# **Final Covers for Mine Tailings**

#### William H Albright, PhD

Desert Research Institute Reno NV USA

> (775) 771-1296 bill@dri.edu



# **Functions of Covers**

- Physical containment of waste
- Control percolation into waste
- Control gas movement Ingress (O<sub>2</sub>)
   Egress (Rn, CH<sub>4</sub>, CO<sub>2</sub>)
- Control vector intrusion
- Persist for design life of containment facility

# **Categories of Engineered Covers**

Conventional covers – cover designs where a barrier layer (clay, geomembrane, etc.) having low saturated hydraulic conductivity is the primary impediment to leakage and gas flow.

clay covers, composite covers, GCL covers

Water balance covers – cover designs where leakage is controlled by balancing the water storage capacity of unsaturated finer-textured soils and the ability of plants and the atmosphere to extract water stored in the soil. Also known as *water balance* covers, *evapotranspiration* (ET) covers, *store-and-release* covers.

monolithic covers, capillary barrier covers

# Conventional Resistive Covers with a Soil Barrier

Simple Soil Cover Compacted Clay Cover Geosynthetic Clay Liner (GCL) Cover

Soil

Waste





GCL

### Conventional Resistive Covers with a Composite Barrier





| Cover                | Percolation       | Gas      | Cost           |
|----------------------|-------------------|----------|----------------|
| Туре                 | Rate              | Flux     | <b>(\$/ac)</b> |
| Simple Soil          | Highest           | Highest  | 25,000         |
| Clay                 | Modest            | Modest   | 75,000         |
| GCL                  | Modest            | Modest   | 75,000         |
| Composite            | Very low          | Very Low | 125,000        |
| ET Monolithic        | Very low -<br>low | Modest   | 50,000         |
| Capillary<br>Barrier | Very low -<br>low | Modest   | 50,000         |

# **Design Philosophy**

#### **Conventional Designs**

- regulatory engineering, not site specific
- methods & materials requirements
- no quantitative performance criterion

### **Alternative (Performance-based) Design**

- determine performance criterion (e.g., percolation ≤ prescriptive cover)
- select layering to meet a quantitative performance criterion
- analyze to ensure alternative cover meets performance criterion

### **Issues with Prescriptive Regulation**

- 1. With conventional designs typically no performance criteria
- 2. Alternative designs typically required to show equivalent performance (see 1)
- 3. Equivalency demonstration is difficult
- 4. Primary goal (protect HH&E) often neglected
- 5. Cost (to society) can be higher than necessary
- 6. An example of the rule of unintended, undesirable consequences
- 7. Common with indirect regulation

### An Alternative Regulatory Philosophy

- Focus on primary goal (ex. protection of ground water)
- Prescriptive design *process* 
  - Type of waste?
  - Waste packaging?
  - Climate?
  - Depth to groundwater?
  - Attenuation capacity of unsaturated zone?
  - Distance to nearest receptor (ex. pumping well)?
  - Any sensitive environments or species?
  - Each site will have a different list
- Require design engineer to demonstrate compliance with primary goal
- Require appropriate monitoring

# USEPA's Alternative Cover Assessment Program (ACAP)



- Twenty-four test covers at eleven sites in seven states.
- Ten conventional covers (seven composite and three clay)
- Fourteen alternative covers (eight monolithic barriers and six capillary barriers)
- Eight sites with side-byside comparison of conventional and alternative covers

# **ACAP Drainage Lysimeters**



# Full-scale construction methods



### Hundreds of samples and instruments



# Lysimeters are the only method for direct measurement of drainage



#### **Conventional Covers Evaluated by ACAP**



# **Compacted Clay Covers**





#### **Objectives:**

- (1) Construct a soil barrier (compacted clay) with low saturated hydraulic conductivity.
- (2) Protect the clay barrier from damage that may increase hydraulic conductivity

# **Types of Damage**

- Frost
- Desiccation
- Differential settlement (normally a problem with municipal solid waste, but not mining wastes, coal ash, etc.)
- Erosion

# Sensitivity to Frost Damage

Freezing of compacted clay barriers causes:

- formation of ice lenses: cracking
- formation of desiccation cracks as water moves to freezing front
- cracking that causes increases in hydraulic conductivity



# Protect clay barrier with insulation (synthetic or burial).

### Sensitivity of Compacted Clay to Desiccation Damage

Drying of compacted clay barriers causes desiccation cracks to form, increasing the hydraulic conductivity.

Large-scale cracks may form, as in this clay barrier in southern Georgia four years after construction.

