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Computational Systems Biology and Dose Response Modeling - Dioxins
and Induction of Proteins in Liver.

L
Regional induction of CYP proteins within the liver by dioxin indicated a switching
between basal and fully-induced cells. Some switches in transcriptional states
were known for positive feedback controlled synthesis of transcriptional factors
(Andersen and Barton, Toxicol. Sci., 48, 38-50, 1999). however, computational
tools were not well developed for assessing the networks and dose response
characteristics for network activation by transcriptional activation. With
support from Superfund Basic Research Project funds, scientists in the
Computational Core at the Hamner Institutes for Health Sciences developed a
course in Computational Systems Biology and Dose Response Modeling to provide
instruction on using computational approaches in studying gene transcriptional
processes in order to assess likely dose response behaviors for non-linear control
processes inherent in biological systems (see The Hamner website:

offerings.html). This presentation provides background on dioxin induction of

proteins in the liver and emphasizes the tools that can be applied in assessing the
circuitry and dose response for these and other processes.

The Hamner Institutes Sept
22-26, 2008



Exposure - Dose - Response Relationships

Exposure

absorption, distribution,
metabolism

Tissue Dose

chemical actions, receptor
binding

Molecular Interactions

receptor activation, tissue
reactivity

Early Cellular Interactions

functional changes: i.e., enhanced
contractility, hepatic failure

Toxic Responses
cancer; tissue disease;
r'?r'oducf/ve - neurologic
effects,



Dioxin distribution to Liver and Fat
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The dose-dependent
curvature is due to
induction of a dioxin
binding protein in
liver by treatment
with dioxin.



Gene Induction in liver

¢ Dioxin caused increases in proteins in the liver
that bind dioxin (CYP 1A2) and sequester the
compound in liver

¢ How did we first account for increase in binding
of dioxin in the liver with time?



PBPK Model Schematic
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Transcriptional Model (1988 & 1993)

Ah-TCDD

DRE ............... . > m-RNA-CYP 1A2
CYP 1A2 - Gene

Ah + TCDD Ah-TCDD

Ah-TCDD + DRE Ah-TCDD-DRE

DRE Occupancy = __Ah-TCDD
Ah-TCDD + Kd

Kbl - Ah receptor binding
Kd - Receptor complex with DNA
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Model for Time-Dependent Protein Synthesis

Inducible synthesis Binding protein  Degradation
> &Enzymes _
Ko; Kmax Kelim

n
d(Pr)/dt = Ko + Kmax [Ah-TCDD ] - kelim [Pr]
n n
Kbl +[Ah-TCDD]




o o DIOXIN PHYSIOLOGICAL MODEL
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INDUCTION OCCURS IN SPECIFIC  © . . °
REGIONS OF THE LIVER ACINAR o« s« o
STRUCTURES - IT'S ABOUT CELLS  « ° ° °

Corn Oil Control 0.1pg/kg PCB 126
' 3 ‘ - oY

-
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@ The PBPK model for
dioxin-induced protein
expression needs to
account for regional
differences in
response.
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Liver Structure

©2001 BoAETol - Thomsan Leamng

Branch of
hepatic portal veir
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Creating a Multi-Compartment Yy
Liver Acinus: :K}:

InEdqu:.(')n ' inducible synthesis bin dlﬂg degradation
quations: Ko :K (ind) protein k(elim)

n
AP Pt = Ko + k(max) [Ah-dioxin] -~ k(elim) [Pr]

Kb1 "+ [Ah-dioxin]

Liver Bulk
Structure:

The Hamner Institutes Sept
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Visualization and Comparison IXE:I
with Immunohistochemistry

@ Simulation of geometric
organization is necessary. The
predicted induction in the
various sub-compartments was
used to 'paint’ regions in a fwo-
dimensional acinus.

Representation of a field of acini in a liver section

e B e Gt gy o e e ey o 08

The Hamner Institutes Sept

22-26, 2008

14



peted

Modeling Regional Induction in Liver

‘ C
Requires high N-values

@ Binding constants vary ‘
between adjacent zones

@ Very empirical

<% % 8
% % &
S % &

@ Nonetheless, induction is
equivalent to a switch

@ Need biological studies about
non-linear switching
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Making a Switch - Looking at Possibilities
Positive Feedback
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Andersen and Barton, Tox. Sci., 48,38, 1999.
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Receptor Auto-Regulation Produces
Steep Dose Response

@ Auto-induction (positive
feedback) of receptor
protein by 2, 5, and 10-fold
causes increasingly more
steep dose-response
curves.

