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Models have become so fashionable that many scientists and engineers cannot imagine working without
them. The predominant use of computer codes to execute model calculations has blurred the distinction
between code and model. The recent controversy regarding model validation has brought into question
what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of vali-
dation may be common in engineering practice and seems useful in legal practice but it is contrary to
scientific practice and brings into question our understanding of science and how it can best be applied
to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in gen-
eral. This review summarizes arguments against using the phrase model validation and examines efforts
to validate models for high-level radioactive waste management and for permitting and monitoring
open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to
distinguish logical from temporal prediction. Another problem stems from the difference in the engineer-
ing approach contrasted with the scientific approach. The reductionist influence on the way we approach
environmental investigations also limits our ability to model the interconnected nature of reality. Guide-
lines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘valida-
tion’ is strongly discouraged when discussing model reliability.
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1. Introduction

‘‘Is there any knowledge in the world which is so certain that no
reasonable man could doubt it?’’ These words were written by Ber-
trand Russell in the opening sentence of The Problems of Philosophy
(Russell, 1912), a short book of 100 pages. He continues with ‘‘This
question, which at first sight might not seem difficult, is really one
of the most difficult that can be asked.’’ Philosophers, scientists,
and lawyers have struggled with this question since the beginnings
of recorded history. The question continued to interest Russell,
who did change some of his opinions over the years, and led him
to publish Human Knowledge (Russell, 1948), some 36 years later
and 438 pages longer. He arrived at 5 basic postulates (quasi-
permanence, separable causal lines, spatio-temporal continuity,
common causal origin, and analogy) which he concluded are
necessary to validate scientific knowledge. Did that end the discus-
sion? No, but it did provide interesting and useful insight. Russell’s
question lies at the core of the ongoing controversy regarding
models, their validation in the geosciences and other field-based
sciences, and what we really know and do not know.

Models are one of the principal tools of modern science and
engineering, e.g. global climate models, groundwater models, eco-
logical models, geochemical models, rainfall–runoff models, plane-
tary models, radionuclide-transport models, reactive-transport
models, etc.

‘‘Scientists spend a great deal of time building, testing, com-
paring and revising models, and much journal space is dedicated
to introducing, applying and interpreting these valuable tools’’
(Frigg and Hartmann, 2009). There seems to be a model for every
need and purpose. Inevitably the question is asked: How good is
your model? Most scientists and engineers prefer to rephrase the
question to: How reliable is your model for the intended pur-
pose? Both questions are vague enough that one could argue
either way, positively or negatively and it begs the question,
how do we judge correctness? The discussion is inextricably tied
to the meaning of words and phrases. Hence, it involves seman-
tics, linguistics, ontology, epistemology, in addition to science,
the philosophy of science, and engineering. Indeed, most of phi-
losophy is concerned with meaning and how best to express
whatever subject is under investigation. Definitions become
essential even though whatever definitions one chooses are likely
to be criticized and found wanting in some respect (see examples
in the Appendix A).

Attempts to answer the question of model reliability in both sci-
ence and engineering practice have led to efforts to validate mod-
els and to numerous publications on model validation. Some of
these were misguided attempts to claim certainty where little cer-
tainty existed and led to more papers for further clarification. This
debate involved primarily ecologists, hydrogeologists, and
engineers working in an environmental context, often related to
hazardous waste disposal. Few geochemists seem to have contrib-
uted to this discussion. Having seen first-hand how easily scien-
tists and engineers get drawn into believing the ‘truth’ of their
models, including geochemical models, I was prompted to write
this paper. Receiving the International Ingerson Lecture Award in
2010 provided me the opportunity to organize my thoughts on this
subject for this review.
How well or how little we understand science and the limits of
its application determines how we perceive our modeling efforts.
Model reliability and validation is more than just semantic argu-
ments. They continue to be an evolving discussion of how we see
the place of science in our world and how science can contribute
to important policies and decision making.

2. Science and the logic of induction and deduction

Science is the application of common sense to an uncommon
degree. As Einstein (1936) once said, ‘‘The whole of science is noth-
ing more than a refinement of everyday thinking.’’ And more spe-
cifically, ‘‘Science is the attempt to make the chaotic diversity of
our sense-experience correspond to a logically uniform system of
thought’’ (Einstein, 1940). Science is the discovery of laws, theories,
and hypotheses that interpret empirical observations through the
use of logic. Conversely, hypotheses, theories, and laws are used,
consciously or unconsciously, to guide and propose quantitative
empirical observations. Observation and theory are inextricably
intertwined in the scientific method and should not be thought
of as separate endeavors.

Science searches for explanations of natural phenomena and
tries to put these explanations into comprehensive generalizations.
It is also about communication of these generalizations. Science
benefits no one if it is not effectively communicated. The contro-
versy surrounding ‘model validation’ arose because of misunder-
standings about what science is, how to communicate science
effectively, and how science can effectively help the regulatory
process and the resolution of major environmental issues. The
model validation controversy, unfortunately, received even more
attention when it entered the courtrooms (Bair, 1994, 2001). It be-
hooves every scientist to at least be familiar with the main points
of debate about model validation.

This controversy is not new. It can be considered a continuation
of philosophical discourses that began in ancient civilizations and
developed further in western civilization, especially in the 17th
and 18th centuries. Aristotle developed logic and the concepts of
deduction and induction. The inductive–deductive approach be-
came a backbone of the scientific method. But it also left us with
a conundrum. Deduction was understandable – given two pre-
mises (a major and a minor premise), a conclusion is unequivocally
reached. If we say, for example, ‘‘all men are mortal and Socrates is
a man, then Socrates is mortal,’’ the syllogism seems simple en-
ough. But how do you know the premises are correct? The pre-
mises usually include a general inductive statement that is
assumed to be true. Induction is an inference from individual
observations to a general statement or conclusion. Of course, if
one of the premises is false, the conclusion might be false. If we
say all substances that dissolve in water exist as ions in aqueous
solution and CH4 dissolves in water, it is deduced that CH4 exists
as an ion in aqueous solution. However, this is recognized as being
incorrect because the major premise is incorrect. Not all sub-
stances that dissolve in water exist as ions in solution. How is it
that CH4 can dissolve in water, a polar solvent, without ionizing?
There are two other forces that can account for the solubility of
CH4 in water, induced polarization (polarization of CH4 induced
by water molecules) and Van der Waals forces (weak attractive
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forces between molecules, for example between the electrons in
one molecule with the nuclei in another). Because these are weak
forces, the solubility of CH4 in water is low, unless high pressure is
applied. High pressures often exist in deep groundwaters so that
the solubility of CH4 in a groundwater at a kilometer depth would
be considerably larger than that near the Earth’s surface. The prob-
lem here is that we can be led astray by an incorrect major (or min-
or) premise.

A premise is a general statement based on numerous observa-
tions that is inferred by induction. We might not have all the nec-
essary information in a premise to make deductive conclusions.
How do we know if a premise is correct? It is deductively ‘correct’
or ‘valid,’ if and only if, there are no exceptions to the statement.
Because it is always possible for there to be an exception not yet
known, general statements or inferences cannot be valid in a
deductive sense. ‘‘Inductive inferences are never deductively valid’’
(Boyd, 1991; of course, those who love the self-reference game
might ask if this statement is deductive or inductive).

The philosopher who argued most effectively that logic cannot
prove (or even claim highly probable) inductive inference is Hume
(1739). ‘‘So Hume noticed a very general, and very curious, point
about any reasoning concerning the future; namely all such rea-
soning rests on an assumption that cannot be logically justified.
And the more general implication is difficult to avoid: if all reason-
ing about the future rests on a logically unjustified assumption,
then our conclusions based on such reasoning, that is, our conclu-
sions about what is likely to happen in the future, are equally log-
ically unjustified’’ (DeWitt, 2010). As Russell (1945) summarized
‘‘What these arguments [of Hume] prove – and I do not think the
proof can be controverted – is that induction is an independent
logical principle, incapable of being inferred from experience or
from other logical principles, and that without this principle sci-
ence is impossible.’’ Another apt summary came from Gorham
(2009) ‘‘Justifying induction inductively is as hopeless as relying
on a hunch to vindicate the power of intuition.’’

Hume crowned the argument of the ‘empiricists’ (a line of phi-
losophers who argued that all knowledge begins with observation
via our senses) with his observation that knowledge can only be
gained by experience; it is a posteriori. Traditionally, the opposing
argument comes from the ‘rationalists’ or ‘idealists’ who say that
all knowledge begins with reason; that knowledge is a priori. This
unfortunate division is artificial, an outgrowth of our attempts to
categorize everything and condense types of knowledge into a sim-
ple framework. Bronowski (1951) had a much more meaningful
description when he said ‘‘In order to act in a scientific manner,
in order to act in a human manner at all, two things are necessary:
fact and thought. Science does not consist only of finding the facts;
nor is it enough only to think, however rationally. The processes of
science are characteristic of human action in that they move by the
union of empirical fact and rational thought, in a way which cannot
be disentangled.’’

Instead of stating that laws, theories, and principles of science
are true – an opinion that is not logically justifiable – we often
say that they are approximations which become more certain the
more they are tested and their consequences shown to correspond
with reality. Such testing has often been called validation when the
results compare well. But I am jumping ahead of myself. This cor-
respondence principle is one of the major tenets of ‘truth’ and is di-
rectly applicable to the scientific method. Unfortunately, the
correspondence theory of truth has several flaws because of its
ambiguities. What is the reality that thoughts or beliefs correspond
to? Does this reality only refer to physically-based, sense-impression
objects or can it include more general classes of objects and their
relationships? Can we recognize reality? Can we measure or objec-
tify reality sufficiently to make a comparison? What does ‘corre-
spond’ mean? If it does not mean exact agreement then what
criteria determine a meaningful comparison? Is the subjectivism
implied by the last question unavoidable? The Ptolemaic theory
of an earth-centered solar system corresponded to observations
known at the time but ultimately found to be ‘incorrect’ a century
later. The same might be true today for models of radionuclide
migration from a leaking high-level radioactive waste repository.
The difference being that instead of waiting for a century to get
confirmation, we must wait for many millennia. In contrast, a geo-
chemical model can be used to calculate the saturation state of a
groundwater with respect to various minerals and compared to
our assumption that some minerals should have reached solubility
equilibrium after a few years residence time. For example, shallow
groundwaters in a limestone aquifer were shown to have reached
equilibrium with respect to calcite (Langmuir, 1971) demonstrat-
ing that for that type of aquifer the equilibrium calculation ‘makes
sense,’ or ‘is confirmed.’ Some people would say ‘‘Isn’t that an
example of validating a geochemical model?’’ To that question I
would reply: It is indeed a test of the model and the corroboration
is helpful but why do you need to call it model validation which
has a different meaning? Do you validate a model only once? If
you have to re-validate it many times over then you do not really
mean validation. The geochemical model that Langmuir (1971)
used was actually inadequate in many ways but for quantitatively
determining the solubility saturation state of calcite in this shal-
low, dilute Pennsylvanian aquifer, it worked quite well enough.
For other situations it may not work at all.

These concerns about the correspondence theory led to alterna-
tive theories of truth such as the coherence theory. ‘Coherence,’ in
this context, refers to the consistency of a belief or theory with the
body of existing knowledge. The greater its consistency, the more
likely it is to be true. ‘‘Even though parts of the edifice may be
found to be rotten, the coherence of a body of scientific truths ac-
counts for its stability over long periods of time. ‘Scientific knowl-
edge,’ John Ziman rightly observes, ‘eventually becomes a web or
network of laws, models, theoretical principles, formulae, hypoth-
eses, interpretations, etc., which are so closely woven together that
the whole assembly is much stronger than any single element’’’
(Newton, 1997). Unfortunately, there are examples in the history
of science where consistency has not been upheld as a trustworthy
guide. New scientific discoveries have been known to be inconsis-
tent with some of the established body of knowledge. Friedrich
Wöhler synthesized an organic compound, urea, from inorganic
compounds (Wöhler, 1828) and this result was contrary to the pre-
vailing Vital Force Theory, or vitalism, at the time which held that
organic compounds could only be made from organic compounds
and living organisms.

Because both the ‘correspondence’ and the ‘coherence’ theories
cannot, by themselves, be a criterion for the truth of scientific state-
ments, other theories arose of which the most important would be
pragmatism. Instead of thinking of a proposition as true or false,
we should think of them as useful or useless. Both the ion-association
model and Pitzer’s specific-ion interaction model have been found
to be useful for interpreting the behavior of aqueous solutions of
electrolytes within different ranges of conditions, whereas the
Debye-Hückel limiting law (DHLL) is fairly useless. The problem
here is that the DHLL is part of the other two models and must be ap-
proached in the limit of infinite dilution. Hence, it is meaningful as a
component within a larger context but not useful by itself.

You may have noticed that I have been making reference to
what a word, phrase, theory, statement or proposition means. Of-
ten the meaning is more important than the truth or falsehood of
a statement, although one would think they would go hand-
in-hand. When Kekulé dreamt of a snake biting its own tail, that
gave him the idea of the shape of the benzene ring (see Benfey,
1958), there was no literal truth to the snake but there was insight-
ful meaning. Historically there have been two quantum mechanical
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approaches to interpreting the chemical bond, valence-bond the-
ory and molecular-orbital theory. Both can explain many aspects
of chemical structure and both are meaningful and useful. Each
has certain advantages and disadvantages but it would not make
much sense to say that one is closer to the truth than the other.