Dye tracer test in soil barrier cover showing preferential flow path



### **Conventional Clay Cover Performance**

- Soil dried for first time during 6-week drought
- Change in response of percolation to precipitation events
  - Quantity
  - "Stair step" response
- No evidence that defects in clay barrier healed when soil water increased



#### Field Hydraulic Conductivity Measurements on Clay Barrier 4 Years After Construction

| Test     | Hydraulic<br>Conductivity<br>(cm/s) | K <sub>final</sub> /K <sub>as-built</sub> |
|----------|-------------------------------------|-------------------------------------------|
| As-Built | 4.0x10 <sup>-8</sup>                | 1.0                                       |
| SDRI     | 2.0x10 <sup>-4</sup>                | 5000                                      |
| TSB - 1  | 5.2x10 <sup>-5</sup>                | 1300                                      |
| TSB - 2  | 3.2x10 <sup>-5</sup>                | 800                                       |
| TSB - 3  | 3.1x10 <sup>-3</sup>                | 77,500                                    |

## **Typical Composite Cover**





- Geomembrane added directly on top of clay barrier or GCL
- Drainage layer frequently added on top of geomembrane to enhance stability by limiting pore water pressures.



# 1.5 mm LLDPE Textured Geomembrane



800-405-2008 381-445-8564

#### GSE FabriNet

Geotextile Bonded to GSE Hypernet\*

For embranemental Balag solutions, the world comes to \$52° "Street Barbard of its room Barbard, et, at electron a to sense costs costs room room convex."

# Geocomposite Drain



For covers, chemical compatibility normally is not a concern when selecting geomembrane polymer. Key issues are:

- constructibility
- durability
- cost
- availability with texturing

All of the cited geomembranes can be welded in the field using wedge or extrusion techniques to obtain welds with higher strength than parent material.

LLDPE and HDPE geomembranes are most commonly used for covers

#### **Drainage Layers**

#### **Functions:**

- Reduce Head on Barrier Layer
- -Reduce Pore Pressure Build Up

#### **Materials:**

- Coarse-Grained Soil (clean sand, crushed rock)
- Geocomposite Drain

#### **Design Approach:**

- -Select drain that provides acceptable head
- -Adequate hydraulic conductivity
- -HELP, conservative (over-predicts lateral drainage)
- -Giroud & Houlihan's Method

### Conventional Composite Cover Performance

- Percolation correlated with
  - Heavy precipitation events
  - Surface flow
  - Lateral flow on geomembrane



Data from ACAP field site in Cedar Rapids IA

### Damage to Geomembrane Affects Performance

- No cushion between the geomembrane and the soil, punctures likely in geomembrane
- Relatively high rate of percolation
- Illustrates importance of careful geomembrane installation



Data from ACAP field site in Marina CA

# Summary: Conventional Designs

- Composite designs
  - Restrict percolation to low (<~5 mm/yr) levels at all locations</li>
  - Percolation typically coincides with flow on membrane
  - Require careful construction practice and QA
- Clay barrier designs
  - Performance quickly (<2 yrs) degrades</li>
  - Percolation probably due to preferential flow through macrofeatures related to desiccation, freeze/thaw, roots
  - Damage likely to persist
  - Probably not suitable for near-surface applications that require low-permeability barrier

## UW Desiccation Study: Effect on Hydraulic Conductivity of GCLs



<sup>\*</sup>Lin, L. and Benson, C. (2000), Effect of Wet-Dry Cycling on Swelling and Hydraulic Conductivity of Geosynthetic Clay Liners, J. of Geotech. and Geoenvironmental Eng., 126(1), 40-49.

#### UW Desiccation Study: Effect on Swelling of

GCLs\*



Divalent for monovalent exchange results in loss of swelling capability ... and potentially healing capability

#### UW Study: GCLs Exhumed from In-Service Caps

All specimens underwent Ca/Mg for Na exchange

Only those with w > 120% maintained low K

Need to protect GCL from drying and/or cation exchange.



# **Differential Settlement**



- This case study has relatively small distortion
- Differential settlement an issue with waste containers
- Need more research

- Distortion
  - ~300 mm V
  - ~450 mm H
- No damage to GM
- Large increase in K to soil barrier
- GCL
  - Extensive cation exchange
  - Retained very low hydraulic conductivity
  - Humid climate and overlying
    GM hydrated quickly, did
    not experience desiccation
- Cover likely retained function due to intact GM and GCL

