RISK@Learning Nanotechnology – Applications and Implications for Superfund

Superfund Saic Keearch Program	March 15, 2007 Session 3: "Nanotechnology – DNAPL Remediation" Dr. Matt Hull, Luna Innovations, Inc. Dr. Peter Vikesland, Virginia Tech Dr. Greg Lowry, Carnegie Mellon University		Inc. ech on
SBRP/NIEHS	EPA		MDB
William Suk	Michael Gill	Nora Savage	Maureen Avakian
Heather Henry	Jayne Michaud	Barbara Walton	Larry Whitson
Claudia Thompson	Warren Layne	Randall Wentsel	Larry Reed
Beth Anderson	Marian Olsen	Mitch Lasat	
Kathy Ahlmark	Charles Maurice	Martha Otto	

Luna/VT EPA SBIR Program (Status: Phase II)

- Develop magnetite nanoparticles for remediation of chlorinated organic compounds (other targets)
- Develop delivery strategies that facilitate particle delivery to subsurface and interaction with target
- Scale-up production of Phase II-optimized magnetite form for commercial application

5

Copyright © Luna Innovations 2006

Magnetite Synthesis and Particle Characterization

- Co-precipitation Method
 - Vayssières et al. J. Coll. Int. Sci. 1998
 - Mixture of FeCl_3 and FeCl_2 to NaOH
 - Rapid stirring
- Mean Particle Dia. = 9.2 ± 1.6 nm

Synthesis done under conditions of strict oxygen exclusion

9

Reporting km values - not ksa; pH range was limited by HEPES buffer...

Magnetic forces....

Concept and Advantages

- Maintain anaerobic microenvironment
- Microvessels for addition of rateenhancing reactants, remediation cocktails (Quinn et al., 2005)
- Functionalize surface for enhanced suspension properties
- May facilitate long-term storage under ambient conditions
- Add control over reaction chemistry, kinetics

'Trojan Horse' Concept

Source: http://911review.com/disinfo/

Encapsulation affords an added layer of engineering control over reaction chemistry and timing 25

Copyright © Luna Innovations 2006

Precedent: NASA EZVI (Quinn et al., 2005)

- Two components:
 - ZVI for reductive dechlorination
 - Veg oil for enhacement of microbes
- Unclear whether reactivity with TCE due to ZVI or microbial enhancement
- Injection methods can damage EZVI droplets

Burning Questions

- Reactivity of encapsulated magnetite nanoparticles?
- Control/tunability of the capsule/particle composite?
- Preservation of particle reactivity in the capsule?
- Breakdown and particle release process?

How much DNAPL does it take to get to the center of the ironfilled capsules?

29

Copyright © Luna Innovations 2006

Thoughts about Nanotech EHS

- Realize societal benefits of nanotechnology responsibly
 - Unique reactivity
 - Possible unintended effects
- Luna NanoSafe™: Started in 2003 to address EHS concerns proactively
- Q2 2007: Begin third party ecotox testing of various nano iron species and composites

Acknowledgments

- Funding
 - US EPA SBIR Program
 NSF (Dr. Vikesland's Lab)
- Virginia Tech Environmental BioNanoTechnology Lab April Heathcock Erik Makus Rob Rebodos

 - John Templeton
- Luna Innovations •
 - Life Sciences Group
 - Len Comaratta
 Steven Abbott
 Natasha Belcher
 - Advanced Materials Group
 - Kristen Selde • Bryan Koene

Contact Information

Matthew Hull

Principal Investigator

Phone: 540.961.4500 Email: hullm@lunainnovations.com

33

Functionalized Reactive Nanoiron (NZVI)

