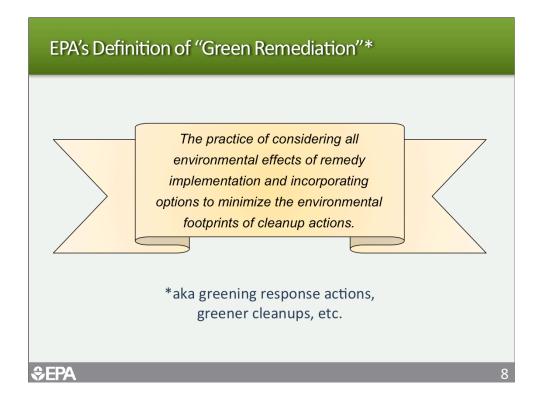
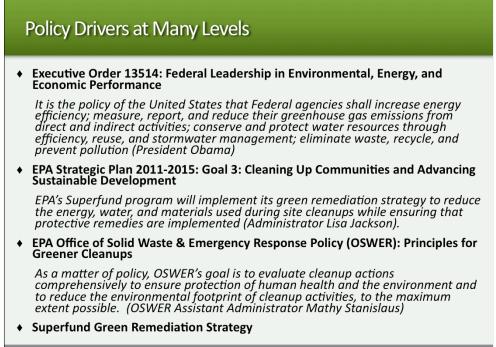


- ♦ Although I'm sure that some of you have these rules memorized from previous CLU-IN events, let's run through them quickly for our new participants.
- Please mute your phone lines during the seminar to minimize disruption and background noise. If you do not have a mute button, press *6 to mute #6 to unmute your lines at anytime. Also, please do NOT put this call on hold as this may bring delightful, but unwanted background music over the lines and interupt the seminar.
- You should note that throughout the seminar, we will ask for your feedback. You do not need to wait for Q&A breaks to ask questions or provide comments. To submit comments/questions and report technical problems, please use the ? Icon at the top of your screen. You can move forward/backward in the slides by using the single arrow buttons (left moves back 1 slide, right moves advances 1 slide). The double arrowed buttons will take you to 1st and last slides respectively. You may also advance to any slide using the numbered links that appear on the left side of your screen. The button with a house icon will take you back to main seminar page which displays our agenda, speaker information, links to the slides and additional resources. Lastly, the button with a computer disc can be used to download and save today's presentation materials.
- ♦ With that, please move to slide 3.

Methods and Tools for Environmental Footprint Assessment

Carlos Pachon Hilary Thornton Stephanie Vaughn CLU-IN Webinar


May 22, 2013



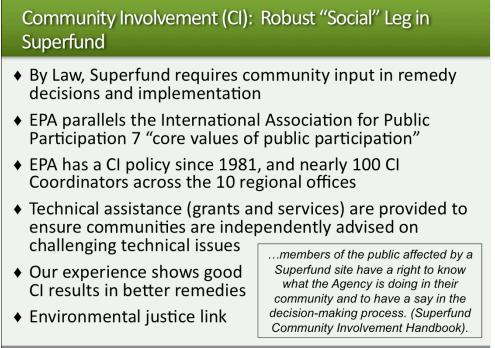
- Module 1: EPA's Green Remediation Policy and Core Elements
- Module 2: EPA's Environmental Footprint Evaluation Methodology
- Module 3: Performing an Environmental Footprint Analysis
- Module 4: Green Remediation Application Case Studies
- Module 5: Spreadsheets for Environmental Footprint Analysis
- Module 6: Lessons Learned & Discussion Questions
- Information and Resources

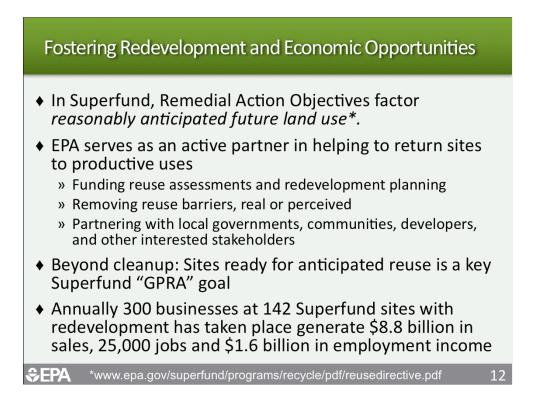
Module 1: EPA's Green Remediation Policy and Core Elements

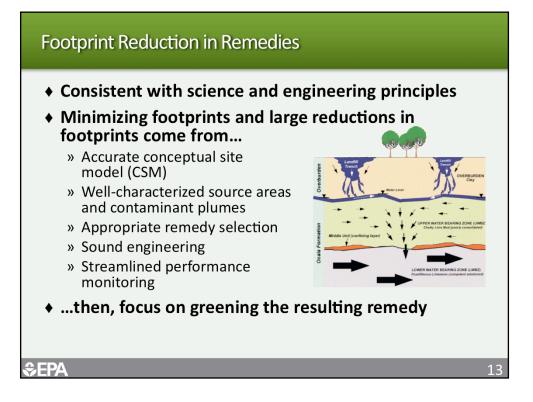
Sustainability in Superfund Site Remediation

Social:

- » Engaging communities in site cleanup decisions
- » Turning contaminated sites into community assets


Economic:


- » Redevelopment in blighted areas (aligns with smart growth goals)
- » Fostering employment opportunities in communities where sites are cleaned up
- » Rising property values in communities
- » Remediation in the U.S.: A \$7billion/year economic engine


Environmental:

- » Protecting Human Health and the Environment
- » Liberating contaminated sites for reuse (1 remediated acre redeveloped = 4 acres of green field development)
- Challenge: A smaller footprint in cleaning up sites

€EPA

Energy and Air Emissions

- Reduced emissions of criteria pollutants (PM, SOx, NOx) and greenhouse gases (GHG)
 - » Maintaining, repowering, or retrofitting diesel engines
- Energy efficiency practices
 - » High-efficiency equipment
 - » Variable frequency drives
 - » Low-emission vehicles and carpooling
 - » Use of local materials and services
 - » Combined heat and power

Renewable energy

- » On-site renewable energy
- » Purchased renewable energy

An off-grid, 770-watt PV system at Brooks Camp, AK, powered an air sparging pump used for treating groundwater contaminated by former underground storage tanks.

