NIEHS National Institute of Environmental Health Sciences				
RISKELear Nanotechno Applications	ning logy – and Implicati	ons for Sup	erfund	
Superfund Exist Creater Program	August Sess "Nanotechnol Transport o Nanom Richard Zepp, Paul Westerho	16, 2007 sion 6: ogy Fate and f Engineered aterials" US EPA NERL ff, Arizona State	Runner Protection	
SBRP/NIEHS	Univ	rersity		
Heather Henry Claudia Thompson Beth Anderson Kathy Ahlmark	EPA Michael Gill Jayne Michaud Warren Layne Marian Olsen Charlos Maurico	Nora Savage Barbara Walton Randall Wentsel Mitch Lasat	Maureen Avakian Larry Whitson Larry Reed	1
Danie Balonan				

Factors Influencing Fate and Transport of Selected Nanomaterials in Water and Land

۲

Richard Zepp US EPA National Exposure Research Laboratory Ecosystems Research Division Athens, GA

2

RESEARCH & DEVELOPMENT Iding a scientific foundation for sound environmental decis

Nanomaterials Have Exciting Benefits...

Novel Nanomaterial Strips Contaminants from Waste Streams Oct. 27, 2004, *Environmental Science and Technology Online* — A unique chemically modified nanoporous ceramic can remove contaminants from all types of waste streams faster and at a significantly lower cost than conventional technologies

Nanotechnology to Revolutionise Drug Delivery

Mar. 7, 2005, *In-Pharma* — The emergence of nanotechnology is likely to have a significant impact on drug delivery sector, affecting just about every route of administration from oral to injectable.

Color Coded Pathogens Offer Safer Food Formulation

Jun. 15, 2005, *Food Navigator* — New technology could soon make it cheap and easy to identify food pathogens by tagging them with color-coded probes made out of synthetic tree-shaped DNA. These tiny "nanobarcodes" fluoresce under ultraviolet light in a combination of colors that can then be read by a computer scanner

RESEARCH & DEVELOPMENT ilding a scientific foundation for sound environmental deci:

Government Investments in Nanotechnology

Nanomaterials Can Be "Terrifying..."

Examples of Four Types of Nanomaterials

(1) Carbon-based materials: Spherical fullerenes(buckyballs); cylindrical fullerenes (nanotubes).(Smalley, Curl and Kroto, Nobel Prize 1996)

(2) Metal-based materials: Nano-iron and -metal oxides such as TiO_2 for remediation; Quantum dots

(3) Dendrimers: Nano-sized polymers built from branched units.

(4) Composites: Combine nanoparticles with other nanoparticles or with larger, bulk type materials.

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Applications and Implications of
Environmental Nanomaterials ResearchApplications address existing environmental
problems, or prevent future problemsImplications address the interactions of
nanomaterials with the environment, and
any possible risks that may be posed by
nanotechnology, e.g. fate/transport

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisio

۲

Applications: Biosensors

Microorganism identification

۲

- -Virulent (Pathogens)
- -Microbial ecological function
 - e.g. in carbon and nutrient cycling

 Nanoscale devices for improvements in current biosensing instruments

> RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decis

Appearance and Absorption Spectra of Dissolved and Colloidal C₆₀ in Organic Solvents and Water

Potential Mechanisms for Photoproduction of Reactive Oxygen Species From Fullerenes

 $C_{60}(OH)_{24} \xrightarrow{hv} C_{60}(OH)_{24}^{+}$ $C_{60}(OH)_{24}^{+} + O_{2} \rightarrow C_{60}(OH)_{24}^{+} + O_{2}^{-}$ $C_{60}(OH)_{24}^{+} + e_{aq}^{-} \rightarrow C_{60}(OH)_{24}^{+}$ $C_{60}(OH)_{24}^{+} + O_{2}^{-} \rightarrow C_{60}(OH)_{24}^{+} + O_{2}^{+}$

Pickering and Wiesner, 2005

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decision

Conclusions

- Sorption, complexation, aggregation
- Fullerenes are light sensitive, esp. to UV
- Nano-sized particles generally more reactive
- Natural organic matter can strongly affect environmental transformations and transport of nanomaterials in water

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decision

Nanoparticle Interactions during wastewater and water treatment

Paul Westerhoff Professor Department of Civil and Environmental Engineering Arizona State University (Tempe, AZ)

Contributors to this presentation: Troy Benn, Ayla Kiser, Yang Zhang, John Crittenden, Yongsheng Chen $_{_{30}}$

Outline for presentation

- Nanoparticles as emerging contaminants for water and wastewater systems
- Fate of Nanoparticles in aqueous engineered systems
- o Conclusions

Nanoparticles as emerging contaminants

- o Nanoparticles are likely to occur in aquatic systems
- Evidence suggests potential adverse effects from nanoparticles to aquatic ecosystems and mammals. Dose-response relationships are not well developed yet.
- o New nanoparticles come into existence weekly
- Behavior of engineered nanoparticles in water and fate of nanoparticles in natural or engineered systems are being defined
- Routes of exposure for nanoparticles will be influenced by fate in natural and engineered systems

Release of Nanoparticles in Sewage Water

• Example: Nano-Ag release from socks

- Measure silver content of sock
- Determine how much silver leaches during cleaning
- Attempt to differentiate silver ions from silver nanoparticles in sock and in wash water
- Sock washing protocol:
 - Socks placed in DI water for 24 hours on orbital mixer (first wash)
 - Socks removed and dried
 - Repeated for subsequent washings

From left to right: 1) Lounge (Sharper Image) 2) Athletic (Sharper Image) 3) XStatic (Fox River) 4) E47 (Arctic Shield) 5) Zensah

Silver Content of Socks

Sock ID	Complete Sock Mass	Silver in Sock	Silver in Sock
	(g)	(ug Ag)	(ug Ag / g Sock)
1	29.3	755	26
2	28.6	61	2.0
3	23.0	31,000	1360
4	58.6	2100	36
5	24.2	0	0
			20

Silver in Sock appears as nanoparticles by SEM (Sock 1)

Is silver present in wash water from "washing the sock"?

