 1 \text{ cm/yr}$ (without erosion)
 - Flux after capping
 - $N_A / \rho_b W_s \sim D_{cap} / L_{eff} R_f$
 - For pyrene, 1 ft cap .001 cm/yr (R_f~ O[10³])
- Advection dominated system
 - Typically only small portions of sediment bed
 - Flux after capping ultimately approaches prior flux
 - Sediment concentrations are dependent upon sorptive capacity of capping material
 - Sand low steady state concentrations near cap-water interface

Cap Design Factors - Stability

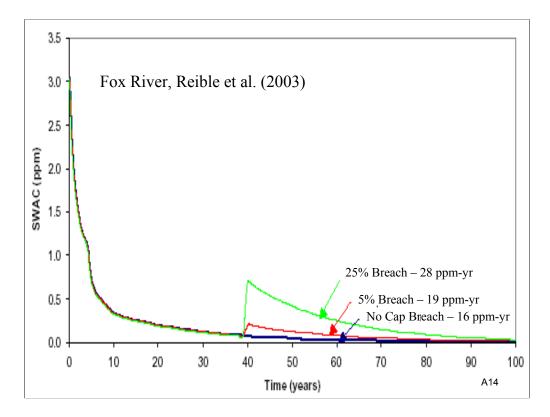
- Top layer stability
 - Design velocity or stresses (e.g. 100 year flood)
 - $d_{50}(ft) = 1/4 \tau_c (lb/ft^2)$ (Highway Research Board)
- Non-uniform size distribution
 - $d_{85}/d_{15} > 4$
- Angular shape
- Maximum particle size <2 d₅₀
- Minimum particle size > 0.05 d₅₀
- Thickness > 1.5 d_{50}
- Adjacent layers: d_{50} (layer 1) / d_{50} (layer 2) < 20
 - Especially important for armored caps or caps using coarse grained material for habitat enhancement to avoid washout of finer material
- Transition zone length: 5 times cap thickness

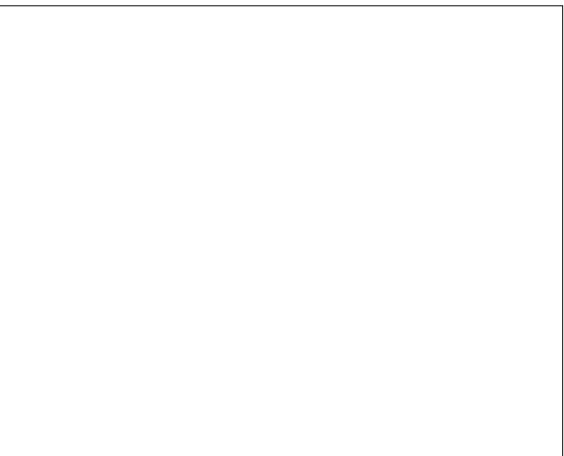
Current Issues in Cap Design

- Optimal placement over very soft sediments
- Placement of fine-grained, heterogeneous materials
- Chemical containment
 - NAPL seeps
 - Gas generation and migration
 - Methyl mercury formation and migration
- Design and effectiveness with groundwater seepage
 - Assessment of seepage (and variation with time/space)
 - Control of seepage
- Stability
 - Selection of design flow, prediction of resulting stresses
 - Stability of innovative cap materials
- Active Caps Caps as a reactive barrier

Capping Concerns

• Contaminants are not removed or eliminated


- Residual risk of cap loss
 - But all remedial measures leave residual risk
 - Intergenerational stewardship a "fact of life" for any contaminated sediment site of any complexity
- Can caps be designed to ensure
 - Migrating contaminants are eliminated?
 - Residual pool of contaminants degrade over time?
- Continuing sources can recontaminate cap
 - Continuing sources a problem for any remedial approach
 - Can caps be designed to reduce recontamination?


Comparative Evaluation Metrics

- Primary metric Risk
- Secondary metrics
 - Link to appropriate conceptual model of system
 - Indicator species concentrations (e.g. fish)
 - Contaminant mass (dynamic environment)
 - Surficial average concentrations (stable environment)
 - When risk due to diffuse contamination (not "hot spots")
 - SWAC surface area weighted average concentration
 - Integral measures (allows incorporation of time)

 $\int SWAC \ dt \approx Cumulative \ Exposure$

Summary – Conventional Capping

- Conventional sand caps easy to place and effective
 - Contain sediment
 - Retard contaminant migration
 - Physically separate organisms from contamination
- Methods are available for key design needs
 - Cap erosion and washout
 - Cap and sediment consolidation
 - Chemical containment
 - Assessment of exposure and risk

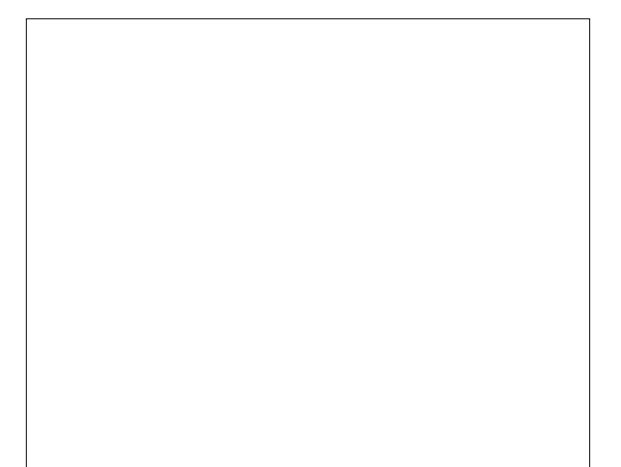
Active Capping

Can you Teach an Old Dog New Tricks?

