

Data Quality Objectives

What are they and why are they so important?

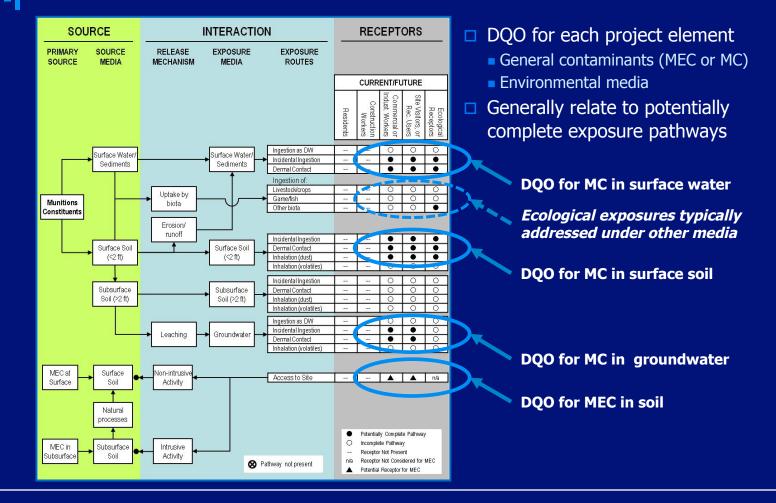
parsons

Before We Start

- There's no single "right way" of doing something
- □ For any given project, the "right way"
 - Complies with the PWS
 - Follows applicable guidance
 - Is acceptable to the project team & other stakeholders
- What's right for one project, won't necessarily be right for the next

Introduction

Clear DQOs are crucial for every project
So it is important to understand:


What is a DQO?
How & when are they developed?
Why are DQOs important?
What makes a good DQO?

- How can DQOs be presented?
- How do we use them?

What is a DQO?

- Simply, a DQO is a measure letting us know when the project is done
- Or, more specifically, when we have project data of
 - The right type(s)
 - Sufficient quantity
 - Adequate quality
- In to support defensible project decisions & revisions to the CSM
- □ DQOs HAVE to be measureable!
- NOT the same as Measurement Performance Criteria (MPCs)

What is a DQO? cont'd.

parsons

Why are DQOs important?

Formalize team agreement on
 When data collection is complete

 i.e., required data quantity & quality
 What will be done with collected data
 The decisions to be made using the data

 Support confidence in the revised CSM
 Underpin data supporting RAOs
 Tells everyone <u>when the project is done</u>

How/when are DQOs developed?

DQOs should be developed by PDT

 Because DQOs are so important, it is best to have whole team in agreement

□ Develop as early as possible

- Outline in the PWS?
- Suggest them in the proposal?
- Definitely should be discussed at the first TPP meeting
- Have to be finalized in work plan

DQOs & Different CERCLA Phases

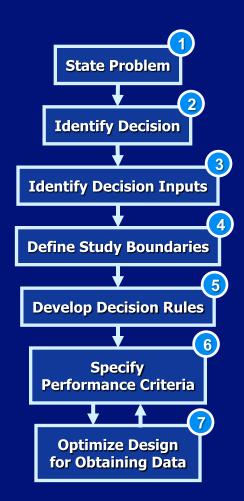
- Detail required will vary by CERCLA phase
 Site Inspection
 - Least detailed; only need to establish presence/absence

Remedial Investigation

- More detailed; need to characterize nature/ extent
- Remedial Action
 - Should specify cleanup levels & response
 - Refer to Decision Document (DD)
- □ Similar for parallel RCRA phases
 - RFA, RFI, & corrective action

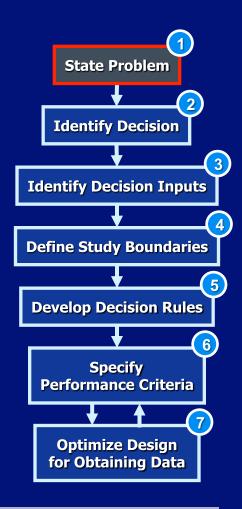
What makes a good DQO?

EM 200-1-2, TPP Process includes a DQO Worksheet with the following elements:


- Project Objective(s) Satisfied
- Data User Perspective(s)
- Contaminant or Characteristic of Interest
- Media of Interest
- Required Sampling Locations or Areas & Depths
- Number of Samples Required
- Reference Concentration of Interest or Other Performance Criteria
- Sampling Method
- Analytical Method

What makes a good DQO?

