Passive Treatment of Mining-Influenced Water: From Bench Scale to O&M

Amy G.Wolfe Trout Unlimited Director – Eastern Abandoned Mine & PA Coldwater Habitat Restoration Programs awolfe@tu.org

www.tu.org

Dr. Robert Hedin Hedin Environmental President bhedin@hedinenv.com www.hedinenv.com

HedinEnvironmental

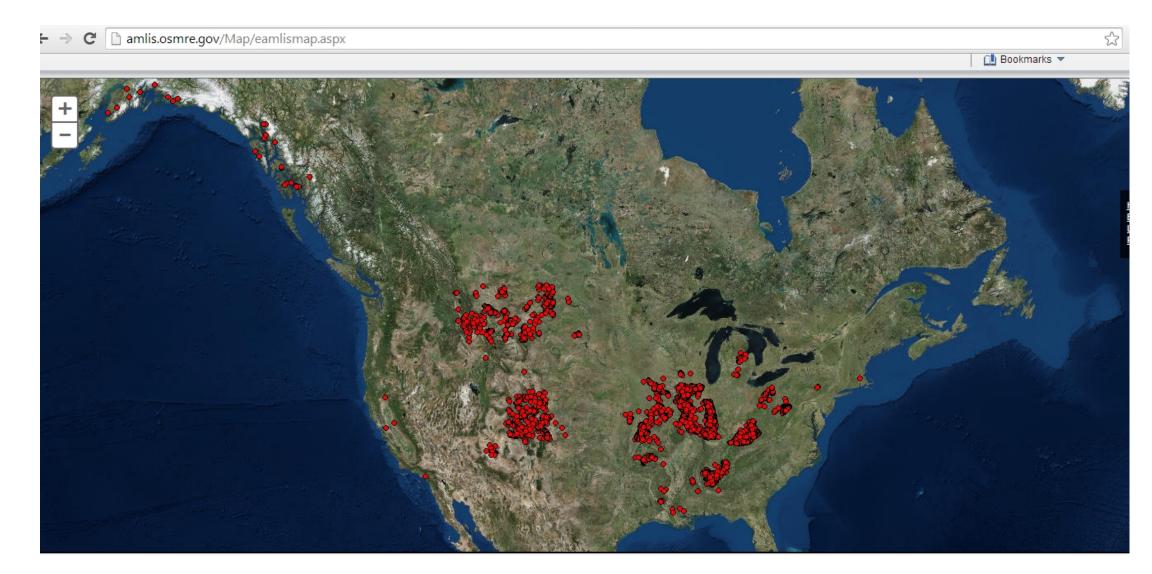
Abandoned Coal Mine Drainage

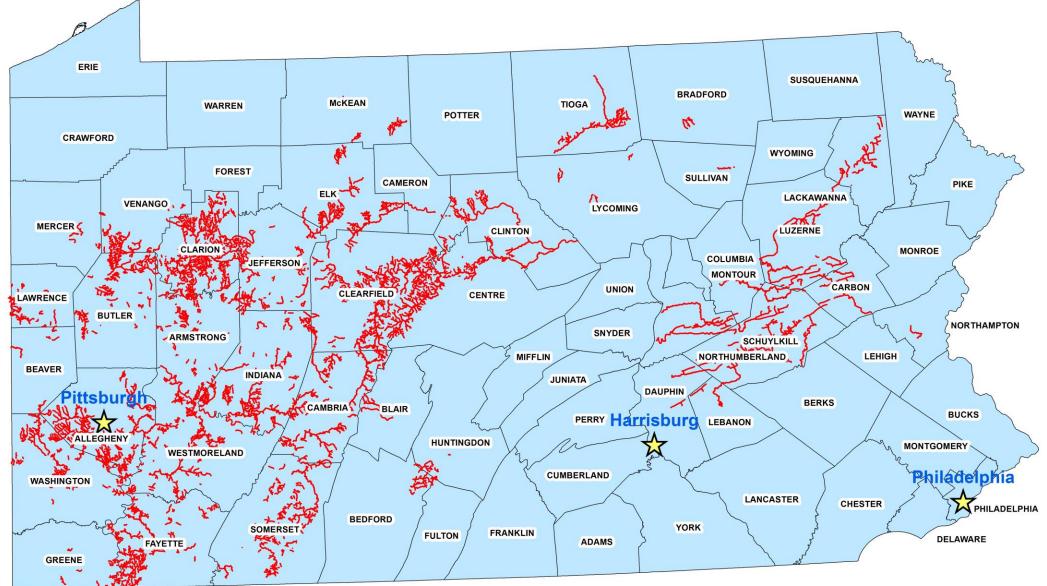
<u>Abandoned</u>

- Site mined prior to 1977 Surface Mining Control & Reclamation Act (SMCRA)
- Before SMCRA, little to no requirement for coal miners to reclaim land or treat polluted water

Coal mine drainage

- Water that has become polluted by flowing through unreclaimed coal mines
- Often called abandoned mine drainage (AMD)
- AMD is commonly acidic (pH 2-4) with high metals such as iron and aluminum
- AMD creates habitat unsuitable to support fish and other aquatic life

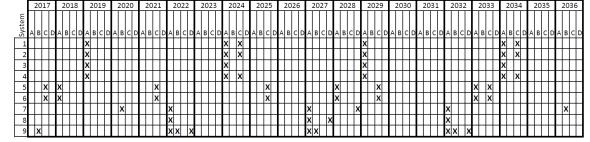




Abandoned coal mines are a nationwide problem – more than 10,500 mi polluted streams just in PA and WV

Cleaning up abandoned mines generates jobs – Important to local, regional, and state economies

- For every \$1 spent on remediation, an additional \$1.36 circulates through the local economy (multiplying factor)
- Area property values increase (\$2600 lost per acre for property adjacent to polluted stream)


- Sport fishing opportunities and recreational spending increase (\$20 million annually)
- Drinking water supply options become cheaper and more plentiful

Long-term operation, maintenance, and rehab provides economic benefits

 Develop schedule of OM&R activities over 20-yr period

System Key

 1 Robbins Hollow East Branch 10/15
 A Vegetation Control

 2 Robbins Hollow East Branch 11/12
 B Organic Substrate Mixing

 3 Robbins Hollow East Branch 13
 C Limestone Cleaning

 4 Robbins Hollow East Branch 9
 D Organic Substrate Replacement

 5 Robbins Hollow 100/10b
 External Cleaning

Task Key

4 Robbins Hollow East Branch 9 5 Robbins Hollow IDa/10b 6 Robbins Hollow Pipes 1-4 7 Robbins Hollow North Branch 8 Middle Branch 9 Swamp

