### RISK@Learning Nanotechnology – Applications and Implications for Superfund

| Superfund<br>Superfund<br>Bisic Research Relevance | Februar<br>Ses<br>"Nanotechr<br>Remo<br>Dr. Mason Toms<br>Dr. Shas M<br>Northwest Na | ry 13, 2007<br>sion 2:<br>nology – Metal<br>ediation"<br>son, Rice Univers<br>attigod, Pacific<br>tional Laboratory | ity             |
|----------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|
| SBRP/NIEHS                                         | EPA                                                                                  | L                                                                                                                   | MDB             |
| William Suk                                        | Michael Gill                                                                         | Nora Savage                                                                                                         | Maureen Avakian |
| Heather Henry                                      | Jayne Michaud                                                                        | Barbara Walton                                                                                                      | Larry Whitson   |
| Claudia Thompson                                   | Warren Layne                                                                         | Randall Wentsel                                                                                                     | Larry Reed      |
| Beth Anderson                                      | Marian Olsen                                                                         | Mitch Lasat                                                                                                         |                 |
| Kathy Ahlmark                                      | Charles Maurice                                                                      | Martha Otto                                                                                                         |                 |
|                                                    |                                                                                      |                                                                                                                     |                 |

### **Contaminant Removal and Water Reuse: Research Opportunities with Nanotechnology**

## Arsenic Adsorption on Nanoscale Magnetite

### Mason Tomson

Vicki Colvin Amy T. Kan, Heather Shipley, Sujin Yean, Xuekun Cheng, Lili Cong, Ping Zhang, Wei Chen and John Czarnik

Center for Biological and Environmental Nanotechnology & Department of Civil and Environmental Engineering Rice University Houston, TX



2



These are the most general and important "first" points to know about Arsenic. The particularly important point, highlighted in green, is that it is As(III) that is the largest threat to humans.



**Redox conditions, pH, biological activity and specific chemical reaction are keys to distribution – NOT A GENERAL SOLUBILITY BALANCE!** 

The last statement is a "soft" way of saying "without normal oxidizing and acid conditions, we have a problem!"



This is how arsenic is deposited and gets into a aquifer.



For the scientifically and chemically oriented audience members!



The picture is a sample of arsenic sulfide.

Important points to emphasize are that:

•Aquifers are "vessels" that can, potentially, extend a contamination problem over a wide area.

•Human activity sources of arsenic, though potentially and actually lifethreatening, usually create contamination zones that are <u>limited</u>, relative to natural sources.



A reducing environment can create and preserve arsenite. When we withdraw it from that environment, as in withdrawing water from a well, it can take a long time for a significant portion of the arsenite to oxidize and become "safer"!



This is the result of arsenic ingestion – including inhalation impact on the lungs. (I don't have a specific reference for the 50 ppb statement, but it is stated in at least one place in USGS or WHO publications. JWC)



Plenty more on the referenced website!



#### This is how the

Contamination Location and Level of contamination Population Health and Life and Death

come together!



The values shown are far from the highest recordings in these areas, but they are presented to provide a "sampled picture" of how arsenic contamination is spread throughout the world. (The next slide – if used – is a table showing the ranges of concentrations encountered in some of these areas.)

| International<br>Contamination                                                 | Arsenic<br>on Sites                               |      |
|--------------------------------------------------------------------------------|---------------------------------------------------|------|
| Location                                                                       | <u>Conc. As (ppb).</u>                            |      |
| Taiwan: Southwest Coast                                                        | 100–1810                                          |      |
| Taiwan: Putai                                                                  | 470–897                                           |      |
| Chinese Inner Mongolia (Hetao Plain)                                           | 50–1080                                           |      |
| Bangladesh: Ganges Delta                                                       | 10–2040                                           |      |
| Bangladesh: Pabna (North District)                                             | 50-14,000                                         |      |
| India: West Bengal                                                             | 50-3400                                           |      |
| Vietnam: Hanoi and Red River Valley                                            | 1–3050                                            |      |
| Note: Table adapted from Joanna Shaofen Wang and Chien M. Wai, L<br>Feb., 2004 | 1.0f Idaho. J. Chem. Ed.,vol. 8, n.2, p.209<br>13 | RICE |

Clearly, the values on the previous slide (which showed 100 ppb in Taiwan, > 200 ppb in Bangladesh and >1,000 in China) were not maximum values! In fact the next slide shows haw bad the problem is in one area in Bangladesh.)