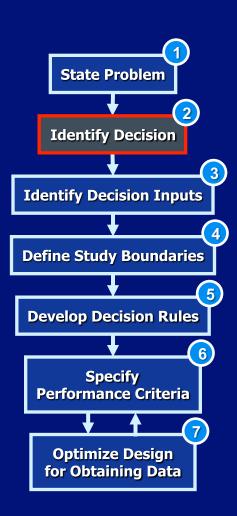
EPA QA/G-4 & EPA QA/G-4HW details 7-step DQO process:


- 1) State the problem
- 2) Identify the decision to be made
- 3) Identify inputs to decision
- 4) Define study boundaries
- 5) Develop decision rules
- 6) Specify limits on decision errors (*performance criteria*)
- 7) Optimize design for obtaining data (*technical approach*)
- EPA/DoD UFP-QAPP guidance also references 7-step DQO process

Section 2.6 & Worksheet #11

State the Problem

- Concise description of contamination problem
 Describe CSM
 - Contaminants (MEC/MC)
 - Potentially complete pathways
 - Current & future receptors
- □ Also at this stage
 - Establish PDT
 - Identify resources, constraints, & deadlines

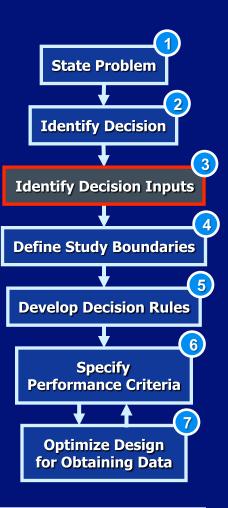


State the Problem, cont'd.

Stage	Example Problem Statements (Simple)	State Problem
SI	Evidence of possible past use as artillery target area; if MEC remain in MRS & complete exposure pathways exist, there may be hazards to human health & the environment	Identify Decision
RI	Confirmed past use as artillery target area; MEC/MC presence confirmed; nature & extent of MEC/MC contamination needs to be defined to facilitate selection & execution of remedial response	Define Study Boundaries 5 Develop Decision Rules
RA	Confirmed past use as artillery target area; UXO needs to be removed from contaminated area & LUCs need to be implemented to achieve RIP/RC	6 Specify Performance Criteria 7 Optimize Design for Obtaining Data

Identify Decision

- Identify principal question(s) to be answered by the project
 Focus on information needed
- Define project actions that could be taken to address problem
- Combine these elements into a decision statement
 - "Determine if [conditions/criteria from principal study question] require/support [taking actions]"
- Organize multiple decision statements
 - Based on sequence or priority

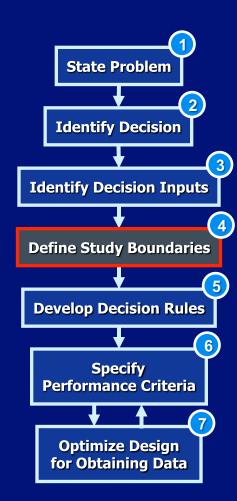


Identify Decision, cont'd.

Stage	Example Decision Statements	State Problem
SI	Determine if MEC/MC contamination is present & requires further response action, or if no further action is needed	Identify Decision
RI	Characterize where CMUAs are located & require further response action, & where no further action is needed <i>or</i> Determine where MC concentrations exceed project action levels & require further response action, & where no further action is needed	3 Identify Decision Inputs Define Study Boundaries 5 Develop Decision Rules 6 Specify
RA	Determine if RAOs have been met & where Response Complete has been achieved, or if further response is needed	Performance Criteria 7 Optimize Design for Obtaining Data

Identify Decision Inputs

- Identify information needed to resolve decision statement
 - What, where, & how much?
- Determine sources of identified information
 - e.g., prior studies, new field investigations
- Identify information needed to establish "action levels"
 - For MEC & MC, as needed
- Confirm investigation methods
 - e.g., DGM, intrusive, MC sampling

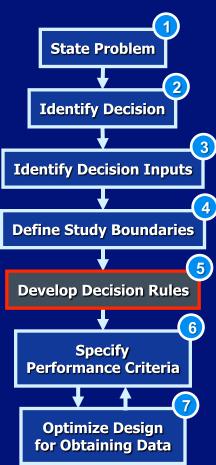


Identify Decision Inputs, cont'd.

