A Bayesian Approach for Munitions Risk at Fort Missoula, Montana

Paul Black, Ph.D. Kate Catlett, Ph.D. Mark Fitzgerald, Ph.D. Will Barnett, M.S.

> NC PTUNE AND COMPANY

www.neptuneandco.com

MEC Cleanup Issues

- High costs for characterization & cleanup of munitions sites
 - Need to be more cost effective
- Tendency to look for "needle in a haystack"
- Current approaches not always adequate
- A Bayesian approach
 - Quantitative
 - Provide insights into potential risks
 - Help prioritize MRS actions
 - Inform and defend risk reduction options
 - Great for sites where little to no MEC is expected

Bayesian Decision Analysis

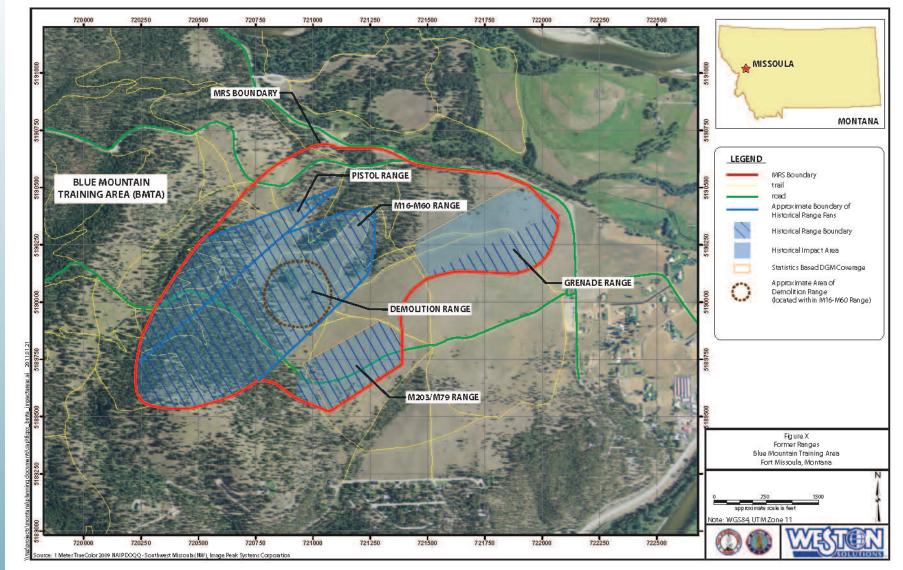
- Integrate all sources of information to maximize information output
 - Historical Information (leases, aerial photos)
 - Expert Opinion
 - Survey Data
- Account for uncertainty
- Include cost information and value judgements

 minimize costs ("costs" in a general sense)
- Iteratively update analysis as new information is collected

Blue Mountain Training Area at Fort Missoula, Montana

Project Overview

- Montana Army National Guard site
- Weston Solutions, Inc., Lakewood, CO
 - Prime Contractor Management, Safety, and Quality
- Neptune and Company
 - Sampling, Strategy, Decision Analysis, and Risk Assessment
- Other project team members:
 - Geolex, Inc., Matrix Consulting Group, Inc., TLI Solutions Inc., Golden, CO
- RI/FS, with a time-critical removal action (TCRA)
 - Currently in the FS phase



Fort Missoula Site History

- Used in the mid to late 20th century for livefire weapons training by Montana Army National Guard
- Potential MEC: 3.5" rockets, 40 mm rocket grenades, hand-held grenades
- Small arms range, as well
- Little to no UXO expected

BMTA Site

M2S2 Webinar • 25 July 2013

Ý

Standard Methods

- Visual Sample Plan (VSP)
 - Sample size given in number of transects to achieve X% confidence that Y% of *transects* are MEC-free
 - Same sample size for different transect size?
- UXO Estimator
 - Sample size given in acreage needed to have X% confidence that MEC *rate* is lower than Y/acre.
 - Must assume constant rate across site
- Neither of these is a risk statement

Needle in a Haystack

- In classical statistics, to confirm that an event is rare, use high sampling
 - Target: 2.0 MEC/acre, sample 1.5 acres
 - Target: 0.5 MEC/acre, sample 6 acres
- How are the targets set?
 - Maybe based on tolerable risk ...
 - Prior information about the true rates?
 - Shouldn't we spend effort looking where we think we might find MEC?
 - And where the risk is greatest?

