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Superfund Basic Research Program 
University of Arizona 

•	 Funded and administered by the National 
Institute of Environmental Health Sciences 
(NIEHS), an institute of the National Institutes of 
Health (NIH) 

•	 Hazardous wastes investigated include:  arsenic, 
chlorinated hydrocarbons, and mine tailings 
contamination 

2 

2 



The DNAPL Problem 

• Primary Source of Contaminant Mass 

• Site Characterization 

• Remediation 
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The Source-Zone Issue 

To Remediate or Not To Remediate---
that is the question… 
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Recent Studies 

•	 Interstate Technology and Regulatory Council. 
2002. DNAPL Source Reduction: Facing the
Challenge. 

•	 Environmental Protection Agency.  2003. The 
DNAPL Remediation Challenge: Is There a 
Case for Source Depletion? 

•	 National Research Council.  2004. 
Contaminants in the Subsurface: Source Zone 
Assessment and Remediation. 
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Summary 

• Complete Mass Removal Not Possible 

• Is Partial Removal [Mass Reduction] Beneficial? 

• Need To Define Objectives 

• Cost/Benefit Analysis 
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Key Questions 

• Expected Degree of Mass Reduction? 

• Impact of Specified MR on Mass Flux? 

• Impact of Mass Flux Reduction on Risk? 
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Answers 

•	 Need to Understand the Impact of Source-
zone Architecture and Dynamics on Mass 
Flux Behavior 

8 

8 



Research Needs 
•	 SERDP/ESTCP Expert Panel Workshop on 

Research and Development Needs for Cleanup 
of Chlorinated Solvent Sites. 2001. 

–	Focus Research on Source-Zone Issues 

– Source-zone Architecture and Mass Transfer 

Processes


–	Pore-scale Processes 
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Research Needs 

• UA/SBRP Expert Panel DNAPL Workshop. 2005. 

– Source-zone mass flux processes, and the relationship 
between mass reduction and mass flux 

– Distribution and mass-transfer behavior of DNAPLs at 
multiple (pore, column, intermediate, field) scales 

– Distribution and mass-transfer behavior of DNAPLs in 
heterogeneous (low-permeability or fractured) systems 
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Continued 

– Long-term mass flux behavior, including the influence 
of aging and the relative contributions of trapped 
DNAPL, sorbed mass, and matrix-associated 
dissolved mass 

– Impact of co-contaminants on phase properties 
(wettability, interfacial tension) in complex, natural 
(real-world) settings 

– Mathematical modeling at multiple scales, and 
associated upscaling 
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Flux Reduction vs. Mass Removal 
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Factors Influencing Mass Flux 

• Flow-Field Dynamics 

• DNAPL Distribution and Configuration 

• Dissolution Dynamics 

• Mass Transfer and Transformation Processes 
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Measuring Mass Flux 

• Measuring Mass Flux in the Field 

• Lynn Wood Presentation 
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Predicting Mass Flux Reduction 

•	 Flux Reduction-Mass Removal Relationships 

•	 Understand Impacts of Source-zone 

Architecture and Dynamics on Mass Flux


•	 Priority Research Need 
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Intermediate-Scale Experiments 

• Examine Heterogeneous Systems 
• Permeability Variability 
• Non-uniform NAPL Distribution 
• Multiple Mass-transfer Processes 

• Controlled/Well-defined Systems 
• Evaluate Flux vs. Mass Removal Behavior 
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UA-PNNL Experiments 
•	 Multiple methods to measure aqueous 

concentrations (mass flux): 
–	Depth specific ports [e.g., multilevel sampling ports] 
–	Vertically integrated ports [e.g., fully screened MWs] 
–	Flow-cell effluent [e.g., extraction well] 

•	 Dual-energy gamma system to measure NAPL 
saturation in-situ (mass removal) 

•	 Additional characterization methods: 
–	Non-reactive tracer test 
–	 Dye tracer test 
–	Visualization of dyed TCE 
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Flow-cell Schematic
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Flow Cell 
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TCE Concentrations 
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Mass Flux-Mass Removal 
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Mass Flux-Mass Removal 
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Pore-scale Research 