Information Needed	Possible Source(s)	State Problem
Types of MEC/MC potentially present	Historical documents, previous response actions, results of DGM surveys & intrusive investigations	Identify Decision Identify Decision Inputs
Locations of MEC/CMUAs	Historical documents, previous response actions, results of DGM surveys & intrusive investigations	Define Study Boundaries
Action levels for MEC	PDT & stakeholder agreement, DD	Develop Decision Rules
MC concentrations in soil	Results of MC sampling & analysis	Specify Performance Criteria
Action levels for MC	Screening levels, DD	Optimize Design for Obtaining Data

Define Study Boundaries

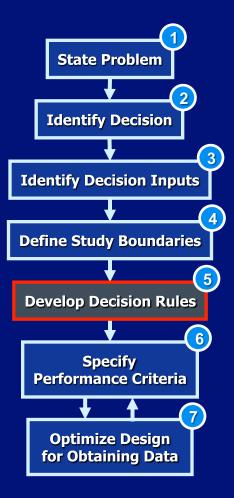
Population of interest Contaminants & media □ Spatial boundaries Horizontal & vertical limits □ Temporal boundaries Timeframe to which data apply When to collect data Scale of decision making e.g., decision unit size Constraints on data collection e.g., where/when data can be collected



Define Study Boundaries, cont'd.

Stage	Example Information	State Problem
ALL	Contaminants & media of interest Requirements for field work schedule Necessary ROEs Locations of inaccessible areas	Identify Decision Identify Decision Inputs
SI	MRS boundary defined in PA or ASR Any subdivisions based on CSM Maximum sampling depth (s)	Define Study Boundaries
RI	MRS boundary defined in SI Any subdivisions based on CSM Maximum sampling depth(s)	Develop Decision Rules
RA	MRS boundary defined in RI & DD Any subdivisions based on selected remedy Maximum removal depth	Specify Performance Criteria 7 Optimize Design for Obtaining Data

Develop Decision Rules


- Specify the parameters that characterize the COPCs
 e.g., MEC density, max. MC conc.
 Specify "action levels"
 Action levels must be detectable
 DEFINE what "contamination" means!
 Develop "decision rules"
 Combine previous outputs into "if... then..." statements
 May be multiple decision rules per DQO; may be linked/chained
 - Can present in flow chart

Develop Decision Rules, cont'd.

Defining contamination

- Cannot characterize nature & extent of CMUA <u>UNLESS</u> contamination is defined
- So it is vital to do this & get team concurrence
- Also need to decide what "uncontaminated" means
 No further action required?
 - Reduced action required?
- Use statistical tools for MEC/MC
- Use risk-based concs. for MC

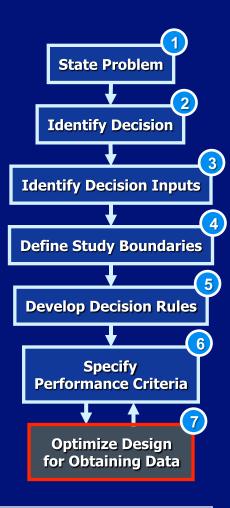
Develop Decision Rules, cont'd.

Parameter	Example RI Decision Rules	State Problem
MEC	IF no high density (HD) areas (i.e., "target areas") identified & transects have 90% conf. of locating 150-foot radius target area, THEN MRS contains no CMUAs	Identify Decision Identify Decision Inputs
	IF HD areas identified, THEN investigate [<i>number, size</i>] DGM grids in HD areas	Define Study Boundaries
	IF grid anomalies in a HD area are MEC or related items, THEN HD area is CMUA & MEC HA will be conducted to evaluate hazards	Develop Decision Rules
	IF no grid anomalies in HD area are MEC or related items, THEN HD area is not CMUA	Optimize Design for Obtaining Data


Develop Decision Rules, cont'd.

Parameter	Example RI Decision Rules, cont'd.	1 State Problem
MC	IF MC concs. in soil < screening values, THEN there is no evidence of release & no further analysis required	2 Identify Decision
	IF MC concs. in soil > screening values, THEN there is evidence of release (i.e., potential MC contamination) & further samples will be collected to delineate extent in soil & evaluate exposure risk	Identify Decision Inputs
	IF evidence of MC release, THEN evaluate potential for migration of MC from soil to surf. water, sediment, & GW; IF migration pathways are potentially complete, THEN collect samples of potentially affected media	Develop Decision Rules Specify Performance Criteria Optimize Design for Obtaining Data

Specify Performance Criteria


- Specify performance criteria for data to be collected
 - Reference tables or UFP-QAPP worksheets

Parameter	Overall Performance Criterion		
MEC	All geophysical investigations shall	Define	
	achieve applicable MPCs as stated in UFP-QAPP & confirmed/modified by GSV, unless MPC failures can be adequately explained and justified	Deve	
MC	Sampling & analysis shall achieve applicable MPCs as stated in UFP- QAPP, unless MPC failures can be adequately explained and justified		

