

Although I'm sure that some of you have these rules memorized from previous CLU-IN events, let's run through them quickly for our new participants.

Please mute your phone lines during the seminar to minimize disruption and background noise. If you do not have a mute button, press *6 to mute #6 to unmute your lines at anytime. Also, please do NOT put this call on hold as this may bring delightful, but unwanted background music over the lines and interupt the seminar.

You should note that throughout the seminar, we will ask for your feedback. You do not need to wait for Q&A breaks to ask questions or provide comments. To submit comments/questions and report technical problems, please use the ? Icon at the top of your screen. You can move forward/backward in the slides by using the single arrow buttons (left moves back 1 slide, right moves advances 1 slide). The double arrowed buttons will take you to 1st and last slides respectively. You may also advance to any slide using the numbered links that appear on the left side of your screen. The button with a house icon will take you back to main seminar page which displays our agenda, speaker information, links to the slides and additional resources. Lastly, the button with a computer disc can be used to download and save today's presentation materials.

With that, please move to slide 3.

Today's seminar is the second in the webinar series launched by Technology Innovation and Field Services Division in June 2012 as part of its new CLU-IN Mining Sites Focus Area. The webinars are intended to serve as a source of relevant and current information on the environmental issues associated with active, closed, and abandoned mining sites, as well as the technologies available for treatment.

Our webinar today will focus on the treatment of mining-influenced water. We will begin with a presentation by Dr. Courtney Young, who will highlight some of his work on acid rock drainage remediation at the Berkeley Pitlake site in Butte, Montana. Next, we will hear from Brent Means about AMDTreat, a tool developed by the U.S. Office of Surface Mining, the Pennsylvania Department of Environmental Protection, and the West Virginia Department of Environmental Protection to estimate cost of abatement for water pollution caused by acid mine drainage. After that, I (Michele Mahoney) will discuss a mining-influenced water treatment technology case study at EPA, where we are working to identify and evaluate mining-influenced water treatment technologies being employed at both active and abandoned mining sites. Dan Bench will wrap up our webinar today with a presentation on the issue of PCBs at mining sites, discussing PCB environmental hazards, identification, hidden sources to look for, potential liabilities, and what to do when PCBs are found.

With that, let's move to the next slide and begin our webinar.

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

"ARD REMEDIATION WITH SLAG: AN APPLICATION TO BERKELEY PITLAKE WATER"

Courtney A. Young

Dept Head and Lewis S. Prater Professor Metallurgical & Materials Engineering Montana Tech Butte, MT 59701

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

September 19, 2012

Slide 4 of 126

Co-Authors and Researchers

Dick Berg, State Geologist, MBMG Montana Tech, Butte MT

Larry Twidwell, Professor Emeritus, M&ME Montana Tech, Butte MT

> Krag Filius, Project Engineer MSE Technology, Butte MT

Eric Streich, Process Engineer Ash Grove Cement, Montana City MT

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

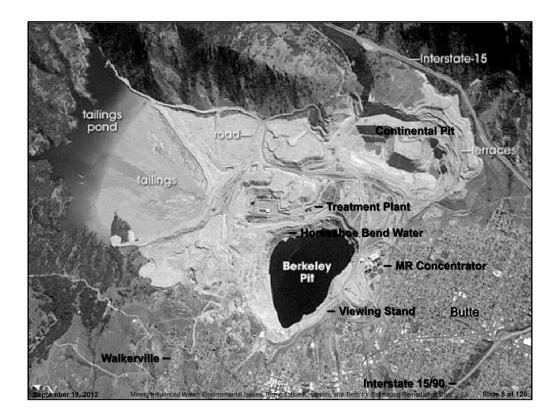
September 19, 2012

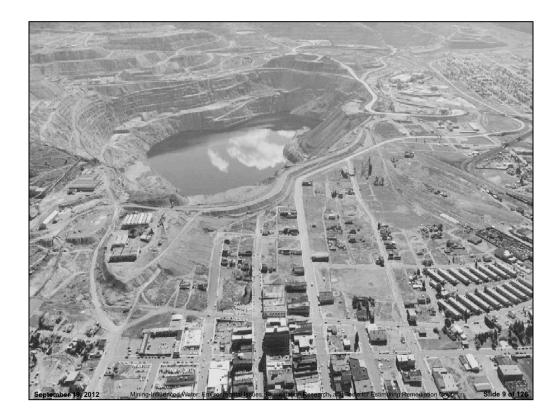
Slide 5 of 126

- Berkeley Pitlake
- Previous Research
- Silicate Slags
- Objectives
- Procedures
- Results & Discussions
- Conclusions
- Acknowledgements

September 19, 2012

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost Slide 6 of 126

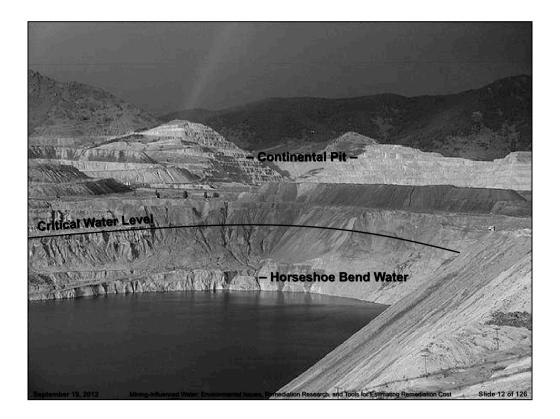

- Berkeley Pitlake
- Previous Research
- Silicate Slags
- Objectives
- Procedures
- Results & Discussions

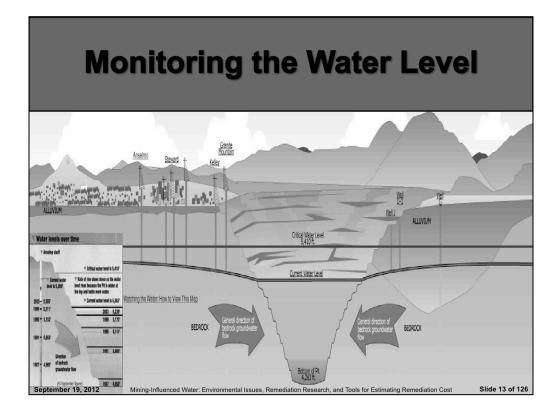

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

- Conclusions
- Acknowledgements

September 19, 2012

Slide 7 of 126

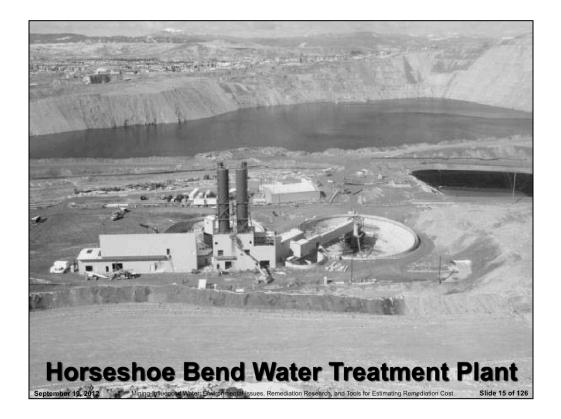

Brief History of Berkeley Pit

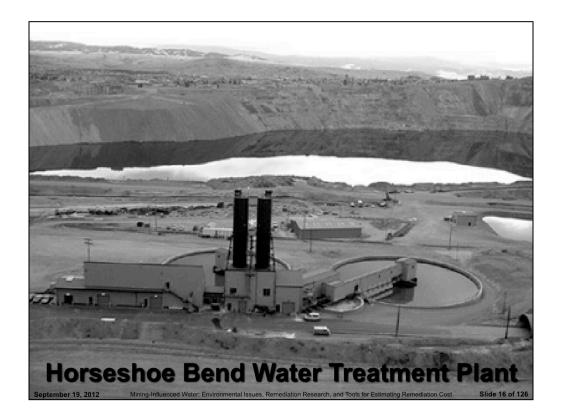

1880 - Butte was an early copper-mining town:

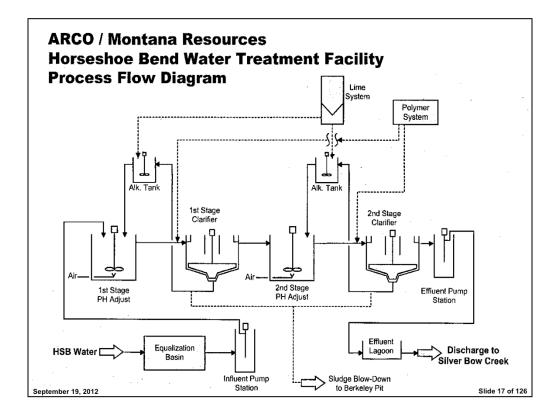
- Referred to as "The Richest Hill on Earth"
- One of the world's largest sulfide ore deposits
- 1920 ACC controlled most mines
- 1955 ACC began phasing out underground mining
- 1977 ARCO purchased all operations
- 1982 Operations halted and pumps turned off
- 1983 Water first appeared in the pit
 - Listed as a Superfund site
 - Part of the largest mining Superfund site

September 19, 2012 Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost Slide 10 of 126

1979 1979 Concentrations change with position, depth and time	Berkeley Pitlake Water: - is acidic near pH 2.5 - contains metals at high concentrations (99% Water): SO ₄ (7500 ppm) Fe (1000 ppm) Al (300 ppm) Mn (250 ppm) Cu (200 ppm) Cd (2.5 ppm) As (0.5 ppm)
Berkeley Pitlake Water: - encompasses ~700 acres - is ~1,000 feet deep - contains ~40 billion gallons - fills at 2.6 million gallons p - will reach "critical level" in September 19, 2012	er day 2023

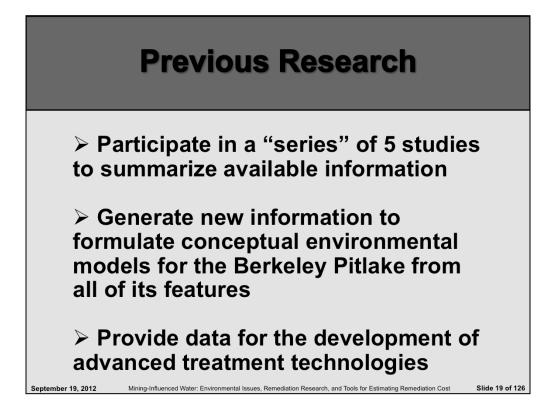





Brief History of Berkeley Pit

1995 - HSBW also diverted to pond (3M GPD)
MR starts operating Continental Pit to the east
ARCO and MR named responsible parties
2000 - MR halts operations including diversion
2003 - HSBW Treatment Plant is commissioned
two-stage lime precipitation process
diversion of treated water begins
sludges are disposed into the BPL

2004 - MR reopens and begins full operations
2005 - MR pumps BPL water to Cu-cementation


- ✓ Berkeley Pitlake
- Previous Research
- Silicate Slags
- Objectives
- Procedures
- Results & Discussions

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

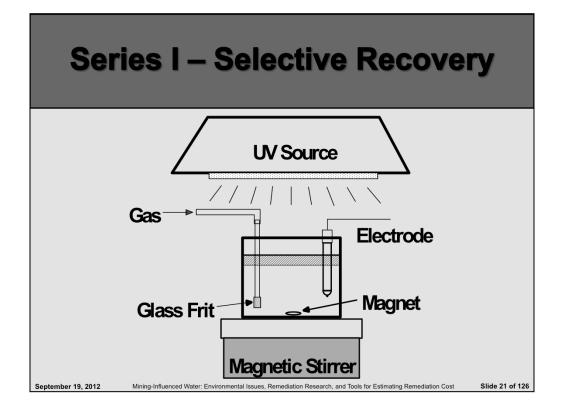
Slide 18 of 126

- Conclusions
- Acknowledgements

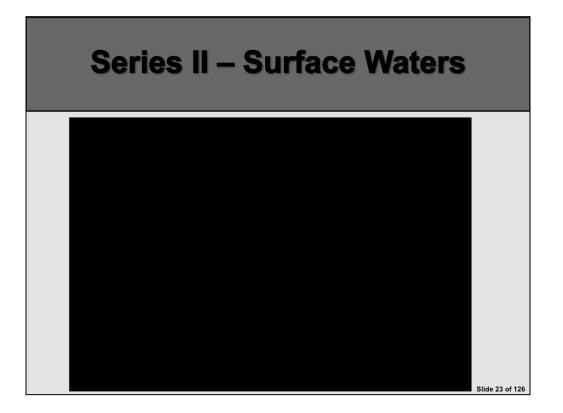
September 19, 2012

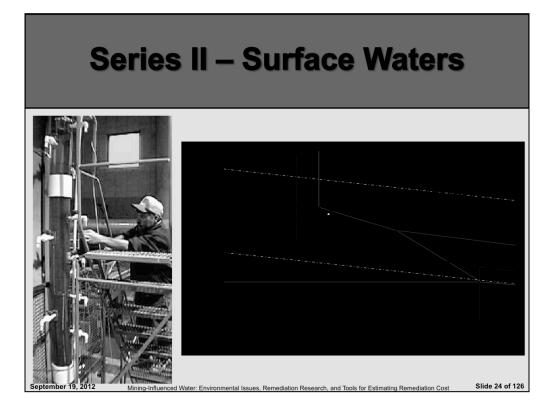
Series I – Selective Recovery

	Fe	As	Mn	Cu	Cd	Zn	AI
Initial BPL Water	1019.8	5.9	214.2	151.2	2.3	566.3	243.5
Stage 1A - H ₂ O ₂ /UV	8.43	< 0.11	198.5	146.3	1.9	529.7	222.7
Stage 1B - KMnO ₄	0.23	< 0.11	4.5	138.8	1.84	495.6	213.2
Stage 2 - Na ₂ S	0.27	< 0.11	4.9	0.09	1.7	482.6	203.2
Stage 3 - Na ₂ S	0.22	< 0.11	4.2	< 0.05	< 0.02	49.4	186.2
Stage 4 - NaOH	< 0.04	< 0.11	3.72	< 0.05	< 0.02	18.2	0.24
Drinking Standard	0.3	0.05	0.05	1.3	0.005	5	0.2