Another problem with ‘truth’ is that it comes in many different
forms which can lead to misunderstandings. ‘Truth’ depends on the
context and whether the truth refers to objective knowledge or
subjective knowledge. There is the literal truth of the existence
of physical reality. I can show someone a rock, explain that it has
certain physical and mineralogical and chemical properties that
can all be checked to demonstrate that it is, in truth, a rock of a cer-
tain type. I can also explain to someone what a unicorn is by
describing its characteristics, but I cannot show it to anyone be-
cause it is a mythical creature that might have existed but there
is no physical evidence for it. The objective knowledge for the uni-
corn does not exist. Once having described the unicorn, however,
knowledge of a unicorn now exists. It can be found in paintings,
novels, and emblems. It might be classified as subjective knowl-
edge. It is a symbol for chastity and purity which gives it meaning.
We know what these virtues are and, accordingly, we have knowl-
edge of the unicorn. Kierkegaard (1941) expressed subjective
knowledge as the relationship of a person to something. He has
said (see Appendix A) that if the relationship is true then the indi-
vidual is in the truth even if he is relating to something that is not
objectively true. Much confusion and hostility has been caused by
substituting literal truth for figurative truth and the lack of recog-
nition for the many forms of truth.

We use the words ‘true’ and ‘truth’ in everyday language and
the meaning is usually clear but in the application of science to
such problems as hazardous waste disposal where models and
their reliability are involved, these words no longer have a clear
meaning in such a general form. At least the meaning is not clear
without numerous caveats that are often site-specific. We are often
guilty of making hasty generalizations about the truth or validity of
our models.

This brief synopsis is meant to remind us of the philosophical
underpinnings of science, especially the framework that relates
to scientific modeling and the model validation controversy. ‘Sci-
entific truth’ is a difficult and challenging concept to define. Every
attempt (correspondence, coherence, pragmatism, meaningful-
ness) has captured an important element, but taken separately,
each attempt has serious shortcomings. Logic is an essential ele-
ment of good science, but it fails to justify induction, another
essential element. Other well-established criteria for good science
are reproducibility, simplicity (Occam’s razor), and peer review,
although none of them are guarantees of ‘correctness.’ They are
simply helpful guidelines for good science that lead to better
approximations of our understanding of natural phenomena.
3. Models and modeling

Much to my surprise, I have had some rather strange responses
from colleagues when I have asked or suggested what might con-
stitute a ‘model.’ I have heard ‘‘We know what a model is; let’s
move on,’’ and ‘‘Qualitative models are better than any quantitative
models.’’ I have been told that there is no difference between a
model and a computer code. I have heard that someone’s model
may not agree with my definition of a model but it is valid none-
theless. And I have had a statistician tell me that a statistical model
is a scientific model. These comments come from some scientists
and engineers who may not have given much thought to what sci-
ence is and how it works.

‘Model’ is actually rather difficult to define, but perhaps the
simplest and most concise definition is that it is a simplification
of reality. This definition is found in many places and was felt
appropriate for a National Academy’s assessment of models for
regulatory decision making (National Research Council, 2007). This
assessment was consequently adopted by the U.S. Environmental
Protection Agency (USEPA) in their guidebook on environmental
model development, evaluation, and application (USEPA, 2009).
Another common definition is that it is a representation of reality
(e.g. Konikow and Bredehoeft, 1992). Other definitions are that it is
an idealization of reality, a replica, a picture of how something
works. I wish to be clear, whatever definition or description that
I come up with is not ‘mine’ but rather a synthesis or repetition
of what many others have described already. To make my point,
I have compiled several definitions and descriptions in the Appen-
dix A as examples. I do not agree with all of these definitions, but
many of them have captured the essence of a scientific model.

Briefly I shall address my colleagues’ other comments. Some-
times a qualitative model is better than a quantitative model, espe-
cially when the quantitative model is flawed. But science strives to
be as quantitative as possible. When you can quantitate a qualitative
model, it usually signifies an improvement in our understanding.

Equating a computer code with a model is simply misuse of lan-
guage. A code is a kind of conversion algorithm that functions to
convert one language into another. A computer code converts a
written language that we can read (logic, sentences, or mathemat-
ics) into a language that a computer can read. A model can be con-
verted into a computer code or not. There were plenty of scientific
models before the computer was invented. When Linus Pauling
discovered a model for the a-helix structure of protein in his room
while visiting Oxford University by using paper cutouts and draw-
ing base groups on it, there was no computer code involved (Eisen-
berg, 2003). When sea-floor spreading and continental drift were
discovered these were conceptual models based on observational
data which could not be formalized with mathematical equations
or computer codes. Conceptual models, physical small-scale mod-
els, and experimental models are not computer codes. This differ-
ence between a model and a computer code is substantial and is
necessary to avoid confusion and maintain clarity in communica-
tion. To call a model a computer code is to belittle the importance
of the model in scientific research.

A computer code that incorporates a geochemical model is one
of several possible tools for interpreting water–rock interactions in
low-temperature geochemistry. It is unfortunate that one com-
monly finds, in the literature, reference to the MINTEQ or the
PHREEQC model or the EQ3/6 model when these are not models
but computer codes. Some of the models used by these codes are
the same so that a different code name does not necessarily mean
a different model is being used, but so it might be thought if no dis-
tinction is made between model and code; and vice versa, different
models can be in the same code. If someone states only that they
are using the PHREEQC model, then it is entirely ambiguous as to
whether they used the ion-association model or the Pitzer model
or whether they used the WATEQ database, the PHREEQC database,
or the MINTEQ database. Of course they can (and should) specify
these aspects but that does not make PHREEQC a model; it is a
computer code.

Another misconception, common among engineers, is to think
of models only in terms of mathematical equations. A typical
example would be the American Society for Testing Materials
(ASTM, 1984) ‘‘Standard practice for evaluating environmental fate
models of chemicals’’ document in which a model is defined as ‘‘an
assembly of concepts in the form of mathematical equations that
portray understanding of a natural phenomenon.’’ But, of course,
the examples of Pauling and the protein structure (Eisenberg,
2003), plate tectonics, experimental models, physical analogues,
and numerous other examples should make it clear that there
are other types than just mathematical models. Greenwood
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(1989) expressed it well when he said that a model ‘‘. . .is a well-
constrained proposition, not necessarily mathematical, that has
testable consequences.’’ Indeed, physicists have so pursued the
study of the most elementary particles that make up all larger par-
ticles that constitute all of matter that they discuss entities that
can never be seen, or even explained, without the symbolism of
higher mathematics. This state of affairs leads some scientists to
question whether something that exists only as a mathematical
assemblage has any real existence.

The strength of mathematics is in giving the appearance of cer-
tainty, its weakness comes from its inability to provide a consistent
provable formal system of statements (Gödel, 1931). This argu-
ment of Gödel’s became known as the incompleteness theorem.
The problem with an inconsistent system is that you can prove
anything, so it tends to be useless if you are trying to prove your
argument with mathematics (Bronowski, 1978). Now most scien-
tists would not say that mathematics is useless, as Bronowski
(1978) points out, ‘‘It is the axiomatization, it is the formalization
of the system which produces the trouble. Nature is not a gigantic
formalizable system.’’ Alfred Tarski (1983) carried this further by
showing that there is no complete language of science in his theo-
rem on the indefinability of truth (although it seems clear that
Gödel was aware of this theorem also). He argues that truth in a
language cannot be defined in itself. ‘‘I have told you that Tarski’s
proof that there is no complete closed scientific language depends
on showing that as soon as you introduce the words ‘is true’ you
get paradoxes’’ (Bronowski, 1978). These were formal arguments
but Einstein (1921) foreshadowed these findings earlier with his
often quoted statement, ‘‘. . .as far as the propositions of mathemat-
ics refer to reality, they are not certain; and as far as they are cer-
tain, they do not refer to reality.’’ ‘‘...there seems to be no unique
way of combining a mathematical language and a part of the
world’’ (Gregory, 1990).

By 1992 the ASTM changed their document title to ‘‘Standard
practice for evaluating mathematical models for the environmental
fate of chemicals’’ and a model (presumably just a mathematical
model) was defined as ‘‘an assemblage of concepts in the form of
equations that represent a mathematical interpretation of a natural
phenomenon.’’ Certainly this change reflected an improvement,
but by 2001 a further change in thinking occurred at ASTM because
the ASTM (1992) document was withdrawn with no replacement.

The most recent International Atomic Energy Agency (IAEA)
definition for model is ‘‘An analytical representation or quantifica-
tion of a real system and the ways in which phenomena occur
within that system, used to predict or assess the behaviour of the
real system under specified (often hypothetical) conditions’’ (IAEA,
2007). This is a somewhat restricted definition, but it is better than
their original definition ‘‘In applied mathematics, an analytical or
mathematical representation or quantification of a real system
and the ways that phenomena occur within that system’’ (IAEA,
1982).

We often say that a model is supposed to represent reality. I
know what is meant by this statement, but I think it is a bit pre-
sumptuous. It would be better to say that a model represents our
thinking about reality rather than reality itself. This important dis-
tinction was driven home by Hughes (1997) when he stated ‘‘One
major philosophical insight recovered by the romantic view of the-
ories is that the statements of physical theory are not, strictly
speaking, statements about the physical world. They are state-
ments about theoretical constructs.’’ ‘‘Science, like art, is not a copy
of nature but a re-creation of her’’ (Bronowski, 1956).

It is also incorrect to say that we compare our models with real-
ity. We compare the consequences of our models with indepen-
dent observations. And those observations are not devoid of
concepts and theories, they come with their own conceptual
framework. Take the ‘concept’ of temperature. What is tempera-
ture? It is a quantitative measure of the ‘hotness’ or ‘coldness’ of
objects which is a subjectively communicated sensation of heat
transfer. Heat was a concept that was debated for centuries (e.g.
the phlogiston theory, the caloric theory, the kinetic theory). It took
about as long for experimenters to test different materials and de-
signs that might be used to measure temperature. Standardization
required further inventions and experiments. Middleton (1966)
mentions 18 non-centesimal temperature scales that could be seen
in the Copernicus Museum in Rome. Today there are three different
temperature scales in use, the Celsius scale, the Fahrenheit
scale, and the Kelvin or absolute scale. The common measurement
of temperature is often taken for granted, but theories were
required to establish the concept and how best to measure it.
Einstein and Infeld (1938) made it clear that we cannot compare
our theories with the real world; we can only compare the predic-
tions from our theories with our theory-laden observations of the
world.

There is no universally accepted theory for calculating activity
coefficients for aqueous electrolyte solutions. There is the ion-
association model which works well for a wide range of water
compositions up to about seawater ionic strength and there is
the Pitzer specific-ion interaction model that works well up to
almost any concentration but for a limited range of compositions.
And there are several hybrid models that utilize the best aspects of
each. We know the strength and limitations of these models by
comparing calculations with actual measurements of chemical
potentials in single and mixed electrolyte solutions. The specific-
ion interaction model is described as semi-empirical because it
has some theoretical justification. It assumes electrolytes behave
according to the virial formulation and the rest is curve-fitting.
The ion-association model utilizes concepts of ion-pairing which
has an intuitive appeal because it gives us an image of interacting
ions in solution but it is also based on assumptions. Both
approaches can be modified to give results that fit with observations,
so the correspondence theory of truth does not lead to a definitive
choice. Scientists tend to utilize the model that is most appropriate
or useful for the particular problem at hand, hence, the choice is a
pragmatic one.

Statistics is a powerful tool in the sciences and essential in the
social sciences. However, in geochemistry we are usually looking at
correlations and their probable importance. Correlative analysis
suffers from the well-known fact that a correlation between two
parameters does not equate to cause-and-effect. Many parameters
correlate, but not always because one variable directly affects an-
other. It is not possible to determine mechanisms or natural pro-
cesses from correlations alone. Statistical evaluation of data
without phenomenological context can suggest trends that may
not have been noticed before, but it does not constitute a scientific
model until it is interpreted with observational constraints. Once
you provide an interpretation of a trend or correlation by applying
knowledge of physico-chemical processes, you have a scientific
model, not a statistical model. Before the interpretation is made,
the statistical evaluation is an exercise in pure mathematics and
not a scientific exercise. Statistics needs an empirical context to
be a scientific model. ‘‘The pure mathematician who should forget
the existence of the exterior world would be like a painter who
knows how to harmoniously combine colors and forms, but who
lacked models. His creative powers would soon be exhausted’’
(Poincare, as cited by Pappas (1995)).

So part of the problem is to understand what we mean by
‘model.’ A model is a theoretical construct that that begins with a
concept (the conceptual model) and might be portrayed mathe-
matically or diagrammatically or physically or by analogy. It is
always a simplification, an idealization, a picture of how we think
about some aspect of physical phenomena. In one sense, it is
always incorrect because it is never complete or exact. In another
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sense, it may be correct because it might be our best understanding
or approximation of something at a particular time in history.

A chemical model is a theoretical construct that permits the cal-
culation of physicochemical properties and processes. A geochem-
ical model is a chemical model applied to a geological context.
Geochemical codes, such as PHREEQC and Geochemist’s Workbench,
use solution equilibrium models, such as the ion-association model
and the Pitzer ion-interaction model, to calculate aqueous specia-
tion. Algorithms similar to those used to solve speciation are used
in these codes to solve equilibrium phase distribution, i.e. dissolu-
tion, precipitation, adsorption, desorption, degassing, and in-
gassing reactions. They can also be solved for non-equilibrium or
kinetic phase distribution if the appropriate rate coefficients are
known. Reactive-transport codes have incorporated geochemical
models and fluid transport models using appropriate numerical
approximation techniques that must solve both linear and non-
linear equations.

