Application and Use of Passive Samplers for Monitoring Organic Contaminants at Superfund Sediment Sites

Background

- Management of contaminated sediments includes source and institutional controls, remediation, and evaluating effectiveness of selected management actions
- Contaminant analyses for bulk or whole sediment often serve as a critical LOE used to support decision-making
 - Often provide a poor predictor of exposure and subsequent risk since contaminant bioavailability is ignored
 - EqP models were developed to predict freely dissolved concentrations in sediment porewater...BUT WITH LIMITATIONS
- Driven partly by cost of remedial decisions, these challenges have led to advances in use of passive sampling methods (PSMs)
 - Goal: quantify bioavailability of contaminants in sediments

Variety of PSM phases and configurations

Passive Sampling Phase or Media	Configuration	Target Analytes
Polydimethylsiloxane (PDMS)	Coated fiber, vial	HOCs
Polyethylene (PE)	Film/sheet, tube	HOCs
Polyoxymethylene (POM)	Film/sheet	HOCs
Ethylvinylacetate (EVA)	Coated vial	HOCs
Silicone rubber (SR)	Sheet, Ring	HOCs
Gels (e.g., DGT)	Thin film "DGT"	Metals
Resin impregnated polyacrylamide gel	"Gellyfish"	Metals
Metal-chelating media	Disk/membrane	Metals
Water-filled equilibration cell	"Peeper"	Metals

C_{free} estimates from PSMs

- Measure the equilibrated polymer concentration (C_p)
- $C_{free} = C_p / K_{pw}$

where K_{pw} is the substance-specific polymer-water partition coefficient

Regulatory "Acceptance" ...

- They are accepted
- Are being used at several sites, mostly to revise the Conceptual Site Model
- Is no formal Superfund acceptance process
- If passive samplers helps remedial project managers (RPMs) answer key site questions, they will be used:
 - Is there a risk, what are the key exposure pathways?
 - What combination of dredging, capping, MNR?
 - What are the risk-based goals and sediment cleanup levels?
 - How to determine remedy effectiveness?
 - Does the remedy meet performance targets and RAOs?

... So why aren't PSMs more widely used?

- Key barriers to more regulatory acceptance and use include:
 - Failure of practitioners and decision makers to understand the advantages and limitations of these chemical-based approaches over traditional analytical methods
 - Confusion regarding the plethora of different methods and formats that are increasingly reported in the literature
- Lack of consensus on:
 - Technical guidance for PSM selection and standardization
 - Use in regulatory decision-making contexts
- Limited experience in use and analysis of PSMs by commercial laboratories
- Uncertainty over cost vs. benefit

Technical Guidance on Bioavailability & Bioaccessibility Measurements Using Passive Sampling Methods and Partitioning-Based Approaches for Management of Contaminated Sediments

Summary of a SETAC Workshop

Rachel Adams

Ian Allan

Mayumi Allinson

Kim Anderson

Sabine Apitz

Chris Beegan

Todd Bridges

Steven Brown

Robert Burgess

John Cargill

Peter Campbell

Peter Chapman*

Yongju Choi

Beate Escher*

Will Gala

Jay Gan

Upal Ghosh*

Frank Gobas

Todd Gouin

Marc Greenberg*

Phillip Gschwend

Amanda Harwood

Steven Hawthorne

Paul Helm

Michiel Jonker

Susan Kane-Driscoll*

Peter Landrum*

Huizhen Li

Michael Lydy*

Keith Maruya*

Philipp Mayer*

Charles Menzie

Megan McCulloch

SETAC.

Julie Mondon

Munro Mortimer

Jochen Mueller

Amy Oen

Thomas Parkerton*

Willie Peijnenburg*

Danny Reible

James Shine

Foppe Smedes

Jing You

Gesine Witt

Eddy Zeng*

http://www.setac.org/resource/resmgr/publications_and_resources/executivesummarypassivesampl.pdf

State of the Science

- Generally accepted that C_{free} provides more relevant exposure metric than total or bulk sediment conc
- Hydrophobic organic compounds (HOCs)
 - Significant literature available detailing calibration and application of PSMs in sediment assessment (>100 papers)
 - Estimates of C_{free} from PSMs shown to better predict measurement endpoints e.g. sediment bioaccumulation and toxicity

 Wide range of calibration parameters have been published for the various polymers and/or configurations of PSMs

