Baseline Risk Assessing

US Army Corps of Engineers BUILDING STRONG®

Agenda

- Basic QAPP
- A Look At Risk Assessment

Basic QAPP When Accepting Data & Writing The RI Report

- Critical Worksheets according to Andy
 - ► WS10: Conceptual Site Model
 - ► WS11: Data Quality Objectives
 - ► WS12: Measurement Performance Criteria
 - ► WS22: Measurement Quality Objectives

Basic QAPP

When Accepting Data & Writing The RI Report

WS10: Conceptual Site Model

- Foundation of entire project
- Explains why we planned what we planned

Basic QAPP

When Accepting Data & Writing The RI Report

- WS11: Data Quality Objectives
 - This can be pretty easy!
 - DQOs for VSP easy!
 - DQOs for Target Area Assessment > Evidence is all we need in general
 - DQOs for Buffer/Safety Fan Assessment
 Statistical Sampling (á-la UXO Estimator)
 - DQOs for Risk Assessing
 - All the above plus land use
 - DQOs for all the MC stuff
 - > Yadah yadah yadah...

Basic QAPP

When Accepting Data & Writing The RI Report

- WS12: Measurement Performance Criteria
 - ► The single most important Worksheet
 - Because if we meet all these requirements, we should be DONE!
 - ► Stuff like,
 - Transect spacing & transect coverage
 - Digging sufficient anomalies to support statistical tests
 - Showing where targets were found
 - Showing what's NOT there

What do you mean by "What's not there?"

No evidence UXO spotting charges persisted

No evidence High Explosives were ever used

FUDS (in Arizona) Practice Bomb Target Target Center

Basic QAPP When Accepting Data & Writing The RI Report

- WS22: Measurement Quality Objectives
 Second most important worksheet
 - Tells us the data we're using is good

Assessing Risk

US Army Corps of Engineers BUILDING STRONG®

Agenda

- Next Up: Make you smarter on what you're starting out with
- To Think About For The FS

Context

- How We Got Here...
 - ► PA→SI→RI QAPP→Field Work→RI Risk Assessing
- Problem Statement: Do we have an unacceptable risk scenario?
- The answer is yes for HTRW problems when
 - Cancer risk > ____ or hazard quotient > ____
- The answer is yes for MMRP problems when
 I'll know it when I see it
 - □ Someone thinks there might be a UXO somewhere
 - □ Someone is likely to get hurt or die
 - All of the above
 - □ None of the above

In Plain English

We have an unacceptable risk when:

- 1. People are likely to encounter UXO, AND
- 2. People don't know what NOT to do if they encounter a UXO, or
- 3. An unintentional encounter could result in a detonation, AND
- 4. The consequences are severe

Risk Calculations

Andy's Auto Insurance Who's ahead, Andy or his insurance company?

Event	Value
Sound System theft 2010	\$1,500
Sound System theft 2012	\$1,000
Crazed Soccer Mom driving a minivan talking on the phone	\$6,700
Total Claims Payouts	\$9,200
My approximate lifetime premiums	~\$350/6mo for 12 years = \$8,400

Risk is essentially a combination of probabilities

Example: Your Car Insurance Rate

 probability of having an accident
 Hours on the road, your experience, your driving history

We Are Talking Probabilities

What's the probability of rolling a 6? One in six, or about 16%

What's the probability of rolling two sixes? one in six? (~16%) two in twelve? (~16%) one in six + one in six? (~32%) one in six X one in six? (~3%)

Risk Calculations

- Risk is essentially the multiplication of several probabilities
- Example: Lead In Soil
 - probability of exposure (being present where the contamination is)
 - probability of intake
 - (something happens that results in ingestion)
 - probability of bioloading
 - (probability your body retains the contaminant)
 - probability of adverse health effect (probability that the retention ultimately leads to a health effect)

Something Bad Happens When:

- UXO or DMM is at a location
- Someone imparts energy to the item
- The item functions
- Energy from the detonation injures that someone
 Consider Reality:
 - UXO are generally rare Just because it's there does not mean someone finds it If it is found, it's not always picked-up If it is picked up, it doesn't automatically detonate If it does detonate, injury is proportional to energy release

Risk Management

Likelihood **Likely Presence** of Human Lot Of of UXO Interaction **Overlap** Overlap ≈ product of high Likelihood of probabilities Injury **Causing Item** Lot Of Overlap ≈ Multiplying Large Probabilities =Unacceptable Risk

Let's Consider FS Analyses

Let's Look At: Physical Removal

Little To No Overlap ≈ Multiplying small probabilities = Acceptable End State

Let's Look At: Education

These stay the same!

Little To No Overlap ≈ Multiplying small probabilities = Acceptable End State

MMRP Risk & Acceptable End States ON-GOING WORK

USACE working to publish white paper as a policy memo with a trial period. IGD to follow...

- Matrix 1: Amount of MEC vs. Accessibility
 - Likelihood of Encounter
- Matrix 2: Likelihood of Encounter vs. Severity
 - Likelihood of Casualty or Injury
- Matrix 3: Sensitivity vs. Site Activities
 - Likelihood of Incident
- Matrix 4: Matrix 2 vs. Matrix 3
 - Differentiate Acceptable vs. Unacceptable

Questions?