At the heart of every model is the conceptual model. ‘‘The con-
ceptual model is the basic idea, or construct, of how the system or
process operates; it forms the basic idea for the model (or theory)’’
(Bredehoft, 2005). Oreskes and Belitz (2001) further emphasized
the importance of the conceptual model and the difficulty in recog-
nizing mistaken concepts:

‘‘Conceptualization is probably the most thorny issue in model-
ing. It is the foundation of any model, and everyone knows that
a faulty foundation will produce a faulty structure. . .. Yet what
to do about it remains a problem. Much attention in model
assessment has focused on quantification of error, but how does
one quantify the error in a mistaken idea?... Almost by defini-
tion, conceptual error cannot be quantified.’’

Bredehoft (2003, 2005) has pointed out how important the con-
ceptual model is to the overall success of modeling. It is the start-
ing point and the end point of any modeling exercise. His
comments on correcting misconceptions about the conceptual
model are worth repeating:

‘‘1. Modelers tend to regard their conceptual models as
immutable.

2. Errors in prediction revolve around a poor choice of the con-
ceptual model.

3. Data will fit more than one conceptual model equally well.
4. Good calibration of a model does not ensure a correct concep-

tual model.
5. Probabilistic sampling of the parameter sets does not com-

pensate for uncertainties in what are the appropriate concep-
tual models, or for wrong or incomplete models.’’
4. Model validation

The phrase ‘model validation’ has been, and still is, used fre-
quently as a part of scientific practice and communication, yet it
is the subject of serious debate which continues to cause conster-
nation inside and outside the scientific community. Try doing a
Google search for validation and verification of simulation models.
Doing this I got 24 million hits. The subject has become a whole
new field of study.

My exposure to this issue began through my participation in
radioactive waste disposal research. The nuclear waste manage-
ment and waste regulatory agencies had a presumed need to prove
to the public that they could safely dispose of high-level radioac-
tive waste such that it would never harm the biosphere, especially
any future human generations. Part of this proof consisted of mod-
eling a leaking repository that had both engineered and natural
barriers. Gradually critics asked a most pertinent question: ‘‘How
do we know that the models are any good?’’ At that time, in the
1980s, few people understood that this question is general enough
to be asked about anything we do, not only in science and engi-
neering, but even in art, literature, politics, and religion.

‘‘In 1980 the Swedish Nuclear Power Inspectorate (SKI) decided
to investigate the possibility of initiating an international study on
the comparison of model codes for radionuclide migration in geo-
logical formations’’ (Larsson, 1992). This was the beginning of a
series of model validation studies that took on various acronym-
onus titles such as INTRAVAL, INTRACOIN, and HYDROCOIN. The
topic was being addressed primarily by hydrogeologists and in
1992 a 2-part special issue of Advances in Water Resources of 10 pa-
pers was published with the theme ‘‘Validation of Geo-hydrological
Models’’ (Celia et al., 1992). For validation of geochemical models
there was the CHEMVAL project (Read and Broyd, 1992). When I
first experienced these issues in the mid-1980s something did
not seem right. I did not have a clear idea of what was bothering
me, but I would hear presentations by professionals who would de-
scribe their field, theoretical, or laboratory work as having vali-
dated their model without having made clear what that meant.
Gradually I began to see that some of this fuzziness stemmed from
a rarely expressed misunderstanding of what science is and how it
could play a supporting role in radioactive waste research. I delved
into the philosophy of science (not an easy topic); I read arguments
for and against ‘model validation;’ and I occasionally gave lectures
on this subject to receive feedback from others. I was invited to put
forth my concerns for the 5th natural analog meeting on the Alliga-
tor Rivers Analog Project (Nordstrom, 1994). The present paper is
partly an outgrowth of observing and participating in this debate
and a review of this controversy from the perspective of a hydrog-
eochemist who collected notes on the subject over several years.

It was and is commonly thought that good scientific practice
should test model predictions with independent observations
and, once having succeeded, one could say that the model has been
validated. Comparing model predictions with independent obser-
vations is good scientific practice but what does it mean to say that
the model has been validated? That point is where opinions begin
to differ. To quote from Rykiel (1996): ‘‘Validation is a thorny issue
for both ecological model builders and model users as exemplified
by the confusing and often mutually exclusive statements in the
literature. For example, model validation is sometimes considered
essential (e.g. Gentil and Blake, 1981; Power, 1993), and some-
times considered impossible (e.g. Starfield and Bleloch, 1986;
Oreskes et al., 1994). Some authors suggest that models can be
validated (e.g. Law and Kelton, 1991), while others contend that
models can only be invalidated (e.g. Popper, 1959; Holling, 1978;
McCarl, 1984).’’

The often-cited paper by Konikow and Bredehoeft (1992) enti-
tled ‘‘Groundwater models cannot be validated,’’ followed by the
paper in Science on ‘‘Verification, validation, and confirmation of
numerical models in the earth sciences’’ (Oreskes et al., 1994)
should have clarified the issues, but many investigators objected
to their theses or preferred their own interpretations. Enough con-
cern was generated within the USDOE (US Department of Energy)
that a 2½-day meeting was held in July, 1994 in Denver, Colorado
for the Geochemical Integration Team to resolve issues on model
validation, especially in regard to a proposed Yucca Mountain nu-
clear repository site. Another publication was an entire book on
model validation (Anderson and Bates, 2001). Although the authors
were primarily hydrologists, geologists, and engineers with two
contributing philosophers (there were no ecologists, geochemists,
microbiologists, or climatologists) a broad range of opinion is rep-
resented from those who think that validation is valid to those who
do not.

Because there was no summary report from the 1994 DOE
meeting that I am aware of, it seems relevant here to summarize
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some of my impressions made at that time. First, there was general
agreement that Total System Performance Assessment (an assess-
ment of the integrated effects of processes thought to affect trans-
port of radionuclides from a nuclear waste repository to the
biosphere) cannot have models that are validated. They can only
present scenarios that are supported in that they do not contradict
the more reliable models. Many felt that sufficiently small scale
(laboratory) and process-level models could be partially validated.
This argument changes the common meaning of ‘validation.’ Usu-
ally when something is validated, it is done once and thereafter
the object is considered validated. Partial validation is an ambigu-
ous phrase. Second, and most important, there was a consensus
that the word ‘validation’ should not be used. The most popular
substitute was ‘confidence-building.’ However, a specific method-
ology for confidence-building in models was discouraged and a
better approach was to tailor confidence-building for a particular
model and its application. Third, for some models convergence be-
tween prediction and observation is achievable and necessary,
whereas for others bounding calculations are all that can be
achieved. Non-uniqueness was agreed to be a characteristic of all
models. Fourth, natural analogue studies were considered to be a
valuable pursuit towards confidence-building in models. Fifth,
the only way for assessment to work is for scientists, engineers,
and performance assessors to have formal and informal meetings
to clear up differences in perceptions, reach a clear understanding
of goals, and to design integrated subsystem models. A presenta-
tion at the end of the meeting drove home the point that models
are not unique, extrapolations far into the future carry enormous
uncertainties, and it may not be possible to achieve regulatory
standards as they now stand by using model calculations that are
extrapolated beyond their time domain of calibration or history-
matching.

So how do we define ‘model validation?’ I have compiled
numerous documented definitions in the Appendix A and many
of these have serious flaws. Regulatory agencies got off to a bad
start with their quite fuzzy and unhelpful definitions. The IAEA de-
fined it as follows: ‘‘A conceptual model and the computer code de-
rived from it are ‘validated’ when it is confirmed that the
conceptual model and the derived computer code provide a good
representation of the actual processes occurring in the real system.
Validation is thus carried out by comparison of calculations with
field observations and experimental measurements’’ (IAEA,
1982). What is a ‘good’ representation? What are the ‘actual’ pro-
cesses? Who decides when adequate confirmation has been
achieved? If we knew the actual processes in sufficient detail then
the model would not even be needed. It is precisely because the ac-
tual processes are not adequately known that we resort to model-
ing. I have also used the phrase ‘real system’ myself, but I added a
footnote to warn readers that this is an oxymoron (Nordstrom and
Munoz, 1994). A system is an arbitrarily defined anthropocentric
concept and ‘real’ implies a physical reality apart from the human
conceptualization of it. So there is an initial IAEA definition that de-
fined little. The most recent IAEA update made some important
modifications ‘‘The process of determining whether a model is an
adequate representation of the real system being modelled, by
comparing the predictions of the model with observations of the
real system. Normally contrasted with model verification, although
verification will often be a part of the broader process of validation.
There is some controversy about the extent to which model valida-
tion can be achieved, particularly in relation to modelling the long
term migration of radionuclides from radioactive waste in reposito-
ries’’ (IAEA, 2007). In this definition two important points are
acknowledged: (i) that model validation is a process and (ii) that
there is some controversy about the extent to which model valida-
tion can be achieved. Of course the meaning of validation implies a
single event, not an ongoing process. The next aspect they need to
define is ‘adequate representation’ and who determines it. These
modifications show how convoluted the definitions have become.
The more the IAEA tries to improve the definition, the more the
definition drifts away from the original meaning. It would be far
easier and more meaningful to abandon the word validation
altogether.

The US Department of Energy (USDOE, 1986) defined validation
even more loosely as the determination ‘‘that the code or model in-
deed reflects the behavior of the real world.’’ Indeed! How that
goal might be reached is left to the imagination of the reader.
The U.S. Nuclear Regulatory Commission (USNRC, 1990) defined
it as ‘‘assurance that a model, as embodied in a computer code, is
a correct representation of the process or system for which it is in-
tended.’’ Again, how does one know what the correct representa-
tion is? For which intended purpose? If one knew the correct
representation, then there would no longer be a need for the model
or its validation. If the correct representation is not known, then it
is not possible to validate the model. Of course, this appears to be a
perfect lose–lose situation. Part of this problem has to do with try-
ing to make a general statement for which only detailed context
and specific information have meaning.

The Swiss Federal Nuclear Safety Inspectorate (HSK) did not fare
much better with their definition for model validation, ‘‘Providing
confidence that a computer code used in safety analysis is applica-
ble for the specific repository system’’ (HSK, 1993). Again, a model
is not a computer code. And who decides how much confidence is
enough?

Nuclear waste management agencies were asked a simple ques-
tion: How do we know that models are reliable for such long peri-
ods of time? The larger question for science and engineering is:
How do we know that any model is reliable? To answer this ques-
tion, nuclear waste agencies asked their consultants to ‘validate’
their models. Under such circumstances, would a consultant be
likely to say that such a project was pointless? Would a consultant,
having been given the project and a sizable chunk of funding, likely
conclude that a model cannot be validated? I always wondered if a
nuclear waste management agency asked the same consultant to
invalidate a model, whether he/she could do that? The answer is
likely to be affirmative. Consequently, anyone could have predicted
the result – models can be validated, or invalidated. The agencies
and environmentalists could always get whatever they asked for.
One might say that models can be validated because nuclear waste
agencies and their consultants knew what they wanted beforehand
and could produce the appropriate results. This wish was com-
pounded by a fallacy of logic known as ‘affirming the consequent’
(Shrader-Frechette, 1993). Affirming the consequent in this context
means that, if a model calculation or prediction compares well
with an independent observation, the model is assumed to be cor-
rect. Put another way, if the model has not been proved incorrect, it
must be valid. The syllogism is false because the conclusion is as-
sumed in the major premise.

All that can be said is that when a model prediction compares
well with an independent observation is that the model is corrob-
orated or confirmed. It lends some support to the model, but does
not corroborate the model for all possible circumstances. The mod-
el can never be shown to be correct or validated because one would
have to compare predictions for all possible situations to infer the
overall correctness of it.

Does good agreement between a model result or prediction and
observational measurements mean the model is correct? No, for
three possible reasons, (i) if model parameters are not independent
from the measurements they are being compared to, they should
agree regardless of the correctness of the model, (ii) if the measure-
ments are in error, both the measurements and the model could be
in error, and (iii) the model results might agree with reliable mea-
surements for the wrong reasons.
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Does poor agreement between a model result and observa-
tions mean the model is incorrect? No, for similar possible rea-
sons, (i) if the measurements are unreliable, the model may still
be correct, (ii) model calculations could be in error whereas the
conceptual model could be correct, and (iii) the criteria for good
and poor agreement may be incompatible with the limitations
and uncertainties of the model. When model predictions are
not confirmed by independent observation, scientists often be-
come very interested. The reason is because it means there is
something going on that they had not already known. A new
discovery could be made from this finding. That would be far
more interesting than finding out things worked the way that
a model predicted.

The radioactive waste agencies, in their haste to make safety
guarantees to the public, promised results that are not deliverable.
Modeling can improve our understanding of how to build a safe
repository but it cannot provide a guarantee. Some of our modeling
calculations may be the best estimates we have of possible future
scenarios but we shall never know for sure. These calculations also
provide a ‘‘starting point for policy decisions’’ (Drever, 2011), but
they are fraught with large uncertainties. We are not even sure
how uncertain are the uncertainties. One of the main problems
in the application of science and engineering to major hazardous
waste disposal issues is a lack of knowledge about the limitations
of science and engineering.