Reporter Gene Concentration

@ All-in-all we simply needed
to do more than simulate
sets of equations if we S —— : ——

0.001 001 0.1 1 10

wanted to really Ligand Concentration
understand the process.

Andersen and Barton, Tox. Sci., 48,38, 1999.

(log) 1i



SBRP-How we got to the point of offering a
course - Computational Systems Biology and
Dose Response Modeling. Found a paper.....

© SYSTEMS BIOLOGY: A USER’S GUIDE

PERSPECTIVES

Back to the future: education
for systems-level biologists

1 guess I should have read the

Ned Wingreen and David Botstein course description more carefully

Abstract | We describe a graduate course in quantitative biology that is based on
original path-breaking papers in diverse areas of biology: each of these papers
depends on quantitative reasoning and theory as well as experiment. Close reading
and discussion of these papers allows students with backgrounds in physics,
computational sciences or biology to learn essential ideas and to communicate in
the languages of disciplines other than their own.

Nature Reviews Molecular and Cell '
Biology, November 2006 I |

Figure 1| Taking Integrated systems blology a step too far.
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Dr. Qiang Zhang
Dr. Sudin Bhattacharya
Dr. Courtney Woods

Started a journal club inspired by
Wingreen and Botstein paper.

Then, somebody thought it would
be a good idea to do a course.

The Hamner Institutes Sept
22-26, 2008
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Computational Systems
Biology and Dose Response
Modeling Workshop

In this zsurss you wil loarm:
= Gurment computationsl modeing techniques for the quantiatve
o how biolagical systams respond to perturbations
t the collutar level
= Common themes in signal transduction and gene regulatory networks

7 To use these techniques 10 develop computational modes for
ndarstanding amd predicting dose responas behariors of drugs and
seronmental sgeats.

Division of Computational Biology

The Hamner Institutes for Health Sciences
W sagpart From the Supetund s fessarcn Brogram
t Michiges Seate Uniwecssty

The Hamner Institutes Sept

22-26, 2008

Full course with all lectures
and exercises available at
The Hamner website

You can find out the things I
should have known in 1999

oUltrasensitivity

oFeedback & Bistability

oFeedback Controllers and Loop
gain

oFeedforward loops and
transcriptional networks
oNon-linear dynamics versus solving
equations

Some highlights follow:

20



I. Ultrasensitivity

D-R Curves more steep than Michaelis-Menten:

Rmax x Concentration "

Response =

Kd " + Concentration "

N=1,2,4,and 10

@ What processes give rise
to ultrasensitivity?

Response

@ Quite a few

@ Very commonly - MAPK
cascades
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Ligand Concentration
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MAPK cascade is an ultrasensitive motif

INPUT

|
& i f
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Input
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Input

OO v

MKP MKP l

Input
OUTPUT - Specificity
22

We know MAPK appears in many signaling pathways. Then what’s unique about

MAPK, what does it do in terms of transferring signals. It turns out that MAPK
cascade is a ultrasensitive motif.

22



And, a versatile signaling motif
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And others............. (Johnson and Lapadat, Science, 2002).
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IT. Bistability

@ Delbriick (1948) proposed bistability as a general principle to
explain discontinuous transitions in biochemical reactions

@ Monod and Jacob (1961) proposed bistable gene regulatory
circuits to explain cell differentiation

@ Thomas (1978) showed a positive feedback loop to be a
necessary element of a network for bistability and switching
behavior

Huang, in Computational Systems Biology, Kriete and Eils, ed., 2005.
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Moving from State-to-State

opumMm I:I N 1 ’Y=.19 i .];
1
0.003 pM [l = ]o - @ Switch-like behavior
001 yM [ N=38 § occurs in oocyte
2 ﬂ n=3s _]' g maturation. Individual
o SR : - R cells have either of two
S oumm M= [l 8 levels of MAPK-P: basal
g’.’, came . N=37 [}, &8  orfully induced. ( n ~
oe. ; N=12 D]‘ 5 30)
UM = P T 0
8uM L . . . M EH;
0% 50% 100%