15

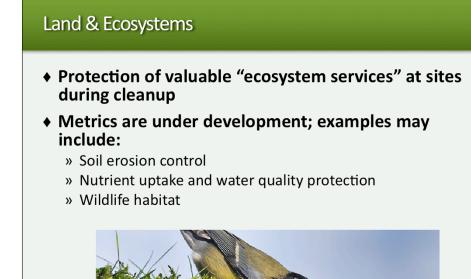
Water Use and Conservation

- Seek beneficial use of extracted and treated water
- Optimize capture zones of groundwater pump & treat (P&T) systems
- Divert clean water around impacted areas
- Use less-refined water resources when possible
- Manage stormwater runoff to protect surface water quality
- Infiltrate diverted stormwater for aquifer storage

Portable closed-loop wheel washing systems for reducing onsite and offsite trackout during construction

16

\$EPA

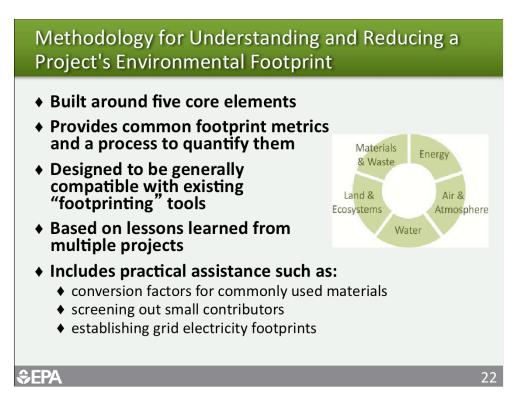

Materials & Waste

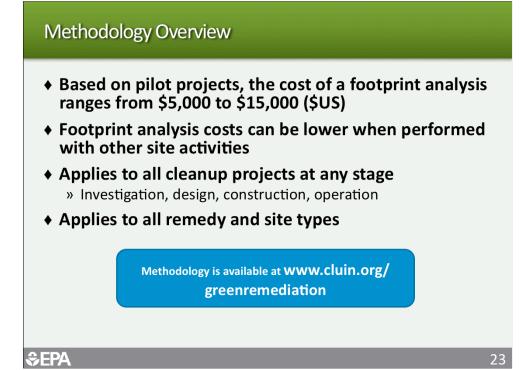
- ♦ Reduce Material Use
 - » Alternative materials or chemicals
 - » Materials with recycled content
 - » Materials from waste products
- Source unrefined materials locally and/or from recycled sources
- Minimize hazardous and non-hazardous waste generated on site
- Reuse or recycle waste generated on site

Use of passive diffusion bag samplers reduces or eliminates purge water associated with well sampling.

17

€PA


Module 2: EPA's Environmental Footprint Evaluation Methodology



Methodology for Understanding and Reducing a Project's Environmental Footprint

- Goal of an evaluation Identify the most significant contributors to a project's environmental footprint and better focus efforts to reduce it
- Footprint evaluations are not required for cleanup, but if conducted, this is the preferred methodology
- Remedy selection process remains unchanged in all cleanup programs

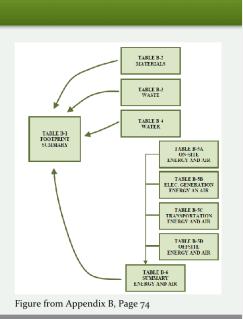
	Greener Cleanups	
Control Pression	6474 542 K 12 802	
Methodology for Understand Project's Environmental Foo		
February 2012		
U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Im	novation	
Sponsor	ed by the Technical Support Project Engineering Forum	
WWW.cl	luin org/greenremediation/methodology	
	(continued)	
		2

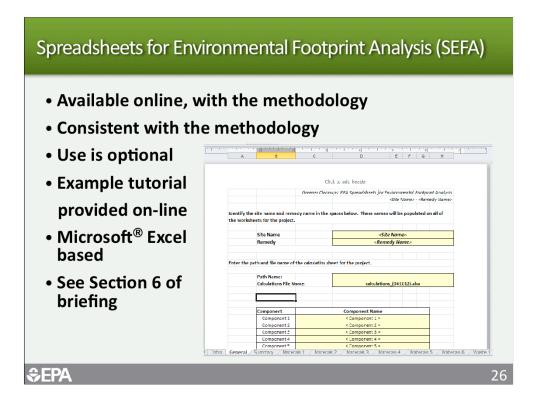
Methodology Document Contents

Main Text: The basics of a footprint analysis

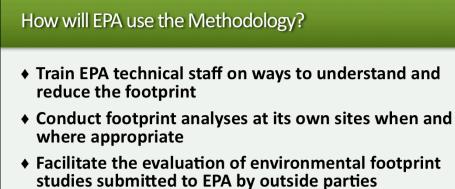
- » Introduction
- » Metrics
- » Footprint methodology
- » Considerations for interpreting the footprint
- » Approaches to reducing the footprint

Appendices: The "mechanics" of a footprint analysis A.Exhibits


- B. Data presentation formats
- C. Footprint reduction scenarios
 - > Materials and Waste (3)
 - > Water (3)
 - > Energy and Air (2)


€PA

- Exhibits (17) provide practical assistance and help manage the flow of information
 - contents of materials used in cleanups
 - energy demands of field equipment
- Data presentation formats (9 Tables) organize the information collected and summarize the results


 Table B1 includes all suggested footprint metrics

 Energy Total energy used Total energy voluntarily derived from renewable resources Air GHGs Criteria Pollutant (NOx, SOx, PM) On-site emissions Total emissions Hazardous air pollutants (HAPs) On-site emissions Total emissions Water On-site water use (including public/potable water) Quantity Source of water Eate of used and treated water 	Green Reme	diation Metrics
Air Criteria Pollutant (NOx, SOx, PM) » On-site emissions » Total emissions Hazardous air pollutants (HAPs) » On-site emissions » Total emissions » Total emissions Water On-site water use (including public/potable water) » Quantity » Source of water 	Energy	Total energy voluntarily derived from renewable
water » Quantity » Source of water	Air	 Criteria Pollutant (NOx, SOx, PM) On-site emissions Total emissions Hazardous air pollutants (HAPs) On-site emissions
(continued)	Water	 » Quantity » Source of water » Fate of used and treated water