	Cost per site per visit	Annual cost
Routine O&M and sampling		
Technical staff	\$410	\$307,500
Lab analysis	\$190	\$190,000
Field supplies	N/A	\$5,000
Travel	\$150	\$150,000
Total, routine O&M and sampling	\$750	\$652,500
Professional check-ups		
Consultant/Engineer	\$1,600	\$80,000
Lab analysis	\$730	\$36,500
Field supplies	N/A	\$1,000
Travel	\$150	\$7,500
Total, professional check-ups	\$2,480	\$125,000
Major system maintenance		
Consultant/Engineer	\$16,000	\$400,000
Unskilled labor (2)	\$6,000	\$150,000
Skilled labor (3)	\$12,000	\$300,000
Consultant/Project manager (1)	\$7,000	\$175,000
Equipment	\$10,350	\$11,250
Travel	\$150	\$3,750
Materials	\$28,500	\$960,000
Total, major system maintenance	\$80,000	\$2,000,000
TOTAL		\$2,777,500

Categorize and annualize all costs

Limestone Cleaning - Cleaning of Limestone with equi	inmont

Linestone cleaning - cleaning of Linestone with equipment									
System	Tons	Unit Cost	Construction Cost	PM and CO	Total Cost	Interval			
RH EB 10/15	850	\$7	\$5,950	\$1,190	\$7,140	10			
RH EB 11/12	973	\$7	\$6,811	\$1,362	\$8,173	10			
RH EB 13	450	\$15	\$6,750	\$1,350	\$8,100	20			
RH EB 9	690	\$7	\$4,830	\$966	\$5,796	10			
RH 10a/10b	721	\$7	\$5,047	\$1,009	\$6,056	4			
RH Pipes 1-4	552	\$7	\$3,864	\$773	\$4,637	4			
Swamp	900	\$7	\$6,300	\$1,260	\$7,560	10			

Break down individual activity costs and intervals

www.tu.org

- What would it would cost to fund a 20-year trust that would cover the necessary OM&R activities for 250 passive treatment systems across PA not eligible for funding from Title IV AML Set-Aside Fund?
- Result: Fully funded 20-year trust would range from \$39 million up to \$47 million
- Type I and Type II Regional Input-Output Modeling Systems utilized
- Estimated annual cost of ongoing maintenance at all modeled sites throughout Pennsylvania totals \$2.8 million (average of \$11,200 per site per year).
- OM&R expenditures would support 34 jobs per year

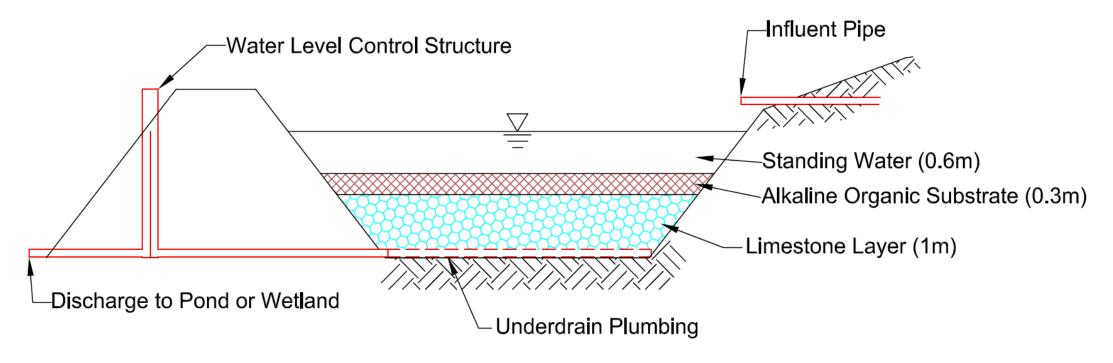
Passive Treatment of Coal Mine Drainage

Common Passive Technologies Used in the Eastern US for Coal Mine Drainage

- <u>Ponds</u>
 - oxidize Fe, settle solids, mixing
- <u>Constructed Wetlands</u>
 - polishing ,Mn and solids removal
- Anoxic limestone beds
 - alkalinity generation
- Oxic limestone beds
 - alkalinity generation, metal removal, polishing
- Vertical flow ponds
 - alkalinity generation and metal removal