Kirchner et al. (1996) argue for setting high standards for model
testing and evaluation. ‘‘An important first step, in our view, is to
ask modelers to use explicit performance criteria in evaluating
their models, and to compare them against explicitly stated bench-
marks. This would be a significant improvement over the subjec-
tive model evaluations that are common today. Explicitly testing
models against other decision-making methods (such as expert
opinion) would provide a particularly illuminating measure of
the accuracy and reliability of model predictions’’ (Kirchner et al.,
1996). This statement sounds reasonable until one considers the
practical aspects of how to go about it. Different fields of science
will have entirely different criteria. Who will set the criteria?
How exact must the criteria be? Part of the problem here is that
it is a moving target. Criteria and the standard-setters can change
over time. Then there is the issue of who wants to do this type of
investigation. Funding and prestige are major motivations for some
scientists. How much funding and prestige can be associated with
what most people would consider to be largely a non-innovative,
tedious activity?

The word ‘validation’ is also used routinely as a synonym for
quality assurance/quality control (QA/QC) in analytical chemistry
(Taylor, 1983, 1986; Thompson et al., 2002; Fajgelj, 2007). Ana-
lytical chemists are usually referring to method validation not
model validation but many of the same issues arise. If a method
is used and validated there is still no guarantee that the analyt-
ical values are correct, it simply improves the probability that
the results are accurate. Some would say there is a parallel here
between ‘method validation’ and ‘model validation,’ but there is
a big difference. Method validation, which I prefer to call QA/QC
(quality control/quality assurance), has developed over a century
and a half of testing over and over of chemical reactions and
instrumental development and application. Consequently, we
have a high degree of certainty, especially when compared to
the highly complex, physical, chemical, biological, meteorological
characteristics of the environment that are being modeled. Test-
ing a high-level radioactive waste repository would take thou-
sands of years.

Testing consequences of models is a process of making predic-
tions. Again there are misunderstandings of what predictions are,
what predictions can be made, and what predictions cannot be
made with scientific knowledge.
5. Prediction

5.1. Two types of prediction: phenomenological and chronological

A distinction should be made between two types of predictions,
(i) phenomenological or logical prediction and (ii) chronological or
temporal prediction (Mayr, 1982; Strahler, 1992; Oreskes, 2000b;
Iverson, 2003). Phenomenological prediction uses basic principles
of science along with necessary assumptions to form a logical con-
struct with testable consequences. The deduced consequences con-
stitute the prediction. Chronological prediction is foretelling the
future which ‘‘has traditionally been the province of mystics and
clerics’’ (Iverson, 2003). Furthermore, phenomenological predic-
tion falls into two general types, time-independent prediction
and time-dependent prediction. Time-independent prediction
would include any kind of chemical reaction outside of kinetics. I
can predict that if you put a small piece of elemental Na into a bea-
ker of water that it will react violently, catch on fire, and end with a
small explosion. I know that because (i) my chemistry textbook
tells me so and explains the reaction in terms of a stoichiometric
equation, (ii) I have seen other people do this and it happens every
time, and (iii) I have done it myself. The next time someone tries
this experiment, it will happen again. I call this time-independent
prediction because a phenomenon is predicted that has occurred
before and not the time course of a future event. It does not depend
on time as an explicit variable or as part of the chemical reaction
equation that symbolizes the reaction. ‘Prediction Central,’ the
nickname given to Professor Helgeson’s laboratory of theoretical
geochemistry at the University of California Berkeley, developed
techniques of predicting fluid–rock interactions, given a suffi-
ciently robust and comprehensive database. Similarly, the Marini
and Accornero (2006) paper entitled ‘‘Prediction of the thermody-
namic properties of metal–arsenate and metal–arsenite aqueous
complexes to high temperatures and pressures and geological
consequences’’ was predicting properties, not time-dependent pro-
cesses. Classical equilibrium thermodynamics is time-independent
and non-equilibrium or irreversible thermodynamics is time-
dependent. A time-dependent prediction would be one in which
the rate of the reaction of Na with water is known from the litera-
ture or from my own experiments and I have measured the mass of
Na and I have a kinetic equation with time as an explicit variable.
Then, I could predict how long the reaction would take. However, I
still might not be able to predict exactly when I would actually do
the experiment again because that would be a highly uncertain
chronological prediction until I scheduled it (no current plans for
this). Science has traditionally made phenomenological predictions
not chronological predictions, but with major issues of global
warming, climate change, water-supply limitations, water-quality
degradation, air-quality degradation, natural-resource extraction
limitations, and hazardous waste disposal challenges science and
engineering experts are being asked to make chronological
predictions.

Chronological prediction is foretelling the future. Frequently, it
is based on human feelings, emotions, prejudices, and opinions
with little use of logic. The prediction may be correct but it may
not be science. It is more like betting on the horse races, water-
witching, or the pronouncements of doomsday prophets. In con-
trast, groundwater models are developed to estimate present and
future conditions given certain properties of the aquifer including
permeability, porosity, recharge rates and changes in those rates,
discharge rates, storage capacity, etc. These models are not guesses
or mere opinions; they are based on a knowledge of average mate-
rial properties of the aquifer and the fluid, on principles of fluid
dynamics, and on assumptions or data about initial conditions,
boundary conditions, and heterogeneities or the lack thereof. They
also make assumptions about climate trends (which affect re-
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charge rates, i.e. both precipitation and evapotranspiration rates)
and withdrawal rates. It is these assumptions that limit the cer-
tainty of groundwater model calculations. In geochemistry, reac-
tion rates between water and minerals and aqueous and gas
phase reactions are also needed to predict the chemical evolution
of an aquifer over time (as well as information from the groundwa-
ter model). Water–rock reaction rates are quite complicated func-
tions of the degree to which the aquifer acts as an ‘open’ or ‘closed’
system, aquifer composition (mineralogy and chemistry), water
composition, organic matter content, surface area, surface chemis-
try, temperature, pressure, and microbial ecology. To determine all
these functionalities in the laboratory is not necessarily practical
because it would take numerous lifetimes unless some practical
generalizations could be demonstrated. Where possible, field rates
should be measured and interpreted in terms of what is known
from laboratory experiments. Long-term climate trends and long-
term groundwater use by society cannot be predicted very well,
if at all, and the longer the future extrapolation, the less certain
the model results are and the less possibility there is of testing
the predictions. The extent of reasonable future extrapolation for
groundwater modeling is often stated to be of the same time frame
as that for history-matching if any confidence in the extrapolation
is desired. The state of the art for groundwater modeling and geo-
chemistry including future needs and possibilities has been well
summarized by Glynn and Plummer (2005) and Konikow and
Glynn (2005).

Several scientific and engineering investigations attempt to
connect phenomenological prediction with chronological predic-
tion: planetary motion, comet recurrence, volcanic eruptions,
earthquakes, groundwater supply and contaminant groundwater
plume mobility, high-level nuclear waste mobility, mining effects
on water quality, flooding, coastal erosion, and climate change.
The deduced consequences from these studies reflect an enormous
range of uncertainties. There are numerous measurements of plan-
etary motions, the orbits are regular and cyclical, and the laws that
govern them are few and not complicated. Hence, phenomenolog-
ical and chronological predictions are virtually the same, predic-
tions are accurate, and uncertainties in the calculations are quite
small. The other extreme might be biological evolution. We under-
stand that the DNA of an organism determines its physical charac-
teristics and that natural selection and mutations determine
evolution but, given an initial condition, one cannot predict the
evolutionary path of an ecosystem in the same way that one can
predict planetary motion. As Iverson (2003) mentions, the attri-
butes of non-linearity, highly dissipative structures, and contin-
gencies on past and future events break the connection between
phenomenological and chronological predictions. Over the next
1 ka it would be very difficult to predict when and how many erup-
tions there might be from Etna and Pinatubo, but by measuring gas
emissions, seismic activity, and heat flux one might be able to pre-
dict if an eruption is imminent or not. The closer it is to the time of
an eruption, the more it is possible to predict the timing of the
eruption to within weeks, days and sometimes hours. We can mea-
sure motion in the Earth’s crust and the stress buildup between
rock on opposite sides of a fault zone which allows us to constrain
a major earthquake probability to a period of time measured in
centuries or decades, but to predict the date to within weeks ahead
is not possible at this time. What is possible is to be prepared for a
large magnitude earthquake in high-risk regions, a much safer
alternative to relying on earthquake prediction.

Regular cyclic events, governed by a few simple laws or princi-
ples, can be readily predicted. Indeed it appears that planetary mo-
tions were predicted by the builders of Stonehenge and the
Egyptian pyramids before advanced mathematics and telescopes
and without the benefit of the governing equations. Irregular and
less frequent events like volcanic eruptions and earthquakes have
very limited (and often not helpful) predictability. Although we
understand the forces involved we do not have direct measure-
ments of those forces in the deep subsurface near the sites where
the greatest stress occurs. Groundwater conditions can be pre-
dicted if we choose appropriate initial conditions, boundary condi-
tions, representative parameters, and future changes in input and
output functions (climate variations and human activities). Be-
cause climate change and human activities cannot be forecast very
far in the future, only groundwater conditions for the near future
can be predicted with some confidence. An appreciation for the dif-
ferent types of predictions and their limitations can go a long ways
towards improving the communication of science to policy makers
and the public.

5.2. Predictions of rare or complex events are ambiguous because of
model non-uniqueness

Some of the first geochemical calculations of water–rock inter-
actions with a digital computer used a ‘forward modeling’ ap-
proach consisting of a given mineral assemblage and a given
water composition (Helgeson et al., 1969, 1970) that are allowed
to react. If any mineral solubility equilibrium was reached the min-
eral was allowed to precipitate. Constraints on these systems were
generally minimal in that equilibrium was assumed, the primary
mineral assemblage was reasonable for an initial rock type, and
secondary minerals were those thought to form under certain con-
ditions of pressure and temperature. Assumptions had to be made
about whether the system was open or closed during the evolution
of geochemical reactions, the correct activities of solid phases and
solutions species, the correct speciation, whether solid-solution
minerals form and how to formulate their activities and reactive
processes, the effects of temperature and pressure gradients, and,
if it is a hydrothermal fluid, at what temperature boiling takes
place. These were major assumptions that were not adequately
known or evaluated at the time. Although these calculations
marked a tremendous advance in our ability to model geochemical
processes, the uncertainties in the thermodynamic database and
these assumptions did not provide confidence in the results. The
calculated results were subject to numerous unquantifiable uncer-
tainties. Hence, these models could give very different results if
some of the assumptions or input data were changed. Confidence
improved with advances in the underlying thermodynamic data-
base and by increased testing against field data, but an enormous
amount of data is needed to substantially reduce uncertainties.
Reed and Palandri (2010) has shown that even with improvements
in thermodynamic data and using the same data and the same ini-
tial conditions, it is possible to calculate the same mineral assem-
blage (an ore deposit) with very different pathways (or models), i.e.
an isobaric pathway vs. an isentropic or isenthalpic pathway. Dif-
ferent models can produce the same result. By incorporating more
data such as isotopic compositions and fluid inclusion data from a
specific field site the needed constraints for the possible pathways
might be found. To reduce possible model interpretations, limita-
tions can only come from the field data, it cannot come from the
modeling itself.

Even without these uncertainties, model calculations are not
unique because there can be multiple roots to the governing
equations (Bethke, 1992; Oreskes et al., 1994). Although this
non-uniqueness is mathematical in nature, it is usually possible
to resolve it through constraints derived from appropriate field
conditions.

The problem of non-uniqueness is not just relegated to mathe-
matical uncertainty or insufficient knowledge of thermodynamic
and field data. Pierre Duhem (1954) recognized the non-uniqueness
of scientific explanation in general. His writings on this subject,
supported by those of W.V.O. Quine, became known as the
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Duhem–Quine thesis (Oreskes et al., 1994). They argued that scien-
tific theories are not uniquely determined by observational data
(Derry, 1999). One of Duhem’s examples (Duhem (1954) illustrates
this point quite well. Léon Foucault modified an experiment origi-
nally devised by François Arago and improved by Hippolyte Fizeau
to demonstrate that light consisted of waves, not particles (the cor-
puscular theory), by comparing the speed of light in water to that
in air. Foucault and Fizeau demonstrated that the speed of light in
water was slower than in air, contrary to the predictions of Newton
and others who supported the corpuscular theory. This conclusion
was thought to put an end to the corpuscular theory but Duhem
pointed out that there might be another corpuscular theory based
on different postulates that could still account for the difference in
the speed of light. He made this statement just before Einstein had
reported on his theory of light quanta, or photons, which, indeed,
was such a theory. Duhem provided one of the clearest descrip-
tions of his time of what science is really about. He pointed out that
scientific laws are neither true nor false but approximate, that laws
are provisional partly because they are symbolic, i.e. they are con-
nections among symbols not the actual realities.