Green Remediatio	on Metrics	
Materials & Waste	 Refined (including manufactured) materials used on site Quantity and percent from recycled materials Bulk, unrefined materials used on site Quantity and percent from recycled materials Waste Hazardous waste generated on site Non-hazardous waste generated on site Percent of total potential waste generated on site that is recycled or reused 	
Land & Ecosystems	◆ Qualitative evaluation	
SEPA		28

- Recommend to PRPs to follow Methodology
- On-line training under development
- Document environmental footprint reductions at our clean-up sites

SEPA

Module 3: Performing an Environmental Footprint Analysis

1 Set Goals and Scope of Analysis

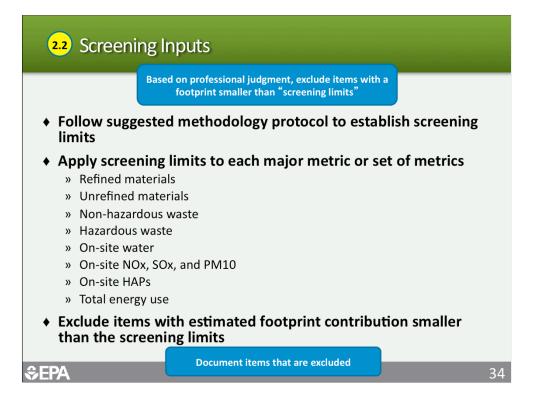
Goal of analysis

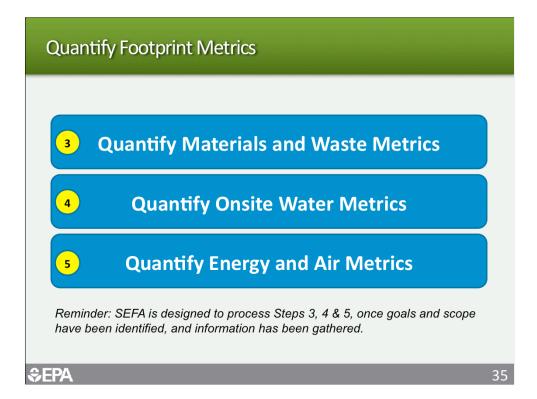
- » What we hope to accomplish by the footprint analysis
- » For example, the goal may be to identify remedy activities that are key contributors to the footprint and to recommend reductions

Scope of analysis

- » The aspects of the remedy to be included in the analysis
- » As one example, the scope may include system O&M and performance monitoring, but not system construction
- » As another example, the scope may include the ground water remedy, but not the soil remedy

Also define the boundaries of the analysis, and the functional unit


» EPA Footprint Methodology provides guidance on these topics


€EPA

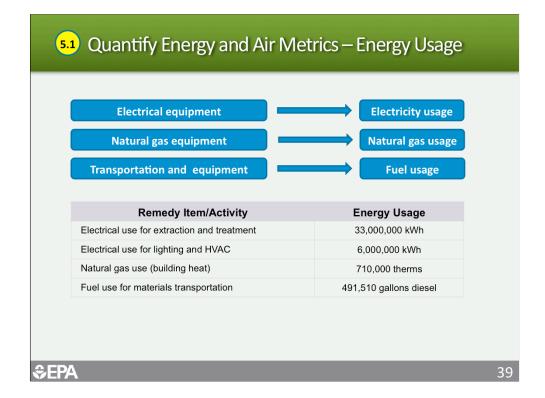
2.1 Gather Remedy Information

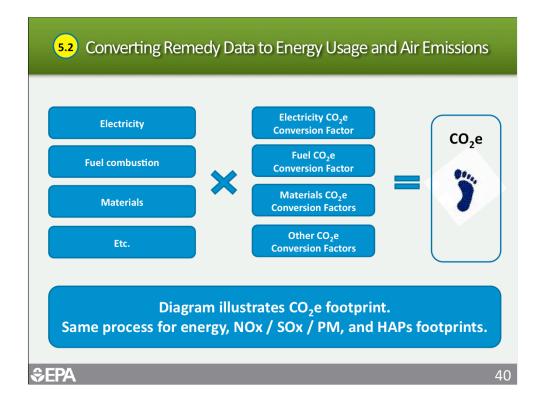
€PA

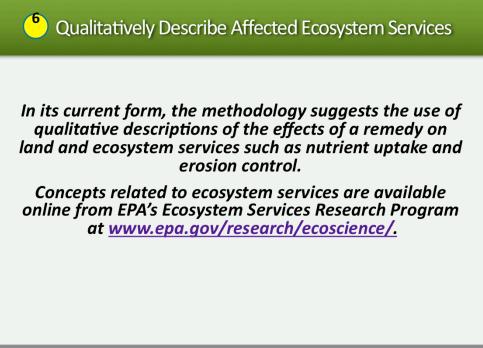
Remedy Item/Activity	Quantity/Information
Number, Depth, and Design of Extraction Wells	6-inch wells, 600 ft total
Length, Size, and Type of Piping	3,000 ft of 6-inch high-density polyethylene
Extraction Rate	700 gpm
Treatment Plant Construction	80 ft x 100 ft x 30 ft
Information for Estimating Utility Use	Pumps, mixers, heating, ventilation, and air- conditioning (HVAC), lighting
Information for Estimating Waste Generation	Influent loading
Information for Estimating Chemical Use	Influent loading
Monitoring Program (Frequency, Locations, Parameters)	Annual, 100 wells, arsenic
Transportation Distances	Various

				% Recycled	Material Quantity (lbs)	
Material and Use	Units	Quantity	Conversion to lbs	or Reused Content	Recycled	Virgin
		Refined M	laterials (lbs)			
Building steel	ft ³	240,000	1 lbs/ft ³	55%	132,000	108,000
Concrete reinforcing steel	ft ²	40,000	1.3 lbs/ft ²	55%	28,600	23,400
Cement portion of concrete	ft ³	20,000	22 lbs/ft3	0%	0	440,000
Sodium hydroxide (20%)	gal	3,011,250	2.04 lbs/gal	0%	0	6,144,000
Hydrogen peroxide (50%)	gal	295,650	4.96 lbs/gal	0%	0	1,467,000
Ferric chloride (37%)	gal	1,368,750	4.33 lbs/gal	0%	0	5,928,000
		Refined	d Materials Su	btotals (lbs):	160,6007	15,179,900
4		Re	fined Materia	ls Total (lbs):	15,34	40,500
		Ref	ined Materials	Total (tons):	7,	670
% of Refin <mark>e</mark> d	Material	s that is Re	cycled or Reu	sed Content:	~	1% 🦱
Provid		Provide				

....