Danny D. Reible Hazardous Substance Research Center/S&SW Louisiana State University

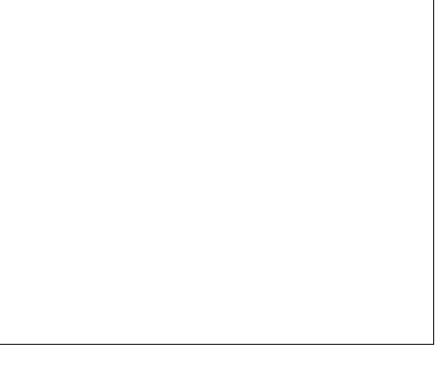
A16

Center Focused on Engineering Management of Contaminated Sedimentsf – my role is as the dog trainer!


Potential of Active Caps

- Sand caps easy to place and effective
 - Contain sediment
 - Retard contaminant migration
 - Physically separate organisms from contamination
- Greater effectiveness possible with "active" caps
 - Encourage fate processes such as sequestration or degradation of contaminants beneath cap
 - Discourage recontamination of cap
 - Encourage degradation to eliminate negative consequences of subsequent cap loss

Active Capping Demonstration Project


- The comparative effectiveness of traditional and innovative capping methods relative to control areas needs to be demonstrated and validated under realistic, well documented, in-situ, conditions at contaminated sediment sites
 - Better technical understanding of controlling parameters
 - Technical guidance for proper remedy selection and approaches
 - Broader scientific, regulatory and public acceptance of innovative approaches

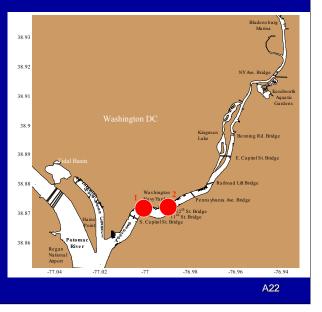
Overall Project Scope

A grid of capping cells will be established at a well characterized contaminated sediment site:

- Contaminant behavior before capping will be assessed
- Various capping types will be deployed within the grid evaluating placement approaches and implementation effectiveness
- Caps will be monitored for chemical isolation, fate processes and physical stability
- Cap types and controls will be compared for effectiveness at achieving goals

Demonstration Site – Anacostia River

- Anacostia River has documented areas of sediment contamination
- Anacostia Watershed Toxics Alliance (AWTA) offers unique opportunities
- Ultimate rehabilitation approaches
 uncertain
- Much of current focus on reducing contribution of sources
- Areas adjacent to Navy Yard are good candidate sites based on review of existing data

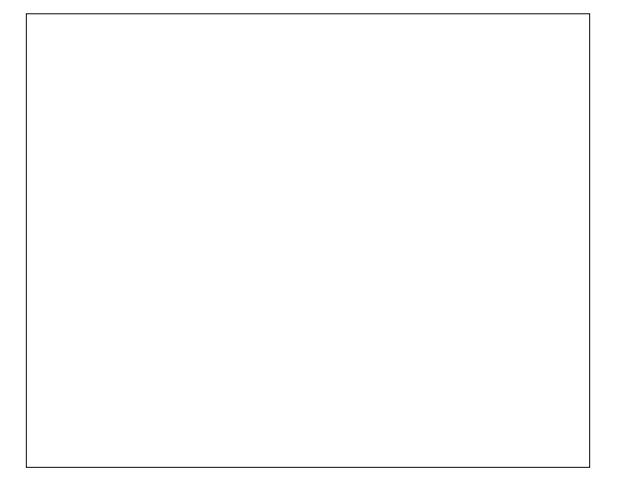


Demonstration Participants

- Lead
 - Danny Reible, Hazardous Substance Research Center
 - Louisiana State University
- Prime Contractor
 - Horne Engineering, Fairfax, VA
 - Yue Wei Zhu, Lead Engineer
- SITE program evaluation of Aquablok
 Vincente Gallardo, EPA Cincinnati
- Advisory Groups
 - Anacostia Watershed Toxics Alliance
 - Remediation Technology Development Forum

Demonstration Site – Anacostia River

- Two potential study areas identified adjacent to Navy Yard
 - First site has elevated PCBs and metals [1]
 - Second site is primarily PAHs [2]
 - Some seepage, free phase at depth at second site



Proposed Demonstration Area

- The proposed demonstration areas are approximately 200 ft by 500 ft (approximately 2 acres) adjacent the shoreline upstream and downstream of the Navy Yard
- Each proposed pilot study cell is approximately 100 ft by 100 ft in size and two or three study cells per area will be implemented.

