

Phyto Picture

What is the Rhizosphere?

-1-3 mm of soil surrounding each root

-Contains a **high proliferation** of soil organisms (yeast, fungi, bacteria, viruses, etc.)

-General populations: 1-2 orders of magnitude higher than non-vegetated soil

-Specific microbes: 3-4 orders of magnitude higher; dominant organisms

Why there is such a proliferation of microbes?

-Plants exude chemicals of all kinds into the subsurface

-Alcohols, phenols, sugars, carbohydrates, organic acids, inorganic nutrients - NPK

-Plants produce and release various enzymes

-Dehalogenases, nitroreductases, glutathione, phenoloxidases, oxygenases, nitrilases, phosphatases

-Plants also provide oxygen and water

-Direct production (0.5 mol O₂ per m² surface area)

-Creating root channels for diffusion from the atmosphere

Root Turnover:

-Annual event (winter)

-Portion of the root system gets sloughed off because it is not needed to maintain the dormant plant

Phyto Picture

What is the Rhizosphere?

-1-3 mm of soil surrounding each root

-Contains a **high proliferation** of soil organisms (yeast, fungi, bacteria, viruses, etc.)

-General populations: 1-2 orders of magnitude higher than non-vegetated soil

-Specific microbes: 3-4 orders of magnitude higher; dominant organisms

Why there is such a proliferation of microbes?

-Plants exude chemicals of all kinds into the subsurface

-Alcohols, phenols, sugars, carbohydrates, organic acids, inorganic nutrients - NPK

-Plants produce and release various enzymes

-Dehalogenases, nitroreductases, glutathione, phenoloxidases, oxygenases, nitrilases, phosphatases

-Plants also provide oxygen and water

-Direct production (0.5 mol O₂ per m² surface area)

-Creating root channels for diffusion from the atmosphere

Root Turnover:

-Annual event (winter)

-Portion of the root system gets sloughed off because it is not needed to maintain the dormant plant

Phyto Picture

What is the Rhizosphere?

-1-3 mm of soil surrounding each root

-Contains a **high proliferation** of soil organisms (yeast, fungi, bacteria, viruses, etc.)

-General populations: 1-2 orders of magnitude higher than non-vegetated soil

-Specific microbes: 3-4 orders of magnitude higher; dominant organisms

Why there is such a proliferation of microbes?

-Plants exude chemicals of all kinds into the subsurface

-Alcohols, phenols, sugars, carbohydrates, organic acids, inorganic nutrients - NPK

-Plants produce and release various enzymes

-Dehalogenases, nitroreductases, glutathione, phenoloxidases, oxygenases, nitrilases, phosphatases

-Plants also provide oxygen and water

-Direct production (0.5 mol O₂ per m² surface area)

-Creating root channels for diffusion from the atmosphere

Root Turnover:

-Annual event (winter)

-Portion of the root system gets sloughed off because it is not needed to maintain the dormant plant

Mechanisms to Clean Up Goals

Mechanism	Description	Clean Up Goal	
Phytosequestration	The ability of plants to sequester certain contaminants into the rhizosphere through exudation of phytochemicals, and on the root through transport proteins and cellular processes	Containment	
Rhizodegradation	legradation Exuded phytochemicals can enhance microbial biodegradation of contaminants in the rhizosphere		
Phytohydraulics	The ability of plants to capture and evaporate water off of the plant, and take up and transpire water through the plant	Containment by controlling hydrology	
Phytoextraction	raction The ability of plants to take up contaminants into the plant with the transpiration stream		
Phytodegradation	/todegradation The ability of plants to take up and break down contaminants in the transpiration stream through internal enzymatic activity and photosynthetic oxidation/reduction		
Phytovolatilization	on The ability of plants to take up, translocate, and subsequently transpire volatile contaminants in the transpiration stream Remediation		

Containment Applications

Media	Application	Potential Mechanisms	Comments
Soil/Sediment (impacted)	Phytostabilization Cover (soil/sediment stabilization)	Phytosequestration Phytoextraction (no harvesting) Adsorption (abiotic) Precipitation (abiotic) Settling/Sedimentation (abiotic)	Includes sediment stabilization Also controls soil erosion by wind/water
Surface Water (clean)	Phytostabilization Cover (infiltration control)	Phytohydraulics (ET) Run-off (abiotic)	Vertical infiltration control Includes alternative (ET) covers
Surface Water (impacted)	Pond/Lagoon/Basin Riparian Buffer	Phytosequestration Phytohydraulics (ET) Phytoextraction (no harvesting) Evaporation (abiotic) Infiltration (abiotic)	Includes wastewater Also controls soil erosion by water run-off
Groundwater (clean)	Tree Hydraulic Barrier Riparian Buffer	Phytohydraulics (ET)	Lateral migration control
Groundwater (impacted)	Tree Hydraulic Barrier Riparian Buffer	Phytosequestration Phytohydraulics (ET) Phytoextraction (no harvesting)	Lateral migration control