Stage 1A: $H_2O_2 = 2OH^{\bullet}$; $Fe^{2+} + OH^{\bullet} = Fe^{3+} + OH^{\bullet}$; $Fe^{3+} + 3OH^{\bullet} = Fe(OH)_3$ Stage 1B: $3Mn^{2+} + 2MnO_4^{\bullet} + 2H_2O = 5MnO_2 + 4H^{+}$

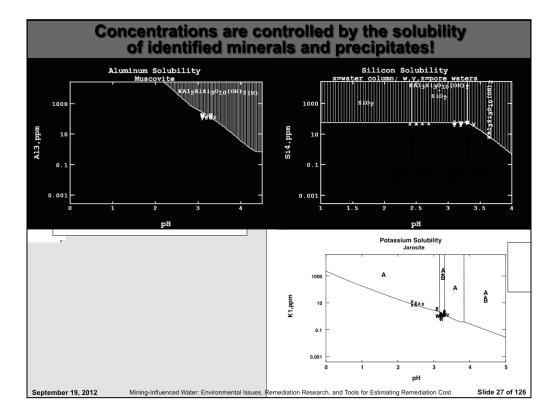
Stage 2: $Cu^{2+} + S^{2-} = CuS$


Stage 3: Cd²⁺ + S²⁻ = CdS; Zn²⁺ + S²⁻ = ZnS


Stage 4: $AI^{3+} + 3OH^{-} = AI(OH)_{3}$

Slide 20 of 126

Berkeley Pitlake Water UV/H ₂ O ₂ /NaOH Fe/Mn/As Precipitation Cu Precipitation Cu Precipitation Al Precipitation ? SC ² Remediation Vacuum Na, K, Mg, Ca Solution	 Selective metal recovery is possible A 7-stage process has been envisioned and shown to work (in batch mode) Fe, As, Cu and Cd met DWS Al almost met DWS Mn and Zn did not meet DWS KMnO₄ addition needs to be precise Zn may have precipitated amorphously SO₄ removal was not done but options are Freeze Crystallization Reverse Osmosis Gypsum Precipitation SRB Bioreduction Chemoreduction Photoreduction
	Reductive Precipitation Slide 22 of 126
To Softening and Discharge	 Softening to remove Na, K, Mg and Ca


Profiles indicated chemoclines/thermoclines existed and were successfully reproduced in lab

> They have been explained by, but can not be totally attributed to

- HSBW being less dense than BPLW so, when it enters the pitlake, it floats on top rather than mixes in, and
- Biological activity which should increase DO as well as pH

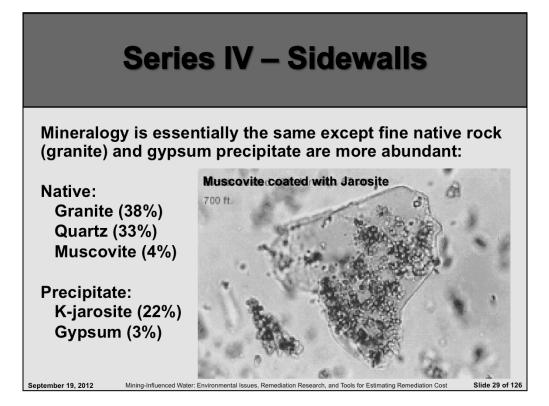
Experiments showed that the interaction of sunlight (UV radiation) and air with BPL water plays a significant role
Ming-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost
Slide 25 of 126

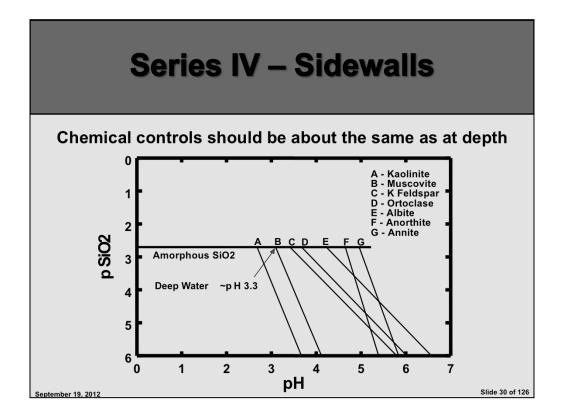
Series III – At Depth

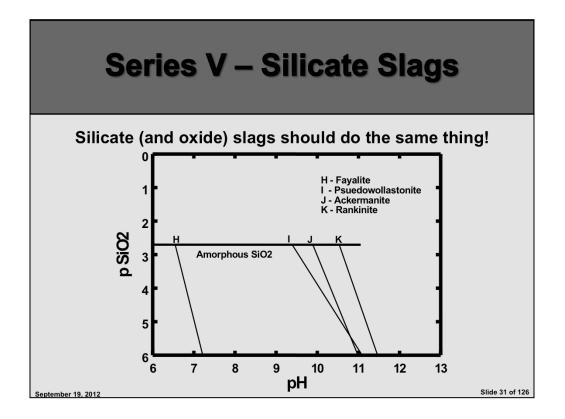
(Deep Water, Pore Water and Sediment)

> Muscovite $[KAI_3Si_3O_{10}(OH)_2]$ controls AI^{3+} concentration

➢ Quartz (SiO₂) controls Si⁴⁺ concentration


> Schwertmannite $[Fe_8O_8(OH)_6SO_4]$ precipitate controls the Fe³⁺ concentration


Jarosite [KFe₃(SO₄)₂(OH)₆] precipitate controls K⁺ concentration


> Cu²⁺, Fe²⁺, Zn²⁺ and Cd²⁺ concentrations could not be associated with a mineral or precipitate are therefore considered to be unsaturated

➢ However, Cu²⁺, Fe²⁺, Zn²⁺ and Cd²⁺ concentrations were found to increase with depth giving the appearance that supergene deposition is occurring Slide 28 of 126

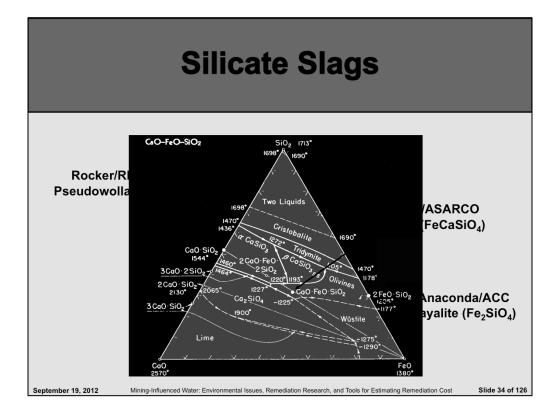
Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost September 19, 2012

- ✓ Berkeley Pitlake
- ✓ Previous Research
- Silicate Slags
- Objectives
- Procedures
- Results & Discussions
- Conclusions
- Acknowledgements

September 19, 2012

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost Slide 32 of 126

Silicate Slags

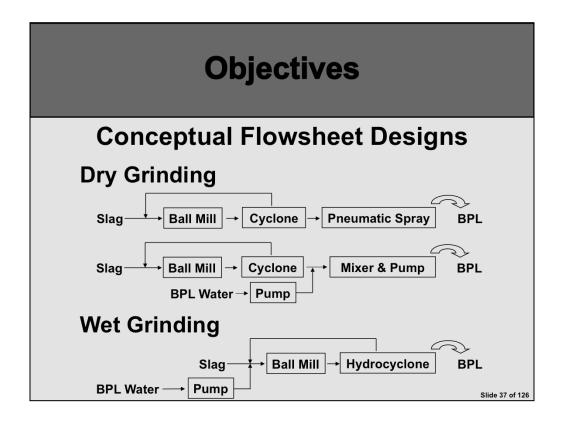

Source of Silicate (and lime) Act as pH-Buffers (replace lime) Available in Montana (inactive) Anaconda (ARCO) - Fayalite, Fe₂SiO₄ East Helena (ASARCO) - Olivine-type, CaFeSiO₄ Rocker (Rhone) - Pseudowallastonite, CaSiO₃

Slag	Ca (%)	Fe (%)	Si (%)
Rhone	30.3	0.4	19.0
ASARCO	14.0	27.6	12.7
Anaconda	2.6	30.9	15.8

September 19, 2012

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

Slide 33 of 126



- ✓ Berkeley Pitlake
- Previous Research
- ✓ Silicate Slags
- Objectives
- Procedures
- Results & Discussions
- Conclusions
- Acknowledgements

September 19, 2012

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost Slide 36 of 126

- ✓ Berkeley Pitlake
- Previous Research
- ✓ Silicate Slags
- ✓ Objectives
- Procedures
- Results & Discussions
- Conclusions
- Acknowledgements

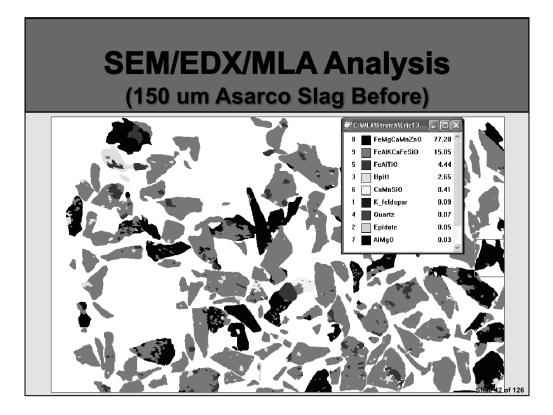
September 19, 2012

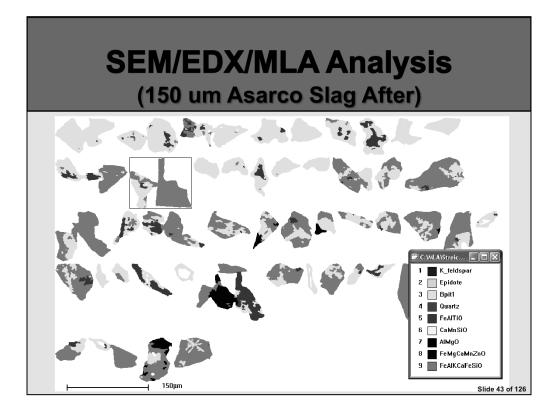
Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost Slide 38 of 126

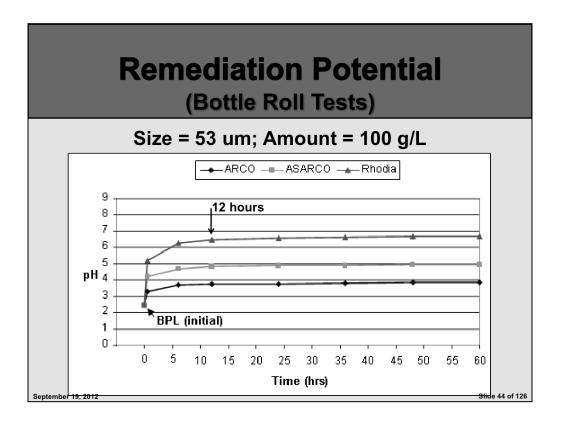
Procedures

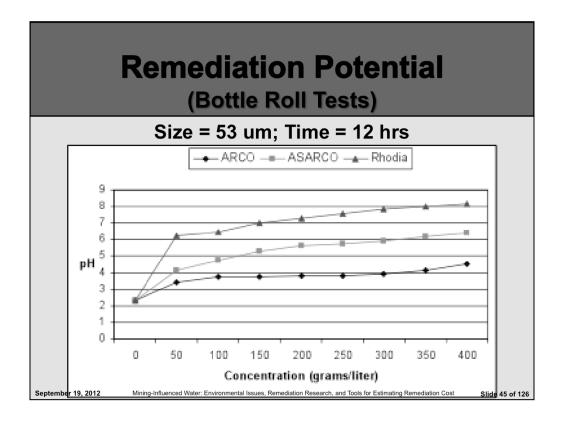
Characterize Montana Slags Bond Work Index SEM/EDX/MLA Analysis Remediation Potential Model Effects Parameters Slag Type (Fe/Si Ratio) Particle Size (100-400 Mesh) Slag Amount (200-800 g/L) Experimental Design (StatEase)

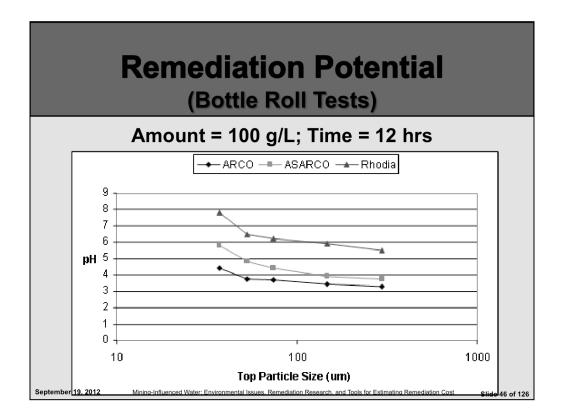
Slide 39 of 126

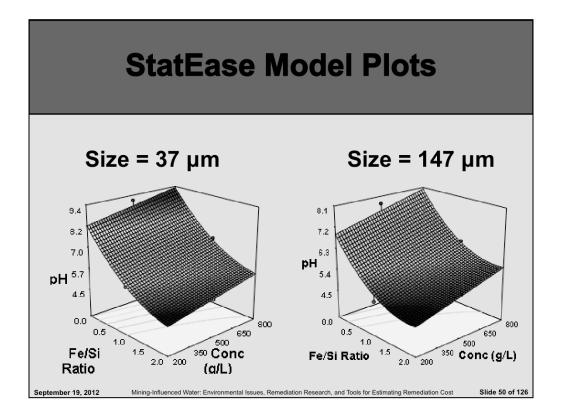


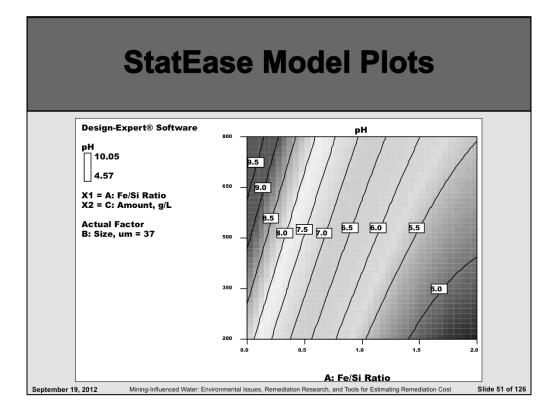

- ✓ Berkeley Pitlake
- Previous Research
- ✓ Silicate Slags
- ✓ Objectives
- ✓ Procedures
- Results & Discussions
- Conclusions
- Acknowledgements

