#### M2S2 Web Seminar

Unique Challenges of Performing a Remedial Investigation in a Dynamic Environment: A Case Study of the Remedial Investigation at Three Formerly Used Defense Sites on Martha's Vineyard, Massachusetts

By: Carol Ann Charette, PMP CENAE Project Manager

Michael F. Warminsky, PE Project Manager



US Army Corps of Engineers BUILDING STRONG®

### **The Project Team**

- CENAE Overall Project Manager and Sponsor
  - Ms. Carol Ann Charette, PMP Project Manager
  - Mr. John Winkelman Dive Coordinator
  - Mr. Robert Davis and Mr. Mike Penko, Environmental Resource Specialists
  - Mr. Marcos Paiva, Cultural Resource Specialist
  - Ms. Cynthia Colquitt, Risk Assessor
  - Mr. Mark Koenig, Chemist
- USAESCH Technical Lead/Contract Administration
  - Mr. Ralph Campbell, Project Manager
  - Mr. Robert Selfridge, Geophysicist
  - Ms. Kim Meacham, Environmental Manager
  - Mr. Michael Slovak, OE Safety Specialist



# The Project Team (Continued)

- UXB International Prime Contractor
  - Mr. Michael Warminsky, PE Project Manager
  - Mr. Pat Fogleson, Senior UXO Supervisor (SUXOS)
  - Mr. Chris Mazur, Site Manager
  - Ms. Shirley Rieven, PhD, Sr. Geophysicist
  - Mr. David Tyrer, Geo-Data Manager
- Specialty Subcontractors Supporting the Project
  - AMEC International Environmental Consulting
  - Aqua Survey Incorporated Underwater EM Survey
  - Battelle Institute Airborne Magnetometry Survey
  - NAEVA Land-Based EM Survey
  - VRHabilis Ocean Magnetometer Survey, Diver and Intrusive Underwater MEC Operations



# Background

- 3 formerly Used Defense Sites (FUDS) on Martha's Vineyard (~2046 acres total)
  - Former WW II-era Navy Training Ranges:
    - Cape Poge Little Neck Bomb Target Site (~800 acres)
    - MTMG Range at South Beach (~478 acres)
    - Bombing Range at Tisbury Great Pond (~768 acres)
- Each Site included
  - Beach Areas (public and private) (~328 acres total)
  - Upland areas including wetlands, grasslands, and woodland areas (~369 acres total)
  - Inland water areas, including fresh, brackish, and saltwater (~964 acres total)
  - Ocean surf zone (~385 acres total)



### Martha's Vineyard RI/FS





# **Project Challenges**

- Varying Terrain and very dynamic surf zone/beach environment
- Ferrous and non-ferrous munitions of concern
- Mineral content of rocks/ magnetite in the beach sand
- Threatened/endangered species
- Area of investigation extends beyond FUDS boundary
- Rights of Entry (ROE) acquisition
- Very Involved Stakeholders





# **Project Challenges**

#### Dynamic Environment

- Ocean surf-zone conditions change constantly
- Tisbury Great Pond water levels change unexpectedly and barrier beach is breached several times a year