### ACAP Data for Conventional Covers

| Cover Type                             | Site         | Precipitation<br>Average<br>(mm/yr) | Surface<br>Runoff<br>Average<br>(mm) | Lateral<br>Flow<br>Average<br>(mm) | ET<br>Average<br>(mm) | Percolation<br>Average<br>(mm/yr) |
|----------------------------------------|--------------|-------------------------------------|--------------------------------------|------------------------------------|-----------------------|-----------------------------------|
|                                        | Altamont     | 379                                 | 59.0                                 | 4.0                                | 1.5                   | 0.1*                              |
| Cover Type<br>Composite                | Apple Valley | 169                                 | 6.8                                  | 0.0                                | 0.0                   | Trace                             |
|                                        | Boardman     | 177                                 | 0.0                                  | 0.2                                | 0.0                   | 0.0*                              |
| Composite                              | Marina       | 433                                 | 98.7                                 | 47.4                               | 23.1                  | 28.3                              |
|                                        | Polson       | 350.0                               | 17.7                                 | 40.5                               | 0.4                   | Trace                             |
|                                        | Cedar Rapids | 981                                 | 54.1                                 | 96.2                               | 12.2                  | 2.8*                              |
|                                        | Omaha        | 731                                 | 86.8                                 | 43.3                               | 6.0                   | 0.7*                              |
| Soil<br>Barrier Albany<br>Cedar Rapids | 169          | 3.4                                 | 0.0                                  | 0.0                                | 7.4<br>(4.1%)         |                                   |
|                                        | Albany       | 1263                                | 359.4                                | NA                                 | 195.2                 | 195.2<br>(17.1%)                  |
|                                        | Cedar Rapids | 981                                 | 79.6                                 | 29.5                               | 51.6                  | 51.6<br>(6.0%)                    |

\*Composite percolation data are scaled from field measurements to account for x10 increase in geomembrane flaws. Marina data not scaled due to geomembrane damage during construction

= semi-arid/sub-humid/arid.

## Summary:

# Field Performance of Conventional Covers

- Percolation rates for composites are very low:
  - < 1 mm/yr in semi-arid and arid climates
  - < 5 mm/yr in humid climates
- Percolation rates for soil covers much higher than expected:
  - 195 mm/yr at Albany, GA
  - appears dominated by preferential flow
- Surface runoff is a small fraction of the water balance (<10%)
- Lateral drainage is a small fraction of the water balance (< 5%)



# **ACAP Site Characteristics**

| Site Location    | Elev.<br>(m) | Annual<br>Precip.<br>(mm) | Annual<br>Snowfall<br>(mm) | Annual<br>P/PET | Climate   | Monthly Avg.<br>Air Temp. |
|------------------|--------------|---------------------------|----------------------------|-----------------|-----------|---------------------------|
| Apple Valley, CA | 898          | 119                       | 38                         | 0.06            | arid      | -1, 37                    |
| Boardman, OR     | 95           | 225                       | 185                        | 0.23            | semi-arid | -2, 32                    |
| Helena, MT       | 15           | 312                       | 1288                       | 0.44            | semi-arid | -11, 28                   |
| Altamont, CA     | 227          | 358                       | 2                          | 0.31            | semi-arid | 2, 32                     |
| Monticello, UT   | 1204         | 385                       | 1498                       | 0.34            | semi-arid | -9, 29                    |
| Sacramento, CA   | 320          | 434                       | 0                          | 0.33            | semi-arid | 3, 34                     |
| Underwood, ND    | 622          | 442                       | 813                        | 0.47            | semi-arid | -19, 28                   |
| Marina, CA       | 31           | 466                       | 0                          | 0.46            | semi-arid | 6, 22                     |
| Polson, MT       | 892          | 380                       | 648                        | 0.58            | sub-humid | -7 ,28                    |
| Omaha, NB        | 378          | 760                       | 711                        | 0.64            | sub-humid | -6, 25                    |
| Cedar Rapids, IA | 290          | 915                       | 724                        | 1.03            | humid     | -8, 23                    |
| Albany, GA       | 60           | 1263                      | 3                          | 1.10            | humid     | 8, 33                     |



# Marina, CA

- Costal semi-arid climate
- Precipitation = 466 mm/yr

1220 mm Sandy Clay Storage Layer

- P/PET = 0.46

- Capillary barrier (theory), but effectively a monolithic barrier

#### Water Balance of Capillary Barrier: Marina, CA



# Polson, MT

Cool and Seasonal Semi-Humid Climate

**Capillary Barrier** 

Precipitation ~ 380 mm/yr)