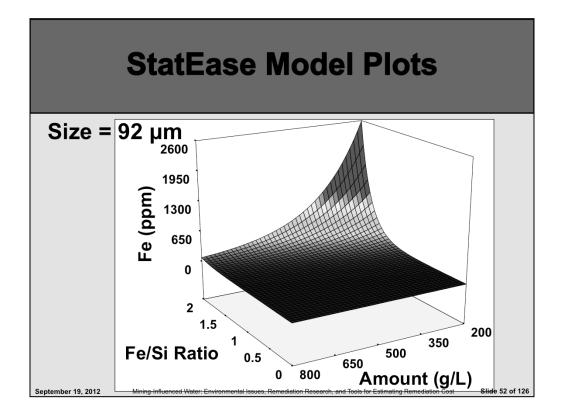

September 19, 2012

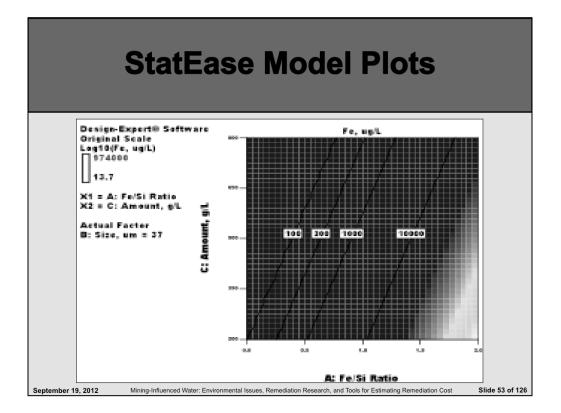

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost Slide 40 of 126

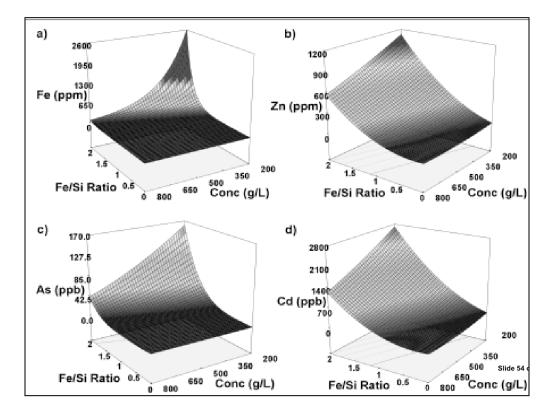

	-	Bond V	VUIN	mue		
Date	Slag	Target Size Mesh (mm)	F80 (mm)	P80 (mm)	Avg Gbp	Bond Work
						Index
1/29/05	ACC	48 (0.295)	2.825	0.205	0.95	20.52
2/17/05	ACC	100 (0.147)	2.603	0.117	0.94	20.44
2/20/05	ACC	200 (0.074)	2.603	0.058	0.53	24.86
/29/05	ASARCO	48 (0.295)	2.652	0.230	1.76	16.26
2/12/05	ASARCO	100 (0.147)	2.555	0.113	1.24	15.93
/30/05	ASARCO	200 (0.074)	2.603	0.053	0.50	24.68
2/26/05	RP	48 (0.295)	1.414	0.251	2.79	14.18
3/4/05	RP	100 (0.147)	1.414	0.121	1.53	15.48
3/4/05	RP	200 (0.074)	1.414	0.063	0.76	20.66

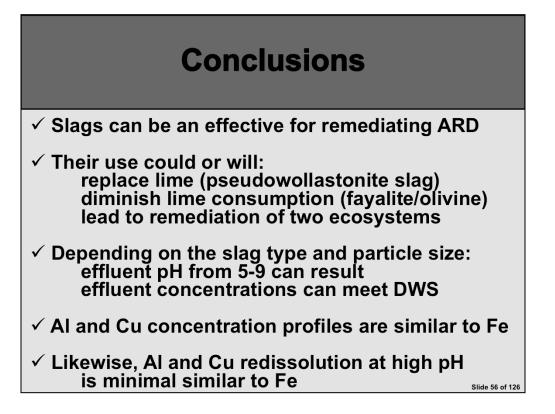


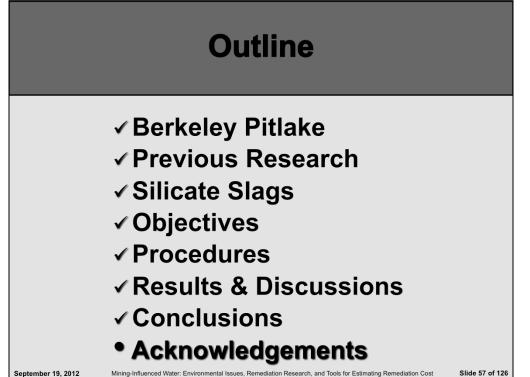

StatEase Design of Experiments (Box-Behnken Matrix)


	Run	Slag Type (Fe/Si Ratio)	Particle Size (μm)	Slag Amount (g/L)	
	1	0 = Rhodia	-37 = 400 mesh	500	1
	2	2 = ARCO	-37	500	
	3	0	-147 = 100 mesh	500	
	4	2	-147	500	1
	5	0	-74 = 200 mesh	200	
	6	2	-74	200	
	7	0	-74	800	1
	8	2	-74	800	
	9	1 = ASARCO	-37	200	
	10	1	-147	200	1
	11	1	-37	800	
	12	1	-147	800	
	13	1	-74	500	
	14	1	-74	500	
September 19, :	2012 15	1	-74	500	Slide 47 of 12


	рН	AI	As	Cd	Cu	Fe	Mn	SO42-	Zn				
Test	BPL Concentrations (mg/L)												
Run	2.5	2.5 289		2.1	168	793	276	2723	621				
				Final F	Responses	(mg/L)							
1	9.08	0.043	0.0025	0.002	0.19	0.29	4.42	829	0.24				
2	5	6.32	0.09	2.1	2.26	95	276	1980	621				
3	7.77	0.20	0.001	0.034	0.063	0.069	57.8	1075	2.02				
4	5.19	11.6	0.09	1.69	34.2	772	276	2210	621				
5	7.68	0.20	0.0008	0.055	0.136	0.096	83.7	619	3.84				
6	4.55	37.8	0.15	2.1	168	793	268	2450	621				
7	8.42	0.041	0.001	0.002	0.179	0.014	5.13	879	0.11				
8	5.52	0.37	0.039	1.13	0.566	271	276	1720	531				
9	5.62	1.39	0.0049	1.03	0.39	6.99	266	1680	601				
10	4.74	26.1	0.021	1.57	18.05	595	265	2045	621				
11	6.89	0.20	0.0014	0.059	0.095	0.069	181	1270	24.1				
12	6.16	0.444	0.0023	0.38	0.141	2.37	248	1395	212				
13	6.02	0.62	0.0023	0.44	0.174	4.77	250	1410	278				
14	6.08	0.53	0.0023	0.42	0.139	3.76	248	1410	254				
15	6.08	0.51	0.0022	0.45	0.277	3.67	252	1450	257				
			l	Drinking W	ater Stand	ards (mg/L	.)		Slide 48 of 1				
	6.5 - 8.5	0.05	0.01	0.005	1.3	0.3	0.05	250	5				


StatEase Model Equations


- ✓ Berkeley Pitlake
- Previous Research
- ✓ Silicate Slags
- ✓ Objectives
- ✓ Procedures
- ✓ Results & Discussions

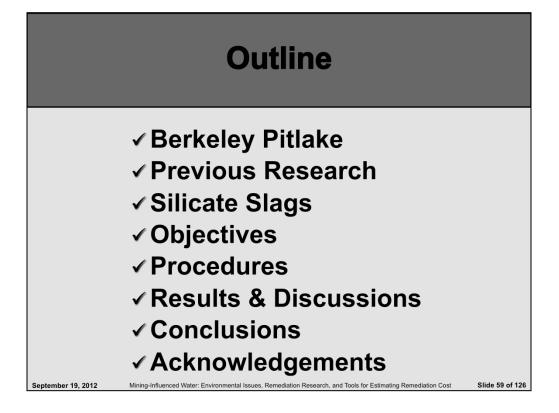

Mining-Influenced Water: Environmental Issues, Remediation Research, and Tools for Estimating Remediation Cost

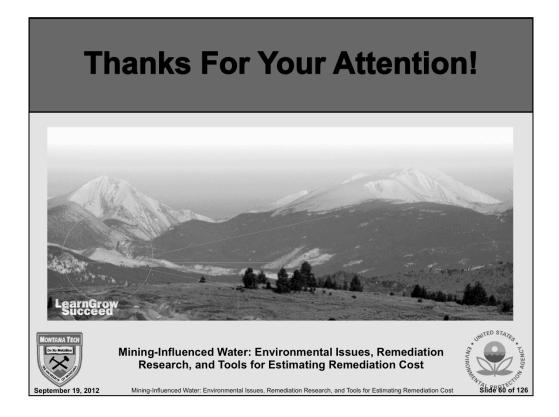
- Conclusions
- Acknowledgements

September 19, 2012

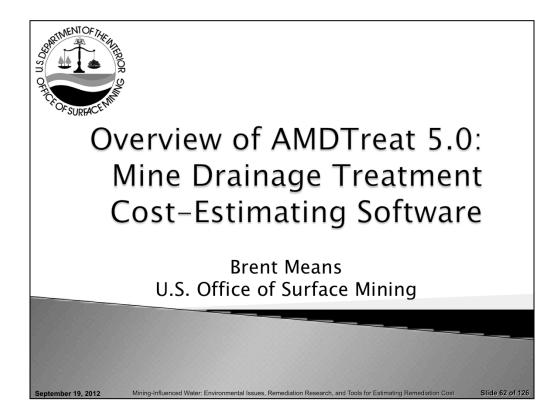
Slide 55 of 126

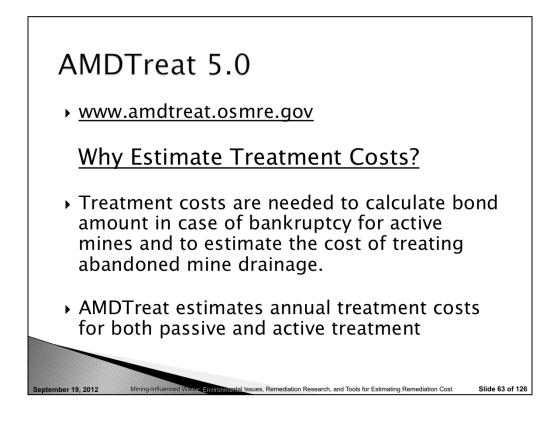
Acknowledgements

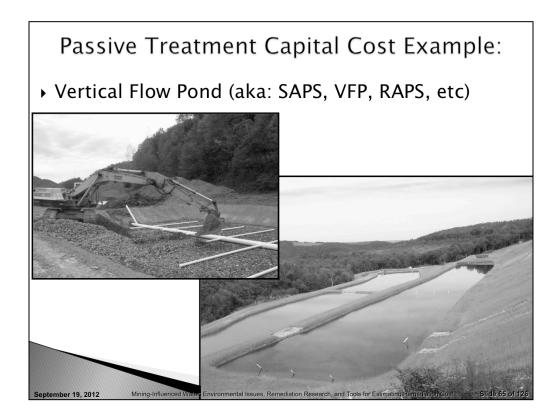

This research was previously funded by the MWTP via an Interagency Agreement (IAG) between the U.S. EPA and the U.S. DoE, IAG No. DW89935117-01-0.

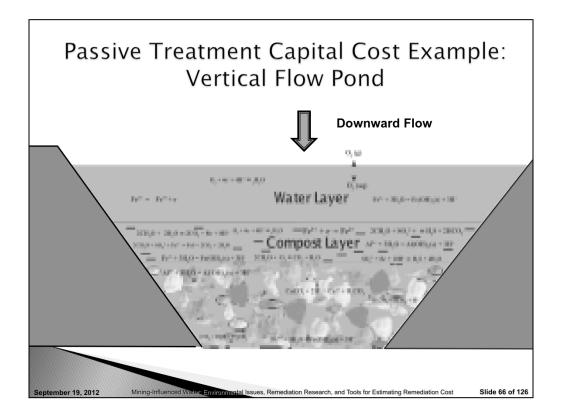

Thanks are also extended to the Department of Metallurgical & Materials Engineering at Montana Tech for bearing the costs for some analyses and the MBMG for helping collect samples: James Madison and Ted Duaime.

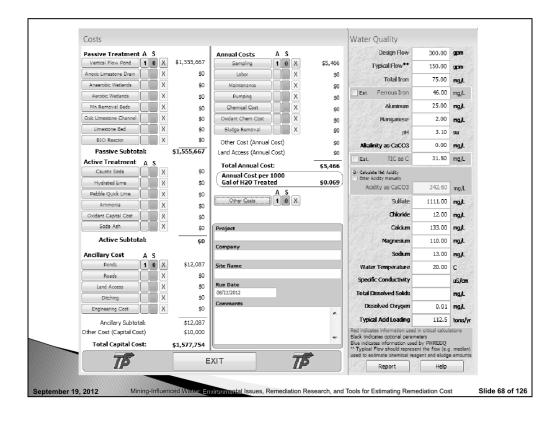
Sincere appreciation is given to the workforce who have worked on these projects over the years. MS students included Ray Ziolkowski, Tom McMillan, Yu Chuan Tai, Eric Streich and Krag Filius. BS students include Sonny Adams, Jennifer Gambill and Brian Ross.