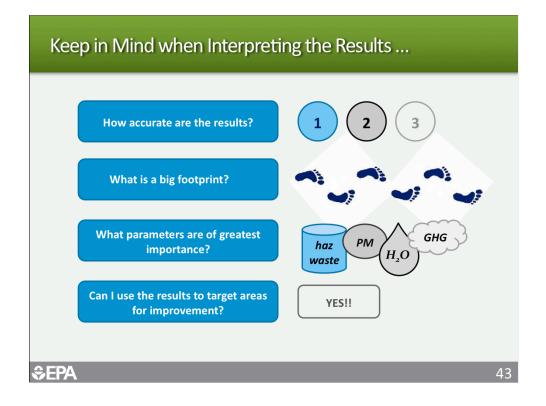

3 Quantify Onsite Materials & Waste Metrics – Waste

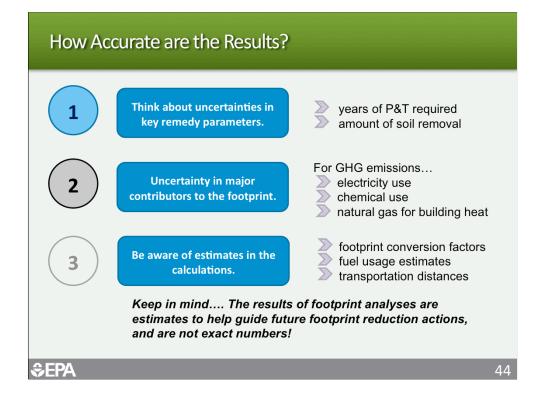

Waste or Used Material	Quantity	
Recycled or Reused Waste (tons)		
Reused On-Site: None	3,000	
Recycled or Reused Off-Site: None	0	
Total Recycled or Reused Waste:	3,000	
Landfilled Waste (tons)		
Hazardous Waste Disposed		1
7,800 tons of dewatered, precipitated metal sludge	7,800	
Non-Hazardous Waste Disposed: None	0	
Disposed Waste Total:	7,800	
Total Waste:	10,800	
% of Total Waste Recycled or Reused:	28%	
	Met	ric Resu

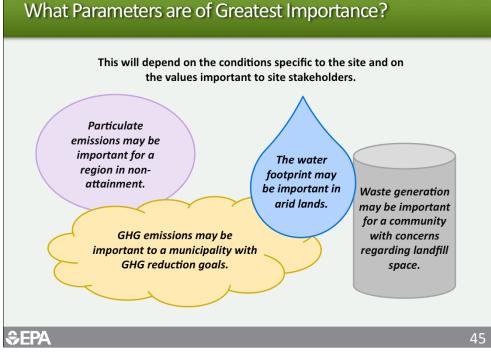

4 Quantify Onsite Water Metrics

Water Resource	Description of Quality of Water Used	Volume Used (1000's gallons)	Uses	Fate of Used Water
Public water supply	Potable	360,000	Blending polymer	Creek
Extracted groundwater Aquifer: " Shallow"	Marginal quality	11,000,000	Treatment	Creek
Surface water Intake Location: None		None		
Reclaimed water Source: None		None		
Collected/diverted storm water		None		
Other water resource		None		