Sock ID	Silve (ug A #1	er in seque og in 500 r #2	ential was mL wash #3	hings water) #4	Total silver leached (ug)	Percent of silver leached from Sock
1	150	600	75	11	836	~100%
2	<1	<1	<1	<1	<1	~0%
3 *	17	34	49	65	165	0.5%
4	<1	<1	<1	<1	<1	~0%
5	<1	<1	<1	<1	<1	~0%

* Highest Silver content (31 mg Ag / 23 g sock)

•••

Is released silver ionic form or nanoparticles?

o Still tough to determine

- Sequential filtration (0.45 / 0.10 / 0.02 um membranes) indicate
 - 60% is less than 0.02 um for Sock #3
 - 40% is clearly non-ionic and aggregated silver nanoparticles
 - For sock #1 only ~20% passes 0.02 um, so >80% is aggregated nano-Ag
 - Control tests with silver ion (Ag⁺) had 100% passage through 0.02 um
 - These values change over time, suggesting that nano-Ag may slowly be dissolving into ionic Ag⁺
- SEM confirms nano-Ag presence in wash waters
- We are now using a silver ion selective electrode to differentiate Ag⁺ from nano-Ag

What about release of other engineered Nanoparticles?

Nano-sized "additives"

Nano-Aluminum in cosmetics

Will Nanoparticles be present in liquid effluent of biosolids?

- We initiated sampling with the USGS of effluents and biosolids (results by winter hopefully)
- In absence of data, we attempt to simulate where nanoparticles should reside
- Use mass balance relationships on nanoparticles within activated sludge systems

Mass balance on nanoparticles in a WWTP operating at steady state

- Assume sorption to biological matter dominates over biodegradation or volatilization for engineered nanoparticles
- o Mass Balance Equation (mass NPs per time) at steady state:

$$QC_0 - QC - \frac{\left(KC_e^{1/n}\right)XV}{\Theta} = 0$$

- Terms are common WWTP parameters: Q = water flowrate, C₀ & C_e are inlet and effluent nanoparticle concentrations, X is biomass concentration, θ is sludge retention time, V is reactor volume, K and 1/n are Freundlich isotherm parameters
- Estimate K and 1/n from batch isotherms

Let's consider a different nanoparticle (instead of nano-Ag)

• Fullerenes are in increasing use in many products and could enter sewage systems

- We solubilized fullerenes into water using sonication, forming quasi-stable aggregates (n-C60)
- N-C60 measured by UV/Vis spectroscopy at >0.1 mg/L, and we developed a LC/MS method for down to 0.1 ug/L

Mass balance modeling at WWTP on nC60

Input Parameters

o Q = 2.3 mgd

- o HRT = 2.3 hours
- **o** θ = 5 days
- **o** $C_0 = 6 \text{ mg/L}$
- o K = 3.1
- o 1/n = 1.4

Results

- Predicted effluent C60 conc = 4.7 mg/L (78%)
- 22% of nC60 would go to biosolids
- Model estimates must be validated with lab and field measurements

Can you measure nC60 in biosolids?

 We developed a toluene extraction protocol that quantitatively recovers nC60 (78±7% recovery)

- Increasing biomass addition reduces concentration in filtrate
- Ongoing biosolids survey underway

Moving further downstream: What factors affect nanoparticle removal in WTPs?

What affects removal of Nanoparticles in WTPs?

- Surface charge affects interaction between particles
 - Aggregation of particles

- Attachment in sand filters
- o Size of particle, or size of aggregates
 - Affects mechanism of movement (Brownian vs Advective)
 - Affects rate of settling (Stokes-Einstein Law)

Example: Dissolved organic matter (DOM) limits hematite aggregation (1 hr mix)

Condition	Zeta Potential (mV)	DLS Average Size (nm)	
Initial		100	
DOM = 0	-20.5	500	
DOM = 1 mg/L	-36.5	126	
DOM = 4 mg/L	-34.5	118	
DOM = 10 mg/L	-37.0	102	Ę

Example: Effect of Alum coagulant on nanoparticle removal (coag/floc/sedimentation)

Conclusions

- Commercial nanoparticles will enter aquatic systems, where many incidental and natural nanoparticles exist
- Release rates of nanoparticles from commercial products need to evaluated, standardized and characteristics determined
- Biosorption is probably key mechanism for nanoparticle removal in WWTPs
- Nanoparticles will aggregate in water due to the presence of salts, but NOM stabilizes nanoparticles, and affect their removal during sedimentation and filtration
- Polar (carboxylic functionalized quantum dots) or hydrophilic (silica) non-aggregated nanoparticles are most difficult to remove

Acknowledgements

- o Partial support from Water Environment Research Foundations Paul L. Busch Award
- o Support on two current USEPA projects

U.S. EPA - Science To Achieve s (STAR) Program Grant # RD831713

This research is fu U.S. EPA - Science To Achie ts (STAR) Program Grant # RD833322

Acknowledgements

- o Partial support from Water Environment Research Foundations Paul L. Busch Award
- o Support on two current USEPA projects

U.S. EPA - Science To Achieve s (STAR) Program Grant # RD831713

This research is fu U.S. EPA - Science To Achie s (STAR) Program Grant # RD833322

