PRINCIPLES AND PROSPECTS FOR BIOREMEDIATION OF PCBs IN SOILS AND SEDIMENTS

James M. TIEDJE Distinguished Professor and Director Center For Microbial Ecology Michigan State University tiedjej@msu.edu

Dechlorination Activity	Susceptible Chlorines
М	Flanked & unflanked meta
Q	Flanked & unflanked para
Н	Flanked <i>para</i> Doubly flanked <i>meta</i>
H'	Flanked <i>para</i> Meta of 2,3- & 2,3,4- groups
Р	Flanked para
Ν	Flanked meta
Т	Meta of hepta- & octa-CBs
LP	Unflanked <i>para</i>

Importance of PCB Dechlorination

- Is an intrinsic process
- Has potential for bioremediation
- Products are more aerobically degradable
- Products are generally less toxic
- But, degradation is usually incomplete with especially *ortho*-PCBs remaining, hence, an aerobic phase is needed

Barriers to Aerobic Biodegradation

- Limited to lesser chlorinated congeners
- Co-metabolic
 - Requires induction
 - Yields no growth
- Incomplete accumulates potentially problematic compounds

•	Increas	sed bio smalle	omass r inocu	ılum				
	•	Red	uced H dimii	IOPDA nished	toxicity	,		
*	chlorina	ated PC	ng: Still CB spec	incom ies n rates i	plete mir			t nigner
Effect of the	ohb (pRC	041) and	l <i>fcb</i> (pR	HD34) g	enes on P	CB deg	radatio	on
Effect of the Strain(plasmid)/ inducer	ohb (pRC % PCB degraded	D41) and Mix M, n OD 600	a fcb(pR om. 1mM Cl ⁻ Release, mM	HD34) g HOPDA λ=394	enes on P % PCB degraded	CB deg Mix C, no OD 600	radatio	HOPDA $\lambda = 394$
Effect of the Strain(plasmid)/ inducer LB400(pRT1) _{Bph}	ohb (pRC % PCB degraded 83.8	041) and Mix M, n OD 600 0.19	and the second s	HD34) g HOPDA λ=394 0.476	enes on P % PCB degraded 93.7	CB deg Mix C, no OD 600 0.21	radatio om. 1 mM Cl ⁻ Release, mM 0.91	HOPDA $\lambda = 394$ 0.066
Effect of the Strain(plasmid)/ inducer .B400(pRT1) _{Bph} .B400(pRO41) _{25CBA}	ohb (pRC % PCB degraded 83.8 75	041) and Mix M, n OD 600 0.19 0.24	I fcb(pR om. 1mM Cl ⁻ Release, mM 1.33 1.98	HD34) g HOPDA λ=394 0.476 0.164	enes on P % PCB degraded 93.7 93.2	CB deg Mix C, no 0D 600 0.21 0.35	radatio om. 1 mM Cl Release, mM 0.91 1.47	HOPDA λ=394 0.066 Not detected

AhR Mediated Toxicity Reduction

Sample	TEQ _{assay} *	TEQcalc*
Non-dechlorinated 1242	3.1	5.7
SL dechlorinated 1242	<6 X 10-2**	7.8 X 10-2
RR dechlorinated 1242	<6 X 10-2**	47X10-2

	Anaerobic	Aerobic
Biological Activity	Dechlorination	Di-OHs
AhR mediated	Reduced/eliminated	Inactive
AP-transcription	Reduced/eliminated	Inactive
Fertilization	Reduced/eliminated	
Neutrophil activation	Unaffected	Inactive
Insulin release	Reduced/eliminated	Decreased
Estrogenicity		Inactive
Uterine contractility	Increased	

Hudson River PCBs: Lessons from Dated Sediment Cores

Richard Bopp and Edward Shuster, Rensselaer Polytechnic Institute Steven Chillrud, Lamont Doherty Earth Observatory of Columbia University Frank Estabrooks, New York State Department of Environmental Conservation

> NIEHS Superfund Basic Research Program Grant to Mount Sinai Medical Center Philip J. Landrigan, P.I.

> > OCTOBER 2002

Basics of Our Radionuclide Dating of Sediment Cores

•Cs-137 - supplied by global fallout from atmospheric testing of nuclear weapons. In "ideal" sediment cores the Cs-137 profile provides at least two time horizons - a "first appearance" in about 1954 and a maximum activity in 1963-64.

•Be-7 - a short-lived natural radionuclide (half life = 53 days). Detection of Be-7 in near surface sections of sediment cores confirms the presence of a significant component of particles deposited within about a year of core collection.

In situ reductive dechlorination of PCBs has been studied using paired samples from co-located sediment cores.

•This process results in dramatic alteration of PCB composition in upper Hudson sediments, but has not progressed as far as lab studies would suggest.

•In sediments from the freshwater reach of the tidal Hudson, reductive dechlorination can be easily detected, but the overall effect on PCB composition has been minor.

Organic matter (%) ^a 12.89.5 (64%) ^b 3.6pp'-DDD (ppb)6235 (52%)6.2γ-chlordane (ppb)2816 (57%)<1total PCBS (ppm)1.911.47 (61%)0.79copper (ppm)604207 (31%)31lead (ppm)466223 (41%)53zinc (ppm)748358 (35%)145		Newtown Creek site 9	NY/NJ harbor site 8	Kingston site 5
pp'-DDD (ppb)6235 (52%)6.2γ-chlordane (ppb)2816 (57%)<1	Organic matter (%) ^a	12.8	9.5 (64%) ^b	3.6
γ-chlordane (ppb)2816 (57%)<1total PCBS (ppm)1.911.47 (61%)0.79copper (ppm)604207 (31%)31lead (ppm)466223 (41%)53zinc (ppm)748358 (35%)145	pp'-DDD (ppb)	62	35 (52%)	6.2
total PCBS (ppm)1.911.47 (61%)0.79copper (ppm)604207 (31%)31lead (ppm)466223 (41%)53zinc (ppm)748358 (35%)145	γ-chlordane (ppb)	28	16 (57%)	<1
copper (ppm)604207 (31%)31lead (ppm)466223 (41%)53zinc (ppm)748358 (35%)145	total PCBS (ppm)	1.91	1.47 (61%)	0.79
lead (ppm)466223 (41%)53zinc (ppm)748358 (35%)145	copper (ppm)	604	207 (31%)	31
zinc (ppm) 748 358 (35%) 145	lead (ppm)	466	223 (41%)	53
	zinc (ppm)	748	358 (35%)	145
cadmium (ppm) 10.5 4.03 (31%) 1.12	cadmium (ppm)	10.5	4.03 (31%)	1.12

Conclusions:

•Analyses of sections from dated sediment cores is the single most efficient means of understanding the sources, distribution, and fate of particle-associated contaminants in natural water systems. (So I'm biased.)

•A multi-contaminant/tracer approach provides critical support for any interpretation of the behavior of any specific particleassociated contaminant (PCBs) in a natural water system (the Hudson).

Recent significant developments in the Hudson River PCB story include stable lead isotopes as tracers of upper Hudson particles; plutonium isotopes as tracers of Mohawk River particles; and stable isotopes as tracers of reductive dechlorination of PCBs.

