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DNAPLsDNAPLs: Above: Above--Ground RemediationGround Remediation
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Microwave Technology for 
Superfund Site Remediation 

National Institute of Dr. C. Y. Cha 

Environmental Health Sciences  CHA Corporation 

Research Triangle Park, NC 27709 Laramie, WY 82072 
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Reaction of Activated CarbonReaction of Activated Carbon 
to Microwave Energyto Microwave Energy

Dept. Atmopsheric Sciences 3 



University of Arizona, Prof. Eric A. Betterton 

44

Carbon SparklesCarbon Sparkles
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Advantages of Using MicrowaveAdvantages of Using Microwave 
EnergyEnergy

•• Rapid Desorption ofRapid Desorption of 
VOC’sVOC’s

•• Destructive Reaction ofDestructive Reaction of 
NOx and CarbonNOx and Carbon

•• Microwave DecompositionMicrowave Decomposition 
of Large Moleculesof Large Molecules

•• Low TemperatureLow Temperature 
OxidationOxidation

Conventional 
Heating 

e 
HeatingHeating 

Microwave 

1) Activated Carbon – VOC desorption 

2) NOx & SOx– Chemical Reaction with Carbon 

3) Decompose (because of heat) heavy molecules, when contacted with carbon and 
microwaves. – Waste rocket fuels 

4)	 Carbon mixed with catalyst – causes low temp oxidation, chemical and 
biological warfare agents (or medical waste). 
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Microwave Induced 

Solvent Desorption 
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Small Batch RegeneratorSmall Batch Regenerator

•• 1,100 watt microwave1,100 watt microwave 
ovenoven

Dept. Atmopsheric Sciences 7 



University of Arizona, Prof. Eric A. Betterton 

88

Small Batch RegeneratorSmall Batch Regenerator

Carbon 
Filter 

1100 Watt Microwave Oven 

Collector 

Sweep Gas IN 

Sweep Gas OUT 
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Regeneration of GACRegeneration of GAC
(Saturated with Gasoline)(Saturated with Gasoline) 
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MicrowaveMicrowave--Induced DesorptionInduced Desorption
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300 Watt Applied Power 

350 Watt Applied Power 

400 Watt Applied Power 

500 Watt Applied Power 

- 2 inch bed height 

- Quartz Tube ID = 7/8 inch 

- 10 SCFH nitrogen purge 

CHA Corporation 
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Sample 1 

Sample 2 

GHSV= 20,000 hr -1 

Inlet Conc . = 200 ppm 

GAC Adsorption/RegenerationGAC Adsorption/Regeneration 
Cycling for MEKCycling for MEK

CHA Corporation 

How many times can you regenerate carbon, without losing adsorption capability. 

After about 7 cycles with steam, adsorption capacity decreased enough to replace 
carbon. Not the case with microwaves, still good after 20 cycles. 
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Advantages of Microwave UnitAdvantages of Microwave Unit

•• Does not rDoes not reequire a long starquire a long startup periodtup period
Does not produce any air emission or wastewater•• Does not produce any air emission or wastewater

•• Requires much smaller space than conveRequires much smaller space than convenntionaltional 
technologiestechnologies

•• Can be easily installeCan be easily installed on a trailer or skidd on a trailer or skid
•• Recovers PERC and other sRecovers PERC and other soolvlvents and fuels for recycleents and fuels for recycle
•• Eliminate greenhousEliminate greenhouse gas pre gas productionoduction
•• CostCost--effective means to replace currently operatingeffective means to replace currently operating

catalytic oxidizerscatalytic oxidizers

1212
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Potential ApplicationsPotential Applications

•• Recover gasoline and oRecover gasoline and otther fuel vher fuel vaaporspors 
generated during the loading of fuel tankers atgenerated during the loading of fuel tankers at 
bulk fuel terminalsbulk fuel terminals

•• Recover and recycle fuel, solvents, and otherRecover and recycle fuel, solvents, and other 
chemicals from soil vapors produced duringchemicals from soil vapors produced during 
remediation operations of contaminated sitesremediation operations of contaminated sites 
including old gas stationsincluding old gas stations 