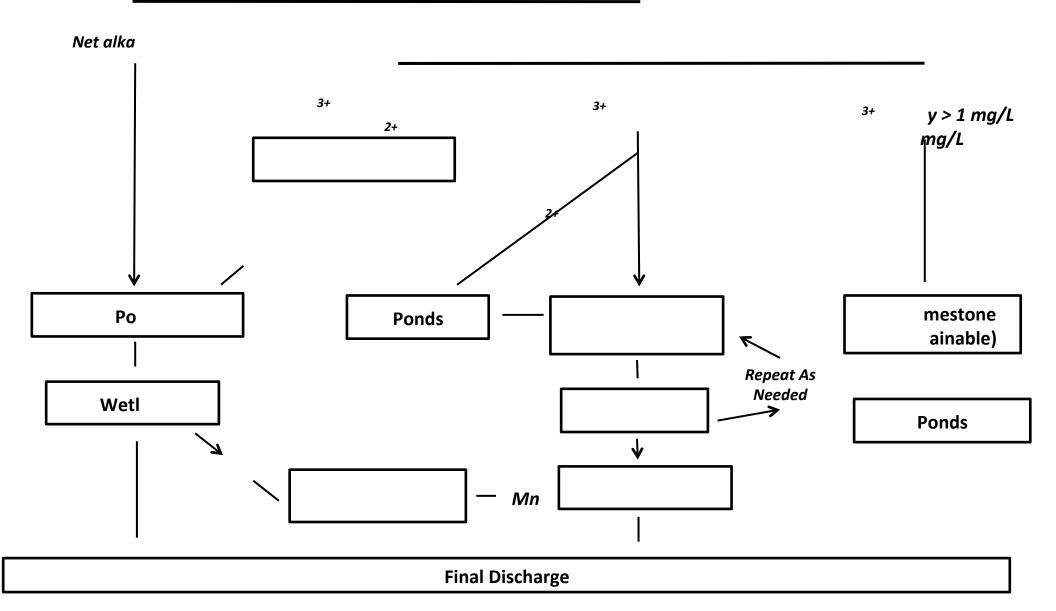
Ponds

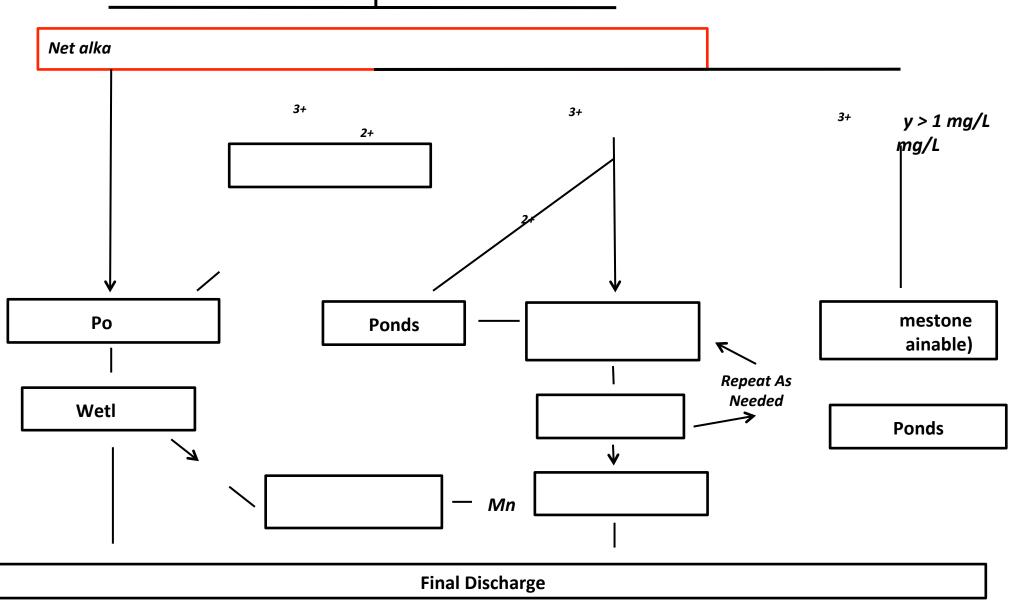
Constructed Wetlands



Limestone Beds

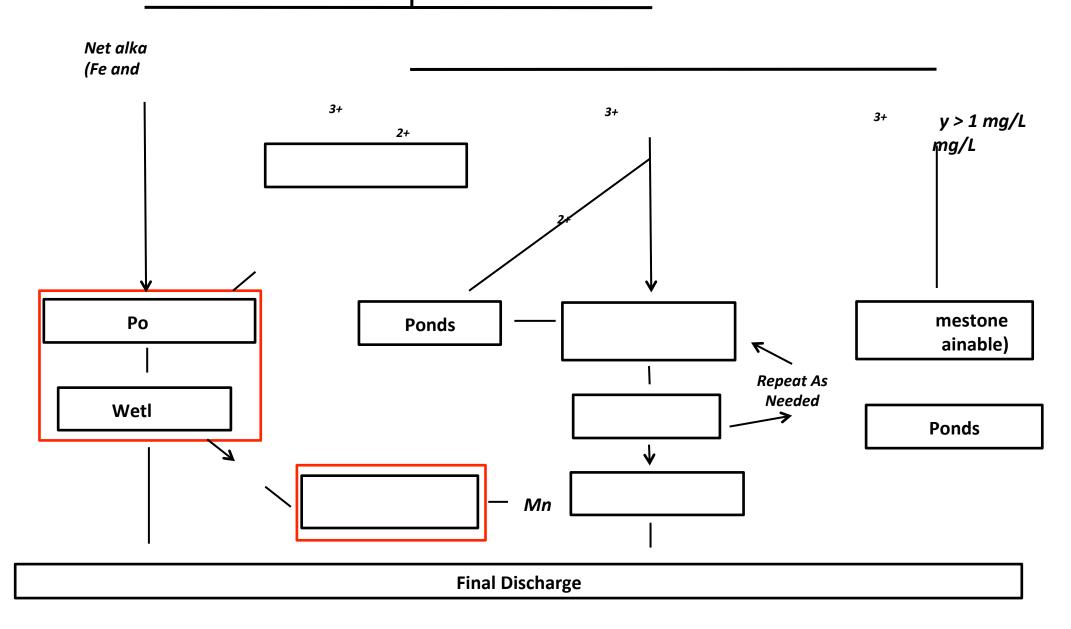
Vertical Flow Pond




Technology is based on chemistry

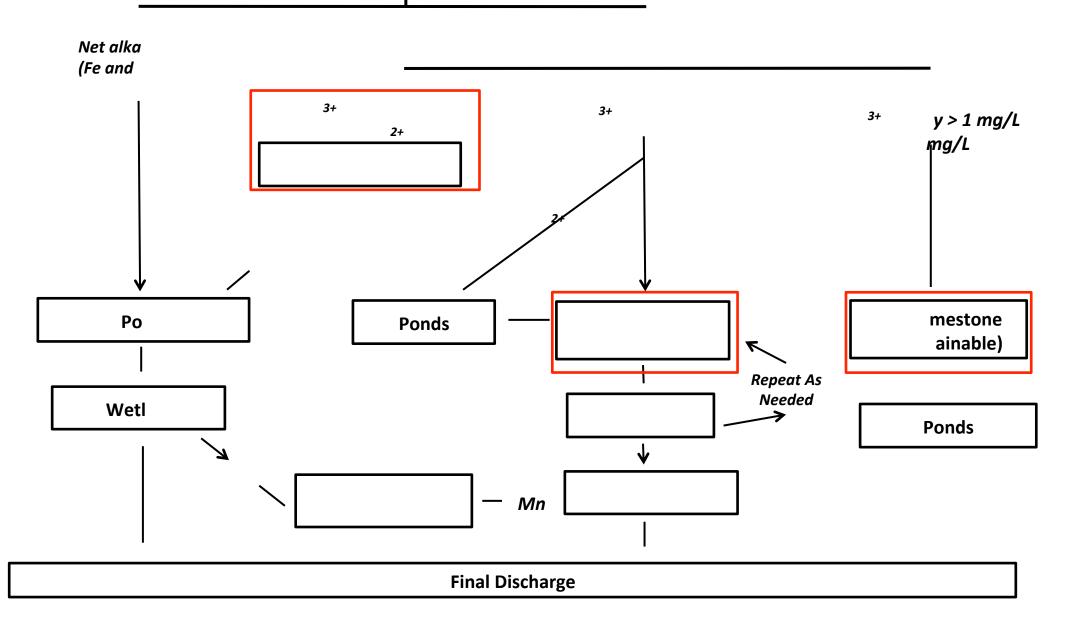
Sizing is based on loadings

Characterize Mine Water


Characterize Mine Water

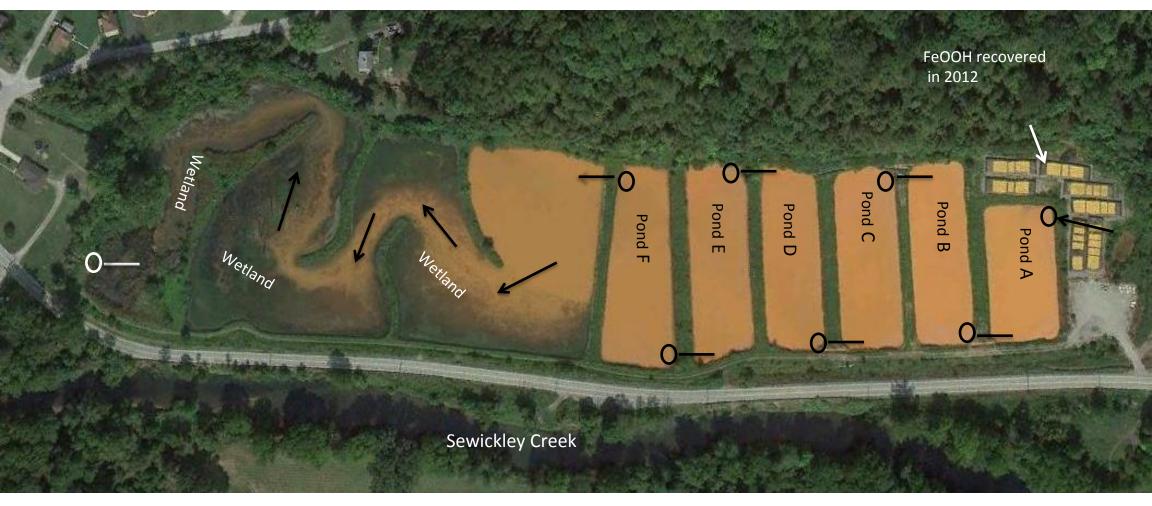
Treatment of Net Alkaline Mine Water

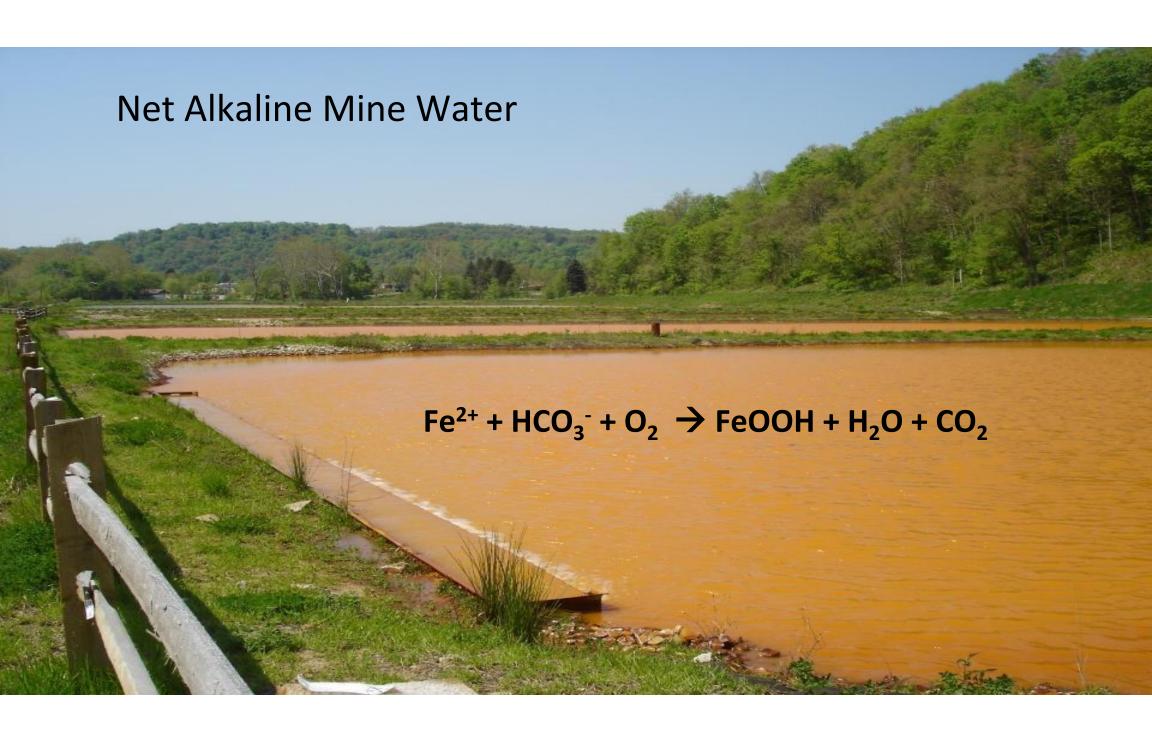
- Generation of alkalinity not required
- Al is always < 1 mg/L
- Fe and Mn removal by oxidizing processes


Characterize Mine Water

Treatment of Net Acidic Mine Water

- Neutralize acidity
 - 1. Calcite dissolution
 - 2. Bacterial processes in organic substrate
- Remove metal contaminants
 - 1. Al, Fe, Mn, others
 - 2. Primary removal as oxide and hydroxide solids
 - 3. Secondary removal as sulfides and carbonates

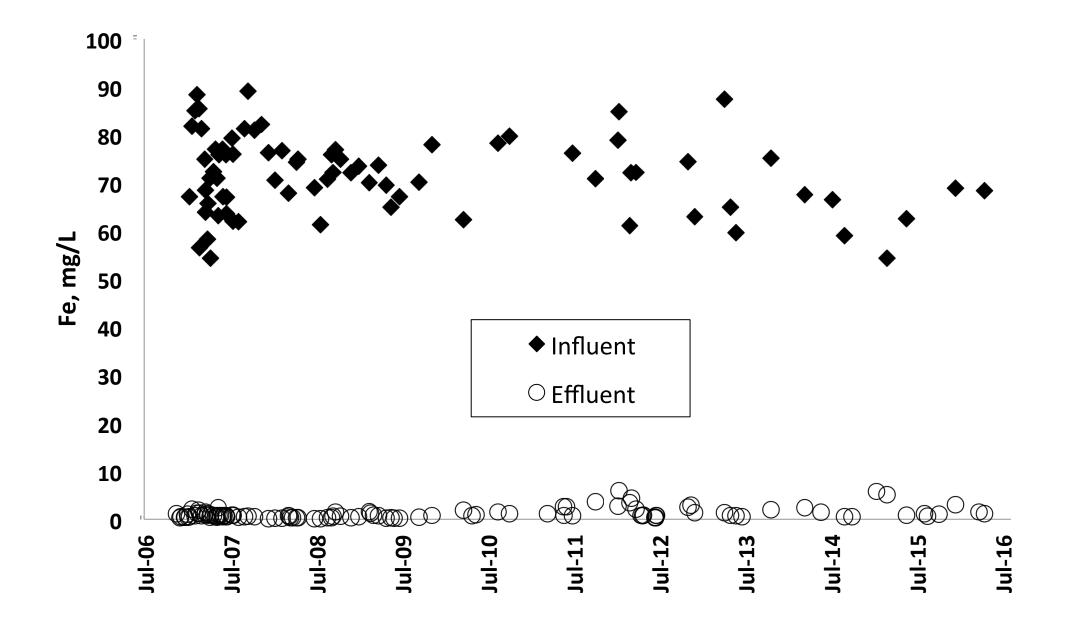

Characterize Mine Water



Long-term Performance and Costs: Marchand System

Case Studies

Marchand Passive System (Westmoreland County)


Marchand Time Line

<u>0</u>	
Year	Activity
2000	Grant to assess feasibility
2004	Grant for design, permitting, construction
2006	System operational
2010	Berm repairs and pipe cleanout
2012	Sludge removal and trough installation (3 ponds)
2016	Trough installation (3 ponds)

Marchand system, Oct 2006 – April 2016

	Flow	pН	Alk	Fe	Al	Mn	SO ₄	TSS
	gpm	s.u.	-		mg/I			
Inflow	1,870	6.3	334	71.6	< 0.1	1.2	1,141	26
Effluent	na	7.7	218	1.1	< 0.1	0.5	1,163	<6

⁰_

Operation and Maintenance

- Routine inspections and sampling
 - Quarterly, ½ day
- System improvements
 - Berm reinforcement; trough installations
- Sludge management
 - 750,000 gallon/year sludge
 - ~5% of pond volume

Sludge Management: 2012

- Cleaned first three ponds
- Installed bypass system to enable pond dewatering and continuous treatment
- Replaced three problem pipes with open troughs