Another important step forward in geochemical modeling was
taken with the introduction of mass balances into water–rock
interactions, known as ‘‘inverse modeling’’ (Plummer, 1984; Glynn
and Plummer, 2005). The basic concept is that if you have mineral-
ogical data on a groundwater aquifer and you have access to evolv-
ing groundwater compositions along a flow path, you can solve a
matrix for the relative proportions of minerals dissolving and pre-
cipitating, gases exsolving or dissolving, organic matter reacting,
etc. The water analyses can also be used to calculate mineral satu-
ration states that provide further constraints on the possible reac-
tions. Instead of making a lot of assumptions as in forward
modeling, you have fewer assumptions because your modeling is
constrained by actual field data. If water residence times can be ob-
tained, weathering rates can be calculated as well (Burns et al.,
2003). Although there will always be some aspects of non-unique-
ness, inverse modeling with sufficient field data, can go a long way
toward narrowing the most likely model interpretations for water–
rock interactions.
6. Prediction and validation for models of nuclear waste
disposal

Scientists and engineers were asked to devise a high-level
radioactive waste disposal strategy that would never allow radio-
nuclides from a leaky repository to travel to the biosphere and
harm human and environmental health for at least 10 ka, prefera-
bly 100 ka to 1 Ma (after which radioactive decay would have re-
duced the most harmful levels of radioactivity to safe levels). It is
interesting to note that a repository would be assumed to leak in
less than 104 years, a reasonable assumption, and that radionuclide
transport over P104 years could be reliably modeled, an unreason-
able assumption. The arrogance in thinking that such models,
based on huge extrapolations over time, were not only possible,
but were considered probable and provided safety guarantees for
the future led to a strange journey. We can summarize the sub-
stantial obstacles confronting those in the radioactive waste re-
search community who attempt to validate models of
radionuclide migration from a leaking repository: (i) the original
definitions of model validation offered by federal nuclear waste
agencies and regulatory agencies were far too vague to be useful,
(ii) the ‘problem of induction’ or the problem of extrapolating from
the specific to the general cannot establish the validity of a model,
(iii) short-term tests cannot establish long-term responses to
migrating radionuclides, (iv) overemphasis on validation rather
than understanding the processes operative in a repository
environment, (v) publicity campaigns focused on making guaran-
tees to the public when such guarantees are not possible, (vi)
affirming the consequent, and (vii) confusing modeling with real-
ity. One summary statement by Leiss and Chociolko (1994) seems
appropriate, ‘‘In general there is now widespread agreement that
until recently the capacity of scientific risk assessment to render
definitive verdicts for the non-expert public on the scope and mag-
nitude of most hazards was ‘oversold’ by experts, and that lower
expectations would be more fitting.’’

The main problem is that there is nothing scientific about mod-
eling a high-level radioactive waste disposal site for 10 ka or more
because the calculations cannot be tested and the technical basis
makes no sense (Ramspott, 1993). The modeling efforts are not
testable within the time frame that policy decisions must be made.
‘Validating’ a model that has no testable consequences is meaning-
less. This situation is reminiscent of the debate between the ratio-
nalists and the empiricists. Empiricists demand testability, or
falsifiability, as Popper (1959) a well-known advocate of logical
positivism, described. Testability connects ideas with reality. With-
out even the possibility of testing model calculations within a rea-
sonable time period, the calculations are all just exercises in
idealistic or rationalistic scenarios which may or may not have
any relationship to reality because we cannot know the outcomes
with any comfortable degree of certainty. They are chronological
predictions without knowledge of long-term processes to make
them phenomenological predictions.

Those who have worked on potential repositories such as Yucca
Mountain, Nevada, have responded with the argument that com-
ponent models of the overall assessment picture can be separately
modeled and evaluated. Of course they can, but you are still limited
to a much smaller time scale than P104 years and, when combin-
ing component models into the larger picture of radionuclide
transport to the biosphere, there are important feedbacks and syn-
ergisms that do not appear in the individual models (the total is
greater than just the sum of its parts).

Whoever wrote the section on verification and validation for
Wikipedia may have been an engineer and a QA/QC employee of
the medical field (see Appendix A). The telltale signs include not
only the numerous references to engineering, medical, and phar-
maceutical sources but the categories of verification and validation
are broken down into ‘prospective validation,’ ‘retrospective vali-
dation,’ ‘full scale validation,’ ‘partial validation,’ ‘cross-validation,’
‘re-validation/locational or periodical validation,’ and ‘concurrent
validation.’ Who knew that there were so many ways to validate
something? One must assume there are an equal number of ways
to invalidate the same things. With these new definitions on hand,
I’m sure that some folks would like to see retrospective validation
of members of Congress and I would like my next parking coupon
to be a full-scale validation (i.e. valid anytime, anywhere). I’m sure
that the authors had good intentions and had strong support from
certain quarters of business and engineering, but there is an inher-
ent contradiction with the normal use of validation, which refers to
something being correct or incorrect. If something is valid, it is
founded on truth or fact, and it is considered stronger or more
believable than something not based on truth or fact. If we now in-
clude ‘partial validation’ and a host of other types of validation
then we have changed the original meaning of validation. A coun-
ter argument might be that when we validate something, we do so
only for a limited set of conditions. If that is in fact the meaning,
then, to this author, we should not be using the word validation
in the first place.

Another factor at play here is the desire on the part of the safety
assessment and nuclear waste management to provide convincing
evidence to the public that it is possible to guarantee that this most
hazardous waste will not affect future generations. By using the
word validation instead of ‘provisional acceptance’ (or partial val-
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idation), a stronger and more confident meaning is implied than is
actually warranted. What would your reaction be if someone told
you that model A was provisionally accepted (or partially vali-
dated) and model B was validated? If both models served the same
purpose, would not you feel more comfortable using model B? Yet
we are told that validation really means provisional acceptance
(Rykiel, 1994; Younker and Boak, 1994). I do not think I am spec-
ulating very much, if I suggest that most people do not think that
validation is the same as provisional acceptance. And it does not
help to claim that ‘validation’ is being used in a strictly technical
sense (Rykiel, 1994) because this language is being used to explain
to the non-technical public why a high-level nuclear waste repos-
itory will keep nuclear contamination safe from the biosphere. It
does not help the credibility of the engineering community to tell
the public that they must learn the technical language of the engi-
neer. Indeed, it is the responsibility of the engineer to translate
their technical jargon to everyday language that the public under-
stands if they wish to obtain public acceptance of a repository de-
sign and location.

Tsang (1991), in his short review of modeling and validation
within the nuclear waste context, took a broader view of the issue
to include evaluation of how conceptual models were constructed
and methodologies of parameter correlation. He recognized that it
was illogical to validate a model in a generic sense and that models
had to be validated with respect to specified processes and with re-
spect to a given site. However, he also advocated the position of
systems engineers, i.e. that validation was a necessary and defen-
sible procedure in contrast to the scientific argument that ques-
tions the underlying meaning.

In spite of the numerous criticisms and logical flaws with the
nuclear management agencies that propose model validation, the
validation ‘process’ continued to be justified (Hassan, 2003).
7. Validation, science, and the relativity of wrong

At least three other phenomena have influenced the use of the
phrase ‘model validation.’ One is the motivation on the part of
many scientists to make a greater public impression of their sci-
ence and to boost their chances of obtaining funding by using
phrases such as model validation; another is a general misunder-
standing of what science is and what are its strengths and limita-
tions; and another is the tendency for scientists and the public to
simplify descriptions of the natural world into black and white
terms, i.e. models are validated or they are not. The importance
of this controversy cannot be overemphasized because it bears di-
rectly on the role of science in society. It is not merely a ‘matter of
semantics.’ Semantics is meaning, and meaning is at the core of
communication. It is a matter of perception and understanding.
Debates about models and their validation reflect our collective
understanding of what science is and how science fulfills its contri-
bution to society. Discussions about models and model validation
are ultimately discussions about the meaning of and perceptions
about science and engineering.

It is worthwhile asking why ‘validation’ is still used frequently
in discussions on model reliability or even model hypothesis test-
ing. It should be obvious that this word suffers from the misguided
attempt to connote truthfulness and to connote reliability without
qualification (Konikow and Bredehoeft, 1992; Oreskes et al., 1994).
These problems are partly driven by regulatory needs, but even
outside of regulations, scientists tend to use this word when they
have found some corroboratory evidence for their hypotheses. It
is human nature to want to neatly categorize everything into what
is valid or ‘right’ and what is not valid or ‘wrong.’ We know this as
the ‘black or white syndrome.’ It is much more difficult to recog-
nize the grey in the universe even though grey is much more
common than black or white. Isaac Asimov summed it up rather
well when he said ‘‘The trouble, you see, is that people think that
‘right’ and ‘wrong’ are absolute; that everything that isn’t perfectly
and completely right is totally and equally wrong’’ (Asimov, 1988).
He continued to develop this theme as a result of a letter he re-
ceived from an English Literature major (who suffered from the
idea that everything in science would eventually be proven wrong)
and pointed out that instead of scientific theories being wrong
there are really degrees of wrongness. The idea that the Earth
was flat was much more wrong than thinking of the Earth as a
sphere. But the earth is not a sphere, it is more of an oblate spher-
oid. But the difference between a sphere and an oblate spheroid is
the difference between 8 in. (203.2 mm) to the mile (1.609 km)
compared to 8.03 in. (204 mm) to the mile. Precise satellite mea-
surements later showed that the Earth is asymmetric and slightly
pear-shaped rather than an oblate spheroid. Each improvement
in measurements of the Earth’s shape is a closer approximation
and less wrong than the previous one but it is a much bigger jump
from flatness to sphereness than for the later improvements. As
Asimov said so well ‘‘. . . when people thought the earth was flat,
they were wrong. When people thought the earth was spherical,
they were wrong. But if you think that thinking the earth is spher-
ical is just as wrong as thinking the earth is flat, then your view is
wronger than both of them put together.’’

Asimov (1988) also explained why we have this tendency to
classify everything as right or wrong. He said that if we can catego-
rize our experiences and our understanding into easily remem-
bered categories such as ‘black and white’ or ‘right and wrong,’
life is easier – we do not have to think so much, but it is unrealistic.

Again, many of those involved in radioactive waste disposal and
other areas of hazardous waste related research agree with these
points and some even say that this is their own position. What I fail
to understand is why they have not figured out that validation is
just not the right word to use? The USEPA (2009), following the
NRC (2007) lead, has clearly recognized that model validation is
an inappropriate phrase and has dropped it from their lexicon
and give the following two reasons (i) models contain simplifica-
tions and can never correspond exactly to reality and predictions
can never be completely accurate (black/white syndrome) and
(ii) those that are confirmed for one application cannot predict
accurately for multiple applications. Of course, these reasons seem
obvious and are stated in an impossibly exaggerated manner (who
would ever think that model predictions would be completely
accurate?). Instead of model validation, the USEPA and the NRC
use the phrase ‘model evaluation’ and following Beck (2002) they
define model evaluation as the attempt to answer four main
questions:

i. How have the principles of sound science been addressed
during model development?

ii. How is the choice of model supported by the quantity and
quality of available data?

iii. How closely does the model approximate the real system of
interest?

iv. How does the model perform the specified task while meet-
ing the objectives set by QA project planning?

These four points are further elaborated upon by the USEPA, but
it still begs a few questions. Does question ii refer to a necessary
database such as thermodynamic or kinetic data or does it refer
to field data or both? Thermodynamic and kinetic data evaluation
is part of an ongoing and iterative process with its own QA/QC
challenges. It is a whole separate field of study. How reliable does
the thermodynamic or kinetic database have to be? Field data also
has a large number of QA/QC challenges. How is question iii ap-
plied? We have already discussed the fact that we do not compare
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a model to a real system, so the question should be: How close to
observational measurements do model consequences or predic-
tions have to be? Who decides and how? Most of the answers to
these questions can only come from the stated objectives of a par-
ticular study. They cannot be answered in the general form in
which the questions are stated. An important conclusion that
comes from this discussion is that there is a responsibility on the
part of the project supervisors and project oversight committee
to make clear what constitutes a necessary and sufficient effort
to answer these questions because, if left open-ended, they could
be never-ending.

There are two additional overview concerns that need to be cov-
ered in this review. One is the complexity paradox described by
Oreskes (2000a). Another is the question of why there seems to
be a driving need to model and predict future untestable scenarios
(Oreskes, 2000b).
8. The complexity paradox

Numerous authors have made note of the fact that our ability to
develop sophisticated codes and advanced mathematical models
has outstripped our ability to acquire the complex data upon
which the codes depend. It seems clear how this situation devel-
oped. Our early models and computer programs were quite simple,
but as our understanding increased, as computers became faster
with more capacity and with software that was more elegant, flex-
ible, and advanced, and as our ability to couple physical and chem-
ical processes progressed, our models and codes became more and
more sophisticated. A model and its code would naturally become
more complex with further development if its developers wanted
them to be more realistic. The paradox is that as computer codes
become more complex, they become more difficult to test and con-
firm that they operate according to basic scientific and mathemat-
ical principles and that they are correctly coded. Oreskes (2000a)
describes this paradox in terms of representation versus refutabil-
ity, ‘‘The closer a model comes to a full representation of a complex
earth system, the harder it is to evaluate it. Put another way, the
better the model is from the point of view of the modeler, the hard-
er it is for others to evaluate the model. There is a trade-off be-
tween representation and refutability.’’ The situation has finally
reached the point where Silberstein (2006) asks, tongue-in-cheek,
‘‘Hydrological models are so good, do we still need data?’’ Both Sil-
berstein and Oreskes make the point that for geoscientists the an-
swer to the complexity paradox is relatively simple: collect more
field data because that is where the rubber hits the road. Unfortu-
nately, less money and effort has gone into collecting necessary
field data compared to modeling exercises. Another benefit from
collecting more and better field data is that it decreases litigation
time and costs. Many lawsuits and other legal proceedings involv-
ing hazardous waste can be simply avoided by collecting more and
better field data. Some parties complain that collecting field data
takes time and is expensive, but it is trivial compared to the costs
and the length of legal proceedings.

The complexity paradox has a more dangerous analogue in
complex technical engineering. Not only can the models and the
codes be increasingly difficult to test and ensure that quality assur-
ance needs are met but the hardware, the elaborate interconnected
array of technical equipment, become more difficult to test, evalu-
ate, understand, repair and maintain. Dumas (1999) has described
this situation well, ‘‘As technical systems become more complex,
they become more opaque. Those who operate ever more complex
systems usually cannot directly see what is going on. They must
depend on readings taken from gauges and instruments, and this
can be very misleading.’’ He goes on to describe several examples
of costly and frightening failures in the USA that were caused by
this problem. Oreskes (1997) argues that many times models can-
not be tested because of additional reasons such as the inaccessi-
bility of some of the input data and inaccessibility of model
predictions in practice and in principle. Petroski (1994) recounts
several incidents that involved unacceptable belief in the reliability
of computer software that led to either dangerous situations or
unnecessary loss of life.