Demonstration Sites

• First Site – old CSO outfall

- South end of Navy Yard
- PCBs: 6-12 ppm
- PAHs: 30 ppm
- Metals
 - Cd: 3-6 ppm
 - Cr: 120-155 ppm
 - Cu: 127-207 ppm
- Pb: 351-409 ppm Hg: 1.2-1.4 ppm
- Zn: 512-587 ppm

• Second site – near old manufactured gas plant

- North end of Navy Yard
- PAHs up to 210 ppm

Potential Cap Technologies

- Six technologies undergoing bench scale testing and evaluation
- Bench scale testing objectives
 - Problems with physical placement?
 - Problems with contaminant or nutrient release during placement?
 - Problems with effectiveness with Anacostia contaminants?
 - What is appropriate cap design, homogeneous or layered composite?
 - What are key physical or chemical indicators of performance?
- Placement approaches also under evaluation
 - Gravity tremie placement
 - Layered placement
 - Needlepunched mats (CETCO)

Potential Cap Technologies

Aquablok

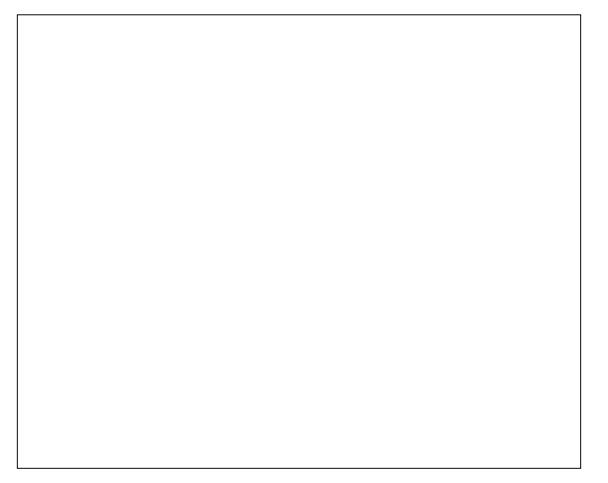
- Control of seepage and advective contaminant transport
- Focus of EPA SITE Assessment

Zero-valent iron

- Encourages dechlorination and metal reduction
- With or without sequestering amendments to retard migration
- Phosphate mineral (Apatite)
 - Encourages sorption and reaction of metals
- Coke
 - Encourages sorption-related retardation
- BionSoil
 - Encourage degradation of organic contaminants
- Natural organic sorbent
 - Encourages sorption-related retardation

AquaBlok[™]

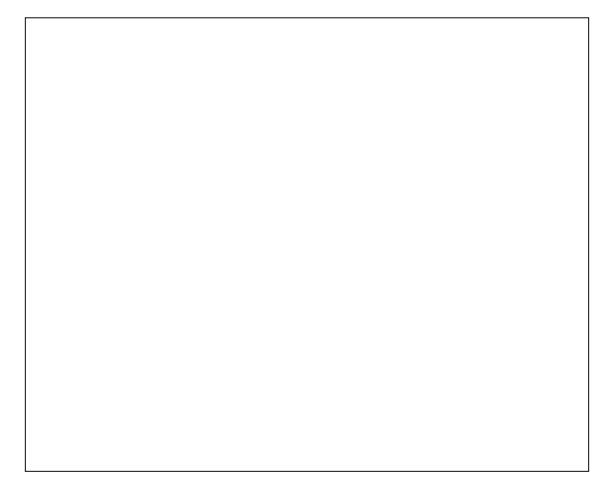
- Gravel/rock core covered by clay layer
- Expands in water decreasing permeability
- Applicable to seep locations (Site 2)
- May be useful as funnel in "funnel and gate" reactive barrier design
- Semi-commercial technology
- Treatability evaluation underway Hull & Assoc


Zero-Valent Iron

- Fe(0), Fe-S, Pd/Fe(0) under consideration
 - Subject to cathodic reactions that yield hydrogen
 - Hydrogen can drive reductive biotic transformations
 - Reductive dechlorination
 - Metal reduction
 - Directly provide electrons for abiotic reduction
- Chlorinated Organic Compounds (PCBs)
 - Evaluation underway by Carnegie Mellon University
- Metals
 - Evaluation underway by Rice University

Coke Sorbent

Coke Breeze


- 92% fixed carbon
- 140 mm particles with 45-50% porosity
- Particle density of 1.9-2 g/cm³
- TCLP leachate contaminants below detection limit
- Treatability testing underway at Carnegie Mellon University

Apatite Barrier

Apatites $- Ca_5(PO_4)_3OH$

- Subject to isomorphic substitution
 - $Pb_5(PO_4)_3OH$
 - $Cd_5(PO_4)_3OH$
- Reduces migration of metal species
- Employing XRF and XAS for metal species dynamics and migration
- Evaluation underway with LSU/University of New Hampshire

BionSoil™

- Manufactured soil from composting
- Hydrogen source
 - Enhancement of reductive dechlorination
 - Enhancement of anaerobic degradation of PAHs
- High organic content
 - Encourages sorption and retardation of transport
- Evaluation underway at LSU

