U.S. EPA Superfund Need for Research on Common Game Animals

Stuart Walker
U.S. Environmental Protection Agency
Office of Superfund Remediation
and Technology Innovation (OSRTI)
Assessment and Remediation Division (ARD)
Science Policy Branch (SPB)

Clu-In Webinar on July 13, 2020
"Most Common Game Animals in the U.S and Information on Intakes,
Habitation, Hunt Frequency, and Human Consumption"

Purpose

- Provide background for why EPA needed this research project on most common game animals
 - » This includes a brief overview of CERCLA (Superfund) tools for assessing human consumption of game animals in risk assessments and dose assessment at radioactively contaminated sites
 - —This talk does not address ecological protection

CERCLA Risk and Dose Calculators

Human Health - Radiological

Cancer risk (1 x 10⁻⁶)

- ◆ PRG (soil, water and air) 2002
- ◆ BPRG (inside buildings)2007
- ◆ SPRG (outside surfaces) 2009

Dose (millirem per year)

- ◆ DCC (soil, water and air) 2004
- ◆ BDCC (inside buildings) 2009
- ◆ SDCC (outside surfaces) 2009

Human Health - Chemical

- ◆ RSL (soil, water, and air) 2008
- ◆ VISL (vapor intrusion) 2018

PRG and DCC - Recreator Scenario

- ◆Extension of residential scenario.
- There are no default exposure parameters.
- Age-adjusted for change in intake as the receptor ages.
- ◆Main pathways: soil, water, wild game, air

PRG and DCC – Recreator Scenario Selecting Game and Fowl Hunters

PRG and DCC – Recreator Scenario Game and Fowl graphical representation



Page-6

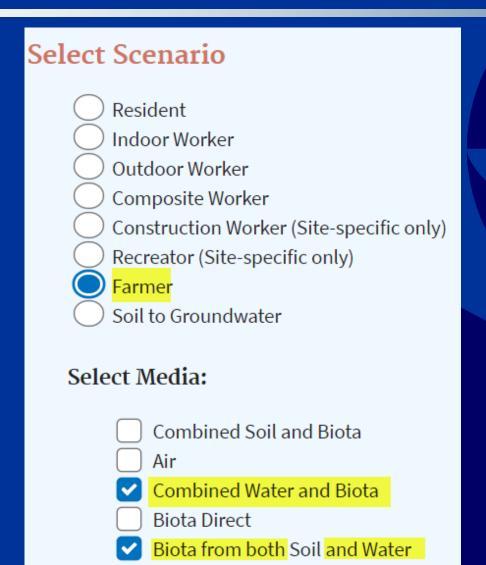
PRG and DCC – Recreator Scenario Game and Fowl Hunter characteristic inputs

Parameters Common to all Exposure Route Equations

ED _{rec} (exposure duration - recreator) yr
ED _{rec-a} (exposure duration - recreator adult) yr
ED _{rec-c} (exposure duration - recreator child) yr
EF _{rec} (exposure frequency - recreator) day/yr
EF _{rec-a} (exposure frequency - recreator adult) day/yr