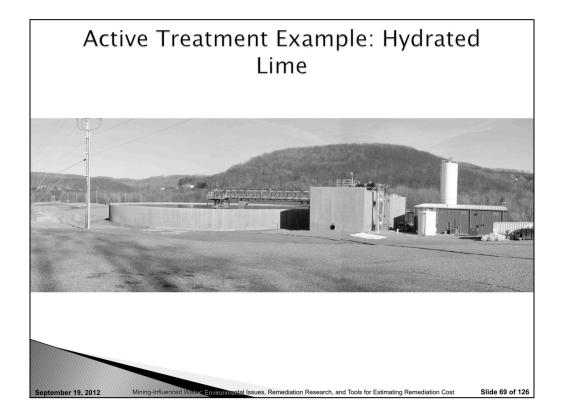

Slide 58 of 126

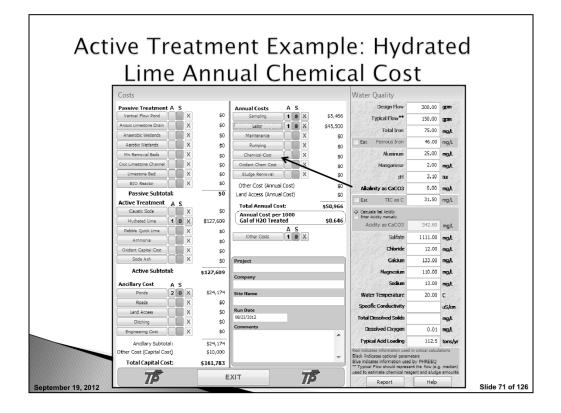

We are always on the lookout for funding Series VI to ∞ !

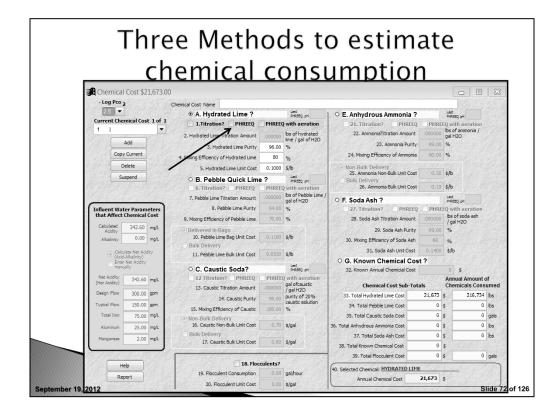


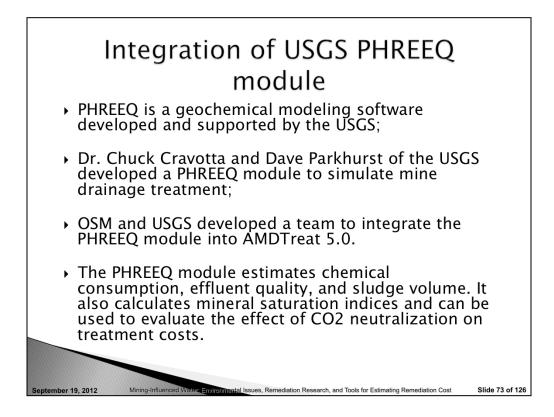




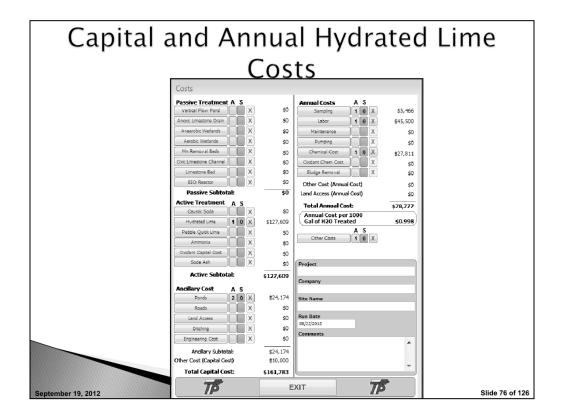

Costs				Water Quality			
Passive Treatment A		Annual Costs A S		Design Flow	300.00	gpm	
Vertical Flow Pond	\$0	Sampling X	\$0	Typical Flow**	150.00	apm	
Anoxic Limestone Drain	\$0	Labor	\$0	Total Iron	75.00	mg/	
Anaerobic Wetlands X	\$0	Maintenance X	\$0	Processian Sales and States		10.000	
Aerobic Wetlands X	\$0	Pumping	\$0	Est. Ferrous Iron	46.00	1.000	
Mn Removal Beds	\$0	Chemical Cost X	\$O	Aluminum	25.00	mg/l	
Oxic Limestone Channel	\$0	Oxidant Chem Cost	\$0	Manganese	2.00	mg/l	
Limestone Bed X	\$0	Sludge Removal X	\$D	pH	3.10	su	
BIO Reactor	\$O	Other Cost (Annual Cost)	\$0	Alkalinity as CaCO3	0.00	mg/L	
Passive Subtotal:	\$0	Land Access (Annual Cost)	\$0	Est. TIC as C	31.50	mg/L	
Active Treatment A S Caustic Soda	\$0	Total Annual Cost:	Celculate Net Acidity				
Hydrated Lime	\$0 \$0	Annual Cost per 1000 Gal of H20 Treated	 Enter Acidity manually 				
Pebble Quick Lime X	\$0 \$0	AS	\$0.000	Acidity as CaCO3	342.60	mg/L	
Ammonia X	\$0	Other Costs X		Sulfate	1111.00	mg/L	
Oxidant Capital Cost	\$0 \$0			Chloride	12.00	mg/L	
Soda Ash X	\$0	Project		Calcium	133.00	mg/L	
Active Subtotat	50	Troject		Magnesium	110.00	1263.22	
	30	Company	_	Sodium	13.00	-	
Ancillary Cost A S	\$0	Site Name		1.72 - 1.21 - 1.21		-	
Roads X	\$0 \$0	Site wante		Water Temperature	20.00	С	
Land Access X	90 \$0	Run Date		Specific Conductivity		uS/a	
Ditching X	\$0	06/22/2012		Total Dissolved Solids		mg/L	
Engineering Cost X	\$0	Comments		Dissolved Oxygen	0.01	mg/L	
Ancilary Subtotal:	\$0		1	Typical Acid Loading	112.5	tons	
Other Cost (Capital Cost)	90 \$0			Red indicates information used	in critical calcul		
Total Capital Cost:	50		-	Black indicates optional parame Blue indicates information used	by PHREEQ		
	· · ·	xit 75		** Typical Flow should represent used to estimate chemical read			

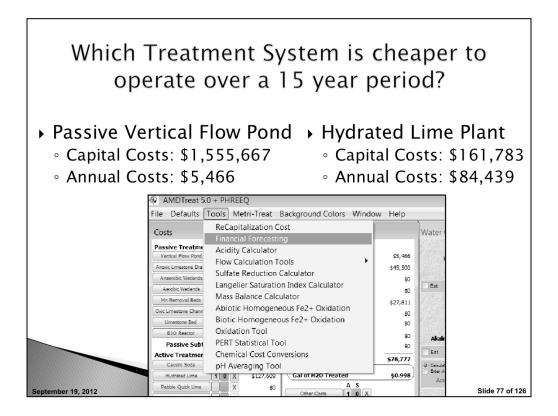


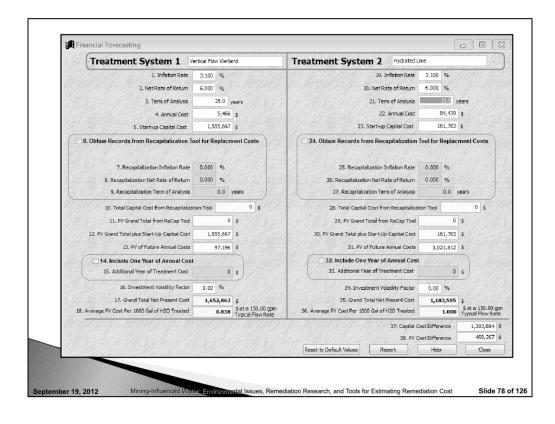

1		•	VFP Name 1. Tons of Limestone Needed 2. Tons of Limestone Needed 3. Tons of Limestone Needed 4. Tons of Limestone Needed 5. Tons of Limestone Needed	8,820.99 4,221.58	IZING METHODS Select One VFP Based on Acidity Neutralization VFP Based on Retention Time VFP Based on Alkalinity Generation Ra VFP Based on Tons Limestone Entered VFP Based on Dimensions	te 7. Alkalinity Ger	tone Needed 13,042 tons	OP 100.00	ft
Copy Cu Dele	rrent		11. % Void Space of LS. Bed 12. System Life 13. Limestone Purity	43.00 % 20.00 years 85.00 %	29. Clearing and Grubbing () 30a. Land Multiplier 30b. Clear/Grub Acres	1.50 ratio 1 acre	VFP Sizing Su 48. Length at Top of Freeboard 49. Width at Top of Freeboard 50. Freeboard Volume	mmaries 727.56 375.78 29.648	t
Delete Suspend Opening Screen Water Parameters			14. Umestone Efficiency 15. Density of Loose Limestone 16. Limestone Unit Cost 17. LS Placement Unit Cost	60.00 % 94.30 lbs/ft3 22.00 \$/ton 0.00 \$/vd3	3 32. Nbr. of Valves 33. Unit Cost of Valves 35	00.00 \$/acre 0 nbr 00.00 \$ea.	51. Water Surface Area 52. Total Water Volume 53. Organic Matter Volume	29,040 260,312 18,964 9,245	t2 /d3
that affect t	he curren	t VFP	Run of Slo 18. Slope of Pond Sides 2.0	pe Rise of Slope	/ Influent Pipe	20 ft 11.00 ft/hr	54. Limestone Surface Area 55. Limestone Volume 56. Excavation Volume	247,504 26,802.28 55,011.7	/d3
Acidity Alkalinity	0.00	mg/L	19. Freeboard Depth 20. Free Standing Water Depth 21. Organic Matter Depth 22. Organic Matter Unit Cost	3.00 ft 2.0 ft 1.0 ft 20.00 \$/yd3	36. Labor Rate 37. Segment Len, of Trunk Pipe 38. Trunk Pipe Cost	35.00 \$/hr 20 ft/pipe seg. 15.00 \$/ft	57. Clear and Grub Area 58. Liner Area 59. Theoretical Retention Time VFP Cost Su	0.0 a 0.0 f 129.31 f	t2
Suspend Opening Screen Water Parameters Influent Water Parameters that affect the current VFP Calculated Acdeb 342.60 mgL		mg/L	23. Organic Matter Spreading Unit Cost 24. Limestone Depth 25. Excavation Unit Cost 5.50 \$/yd3		40, Spur Cost 41. Spur Coupler Cost	6.60 \$/coupler 7.00 \$/ft 3.00 \$/spur 90.00 \$/T coupler	60. Organic Matter Cost 61. Limestone Cost 62. Limestone and Organic Matter Placement Cost	184,904 750,654 41,603	\$
Typical Flow	150.00	gpm	No Liner Clay Liner 26. Clay Liner Unit Cost	5.00 \$/yd3	43. Segment Len. of Spur Pipe 44. Spur Pipe Spacing	20 ft/pipe seg. 10.0 ft	63. Excavation Cost 64. Liner Cost 65. Clear and Grub Cost	302,564 0 0	ş
	25.00		27. Thickness of Clay Liner Synthetic Liner 28. Synthetic Liner Unit Cost	0.5 ft 5.50 \$/yd2	Length Diameter 45. Pipe #1 0.00 ft 0.0 ir		66. Valve Cost 67. Pipe Cost 68. Total Cost	0 275,942 1,555,667	5
					47. Pipe #3 0.00 ft 0.0 ii		Report	Help	



1			lbs/yr	23. Mixing Tank (Assumes Mixing Tank)	a Two Cell		43. Polymer Feed System	7000	s	
	 Annual Hydrated Lime 	108.3	tons/yr	Mixing Tank Cost	0	0 s 44. Clearing a				
	3. Daily Hydrated Lime	of 24 741386 lbe/	Lbs/day				45. Clear and Grub Area	2.00 ac		
Add	4. Pounds per Hour of Hydrated Lime		6 lbs/hr	Cost Est based on Volume	e of Mixing		46. Clear and Grub Costs			
Copy Current	1			24. Tank Volume		gal			1300.00 \$/acre	
Delete	5. Purity of Hydrated Line 6. Mixing Efficency of	96 %	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Cost Est. based on Desire			Hydrated Lime Sizing			
Suspend	Hydrated Lime	80 %		25. Mixing Tank Volume	1,500.1	gal	47. Tank Length	5.8		
	7. Titration?	lbs of Hydrated		26. Design Flow	300.00 gpm		48. Tank Width	5.8		
Calculated Acidity Alkalinity 0.00 mg/L	8. Titration Amount .00	00000 Lime /g H2O	al of	27. Retention Time	5.0	min	49. Tank Depth	8		
	9. Mechanical Aeration System 30,000 \$			Specifications of Concrete	Tank		50. Excavation Volume for	14.8		
Influent Water Parameters that Affect Hydrated Lime	Silo Storage System Quantity Price	e Refill Fre	equency	28. Tank Wall Thickness	1.00	ft	Mixing Tank 51. Volume of Concrete for Mixing Tank	85		
	10. 20 Ton 1 2500	D0 \$	67 days	29. Tank Bottom Thickness	1.00	ft	Hydrated Lime	Cost Summa	ri	
Acidity	11. 35 Ton 1 2700	00 \$ 1	17 days	30. Tank Freeboard	1.00	ft	52. Silo(s) Cost	32,000		
And ingre	12. 🗹 50 Ton 1 3200	DO \$ 10	68 days	31. Construction Labor Cost	6000	\$	53. Clarifier Cost	40,000	1	
Calculate Net Acidity (Acid-Alkalinity)	13. 60 Ton 1 3500	00 \$ 2	02 days	32. Concrete Unit Cost	100.0	\$/yd3	54. Mixing Tank Cost	0	1	
Enter Net Acidity	14. Clarifier			33. Excavation Unit Cost	5.50	\$/yd3	55. Construction Labor	6,000	- ANNE	
· · · · · ·	Cost of Clarifier	0.00	s				(MixingTank) 56, Excavation Cost (Mixing Tank)	81	1	
(Hot Acidity) 342.60 mg/L	Cost Est based on Cla			34. Number of Motorized Mixers	2	qty	57. Concrete Cost (MixingTank)	8,528	1	
Design Flow 300.00 gpm	15. Diameter	10	ft	35. Unit Cost of Motorized Mixer	1000	\$	58. Motorized Mixer and	32,000	1	
Typical Flow 150.00 gpm	16. Cost Muliplier	4000.0		36. Number of Slide Gates	5	qty	Aeration Cost 59. Sweep and Blower Cost	0	-8	
Total Iron 75.00 mg/L	Cost Est based on Flo	w		37. Unit Cost of Slide Gate	750	\$	60. Side Gate Cost	3,750	-R	
75,00	17. Design Flow		apm	38. Cost of Electric Panel	2000	\$	61. Electric Control Panel Cost	2,000	-R	
Aluminum 25.00 mg/L	18 Ectimated Diameter		gpill ft	39. Control Building			62. Building Cost		-8	
Manganese 2,00 mg/L			n.	Cost of Control Building	0	\$	All relative provident that relation	· ·	ł	
	19. Cost Muliplier	4000.0		© Cost Est. Based on Buildin			63. Polymer Feed System	<u> </u>	-8	
	20. Vibrator Air Sweep	0 \$		40. Building Length	15	ft	64. Clear and Grub Cost	0	ľ	
	21. Pneumatic Air Sweep	0 \$		41. Building Width	15	ft	65. Total Cost	127,609		
	22. Blower Blocks	0 \$		42. Building Unit Cost	10.0	\$/ft2	Report	Help		