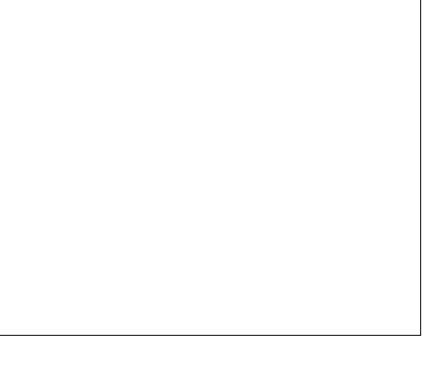
OrganoClay Sorbent

- Candidate Biomin EC-100 organo-modified clay
 - Low permeability
 - High organic content
 - Encourages retention of both non-aqueous and dissolved constituents
 - Evaluated for control of active hydrocarbon seeps in Thea Foss Waterway, WA
- Treatability testing underway with Hart-Crowser

Other Potential Cap Materials

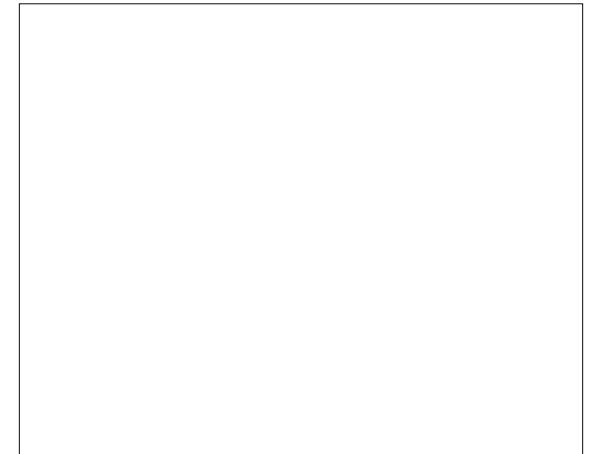
- Ambersorb commercial sorbent
 - Effective sorbent but high cost
- Activated carbon sorbents
 - Effective sorbent intermediate in cost
 - Primary focus on coke as cheaper (but less effective carbon-based adsorbent)