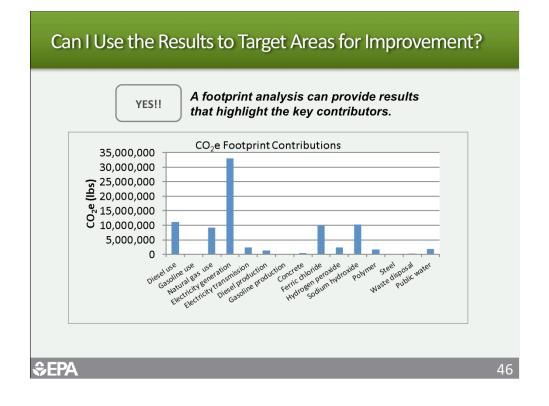
\$epa

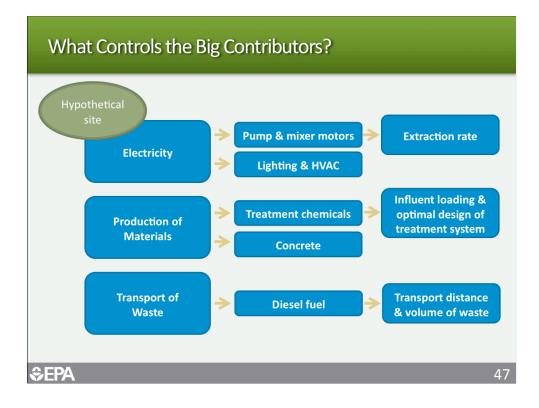



€PA


7	Present Results - Environmental Footprint Sumr	mary
	rresent nesatis Environmentarrootprint sum	riar y

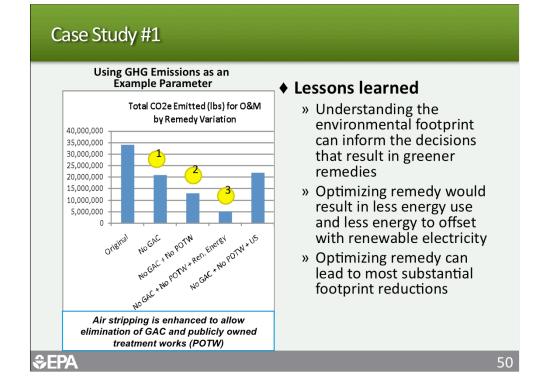
	Parameter	Footprint
	Refined Materials Use (% from recycled material)	15.3 million lbs (1%)
	Unrefined Materials Use (% from recycled material)	1,150 tons (0%)
How to nterpret	Hazardous Waste	7,800 tons
	Non-Hazardous Waste	0 tons
these	% of Total On-site Waste Recycled or Reused	0%
metrics?	Public Water Use	360,000,000 gallons
	Other On-site Water Use	Marginal amount
How to	Total Energy	853,000 MMBtu
ise them	Total Energy Voluntarily from Renewable Resources	0 MMBtu
to	On-site NOx, SOx, PM Emissions	7,800 lbs
mprove	On-site HAP Emissions	6 lbs
our cleanup	Total NOx, SOx, PM Emissions	637,000 lbs
site?	Total HAP Emissions	4,100 lbs
	Total GHG Emissions	45,710 tons


\$epa



What Parameters are of Greatest Importance?

Module 4: Green Remediation Application Case Studies



- Site with volatile organic compound (VOC) contamination in groundwater
- Interim P&T system operating for many years
- Considerations derived from Green Remediation evaluation:
 - Air stripping is more successful than GAC at removing the specific VOCs at this site
 - » Increase air stripping and eliminate GAC for water treatment and discharge to sewer
 - Purchase Renewable Energy Certificates (RECs) to offset all electricity usage

€PA

(continued)

• Example Green Remediation application for an UST removal

Footprint for Baseline Approach (Dig & Haul + Backfill)

Metric	Unit	Value
Total Energy	MMBtus	0.084
% of Energy from Renewable Resources	%	0%
CO ₂ e Emissions	lbs	13,200
NOx, SOx, PM Emissions	lbs	166
Hazardous Air Pollutants Emissions	lbs	<1
Water	500 gallons	potable water
Refined Materials Used & % from Recycled Material	lbs & %	0 & 0%
Unrefined Materials Used & % from Recycled Material	tons & %	225 & 0%
Tons of Hazardous Waste	tons	0
Tons of Non-Hazardous Waste	tons	150
% of Total Potential Waste Recycled or Reused	%	2.6%
Ecosystem Services	Not Ap	plicable

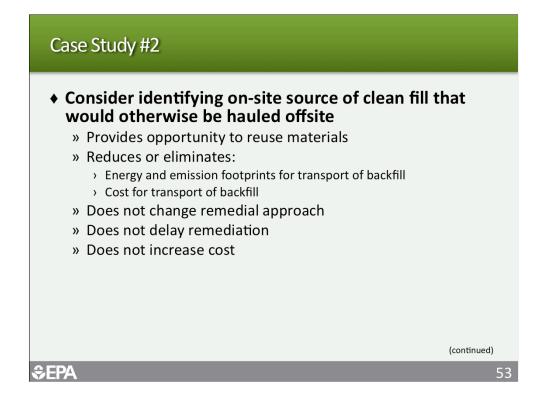
(continued)

51

\$epa

Energy and emissions findings

- » 10% for backhoe
- » 35% from transportation of waste and fill
- » 30% from landfill activities for soil disposal
- » 17% from laboratory analysis
- » 8% other

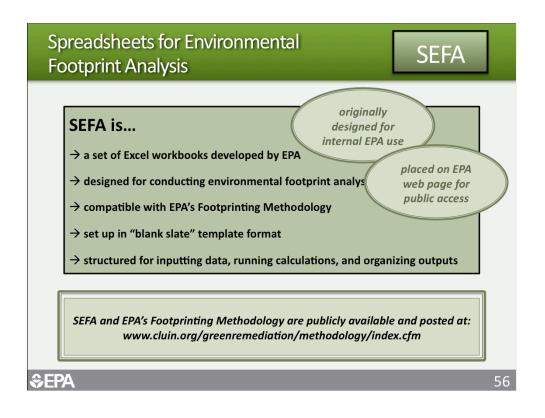

Potentially applicable green practices

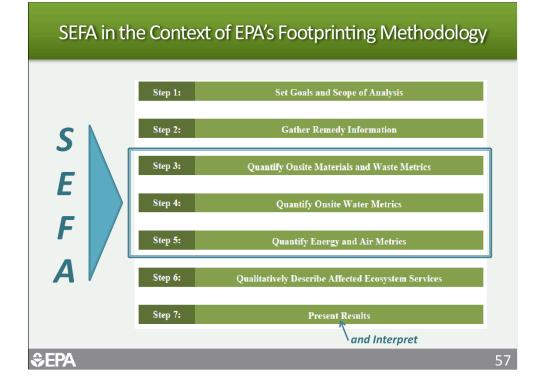
- » Segregate clean and impacted soil; use clean soil for backfill
- » Identify closest facility for disposal and source of backfill
- » Avoid return trips of empty trucks by coordinating waste hauling and backfill deliveries
- » Nutrient and microbe addition for on-site, in situ treatment
- » Use biodiesel fuels in place of diesel

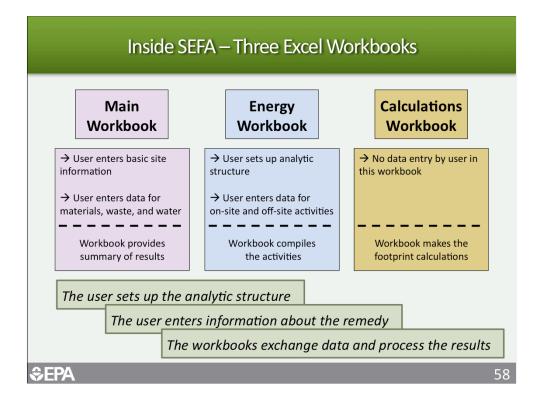
(continued)