Tissues & Integration of Passive Samplers Example: Naval Station San Diego

- ➤ **Good** correlation between *Musculista* tissue and SPME-derived pore water concentrations for PAHs
- ➤ Weak correlation between TOC-normalized bulk sediment concentration and tissue concentration
- Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene

Tissues & Integration of Passive Samplers Example: Naval Station San Diego

- ➤ **Good** correlation between *Musculista* tissue and SPME-derived pore water concentrations for PAHs
- Centrifugation slightly improved predictability over bulk sediments, but still disturbs samples and can confuse relationships between porewater and bioaccumulation

Potential Application in Laboratory & Field Settings

- Consensus that several PSMs ready for application
- Consider 5 key guiding principles for selection, preparation, implementation and validation of PSMs
- Define question(s)
 posed by managers to
 be addressed by
 measurement of C_{free}
 using PSMs

Endpoints addressed by PSMs

- Sediment toxicity
- Benthic organism bioaccumulation
- Transport (*i.e.*, direction of flux, gradients)
- Spatial extent delineation
- Site-specific K_{oc}
- Model calibration / verification

Guiding Principles (con't)

2. Determine pros/cons of ex-situ (bring sediment sample back to lab) versus in-situ application of PSMs

Other Considerations

- Site accessibility / security
- Time / Cost
- Level of expertise required
- Regulatory considerations
- Importance of spatial resolution (heterogeneity; grab vs. fine scale)
- Temporal resolution

Guiding Principles (con't)

3. Perform trade-off of key considerations to select the

most appropriate PSM(s)

Technical Considerations

- Target analytes (magnitude of K_{ow}, organic/inorganic)
- Physicochemical conditions
- Time for deployment
- Performance specs (sensitivity, accuracy, precision)
- Commercial availability

4. Establish QA/QC guidelines for project

Guiding Principles (con't)

5. Quantify PSM measurement uncertainty and propagate through the risk assessment

PSMs uses in sediment assessments and decision frameworks

- Nature and Extent
- Flux measurements
- Evaluating remedial options
- Exposure and risk assessment
- Use in tiered assessment approaches

The uncertainty associated with C_{free} measurements using PSMs is expected to be only a fraction of the uncertainty associated with the status quo

Fate, Transport and Exposure Processes

- Characterizing exposure under current and future conditions
 - Mass movement vs phase movement
 - Getting from contaminant mass distribution to exposure point concentrations and dose
 - Projecting the effects of remedial actions

Modeling

- PSDs are source of input parameters for models:
 - Contaminant mass-balance
 - Sediment and contaminant transport
 - Exposure and Dose-Response
 - Bioaccumulation
 - Engineering design
 - Risk/site recovery projection

Potential Risk Management Applications

- better predictor of bioavailability for 3 key exposure pathways:
 - Direct exposure to inverts. (tox, bioaccum)
 - 2. Flux from sediments to overlying water column
 - 3. Exposures in water column

Measurements of C_{free} with PSMs can reduce uncertainty in risk assessment and subsequent risk management decisions

Applications of PSMs in Context of Sediment Management

- Use in site investigations and risk assessment (these studies form the technical basis of a clean-up decision)
 - Pore water concentration estimates
 - Moving toward use of PSM measurements as dose metric
 - Indicator of bioaccumulation and/or bioavailability
- Use in remedial effectiveness monitoring
 - Surface and pore water concentrations—bioavailability trends
 - Sediment cap and amendment performance
 - Surrogate for benthic organism bioaccumulation
 - Indicator for fish bioaccumulation

Example Profiles

Site Year to Year Comparison

Site 1

Site Year to Year Comparison

Site 1

Summary of Potential Assessment & Risk Management Applications

- Improvements from using passive samplers for C_{free} determinations and data collection—increase certainty:
 - Ambient or compliance monitoring programs
 - Quantifying spatial and temporal trends in bioavailable contaminants
 - Identifying contaminant sources
 - Dose metric to develop exposure concentration-response relationships
 - Understanding of risk zones based on likelihood of effects
 - Modeling (input parameters or verification data)
 - Evaluating remedial options and designs
 - Short- and long-term monitoring of chemical bioavailability
 - Evaluating results of sediment treatment, disposal, or beneficial reuse following management actions
 - Evaluating remedy effectiveness

Thank you for your attention today