Here is map of the sampled concentrations of arsenic in the water in the United States. Recently (January 2006), the USA has imposed a standard of <10 ppb (<10 mg/L) concentration in drinking water in the Country. This change from the previous 50 ppb has intensified the search for improved processes for reducing the amount of arsenic in drinking water – **on top of** the demands caused by much more hazardous concentrations in other areas of the world.





This is an "encapsulation of information" that briefly gives glimpse of the extent of the contamination and potential health impact of arsenic contamination.



## New Jersey proposes toughest arsenic standard worldwide

The state of New Jersey has proposed an arsenic standard for drinking water that, if adopted, would be twice as stringent as the U.S. EPA standard and World Health Organization guideline of 10 parts per billion (ppb). The 5-ppb standard is based on recommendations from the New Jersey Drinking Water Quality Institute (NJDWQI), which found that a 10-ppb level wouldn't meet the level of protection required by state doesn't permit. For example, it is far more expensive to reduce arsenic levels in states such as New Mexico than in New Jersey, explained Bradley Campbell, commissioner of the state's Department of Environmental Protection (DEP), in a policy directive.

Environmentalists and water purveyors, both of which are represented on NJDWQI committees, say they support the New Jersey standard. Many in the state say that

ES&T March 15, 2004



| Effects of                                                    | f New S                      | tandard                 |           |
|---------------------------------------------------------------|------------------------------|-------------------------|-----------|
| Max. Levels reduce                                            | ced from 50                  | μg/L to 10 μ            | g/L       |
| <ul> <li>13 million people i<br/>(West, Midwest, N</li> </ul> | in areas of I<br>I. England) | nigher standa           | ard       |
| <ul> <li><u>Annual</u> Estimated</li> </ul>                   | Reductions                   | 6:                      |           |
|                                                               | Cases                        | Deaths                  |           |
| Bladder Cancer                                                | 19-31                        | 5-8                     |           |
| Lung Cancer                                                   | 19-25                        | 16-22                   |           |
| Diabetes                                                      | ?                            | ?                       | 19        |
| Heart Disease                                                 | ?                            | ?                       |           |
| Source: Environmental Protection Agency (US)                  | ) (Jan. 2001) Technical      | Fact Sheet EPA 815-F-00 | -016 RICE |

Here is the Environmental Protection Agency's assessment of the <u>annual</u> impact of reducing the levels of arsenic in drinking water in the United States

| Annual                               | Estimated Co<br>Standard: <50                                                             | ost of Raising                                                                                                              | Arsenic                 |
|--------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| EPA estin<br>reporting<br>\$181 mill | nates the total national annual, recordkeeping, and adminision (using 1999 dollars at a t | alized costs of treatment, more<br>tration for this rule to be app<br>hree percent discount rate.<br>In millions of dollars | nitoring,<br>roximately |
|                                      | Treatment                                                                                 | \$ 177*                                                                                                                     |                         |
|                                      | Monitoring                                                                                | *(3% Discount Rate, \$millions)                                                                                             |                         |
|                                      | State Costs                                                                               | 1.0                                                                                                                         |                         |
|                                      | Total                                                                                     | \$ 181                                                                                                                      | 20                      |
| Source: 1                            | Environmental Protection Agency (US) (Ja                                                  | n. 2001) Technical Fact Sheet EPA 815-F-                                                                                    | 00-016 RICE             |

Note that this is the <u>annual</u> cost.

