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Superfund Basic Research Program 
University of Arizona 

• 

(NIEHS), an institute of the National Institutes of 

• 

contamination 

Funded and administered by the National 
Institute of Environmental Health Sciences 

Health (NIH) 

Hazardous wastes investigated include:  arsenic, 
chlorinated hydrocarbons, and mine tailings 
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The DNAPL Problem 

• 

• 

• 

Primary Source of Contaminant Mass 

Site Characterization 

Remediation 
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The Source-Zone Issue 

that is the question… 
To Remediate or Not To Remediate---
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Recent Studies 

• 
2002. DNAPL Source Reduction: Facing the
Challenge. 

• 2003. The 

• 2004. 

. 

Interstate Technology and Regulatory Council. 

Environmental Protection Agency.  
DNAPL Remediation Challenge: Is There a 
Case for Source Depletion? 

National Research Council.  
Contaminants in the Subsurface: Source Zone 
Assessment and Remediation
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Summary 

• 

• 

• 

• 

Complete Mass Removal Not Possible 

Is Partial Removal [Mass Reduction] Beneficial? 

Need To Define Objectives 

Cost/Benefit Analysis 
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Key Questions 

• 

• 

• 

Expected Degree of Mass Reduction? 

Impact of Specified MR on Mass Flux? 

Impact of Mass Flux Reduction on Risk? 
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Answers 

• Need to Understand the Impact of Source-
zone Architecture and Dynamics on Mass 
Flux Behavior 
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Research Needs 
• SERDP/ESTCP 

of Chlorinated Solvent Sites. 2001. 

– 

– 
Processes 

– 

Expert Panel Workshop on 
Research and Development Needs for Cleanup 

Focus Research on Source-Zone Issues 

Source-zone Architecture and Mass Transfer 

Pore-scale Processes 
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Research Needs 

• 

– 
between mass reduction and mass flux 

– 
multiple (pore, column, intermediate, field) scales 

– Distribution and mass-transfer behavior of DNAPLs in 
heterogeneous (low-permeability or fractured) systems 

UA/SBRP Expert Panel DNAPL Workshop. 2005. 

Source-zone mass flux processes, and the relationship 

Distribution and mass-transfer behavior of DNAPLs at 
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Continued 

– 
of aging and the relative contributions of trapped 

dissolved mass 

– 

(real-world) settings 

– 
associated upscaling 

Long-term mass flux behavior, including the influence 

DNAPL, sorbed mass, and matrix-associated 

Impact of co-contaminants on phase properties 
(wettability, interfacial tension) in complex, natural 

Mathematical modeling at multiple scales, and 
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Flux Reduction vs. Mass Removal 
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Factors Influencing Mass Flux 

• ield Dynamics 

• 

• 

• 

Flow-F

DNAPL Distribution and Configuration 

Dissolution Dynamics 

Mass Transfer and Transformation Processes 

14




15 

Measuring Mass Flux 

• lux in the Field 

• 

Measuring Mass F

Lynn Wood Presentation 
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Predicting Mass Flux Reduction 

• 

• 

• 

Flux Reduction-Mass Removal Relationships 

Understand Impacts of Source-zone 
Architecture and Dynamics on Mass Flux 

Priority Research Need 
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Intermediate-Scale Experiments 

• 
• 
• 
• 

• 
• 

Examine Heterogeneous Systems 
Permeability Variability 
Non-uniform NAPL Distribution 
Multiple Mass-transfer Processes 

Controlled/Well-defined Systems 
Evaluate Flux vs. Mass Removal Behavior 
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UA-PNNL Experiments 
• 

– 
– 
– 

• 
saturation in-situ (mass removal) 

• i
– 
– 
– 

Multiple methods to measure aqueous 
concentrations (mass flux): 

Depth specific ports [e.g., multilevel sampling ports] 
Vertically integrated ports [e.g., fully screened MWs] 
Flow-cell effluent [e.g., extraction well] 

Dual-energy gamma system to measure NAPL 

Additional characterizat on methods: 
Non-reactive tracer test 
Dye tracer test 
Visualization of dyed TCE 

18




19 

Flow-cell Schematic 
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Flow Cell 
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TCE Concentrations 
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Mass Flux-Mass Removal 
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Mass Flux-Mass Removal 
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Pore-scale Research 