Ferrell and Machleder,
MAPK-PO4 Science, 280, 895, 1998.
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With a positive feedback loop

|

Progesterone - (& ﬂ Rﬂk
stimulated > =
MOS synthesis Ms 1

|
I Feedback
- ——-

MAP-Kinase activation by progesterone acting via cell-
surface receptors activating MOS.
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Platelet Derived Growth Factor (PGDF)

PDGF-R
ﬁ[H 373 i
Fibroblasts

SHC
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i
" (epLaz )= mark r—-
@ Positive feedback loop through cPLA2-AA-PKC
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Ultrasensitive with feedback
(Thomas, 1978)
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- A positive feedback loop P: protein



Bistability example: gene auto-regulation

& dM . kS P
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Rate

1,2,3: Steady states ( synth rate = degrd rate)

@ 1,3: Stable Steady states

O 2: Unstable Steady state
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Response

Bistability:
“threshold dose" and hysteresis

1000

100 -

0.02 0.04 T 0.06

Threshold dose

0.08
Stimulus

01

—> Increasing dose

~-==* Decreasing dose

@ Hysteresis:
— biological
“memory”
@ lIrreversibility

— Stabilization
of alternative
states
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III. Negative Feedback-mediated Homeostatic
Gene Regulatory Networks

A Oxidative Stress Response B Heat Shock Response
Oxidative
stressor Heat
I P T e L
L Nrf2 + Antioxidant ROS | HSE > HSP Genes —» Mlsfo'lded}
: B Genes ' ! | Proteins !
Keapl _—I |
C Hypoxic Response O General Cellular Control Scheme
Hypoxia Stressor
e N I '}{A¥il;{;;;;'"-E?)"c';}{;};ﬁz?
HIfi Genes 0 Tt (__; Genes Variable
Prolyl/asparaginyl * | ] |
R Hydroxylase. ... ' e :

TF: Transcription factor

31

cells in vivo must maintain a relatively stable intracellular micro-environment in an extracellular environment that is constantly
changing and potentially unpredictable. Notably, many intracellular biomolecules need to be held within closely regulated ranges
of concentrations for normaf)cell functions. Examples of these biochemical species, which could be detrimental and/or beneficial
to cellular health, are reactive oxygen species (ROS), DNA adducts, misfolded proteins, O2, and glucose. When external stressors
cause these molecules to deviate from their basal operating concentrations for extended period of time, normal cell functions
become disrupted. As with many manmade control devices, such as thermostats and automobile cruise controls, homeostatic
regulation of vital intracellular biochemical species appears to operate primarily via gene regulatory networks that are organized
into negative feedback circuits.

This is an example of oxidative stress response. Normal cell metabolism will produce ROS, which is eliminated by a set of anti-
oxidants and enzymes. If the cell is under oxidative stress, ROS level increases initially. The increased ROS inhibits a protein
called keap1, which negatively regulates Nrf2. This results in activation of Nrf2, which in turn upregulates a suite of anti-oxidant
genes that accelerate ROS elimination, just bringing ROS back close to the normal level.

For heat shock responses, high temperature cause an increase in the amount of misfolded proteins. This increase in misfolded

?rotein will titrate HSP away from HSF, thus indirectly activate HSF. More HSF upregulates HSP proteins expression, which
unctions to refold misfolded protein back to normally folded state.

A third example is the hypoxic response. If for some reason, the intracellular O2 level drops, hydroxylase will sense the situation,
which in turn disinhibit HIF activity. High HIF levels drive up anti-hypoxic genes that functions to increase the supply of O2 to
the tissue and cells.

Together With other unlisted examples, we can generalize most of anti-stress gene regulatory networks into a common control
scheme. The output of the system, referred to as controlled variable, is the biochemical species i ]
mm;bmn_?w&mma]_mism and therefore needs to be tightly controlled. The system contains specific
transcription factors that serve as transducers to either directly or indirectly sense the level of the controlled
variable. (In this fashion, alterations in the concentration of the controlled variable affect the activity or abundance
of the transcription factor). Activated transcription factors then upregulate expression of individual or suites of anti-

stress genes, many of which encode enzymes that participate in an array of interconnected biochemical reactions to
counteract the perturbation to the controlled variable.