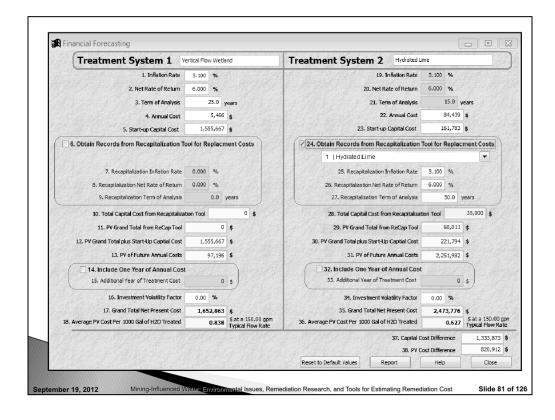


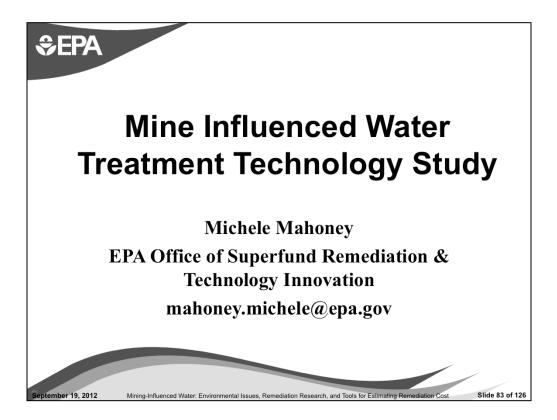


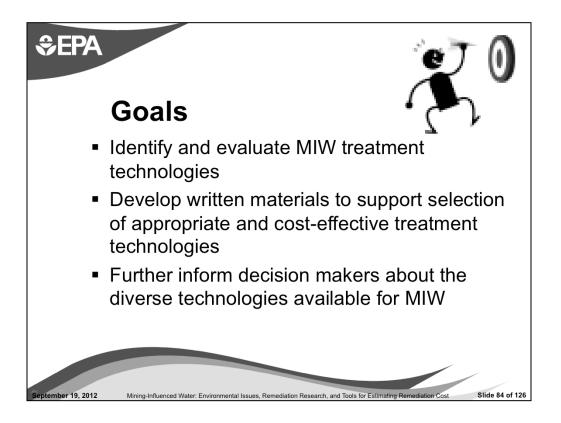


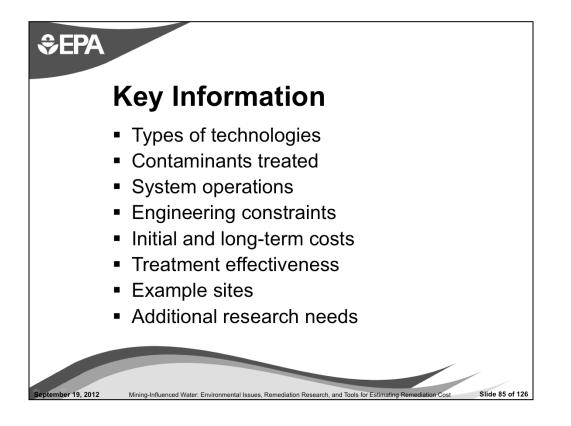
	pН	pH	CausticTitr	CausticMol	Total Fe	Fe2	AI	Mn	Na	Ca	Mg	S04	Alkalinity	
Select->	3.100	3.100	0.000000	0.000000	75.114	46.000	25.041	2.003	13.020	133.202	110.135		-107.561	
Select>	4.000	4.000	0.000656	0.001062	59.726	45.999	25.041	2.003	13.020	175.748	110.133	1112.644	-15.173	
Select>	4.500	4.500	0.001351	0.002187	48.705	45.999	6.020	2.003	13.020	220.859	110.133	1095.714	-0.595	
Select>	5.000	5.000	0.001564	0.002531	46.745	45.999		2.003	13.020	234.642	110.133		5.824	
Select->	5.500	5.500	0.001798	0.002911	46.229	45.998		2.003	13.019	249.865	110.131		18.609	_
Select->	6.000	6.000	0.001966	0.003182	46.074	45.998		2.003	13.019	260.736	110.131	1112.622	_	_
Select->	6.500	6.500	0.002195	0.003553	46.026	45.998		2.003	13.019	275.598	110.131			_
Select->	7.000	7.000	0.002372	0.003841	46.011	45.998		2.003	13.019	287.119	110.131	1112.622		_
Select>	7.500	7.500	0.002465	0.003990	46.006	45.998		2.003	13.019	293.094	110.131		126.174	_
Select>	8.000	8.000	0.002522	0.004082	46.005	45.998		2.003	13.019	296.815	110.130			_
Select->	8.500	8.500	0.002638	0.004271	37.127	37.119		2.003	13.019	304.364	110.130			
Select->	9.000	9.000	0.002822	0.004568	19.551	19.540		2.003	13.019	316.253	110.129		-	
Select->	9.500	9.500	0.003344	0.005414	6.179	6.156		2.003	13.019	350.173	110.128		200.344	-
Select->	10.000	10.000	0.003681	0.005958	1.023	0.963		2.003	13.019	371.976	108.897	1112.585	247.134	-
Select->	10.500	10.500	0.007234	0.011711	0.347	0.172		2.003	13.022	493.342	10.869	995.225	263.935	-
Select>	11.000	11.000	0.007769	0.012577	0.622	0.082	0.082	0.221	13.022	513.064	1.149	990.094	269.607	-
														-
														_
	• •	Accept		Report		to Excel	of association to be			<u>a</u>	incel		4	-
ll units expret	ased in mg/L	Accept		L as CaCO3; PF	T represents t	he concentration	of precipitate in g		a Baca			Photochrosite	MnOH2a	Pyrachro
	ssed in mg/L	<u>A</u> ccept L; Alkalinity exp TDS	PPT	L as CaCO3; PF Siderite	T represents t	he concentration	Schwert17	5 Boehmi		luminite .	AIQH3a F	Rhodochrosite	MnOH2a	Pyrochro
Select>	pH 3.100	Accept ; Alkalinity exp TDS 1418.661	PPT 0.000	L as CaCO3; PF Siderite -5.767	T represents t FeOH2a -11.480	he concentration FeOH3a	Schwert17: 0.417	5 Boehmi -3.965	-1	luminite A	AIQH3a F -6.160	-6.867	-14.244	-13.844
) Select>	pH 3.100 4.000	Accept L; Alkalinity exp TDS 1418.661 1501.228	PPT 0.000 0.029	L as CaCO3; PF Siderite -5.767 -3.975	T represents t FeOH2a -11.480 -9.687	he concentration FeOH3a -1.724 0.000	Schwert175 0.417 11.080	5 Boehmi -3.965 -1.283	-1	luminite /	AIOH3a F -6.160 -3.478	-6.867 -5.076	-14.244 -12.451	-13.844 -12.051
Select-> Select-> Select->	pH 3.100 4.000 4.500	Accept ; Akalinity exp TDS 1418.661 1501.228 1508.114	PPT 0.000 0.029 0.136	L as CaCO3; PF Siderite -5.767 -3.975 -2.984	T represents t Fe0H2s -11.480 -9.687 -8.691	he concentration FeOH3a -1.724 0.000 0.000	Schwert175 0.417 11.080 9.342	5 Boehmi -3.965 -1.283 -0.416	-1 -2 0	luminite /	AIOH3a F -6.160 -3.478 -2.611	-6.867 -5.076 -4.084	-14.244 -12.451 -11.455	-13.844 -12.051 -11.055
Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.000	Accept ; Alkalinity exp TDS 1418.661 1501.228 1508.114 1513.092	PPT 0.000 0.029 0.136 0.165	Siderite -5.767 -3.975 -2.984 -2.001	T represents t Fe0H2a -11.480 -9.687 -8.691 -7.693	he concentration FeOH3a -1.724 0.000 0.000 0.000	Schwert175 0.417 11.080 9.342 7.594	5 Boehmi -3.965 -1.283 -0.416 -0.166	-1' -2 0	luminite A 1.416 .474 000 000	AIQH3a F -6.160 -3.478 -2.611 -2.361	-6.867 -5.076 -4.084 -3.102	-14.244 -12.451 -11.455 -10.457	-13.844 -12.051 -11.055 -10.057
Select-> Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.000 5.500	Accept L; Alkalinity exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074	PPT 0.000 0.029 0.138 0.165 0.128	Siderite -5.767 -3.975 -2.984 -2.001 -1.053	T represents t Fe0H2a -11.480 -9.687 -8.691 -7.693 -8.700	he concentration Fe0H3a -1.724 0.000 0.000 0.000 0.000	Schwert175 0.417 11.080 9.342 7.594 5.851	Boehmi -3.965 -1.283 -0.416 -0.166 0.000	-1' -2 0. -0	luminite /	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153	-14.244 -12.451 -11.455 -10.457 -9.464	-13.844 -12.051 -11.055 -10.057 -9.063
Select-> Select-> Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.000 5.500 6.000	Accept L; Alkalinity exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074 1583.894	PPT 0.000 0.029 0.136 0.165 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179	T represents t Fe0H2 <i>i</i> -11.480 -9.687 -8.691 -7.693 -6.700 -5.708	he concentration FeOH3a -1.724 0.000 0.000 0.000 0.000 0.000	Schwert175 0.417 11.080 9.342 7.594 5.851 4.094	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000	-1* -2 0. -0 -1	luminite / 1.416 .474 000 000 .332 .335	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071
Select-> Select-> Select-> Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.000 5.500 6.000 6.500	Accept L; Alkalinity exp TDS 1418.661 1508.114 1513.092 1557.074 1583.894 1620.926	PPT 0.000 0.029 0.136 0.165 0.128 0.126 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.585	T represents t Fe0H2z -11.480 -9.687 -8.691 -7.693 -6.700 -5.708 -4.721	he concentration FeOH3a -1.724 0.000 0.000 0.000 0.000 0.000 0.000	Schwert175 0.417 11.080 9.342 7.594 5.851 4.094 2.335	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000	-11 -2 0. -0 -1 -1	luminite A 1.416 .474 000 000 .332 .335 .341	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083
Select-> Select-> Select-> Select-> Select-> Select->	pH 3,100 4,000 4,500 5,500 6,000 6,500 7,000	Accept L; Alkalinity exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074 1583.694 1620.926 1649.674	PPT 0.000 0.029 0.138 0.165 0.128 0.128 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.565 1.180	T represents t Fe0H2z -11.480 -9.687 -8.691 -7.693 -6.700 -5.708 -4.721 -3.731	FeoHae -1.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Schwert17 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000 0.000	-1' -2 0. -0 -0 -1 -2 -3	luminite // 1.416 .474 000 000 .332 .335 .341 .345	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484 -6.498	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098
Select-> Select-> Select-> Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.000 5.500 6.000 6.500	Accept L; Alkalinity exp TDS 1418.661 1508.114 1513.092 1557.074 1583.894 1620.926	PPT 0.000 0.029 0.136 0.165 0.128 0.126 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.585	T represents t Fe0H2z -11.480 -9.687 -8.691 -7.693 -6.700 -5.708 -4.721	he concentration FeOH3a -1.724 0.000 0.000 0.000 0.000 0.000 0.000	Schwert175 0.417 11.080 9.342 7.594 5.851 4.094 2.335	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000	-1' -2 0. -0 -0 -1 -2 -3	luminite // 1.416 .474 000 000 .332 .335 .341 .345	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	pH 3,100 4,000 4,500 5,500 6,000 6,500 7,000	Accept L; Alkalinity exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074 1583.694 1620.926 1649.674	PPT 0.000 0.029 0.138 0.165 0.128 0.128 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.565 1.180	T represents t Fe0H2z -11.480 -9.687 -8.691 -7.693 -6.700 -5.708 -4.721 -3.731	FeoHae -1.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Schwert17 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000 0.000	-14 -2 00 -0 -0 -1 -2 -3 -4	luminite // 1.416 .474 000 000 .332 .335 .341 .345 .346	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484 -6.498	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.500 6.000 6.500 7.000 7.500	<u>A</u> ccept L; Alkalinity exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074 1583.894 1620.926 1649.674 1684.602	PPT 0.000 0.029 0.138 0.165 0.128 0.128 0.128 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.565 1.180 1.714	T represents t Fe0H24 -11.480 -9.687 -8.691 -7.693 -8.700 -5.708 -4.721 -3.731 -2.742	FeOH3a FeOH3a -1.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Schwert17 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578 -1.175	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000 0.000 0.000	-14 -2 00 -0 -0 -1 -1 -2 -3 -4 -5	luminite / 1.416 / .474 / 000 / 000 / .332 / .335 / .341 / .345 / .346 / .347 /	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077 0.598	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484 -6.498 -5.523	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098 -5.122
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	PH 3.100 4.000 4.500 5.500 6.000 6.500 7.000 7.500 8.000	<u>Accept</u> L; Alkalinity exp <u>TDS</u> 1418.661 1501.228 1508.114 1513.092 1557.074 1583.894 1620.926 1649.674 1684.602 1673.944	PPT 0.000 0.029 0.136 0.165 0.128 0.128 0.128 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.565 1.180 1.714 2.196	T represents t Fe0H24 -11.480 -9.687 -8.691 -7.693 -6.700 -5.708 -4.721 -3.731 -2.742 -1.764	FeOH3a -1.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Schwert17 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578 -1.175 -2.925	5 Boehmi -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-11 -2 0. -0 -1 -1 -2 -3 -4 -4 -5 -6	Iuminite / 1.416 .474 000 000 .332 .335 .341 .345 .346 .346	AlDH3a F -8.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077 0.598 1.042	-14.244 -12.451 -11.455 -10.457 -9.484 -8.472 -7.484 -6.498 -5.523 -4.582	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098 -5.122 -4.181
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	PH 3.100 4.000 4.500 5.500 6.500 6.500 7.000 7.500 8.000 8.500	Accept , Akalinky exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074 1583.894 1620.928 1649.6074 1664.607 16673.944 1674.538	PPT 0.000 0.029 0.136 0.165 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.565 1.180 1.714 2.196 2.500	T represents t FeOH24 -11.480 -9.687 -8.691 -7.693 -6.700 -5.708 -4.721 -3.731 -2.742 -1.764 -0.907	A Fe0H3a -1.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Schwert17 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578 -1.175 -2.925 -4.673	5 Boehmi -3.965 -1.263 -0.416 -0.166 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-11 -2 0. -0 -0 -1 -2 -3 -4 -4 -5 -6 -7	luminite , .416 . .474 . .000 . .000 . .332 . .335 . .341 . .345 . .346 . .347 . .346 . .343 .	AIOH3a F -6.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077 0.598 1.042 1.367	-14.244 -12.451 -11.455 -10.457 -9.484 -8.472 -7.484 -6.498 -5.523 -4.582 -3.704	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098 -5.122 -4.181 -3.304
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	PH 3.100 4.000 4.500 5.500 6.000 6.500 7.000 7.500 8.000 9.000	Accept ; Akalinky exp TDS 1418.681 1501.228 1508.114 1503.092 1557.074 1533.092 1557.074 1620.928 1649.674 1624.602 1673.546 1674.536 1668.278	PPT 0.000 0.029 0.136 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128	L as CaCO3; PF Siderite -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 -0.565 1.180 1.714 2.196 2.500 2.500	Tr represents t Fe0H24 -11.480 -9.687 -8.691 -7.693 -8.700 -5.708 -4.721 -3.731 -2.742 -1.764 -0.907 -0.283	FeOH3a FeOH3a -1.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Schwert17: 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578 -1.175 -2.925 -4.873 -6.420	5 Boehmin -3.965 -1.283 -0.416 -0.166 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-111 -22 00 -0 -0 -1 -1 -2 -3 -4 -4 -5 -6 -7 -7 -8	luminite , 1,416 , 4,74 , 000 , 000 , 332 , 335 , 341 , 345 , 346 , 347 , 346 , 347 , 348 , 343 , 343 , 343 ,	AIDH3a F -6.160 -3.478 -2.811 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077 0.598 1.042 1.367 1.559 1.683	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484 -6.498 -5.523 -4.582 -3.704 -2.888	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098 -5.122 -4.181 -3.304 -2.488
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	pH 3.100 4.000 4.500 5.000 6.500 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000	Accept ; Akalinky exp TDS 1418.681 1501.228 1557.074 1562.926 1649.674 1662.926 1649.674 1667.944 1673.944 1673.944 1673.955 1726.881 1771.565	PPT 0.000 0.029 0.138 0.165 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.123 0.212	L as CaCO3 PF Sidente -5.767 -3.975 -2.984 -2.001 -1.053 -0.179 0.565 1.714 2.196 2.500 2.500 2.219 1.428	T represents t Fe0H2 <i>i</i> -11.480 -3.687 -8.691 -7.693 -7.693 -7.693 -7.693 -7.693 -7.693 -7.693 -7.708 -4.721 -3.731 -2.742 -1.1.764 -0.907 -0.283 0.000 0.000	the concentration F=07434 0,000 0,	Schwert17: 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578 -1.175 -2.925 -4.673 -6.420 -8.173 -9.921	5 Boehmi -3.965 -1.283 -0.166 -0.166 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	-11 -2 00 -0 -0 -1 -1 -2 -3 -4 -4 -5 -6 -6 -7 -7 -8 -9	luminite , 1,416 , 4,74 , 000 , 000 , 332 , 335 , 344 , 345 , 346 , 343 , 343 , 343 , 344 ,	AIDH3a F -8.160 -3.478 -2.611 -2.361 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077 0.598 1.042 1.367 1.559 1.683 1.715	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484 -6.498 -5.523 -4.582 -3.704 -2.888 -2.200 -1.377	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098 -5.122 -4.181 -3.304 -2.488 -1.799 -0.976
Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select-> Select->	PH 3.100 4.000 4.500 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500	Accept Accept Akalinity exp TDS 1418.661 1501.228 1508.114 1513.092 1557.074 1583.894 1620.928 1649.674 1684.602 1673.944 1664.538 1668.278 1726.881	PPT 0.000 0.029 0.138 0.165 0.128 0.12	L as CacO3; PF Sidente -5.767 -2.984 -2.001 -1.053 -0.759 0.565 1.180 1.714 2.196 2.500 2.219	T represents t Fe0H2z -11.480 -9.687 -8.691 -7.693 -8.700 -5.708 -4.721 -3.731 -2.742 -1.764 -0.907 -0.283 0.000	he concentration FeOH3a 1.724 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	Schwert17: 0.417 11.080 9.342 7.594 5.851 4.094 2.335 0.578 -1.175 -2.925 -4.673 -6.420 -8.173	5 Boehmi -3.965 -1.283 -0.416 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-11 -2 0 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -11	luminite / 14.116 / 14.174 / 000 / 000 / 3.332 / 3.335 / 3.345 / 3.346 / 3.445 / 3.445 / 3.444 / 3.443 /	AIOH3a F -8.160 -3.478 -2.611 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195 -2.195	-6.867 -5.076 -4.084 -3.102 -2.153 -1.279 -0.534 0.077 0.598 1.042 1.367 1.559 1.683	-14.244 -12.451 -11.455 -10.457 -9.464 -8.472 -7.484 -6.498 -5.523 -4.582 -3.704 -2.888 -2.200	-13.844 -12.051 -11.055 -10.057 -9.063 -8.071 -7.083 -6.098 -5.122 -4.181 -3.304 -2.488 -1.799