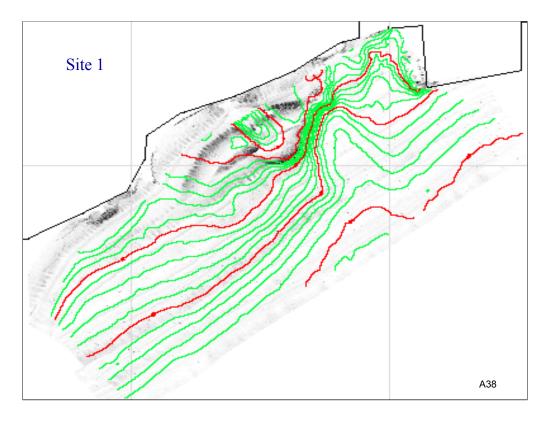
A34

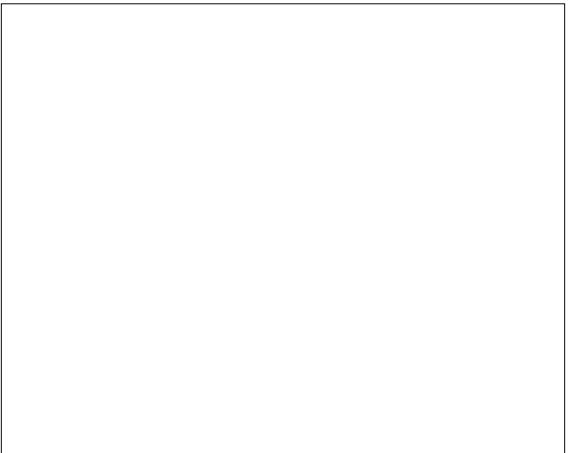


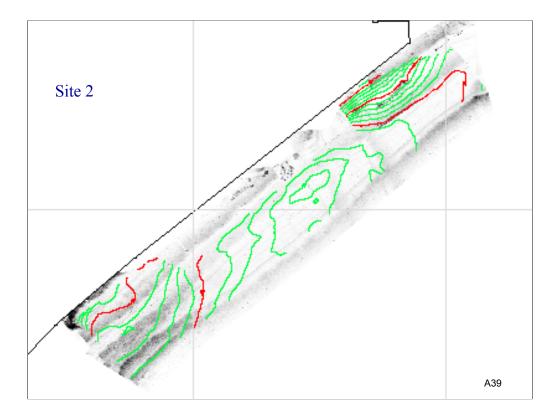
Capping Demonstration Schedule

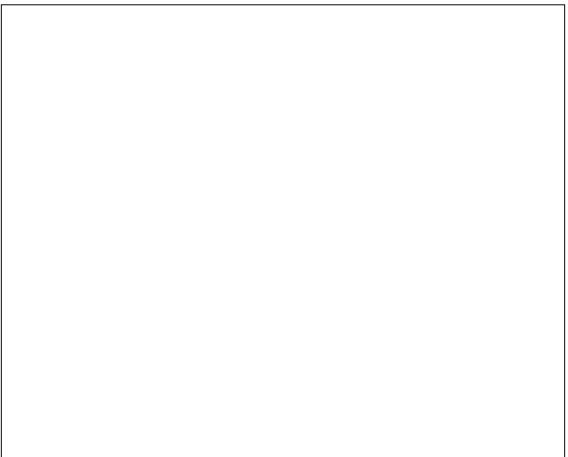
- Technology Evaluations (Initial Phase) Jun/Dec 2002
 Studies currently ongoing at LSU and collaborating institutions
- Site Characterization Jan-Apr 2003
 - Phase 1 Geophysical Investigation (Jan 2003)
 - Phase 2 Geotechnical and Chemical Assessment (Feb 2003)
 - Phase 3 Biological Assessment (Apr 2003)
- Cap Design Jan/Jun 2003
- Cap Placement (Site 1) Jul/Aug 2003
- Cap Evaluation Aug 2003/Sept 2004

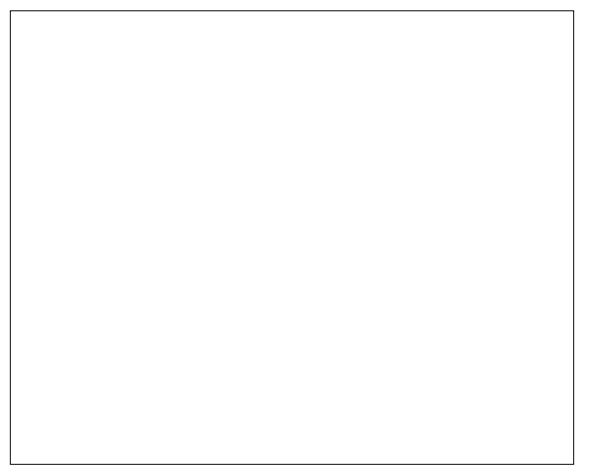

Site Characterization Objectives

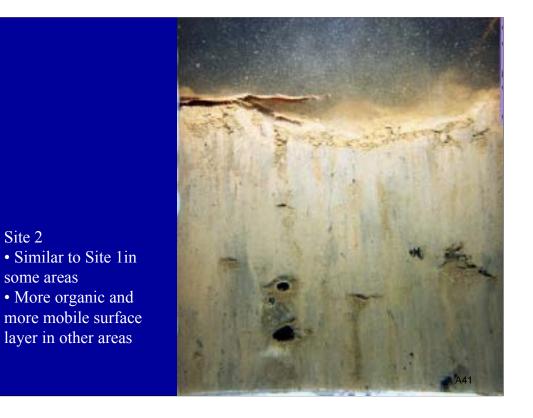

- Establish the contamination baseline at demonstration areas
 - Define contaminant variability
 - Identify and confirm appropriate areas for cap demonstration
- Determine the geotechnical characteristics of the sediment
- Provide necessary baseline data for future evaluation of effectiveness of capping placement and capping technologies

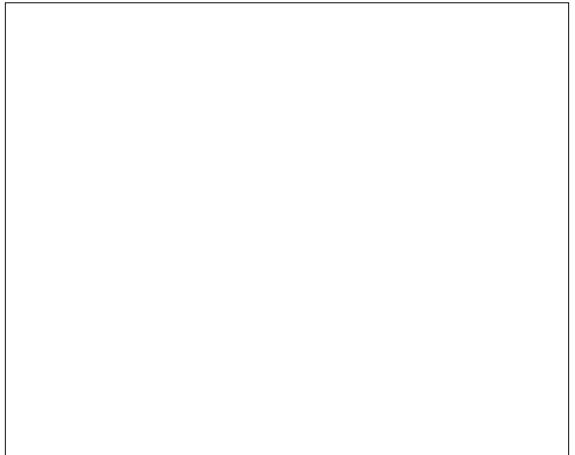


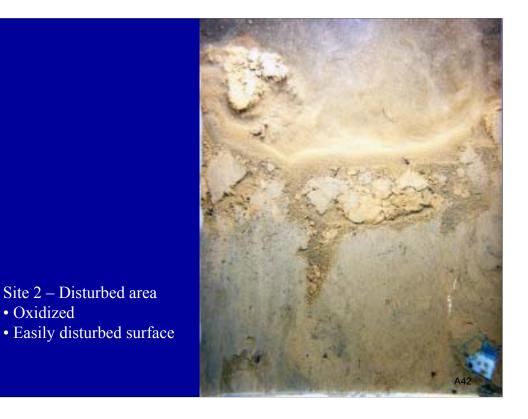

Site Characterization

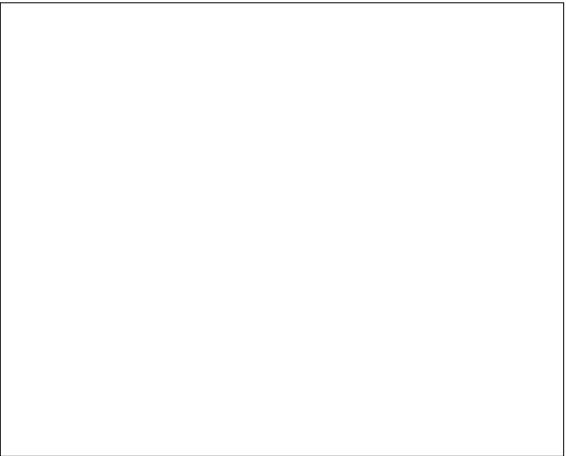

- Preliminary physical assessment (Ocean Survey & R. Diaz)
 - Bathymetry measurement
 - Side scan and sub-bottom profiling
 - Sediment profiling camera
- Surficial sediment sample collection
- Sediment coring sample collection
- Sediment radionuclide characterization
 - Historical deposition
 - Average rate and extent of bioturbation
- Geotechnical data for the cap design
- Historical Data Collection (groundwater seepage, flow velocity, and etc.)
- Biological Assessment (type and density)