MEC Risk

- Should be computing:
 - Prob(incident) or Rate(incident)
 - Rate(incident) = Prob(incident | public encounter) × Prob(public encounter | MEC) × Rate of MEC
 - Could break these down further
 - Type of encounter hiker, construction, etc.
 - Type of MEC

Ft. Missoula – Toward Risk

- Sample design for remedial investigation approved based upon UXO Estimator approach
 - Sampling acreage was specified prior to our involvement
 - We allocated sampling effort

M2S2 Webinar • 25 July 2013

Ft. Missoula – Toward Risk

- Bayesian approach
 - Incorporate prior information regarding rates of MEC at site
 - Use non-homogeneous Poisson model for spatial distribution of MEC
 - For now, use posterior rates as final result
- Risk-based design
 - Prioritize digs of anomalies from analog sensors
 - Specify DGM sample locations

Implementing the Approach

- Information Needed
 - Base Rate of MEC
 - Prob. of Public Encounter
 - Prob. of Incident given Encounter
- Source of Information
 - Experienced UXO experts
 - Informed by historical accounts
 - Preliminary site efforts
 - Experience drawn from other sites

Expert Elicitation: Base Rate

- Base rate of MEC
 - Partition site based on military use
 - Partition site based on public access
 - MEC on trails likely to have been found
- Resulted in 12 regions with different rates in each
 - For analysis purposes, treated each region as having a constant rate within the region
 - For sample design, further prioritized primary target areas

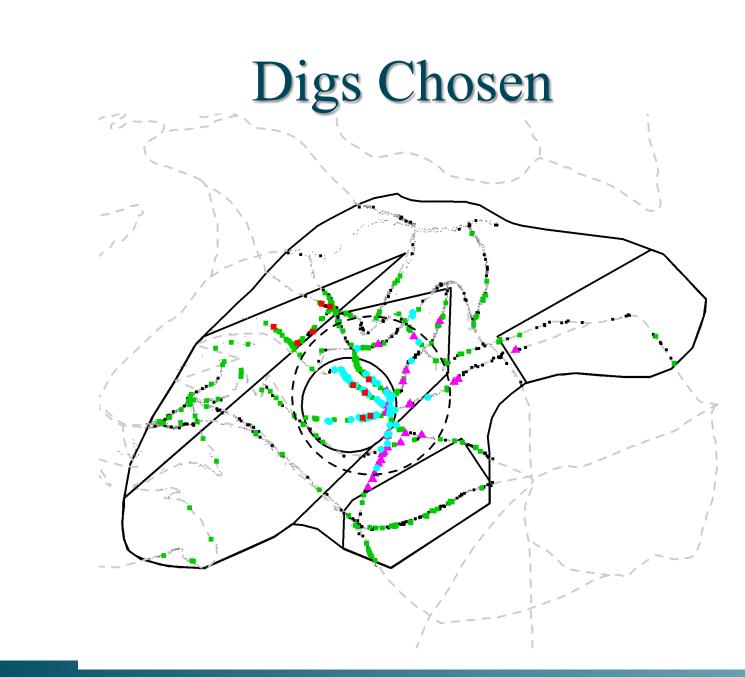
Expert Elicitation: Incident Rate

- Probability of public encounter
 - Presence of vegetation
 - Steep slope [Marsh]
 - Public Areas Difficult: Future encounter bad, but lower likelihood of MEC presence offsetting?
- Probability of incident given encounter
 - Not willing to discuss human behavior
 - Relative risk based on behavior of field team, for different kinds of MEC

15

Expert Elicitation: Anomalies

- Probability of MEC given an anomaly
 - Cultural debris present?
 - "Large" hit
 - Experience-based hunch
 - Discussion with field experts revealed that they know a lot more than they can quantify


M2S2 Webinar • 25 July 2013

Anomaly Prioritization

- All trails sampled with analog device
- About 20% of anomalies were dug
 - All anomalies above threshold risk sampled
 - Remaining anomalies randomly sampled with probability proportional to risk weights
 - Some manually chosen sample locations to ensure balance across site

Ý

M2S2 Webinar • 25 July 2013

Adaptive Design

- Some practical physical impediments
 Field team always wanted statistical OK
- Some risk-based
 - High density of anomalies along trail led to re-definition of demolition area
 - Lack of debris in rifle range shifted priority to other areas
 - On-the-fly elicitation moved pistol range southward
- No substitute for being there!

Results

- MEC rates were adequately low by region to "pass" by original design specification
- Bayesian risk-based approach allowed for considerably greater sampling in area of greatest risk concern
 - Bayesian approach more easily incorporates adaptive design
 - Acceptable rate estimates for regions of lower concern, as well

Conclusions

- Bayesian approach resulted in a lower value of the residual density of munitions than did the classical statistical approach
- Bayesian approach especially good for sites with low expected MEC rates
 - Currently used as a tool for *allocating* effort rather than determining *level* of effort