52

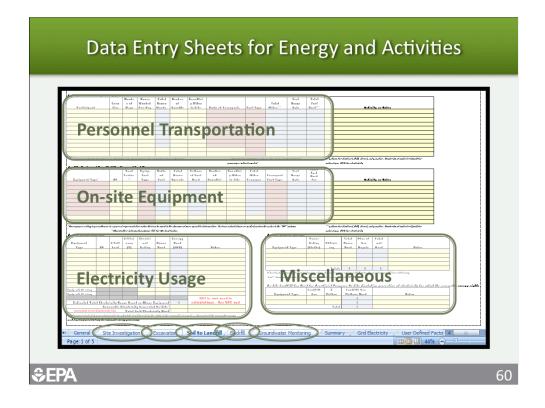
€PA

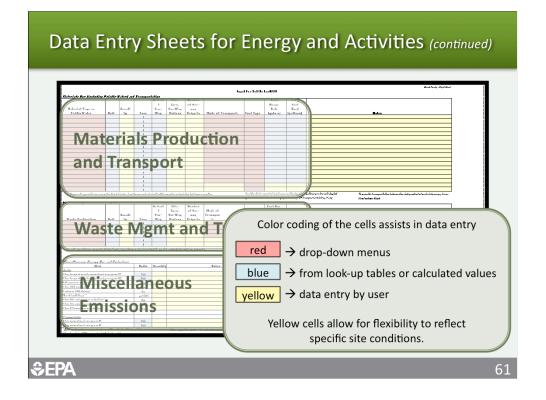

 Example application at UST removal – Using footprint reduction practices

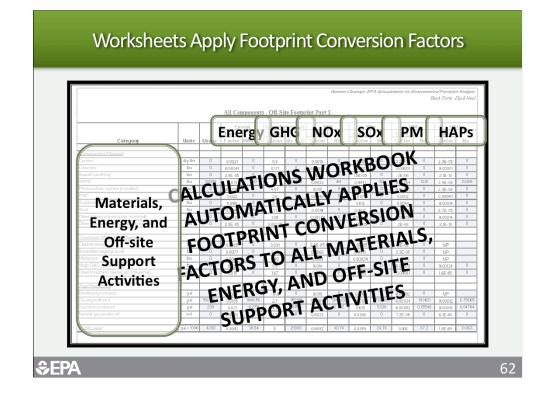

Parameter	Change
Total Energy	26% decrease
% of Energy from Renewable Resources	No change
CO ₂ e Emissions	26% decrease
NOx, SOx, PM Emissions	16% decrease
Hazardous Air Pollutant Emissions	No change
Water	No change
Refined Materials Used and % from Recycled Material	No change
Unrefined Materials Used	225 to 0
% of Unrefined Materials from Recycled Material	No change
Tons of Hazardous Waste	No change
Tons of Non-Hazardous Waste	No change
% of Total Potential Waste Recycled or Reused	No change
Ecosystem Services	Not applicable



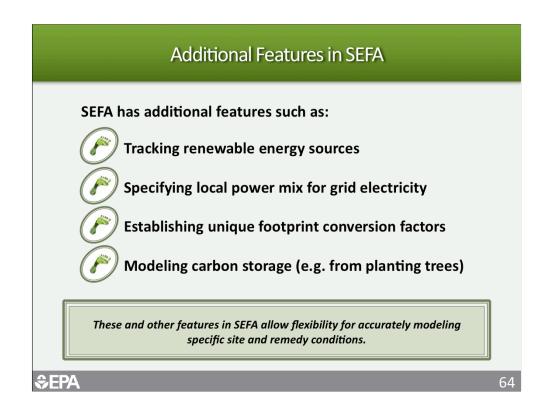
Module 5 Spreadsheets for Environmental Footprint Analysis

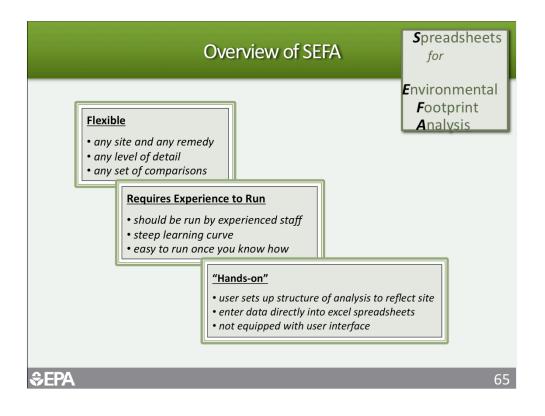


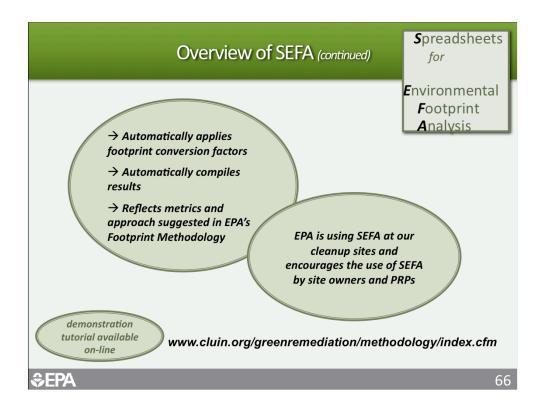




	G	ireener Cleanups: EPA Spreadshe	ets for Environmental Footp Back Forty -	rint Analysis	1nalysis & Haul
	So		Excavation	- Water Footp	rint Summary
	W	Water Resource	Description of Quality of Water Used	Volume Used (1000 gallons)	Uses
	Hazardous Waste	Public water supply	High quality potable water	2,500	On site dust control
	Excavated soil sent to off-site h	Extracted groundwater #1			
Clean fill fro	Excavated son sent to on-site i	Location:			
Clean fill fro		Aquifer:			
Drain rock f		Extracted groundwater #2			
Dram rock n		Location:			
		Aquifer:			
		Extracted groundwater #3			
		Location:			
	Non-Hazardous Waste	Aquifer:			
	Excavated soil sent to off-site r	Surface water #1			
		Intake Location:			
		Surface water #2			
		Intake Location:			
Ì		Reclaimed water			
		Source:			
		Collected/diverted storm water			
		Other resource #1			
i i		Other resource #2			