Chemical Sampling

- Surficial sediments
 - ~40 surficial sediment samples will be collected from each site four (4) inch and up to six (6) inch thick at each grid point using a stainless steel Van Veen grab sampler or Petite Ponar grab sampler.
- Core sediments
 - 8 cores will be collected from each site to a depth of 3 ft
 Samples collected from 0-6", 6"-12" and 12"-36"
 - Additional deeper cores will be used to assess underlying stratigraphy and provide geotechnical information for design
 One water sample from underlying sand unit
 - Additional shallow cores (gravity corer) employed to supplement baseline sampling

- Water sampling
 - To define chemical baseline in water and potential for recontamination of caps

Physical, Chemical, and Biological Parameters

Surficial Sodimont	Core Sediment	Water Column/ Pore-water
	-	X
		X
X	X	X
X	X	
Х	Х	
Х	Х	
		Х
		Х
		Х
		Х
		Х
Х		
Х		
	Sediment X	SedimentSampleXX

Analytical Methods

Analytical Parameter	Aqueous Methodology	Solid Methodology*
	Chemical	
PAHs	SW-846 5030B/8270C	SW-846 8270C
TCL Pesticides/PCBs	SW-846 5030B/8180A	SW-846 8180A
PCBs	SW-846 5030B/8082	SW-846 8082
	7060A/7421/7740/7061/	7060A/7421/7740/7061/
8 RCRA Metals	7131A/7191	7131A/7191
Total Suspended Solids-		
(TSS)	EPA 160.2	Not Applicable
Total Kjeldahl Nitrogen	EPA 351.3	EPA 351 modified
Phosphorus	EPA 365	EPA 365 modified
Total Organic Carbon	EPA 415, SW-846 9060	EPA 415 modified
	Biological	
Benthic Macroinvertebrate		EPA/600/4-90/030
SAV Survey		General Acceptable Method

Geotechnical Parameters

Parameter	Number of Sample	Method
Grain Size Distribution	10	ASTM D421/422
Specific Gravity	4	ASTM D854
Atterberg Limits	10	ASTM D4318
Classification	10	ASTM D2487
In-Situ Vane Shear Test (Shear Test)	20	ASTM D2573
Unconsolidated, Undrained Strength	4	ASTM D 2850
Permeability*	4	ASTM D 2434
Consolidation**	4	ASTM D2435
		USACE VIII
Moisture Content	40	ASTM D2216
Bearing Capacity	Calculated	
Slope Stability	Calculated	

* One value of permeability must be calculated from the self-weight consolidation test.

** Use the Modified standard consolidation test and self-weight consolidation test as described in USACE 1987 (Department USACE 1970).

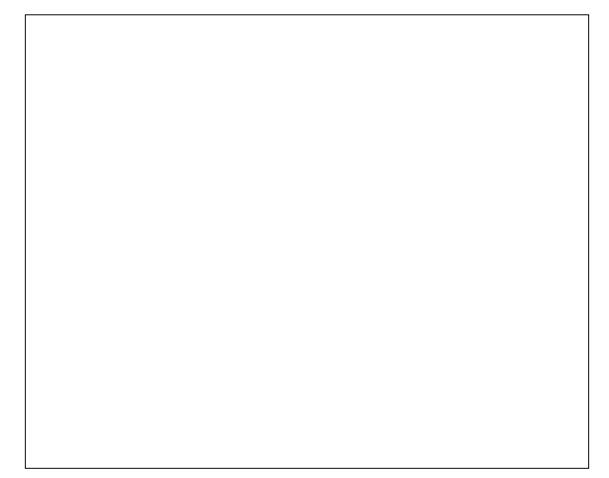
A46

atory Soils Manual EM 1110-2-1906 -

Monitoring Cap Effectiveness

- Employ cores and dialysis samplers to define placement and cap effectiveness
 - Bottom of core undisturbed sediment
 - Middle of core cap/sediment interface
 - Examine interlayer mixing
 - Examine contaminant migration/fate processes
 - Top of core cap/water interface
 - Examine recontamination
 - Examine recolonization
- Supplement with physical monitoring
 - Water column (flow, suspended sediment and chemical)
 - Non-invasive (sonar, bathymetry)
 - Invasive (sediment profiling camera)