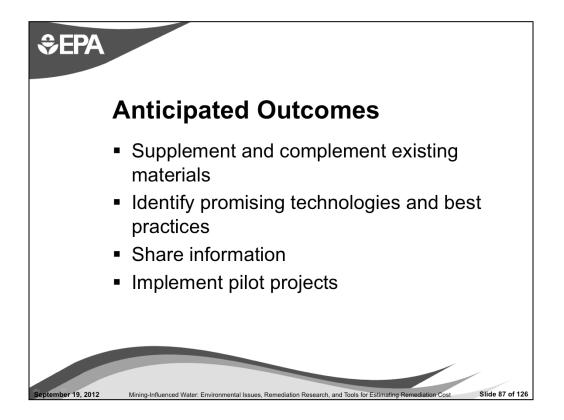
2.5	🖵 🕄 🖓 🖓 🖓 🖓	Chemical Cost Name	VITAL NUMBER	Last 0.00		an marg	Last		
1950	hemical Cost 1 of 1	A. Hydrated Lime ?		PHREBQ pH 9.00	• E. Anhydrous Ammonia ?	-	PHREBQ pH		
1	•	☐ 1.Titration? ✓ PHREEQ		with aeration	21. Titration? PHREEQ 22. AmmoniaTitration Amount	.000000	EQ with aeration bs of ammonia /		
	Add	2. Hydrated Lime Titration Amount	.002822	lbs of hydrated lime / gal of H2O			gal H2O		
		3. Hydrated Lime Purity	96.00	%	23. Ammonia Purity	99.00			
	opy Current	4. Mixing Efficiency of Hydrated Lime	80	%	24. Mixing Efficiency of Ammonia	90.00	%		
	Delete	5. Hydrated Lime Unit Cost	0.1000	\$/lb	Non-Bulk Delivery 25. Ammonia Non-Bulk Unit Cost	0.50	¢./lb		
	Suspend	O B. Pebble Quick Lime	?	Last PHREBQ pH	Bulk Delivery				
		6. Titration? PHREEQ	PHREE) with aeration	26. Ammonia Bulk Unit Cost	0.19	\$/lb		
1 Friday	dis Martin	7. Pebble Lime Titration Amount	.000000	lbs of Pebble Lime / gal of H2O	• F. Soda Ash ?		Last PHREBQ pH		
	Vater Parameters	8. Pebble Lime Purity	94.00	%	27. Titration? PHREEQ	PHRE	EQ with aeration		
	ect Chemical Cost	9. Mixing Efficiency of Pebble Lime	70.00	%	28. Soda Ash Titration Amount	.000000	bs of soda ash / gal H2O		
Calculated Acidity		O Delivered in Bags			29. Soda Ash Purity	99.00			
Alkalinit	/ 0.00 mg/L	10. Pebble Lime Bag Unit Cost	0.1100	\$/Ib	30. Mixing Efficiency of Soda Ash	60	%		
0	Calculate Net Acidity	Bulk Delivery 11. Pebble Lime Bulk Unit Cost		¢/lb	31. Soda Ash Unit Cost	0.1400	\$/lb		
	Acid-Alkalinity) inter Net Acidity	and come time built offic cost	0.000	States and a failes	O G. Known Chemical Cos	t?			
	anualty	O C. Caustic Soda?		Last PHREBQ pH	32. Known Annual Chemicial Cost		0 \$		
Net Acidit (Hot Acidity		12 Titration? PHREEQ		gal ofcaustic	Chemical Cost Sub-Tota	ale	Annual Amount Chemicals Con		
Design Flor		13. Caustic Titration Amount	,000000	/ gal H2O purity of 20%	33. Total Hydrated Line Cost	27.811			
Typical Flor	w 150.00 gpm	14. Caustic Purity	99.00	caustic solution	34. Total Pebble Line Cost	0		lbs	
Total Iro		15. Mixing Efficiency of Caustic	100.00	%	35. Total Caustic Soda Cost	0	Selling .	ga	
Aluminu		Non-Bulk Delivery 16. Caustic Non-Bulk Unit Cost	0.70	\$/gal	36. Total Anhydrous Ammonia Cost	0	548	lbs	
	20100	Bulk Delivery		1. 1. 1. 13	37. Total Soda Ash Cost	0	7.858	lbs	
Manganes	e 2.00 mg/L	17. Caustic Bulk Unit Cost	0.60	\$/gal	38. Total Known Chemical Cost	0	and the second second second		
127.4.4	COLOR DE CAR	Contraction of States of		Contract de sal	39. Total Flocculent Cost	0	Contraction of the	ga	
	Help	18. Floc	culents?		40. Selected Chemical: HYDRATED LIME				
	Report	19. Flocculent Consumption	0.00	gal/hour		27,811			
1 1		20. Flocculent Unit Cost	5.00	\$/gal	Annual Chemical Cost	27,011	*	1.00	



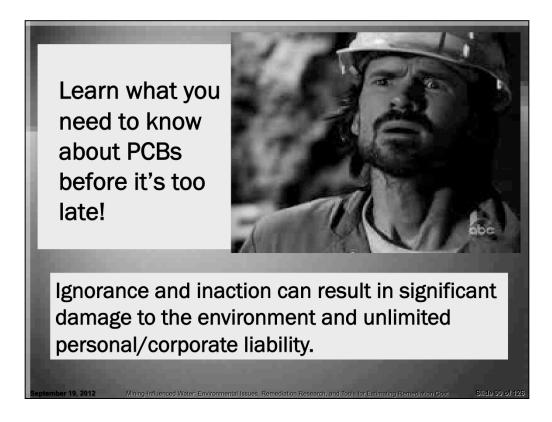



	ent ReCapitalizati	on 1 o	f 1	Recapitizalition Name Hydra	ted Lime						
		1. Ca	Iculation Period	50 yrs 2. Inflation			RECAPIT		ION WO	RKSHEE	т
1	Hydrated Lime	•	A	3. Net Rate of R	eturn 6.00 % B.		с.	D.	Е.	F.	G.
	Add		Item Descriptio	n	Cost pe Item	r	# of Items	Total Cost	E. Life Cycle	# of Periods	Total PV
	Delete	1.	Hydrated Lime Scr	ew Feeder	25,	000	1	25,000	17	2	25,33
	Suspend	2.	Aeration mixer		10,	000	1	10,000	7	7	34,67
	a de la como	3.				0	0	0	0	0	
		4,			14	0	0	0	0	0	
		5.				0	0	0	0	0	
		6.				0	0	0	0	0	
		7.				0	0	0	0	0	
		8.				0	0	0	0	0	
		9.				0	0	0	0	0	
		10.				0	0	0	0	0	
		11.				0	0	0	0	0	
		12.				0	0	0	0	0	
		13.				0	0	0	0	0	
		14.				0	0	0	0	0	
		15.			12	0	0	0	0	0	
		16,				0	0	0	0	0	
		17.				0	0	0	0	0	
		18.				0	0	0	0	0	
		19.				0	0	0	0	0	
	Constant of	20.				0	0	0	0	0	
	<u>To delet</u>	<u>e an</u>	item, make the	<u>e cost per item zero (0).</u>	- Total	Capit	al Cost	35,000	\$ PV Gran	d Total	60,011
	<u>To delet</u>	20.	item, make the	e cost per item zero (0).	- Total	0		0	0	0	