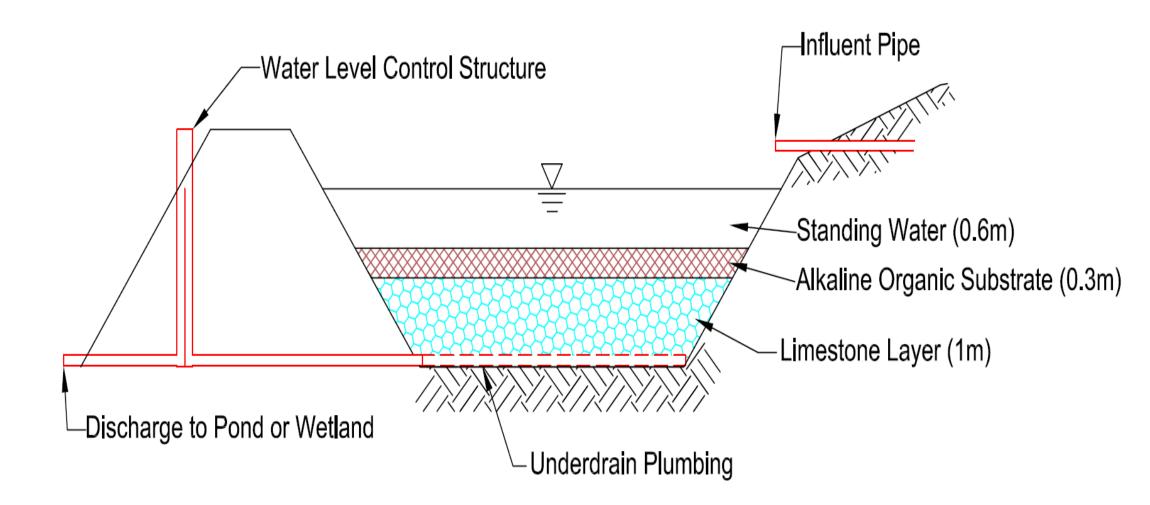
Elemental composition of solids

Al	С	Ca	Fe	K	Mg	Mn	Na	Р	S	Si	LOI
⁰∕₀	%	%	%	%	%	%	%	%	%	%	%
0.2	0.7	0.6	52.6	< 0.1	0.1	< 0.1	0.1	< 0.1	0.2	0.9	17

- Solids are ~50% Fe and are mixture of FeOOH and Fe(OH)₃
- Concentrations of hazardous metals all below limits in EPA Part 503 Biosolids rule
- Solids have value as pigment and for remediation purposes

 \bar{z}_{μ}




Marchand costs, 2000 – 2016 (1,850 gpm, 72 mg/L Fe)

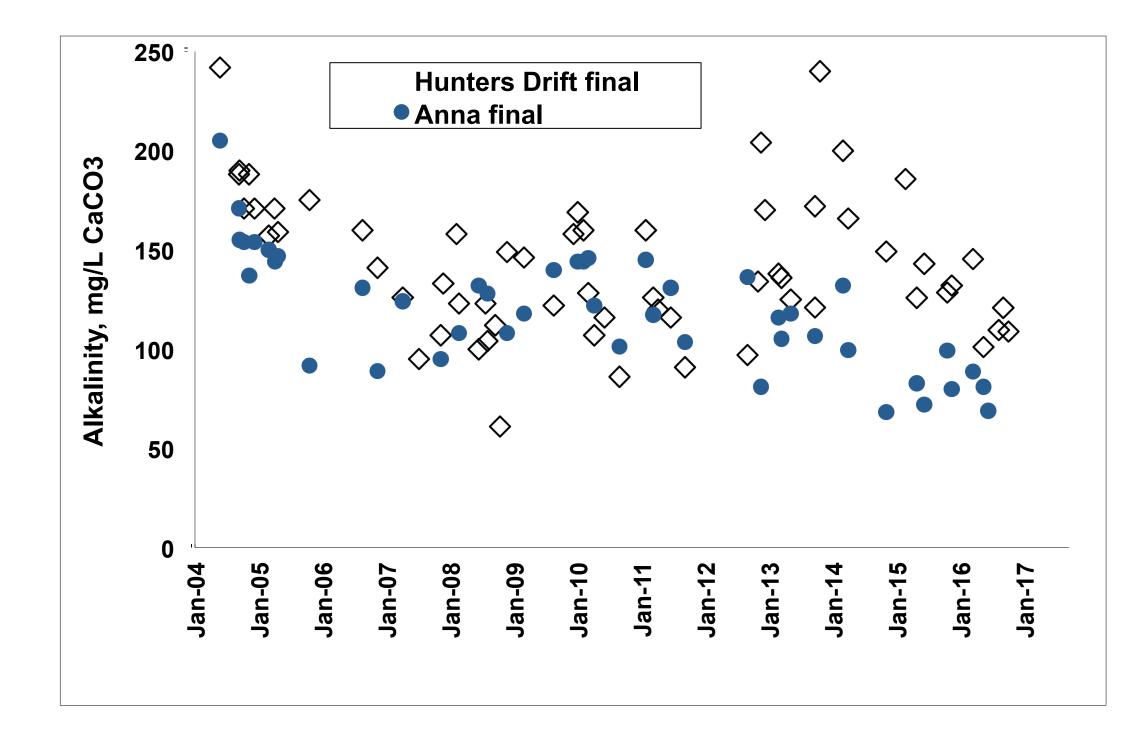
Year	Cost	Activity
2000	\$105,000	Treatment feasibility (PA DEP Grant)
2004	\$1,282,000	System design, permitting, and construction
2010	\$15 <i>,</i> 000	Berm repairs and pipe cleaning
2012	\$87 <i>,</i> 935	Sludge removal (3 ponds); trough and bypass installation
2016	\$18,000	Trough installation and repairs
Annual	\$3,000/yr	Hedin Environmental and Sewickley Creek Watershed Association, quarterly inspections and routine maintenance
Periodic		Remove iron sludge every 7-10 years

Long-term Performance and Costs: Anna S Passive System Complex

Case Studies

Acidic Mine Water

 $CaCO_{3} + H^{+} \rightarrow Ca^{2+} + HCO_{3}^{-}$ $Fe^{3+} + Al^{3+} + HCO_{3}^{-} \rightarrow FeOOH + Al(OH)_{3}$ $SO_{4}^{2-} + 2CH_{2}O \rightarrow H_{2}S + 2HCO_{3}^{-}$ $Fe^{3+} + Fe^{2+}H_{2}S \rightarrow Fe^{2+}, FeS, FeS_{2}, S^{0}$


Anna S Passive Treatment Complex timeline

o_	
Year	Activity
1999	Feasibility and conceptual design
2001	Grant for final design, permitting, and construction
2004	System operational
2013	Replacement of organic substrate in Hunters Drift VFPs
2016	Replacement of organic substrate in Anna S VFPs

