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� Production of fine chemicals
� Bioremediation

� biodegradation of organics
� biodegradation in the presence of toxic metals
� removal of organics by flushing
� removal of  metals by flushing

� Biological control
� Antibiotic facilitator

Applications for microbial surfactants
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In situations where a metal-contaminated site poses an imminent threat to human or 
ecological health from metal leaching into the environment, it may be necessary to 
implement remedial action immediately.  An alternative to removal and disposal of 
the contaminated material is the application of a �facilitated� soil washing or pump 
and treat action.  In this case, these actions are �facilitated� by the addition of metal 
chelators/complexation agents that increase metal solubility and make metal 
removal more rapid and complete.  This seminar will introduce a class of 
environmentally compatible metal chelators, biosurfactants.
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The two largest classes of biosurfactants are glycolipids and lipoproteins.  
Rhamnolipids are an example of the former class.  The structure shown is 
monorhamnolipid where X = H and dirhamnolipid where X = rhamnose.  Surfactin
is an example of a lipoprotein, where R is the fatty acid tail. As for any surfactant, 
these molecules spontaneously aggregate into ordered structures above a 
concentration called the critical micelle concentration (CMC).  The type of structure 
formed depends on surfactant structure, ionic strength, and pH. Surfactant 
monomers tend to associate with interfaces and have the ability to lower the surface 
tension between air and water and the interfacial tension between different liquids or 
liquids and solids.  

The red arrows in this slide show potential complexation sites for cationic metal 
species.  Complexation constants indicate that these molecules bind metals more 
strongly than would be suggested by the number of carboxyl groups in the structure.
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Cyclodextrins are cyclic, nonreducing oligosaccharides produced from the 
enzymatic degradation of starch by bacteria that contain cyclodextrin
glycosyltransferases.  These molecules lower surface tension only minimally and do 
not form typical surfactant aggregates.  Cyclodextrins do not bind metals as strongly 
as rhamnolipid or surfactin but have the advantage of being nonsorbing.  All of 
these surfactants have limited toxicity and are readily biodegradable.
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Addition of an anionic biosurfactant 
such as rhamnolipid helps remove 
metals from the soil into solution, 
making them easier to remove by 
flushing.
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At equilibrium, a majority of metal 
contaminants found in soil are associated 
with the soil surfaces (bound or 
precipitated).  

Conceptual Diagram
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A conceptual diagram of biosurfactant-facilitated removal of metals from soil.
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Rhamnolipid complexation of various metals

2.48
2.31
2.37
1.91
1.58
1.20
1.21
1.32
1.03
0.93
0.90
0.84
0.57

10.3
9.27
8.58
6.89              3.7
5.62
5.16
4.49
4.10
3.58
3.53
2.85
2.66
0.96

Al3+

Cu2+

Pb2+

Cd2+

Zn2+

Fe3+

Hg2+

Ca2+

Co2+

Ni2+

Mn2+

Mg2+

K+

Molar Ratio
c

Stability constant
(Log K)

Metal

Ochoa-Loza et al., 2000

Cyclodextrin

Slide 7

Note that the complexation constants for metals of concern such as lead and 
cadmium are much higher than for common soil cations such as calcium, 
magnesium, and potassium.

Rhamnolipid has a much higher stability constant for cadmium (6.89) than 
cyclodextrin (3.7), but this advantage is offset since rhamnolipids sorb to soil 
components.
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Environmental Compatibility vs. Strength of Metal Complexation
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Among the most effective soil-washing agents investigated are strong acids and 
chelating agents.  However, use of these agents can be both lethal to soil microflora
and destructive to soil physical and chemical structure due to mineral dissolution.
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Anticipated problems in application

� interference by naturally occurring metals

� interference by naturally occurring organic ligands

� interference from sorption

� metal aging

Humic acids
Fulvic acids

Ca
2+

Mg2
+
K+
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Rhamnolipid and Fulvic Acid Complexation with Metals
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Soil properties that impact rhamnolipid sorption