• Topics: 
– Multi-phase Fluid Displacement 
– Wetting/Non-wetting Fluid Distributions 
– Fluid-Fluid Interfacial Areas 
– Mass-transfer Processes 

• Methods: 
– High-Resolution Imaging--- MRI/NMR; X-ray 
– Pore-scale Modeling--- Network, Lattice-Boltzmann 
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GeoSoilEnviroCARS 

• 
research facility at the
Advanced Photon 
Source, Argonne, IL 

• 
DOE, State of Illinois 

Synchrotron-based 

Supported by NSF, 
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Synchrotron X-ray CT Images 

NAPL = white 

Solids = dark gray, 
Water = black, 

Solids = gray, 
Water = blue, 
NAPL = red 
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Examples of NAPL Ganglia 
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Time Series 

30




Acknowledgements 

•	 NIEHS SBRP 

•	 Greg Schnaar, Justin Marble, Colleen 
McColl, Michele Mahal, Mart Oostrom 

31 

31 



Measurement and Use of 
Contaminant Flux as an 

Assessment Tool for DNAPL 
Remedial Performance 

A. Lynn Wood
Michael C. Brooks 

U.S. EPA/ORD/NRMRL
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Measuring Contaminant Mass Flux 
in the Field 

Methods: 

¾ Multi-Level Sampler (MLS) Transects 
¾ Passive Flux Meters (PFM) 
¾ Horizontal Flow Treatment Wells (HFTWs) 
¾ Integral Pumping Test (IPT) 
¾ Modified Integral Pumping Test (MIPT) 
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et al

Contaminant Flux Estimates by 
MLS Transects 

(from Newell ., 2003) 
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MLS Transect Method 

•	 Advantages: 
–	 Generates spatial information on concentration 


distributions

–	 Methods exist to estimate uncertainty 
–	 Small waste volumes produced 
–	 Conventional 

•	 Disadvantages: 
–	 Requires independent estimation of water flux 
–	 Contaminant measures are instantaneous 
–	 Interrogates small volumes of aquifer 
–	 Data must be spatially integrated to obtain contaminant


mass flows
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Well 

l
Well 

Contaminant Mass Flux Measurements by 
Horizontal Flow Treatment Wells ( HFTWs ) 

(from Huang et al. 2004 and Goltz et al. 2004) 

Downflow 

Upf ow 
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Horizontal Flow Treatment Well 

(HFTW) Method


• Advantages: 
–	 Generates water flux and contaminant mass flux estimates 
–	 Interrogates large volumes of aquifer 
–	 Can be used in deep aquifers 
–	 Does not extract groundwater 
–	 Can estimate horizontal and vertical aquifer conductivities 

• Disadvantages: 
–	 Does not provide spatial information (difficult to quantify


uncertainty)

–	 Assumes aquifer is homogeneous 
–	 Uses tracers to estimate interflow 
–	 Does not function in all wells 
–	 Underestimates maximum resident contaminant concentrations 
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Passive Flux Meters 
(Hatfield et al., 2004) 

Sorbent (
with Tracers 

(minimize vertical flow) 

Tube for flow bypass 

Retrieval wire 

q = f(depth) 

J = f(depth) 

activated carbon) 

Viton Washers 
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Passive Flux Meter Concepts 
Water Flux Contaminant 

Flux 

q0 

Tracer ElutedTracer Remaining Contaminant Sorbed 

(Hatfield et al., 2004) 
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Passive Flux Meter Method 

• Advantages: 
–	 Generates spatial information on cumulative water and 


contaminant mass flux

–	 Methods exist to estimate uncertainty 
–	 Generates local estimates of horizontal aquifer conductivity 
–	 Small waste volumes are produced 
–	 Passive 
–	 Inexpensive 

• Disadvantages: 
–	 Interrogates small volumes of aquifer 
–	 Data must be spatially integrated to obtain contaminant mass 


flows and total water discharge

–	 Uses resident tracers to estimate groundwater flux 
–	 Does not function in all wells 
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Integral Pumping Test
(Bockelmann et al. 2001, 2003; Schwarz et al., 1998; Teutsch et al. 2000; 