Anna S passive systems, 2004 - 2016

<u>°</u>_

	Flow	рН	Alk	Acid	Fe	Al	Mn	SO ₄
	gpm	s.u.	mg/L C	CaCO ₃	mg/L	mg/L	mg/L	mg/L
		Ни	nters Di	rift Syste	m			
HD influent	225	2.8	0	347	35.4	32.7	6.4	551
Final	na	7.5	142	-112	0.4	0.3	2.0	493
			Anna S	System				
S1 influent	204	3.1	0	138	6.9	12.3	7.8	342
S2 influent	27	3.8	0	32	1.7	5.7	1.8	130
Final	na	7.5	119	-99	0.8	0.3	3.2	302

Operation and Maintenance

- Routine inspections and sampling

 Bi-monthly by Babb Creek Watershed Association
- System improvements and minor maintenance
 - Hunters Drift collection system upgrades; channel cleanouts
- Organic substrate replacement

Organic Substrate Replacement

- Drained individual VFPs and inspected substrate
 - Black substrate (FeS) indicates reducing conditions and viability
 - Brown/grey substrate indicates oxidizing conditions and accumulation of iron and Al hydroxides

Photos of substrate

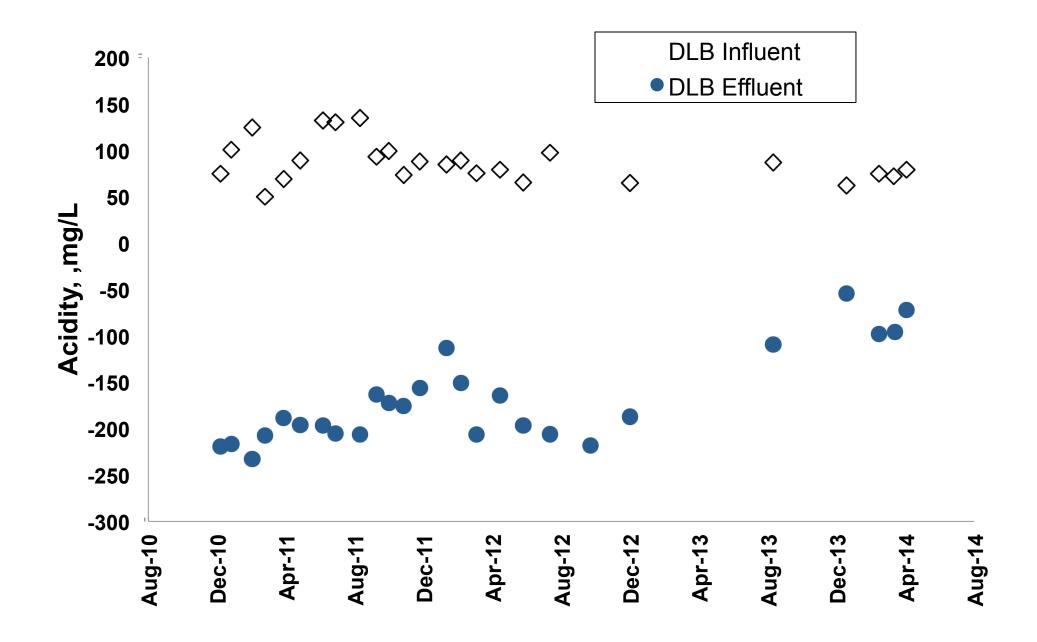
	Anna S Pas	sive Complex Costs, 1999 – 2016
<u>°</u>	(456 gpm, 23	35 mg/L acidity, 22 mg/L Al, 20 mg/L Fe)
Year	Cost	Activity
1999	25,000	Feasibility and conceptual design
2002	\$2,512,00 0	System design, permitting and construction
2012	\$210,008	New organic substrate in four VFPs
2015	\$201,706	New organic substrate in four VFPs
Annua	l \$7,670/yr	Babb Creek Watershed Association, bi-monthly inspections and routine maintenance
Period	ic	Evaluate organic substrate condition every ten years

Tangascootack #1 Passive System

Oxic Limestone Bed (drainable)

Acidic Mine Water

$CaCO_{3} + H^{+} \rightarrow Ca^{2+} + HCO_{3}^{-}$ $Fe^{3+} + Al^{3+} + Mn^{2+} + HCO_{3}^{-} \rightarrow FeOOH + Al(OH)_{3} + MnO_{2}^{-}$


Agri Drain Smart Drainage System (solar powered computer controlled gate valve)

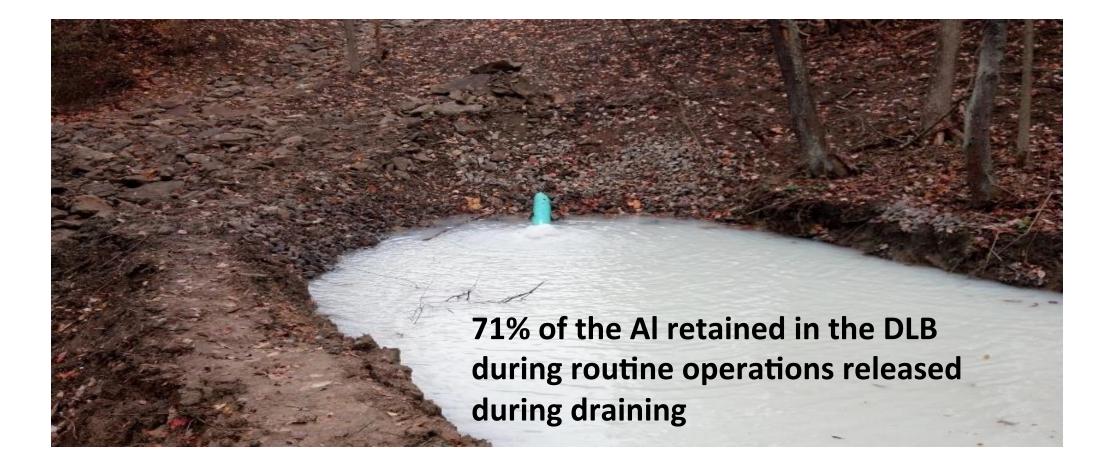
Tangascootack #1 system, Nov 2010 – Apr 2014

	Flow	pН	Alk	Acid	Fe	Al	Mn	SO ₄
Inflow	na	4.0	0	89	0.2	11.1	25.9	927
DLB out	45	7.3	197	-169	0.1	0.2	1.7	968

٩.