•• Recover and recycle PERC and other solventsRecover and recycle PERC and other solvents 
used in dry cleaning and part washing as well asused in dry cleaning and part washing as well as 
painting operationspainting operations

1313
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Field Demonstration of Microwave Technology atField Demonstration of Microwave Technology at 
Former McClellan Air Force Base in SacramentoFormer McClellan Air Force Base in Sacramento 

CaliforniaCalifornia
(NIEHS SBIR Phase I Program)(NIEHS SBIR Phase I Program)
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IC 34/35/37 
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Specific AimsSpecific Aims

•• OperaOperatte the protoe the protottype microwave uype microwave unnit ait att
McClellan IC 34/35/37 FTO site for two monthsMcClellan IC 34/35/37 FTO site for two months 
to regenerate carbon onto regenerate carbon on--site and recoversite and recover 
solvents, fuels and other chemicals contained insolvents, fuels and other chemicals contained in 
the soil vaporsthe soil vapors

•• Demonstrate that microDemonstrate that microwwave technology can beave technology can be 
a costa cost--effective solution for the treatment of soileffective solution for the treatment of soil 
vaporsvapors

1616
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Prototype Microwave Reactor System

Sweep Gas

Condenser 1
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GeneratorMicrowave
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Quartz
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Rotary
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Makeup Nitrogen
Contaminated 
Air from SVE 
System

Cleaned Air to 
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Pneumatic Conveyor Flow Path

Rotary
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Blower
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Compressor
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Front View of IC 34/35/37 FTO Facility 
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Overall View of Microwave Reactor System Setup 
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Adsorber and Pneumatic Conveying System 
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Multimode-Cavity, Tuning Device and Top Hopper 
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Bottom Hopper and Multimode-Cavity 
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Field Demonstration ResultsField Demonstration Results

•• Adsorption Test ResultsAdsorption Test Results
–– InitialInitial responresponssee timetime of hyof hydrocarbonsdrocarbons
–– TOTO--1155 analyses of influent and effluent gasanalyses of influent and effluent gas samplessamples

2323
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Microwave Field Testing Results 
I n  t i a l  R  e s p  o  n  s e  T i m  e  v s .  C  y c l  e  
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Field Demonstration ResultsField Demonstration Results

•• Microwave Regeneration TestsMicrowave Regeneration Tests
–– Hydrocarbon liquidHydrocarbon liquid recovered fromrecovered from eaeach regeneratch regeneratiionon
–– Repeated regenerationRepeated regeneration
–– RegRegeenneeratiorationn without sweep gawithout sweep gas recycles recycle

2525
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Microwave Field Testing ResultsMicrowave Field Testing Results
Liquid Recovery vs. Cycle 
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Note: Cycle 11A and B were regenerated twice prior to re
adsorption in cycle 12.  The liquid recovery presented is the 
sum recovered in both regeneration cycles 
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14 

Cycle 

Batch A Barch B 
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Liquid Recovered During MicrowaveLiquid Recovered During Microwave 
RegenerationRegeneration
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Recovered LiquidRecovered Liquid

•• Trichloroethane = 3.2 mole%Trichloroethane = 3.2 mole%
•• HydrocarbonsHydrocarbons

•• C5C5 –– C8 =C8 = 2211.3 mole.3 mole%%
•• C8C8 –– C1C10+0+ == 75.575.5 mole%mole%

•• Specific GrSpecific Gravity = 0.787avity = 0.787
•• JP fuel Specific Gravity = 0.75JP fuel Specific Gravity = 0.75 –– 0.800.80

2828
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GAC Balance 

GAC Added Batch A Batch B 
9/24/2003 200 lb 
9/27/2003 200 lb 

10/16/2003 24.92 lb 
11/20/2003 15.25 lb 

Total 215.25 lb 224.92 

GAC Removed Batch A Batch B 
Fines 7.83 6.72 
End of Testing 208.47 216.24 

Total 216.22 222.96 

Difference 0.45% -0.87% 

2929
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Tests After Field TestingTests After Field Testing 

•• MeasMeasure Adsorption Capacure Adsorption Capaciity of GAty of GAC after 13C after 13thth