7

Summer Tourism Season





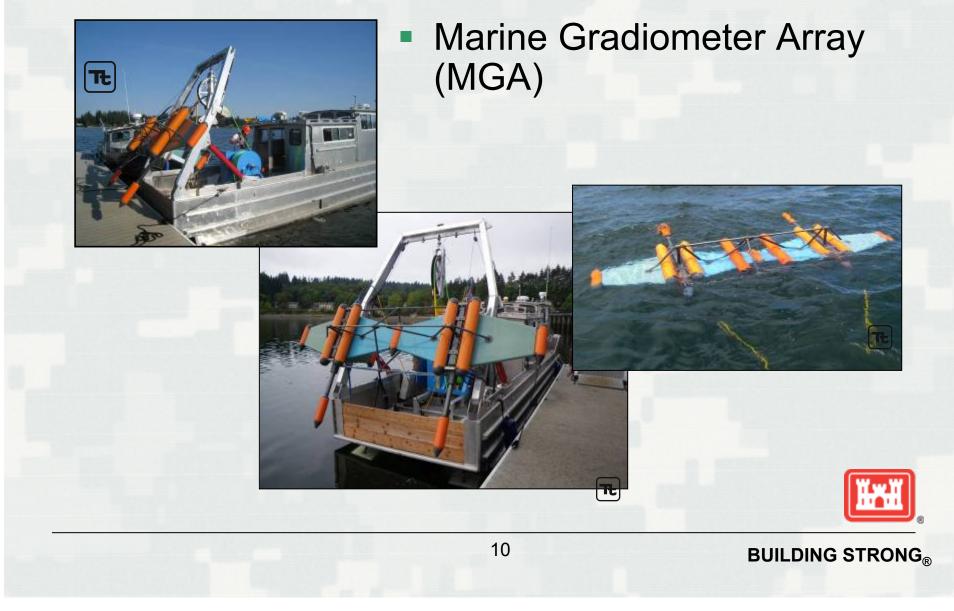
### **Project Challenges**

8



- Beach Erosion
  - Beach width/location of Katama Inlet changed constantly
  - Over 600 feet of beach lost at Wasque Point over duration of project




# **Project Approach**

- Technology Demonstration/Studies
  - WAA Technology Demonstration
  - Transport Study and Hydrodynamic Modeling
- RI Field Activities to Delineate Nature/Extent
  - Land/Beach geophysical survey/intrusive investigation
  - Inland Water geophysical survey/intrusive investigation
  - Ocean analog mag/dig transects
- Multiple technologies deployed
  - Land-based sensors EM and Analog Sensors
  - Underwater EM Sensors
  - Underwater Analog Sensors
  - Airborne Magnetometry all areas



**BUILDING STRONG**®

### WAA Technology Overview



### **WAA Technology Demonstration**

11

 WAA performed off-shore of South Beach

#### WAA Demonstration, Survey, Results





### **WAA Intrusive Results**

95 of 540 anomalies (18%) investigated

#### Final September 24, 2010

Martha's Vineyard ESTCP Excavation Results Final September 24, 2010

2% Expended **Rocket Motors** 21% (MD) Cables Pipes Fence Posts 47% Trash/Debris (non-MD) Hot Rocks Duplicate pick 7% No finds 3% 2% 16% 2%

| Description                    | Quantity |
|--------------------------------|----------|
| Expended Rocket Motors<br>(MD) | 2        |
| Cables                         | 20       |
| Pipes                          | 7        |
| Fence Posts                    | 3        |
| Trash/Debris (non-MD)          | 2        |
| Hot Rocks                      | 15       |
| Duplicate pick                 | 2        |
| No finds                       | 44       |
|                                |          |
|                                | 95       |



**BUILDING STRONG**<sub>®</sub>

12

### WAA Technology Demonstration Summary

- What Does the Data Tell Us?
  - Only two munitions-related items Munitions Debris (MD) were found
  - MD items found on transects closest to the beach
  - No munitions-related items found in deeper water
  - Large number of no-finds
- Implications to RI Field Work
  - MD items found could justify extending transects beyond the planned 300 foot length
  - Very dynamic environment ocean transects/grids planned - changed to mag/dig to eliminate need for reacquisition
  - Sufficient data to suggest the negative/no additional deeper water investigation planned