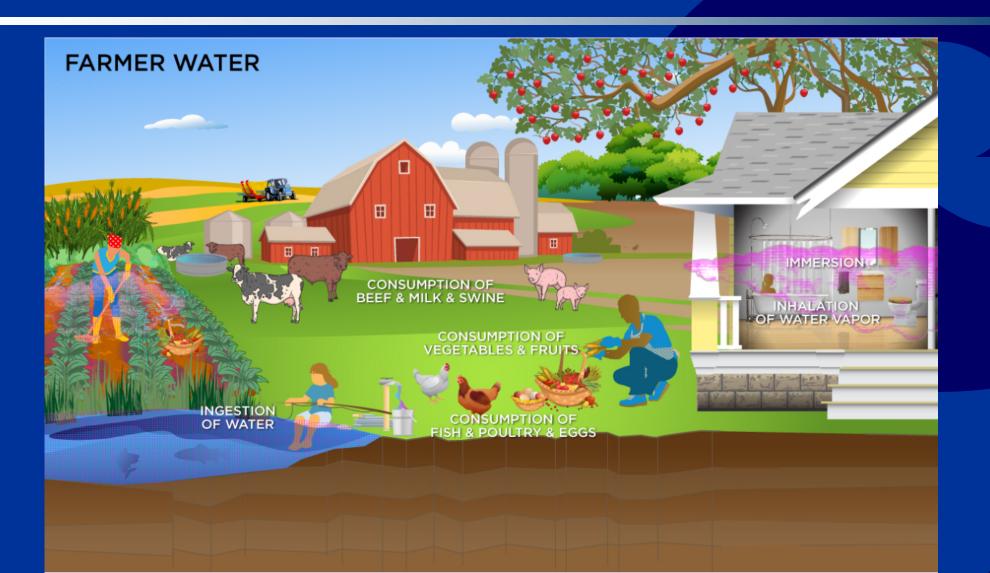
PRG and DCC – Recreator Scenario Game and Fowl animal consumption rate inputs

1	CF _{rec-fowl} (fowl contaminated fraction) unitless
1	CF _{rec-game} (game contaminated fraction) unitless
•	ED _{rec} (exposure duration - recreator) yr
•	EF _{rec} (exposure frequency - recreator) day/yr
1	f _{p-fowl} (fowl on-site fraction) unitless
1	f _{p-game} (land game on-site fraction) unitless
1	f _{s-fowl} (fraction of year fowl is on site) unitless
1	f _{s-game} (fraction of year land game is on site) unitless
•	IRGF _{rec} (fowl consumption rate) g/day
	IRGL _{rec} (land game consumption rate) g/day


0.25	MLF _{pasture} (pasture plant mass loading factor)
unitless	
	Q _{p-fowl} (fowl fodder intake rate) kg/day
•	Q _{p-game} (land game fodder intake rate) kg/day
•	Q _{s-fowl} (fowl soil intake rate) kg/day
	Q _{s-game} (land game soil intake rate) kg/day
	Q _{w-fowl} (fowl water intake rate) L/day
•	Q _{w-game} (land game water intake rate) L/day
	t _{rec} (time - recreator) yr
1E-06	TR (target cancer risk) unitless

PRG and DCC - Farmer Scenario (water)

- ◆Exposure pathways
 - » Incidental ingestion of water
 - » Inhalation of volatiles from water
 - » External exposure to ionizing radiation
 - » 100% homegrown produce and livestock consumption
 - —Meat (cattle, goat, sheep) Swine
 - —Milk (cow, goat, sheep) Eggs
 - —Poultry (chicken, goose, turkey and duck) Fish
 - —Produce (24 categories)



PRG and DCC – Selecting Farmer Scenario (water)

PRG and DCC – Farmer Scenario (water) graphical representation

PRG and DCC – Farmer Scenario (water) Fish pond related inputs

CF_{far-fish} (fish contaminated fraction) unitless

RFI_{far-adj} (fish ingestion rate - farmer adult) g/day

IFFI_{far-adj} (age-adjusted fish ingestion factor) g

RFI_{far-adj} (fish ingestion rate - farmer child) g/day

Fish **Bioconcentration** Factor Radionuclide BCF (L/kg) Ba-137m 1.20E+00 Cs-137 2.50E+03

Soil-Water
Partition
Coefficient
K_d (cm³/g)
4.00E-01

1.00E+01

Existing approach may not be enough

- ◆EPA Superfund program sometimes has site decisions and risk assessments based on recreational hunting scenarios
- Concerns have been raised that existing Superfund calculators do not capture common game animals eaten by recreators
 - » This concern has also been echoed at the 35 all day classes EPA has conducted on radiation risk assessment
 - » Previous comparison study of radiation models conducted by Nasser Shubayr for EPA found IAEA supported model NORMALYSA included game animals (e.g., moose, roe deer, wild boar)