• 
– 
– 
– 
– 

• 
– 
– 

Topics: 
Multi-phase Fluid Displacement 
Wetting/Non-wetting Fluid Distributions 
Fluid-Fluid Interfacial Areas 
Mass-transfer Processes 

Methods: 
High-Resolution Imaging--- MRI/NMR; X-ray 
Pore-scale Modeling--- Network, Lattice-Boltzmann 

26




27 

GeoSoilEnviroCARS 

• 
research facility at the
Advanced Photon 
Source, Argonne, IL 

• 
DOE, State of Illinois 

Synchrotron-based 

Supported by NSF, 
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Synchrotron X-ray CT Images 

NAPL = white 

Solids = dark gray, 
Water = black, 

Solids = gray, 
Water = blue, 
NAPL = red 
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Examples of NAPL Ganglia 
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Time Series 
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A. Lynn Wood 
Michael C. Brooks 

U.S. EPA/ORD/NRMRL 

Measurement and Use of 
Contaminant Flux as an 
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in the Field 
Methods: 

¾ Multi-Level Sampler (MLS) Transects 
¾ 

¾ ) 
¾ Integral Pumping Test (IPT) 
¾ 

Measuring Contaminant Mass Flux 

Passive Flux Meters (PFM) 
Horizontal Flow Treatment Wells (HFTWs

Modified Integral Pumping Test (MIPT) 
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et al

Contaminant Flux Estimates by 
MLS Transects 

(from Newell ., 2003) 
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MLS Transect Method 

• 
– i

– 
– ll l
– 

• 
– 
– 
– 
– 

Advantages: 
Generates spatial informat on on concentration 
distributions 
Methods exist to estimate uncertainty 
Sma  waste vo umes produced 
Conventional 

Disadvantages: 
Requires independent estimation of water flux 
Contaminant measures are instantaneous 
Interrogates small volumes of aquifer 
Data must be spatially integrated to obtain contaminant 
mass flows 

35




36 

Well 

l
Well 

Contaminant Mass Flux Measurements by 
Horizontal Flow Treatment Wells ( HFTWs ) 

(from Huang et al. 2004 and Goltz et al. 2004) 

Downflow 

Upf ow 
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(HFTW) Method 

• 
– 
– 
– 
– 
– 

• 
– 

) 
– 
– 
– 
– 

Horizontal Flow Treatment Well 

Advantages: 
Generates water flux and contaminant mass flux estimates 
Interrogates large volumes of aquifer 
Can be used in deep aquifers 
Does not extract groundwater 
Can estimate horizontal and vertical aquifer conductivities 

Disadvantages: 
Does not provide spatial information (difficult to quantify 
uncertainty
Assumes aquifer is homogeneous 
Uses tracers to estimate interflow 
Does not function in all wells 
Underestimates maximum resident contaminant concentrations 
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Passive Flux Meters 
(Hatfield et al., 2004) 

Sorbent (
with Tracers 

(minimize vertical flow) 

Tube for flow bypass 

Retrieval wire 

q = f(depth) 

J = f(depth) 

activated carbon) 

Viton Washers 
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Passive Flux Meter Concepts 
ContaminantWater Flux 

q0 

Tracer ElutedTracer Remaining 

Flux 
Contaminant Sorbed 

(Hatfield et al., 2004) 
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Passive Flux Meter Method 

• 
– 

– 
– l 
– l
– 
– i

• 
– l
– 

– 
– 

Advantages: 
Generates spatial information on cumulative water and 
contaminant mass flux 
Methods exist to estimate uncertainty 
Generates loca estimates of horizontal aquifer conductivity 
Small waste vo umes are produced 
Passive 
Inexpens ve 

Disadvantages: 
Interrogates small vo umes of aquifer 
Data must be spatially integrated to obtain contaminant mass 
flows and total water discharge 
Uses resident tracers to estimate groundwater flux 
Does not function in all wells 
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41

Integral Pumping Test
(Bockelmann et al. 2001, 2003; Schwarz et al., 1998; Teutsch et al. 2000; 

Ptak et al. 2000)
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Integral Pumping Method 