Adsorption/Regeneration CycleAdsorption/Regeneration Cycle
•• DeterminDetermine the the Effect of Sweep Ge Effect of Sweep Gaas Velocity ons Velocity on 

the GAC Regeneration Efficiencythe GAC Regeneration Efficiency
•• Determined Size DistriDetermined Size Distribution of GAC after 13bution of GAC after 13thth

Adsorption/Regeneration CycleAdsorption/Regeneration Cycle

3030
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Adsorption Capacity (gHC/100g carbon)Adsorption Capacity (gHC/100g carbon)

•• Batch A after 1Batch A after 133thth RegeRegenerationeration = 2n = 222..00
•• Batch BBatch B after 1after 133thth RegeRegenerationeration = 2n = 222..00
•• Fresh Carbon = 29.0Fresh Carbon = 29.0

3131
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3-kW Microwave Generator
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Note: Chemicals used for adsorption tests were collected during Field Demonstration at 
McClellan Air Force Base 

GAC Regeneration Efficiency 
@ Regeneration Rate of 26-38lb/hr 
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GAC Size AnalysisGAC Size Analysis

Sieve AnalysisSieve Analysis

Fresh GACFresh GAC Batch ABatch A Batch BBatch B

+20 mesh+20 mesh 0.1%0.1% 3.9%3.9% 3.6%3.6%

+10 mesh+10 mesh 99.6%99.6% 95.9%95.9% 96.3%96.3%

+3 mesh+3 mesh 0.4%0.4% 0.1%0.1% 0.1%0.1%

3333
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NIEHS SBIR Phase II ProgramNIEHS SBIR Phase II Program

•• Design and Construct a 50Design and Construct a 50--kg/hr Mkg/hr Moobilebile 
Microwave UnitMicrowave Unit

•• Field Demonstration of MoField Demonstration of Mobile Microwave Unitbile Microwave Unit
–– Chlorinated Solvent Contaminated SiteChlorinated Solvent Contaminated Site
–– Fuel Contaminated Site (FFuel Contaminated Site (Fuel depot or gasuel depot or gas station)station)
–– Dry Cleaning FacilDry Cleaning Facilityity

•• CharCharacterize and Purifyacterize and Purify Recovered Solvents andRecovered Solvents and 
FuelsFuels

3434
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Mobile 50Mobile 50--kg/hr Microwave Carbon Regeneratorkg/hr Microwave Carbon Regenerator
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Preliminary Process Flow DiagramPreliminary Process Flow Diagram
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Experimental Work Required to Build aExperimental Work Required to Build a 
5050--kg/hr Mobile Unitkg/hr Mobile Unit

•• Conduct a series of experiments toConduct a series of experiments to devdeveeloplop 
the design for microwave reactorthe design for microwave reactor 
configuration capable of regenerating 50configuration capable of regenerating 50--
kg/hr activated carbonkg/hr activated carbon

•• Design and construct supporting syDesign and construct supporting systems onstems on 
the trailerthe trailer

3737

Dept. Atmopsheric Sciences 37 



University of Arizona, Prof. Eric A. Betterton 

3838

New Slotted WaveguideNew Slotted Waveguide
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Slotted Waveguide In Mailbox CavitySlotted Waveguide In Mailbox Cavity
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Inside View of New Applicator SystemInside View of New Applicator System
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Advantages of New Applicator SystemAdvantages of New Applicator System

•• Slotted Waveguide Distributes Energy Along theSlotted Waveguide Distributes Energy Along the 
Length of the TubeLength of the Tube

•• CurvCurved Ced Caavity Wvity Waallll ReflectsReflects EnerEnergy Back Towardgy Back Toward 
the Tubethe Tube

4141
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ScaleScale--up Test Systemup Test System
Completed Test SystemCompleted Test System
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Laboratory AdsorberLaboratory Adsorber
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Scale Up Testing ResultsScale Up Testing Results
TestTest

(lb/hr)(lb/hr)1A1A 3535 33 9090 98
98
1B
1B 3535 33 6060 96
96
2A
2A 3535 3.53.5 9090 99
99
2B
2B 4040 3.53.5 8585 97
97
3A
3A 4040 3.53.5 7070 98
98
3B
3B 4040 4.54.5 8080 98
98
4A
4A 4040 44 8080 101
101
4B
4B 4545 44 7070 98
98
5A
5A 4545 4.54.5 8585 102
102
5B
5B 5050 4.54.5 5555 109
109
6A
6A 5050 55 8080 101
101
6B
6B 5050 55 3535 108
108
7A
7A 5050 55 8080 102102