Remediation Applications

Media	Application	Potential Mechanisms	Comments
Soil/Sediment (impacted)	Phytoremediation Groundcover	Rhizodegradation Phytoextraction (with harvesting) Phytodegradation Phytovolatilization Biodegradation (microbial) Oxidation/Reduction (abiotic) Volatilization (abiotic)	Phytohydraulics (ET) assumed for PE, PD, and PV
Surface Water (impacted)	Pond/Lagoon/Basin Riparian Buffer Constructed Treatment Wetland	Rhizodegradation Phytoextraction (with harvesting) Phytodegradation Phytovolatilization Biodegradation (microbial) Oxidation/Reduction (abiotic) Volatilization (abiotic)	Includes wastewater and extracted groundwater Phytohydraulics (ET) assumed for PE, PD, and PV
Groundwater (impacted)	Phytoremediation Tree Stand Riparian Buffer	Rhizodegradation Phytoextraction (with harvesting) Phytodegradation Phytovolatilization Oxidation/Reduction (abiotic) Biodegradation (microbial)	Phytohydraulics (ET) assumed for PE, PD, and PV

Riparian Buffers are vegetated area that protect adjacent water resources from nonpoint source pollution (surface run-off), provide bank stabilization, and habitats for aquatic and other wild life. Wetlands that grow in the edge of a stream also can be considered as Riparian buffers.

List of Advantages

- · Considered a green technology and sustainable
- Solar-powered (system itself does not require supplemental energy; although monitoring equipment may)
- · Improves air quality and sequesters greenhouse gases
- · Minimal air emissions, water discharge, and secondary waste generation
- Inherently controls erosion, runoff, infiltration, and fugitive dust emissions
- Passive and *in-situ*
- Favorable public perception including as an educational opportunity
- · Improves aesthetics including reduced noise
- Applicable to remote locations, potentially without utility access (critical utility is a supplemental source of irrigation)
- · Can supplement other remediation approaches or as a polishing step
- · Can be used to identify and map contamination
- · Can be installed as a preventative measure, possibly for leak detection
- · Lower maintenance, resilient, and self-repairing
- · Creates habitat (can be a disadvantage attractive nuisance)
- · Restores and reclaims land during clean up and upon completion
- Can be cost competitive

List of Show-Stoppers and Limitations

- Space generally requires large tracts of land
- Depth limited to rooting depth
- Time long-term remedial approach
- Contaminant concentration/composition phytotoxicity
- Fate and Transport acceptable risk reduction
- Other site growing conditions plantability
 - Temperature, humidity, precipitation, solar, altitude, season, topography, soil conditions, nutrients, compaction, etc.
 - Suitable species

Plant Degradation of Airborne PCB Congeners

Jiyan Liu*, C. Krahe, R. Meggo, B. Van Aken, J. Schnoor W. M. Keck Phytotechnology Laboratory Dept. of Civil & Environmental Engineering The University of Iowa

NIEHS SBRP 5th PCB Workshop

18-21 May, 2008

isbr

iowa superfund basic research program

Outline of the Talk

- 1. Introduction
- 2. PCBs uptake and translocation by plants
- 3. Evidence of whole plant metabolism of PCBs
- 4. Gene expression in plants for PCBs
- 5. Endophytic bacteria

Can endophytic bacteria be exploited for phytoremediation?

Plant tissue cultures show bacterial contaminant which proves to be a novel organism (Van Aken and Schnoor, *AEM*, 2004)

Another endophytic bacteria isolated from poplar plants

Microorganism from surface sterilized poplar leaf tissues.

Grows on "NS (non-specific) media"

C-source: glucose, fructose, succinate.

Conclusions (1)

Phytoremediation may be a useful method to uptake and degrade PCBs from soil and groundwater at cdfs or other "hot spot" locations

- *Populus* uptakes and translocates lightly chlorinated PCBs (PCB3 and PCB15 translocated to shoots) but not the more chlorinated (high log K_{ow}) congeners
- Accumulation of PCBs on roots is linearly correlated with log K_{ow}, but not with transpiration
- Woody stems accumulate more PCBs than leaves or xylem; roots seem to degrade PCB congeners
- CYP 189, 567 and GST 173 genes in poplar may be involved in the metabolism of PCBs.

<text><text><text><equation-block>

Conclusions (3)

Endophytic bacteria (and rhizosphere bacteria) may be useful in speeding the rate of degradation of PCBs in phytoremediation

- -- Methylobacterium populum BJ001
- -- Bacillus licheniformis strain
- -- other bacteria
- -- fungal species