9. Modeling mine water chemistry

Pilkey and Pilkey-Jarvis (2007) in a most thought-provoking
book, Useless Arithmetic: Why Environmental Scientists Can’t Predict
the Future, have heavily criticized the use of quantitative mathe-
matical models as a useful means of predicting future trends for
making policy decisions (or most anything). They cover a broad
range of examples that include modeling to prevent the demise
of the cod population along the Grand Banks of Newfoundland
and Nova Scotia (it did not), Lord Kelvin’s modeling for the age of
the earth based on the cooling rate of molten rock (wrong), model-
ing in support of the proposed Yucca Mountain nuclear waste
repository (fraught with questionable assumptions), modeling cli-
mate change and sea level rise, modeling coastal erosion (senior
author’s expertise), modeling post-mining water quality in pit
lakes, and modeling invasive species. They are not against model-
ing, per se, but they argue in favor of qualitative models over quan-
titative models. Unfortunately some of their examples contradict
this point. The example of Lord Kelvin’s estimate of the age of
the Earth by using physical processes, which Pilkey and Pilkey-Jar-
vis (2007) call quantitative, is a case in point. Lord Kelvin’s method
for estimating the Earth’s age, which came to about 20 Ma on last
modification (and supported by Clarence King, first director of the
U.S. Geological Survey, who made separate calculations with the
same conclusion; Dalrymple, 1991), was quantitative, and it was
said to have trumped earlier qualitative methods by sedimentolo-
gists and paleontologists who were thinking in terms of an age
nearer billions of years. The difference was that the sedimentolo-
gists/paleontologists made their estimates from much less faulty
assumptions and concepts than Lord Kelvin’s estimate. Sedimen-
tologists could make qualitative estimates of how long it takes
for a stratum to form and compare that with the thickness of sed-
iments and the correlation of strata to arrive at an overall age of the
Earth. There was a considerable difference in the conceptual mod-
el, but Lord Kelvin’s was thought to be more reliable because of its
quantitative nature. More than 50 years later the age of the Earth
was settled at 4.55 Ga through the application of radioactive iso-
tope dating (Patterson, 1956). The application of radiogenic isotope
dating is certainly a mathematical and quantitative method of
modeling through the use of isochron diagrams (isotope evaluation
diagrams) and concordia–discordia diagrams (Dalrymple, 1991)
which can all be represented mathematically and computer coded.
I would call this a case of one quantitative model trumping another
one because the conceptual model had improved considerably. It is
the conceptual model that matters, not the mathematics.

In chapter seven (‘‘Giant cups of poison’’), Pilkey and Pilkey-
Jarvis (2007) discuss the modeling of water quality for open-pit
mine lakes. This modeling has been done primarily by consultants
for obtaining permits for open-pit mines which have a finite life-
time and for which it must be demonstrated that when the mine
closes, water quality will meet state and federal standards in
perpetuity. Somehow mining consultants and regulators and oth-
ers were influenced into believing that it really was possible to
‘accurately’ predict water quality of the lake infills to these open
pits for 50–200 a into the future. A clear parallel exists here
between safely disposing of high-level waste for a long period of
time and promising good water quality after mining for a long
period of time. There is also a parallel in that this modeling was
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also another example of affirming the consequent (they knew what
they wanted beforehand). Pilkey and Pilkey-Jarvis (2007) are
hardly subtle in their opinion, ‘‘Just as in other modeling arenas
we have discussed, accurate prediction of future water quality is
a fantasy supported by a hyperreligious faith in the predictive
power of numbers.’’ Then in their concluding paragraph, ‘‘Tempt-
ing as it will be to government bureaucrats to continue to use mod-
els, the predictive models for the long-term quality of water in
abandoned open-pit mines should themselves be abandoned.’’

In contrast, the recent book on mine pit lakes (Castendyk and
Eary, 2009) clearly states that accurate predictions are possible
and a laudable goal. ‘‘An accurate conceptual model is an essential
precursor to the development of an accurate numerical prediction
of pit lake water quality,’’ (Castendyk, 2009). Of course the quality
of a conceptual model has enormous bearing on the quality of the
numerical model, but what does ‘accurate’ mean? Predicted con-
centrations agree within 50% of observed concentrations? An order
of magnitude? The definition of ‘accurate numerical prediction’
distinguishes a quantitative model result from a qualitative one,
but who draws the line and where? Shafer and Eary (2009) cor-
rectly point out that the main problem with developing and apply-
ing geochemical pit lake models is the lack of data. There are so few
adequate data for predicted and observed pit lake water chemistry
data post-mining.

Moran (2000) describes a mine in Nevada for which the pit lake
chemistry was predicted in the draft Environmental Impact State-
ment (EIS) to have a very favorable water quality. It received con-
siderable criticism and was revised. Incredibly, there were no
estimates of key metals such as Cu, Pb, Zn and Cd in the draft. In
the final EIS, these metals were included and the calculations indi-
cated there would be a water of pH 8.5–9.5 with high dissolved sol-
ids concentration and some constituents unable to meet water
quality standards for drinking. Actual water composition was still
different from that predicted. It is no wonder that Bob Moran, Orin
Pilkey, and many others have no reason to believe pit lake model
predictions. Unfortunately, these models can be often driven by
politics and the need to obtain permits rather than by good science
and engineering.

Other examples of comparing predicted with observed water
quality for mined sites based on modeling were documented by Kui-
pers et al. (2006) and the majority of examples did not compare well.
Again, these results should not surprise us because the predictions
were mostly done to demonstrate future regulatory compliance
and suffered from (i) affirming the consequent, (ii) lack of enough
examples from similar sites, (iii) faulty assumptions and poor con-
ceptual models, (iv) inexperience with the complicated nature of
pit lake hydrology and geochemistry, and (v) inadequate peer re-
view. It seems we have to learn the hard way that any environmen-
tal modeling that involves hydrology, geology, geochemistry,
microbiology, meteorology, and climatology is extraordinarily com-
plicated, suffers from a lack of data, and the best that we can hope for
is to improve our understanding through experience. To expect any-
thing approaching ‘accurate’ predictions (however that is defined) is
generally unobtainable. Weather patterns cannot be predicted years
in advance for any given catchment or basin. If we cannot accurately
predict weather patterns and climate change for a small region of
interest (such as a mine site), how do we expect to predict ground-
water flow patterns and water compositions?

Another aspect of predicting water compositions is related to
knowing the natural variation in groundwater or surface water
composition at any one location over time. Only relatively recently
have we learned that Fe photoreduction occurs (independent of pH
and water composition), that diel cycles occur with metals and
metalloids in streams receiving mine drainage, that storm events
can cause huge variations in surface water chemistry (both
increasing and decreasing concentrations), and that organic matter
can have a major effect on the transport of metals and their sorp-
tion properties. Scientists are still discovering what causes changes
in water chemistry through seasonal variations and storm events,
let alone how to predict them. The answers can often be site-spe-
cific and not easily generalizable.

From 2001 to 2006, the present author led an USGS project near
Questa, New Mexico, to determine premining groundwater quality
at an active mine site in a mountainous terrain (Nordstrom, 2008).
The area was highly altered locally with substantial quartz–
sericite–pyrite mineralization. Consequently, both the mineral
assemblages and the groundwaters were heterogeneous and could
not be characterized by a single representative composition.
During the first presentation of the final report to the oversight
committee, it was mentioned that there would not be a single
‘background’ concentration for the 14 constituents of concern but
rather a range of concentrations that represented the uncertainty
in each value for each part of each catchment in the mine area.
There were several catchments and usually two sometimes three
different groundwater compositions in each catchment. Of course
the regulators did not want to hear this result. This method of pre-
senting the results was unacceptable to them. They expected a sin-
gle concentration number for Cu, another for Zn, another for
F�, etc. for the whole mine area. They were then asked simply if
they wanted me to lie. They said ‘‘no’’ and we proceeded with
the final report. It ended up with about 12 tables of different ranges
of concentrations for the different groundwaters which reflected
the heterogeneous nature of both the geology and the groundwater
chemistry (groundwater pH values ranged from 3 to 7.5). This was
a good example of how the real world does not fit neatly into sim-
ple categories that regulatory agencies or industry consultants
would prefer. We have to modify our thinking to allow for the large
variations in natural phenomena. We have to be sure our concep-
tual models have considered appropriately the variability as well
as the variety of processes and coupling of processes that can occur
in nature.

The Questa project was also one in which mathematical models
did not play any decisive role in reaching the conclusions. The final
results were obtained by using a natural analogue site proximal to
the mine site. The quality of the results largely depended on how
well we could apply the data collected from the analogue site
and how analogous it was. No amount of mathematical modeling
could possibly have superseded a detailed study of an analogue
site. Likewise with respect to nuclear waste disposal, some of the
most useful research information pertinent to building confidence
in a final repository design has come from natural analogue studies
(Miller et al., 1994). Overall, these are qualitative to semi-quantitative
models in terms of applicability to nuclear waste repositories
although quantitative models were often used to better under-
stand specific hydrogeochemical processes operating at the
analogue sites.

From 1981 to 1989, the current author worked on the first
underground research laboratory for testing the properties of gran-
ite as a potential containment rock for high-level radioactive waste
disposal, the Stripa Project (Nordstrom et al., 1989a). Field work
was done at depths of 250–1000 m in a granitic intrusion located
at the Stripa mine. The author was a member of the hydrogeo-
chemical advisory group which had the charge of investigating gra-
nitic groundwater chemistry and its implications for radioactive
waste disposal. Other investigators were studying rock mechanics,
hydrogeology, and developing methods of discerning rock frac-
tures, porosity, and permeability in a very low permeability terrain.
The groundwater chemistry was unusual in that the Cl� concentra-
tion was elevated (up to 700 mg/L), the pH was elevated (up to 10),
the alkalinity almost non-existent (a few mg/L), and the PCO2 was
also very low (10�5–10�6). While attempting to disprove the
hypothesis that fluid inclusions were leaking into the groundwater
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from the granite as a source of salt, evidence was discovered that
they were. The Br/Cl ratio of fluid inclusions in the granite was
identical to that of the groundwater (Nordstrom et al., 1989b)
and distinctly different from seawater. This discovery could not
possibly have been made with mathematical modeling. It was only
possible by formulating hypotheses about possible sources of the
salt, testing the hypotheses, and changing the conceptual model
when the evidence warranted it. Any effort to mathematically
model the Stripa granite–water interactions without acknowledg-
ing the potential influence of fluid inclusions would be remiss
and more likely to fail.

The International Stripa Project went through three phases and
Phase III was being formulated as the hydrogeochemistry group
was completing a major part of its work. We were invited to sub-
mit a proposal to the third and final phase which was to be an exer-
cise in model validation. The validation exercise was proposed by a
geological engineer and made no particular sense to the geochem-
ical research that had been accomplished at that time. We pro-
posed further hydrogeochemical research that would have tested
the fluid-inclusion hypothesis and other hypotheses we had for
the evolution of the groundwater chemistry. Our proposal was re-
jected because it did not fit within the ‘validation’ program that
was being designed. When the validation program was finished
and published, one of the researchers from Lawrence Berkeley Na-
tional Laboratory, Jane Long (1994), had this insightful message:

‘‘Some of what was gained from the Stripa Project was not
planned; as in most earth science research, the results may
not exactly match the original goals. Nevertheless, the actual
results are significant. The stated aims of the project included
‘‘validation’’ of fluid flow and transport codes. I would argue
that this is not a possible achievement in a strict sense. Simply
changing the definition of validation such that validation some-
how becomes achievable trivializes and obfuscates an accurate
assessment of the modeling effort. What we have learned is that
the codes are a mathematical formalization of the exceedingly
more important effort of ‘conceptual modeling.’’’
10. Science and engineering: a tale of two cultures

In the past, scientists did not routinely refer to corroboration as
validation or verification when finding observational evidence for
their theories or hypotheses. Today, I am seeing increasing use of
these words in scientific papers, which I consider an unfortunate
trend. These words are derived from the engineering literature, par-
ticularly concepts in systems engineering (operations research, sys-
tems analysis, software engineering). Systems engineers are most
often defending the use of validation and verification because it is
part of their lexicon and protocols. Few in their ranks have ques-
tioned the validity of these words in an environmental context. Be-
cause engineers are often directing large research operations such as
radioactive waste research, groundwater contamination character-
ization and remediation and mine waste remediation, they are quite
comfortable using verification and validation. But there is more to
this story. I often wondered why mine site remediation would fail
for reasons that seemed predictable. There is an important differ-
ence of cultures inherent in science compared to engineering. In sci-
entific study, students and researchers want to find out how natural
phenomena work and be able to explain natural processes. In engi-
neering, by contrast, students and professionals want to build, oper-
ate, or fix things. The emphasis is not on understanding or
explaining problem, it is on action to solve a problem. Of course,
you would think that to properly fix a hazardous waste problem,
you should first have to understand it. That is why Superfund studies
go through a phase of RI/FS (remedial investigation/feasibility
study) with an initial characterization phase followed by identifying
and utilizing the best available technology for remediation. Unfortu-
nately, characterization of a mine site or a contaminated aquifer
does not always involve the expertise of those who specialize in
environmental sciences – geologists, hydrologists and geochemists
and it is in such cases when remediation most often fails. Another
cause of failure is simply the lack of independent oversight and peer
review by appropriate experts who do not have a conflict of interest.
When scientists and engineers have worked closely together on a
complex environmental problem and knowledgeable oversight
was utilized, the project invariably progressed more favorably. In
my experience, two good examples of this cooperation would be
the remediation of the Iron Mountain Superfund site (Alpers et al.,
2003) and the Questa baseline and premining groundwater quality
investigation (Nordstrom, 2008). I am sure there are many others as
well, but rather than being common practice it is still uncommon
practice.
11. Reality and interconnectedness