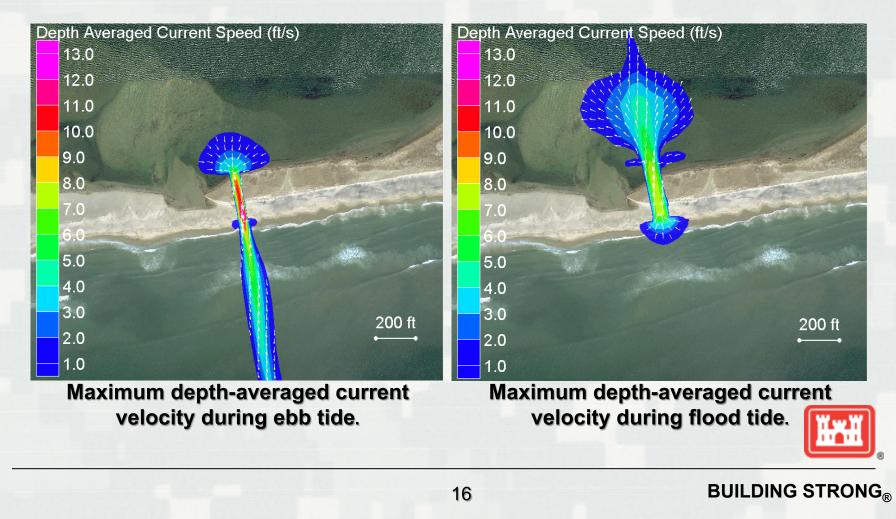


### **Transport Study**

 Baseline and subsequent investigations in previously cleared TCRA grids at South Beach

| June 2010                                   | October 2010                                   |                                                                        |
|---------------------------------------------|------------------------------------------------|------------------------------------------------------------------------|
|                                             |                                                |                                                                        |
| Grid 5/6<br>24 anomalies<br>None visible    | Grid 5/6<br>22 anomalies<br>None visible       | South Beach                                                            |
| Grid 18/19<br>155 anomalies<br>None visible | Grid 18/19<br>385 anomalies<br>Several visible | Legend Transport Study                                                 |
|                                             | None visible<br>Grid 18/19<br>155 anomalies    | None visibleNone visibleGrid 18/19Grid 18/19155 anomalies385 anomalies |

**BUILDING STRONG**®


# Hydrodynamic Study

- Performed at Tisbury Great Pond (TGP) "cuts" made in barrier beach connecting ocean to pond to maintain salinity and water levels
- Dune/barrier beach part of former bomb target and MEC/MD found when past "cuts" were made
- Flow measurements conducted during one of the planned "cuts" in barrier Beach at Tisbury Great Pond over several tide cycles
  - Goal was to determine if potential MEC/MD migration from cut was bounded by field investigation



# Hydrodynamic Study

#### Field work conducted on 11 November 2011



# Transport/Hydrodynamic Study Summary

- What Does the Data Tell Us?
  - Anomalies detected in previously cleared TCRA grids
  - Very dynamic environment
    - No items on surface on baseline dive, numerous item(s) on the surface post-storm dive; beach erosion/redeposition
  - Surface/subsurface MD confirmed munitions-related items post storm dive
  - Implications to RI Field Work
    - Extend ocean transects to 600 feet
    - MD items found may indicate continuing source
    - Any ocean transects/grids planned to be mag/dig to eliminate need for reacquisition
    - Hydrodynamic study confirms potential transport from TGP "cut" bounded by investigation area



# **RI Field Work**

- Determine Nature and Extent of MEC
  - Perform Geophysical investigation to identify anomalies
    - MEC Recon Transects (analog and EM)
    - Geophysical Grids (EM)
  - Perform intrusive investigation on anomalies in grids above threshold value to characterize the area
  - Continue Transport Study in ocean areas to understand movement of items on ocean floor
  - Use WAA and Transport Study data to further focus RI/FS efforts (extend ocean transects to WAA) transect; mag/dig ocean transects)



# **RI Field Work**

#### MC Characterization

- Soil and sediment samples collected in grids with highest MEC/MD densities including a combination of:
  - Incremental soil samples
  - Discrete surface soil samples
  - Discrete subsurface soil samples
  - Discrete sediment samples
- Groundwater samples collected to characterize groundwater within AOI
  - Samples not collected at Little Neck due to lack of freshwater aquifer
- Samples analyzed for select metals (Method 6020A) and explosives (Method 8321B)



# **Multiple Technologies Used**

- Areas for Investigation
  - Upland and Beach Areas
    - Recon Transects (all-metals analog and EM)
    - Geophysical Grids (EM)
  - Inland Underwater
    - Recon Transects (EM)
    - Geophysical Grids (EM)
  - Ocean
    - Field change to mag/dig transects (analog)
  - Use Airborne Magnetometry to supplement data in all areas