Clays:
illite > kaolinite > Ca-montmorillinite

Metal oxides:
hematite (Fe2O3) > MnO2 > gibbsite (AlOH3)

Organic matter:
humic acid

Slide 11
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Rhamnolipid-enhanced removal of cadmium from soil
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A series of column experiments conducted under saturated flow conditions suggest 
that freshly contaminated soils which contain only soluble, exchangeable, and 
organic matter bound metals are readily treatable.
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Metal removal efficiency from freshly 
contaminated soils ranges from 50 to 100% 
depending on the soil type.

Aged soils are more problematic.

Slide 13
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Three historically contaminated soils were studied in a series of batch experiments. 
The first material is a 30-year old mine tailing waste dumped near a Post Office site 
in Tucson, AZ.  A 5 mM treatment of EDTA removed approximately 9% of the Pb
with an extraction ratio of 5.9 mmol EDTA to 1 mmol Pb.  A 5 mM treatment with 
rhamnolipid removed approximately 3% of the lead with an extraction ratio of 17 
mmol rhamnolipid to 1 mmol Pb.
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Soil Washing Agents
�10mM Rhamnolipid

�50mM Ca(NO3)2
�10mM KNO3

Coeur d�Alene Soil- mining
Soluble, Exchangeable, 
Oxide-bound and residual

Camp Navajo Soil � army depot
Soluble, Exchangeable,
Carbonate-bound and residual
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The second and third soils are from Coeur d�Alene, Idaho an area that has been 
subjected to extensive mining and Camp Navajo, Arizona, an abandoned army 
depot site where the lead comes primarily from lead-based paint and lubricating 
oils.  Coeur d�Alene soil is a sandy loam from a floodplain and is frequently subject 
to saturated conditions and as a result contains a large amount of amorphous iron 
oxides.   The effective chelant to metal molar ratios in the above graphs were 3.2:1 
for Coeur d�Alene and 1.4:1 for Camp Navajo.  Results indicated that continued 
washing would remove further metal at the same extraction efficiency.    
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Rhamnolipid is more effective than cyclodextrin in the Coeur d�Alene Soil, because 
it has a higher complexation constant with Fe and the lead is largely associated with 
amorphous iron hydroxides.  These amorphous iron hydroxides are typically found 
in floodplain sediments such as are found in Coeur d�Alene.  The two agents work 
equally effectively in the Navajo soil for the soluble and exchangeable fractions, but 
both are less effective against the carbonate-bound and residual metal.
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Biosurfactant application to facilitate biodegradation in co-contaminated sites
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� Biosurfactants are an example of an environmentally
compatible agent with potential for remediation of
metals.

� Likely we can improve on performance by looking at
other natural products including:

other biosurfactants
siderophores
metallothioneins

Conclusions

Slide 19

The two biosurfactants discussed here are environmentally compatible (low toxicity, 
biodegradable) and commercially available.   There are advantages/disadvantages of 
each surfactant.  Rhamnolipid is a stronger metal chelator and is easily recycled.  
Cyclodextrin is nonsorbing.  The information available concerning each of these 
surfactants allows good predictive capabilities for success in application of these 
surfactants at the field scale.   These surfactants are ready for field trials.
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Sulfolobus solfataricus

Halobacterium halobium
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0.1

16s rDNA phylogenetic tree of biosurfactant-producing microbes

Ability to produce biosurfactants is widespread!

Bodour et al., 2003Slide 20

The ability to produce biosurfactants is exhibited by many eubacteria as well as 
some archaea.  Biosurfactant production is genus and sometimes species specific.
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ATCC 9027           IGB83                     158
m-Rhl            m-Rhl + d-Rhl        Rhl-methyl esters

Physical-chemical properties of surfactants vary 
greatly resulting in different potential applications.