# Motivation for Our Work with Nanotechnology

- A need for a cost-effective and highperformance technology to remove arsenic from drinking water
  - Reduce arsenic to less than  $10\mu g/L$  in less than a minute
- The mechanism of arsenic removal by iron oxides



## **Current Technologies**

### • US EPA As standard level: 10µg/L

| TechnologyDisadvantagesIon exchangeNo As(III) removal<br>Interference from SO42-& TDSMembrane methodsExpensiveCoagulations with iron<br>saltsSolid-liquid separation                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ion exchange       No As(III) removal         Interference from SO <sub>4</sub> <sup>2-</sup> & TDS         Membrane methods       Expensive         Coagulations with iron salts       Solid-liquid separation |
| Interference from SO <sub>4</sub> <sup>2-</sup> & TDS       Membrane methods     Expensive       Coagulations with iron salts     Solid-liquid separation                                                       |
| Membrane methods     Expensive       Coagulations with iron salts     Solid-liquid separation                                                                                                                   |
| Coagulations with iron<br>salts Solid-liquid separation                                                                                                                                                         |
| 22                                                                                                                                                                                                              |
|                                                                                                                                                                                                                 |









## Experimental Set-up: Vessel Apparatus

- Temperature controlled
- Overhead
   agitator/stirrer
- 3 connectors by 3-way valves
  - Sampling
  - Ar gas
  - Solution injection/gas purging
- Anoxic/ Oxic conditions
   27



















## Field Test – Brownsville, TX

 Arsenic-contaminated water from Southmost Regional Authority Desalination Plant Brownsville,TX in August, 2006: Wells #8 and 12 (Brackish water: ~ 5mS/cm)


## Characterization of Brownsville Wells

|                                                        | Well #8 | Well #12 |
|--------------------------------------------------------|---------|----------|
| Initial As (µg/L)                                      | 27.2    | 39.0     |
| pH                                                     | 7.32    | 7.39     |
| Alkalinity<br>(mg/L as HCO <sub>3</sub> <sup>-</sup> ) | 335     | 464.6    |
| $SO_4^{2-}$ (mg/L)                                     | 1165    | 1192.5   |
| Silica<br>(mg/L as SiO <sub>2</sub> )                  | 41.4    | 36.4     |
| PO <sub>4</sub> <sup>3-</sup> (mg/L)                   | 0.23    | 0.16     |
|                                                        |         | 37       |













Lets start with some applications.

As you know, Mason and Vicki are working to develop a novel approach to remove arsenic from drinking water using magnetite nanoparticles that are not only superior sorbents with minimal bleed-off potential, but are also amenable for magnetic separation.

This could therefore result in a cost-effective treatment system that could be used at the household-level to alleviate arsenic poisoning in many areas of the world that. Clorox who makes Britta filters has shown a lot of interest.



## Acknowledgement

 Funding of this project is from the Center for Biological and Environmental Nanotechnology (CBEN) at Rice University, NSF, and EPA STAR nanotechnology grant





|          | Functionalized Ceramic Nanoporous Sorbents                                                                                            |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|          | 1. Introduction                                                                                                                       |  |  |  |
|          | 2. Nanoporous Sorbents<br>Substrate Synthesis<br>Monolayer Functionalization process (SAMMS)<br>Host design for molecular recognition |  |  |  |
|          | 3. Performance – SAMMS (Self Assembled Monolayers<br>on Mesoporous Supports)<br>thiol SAMMS<br>Cu-EDA SAMMS<br>HOPO SAMMS             |  |  |  |
|          | 4. Treatment costs & waste form stability                                                                                             |  |  |  |
|          | 5. Potential Applications & Commercialization                                                                                         |  |  |  |
| Battelle | 47                                                                                                                                    |  |  |  |






























