“Note” %Recovery = (Fresh GAC wt./Reg. GAC wt.)x100 

4444

Carbon RateCarbon Rate Power (kW)Power (kW) Sweep Gas (SCFH)Sweep Gas (SCFH) % Recovery% Recovery
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Scale Up Regenerator Performance 
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Additional Field Testing At McClellanAdditional Field Testing At McClellan 
Air Force Base (IC19 and OUD Site,Air Force Base (IC19 and OUD Site, 

Chlorinated Solvents)Chlorinated Solvents)
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Annual Cost Savings, dollarsAnnual Cost Savings, dollars

ItemItem Quantity SavingsQuantity Savings Cost savings, $Cost savings, $

Natural GasNatural Gas 188,431188,431 thermtherm 131,902131,902

ElectricityElectricity 418,522418,522 kwhkwh 37,66737,667

WastewaterWastewater 4.756 M gallons4.756 M gallons 10,60810,608

Utility waterUtility water 5.675.67 M gallonsM gallons 3,0613,061

GACGAC changeoutschangeouts 120,000120,000

Labor and suppliesLabor and supplies 100,740100,740

Total Annual SavingsTotal Annual Savings 403,978403,978

4747
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Prepare Field Testing at FormerPrepare Field Testing at Former 
McClellan AFBMcClellan AFB 

•• Build a SBuild a Shhelelter to protect microwave equipter to protect microwave equipmmentent 
from rainfrom rain

•	• Modify previous microwave unit to allowModify previous microwave unit to allow 
–	– Carbon transportation fromCarbon transportation from/to the/to the portable adsorbportable adsorberer
–	– Higher recyclHigher recycle gae gas flow rates flow rate
–	– Isolate theIsolate the ssyystestemm frofromm the adthe adsorption unitsorption unit
–	– Install the automatic shuInstall the automatic shuttdowndown system in thesystem in the microwave
microwave 

generator
generator

4848
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Microwave Unit at McClellan AFBMicrowave Unit at McClellan AFB 
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Volume of VOCs Recovered 
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Breakthrough at OU D VGAC Vessels 
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Dry Cleaning FacilityDry Cleaning Facility

•	• PurposePurpose
–	– To remove PTo remove PEERC by thRC by the ae acctivtivaated carbted carbon from dryon from dry cleaner’scleaner’s 

vented airvented air
–	– ToTo demondemonsstrate the featrate the feassibilibility ofity of recovering PERCrecovering PERC from saturatedfrom saturated

carbon by microwavescarbon by microwaves

•	• Test LocationTest Location
–	– Deluxe CleanDeluxe Cleaneers andrs and Tailors
Tailors

1614 House Ave.
1614 House Ave.
Cheyenne, WY
Cheyenne, WY

5252
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Carbon RegenerationCarbon Regeneration
Fresh GAC, kgFresh GAC, kg 37.237.2 37.737.7

GAC afterGAC after 49.549.5 44.144.1
saturation, kg
saturation, kg

GAC after
GAC after 38.438.4 37.037.0
regeneration, kgregeneration, kg

Liquid recovered,Liquid recovered, 5.655.65 4.964.96
kgkg

5454
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Recovered PERC After WaterRecovered PERC After Water 
Extraction (PERC is Bottom Layer)Extraction (PERC is Bottom Layer)
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Questions?Questions?
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Innovative Technologies forInnovative Technologies for 
Destruction of ChlorinatedDestruction of Chlorinated 

SolventsSolvents
Departments of Chemical & Environmental EngineeringDepartments of Chemical & Environmental Engineering

Atmospheric SciencesAtmospheric Sciences
The University of Arizona, Tucson, AZThe University of Arizona, Tucson, AZ

• Dr. Robert Arnold 
• Dr. Eric Betterton 
• Dr. Wendell Ela 
• Dr. Eduardo Saez 

• Brian Barbaris 
• Kate Candillo 
• Xiumin Ju 
• Cary Leung 
• Ozer Orbay 
• Lei Wang 
• Rohit Tripathi 
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Systems SummarySystems Summary
Zero-valent metals Complete, e.g., Env. Sci. Technol., 34, 