31



Y vs. S Dose Response with Constant Local Gains

Stressor I !" ¥ |
¥ 1
) = = <=1
- ] [ " .
rol+ din§ L+
Transcription I + Gene I'; — Controlled
Factor Variable Ry = Iry1srsl
(m ©) )
L |
]
& <=l ® The higher the R,,,, , the more superlinear the
Y vs. S curve.
L = * For high homeostatic performance, high R,
] = is preferred !
[ e -

S

Assume all local gains remain constant with respect to S i2

Now let’s focus on Y. According to the equation, for the controlled variable Y, RYS is
always less than or at best equal to 1 since the loop gain >=0 (zero is equivalent to
open loop). Therefore the Y vs. S dose response curve is superlinear or at best linear.
The larger the loop gain, the smaller RYS is, the more superlinear the dose response
curve becomes, and Y is more insensitive to changes in S. Since the goal of the
feedback gene regulation is to maintain homeostasis for Y (which could be ROS,
DNA adduct, misfolded protein, etc.), it is desirable to have the loop gain as large,
hence RYS as small, as possible, in order to effectively resist perturbations by
stressors.

Augmentation of loop gain can be achieved by increasing local gain, either alone or in
combination. Cells are furnished with many biochemical reactions/interactions or
functional modules that can transfer signals in an ultrasensitive, or even switch-like
manner, and thereby enhance local gains.



IV. Transcriptional networks

X, e.g. (E2-ER),, Dioxin-AhR-ARNT, PPAR-c-PFOA-RXR, etc.

l

Y1
cFFL-2
| IFFL-1 |

Y4 @ Describing a cascading series

s of gene expression levels
through coherent and
incoherent feedforward loops

Alon, U. (2007). Nature Reviews Genetics, 8, 450-461.

Y3
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~ Dose affect levels
differentially
2.0 units

0.8 units

0.6 units

0.4 units

0.2 units

Sept
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UNC School of Medicine 6/24/09

V. Gene dosage in liver cells

Pericentral area
.j[ pe | Y
cv
Lo
Key: PV - portal vein; BD - bile duct; HA - hepatic artery; SE - sinusoidal
endothelium over the Space of Disse; CV - Central vein. The portal triad
and central vein are surrounded by a matrix which differs from the vascular
basement membrane; see table below.
Zones 1 2 3
Ploidy rats 2N 4N4N & 8N
mice 2N & 4N 4N & 8N up to 32N
humans 2N 2N2N & 4N

Growthmaximumintermediate negligible

Confidential 35



What might be going on with dioxin in liver, using
computational systems biology lingo.

@ The response to dioxin is activation of a negative feedback
loop to maintain ‘homeostasis’ for a bio-active ligand-
receptor complex (see Nebert, 1994).

@ High loop gain is partially achieved by ultrasensitivity in the
activation of the phase I enzymes - likely through MAPK
pathways and feedback-linked bistability

@ The variability in induction across the liver may be due to
the 'differentiation’ state of the hepatocytes along the
sinusoid, partially determined by ploidy state and gene
dosage

@ The transcriptional network activated is likely to differ
across the sinusoid and in the periportal area to include
proliferative responses and hyperplasia.

The Hamner Institutes Sept
22-26, 2008



Dose Dependent Transitions — Hypothesis

Exposure

i B
Low Dose Tissue Dose

3
Biologicalllnteraction

Perturbation

!

Biological

o —— — ——» - —> ——» ——» ——» ]Il

Inputs 3
xR
) Responses
Mid Dose = \
Adaptive Stress Adverse
Responses == Health
High Dose Outcomes

7
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For more information -
scheduled publication 12/2009

Some chapters
dioxin example
ultrasensitivity

Quantitative bistability
s : transcriptional networks
Modeling in

Include exercises from the
Hamner/SRP Course; other
chapters cover PBPK modeling

Toxicology

Thanks again to:

SRP funding

Qiang Zhang

Sudin Bhattacharya
Courtney Woods

The Hamner Institutes Sept

22-26, 2008
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Studying the Basic Biology of B cell
Differentiation to Understand the Effects
of 2, 3, 7, 8-tetrachlorodibenzo- p-dioxin
(TCDD) on Immune Function

Spring/Summer 2009 edition of Risk e Learning
"Computational Toxicology: New Approaches for
the 21st Century."