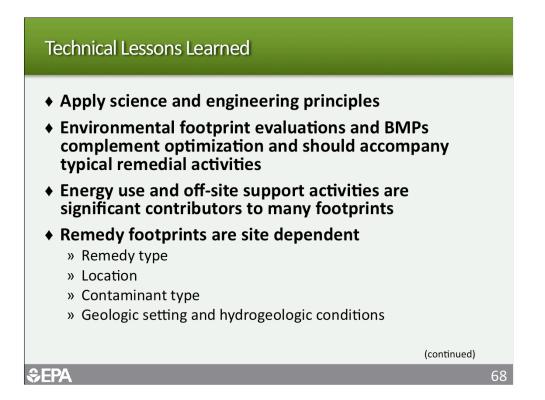




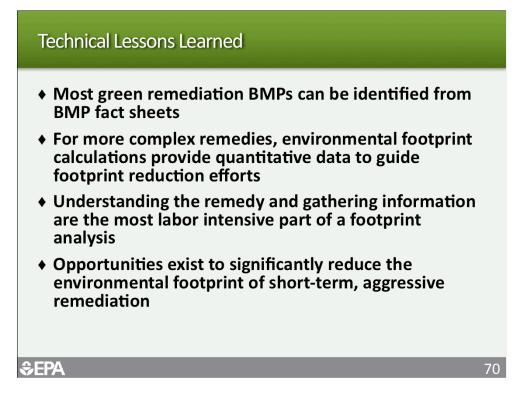


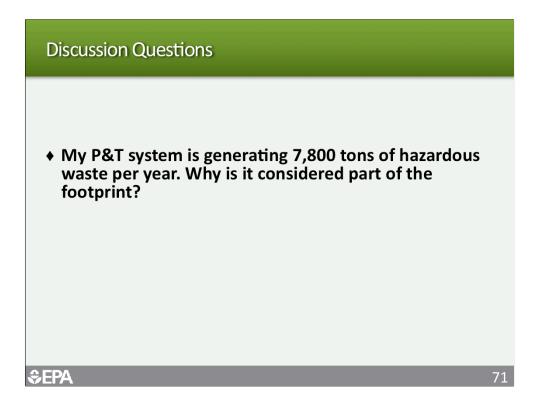
Core Element	Metric	Unit of Measure	Site Investigation	Excavation	Soil to Landfill	print Backfill	Groundwater Monitoring	Total
	Refined materials used on-site	Tons	0	10	0	0	0	10
	% of refined materials from recycled or waste material Unrefined materials used when	%		0%				05
Materials d		Tons	0	1500	0	7000	0	8,500
Waste		e/		08/		208/		24
	On-site hazardous waste disposed of off-site	Tons	10	0	3500	0	0	3,510
	On-site non-hazardous waste Waste	Tons	0	500	7500	0	0	8,000
					0%			131
Water	Destruction of the second seco	NAT.						
	(1000 0000), 0000			1801	•	183	228	3,40
-	Total energy voluntarily derived from renewable resources	10.00						
Energy	- Biodiesel use and onsite Engineergy	MMBtu MWh	0	0	0	0	0	
	- Voluntary purchase of renewable electricity - Voluntary purchase of RECs	MWh	0	0	0	0	0	•
	On-site NOX, SOX, and PAI emissions	Founds		222	U U	411		
	On-site INOX, SOX, and FIM emissions On-site HAP emissions	Pounds	0	0	0	411	0	1,46
Air			738	2017	0	962	305	4,021
	Total HAP emissions	Pounds	8	3	0	1	4	4,02
	Total greenhouse gas emissions	Tons CO2e	43	125	0	62	17	243
	from Econnogeo Ena cumaziona				Ľ,		•	24

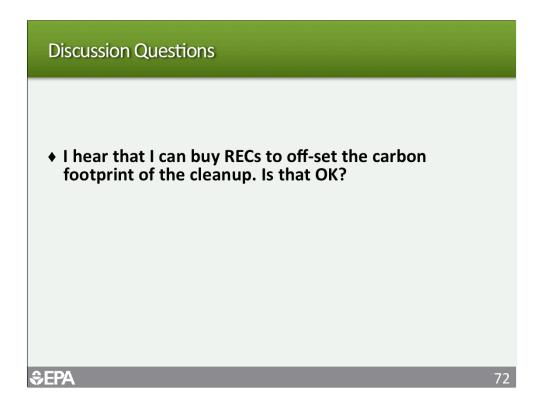
Metrics Are Presented as Suggested in Methodology

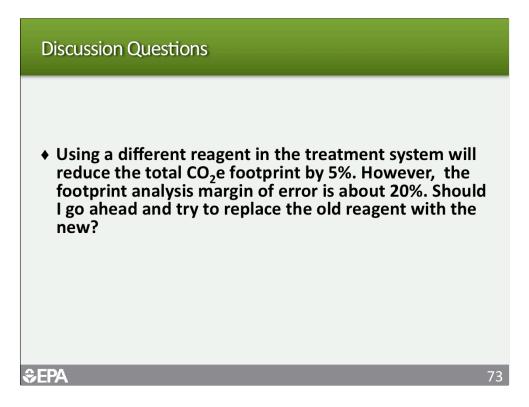


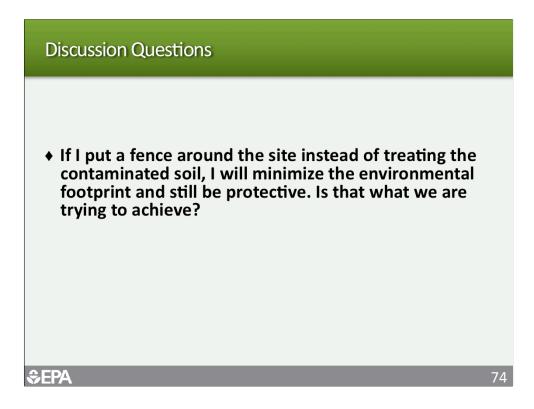
Module 6: Lessons Learned & Discussion Questions