804-811 (2000) 

Electrolytic reduction (conventional cell) Complete, e.g., Ind. Eng. Chem. Res., 43 
(25), 7965 -7974 (2004); Ind. Eng. Chem. 
Res. 43, 913-923 (2004 ) 

Electrolytic oxidation (conventional cell) Complete, e.g., J. Appl. Electrochem., 
961–970, 29 (1999) 

Continuous-flow electrolytic reactor (1-dimensional) Complete, manuscript prepared 

Continuous-flow electrolytic reactor (2-dimensional) In progress - manuscript in preparation 

Modified fuel cell reactor In progress, e.g., Env. Sci. Technol., 35, 
4320-4326 (2001) 

Photo-initiated dehalogenation in 2-solvent system Complete, e.g., Env. Sci. Technol., 34, 
1229-1233 (2000); Water Res. 38, 2791
2 (2004); Environ. Sci. Technol., 39, 
2262-2266 (2005) 

Membrane air stripping reactor Complete, e.g., J. Env. Eng. 130, 1232
1241 (2004) 

Redox catalysis In progress 

5858
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ParkPark--Euclid WQRF Site: PCE, TCEEuclid WQRF Site: PCE, TCE 
and Dieseland Diesel

Typical Soil Vapor Analysis 

PCE ≈ 300 ppmv 

TCE ≈ 30 ppmv 

cis-1,2-DCE ≈ 3 ppmv 

O2 ≈ 18% v/v 
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Redox Catalytic Destruction:Redox Catalytic Destruction: 
Oxidative and Reductive DehalogenationOxidative and Reductive Dehalogenation

•• PCE + 5PCE + 5HH22
catalyst 

CC22HH66 + 4HCl+ 4HCl 

catalyst•• 2PCE + 3C2PCE + 3C33HH88 2C2C22HH66 + 2HCl + 9C+ 2HCl + 9C
catalyst 

•• CC22HH66 ++ 3/23/2OO22 2CO2CO22+ 3H+ 3H22OO
catalyst 

•• 2H2H22 + O+ O22 2H2H22OO
catalyst 

•• 2HCl + ½ O2HCl + ½ O22 HH22O + ClO + Cl22

6060
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Redox Catalytic Destruction:Redox Catalytic Destruction:
Laboratory WorkLaboratory Work
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Catalytic ConverterCatalytic Converter

•• 2 alumina honeycomb monolith2 alumina honeycomb monolith 
support s (2" long x 4.7" majorsupport s (2" long x 4.7" major 
axis 3.15" minor axis).axis 3.15" minor axis). 

•• Pt/Rh or Pd/Rh withPt/Rh or Pd/Rh with 
cerium/zirconium oxygen storagecerium/zirconium oxygen storage 
additives.additives.

•• Surface area = 4400 mSurface area = 4400 m22

•• Normal automotive flow rate: 20Normal automotive flow rate: 20 
cfm to 300 cfm.cfm to 300 cfm. 

•• Minimum temperature for 50%Minimum temperature for 50% 
activity = 415activity = 415 00CC
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Ceramic Honeycomb SupportCeramic Honeycomb Support
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PCE Removal: Laboratory T and 
H2/O2 Ratio 

(500 mL/min, 1.2 s retention) 
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Catalyst Poisoning: OxidativeCatalyst Poisoning: Oxidative
450 0C, O2 =21%, Pd/Rh Catalyst 
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Catalyst Poisoning: Reductive 
(propane, O2= 0 %; residence time:1.08 s, run time:410 min 
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Redox Catalyst: PCE with propaneRedox Catalyst: PCE with propane 
(21% O2) 
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Redox Catalyst: Methane vs.Redox Catalyst: Methane vs. 
Propane and TPropane and T

(21% O2) 
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Redox Catalyst: PCE and TCE withRedox Catalyst: PCE and TCE with 
HH22/O/O22 ratioratio

(410 0C) 
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Fuel CellFuel Cell