Rory B. Conolly

National Center for Computational Toxicology
Office of Research and Development

USEPA

Norbert E. Kaminski

Center for Integrative Toxicology and
Department of Pharmacology & Toxicology
Michigan State University

39
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Disclaimer

The Hamner Institutes
22-26,2008

Although this work was reviewed by EPA
and approved for publication, it may not
necessatrily reflect official Agency policy.

Sept

40
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The Hamner Institutes
22-26,2008

B cell biology

Sept

41
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Profile of Biological Activity by TCDD

* enzyme induction

* hepatomegaly

* lymphoid involution:primarily thymus

* immunomodulation (i.e., mostly suppression)

+ chloracne and epithelial hyperplasia

- teratogenesis (example: cleft palate)

+ cancer (tumor promoter)

* wasting syndrome

* death "

42



Why focus on the B cell?

* The antibody response has historically been one
of the most sensitive indicators of TCDD
immunotoxicity

* The magnitude of humoral immune suppression

by TCDD is similar for antigens requiring
different cellular cooperativity (sRBC, DNP-
Ficoll) and to the polyclonal B-cell activator LPS

43
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Cytokines

-

Or

5 A

Q

=

3 Cytokines

° VE 0.1 o 10.0
TCOD (ug /kg)
120+
AE DNP-Ficoll
g .
N Cytokines

‘_

IgM AFC/MILLION
RECOVERED CELLS

\E 0.1 1.0 10.0

Immunopharmacol. 16 (1988) 167-180

14
ooley and Holsapple Immunopharmacology (1984)
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Why focus on the B cell?

- Spleen cell separation-reconstitution experiments
show that the B-cell is the primary cellular target
within leukocyte subpopulations

* Direct effects of TCDD on B cell function have
been demonstrated in purified primary B cells and
B cell lines.

45

45



The AHR Signaling Cascade

Downstream
TCDD g— @— Sl &

hsp90 .

/  hsp90

@ Cytosol

hsp90

@® s A
- @ hsp90 Nucleus

M m.T Gene regulation

TNGCGTG
DRE

46

The Hamner Institutes
22-26,2008
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Role of the AHR in the Suppression of the
IgM Response by B Cells

AHR+ AHR-

Inhibition of LPS-induced IgM secretion
from CH12.LX cells

a0

LPS-Induced IgM Secretion
by BCL-1 Cells

*

* *

20

i
b
2
3

-
=}

£
S
=)
c
=
=)

9

NA LPs VH 0008 008 03 30 VH 3 nM

TCDD
LPS (30 ug/ml)

nMTCDD + LPS (30 yp/mi}

Sulentic et al., Mol Pharm, 53:623-629 (1998)
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Activation —» Proliferation —> Differentiation

~
o

'@
antigen

or
polyclonal activator

Restin
B cell 9 » Plasma cell 48
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Mediators of the B Cell Differentiation
Program (Resting B cell)

! ¢Jun/AP-1
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Mediators of
Prog

the B Cell Differentiation
ram (Plasma Cell)

t cJun/AP-1 «— «—

A

IBCL6

\

T B||mp_1_| 1POX5

<

le-myc |
IMHC class IT

B cell Activation
Signal (e.g. LPS)

/ 1 IgH Chair\
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Mediators of
Program w

the B Cell Differentiation
ith TCDD (Plasma cell?)

| cJun/AP-1 «— «—

A

1BCL6

\

| Blimp-14| 1Pax5

<

fc-myc |
TMHC class IT

B cell Activation
Signal (e.g. LPS)

/ | IgH Chair\

4

|1 TgL cmm—»B @
l \/ = = — S
| xgp-1  4BJ cham%\i\

le 51

+ TCDD
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Summary

Suppression of the IgM response by
TCDD is:

* mediated through direct effects on
the B cell

» dependent on the AHR

* due, in part, to impaired B cell
dif ferentiation

52

The Hamner Institutes Sept

22-26,2008
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Computational modeling

53

The Hamner Institutes
22-26,2008
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(Intuitive modeling)

ISSUE

— HYPOTHESIS
QUANTITATIVE
MODEL EXPERIMENT
SIMULATED DATA
EXPERIMENT EVALUATION

| EVALUATION OF
SIMULATED DATA

(Formal + intuitive modeling)

54

The Hamner Institutes
22-26, 2008

Sept

54



Learning from models

» All models are wrong but
some are useful.

George Box

55

The Hamner Institutes
22-26,2008

Sept
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Learning from models

» All models are wrong but
some are useful.
+ Ask, not if the model is right,

but can we learn something
useful from it?