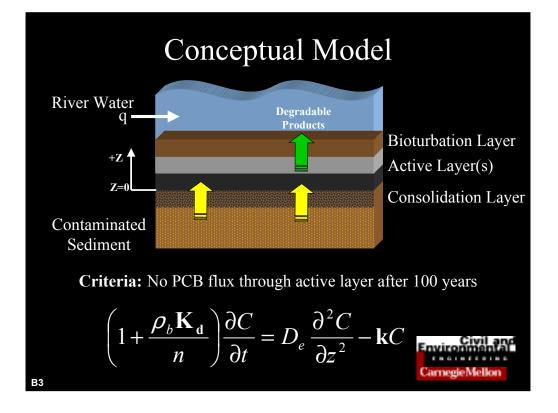
Summary


- Capping technologies undergoing bench-scale evaluation and testing
- Site characterization efforts currently underway
- Site 1 placement planned for summer 03
 - Aquablok
 - Zero valent iron/coke breeze
 - Apatite
- Additional information www.hsrc-ssw.org

Fe(0) and Coke as "Active" Cap Media for PCB Destruction/Sequestration

Gregory V. Lowry Kathleen M. Johnson Paul J. Murphy Meghan L. Smith

EPA-TIO Anacostia River Internet Seminar March 12, 2003



Overview

- "Active" cap concept
- Potential "active" media
 - Fe(0)-based media for PCB dechlorination
 - Coke breeze to strongly sequester PCBs
- Simulated cap performance
- Media concerns
- Summary

B2

Civil and Environmental CarregieMellon

Potential "Active" Media

• Study Goals

Β4

- Evaluate suitability of Fe(0) and coke as 'active" media

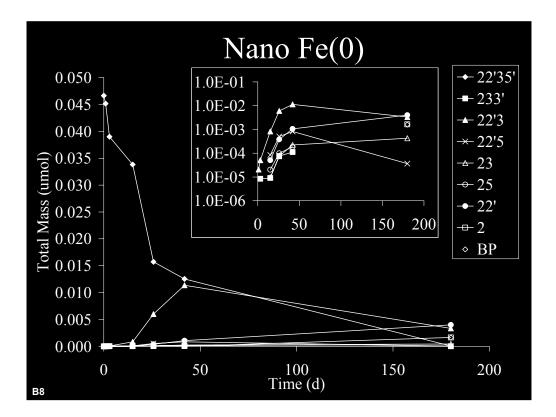
- Measure PCB destruction rates and partition coefficients
- Determine cap composition and thickness
- Estimate costs based on reactivity, lifetime, and materials costs

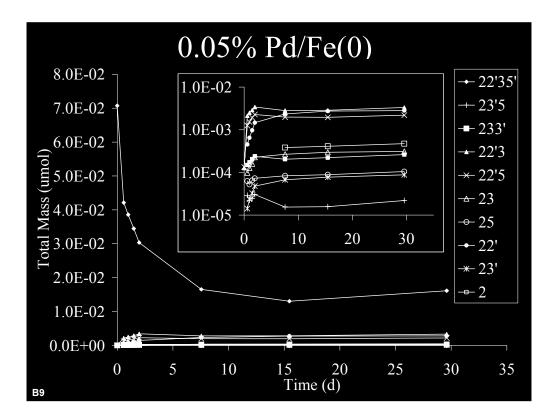
Rationale for Fe(0)

- Fe(0)-based reactants are proven dechlorinators
 - Fe(0) dechlorinates halogenated hydrocarbons
 - e.g. TCE and other chlorinated solvents
 - Extensive use in PRBs
 - Pd/Fe(0) dechlorinates PCBsGrittini et al. 1995, Wang et al. 1997
 - Nano-sized Fe(0) <u>may</u> dechlorinate PCBs
 Wang et al. 1997
- Low levels of H₂ produced during Fe(0) corrosion
 Potential to stimulate microbial dechlorination

Civil and Environmental CamegieMellon


Approach Fe(0)


- Batch experiments monitoring PCB loss and product formation
 - Peerless Fe(0)
 - Pd/Fe(0)
 - Nano-size iron


• Individual PCB congeners

- Structure/activity relationships

Civil and Environmental CamegieMellon

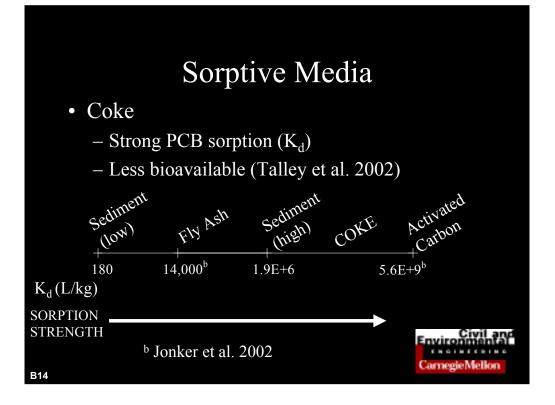
Fe(0) Reactive Media Summary

MEDIA	RESULTS	k (yr ⁻¹)	RELATIVE COST
Commercial Fe(0)	No Observable Reaction	0	\$\$
Pd/Fe(0) (500 ppmw Pd)	Rapid dechlorination of 22'35' does not appear sustainable	21	\$\$\$
Nano Fe(0)	Dechlorination of 22'35'-CB to 22'3-CB and other congeners	6	\$\$\$\$
			Civil and Environmental