Optimize the Design

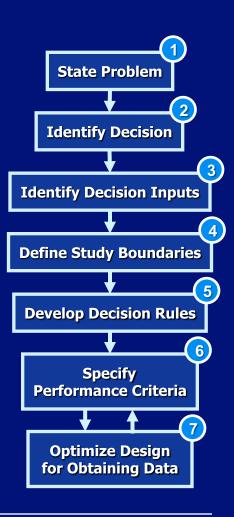
Develop general plan for data collection based on Steps 1-6 Use previous steps to develop sampling & analysis design Required type(s) of data **DGM**, intrusive, MC samples Sufficient quantity Survey acreages, no. of excavations & samples Adequate quality Relevant MPCs Output is technical approach May need to adjust MPCs

parsons

How can DQOs be presented?

Can use text or a table (or both)
 Reference relevant info

- Sections of work plan (or UFP-QAPP worksheets)
- Figures/maps

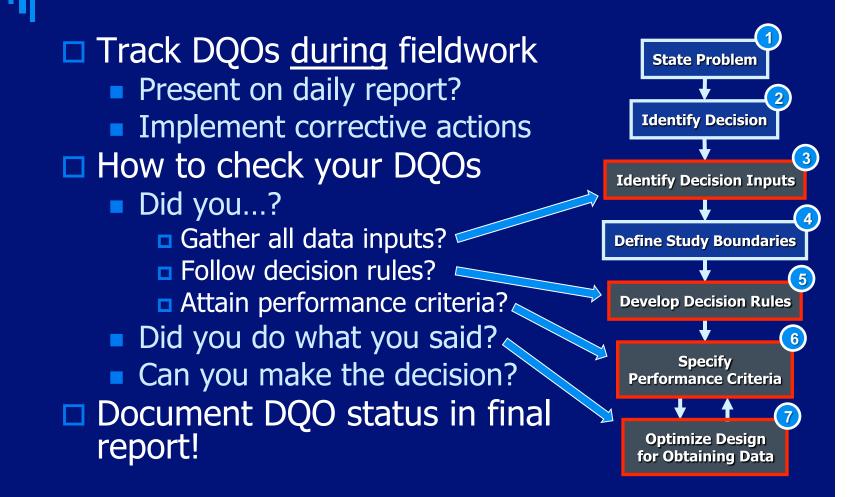

MRS	Problem	Decision	Decision Inputs	Study Boundaries	Decision Rules	Performance Criteria	Technical Approach
Artillery Range	<i>Complete Pathway 1</i>	Goal for Pathway 1	Data required	Location	IF/THEN	Reference relevant MPCs	<i>Summarize approach 1</i>
	<i>Complete Pathway 2</i>	Goal for Pathway 2	Data required	Location	IF/THEN	Reference relevant MPCs	<i>Summarize approach 2</i>
	<i>Complete Pathway 3</i>	Goal for Pathway 3	Data required	Location	IF/THEN	<i>Reference relevant MPCs</i>	Summarize approach 3

parsons

DQOs & UFP-QAPP

EPA/DoD UFP-QAPP guidance

- Part 1: UFP-QAPP Manual
- Part 2A (Revised): Optimized UFP-QAPP Worksheets
- Part 2B: QA/QC Compendium
- <u>http://www.epa.gov/fedfac/</u> <u>documents/qualityassurance.htm</u>
- □ UFP-QAPP Worksheets
 - #10 Conceptual Site Model
 - Relates to Step 1
 - Helps define problem(s) to be addressed


DQOs & UFP-QAPP, cont'd.

□ UFP-QAPP worksheets #11 – Data Quality Objectives Summarizes Steps 1 through 7 Use text or table (or both) #12 – Measurement Performance Criteria Relates to Step 6 □ Also reference Worksheet #15 for MC criteria #17 – Sampling Design & Rationale

State Problem 2 **Identify Decision** 3 **Identify Decision Inputs Define Study Boundaries** 5 **Develop Decision Rules** 6 Specify **Performance Criteria Optimize Design** for Obtaining Data

Relates to Step 7

So now what?

Summary

Develop DQOs ASAP DQO for each element of investigation (e.g., exposure pathway) □ Make DQOs measurable Defining contamination is essential □ Get project team concurrence □ Track DQOs during fieldwork/project Document DQO status in final report

Feedback/Questions

□ If you have...

- Questions
- Comments
- Hate mail
- Sole source task orders
- □ Please feel free to contact me
 - James.Salisbury@Parsons.com
 - (512) 719-6028

parsons