George Box

56

The Hamner Institutes
22-26,2008
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Philosophy

Develop the model to help us better
understand what the data can tell us.

Model is interpretive and predictive.

Using good practice, more likely to
uncover uncertainty that introduce it.

Not required to be “right”.
Is required to be better than no model!

57

The Hamner Institutes
22-26,2008
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Exposure-response continuum

Pharmacokinetics
N
Exposur Tissue . TISSLI‘C
dose interaction
Y
P

Tissue  Early tissue  Irreversible
interaction  response pathology

N
| Pharmacodynamics

58
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Dioxin PBPK Model with Spleen

, Cq
—+ Blood &

T i =
“pe30 > IOWH QS
i =
k Q-Qsp

Ko

Dose St L!yer,,,,l,,T,,,,‘_ES,P,::,,Splgen ,,,,,,,,,, L

K¢ l Metabolism

QSp

59
(based on Andersen et al. '93, Wang et al. '97),

The Hamner Institutes
22-26,2008
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Dioxin PBPK Model with Spleen - Fitting
long time-course rat data

Oral dose: 10 ug/kg

TCDD concentration - nglg tissue

0.01

0 2 4 86 B 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Time - days

60
(Wang et al. '97)

The Hamner Institutes Sept
22-26, 2008



Exposure-response continuum

Pharmacokinetics
N
Exposur Tissue . TISSLI‘C
dose interaction
Y
P

Tissue  Early tissue  Irreversible
interaction  response pathology

N
| Pharmacodynamics

61
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Mediators of the B Cell Differentiation
Program (Plasma Cell)

! cJun/AP-1

A

IBCL6

\

1 Blimp-1——Pax5

<

le-myc |
IMHC class IT
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An irreversible switch: hysteresis and
memory

— biffer'en'riated
(plasma cell)

—

Undifferentiated
— (B cell)

Blimp-1

LPs
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More lines of evidence that there may be more interactions working to make a
robust irreversible switches.

And these interactions mostly involves gene regulatory circuits, justified a
stochastic approach to account for randomness. Stochastic processes in gene
expression can be exploited by cells to facilitate fate decisions including
differentiation.

These interactions also requires computational tools (bifurcation discovery)
that can help find parameter settings that allow switching.
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Mediators of the B Cell Differentiation
Program (Plasma Cell)
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AP-1 activation

Cytokines / Stress / Growth factars

T
Pi3-Kinase)
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http://www.dartmouth.edu/~brenner/genel44-06/wasiuk.html
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MAPK time-course and bifurcation after a short

pulse of PDGF
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Prediction: LPS activates Bcl6-Blimp1-Pax5 switch with a threshold

dose
| LPS
t LPS
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0] :
ime (h)
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Percentage LPS-activated Plasma Cells Over Time
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Dioxin Suppresses B Cell Terminal Differentiation

Antigen (e.g. LPS)

©

B cell

Dioxin

Plasma cell

,.J
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If this bistable is what controlling the transition from B cell to plasma cell, then

dioxin should impinge upon it.
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Cytokines / Stress / Growth factars

TCDD and |
AP-1 activation, = ,/ \\
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Research needs

Fuller mapping of TCDD-mediated
signaling

How does TCDD affect gene expression?
— Gas pedal or light switch?

All doable with existing technology!
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Predicted Dose Response Surfaces
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Iteration between the laboratory and
computational modeling

&

Experiments to understand Computational
mechanisms of toxicity and models
extrapolation issues

A W 4
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Summary

» Dose-response is a function of biological
mechanisms.

« Computational models of these mechanisms
improve the efficiency of research and
provide the capability for prediction.

* Need quantitative understanding of how
TCDD-ARR interacts with AP-1 and other
sites in the B cell differentiation program
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Qiang Zhang
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End
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Register now for the third presentation of the Computational Toxicology series:

“Chemical Prioritization / Rapid Assay Techniques”
— July 7, 2009

by following the registration link on the Computational Toxicology web page.

For more information and archives of this and other Risk e Learning web seminars
please refer to the Superfund Basic Research Program Risk e Learning web page:
http://tools.niehs.nih.gov/srp/risk_elearning/

e

Superfund
Research Program
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After viewing the links to additional resources,
please complete our online feedback form.

/ZNThank You /
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