Another underlying problem with our limited ability to under-
stand, explain, and predict natural phenomena is the reductionist
approach, which contrasts with the interconnectedness of reality.
Occasionally, we admit to the complexity and interconnectedness
of the natural world. The hydrologic cycle is a typical example of
how moisture in the atmosphere is related to moisture in the soil
is related to infiltration of meteoric water to the groundwater table
is related to discharge to a lake or river is related to fluvial inflow to
the ocean which returns to the atmosphere through evaporation.
Now we understand that the variability in climate and weather
conditions resulting from global warming affects the hydrologic
cycle. Changing patterns of precipitation affect water management,
weathering rates, ecosystem distributions, flora and fauna, etc.
However, to study our world we tend to take single discipline ap-
proaches and then (i) draw boundaries for the system under inves-
tigation and (ii) make numerous simplifying assumptions for
factors that should be negligible. We slice up the complex and
interconnected world so that we can have a meaningful and man-
ageable subsystem on which to apply our disciplinary knowledge.
We have to do this because of our limited data and limited capabil-
ities and we hope that there are no surprises through an unknown
or unpredictable ‘butterfly effect’ (Lorenz, 1993). We need to al-
ways recognize this disconnect between our modeling and the
reality of our physical world. Nature is integrated in ways that
are not often known to us, we are not integrated in ways that are
often known to us. ‘‘The problems of the world are a result of the
difference between the way nature works and the way man thinks’’
(Bateson, 1972).

In addition to our limited subsystem approach to studying the
environment, we do further injustice by communicating our find-
ings. Not only is our thinking about reality limited but our ability
to tell others about it is limited by language itself. ‘‘The minute
we begin to talk about this world, however, it somehow becomes
transformed into another world, an interpreted world, a world
delimited by language’’ (Gregory, 1990). Science is an abstracting
process that goes from sense impressions and percepts to concepts
to communicated language. We lose the immediate experience by
journeying through this abstracting process. Science is thus a pro-
cess of transforming experiential knowledge into processed, com-
municable knowledge.
12. Recommended guidelines on the use of models

From my own experience, and from what I have learned from
others, I offer these guidelines:



D. Kirk Nordstrom / Applied Geochemistry 27 (2012) 1899–1919 1913
� Modeling cannot give an exact answer, only an approximation.
Answers are not right or wrong, but can be useful or not useful.
Modeling is not accurate. If we knew the correct answer we
would not have any need of models.
� Modeling can never substitute for reliable and relevant field data.

In earth sciences the best constraints on modeling come from
field data. The most robust models will be those which have
the widest available data such as chemical, isotopic, and hydro-
logic constraints.
� The greatest weaknesses of any model computation are the quality

of the input data and the adequacy of the assumptions (implicit
and explicit); remember GIGO (‘garbage in, garbage out’).
� It is the quality of the conceptual model that determines the useful-

ness and relevance of any mathematical modeling.
� Model computations are not unique. They are not unique (i) for

purely mathematical reasons, (ii) because there are insufficient
data to constrain the computations to a unique model, and (iii)
because there can be multiple plausible conceptual models.
� Worst-case scenarios are needed to balance out any unrealistically

optimistic scenarios. If modeling results were done to produce a
best-case scenario, then insist on a worst-case scenario to show
the range of possibilities; if only a worst-case scenario was
obtained, get the best-case scenario. Think of the worst-case and
best-case scenarios as error bands on the modeling conclusions.
� Model and code reliability can be tested in some limited ways to see

if they will be useful for the particular problem. Test cases should
be standard practice for codes to see how well they perform
before letting them loose on an important hazardous waste
problem. Worked examples, provided in the user’s manual for
several geochemical codes, can fulfill a role as test cases.
� The main conclusion or argument based on a complex computation

should be reproducible in a simpler manner by hand calculation.
Very often a hand calculation can catch the main points of a
modeling interpretation.
� Model computations must be explicable to non-modelers. Explain-

ing geochemical model computations to non-modelers and espe-
cially to non-technical audiences is a test of how well the
modeler understands the computations and should be manda-
tory if modeling is used as a basis for hazardous waste decisions.
� No matter how much data is acquired, no matter how sophisticated

the modeling, there are always factors one cannot know that pre-
vent our ability to predict the future.
� The more sophisticated the modeling, the less we know about how

well the model performs or how it works (the ‘‘complexity para-
dox’’). A balance has to be found between model sophistication
and model transparency.
� Any computer code that is used for regulatory or legal purposes

must be transparent. If important policy decisions are based
partly on modeling with codes then the codes must be open
to review and evaluation. Proprietary codes have no business
in technical studies when results affect public policy.
� If a model is said to have been validated, insist on having it inval-

idated also. Then determine whether modeling has any meaning
or usefulness for the specific problem.
� Is it necessary to predict? Is this the best approach? Must we model

to reach a pragmatic policy decision? We cannot know well in
advance exactly when an earthquake will hit, a volcano will
erupt, or when and where a major flood will occur but we can
prepare for these natural disasters by emergency planning,
especially if field-based data are used rather than idealized
mathematical models (Baker, 1994). If models are not linked
to fundamental principles and actual field data, they will be
especially prone to error (Iverson, 2003). Prediction is not nec-
essarily the main point of science (Oreskes, 2000b).
� A model represents our understanding of a particular system. Mod-

els are useful because (i) they are heuristic, (ii) they can be
incorporated into computer codes to manage large databases
and test hypotheses, (iii) they integrate different types of data
and processes for a given system, and (iv) they should provide
new insight into complex problems. They are an important tool
for guiding, but not replacing, our thinking in making decisions
on hazardous waste remediation. They are approximate
because our understanding is always approximate.

13. Conclusions

A consensus as to an acceptable definition for ‘model validation’
is lacking and there are major flaws with those that have been pro-
posed. Scientists have argued against using this phrase, and philos-
ophers have argued against it. By examining examples where
validation was the main objective, the goal was not achieved; vali-
dation could either be always achieved or never achieved depending
on one’s point of view. Hence, the phrase became meaningless. The
emphasis on validation was a carryover from engineering practice
into environmental investigations in which complexity and the nat-
ure of science prevents useful application of ‘model validation.’ We
would do well to drop this word from our vocabulary and strive for
more humility in the face of challenging environmental problems.

Models and computer codes should be thought of as dynamic;
they are continually updated and modified, sometimes discarded,
sometimes merged. In spite of these changes, the modeler should
be focused on interpreting the hydrogeochemical processes, not
finessing the code. Someone who spends most of his time improving
a code is a programmer, not a modeler. The modeler’s main respon-
sibility is to the conceptual model. Towards that goal, the modeler
should be asking (i) Has the problem been well defined? (ii) Have I
applied the Chamberlin (1897) method of multiple working hypoth-
eses? (iii) Has the appropriate science been applied to the problem?
(iv) Has a balanced, informative synthesis been developed?

Another concern that has surfaced in the ‘model validation’ dis-
cussions is the different perspectives of the scientist and the engi-
neer. When these two perspectives are joined and work
cooperatively towards a common goal, better results are achieved.

Thanks to the considerable efforts of Naomi Oreskes, Ken Belitz,
John Bredehoft, Lenny Konikow, Kristin Shrader-Frechette, Mary
Anderson, and many others, there seems to be increasing accep-
tance that model validation is a phrase that should not be used,
especially in a regulatory context (NRC, 2007; USEPA, 2009). I am
hopeful that this trend will continue.
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Appendix A. Selected definitions from the literature

1. Interconnectedness of reality

‘‘Conventional thought is, in brief, the confusion of the concrete
universe of nature with the conceptual things, events, and values of
linguistic and cultural symbolism. For in Taoism and Zen the world
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is seen as an inseparably interrelated field or continuum, no part of
which can actually be separated from the rest or valued above or
below the rest. It was in this sense that Hui-neng, the Sixth Patri-
arch, meant that ‘fundamentally one thing exists,’ for he realized
that things are not terms, not entities. They exist in the abstract
world of thought but not in the concrete world of nature.’’ Watts
(1960)

‘‘I believe that every event in the world is connected to every
other event. But you cannot carry on science on the supposition
that you are going to be able to connect every event with every
other event. . . . It is, therefore, an essential part of the methodology
of science to divide the world for any experiment into what we re-
gard as relevant and what we regard, for purposes of that experi-
ment, as irrelevant. We make a cut. We put the experiment into
a box. Now the moment we do that, we do violence to the connec-
tions in the world.’’ Bronowski (1978)

‘‘The world is totally connected. Whatever explanation we in-
vent at any moment is a partial connection, and its richness derives
from the richness of such connections as we are able to make.’’ Bro-
nowski (1978)

‘‘When we try to pick out anything by itself, we find it hitched
to everything else in the universe.’’ Muir (1911)

‘‘Nature is one, and to me the greatest delight of observation
and study is to discover new unities in the all-embracing and eter-
nal harmony.’’ Muir (1909)

‘‘The farther and more deeply we penetrate into matter, by
means of increasingly powerful methods, the more we are con-
founded by the interdependence of its parts. . ..It is impossible to
cut into this network, to isolate a portion without it becoming
frayed and unraveled at all its edges.’’ Teilhard de Chardin (1959)
2. Model

‘‘An assembly of concepts in the form of mathematical equa-
tions or statistical terms that portrays a behavior of an object, pro-
cess or natural phenomenon.’’ Drinking Water Source Protection
[www.sourcewaterinfo.on.ca/content/spProject/glossary.php ac-
cessed 11-12-11]

‘‘. . .a well-constrained logical proposition, not necessarily
mathematical, that has necessary and testable consequences.’’
Greenwood (1989)

‘‘model – an assembly of concepts in the form of mathematical
equations that portray understanding of a natural phenomenon.’’
ASTM (1984)

‘‘There is a variety of things that are commonly referred to as
models: physical objects, fictional objects, set-theoretic structures,
descriptions, equations, or combinations of some of these. How-
ever, these categories are neither mutually exclusive nor jointly
exhaustive. Where one draws the line between, say, fictional ob-
jects and set-theoretical structures may well depend on one’s
metaphysical convictions, and some models may fall into yet an-
other class of things.’’ Frigg and Hartmann (2009)

‘‘Models are vehicles for learning about the world. Significant
parts of scientific investigation are carried out on models rather
than on reality itself because by studying a model we can discover
features of and ascertain facts about the system the model stands
for; in brief, models allow for surrogative reasoning.’’ Frigg and
Hartmann (2009)

‘‘Models, in the sense in which I am using the word here, are
imaginary simulations of the real natural systems we are trying
to understand. The models include only properties and relation-
ships that we need in order to understand those aspects of the real
system we are presently interested in.’’ Derry (1999)

‘‘But whenever physicists want to emphasize their lack of
commitment to the reality of what is described by a theory, or to
express their consciousness of its limitations, they simply call it a
model.’’ Newton (1997)

‘‘It is clear that models, metaphors, and analogies lack the attri-
bute of truth.’’ Newton (1997)

‘‘Like other metascientific concepts, the notion of a model defies
formal definition. One might say, perhaps, that a theoretical model
is an abstract system used to represent a real system, both descrip-
tively and dynamically.’’ Ziman (2000), Giere (1988)

‘‘For this discussion, we define a model as a representation of a
real system or process.’’ Konikow and Bredehoeft (1992)

‘‘To call a model an idealization is to suggest that it is a simpli-
fication of what occurs in reality, usually a simplification that
omits some relevant features, . . .’’ Cartwright (1983)

‘‘But models are almost never realistic in the first sense; and I
have been arguing, that is crucial to how physics works.’’ Cart-
wright (1983)

‘‘A simplification of reality that is constructed to gain insights
into select attributes of a physical, biological, economic, or social
system. A formal representation of the behavior of system pro-
cesses, often in mathematical or statistical terms. The basis can
also be physical or conceptual.’’ NRC (2007); USEPA (2009)

‘‘Fundamentally, all models are simplifications. Complex rela-
tionships are reduced, some relationships are unknown, and ones
perceived to be unimportant are eliminated from consideration
to reduce computational difficulties and to increase transparency.
Thus, all models face inherent uncertainties because human and
natural systems are always more complex and heterogeneous than
can be captured in a model.’’ NRC (2007)

‘‘Every area of science uses models as intellectual devices for
making natural processes easier to understand. The model that
reliably predicts the outcome of real events, or that continues to
fit new data, is essentially a kind of theory, a broad statement of
how nature works.’’ Lehr (1990)

‘‘The word ‘model’ is used in everyday speech with three dis-
tinct meanings: ‘a replica,’ ‘an ideal’ and ‘to display.’ The concept
of the model as adopted here combines aspects of all three mean-
ings. In order to simplify environmental systems, models or repli-
cas of them can be constructed. To be useful, these models must
display or make clear its structure or how it works.’’ White et al.
(1992)