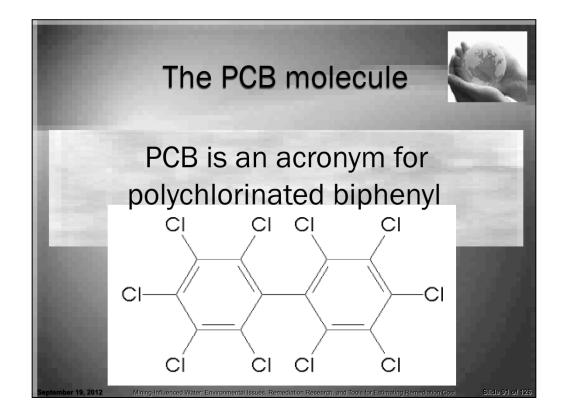

Comp	any Name					Printed on 09/	11/2012	
	Project					-		
	Site Name					10	1	
	Life of Trust Fund	i 50 yr	5	AMD TRE	ΔТ		e	
Inflation Rate 3.10 %								
Return Rate		6.00 %	RECAP	THZALITIC	NCOST	AMOTREAT		
Yea	r Trust Fund	Trust Fund	Payout		Trust Fund	Trust Fund	Payout	
	Growth Fund Before Payout	Growth Fund After Payout	Schedule	Year	Growth Fund Before Payout	Growth Fund After Payout	Schedule	
	60,011	60,011	Initial Fund Amount					
1	63,611	63,611	0	51	0	0	0	
2	67,428	67,428	0	52	0	0	0	
3	71,474	71,474	0	53	0	0	0	
4	75,762	75,762	0	54	0	0	0	
5	80,308	80,308	0	55	0	0	0	
6	85,127	85,127	0	56	0	0	0	
7	90,234	77,852	12,382	57	0	0	0	
8	82,523	82,523	0	58	0	0	0	
9	87,474	87,474	0	59	0	0	0	
10	92,723	92,723	0	60	0	0	0	
11	98,286	98,286	0	61	0	0	0	
12	104,183	104,183	0	62	0	0	0	
13	110,434	110,434	0	63	0	0	0	
14	117,060 107,831	101,728	15,332	64	0	0	0	
15	114,301	114,301	0	65	0	0	0	
16	121,159	79,151	42,008	66	0	0	0	
1/	83,900	83,900	42,000	68	0	0	0	
18	88,934	88,934	0	69	0	0	0	
20	94,270	94,270	0	70	0	0	0	
20	99,926	80,940	18,985	70	0	0	0	
22	85,797	85,797	0	72	0	0	0	
23	90,945	90,945	0	73	0	0	0	
24	96,401	96,401	0	74	0	0	0	
25	102,185	102,185	0	75	0	0	0	
26	108,316	108,316	0	76	0	0	0	
27	114,816	114,816	0	77	0	0	0	
28	121,704	98,195	23,509	78	0	0	0	
29	104,087	104,087	0	79	0	0	0	
30	110,332	110,332	0	80	0	0	0	
31	116,952	116,952	0	81	0	0	0	
32	123,969	123,969	0	82	0	0	0	
22	131.407	131/07	n	02	n	n	n	



Technology	Technology Description	Treated Constituents	Scale	Example Sites	Operations	Long-term Maintenance	Engineering Constraints	Costs	Effectiveness
Anoxic Limasona Pains (ALD) ^{, ICD}	A limitation drain is a limitation of the second se	Al. Fe. acidity	Pull-scale	Pabius Coal Pression Plant, Copper Built Manag Site, Tol Construction Plant, Construction Plant, Construction Plant, Chine Abautened Site Office Plant Fernance, A.M. Tenansse, Valler	The construction of an ALD consists of smech construction of the smech construction of the smech construction of the smech of the smech of the smech of the smech of the smech play or compact as said as well as one of the smech and sample of the smech and smech of the smech of t	Routine and the second second second impected by listing and the impected of the variation for variation for variation of the variation of the second second periodic cleaning of the discharge periodic cleaning of the discharge periodic cleaning of the discharge regelation of the discharge regelation of the discharge of the discharge regelation of the discharge disc discrete the second second of the discharge disc discrete the second second of the discharge disc discrete the second second discrete the second second second second second discrete the second second second second second second discrete the second second second second second second second discrete the second second second second second second second second discrete the second s	ALD are resulted to more AUV that has been that and the second automatical and the second automatical and during the second automatical methods and an automatical methods and automatical methods and automatical methods and automatical methods and automatical and automatical automatical and automatical and automatical and automatical au	Paulie researcher cyteme and off respectively were unad for respectively were provided were appropriate the second second second second results of the second second second results of the second second second second second second seco	A liability concentration is the efforter ranged S0-320 mg L as CACO Vite a set anxiety of the set approximately 15 board of detention is in the ALT water contained lists that the vite of contained lists that the vite of contained lists that the efforts of the set of alkaling the over 10 year. As ALT previous gradient of the set of alkaling the over 10 year. As ALT previous gradient of the set of alkaling the over 10 year. As ALT previous gradient of the set of alkaling the over 10 year. As ALT previous gradient of the set of the set of the set of the set of the set of the set of the set of the set



PCBs Mining and Water Pollution

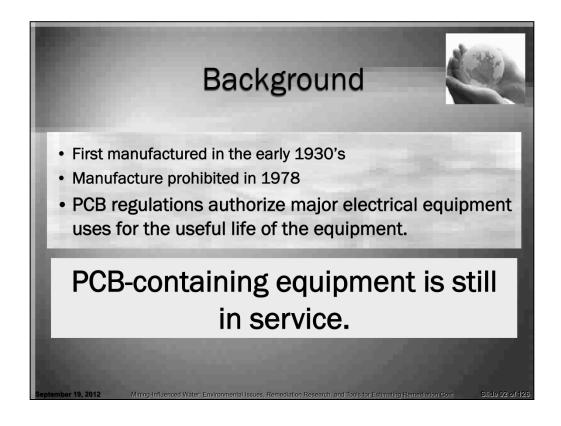

PCBs abandoned in mines can cause water pollution problems for which there may be no reasonable solution. This can be prevented!

Mining-Influenced Water CLU-IN Webinar September 2012 U.S. Environmental Protection Agency

Don't let this be you upon discovery of PCBs in your mine.

PCBs are man made chemicals

PCBs due to their stability, insulating properties, and fire resistance, found many industrial uses.


The PCB molecule can occur as one of 209 different congeners.

Different congeners contain different combinations of chlorine atoms on the PCB molecule.

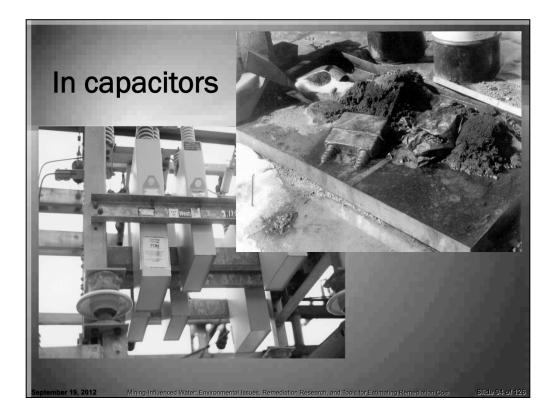
Monsanto Corporation marketed mixtures of PCB congeners as Aroclors until 1977.

Aroclors mixed about 50/50 with trichlorobenze were marketed as trade name dielectrics for transformers.

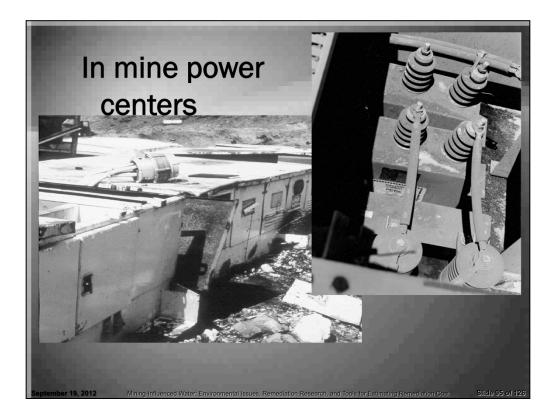
Examples:	Pyranol	made by General Electric
	Inerteen	made by Westinghouse
	Clorextol	made by Allis-Chalmers

Manufacture was voluntarily discontinued by Monsanto in 1977.

PCB-containing equipment is still in service. A common **misunderstanding of the regulations** is that PCBs are no longer in electrical equipment because manufacture was prohibited in 1978. However, the regulations authorized continued use as dielectrics in electrical equipment for the useful life of the equipment.

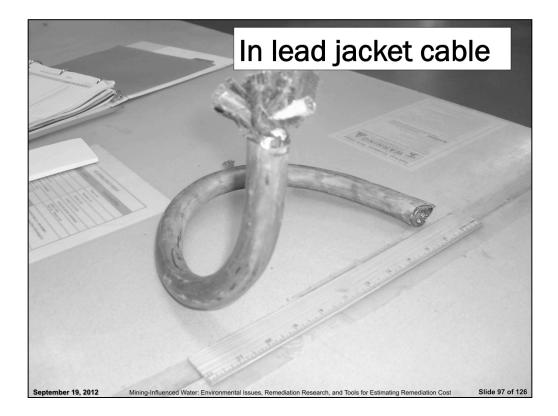

Examples: Dielectrics in transformers

capacitors


fluorescent light ballasts

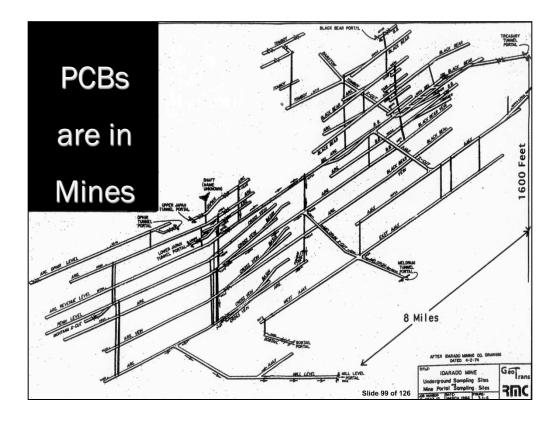
Mineral oil transformers can be contaminated with PCBs. Leaking transformers on the middle left. Very large transformers like those on the right have been observed in iron ore mills near Lander, Wyoming.

PCB capacitors contain pure Aroclor. Note the PCB mark on the capacitor left from a surface facility at a coal mine in Utah


Mine power center with large PCB capacitors awaiting disposal at a Utah coal mine

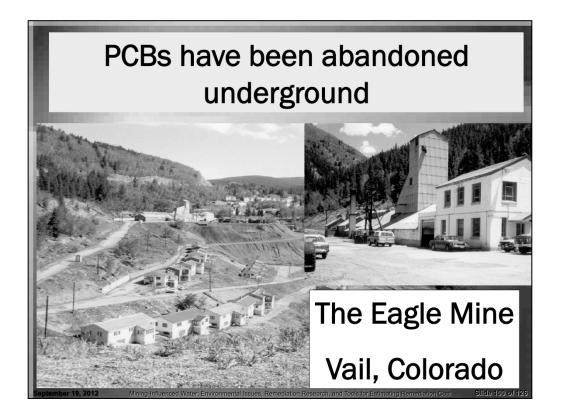
Fluorescent light ballasts manufactured prior to 1978 contain PCBs

A thimble sized capacitor embedded in the potting compound contains pure Aroclor


A large percentage of ballasts have regulated levels of PCB in the potting compound

Any cable with liquid or damp insulation inside is likely to contain PCBs.

A place you feel safe from PCBs and wouldn't expect to find them just above Telluride, Colorado. But around the corner a few hundred yards to the left...



is the Idarado Mine. Inspection revealed 23 85-gallon PCB transformers underground.

This is a typical mine.

8 miles by 3,000 feet.

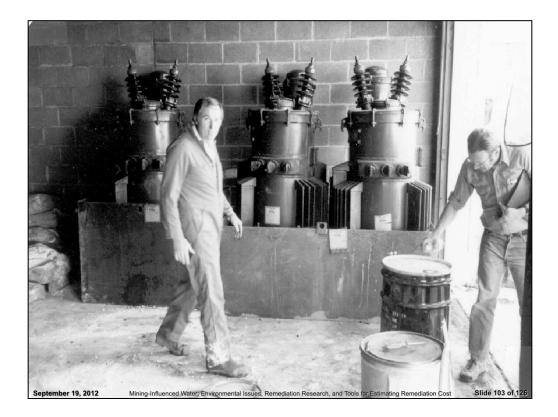
An operation this size has lots of power requirements and is likely to have PCB equipment

The Eagle Mine, a major Zn producer during WWII up until about 1968, contained abandoned PCB transformers and large PCB capacitors underground and on the surface.

This was a CERCLA removal.

Underground:

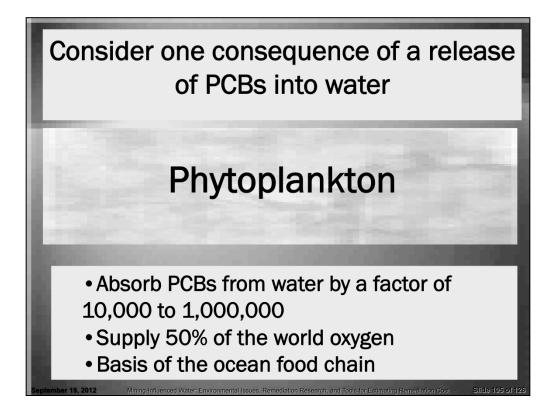
- three 76 gallon Pyranol transformers at the 2010 substation.
- three 65 gallon Pyranol transformers at the 1623 substation.
- 17 large PCB capacitors (each containing > 3 pounds of pure Aroclor)

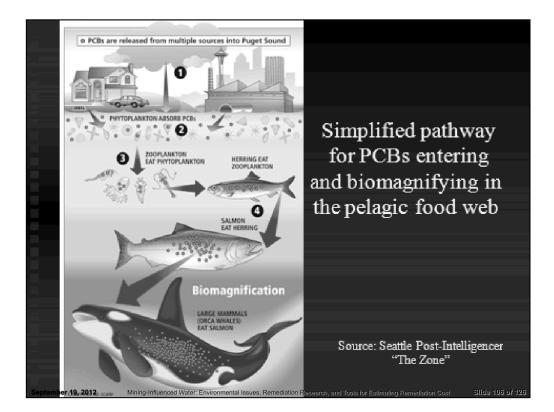

Two of three 76 gallon Pyranol transformers underground at the 2010 substation. There were three drained 65 gallon Pyranol transformers at the 1623 substation behind the fire seals that could not be removed. The mine was on fire at the time of the removal. About six gallons of Pyranol remained in each of these 65 gallon transformers.