Operation and Maintenance

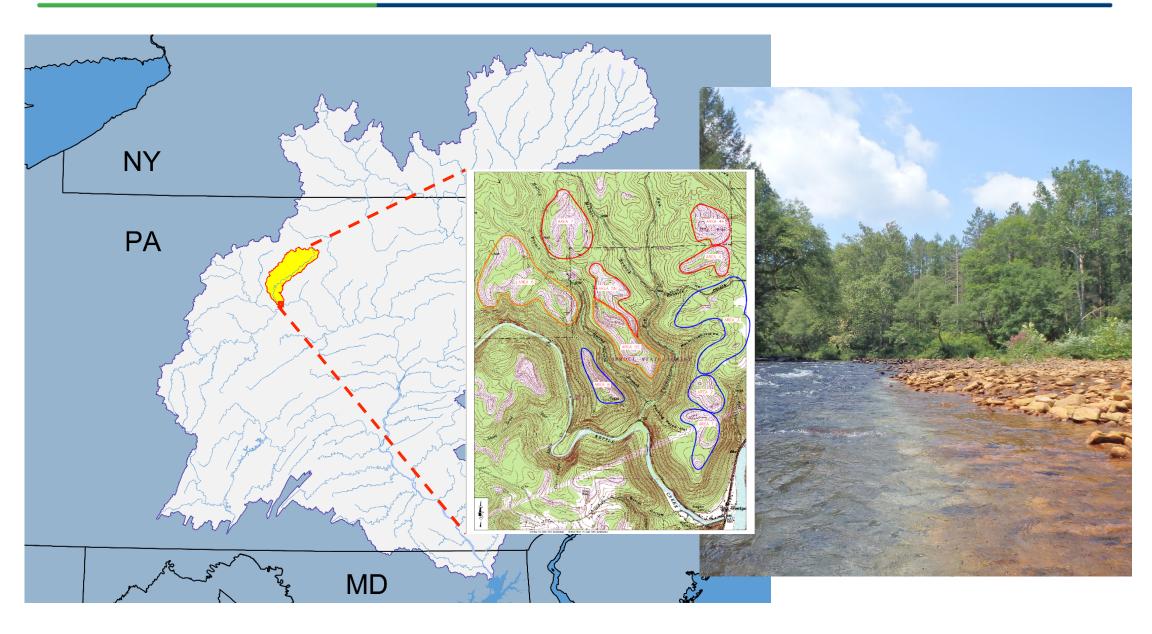
- Routine inspections and sampling


 quarterly by Clinton County Conservation District
- Major maintenance: solids management

Solids Management

- Routine draining removes portion of solids
- Infrequent cleaning of stone removes remaining solids

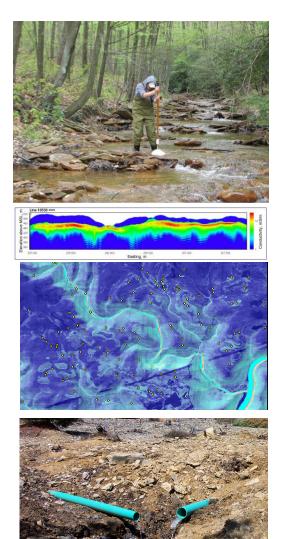
Pittsburgh Botanic Garden DLB solids basin during end of draining


Tangascootac #1 Passive System Costs (45 gpm, acidity 89 mg/L, Al 11 mg/L, Mn 26 mg/L)

Year	Cost	Activity
2009	\$65,572	Design, permit and construction
2012	\$5,000	Clean limestone aggregate
Annual	\$2,000/yr	Clinton County Conservation District, quarterly inspections, sampling, and routine maintenance
Periodic		Clean and replace limestone aggregate; every four years; \$5,000 per event

Projected 20 year treatment costs

			20	year unit	costs
Site	Water chemistry	technology	\$/1000 gal	\$/lb-Fe	\$/ton-CaCO ₃
Marchand	Alkaline, Fe	Ponds & wetland	\$0.09	\$0.15	na
Anna	Acid, Fe, Al, Mn	Vertical flow ponds and wetlands	\$0.65	na	\$435
Scootac #1	Acid, Al, Mn	Drainable limestone bed and pond	\$0.34	na	\$324