� This is true for different types of biosurfactants

� It is also true within a biosurfactant type.
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For example, the only species that produces rhamnolipid is Pseudomonas 
aeruginosa.  A number of different types of rhamnolipids are produced.  The 
majority of species produce a mixture of mono- and dirhamnolipid, but some, such 
as P. aeruginosa ATCC 9027, produce only monorhamonlipid, and P. aeruginosa
strain 158 produces a nonionic methylester form of rhamnolipid.
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Green  Engineering

Harry R. Compton
Environmental Engineer

U.S. EPA - ERT
Slide 23



24

Mine Sites
� Lack of vegetation result of:

__  Fertility

__  Soil physical properties

__   Acidity

__   Metal toxicities

__   Salts
Slide 24
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Goals of remediation
� Reduce bioavailability of contaminant in place

� Rebuild soil or build new soil

� Restore soil function

*  Sustain plant growth

*  Sustain soil fertility

� Establish native plant ecosystem
Slide 25
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Why use wastes?
� Different wastes can be used to remedy a number of 
factors that may potentially contribute to a soil�s inability 
to support a vegetative cover.

-- pH
-- soil fertility
-- soil physical properties, and
-- potentially toxic concentrations of trace metals

� By combining different materials together, and 
applying to the soils in-place, soil problems can be 
corrected.

-- lower costs
-- recycling wastes Slide 26
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Metals in Biosolids

� Regulatory limit 
(pollutant concentration 

limits)
� Cadmium

� 39 mg kg
� Lead

� 300 mg kg
� Copper

� 1500 mg kg
� Zinc

� 2800 mg kg

� National Means
(1990 national sewage 

sludge survey)
� Cadmium

� 7 mg kg
� Lead

� 134 mg kg
� Copper

� 741 mg kg
� Zinc

� 1202 mg kg
Slide 28
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Scientific basis of treatments
� Biosolids/compost add:

* nutrients
* organic matter
* metal complexing ability

� Wood ash/waste lime add:
* pH adjustment
* adhesive properties
* nutrients

� Wood waste/other C-rich residuals:
* limits N availability
* adds bulk
* physical soil benefits

Slide 29



30

Bunker Hill - wetland restoration

� Lead 30,000 mg kg-1

� Zinc 15,000 mg kg-1

� Cadmium 100 mg kg-1

Slide 30
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Waterfowl:

� Use Lateral Lakes wetlands as feeding, 
nesting area

� Dive for roots and tubers
� 20% of diet is sediment
� Acute Pb poisoning
� 100 sq mile area is Pb �enriched�

Slide 31
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Coeur d�Alene 
Wetlands

1998- 2001

2001

1998
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Wetland - Plant lead
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Other metals
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Fig. 1. Radial structure functions (RSFs) derived from  Fourier transformation of lead LIII-EXAFS
data (w=3) for contaminated sediment subjected to various treatments. 
The Pb-S bonding apparent for all sediment samples indicates a dominance of Pb-sulfide.

Pb Speciation
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Filling vehicle

Application
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Summary of Desorption

� Biosolids significantly increased 
hysteresis
� For a site hystersis was related to rate of 

application
� The effect of biosolids application on 

hystersis was also apparent on the 
inorganic fraction of the samples

� Removal of organic carbon and the Fe/Mn
fraction from the samples removed the 
difference caused by biosolids

Slide 52
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Summary 
Adsorption/Desorption

� Biosolids increased the soils ability to 
adsorb and retain Cd

� These changes are apparent in the 
inorganic fraction of the samples

� Removal of organic carbon and the Fe/Mn
fraction from the samples removes the 
difference caused by biosolids addition

� Thus the Fe/Mn fraction of the biosolids is 
an important component of the change in 
adsorption/desorption

Slide 53
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Thank You

After viewing the links to additional resources, 
please complete our online feedback form.

Thank You

Links to Additional Resources
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