Advanced Classification at Joint Base Cape Cod (JBCC) – The Challenge of Tech Transfer and Lessons Learned

Christopher J. Larson

Geologist, NAB ENGG

Baltimore, MD

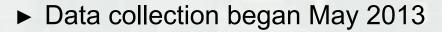
11 Feb 2015

US Army Corps of Engineers
BUILDING STRONG®

Execution!

- Early in 2013 USACE employees were tasked with assembling a Metalmapper to collect geophysical data at JBCC
- Within two months the instrument was assembled, on-site, and collecting data.
- By April 2014 two Metalmappers were on-site operating at full production.
- Many challenges were encountered and overcome through the entire duration of this project.

Discussion Topics


- Unpacking, Assembly, and Implementation
- Mobilization Platform/Equipment
- Computer and Software
- GPS
- Wear and Tear

Unpacking, Assembly, and Implementation

- Unpacking the Metalmapper
 - ► Crate first opened late February 2013
 - ► Are all the pieces there?
 - ▶ Where do all the pieces go?
- Initial Assembly
 - Missing pieces fabricated
 - ▶ The mobile Metalmapper
- Wiring and Computer Setup
- Data Collection

Unpacking and Setup

- Metalmapper Shipped to us in a crate. Accompanied with several cardboard boxes, the sled and the boom
- Originally we were not sure the boom belonged to the instrument
 - All photographs that we had seen were of cart mode
- Instruction manual found in a cardboard box with the monitor
 - ► Helpful but not always clear

Unpacking and Setup

Assembling the Metalmapper

- Are all the pieces there?
 - Mostly, but a couple key pieces were missing
 - 3 point adapter
 - Monitor mount
 - GPS
- Where do all the pieces go?
 - ▶ Not always clear
 - Instructions not always helpful
 - ► At this time there were only a handful of people to consult with issues

Assembling the Metalmapper

 Missing pieces kept the Metalmapper stationary

 Missing pieces fabricated on-site

Tractor-mounted Configuration

Mobilization Platform

- Developed based on existing photographs!
- ▶ Tractor mounted
- ▶ 3 point hitch to raise and lower boom
- Monitor mounted in front of operator at arms length

Computer and Wiring

- Although the Metalmapper was mobile, it could not collect data
 - ▶ Touch screen monitor did not function
 - Used keyboard and optical mouse with USB cable
 - 115 V PC monitor used
 - ► IMU not communicating
 - ► No GPS
- The Metalmapper computers are not plug and play
 - ► Each piece of hardware you connect needs a dedicated, properly configured port
 - Drivers or software may also need to be installed

Computer and Wiring

- We needed help
 - ▶ We did not yet understand how to configure communication ports
 - ▶ We did not have access to or understand how to connect the GPS
- Contacted the manufacturer (Geometrics) and co-workers for help
 - ► Trimble R-8 GPS system rented
 - ▶ With some outside assistance and a little trial and error the Metalmapper could collect quality data

Data Collection

Data collection began May 2013

Mobilization Platforms

- We have mounted the Metalmapper on two different types of mobilization platforms:
 - **►** Tractor
 - ► Skid-steer (many different skid-steers)
- Original booms failed
 - ► New, stronger booms fabricated on-site

Tractor

Tractor-mounted Metalmapper

▶ Data collection slower on rough terrain

- ▶ Not very stable
- ► Easily stuck in craters
- ▶ Difficult to collect with Metalmapper level
- Operator, paperwork, and Monitor in the elements
 - Cold, heat, mist, wind, and sun
- Less expensive

Skid-steer (rental)

- Open-cab skid-steer
 - ► First used at JBCC April 2014
 - ▶ Tracked Unit
 - ► Lower center of gravity
 - ► Front mounted design
 - ► Increased data collection rate
 - ► Still exposed to the elements
 - Rental equipment break-downs common
 - Original boom used
 - ► Track maintenance required
 - ▶ More costly than tractor

Skid-steer (rental)

- Closed-cab skid-steer
 - Operator, paperwork, and monitor no longer in the elements
 - Cold, heat, mist, wind, and sun
 - Break-downs still caused loss of productivity
 - Worn-out rentals!
 - Rental company maintenance
 - Lots of lost time
 - Boom, monitor and wiring had to be removed and reinstalled each time the machine was exchanged

Skid-steer (Purchase #1)

- NAB purchased new Skid-steer June 2014
 - Volvo (MCT 135 C) Single-arm boom
 - Purchase cost offset by increased production rate and duration of the project
 - Increased stability and maneuverability
 - ▶ Decreased number of break-downs
 - ➤ Climate controlled Closed cab
 - ▶ Dedicated unit

Skid-steer - Sled Booms

Original 4" X 4" booms could not hold up to the abuse.

Increased productivity came at a price.