CarnegieMellon

Rationale for Coke Breeze

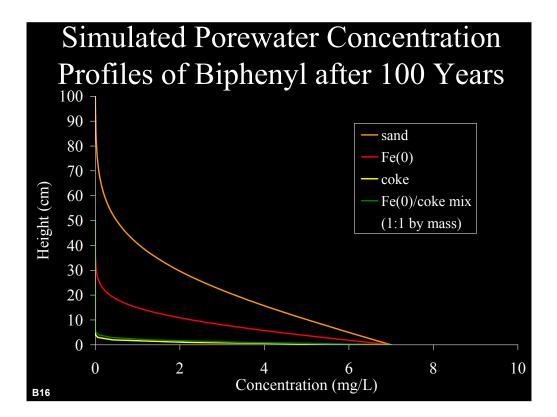
• Inexpensive

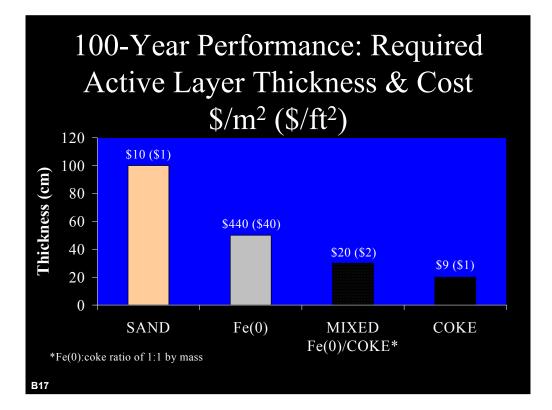

 $- \sim$ \$40/ton

- Environmentally Friendly
 - TCLP good
 - Likely to meet SQVs and CCC* standards
 *EPA 822-Z-99-001
- Sequestered PCBs less bioavailable
 - Talley et al. 2002

Civil and Environmental CamegieMellon

Properties: C	Coal <u>vs</u>	. Coke	
	COAL	COKE	
Moisture (%)	4	2	
Volatile Organics (%)	30	<u>0.7</u>	
Fixed Carbon (%)	60	92	
Ash (%)	6	7	
Porosity (%)		<u>45-50</u>	
Size (mm)		<20	
Particle Density (g/cm ³)		1.9-2.0	
		Cam	Civil and ronmental egieMellon


Modeling Diffusive Transport of Biphenyl


$$\left(1 + \frac{\rho_b \mathbf{K}_{\mathbf{d}}}{n}\right) \frac{\partial C}{\partial t} = D_e \frac{\partial^2 C}{\partial z^2}$$

CAP MEDIA	n ()	K _d (L/kg)	R
Sand ^a	0.35	10	52
Peerless Fe(0) ^b	0.5	200	800
Coke	0.6	60,000	72,000

^a $f_{oc} = 0.001$, ^b $f_{oc} = 0.02$, $K_d = K_{oc} * f_{oc}$, log $K_{oc} = 4$ (biphenyl) $D_e = 1.9 \text{ E-5 cm}^2/\text{s}$ for all cases. This incorporates diurnal seepage of ± 5 cm/d due to tides.

Civil and Environmental CamegieMellon

Media Concerns

• Toxicity

- Fe(0)

- Peerless Fe(0) contains heavy metals (% range)
- Metals should remain sequestered (not demonstrated)

– Coke

- Little or no concern
- TCLP test OK
- CCC should be met (under investigation)
- SQVs should be met (under investigation)

Civil and Environmental CamegieMellon

Coke: TCLP and CCC Criteria				
Metal	Coke (mg/kg)	Leachate (mg/L)	TCLP Limit	CCC Limit
			(mg/L)	(mg/L)
Arsenic	<10	< 0.1	5.0	0.15
Barium	22	0.5	100	N/A
Cadmium	<10	< 0.1	1	<u>0.0043</u>
Chromium	<10	<0.1	5	0.59
Lead	<10	<0.1	5	<u>0.065</u>
Selenium	<10	<0.1	1	N/A
Mercury	< 0.033	< 0.0002	0.2	0.0014
Silver	<10	<0.1	5	<u>0.0034</u>
				Cia

TCLP=Toxic Characteristics Leaching Procedure CCC=Criterion Continuous Concentration Civil and Environmental CamegieMellon

Active Capping Summary

• Coke

- Inexpensive and promising PCB sequestration media
- Thinnest caps possible
- Provides NO PCB dechlorination
- Fe(0)
 - Cost-effective abiotic PCB destruction NOT currently possible
 - Fe(0)-enhanced biodegradation possible, but not yet explored

• Mixed Fe(0)/coke cap

- Provides sequestration
- PCB dechlorination possible but not proven

Civil and Environmental CamegieMellon

Ongoing Research

- PCB sorption isotherms for coke breeze
- Fe(0)-sediment-coke microcosms to assess potential for enhanced PCB biodegradation
- Column studies to assess long term performance of each media

Civil and Environmental CamegieMellon

• Methods for Evaluating Cap Performance

Acknowledgements

- HSRC S & SW
- EPA SITE Program
- NSF

B22

• Alcoa