### **Land-Based Sensors**





 $\textbf{BUILDING STRONG}_{\texttt{R}}$ 

### Inland Underwater EM Sensor



### **Underwater Analog Sensor**



### **Airborne Magnetometer**



 $\textbf{BUILDING STRONG}_{\texttt{R}}$ 

# **Environmental Compliance**

#### Objective

- Avoid, minimize, and/or mitigate impacts to natural resources, and sensitive populations and habitats as well as archaeological/cultural resources
- Dependent on Species, Season and Environment
- Approach includes technology considerations and monitors/specialists in the field



# **Environmental Compliance**

#### Monitors/Specialists

- Project Marine Archeologist, Cultural Resources Specialist, and Botanist on project staff
- Local entomologist and avian specialist on retainer to support as needed
- Environmental Protection Plan
  - Included in work plan
  - Specialized recognition training for all site workers
  - Field Manual prepared summarizing threatened and endangered species



# **Technology Considerations**

### RI Field Investigation Approach:

- Underwater EM using specialized wheeled cart to avoid damage to shellfish beds
- Airborne Magnetometry to fill in data gaps due to missing ROE permissions, and inaccessible areas
- Analog recon transects on land to minimize vegetation clearing
- Mag/Dig ocean transects due to dynamic environment
- Schedule sequencing to minimize impacts during nesting seasons
- Perform work in tourist off-season



# Summary

#### Lessons Learned

- Involve all Stakeholders early and often
  - Technical Project Planning (TPP) process works
- Never underestimate the ROE effort
  - Combination of public meetings, public notices in local paper, direct mailings/phone calls and "door hangers" for keeping public informed
- Ocean/surf zone is unforgiving
  - Dynamic environment and dangerous working conditions
- Project Management is also dynamic
  - Weekly project calls with client, project team, and regulators
  - Work plan is a "living" document to address field changes based on changing conditions



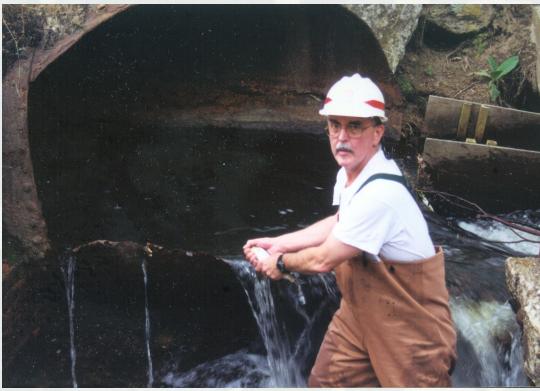
# Summary

#### Lessons Learned (continued)

- Diving is difficult at best, UXO diving much tougher
  - Surf zone is unforgiving
  - All work with surface supplied air, tethers, and umbilical's that carried com, video, air, and hot water as needed
  - Site logistics can take up to half the crew field time
  - Dive work VERY weather dependent
- The only thing predictable with weather is it's inherent unpredictability
  - Can and does change often
  - Perform dive/underwater geophysics on a day-rate basis
  - Weather delay/downtime widely varied between 3 sites because of exposure/prevailing winds and currents: ~65% at Tisbury Great Pond, ~30% at South Beach, and ~10% at Cape Poge



# Summary


- Lessons Learned (continued)
  - Sensor selection based on terrain, geology, munitions of concern
    - All metals detectors use for recon transects due to zinc MK 5's
    - Analog/hand held sensors for transects in upland areas minimized amount of clearing required in sensitive habitat
    - DGM used on beach where there was no vegetation
  - Natural minerals impact geophysical surveys
    - Layer of magnetite below root layer of dune grass showed up in Air-Mag data on dunes
    - Ground-truthing/test pits in magnetite areas allowed geophysicists
      to discriminate natural minerals from suspect anomalies



**BUILDING STRONG**®

### In Memory of Bob Davis

Bob's tireless dedication and passion for his work were instrumental to this project and he will be missed by all...







### **Questions/Discussion**

- Contact Information
  - Carol Ann Charette
  - Ralph Campbell
  - Mike Warminsky

+1.978.318.8605 +1.256.895.1621

+1.908.334.9000