Eight hundred feet below the 20 level the mine is flooded down to the 28 level.

What electrical equipment may have been abandoned there is unknown.

This transformer has been removed from the 2010 substation and is on the way to the 2010 incline. The mine is flooded now up the the level of the truck.



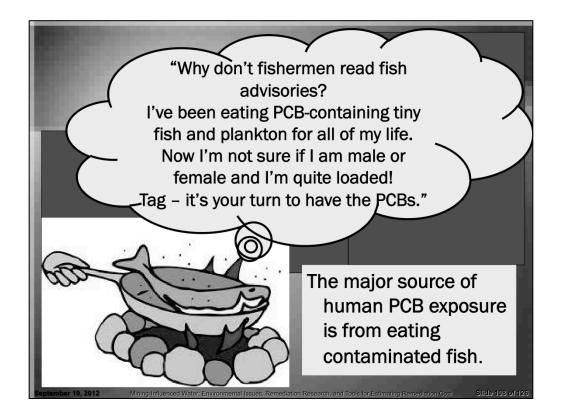

76 gallon Pyranol transformers removed from the 2010 substation now in storage in the surface warehouse.

Why are PCBs a problem?

- PCBs are one of the most stable organic chemicals known: PCBs are resistant to biodegradation
- PCBs are soluble both in fat and water
- · PCBs are estrogenic compounds
- · PCBs harm people, animals, birds, and fish

PCBs circulate globally and continue to accumulate in the environment

Referred from NOAA


PCBs are absorbed from ocean water into phytoplankton

copepods feed on phytoplankton

Small fish feed on copepods

The food chain leads to killer whales

Killer whales carry the most PCB contamination of any mammal

The Killer Whale and man have something in common: they are both predators at the top of the food chain.

The fish isn't sure if it is male or female because PCBs are estrogenic compounds (hormone mimics).

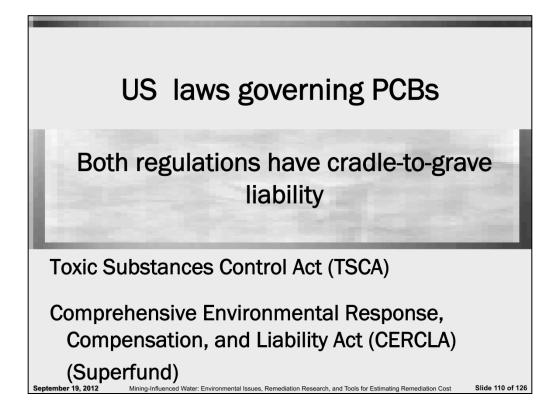
Estrogenic compounds cause

- sexual changes in fish.
- Persistent memory and learning problems and children and adults
- genital defects in children, polar bears, alligators
- deformed sperm in men
- reduced sperm counts in men

•Affected Organ Systems: Dermal (Skin), Developmental (effects during periods when organs are developing), Endocrine (Glands and Hormones), Hepatic (Liver), Immunological (Immune System), Neurological (Nervous System)

PCBs have become a worldwide problem

FDA has been compelled to issue tolerances for PCBs in: fish, meat, milk, eggs, soap, and food packaging


FDA tolerances for:

milk	1.5 ppm PCB
dairy	1.5 ppm PCB
fish	3.0 ppm PCB
poultry	3.0 ppm PCB
eggs	0.3 ppm PCB
paper food packaging	10.0 ppm PCB

soap

...

3.0 ppm PCB

TSCA and CERCLA (Superfund) are the two big drivers

Both are strict liability statutes.

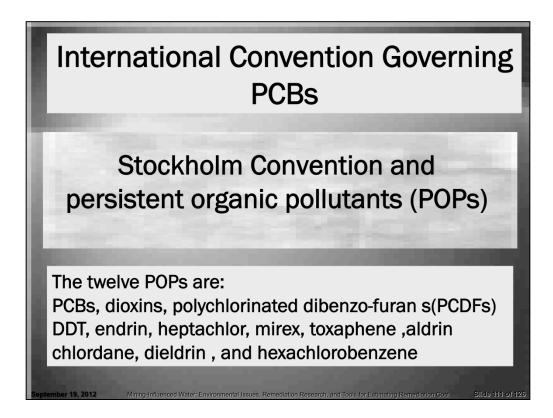
Liability is determined by present day site conditions.

Owners and operators can be liable regardless of how and when the conditions came about.

Both regulations have cradle-to-grave liability.

TSCA

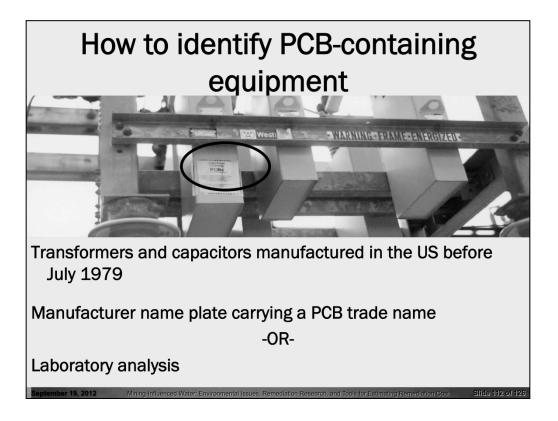
Controls use authorizations, marking, storage, disposal, recordkeeping, cleanup and prohibits dilution to evade disposal regulations.


CERCLA

Goals are to assure cleanup and to attach the cost of cleanup to parties other than the taxpayer Liabilities as defined by CERCLA:

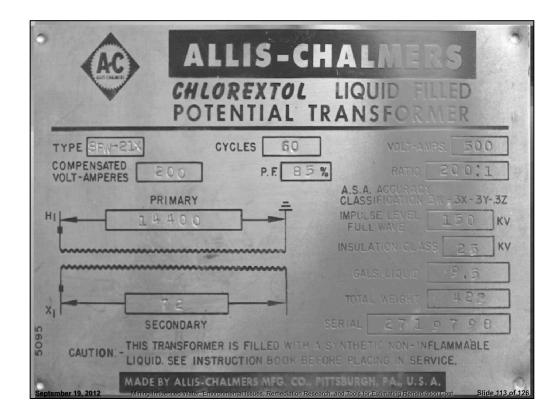
• Present owners and operators may be liable for actions that occurred prior to the legislation.

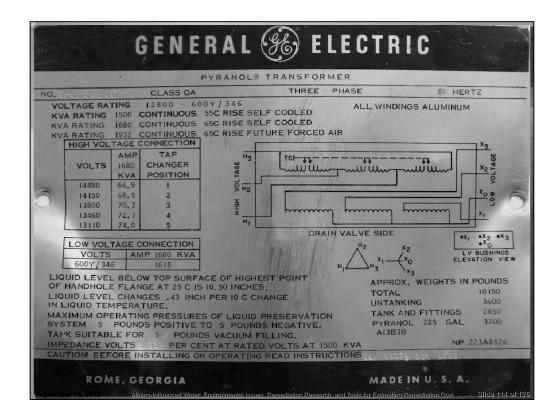
- Corporations and **individual employees** may be liable.
- PCBs at any concentration may result in liability, if they cause problems.
- The potential liability has no bounds.


Laws similar to TSCA and CERCLA may be enacted in other countries in the future.

178 nations are parties to this convention.

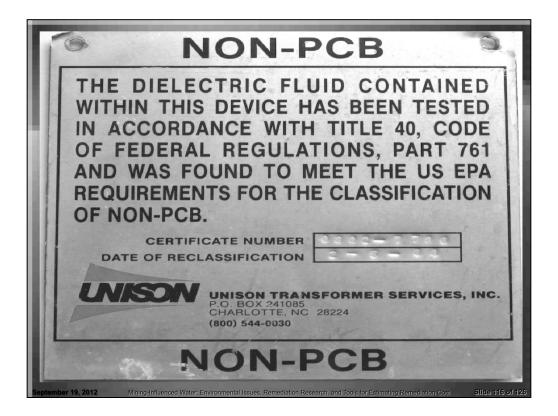
PCBs, dioxins, and PCDFs concern the mining industry.


The list of POPs continues to increase.

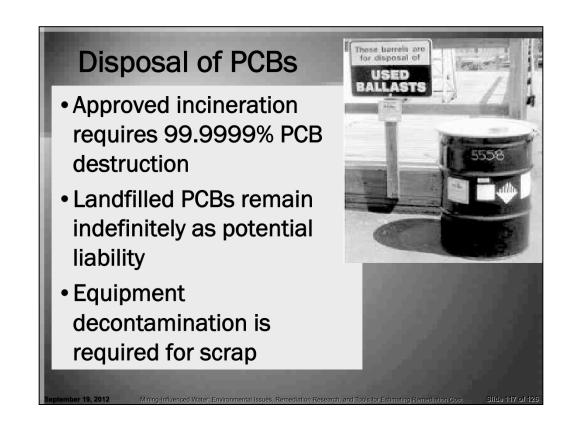

Equipment containing mineral oil may have been contaminated with PCBs and will need laboratory analysis to identify PCBs.

The PCB regulations require transformers and capacitors manufactured before 1979 to be presumed to contain high concentration PCBs

Examples of nameplates with PCB trade names follow:


Example name plate. Chlorextol is a PCB trade name

Example name plate. Pyranol is a PCB trade name

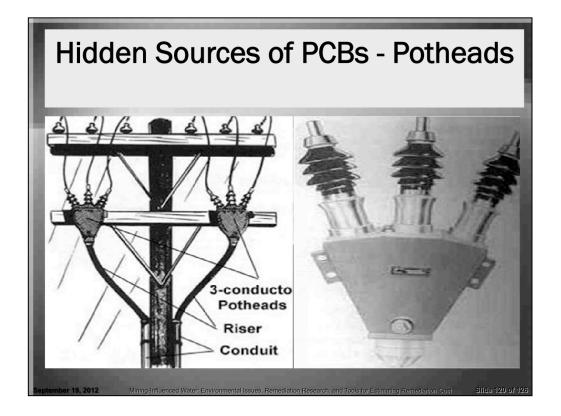

Example name plate. Inerteen is a PCB trade name

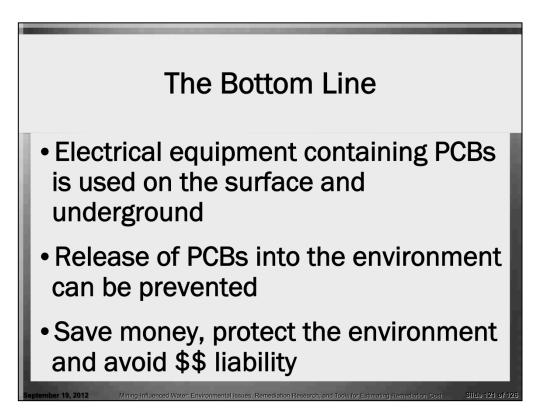
This nameplate does not mean No PCBs.

By definition, a non-PCB transformer can contain up to 50 ppm PCBs.

Even though a company is in compliance with TSCA this does not protect against CERCLA liability

Incineration is believed by EPA to be the most effective method of PCB destruction.


Products of open burning can be even more hazardous than the original PCBs.

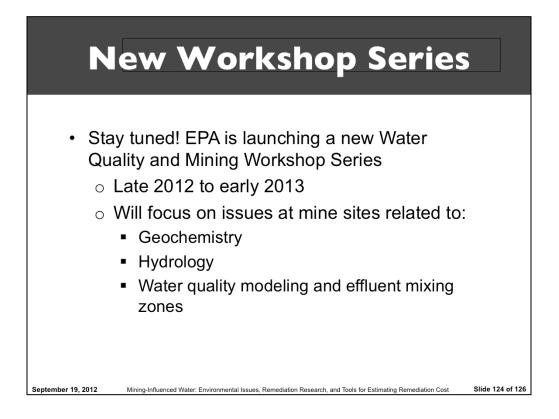

Open burning can

- change PCBs into dioxins and dibenzofurans
- vaporize PCBs along with dioxins and dibenzofurans

Hidden Sources of PCBs

- ✓ Transformer bushings
- ✓Voltage regulators
- Any asphalt-like material used as an insulator or dielectric
- ✓ Small motor starting capacitors
- \checkmark Paints, lubricants, and caulks
- ✓ Pot heads (example, next slide)

Thank You for Your Attention


Dan W. Bench, PCB Coordinator, EPA Region 8

303.312.6027

bench.dan@epa.gov

Please see epa.gov/pcb and epa.gov/region8/toxics/pcb for further information

Later this year, EPA is launching a new workshop series that focuses on water quality and mining. The series, which will begin in late 2012 and will run through early 2013, focus on issues at mine sites related to geochemistry, hydrology, and modeling for water quality modeling at mixing zones. More information will be available through the CLU-IN Mining Sites Focus Area later this fall.


	Resources &	Feedback
se • Pl	o view a complete list or eminar, please visit the ease complete the <u>Fee</u> nsure events like this ar	Additional Resources Additional Resources
CLU-IN More	CEPA United Stress Environmental Particular Agency U.S. EPA Technology Innovation Program	
Go to Seminar Links	Green Remediation: Opening the Door to Field Use Session C (Green Remediation Tools and Doamples) Seminar Feedback Form We would like to receive any feedback you might have that would make this service more valuable. Please take the time to the of the form before leading the site.	Need confirmation of your participation today?

Thank you again for your attention and comments. I want to remind each of you that we are looking for your specific responses to many of the issues discussed today in our feedback form following this session.

Also, there are several resources and related documents included in the links to more resources on this page.

If you have any additional questions or comments, please feel free to contact myself or fill out a comment form on CLUIN.

Thank you and have a great afternoon.