H2 PEM O2 

anode 

CC

cathode 
2H+ +2 e O2 + 4 H+ + 4 e− 2H2OH2 

l4 + H+ + 2e− CHCl3 + Cl− 

Pt-black on carbon cloth 

PEM: Nafion proton-exchange membrane 
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TCE ReductionTCE Reduction –– Fuel Cell PotentialFuel Cell Potential
(room temp., Patm, 18 mL/min, res. time = 2.3 s) 
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This slide showed an experiment conducted under room temperature, atmospheric 
pressure, inlet flow rate 18 ml/min, TCE concentration of 2500ppmv. The left graph 
showed TCE and reaction product concentration in the effluent. TCE concentration 
was reduced monotonically with respect to cell potential. Ethane as the product of 
TCE degradation increased to a maxima, and then decreased with respect to cell 
potential. This was caused by increase of flow rate due to hydrogen evolution in the 
cathode. No Chlorinated intermediates were detected. 

The right graph showed the molar flow rate of TCE and ethane and the sum of two 
in the effluent. The solid red line represented the inlet TCE molar flow rate. We can 
see that a good mass balance was obtained here, and thus proved that ethane was the 
major product of TCE degradation. The variation of effluent data around inlet data 
probably due to experimental error. 
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TCE ReductionTCE Reduction –– Fuel CellFuel Cell 
Current EfficiencyCurrent Efficiency

(room temp., Patm, 18 mL/min, res. time = 2.3 s) 
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Here in this graph the current efficiency was plotted with respect to cell potential, 
and TCE conversion was also plotted. Current efficiency here is defined as the ratio 
of the current used for TCE reduction to total current. As you can see, the current 
efficiency is relatively low due to large amount of hydrogen generated. 
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ElectrolysisElectrolysis -- Annular AnodeAnnular Anode
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ElectrolysisElectrolysis –– Cu foamCu foam
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Conductivity = 0.067 S/m (tap water) 
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CT Electrolysis: Applied PotentialCT Electrolysis: Applied Potential 
and Conductivityand Conductivity

cathode = 22.5 cm; -0.4 V; 0.05 S/m; solid and dashed lines 
correspond to mathematical model 

Residence time (min) 

Cbin--Inlet concentration. Cb—Bulk concentration 
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Electrochemical CT Reduction: pHElectrochemical CT Reduction: pH
(Ni foam) 
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Photochemical Treatment at ParkPhotochemical Treatment at Park--
Euclid SiteEuclid Site
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Photochemical MechanismPhotochemical Mechanism

H H H


O
 Me OH (2) Me OHhvO 

H H Me Me 

acetone photon excited actone 2-propanol 2-propanol

radical radical 

Acetone in its excited state, extracts a hydrogen atom from a suitable donor, such as 2-propanol, producing a 
highly reduced 2-propanol radical that is capable of reducing a variety of halogenated targets. 

OH Cl Cl H OH Cl Cl 
Cl Cl


Me
 Me OHHOH MeMe OHMe 
Cl Cl Me 

Me Cl Cl


PCE 2-propanol


MeMe Me Cl Cl 

2-propanol 3,3,4,4-tetrachloro- 2-propanol 
radical 2-methyl-butan-2-ol radical 

1. Alkene-radical chemistry suggests that the 2-propanol radical may add to the chlorinated alkene to 
produce a chloro-methyl alcohol (3,3,4,4-tetrachloro-2-methyl-butan-2-ol). 

2. Data also support electron donation to PCE and/or the chloro-methyl alcohol by the 2-propanol radical 
accompanied by chloride elimination, similar to carbon tetrachloride mechanism (Betterton et al., ES&T 
2000). 
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SummarySummary

•	 Catalyzed thermochemical reduction is feasible – H2 costs may 
be high but propane may be viable substitute. 

•	 Electrolytic reduction of chlorinated solvents appears feasible 
using annular anode/cathode – even in low-conductivity water. 

•	 Gas-phase treatment of solvents is fast using fuel cell – system 
requires scale up/additional design work. 

•	 Photocatalytic system effective but scale up for volatile liquids 
may be unattractive. 
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Thank YouThank You

After viewing the links to additional resources, please 
complete our online feedback form. 

Thank You 

Links to Additional Resources 
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