Surface modifiers

Ó

PSS

PAP

TCE + Fe⁰ \rightarrow HC Products + Cl⁻ + Fe²⁺/Fe³⁺

Liu, Liu

n, Y., Lowry, G.V. et al, (2005) and Lowry (2006) <i>ES&T</i> 40, 6	<i>ES&T 39, 1338</i> 085	P	PMAA-PMMA-PSS				
RNIP Modifier	ζ potential (mV)	Average Dia (nm)					
RNIP (none)	-29.6±2.8	146±4					
PMAA ₄₈ -PMMA ₁₇ -PSS ₆₅₀	-42.3±1.5	212±21					
SDBS	-38.25±0.9	190±15	Contraction of the second seco				
MRNIP (PAP MW=2.5k)	-37.6±1.1	66±3	Contraction of the second				
PAP (MW=2.5k)	-51.7±0.4	32.6±18.6					
PSS (MW=70k)	-48.9±1.5	31.1±16.6	39				

Mobility depends on Site Geochemistry										
Applying a simple		<u>Modifier</u>		<u>Na⁺</u> (mM)	<u>Log α</u> <u>()</u>	<u>Dist.</u> (<u>m)</u>	<u>Ca²+</u> (mM)	<u>Log α</u> <u>()</u>	<u>Dist.</u> (<u>m)</u>	
the predicted	filtration model yields the predicted transport distance needed for 99% removal	Pol	<u>ymer</u>	10			0.5			
99% re		(MV	V=125k)	100	-2	33	5	-1.89	25	
		As	oartate	10	-2.5	45	0.5	-1.77	8	
		(M\	V=3k)	100	-0.96	1.2	1	-0.96	1.2	
		<u>SDBS</u>		10	-2.7	150	0.5	-1.33	6.6	
		(MW=350)		100	-0.6	1.2	1	-0.89	2.4	
S	ite	K ⁺ + Na ⁺ mM		Ca	Ca ²⁺ + Mg ²⁺ mM		"Tunia	"Typical" concentrations of monovalent and divalent cations 53		
Alame	Alameda Point, CA		197		2.4		$\neg \begin{vmatrix} 1 \text{ ypic} \\ \text{of } r \end{vmatrix}$			
Paris I	Paris Island, SC		6.1		1.3 1.9		_ di			
Mance	Mancelona, MI		0.14				L			

Interfacial Targeting Challenges

Nanoiron Trajectory at different porewater velocities

Flow velocities: 30-150 μm/s (2.6-13m/day)
Residence time: 1-10 s

Baumann, T., Keller, A. A., Auset-Vallejo, M., Lowry, G V. (2005). AGU Fall Meeting, San Francisco, CA, December 5-9, 2005.

66

Destabilization Targeting

	Percent Remaining Adsorbed							
Polymer adsorption to RNIP is strong and effectively irreversible	Modifier	Initial Adsorbed mass (mg/m²)	2weeks	4weeks	8weeks			
	PAP 2.5K	0.85±0.23	91 ± 3	86 ± 4.7	82 ± 5.5			
Higher MW=stronger sorption	PAP 10K	1.47±0.14	94 ± 4.1	91 ± 2.5	90 ± 2			
			2weeks	5weeks	8weeks			
Mitigates concern of NAPL mobilization	PSS 70K	2.89±0.59	94 ± 0.5	93 ± 0.6	93 ± 0.6			
	PSS 1M	2.55±0.45	96 ± 4.1	95 ± 4.7	95 ± 4.7			
			2weeks	6weeks	8weeks			
	CMC 90K	2.09±0.02	88 ± 2.1	83 ± 2.9	81 ± 3.1			
	CMC 700K	3.71±0.43	94 ± 0.4	91 ± 0.8	90 ± 0.9			
Kim, H-J., Lowry, G.V. et al., (in prep)								

Strategies for Controlled Placement of Nanoiron

Geochemical conditions change from the injection well down gradient due to dilution.
Potential geochemical changes that can afford targeting include: Ionic strength variation (from low to high) Velocity variation (from high to low)

• DNAPL saturation varies from saturated at a pool surface to just a few percent at the fringe. DNAPL architecture may afford targeting opportunities Hydrodynamic trapping

Co-solvency effects

68