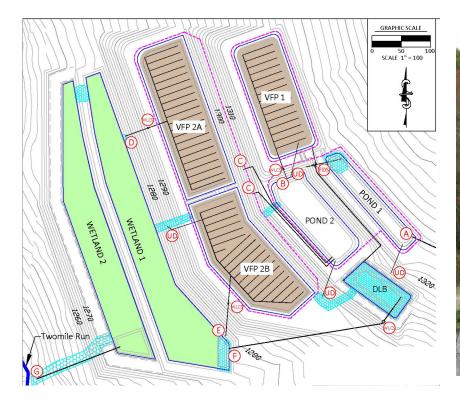


Intensive planning, data collection, and monitoring

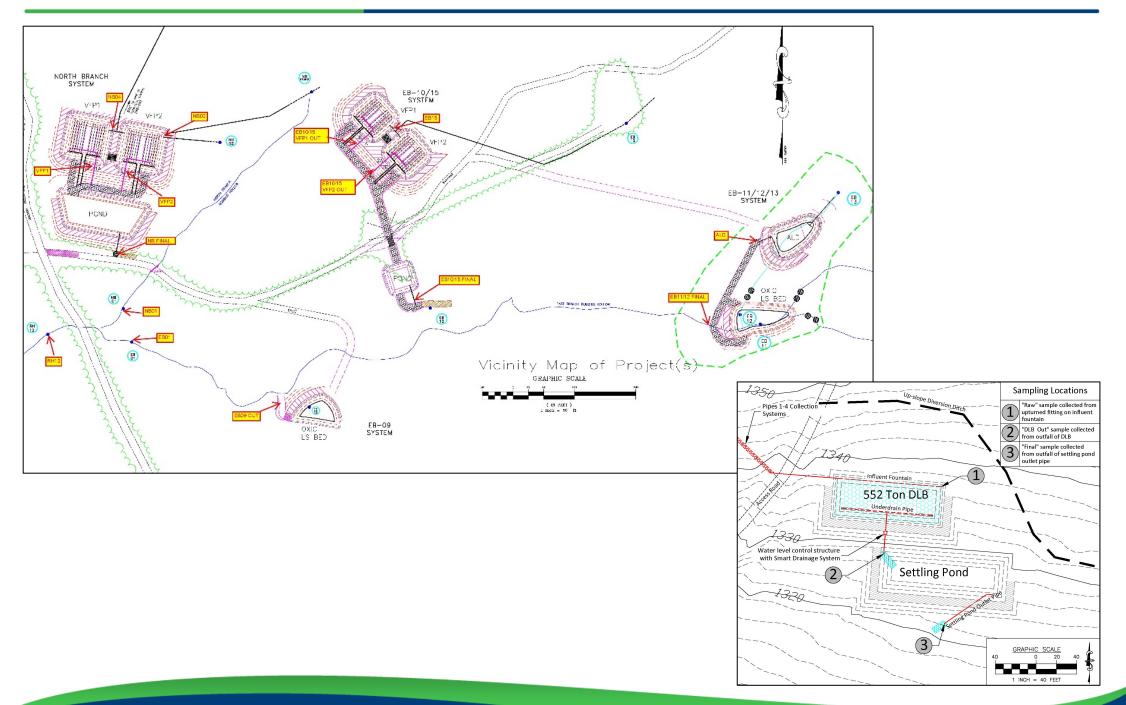
Assessment and planning

Design, permitting, and construction

Follow-up assessment and planning


More design, permitting, and construction

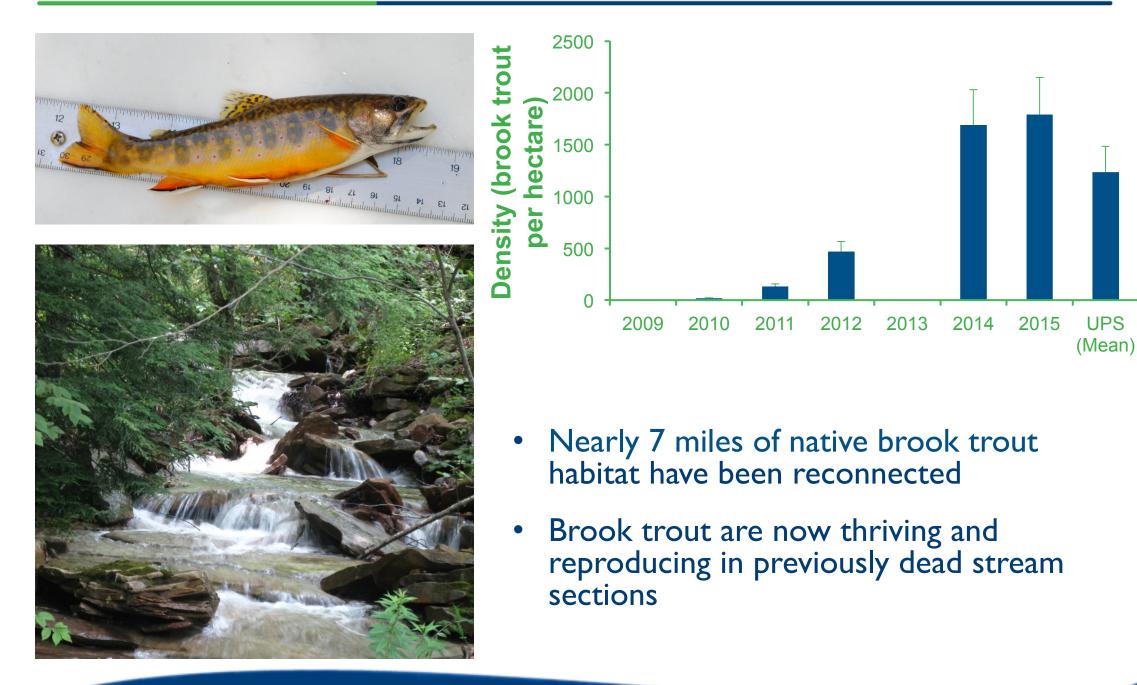
Swamp Area passive treatment system



	Flow	pН	Acid	Fe	Mn	ΑΙ
	gpm		mg/L	mg/L	mg/L	mg/L
RAW Average	59	3.0	430	63.2	24.9	39.0
TREATED	59	7.6	-149	0.4	9.4	<0.3
Effluent						
Average						

Robbins Hollow passive treatment systems (7)

Robbins Hollow passive treatment – Highlighting VFP performance


					K		
	Flow	рН	Acid	Fe	Mn	AI	SO ₄
	gpm		mg/L	mg/L	mg/L	mg/L	mg/L
RAW Average	19	3.2	275	30.3	9.9	27.8	499
TREATED Effluent	19	6.9	-77	0.4	3.6	0.5	372
Average							

Robbins Hollow Passive Treatment – Highlighting DLB performance

	Flow	рН	Acid	Fe	Mn	ΑΙ	SO ₄
	gpm		mg/L	mg/L	mg/L	mg/L	mg/L
RAW Historical Average	16	3.0	330	17.1	15.7	39.5	737
TREATED Average Effluent	16	7.6	-168	<0.10	5.5	0.4	429

Passive treatment systems have led to biological recovery

OM&R activities to date

- Install water collection systems to monitor only AMD flows (minus clean surface water runoff)
- Take time to collect adequate amount of water chemistry and flow data (minimum representation of at least one low flow sampling round and one high flow event)
- Proper design technology based on chemistry; sizing based on loading
- Proper construction
- Monitor instream and treatment system components quarterly
- Conduct routine inspections, particularly following storm events
- Follow through with routine maintenance
- Decreased performance in one or more of system components is signal to begin planning for additional maintenance or rehab activities

Keys to ensuring long-term passive treatment success

	2	01	7	Γ	20	18	Т	20	01	9	Γ	20	02	0	Γ	2	02	1	Г	20	22	2	1	20	23		2	202	24	T	2	0	25	Т	2	02	6	Г	20)27	7	1	20	28	Т	20	029	9	2	203	30	Т	20	031	L	2	203	32	Т	20	033	3	2	203	34	T	2	03	5		20	36	;
System	A	вс	D	A	в	c	D A	АВ		D	A	В	3 0		A	A E	3 0) A	АВ	c	D	A	в	c	D	A	в	C	D	A	в	c	D	4	вс		A	в	c	D	A	в	с	D	A B	s c	D	A	в	c	D A	АВ	С	D	A	в		D A	В	с	D	AI	в	cı	D	AE	3 0	D	A	в	c	D
1		Τ)	(T		ſ		T		T	T	T	T	T	T							Х		x	T	T	1	1	T	T	T	T	T	T					T)	x	Γ					T	Τ				↑		T				x		x	T	T						٦
2)	(Γ								Х	2	X)	X																	Х	2	x								
3)	(Х)	X																	Х										
4)	(Х	2	X)	X																	Х	7	Х								
5		X	(Х)	(X									Х					X	(Х	(Х												
6		Х	(Х)	(Х									Х					Х	(Х	(Х												
7												Х	()	(Х)	X											Х															Х		
8)	(Х			X															Х																	
9)	K)	(X		X																Х	X																	X	x	>	(

System Key

Task Key

A Vegetation Control

B Organic Substrate Mixing

C Limestone Cleaning

D Organic Substrate Replacement

Limestone Cleaning - Cleaning of Limestone with equipment

System	Tons	Unit Cost	Construction Cost	PM and CO	Total Cost	Interval
RH EB 10/15	850	\$7	\$5 <i>,</i> 950	\$1,190	\$7,140	10
RH EB 11/12	973	\$7	\$6,811	\$1,362	\$8,173	10
RH EB 13	450	\$15	\$6,750	\$1,350	\$8,100	20
RH EB 9	690	\$7	\$4,830	\$966	\$5,796	10
RH 10a/10b	721	\$7	\$5 <i>,</i> 047	\$1,009	\$6,056	4
RH Pipes 1-4	552	\$7	\$3 <i>,</i> 864	\$773	\$4,637	4
Swamp	900	\$ 7	\$6,300	\$1,260	\$7,560	10

- 1 Robbins Hollow East Branch 10/15
- 2 Robbins Hollow East Branch 11/12
- 3 Robbins Hollow East Branch 13
- 4 Robbins Hollow East Branch 9
- 5 Robbins Hollow 10a/10b

6 Robbins Hollow Pipes 1-4

7 Robbins Hollow North Branch

8 Middle Branch

9 Swamp

Thank You!

Amy G.Wolfe Trout Unlimited Director – Eastern Abandoned Mine & PA Coldwater Habitat Restoration Programs awolfe@tu.org www.tu.org

TROUT

Dr. Robert Hedin Hedin Environmental President bhedin@hedinenv.com www.hedinenv.com

HedinEnvironmental