Skid-steer - Sled Booms

 Stronger booms had to be constructed to withstand the increased stress

▶ 1st replacement constructed from 6" X 6" treated lumber

- Very strong but heavy
- Not very flexible
- Designed to be built easily with local supplies

Skid-steer - Strength and Agility

2nd replacement constructed from

4" X 6" treated lumber

- Very strong but lighter
- Some flexibility
- Designed to be built easily with local supplies

Skid-steers are far more capable than tractors on rough terrain

- Reach over obstructions
- Reach down into large depressions

Skid-steer (Purchase #2)

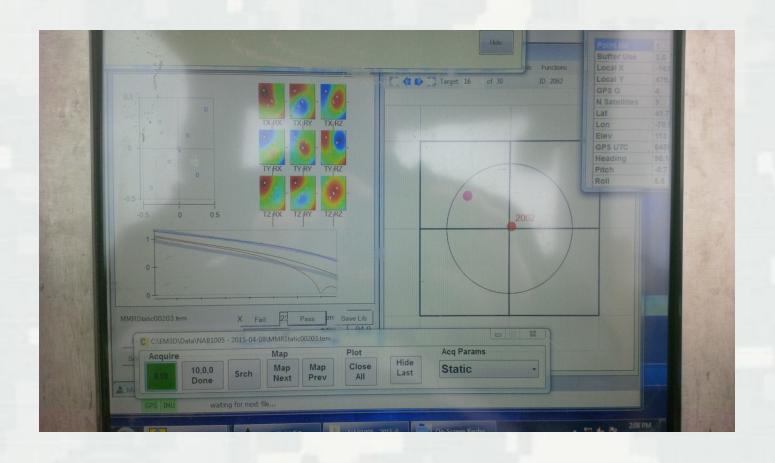
- NGB purchased second Volvo (MCT 110 C) Skidsteer May 2015
 - ► Rental costs avoided
 - Decreased number of breakdowns
 - Climate controlled Closed cab
 - ► Two track mounted skidsteers now collecting data!

Hardware and Software

- The Metalmapper computers are not plug and play
 - ► Each piece of hardware you connect needs a dedicated, properly configured port
 - Drivers or software also need to be installed
 - ► IMU serial to USB adapters must be FTDI!

EM3D

- The original data acquisition software provided by Geometrics with the Metalmapper.
- ► Somewhat difficult to use for navigation
- Required 2nd visit to each grid for reacquisition



Hardware and Software

- BT Field (Black Tusk Geophysics)
 - ► Improved navigation screen
 - ► Real-time data inversion
 - ► No need for 2nd visit to each grid for reacquisition
 - ▶ Productivity increased
 - ► Portions of the data retained in the memory
 - ► After collecting at 80 to 100 points it would take an extremely long time to collect data
 - ► Targets segregated into groups of 30 individual targets or "clusters".
 - ► EM3D still used for data collection but BT field used for navigation and real time inversions and reacquisition

Hardware and Software

GPS - One Unit

- One (1) Metalmapper Unit
 - ► Rented Trimble R-8 system
 - High cost
 - ► NAB Purchased Trimble R-10 system (2014)
 - Purchase cost offset by high rental cost and duration of the project

GPS – Two Units

- Two (2) Metalmapper Units
 - ▶ Trimble R-10
 - ► Trimble R-8 system borrowed from HNC
 - Required two base stations, two control points, and two different GPS initiations each morning
 - ► Transitioned to all R-10
 - ➤ One R-10 base with 2 R-10 rovers
 - ➤ One rented rover (high cost)
 - ▶ Required only one base station, control point, and GPS initiation

GPS – Current Configuration

- Current configuration for two (2) Metalmapper Units:
 - ▶ One R-10 base with 2 R-10 rovers
 - ► 2nd rover purchased by NGB
 - Purchase cost offset by high rental cost and duration of the project
 - ▶ Do not use fiberglass extension rod on Metalmapper GPS platform!!!!!

Wear and Tear - GFE

- Government Furnished Equipment (GFE)
 - ► Metalmappers were used on demonstration projects
 - ▶ Abused
 - ▶ Broken
 - ▶ Not Maintained
 - ► Repairs were needed!

Wear and Tear - Expendables

- Expendable Items:
 - ▶ Booms break
 - ► Nylon straps on new booms break
 - ► Fabricated steel rear boom support
- Nuts and bolts:
 - ► Ensure all nuts and bolts remain secure
 - ► Maintain a supply of spares

Wear and Tear - GPS Platform

GPS Platform

- ▶ Weak point
- Leg ends split causing legs to break
- ► If one breaks and not repaired others will follow
- ▶ GPS rover will follow broken legs causing damage
- Manufacturer supplies not always available
- ► Always have an extra set (4)

Wear and Tear - Weak Points

Storage and Maintenance

Storage Container

- Somewhat difficult to get machine and Metalmapper inside
- Experienced operators needed
- ▶ GPS legs easy to damage
 - Always remove GPS rover
- Damage to sled caused by pulling in instead of backing in
- ▶ Other damage could easily occur
- Computer and Coils
 - Require more frequent maintenance and repair

Recommendations

- Seek help from others that have experience
- Have the proper personnel available
- Minimize wear and tear by proper maintenance and operation
- Maintain a healthy stock of spare cables and other parts
- Problems will occur but they can be overcome

Questions?