• 
– 
– 
– 

• 
– ( l) 
– 
– 
– 
– 

) 
– 
– 

Advantages: 
Generates contaminant mass flow estimates 
Interrogates large volumes of aquifer 
Can be used in deep aquifers 

Disadvantages: 
Costly wastewater disposa
Requires lengthy time execution 
Assumes aquifer is homogeneous 
Does not estimate water flux 
Does not provide spatial information (difficult to quantify 
uncertainty
Subject to the limitations of sampling configuration 
Underestimates maximum resident contaminant concentrations 
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Modified Integral Pumping Test 

J = q0c 

Interpreted from 
concentration –time 

series 

x 
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q0 i

well 

Estimate q0 directly 
from IPT results 
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point 
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Modified Integral Pumping Test

Superposition of Uniform flow and multiple Sink terms 
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2) Measure 
Elevations = f(Q) 

1) Measure Q = f(t) 

Elev(t0) 
Elev(Q1) 

Q 

t 

Elev(Q3)Pumping Well Observation Well 

Elev(Q2) 

Modified Integral Pumping Test 
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Modified Integral Pumping Method 

• 
– 
– 
– 
– 

• 
– ( l) 
– 
– 
– 

) 
– 
– 

Advantages: 
Generates contaminant mass flow estimates 
Interrogates large volumes of aquifer 
Can be used in deep aquifers 
Estimates water flux 

Disadvantages: 
Costly wastewater disposa
Requires lengthy time execution 
Assumes aquifer is homogeneous 
Does not provide spatial information (difficult to quantify 
uncertainty
Subject to the limitations of sampling configuration 
Underestimates maximum resident contaminant concentrations 
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Assessing DNAPL Source Remediation 
Performance 
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Source Remediation = Contaminant Flux Management 

Pre-Remediation: 
Control 

c) 

Control 

c) 

Post-Remediation: 

Jc=qw•C 

Most contaminated 

Least contaminated 

Source Zone 

Plane 

Contaminant 
Flux (J

Source Zone 

Plane 

Contaminant 
Flux (J

Flux = Flow • Concentration 
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Pre-Remediation: 

Dissolved 
Plume 

DNAPL 

DNAPL 

DNAPL 

MASS DEPLETION RESPONSE 

Source 
Zone 

Control Plane Compliance Plane 

Dissolved 

Partial Mass Removal + Enhanced Natural Attenuation: 

Source 
Zone Plume 

Dissolved 

Partial Mass Removal: 

Source 
Zone Plume 
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Field 
Demonstrations 

Laboratory 
Experiments 

Mathematical 
Modeling 

Impacts of DNAPL Source Zone Treatment: 
Experimental and Modeling Assessment of 

Benefits of Partial Source Removal 

…assess the benefits of aggressive in situ DNAPL 
source-zone remediation 
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DNAPL Field Sites 
9
9

9
9
9

9
/

9
9

Fort Lewis, Washington 
Pre-Remedial Flux 10/03 
Resistive Heating 12/03-8/04 
Post-Remedial Flux 8/05 

Hill AFB, Utah 
Pre-Remedial Flux 5/02 
Surfactant Flushing 6/02 
Post-Remedial Flux 6/03&10/04 

CFB, Canada 
Pre-Remedial Flux 5/04&7/04 
In-situ Chemical Oxidation 6 05 
Post-Remedial Flux 4/06 

Jacksonville, Florida 
Pre-Remedial Flux 6/04 
Cosolvent Flushing 6-7/04 
Post-Remedial Flux 5/06 
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Well-Averaged Flux Summary 
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NAPL Area 1 

NAPL Area 2 

NAPL Area 3 

Fort Lewis EGDY Area 1 
Source Zone of Ft. Lewis Plume 

Tacoma, Washington 
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Fort Lewis EGDY Area 1 
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Fort Lewis EGDY Area 1 
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• 

• 
in flux at Hill AFB 

• 
methods to date are comparable 

Summary 

Modified IPT method is being used to measure 
pre- and post-remedial flux 
Approximately an order of magnitude decrease 

Flux estimates based on flux meter and IPT  
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Thank You 

After viewing the links to additional resources, please 
complete our online feedback form. 

Links to Additional Resources 

Thank You 

70