Ptak et al. 2000)
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Integral Pumping Method 

• Advantages: 
–	 Generates contaminant mass flow estimates 
–	 Interrogates large volumes of aquifer 
–	 Can be used in deep aquifers 

• Disadvantages: 
–	 Costly (wastewater disposal) 
–	 Requires lengthy time execution 
–	 Assumes aquifer is homogeneous 
–	 Does not estimate water flux 
–	 Does not provide spatial information (difficult to quantify


uncertainty)

–	 Subject to the limitations of sampling configuration 
–	 Underestimates maximum resident contaminant concentrations 
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Modified Integral Pumping Test


J = q0c 

Interpreted from 
concentration –time 

series 
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from IPT results 
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Modified Integral Pumping Test 
1) Measure Q = f(t) 

2) Measure 
Elevations = f(Q) 

Q 

t 

Elev(t0) 
Elev(Q1) 
Elev(Q2) 

Elev(Q3)Pumping Well Observation Well 
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Modified Integral Pumping Method 

• Advantages: 
–	 Generates contaminant mass flow estimates 
–	 Interrogates large volumes of aquifer 
–	 Can be used in deep aquifers 
–	 Estimates water flux 

• Disadvantages: 
–	 Costly (wastewater disposal) 
–	 Requires lengthy time execution 
–	 Assumes aquifer is homogeneous 
–	 Does not provide spatial information (difficult to quantify


uncertainty)

–	 Subject to the limitations of sampling configuration 
–	 Underestimates maximum resident contaminant concentrations 
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Assessing DNAPL Source Remediation 
Performance 
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Source Remediation = Contaminant Flux Management 

Pre-Remediation: 
Control 

c) 
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Post-Remediation: 

Jc=qw•C 
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MASS DEPLETION RESPONSE 
Pre-Remediation: 

DNAPL 
Source 
Zone 

Dissolved 
Plume 

Partial Mass Removal: 

DNAPL 

Source

Zone


Dissolved 

Plume 

Partial Mass Removal + Enhanced Natural Attenuation: 
DNAPL 
Source 
Zone 

Dissolved 

Plume 

Control Plane Compliance Plane 
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Field 

Modeling 

Demonstrations 

Laboratory 
Experiments 

Mathematical 

Impacts of DNAPL Source Zone Treatment: 
Experimental and Modeling Assessment of 

Benefits of Partial Source Removal 

…assess the benefits of aggressive in situ DNAPL 
source-zone remediation 
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Project Team 

• Mike Annable – University of Florida 
• Michael Brooks – EPA/ORD/NRMRL 
• Ron Falta – Clemson University 
• Mark Goltz  –  Air Force Institute of Technology 
• Jim Jawitz – University of Florida 
• Suresh Rao – Purdue University 
• Lynn Wood – EPA/ORD/NRMRL 

51 

51 



52 

DNAPL Field Sites 
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Fort Lewis, Washington 
Pre-Remedial Flux 10/03 
Resistive Heating 12/03-8/04 
Post-Remedial Flux 8/05 

Hill AFB, Utah 
Pre-Remedial Flux 5/02 
Surfactant Flushing 6/02 
Post-Remedial Flux 6/03&10/04 

CFB, Canada 
Pre-Remedial Flux 5/04&7/04 
In-situ Chemical Oxidation 6 05 
Post-Remedial Flux 4/06 

Jacksonville, Florida 
Pre-Remedial Flux 6/04 
Cosolvent Flushing 6-7/04 
Post-Remedial Flux 5/06 
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Interpretation of CT series
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Well-Averaged Flux Summary 
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Fort Lewis EGDY Area 1 Tacoma, Washington 

NAPL Area 1 

NAPL Area 2 

NAPL Area 3 

Source Zone of Ft. Lewis Plume 
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Summary 

•	 Modified IPT method is being used to measure 
pre- and post-remedial flux 

•	 Approximately an order of magnitude decrease 
in flux at Hill AFB 

•	 Flux estimates based on flux meter and IPT  
methods to date are comparable 
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Thank You 

After viewing the links to additional resources, please 
complete our online feedback form. 

Links to Additional Resources 

Thank You 
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