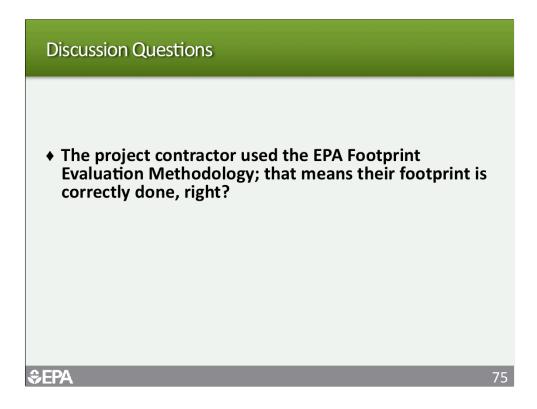


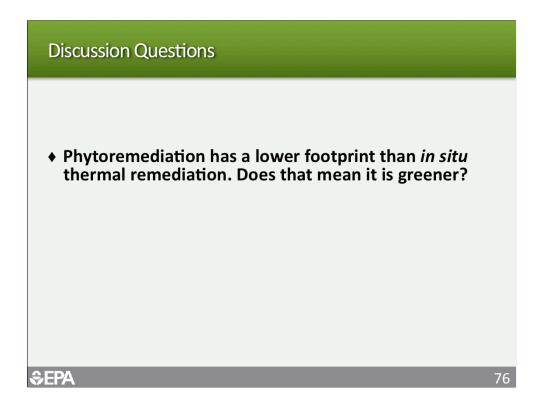


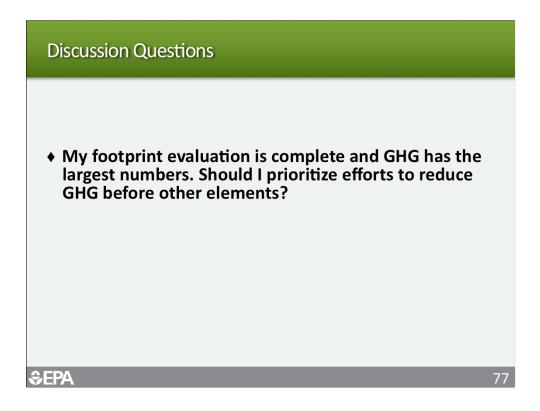

Technical Lessons Learned

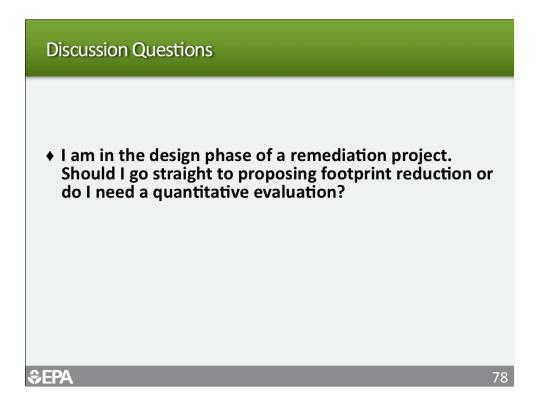

 Footprint analyses typically identify a few large contributors for each remedy type, for example:


Remedy	Primary Contributors	
<i>In situ</i> bioremediation and <i>in situ</i> chemical oxidation (ISCO)	 Nutrient production and transportation Performance monitoring Drilling or injection can be smaller than expected 	
Excavation	 Waste transportation (esp. for hazardous waste) Waste disposal System construction may be smaller than expected 	
P&T, vapor intrusion mitigation (VIM), and soil vapor extraction (SVE)	 Electricity Treatment chemicals/materials (for example, GAC) Construction is quite small 	
	(continued)	
PA		ć









Information and Resources

Information and Resources

- ♦ Guidance Documents
- Special Issues Primers
- Technical Bulletins
- ♦ Fact Sheets
- Case Studies and Project Profiles
- Technology Descriptions
- Vendor Support
- Current and In-depth Information
 - » BMPs for common cleanup approaches
 - » Policy information at Federal and State level
 - » Assessing a project's environmental footprint
 - » Technical support

€PA

GLU-IN Hazardous Waste Clean-Up Information (CLU-IN) www.clu-in.org

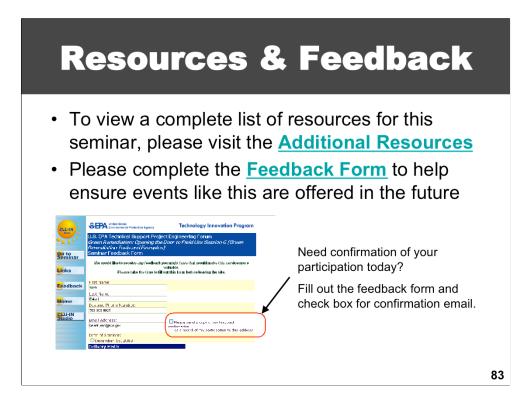
ľ	

CLU-IN Green Remediation **Focus Area** www.cluin.org/greenremediation

CLU-IN Global Efforts to Advance Remediation at **Contaminated Sites** www.cluin.org/global

Brownfields and Land Revitalization Technology Support Center www.brownfieldstsc.org

Triad Resource Center www.triadcentral.org Sustainability


€EPA www.epa.gov/sustainability

EPA Regional Points of Contact

Region	Superfund Green Remediation Regional Coordinators	Engineering Forum Environmental Footprint Methodology Points of Contact
1	Ginny Lombardo, John Podgurski	Kimberly White
2	Nicoletta Diforte, Kristin Giacalone	Stephanie Vaughn
3	Chris Corbett, Mickey Young	Josh Barber
4	Diedre Lloyd	Hilary Thornton, Candice Teichert
5	Brad Bradley	Brad Bradley
6	Sairam Appaji, Raji Josiam	Raji Josiam
7	Craig Smith	Matthew Jefferson
8	Timothy Rehder	Frances Costanzi
9	Jeff Dhont, Michael Gill	Julie Santiago-Ocasio, Karen Scheuermann
10	Beth Sheldrake, Sean Sheldrake	Kira Lynch

\$epa