P/PET = 0.58



### Capillary Barrier: Polson, MT



**0.8 mm percolation over 5 yr! Less than composite.** 

### ACAP Data for Water Balance Covers

|                        | Maximum         |               |      | Average         |               |
|------------------------|-----------------|---------------|------|-----------------|---------------|
| Site                   | Precip.<br>(mm) | Perc.<br>(mm) | Year | Precip.<br>(mm) | Perc.<br>(mm) |
| Albany, GA             | 1380.2          | 218.3         | 4    | 1202.3          | 109.2         |
| Altamont, CA           | 498.6           | 139.3         | 4    | 379.7           | 44.8          |
| Apple Valley, CA       | 272.0           | 1.8           | 3    | 167.4           | 0.5           |
| Boardman, OR (Thin)    | 210.9           | 0.0           | 3    | 181.4           | 0.0           |
| Boardman, OR (Thick)   | 210.8           | 0.0           |      |                 | 0.0           |
| Cedar Rapids, IA       | 898.4           | 366.1         | 4    | 930.0           | 207.3         |
| Helena, MT             | 351.5           | 0.1           | 5    | 272.4           | 0.0           |
| Marina, CA             | 406.9           | 82.4          | 4    | 462.8           | 63.3          |
| Monticello, UT         | 662.9           | 3.4           | 5    | 387.0           | 0.7           |
| Omaha, NE (Thin)       | 612.4           | 101.0         | - 1  | 732.5           | 56.1          |
| Omaha, NE (Thick)      | 012.4           | 57.9          | I    | 732.5           | 27.0          |
| Polson, MT             | 308.1           | 0.4           |      | 349.1           | 0.2           |
| Sacramento, CA (Thin)  | 361.2           | 108.4         | -    | 422.0           | 54.8          |
| Sacramento, CA (Thick) | 455.7           | 8.5           | 3    | 422.0           | 2.7           |
| Underwood, ND          | 585.2           | 9.4           | 1    | 384.1           | 7.1           |



Key to design is <u>available</u> storage capacity (soil properties and cover thickness) must equal or exceed <u>required</u> storage (climate characteristics)

# A Two-Step Method for Design of Water Balance Covers

- Preliminary design: estimate required thickness by matching required and available storage using ACAP approach based on a robust, nation-wide field data set
- 2. Refine the design with numerical simulations to evaluate:
  - Important design parameters
  - "what if?" assessments

Water Balance Covers for Waste Containment Principles and Practice



William H. Albright, Ph.D. Craig H. Benson, Ph.D., P.E. W. Joseph Waugh, Ph.D.



#### A Regulatory Framework

#### **Regulatory Requirements**

- The goal: Protect human health and environment!
- Factors to consider
  - Waste characteristics
  - Hazardous life of waste
  - Waste packaging
  - Depth to ground water
  - Attenuation capacity of geo strata
  - Distance to nearest receptor or sensitive environment
  - Climate
  - Stakeholder views, public acceptance
  - Containment Philosophy
    - Minimize release
    - Controlled release
  - Modify list to be site-specific

Site and Engineer Responsibilities

- Conduct prescribed site and waste analysis
- Define required closure performance
  - Percolation
  - Gas release
  - Erosion
  - Containment life
- Select appropriate closure concept (composite, water balance, ?)
- Result is site-specific, performancebased design
- Monitor and maintain
- Engineer and regulator must develop long-term relationship based on past performance, trust, and a shared dedication to the 'real' goals.

### **Publications**

Albright, W.H., Benson, C.H., and Waugh, W.J., 2010. Water Balance Covers for Waste Containment: Principles and Practice. ASCE Press, Reston VA.

Apiwantragoon, P., Benson, C.H., Albright W.H., 2014. Field Hydrology of Water Balance Covers for Waste Containment. *J. of Geotech. and Geoenv. Engr.* 

Albright W.H., Benson, C.H., Apiwantragoon, P., 2013. Field Hydrology of Landfill Final Covers With Composite Barrier Layers. *J. of Geotech. and Geoenv. Engr.* 139:1, 1–12

Albright, W., Benson, C., Gee, G., Abichou, T., Tyler, S., Rock. S., 2006. Field Performance of Three Compacted Clay Landfill Covers, *Vadose Zone J.*, 5:1157-1171.

Albright, W., Benson, C., Gee, G., Abichou, T., Tyler, S., Rock. S., 2006. Field Performance of a Compacted Clay Landfill Final Cover at a Humid Site. *J. of Geotech. and Geoenv. Engr.*, 132:11, p. 1393-1403.

Benson, C., Sawangsuriya, A., Trzebiatowski, B., and Albright, W., 2007. Pedogenic Effects on the Hydraulic Properties of Water Balance Cover Soils. *J. of Geotech. and Geoenv. Engr*, 133:4, p. 349-359.

Benson, C., Albright, W., Fratta, D., Tinjum, J., Kucukkirca, E., Lee, S., Scalia, J., Schlicht, P., Wang, X. 2011. Engineered Covers for Waste Containment: Changes in Engineering Properties & Implications for Long-Term Performance Assessment, NUREG/CR-7028, Office of Research, U.S. Nuclear Regulatory Commission, Washington. http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7028/