‘‘A model is a substitute for a real system. Models are used
when it is easier to work with a substitute than with the actual sys-
tem. An architect’s blueprint, and engineer’s wind tunnel, and an
economist’s graphs are all models. They represent some aspect of
a real system – a building, an aircraft, or the nation’s economy.
They are useful when they help us learn something new about
the systems they represent.’’ Ford (1999)

‘‘By design, models are simplifications of the system under
study.’’ Ford (1999)

‘‘Science and scientific models begin as ideas and opinions that
are formalized into a language, often, but not necessarily, mathe-
matical language.’’ Nordstrom (2003)

‘‘A model takes on the quality of theory when it abstracts from
raw data the facts that its inventor perceives to be fundamental
and controlling, and puts these into relation to each other in ways
that were not understood before—thereby generating predictions
of surprising new facts.’’ Judson (1980)

‘‘A model is a formulation that mimics a real-world phenome-
non, and by means of which predictions can be made. . . .In sum-
mary, models are not intended to be exact copies of the real
world but simplifications that reveal the key processes necessary
for prediction.’’ Odum (1971)

‘‘A model of something is a simplified imitation of it that we
hope can help us understand it better. A model may be a device,
a plan, a drawing, an equation, a computer program, or even just
a mental image. Whether models are physical, mathematical, or
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conceptual, their value lies in suggesting how things work or might
work.’’ AAAS (1990)

‘‘Every theory of the course of events in nature is necessarily
based on some process of simplification and is to some extent,
therefore, a fairy tale.’’ Sir Napier Shaw as cited by C.J. Walters in
Odum (1971)

‘‘Though we often think of ‘models’ in terms of equations and
computers, they can be defined more generally as any physical or
abstract representations of the structure and function of real sys-
tems.’’ C.J. Walters in Odum (1971)

‘‘The failure of a model to predict change is in itself useful, be-
cause it points out flaws in the conceptual framework from which
the model was developed.’’ C.J. Walters in Odum (1971)

‘‘That will never be, for a bond does not really exist at all: it is a
most convenient fiction. . .both to experimental and theoretical
chemists.’’ C.A. Coulson as cited by M.J. Nye (1994)

‘‘Careful thought leads us to the following disturbing conclu-
sion: Every model is definitely false. Although we may be able to
say that one model is better than another, in the sense that it pro-
duces more accurate predictions, we cannot say that it is more
probable. Therefore, it is inappropriate to try to assign probabilities
to models.’’ Morgan and Henrion (1990)

‘‘Remember that all models are wrong; the practical question is
how do they have to be to not be useful.’’ Box and Draper (1987)

‘‘Science models are rather a simulation of human conscious-
ness than the reality of the universe.’’ Nalimov (1981)

‘‘Model. A system designed to possess some of the properties of
another, generally more complicated, system.’’ Lorenz (1993)

‘‘The main import of mathematics is that it provides a universal
system of symbols, rather than merely a means for quantitative
judgment. . . The use of symbolism allows us to widen the horizon
of our knowledge beyond immediate experience. Science is the
‘‘abstract’’ representation of reality. We build up science by con-
structing more and more abstract theories.’’ Hutten (1967)

‘‘The problem is that in mathematics a proposition is capable of
being exclusively and immutably true or false. In science any prop-
osition has to be interpreted in the light of a theory, and as such its
truth value cannot only change but may not be strictly definable.
Thus, there is a dichotomy between inductive and deductive logic.’’
Sanitt (1996)

‘‘A model is simply an abstraction or a simple representation of
a real system or process.’’ Hassan (2003)

‘‘A model is, by definition, a simpler representation of the real
thing. It is essentially a toy, albeit a useful one, as a mathematical
mimic of the real, more complicated, system. It is not a unique
opinion that modeling is fine as long as it is not confused with
the real thing.’’ Silberstein (2006)

‘‘The characteristic – perhaps the only characteristic – that all
theoretical models have in common is that they provide represen-
tations of parts of the world, or of the world as we describe it. But
the concept of representation is as slippery as that of a model.’’
Hughes (1997)

‘‘A model is a copy or imitation or representation of a real
thing.’’ Rothman (1992)

‘‘A model can be broadly defined as a concept or set of linked
concepts that aim to explain some part of reality. A mode may
be expressed in words, a picture or graph, a mechanical apparatus,
or a set of equations that may or may not be solved by analytical or
numerical means.’’ Wilcock and Iverson (2003)

‘‘One might say, perhaps, that a theoretical model is an abstract
system used to represent a real system, both descriptively and
dynamically.’’ Ziman (2000)

‘‘Mathematics and thermodynamics deal with models of reality,
not with reality itself.’’ Anderson and Crerar (1993)

‘‘To communicate knowledge, we must use a simplified and
abstract symbolism (words, mathematics, pictures, diagrams,
analogues, allegories, three-dimensional physical constructs, etc.)
to describe a material object or phenomenon, i.e., a model. Models
take on many forms but they are all characterized by being a sim-
plification or idealization of reality.’’ Nordstrom (2003)

‘‘A model of something is a simplified imitation of it that we
hope can help us to understand it better. A model might be a de-
vice, a plan, a drawing, an equation, a computer program, or even
just a mental image. Whether models are physical, mathematical
or conceptual their value lies in suggesting how things either do
work or might work.’’ (AAAS, 1990)

‘‘All models seek to simplify the complexity of the real world by
selectively exaggerating the fundamental aspects of a system at the
expense of incidental detail. In presenting an approximate view of
reality, a model must remain simple enough to understand and
use, yet complex enough to be representative of the system being
studied.’’ Anderson and Burt (1985)

‘‘In order to simulate the workings of this machine, we usu-
ally describe a model made of simple units and obeying simple
laws whose motions are then shown to take it to just those
points in time and space where experiment can check against
the physical world. It does not matter whether this model is
made with pulleys and springs and cathode tubes whose behav-
ior has become familiar to us, or it is simply an array of equa-
tions to be solved. Either is a model. The true essence of a
model is that it is an axiomatic construction like that of Euclid.’’
Bronowski (1951)

‘‘A mathematical model is a description of a process or a predic-
tion about the end result of a process, expressed as an equation or
equations. A model is a numerical analogue – a set of equations
that describes the relationships between parameters that control
a process.’’ Pilkey and Pilkey-Jarvis (2007)

‘‘model – In applied mathematics, an analytical or mathematical
representation or quantification of a real system and the ways that
phenomena occur within that system.’’ IAEA (1982)

‘‘model. An analytical representation or quantification of a real
system and the ways in which phenomena occur within that sys-
tem, used to predict or assess the behaviour of the real system un-
der specified (often hypothetical) conditions. A representation of a
system and the ways in which phenomena occur within that sys-
tem, used to simulate or assess the behaviour of the system for a
defined purpose.’’ IAEA (2007)

‘‘The conceptual model is the basic idea, or construct, of how
the system or process operates; it forms the basic idea for the mod-
el (or theory).’’ Bredehoeft (2005)

‘‘A naturalistic ‘picture’ of a dynamic system is a model.
Although this word means no more than a simplified representa-
tion of a complex entity, and is often used very loosely to mean
any abstract theory, it conveys intuitive notions of internal struc-
tures and mechanisms.’’ Ziman (2000)

‘‘A model may be defined as a selected simplified version of a
real system and phenomena that take place within it, which
approximately simulates the system’s excitation-response rela-
tionships that are of interest.’’ Bear and Cheng (2010)

‘‘So we must ask, what is a model? For one thing, a model is
an abstraction of reality. Nature is simply too complex to under-
stand in toto, and so we must abstract from nature’s reality those
elements that are important to any given circumstance.’’ Hall
(2000)
3. Model accreditation

‘‘Accreditation is ‘the official certification that a model or simu-
lation is acceptable for use for a specific purpose.’’ (DoD Directive
5000.59 http://triton.dmso.mil/docslib/mspolicy/directive.html).
Balci (1997)
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4. Model calibration

‘‘The process for generating information over the life cycle of
the project that helps to determine whether a model and its analyt-
ical results are of a quality sufficient to serve as the basis of a deci-
sion.’’ Drinking Water Source Protection [www.sourcewaterinfo.
on.ca/content/spProject/glossary.php accessed 11-12-11]

5. Model evaluation

‘‘A comparison of model results with numerical data indepen-
dently derived from experiments or observations of the environ-
ment.’’ Drinking Water Source Protection [www.sourcewaterinfo.
on.ca/content/spProject/glossary.php accessed 11-12-11]

6. Model testing

‘‘Model testing is ascertaining whether inaccuracies or errors
exist in the model. In model testing, the model is subjected to test
data or test cases to determine if it functions properly. ‘Test failed’
implies the failure of the model, not the test. A test is devised and
testing is conducted to perform either validation or verification or
both.’’ Balci (1997)

7. Model validation

‘‘A test of a model with known input and output information
that is used to adjust or estimate factors for which data are not
available.’’ Drinking Water Source Protection [www.source-
waterinfo.on.ca/content/spProject/glossary.php accessed 11-12-11]

‘‘Validation is a quality assurance process of establishing evi-
dence that provides a high degree of assurance that a product, ser-
vice, or system accomplishes its intended requirements. This often
involves acceptance of fitness for purpose with end users and other
product stakeholders. This is often an external process.’’ Wikipedia
[accessed 11-12-11]

‘‘Model validation is substantiating that the model, within its
domain of applicability, behaves with satisfactory accuracy consis-
tent with the M&S [models and simulation] objectives. Model val-
idation deals with building the model right.’’ Balci (1997)

‘‘There is no uniform procedure for validation. No model has
ever been or ever will be thoroughly validated. Since, by design,
models are all simplifications of the reference system, they are
never entirely valid in the sense of being fully supported by objec-
tive truth. ‘Useful,’ ‘illuminating,’ ‘convincing,’ or ‘inspiring confi-
dence’ are more apt descriptions applying to models than ‘valid.’’’
Greenberger et al. (1976)

‘‘. . . all models leave out a lot and are in that sense false, incom-
plete, inadequate. The validation of a model is not that it is ‘true’
but that it generates good testable hypotheses relevant to impor-
tant problems. A model may be discarded in favor of a more pow-
erful one, but it usually is simply outgrown when the live issues
are not any longer those for which it was designed.’’ Levins (1966)

‘‘The terms ‘validation’ and ‘assurance’ prejudice expectations
of the outcome of the procedure toward only the positive – the
model is valid or its quality is assured – whereas evaluation is neu-
tral in what might be expected of the outcome.’’ NRC (2007)

‘‘Ideally, comparing model results with a real-world situation, a
process known as calibration or validation, tests a model.’’ Pilkey
and Pilkey-Jarvis (2007)

‘‘validation: A conceptual model and the computer code derived
from it are ‘validated’ when it is confirmed that the conceptual
model and the derived computer code provide a good representa-
tion of the actual processes occurring in the real system. Validation
is thus carried out by comparison of calculations with field obser-
vations and experimental measurements.’’ IAEA (1982)
‘‘Validation, a procedure that provides, by reference to indepen-
dent sources, evidence that an inquiry is free from bias or other-
wise conforms to its declared purpose.’’ Pescatore (1995)

‘‘In the establishment of scientific laws experience plays a two-
fold part. There is the obvious confirming or confuting of a hypoth-
esis by observing whether its calculated consequences take place,
and there is the previous experience which determines what
hypotheses we shall think antecedently probable. But behind these
influences of experience there are certain vague general expecta-
tions, and unless these confer a finite a priori probability on certain
kinds of hypotheses, scientific inferences are not valid.’’ Russell
(1948)

‘‘Each computer code to be used in safety analysis has to be ver-
ified. It also has to be shown that the models used are applicable
for the specific repository system (validation), taken both individ-
ually and as an overall model chain.’’ HSK (1993)

‘‘Difference in validation criteria across the disciplines are
accordingly vast.’’ Wilson (1998).

‘‘The essence of science is validation by observation. But it is not
enough for scientific theories to fit only the observations that are
already known. Theories should also fit additional observations
that were not used in formulating the theories in the first place;
that is, theories should have predictive power.’’ (AAAS, 1990)

‘‘Hence, every conclusion of compliance with government regu-
lations, or every conclusion of repository safety, on the basis of
‘‘verified’’ or ‘‘validated’’ test or simulation results, is an example
of affirming the consequent. Program verification, in other words,
‘‘is not even a theoretical possibility.’’ One cannot prove safety.
One can only demonstrate that one has attempted to falsify one’s
results and either has failed to do so or has done so.’’ Shrader-
Frechette (1996)

‘‘In all but the most trivial cases, science does not produce log-
ically indisputable proofs about the natural world. At best it pro-
duces a robust consensus based on a process of inquiry that
allows for continued scrutiny, re-examination, and revision.’’ Ores-
kes (2004)

8. Model verification

‘‘The examination (normally performed by the model develop-
ers) of the numerical technique in the computer code to ascertain
that it truly represents the conceptual model and that there are
no inherent numerical problems with obtaining a solution.’’ Drink-
ing Water Source Protection [www.sourcewaterinfo.on.ca/content/
spProject/glossary.php accessed 11-12-11]

‘‘Verification and validation is the process of checking that a
product, service, or system meets specifications and that it fulfills
this intended purpose. Verification is a quality control process that
is used to evaluate whether a product, service, or system complies
with regulations, specifications, or conditions imposed at the start
of a development phase. Verification can be in development, scale-
up, or production. This is often an external process.’’

‘‘It is sometimes said that validation can be expressed by the
query ‘Are you building the right thing?’ and verification by ‘Are
you building it right?’ ‘Building the right thing’ refers back to the
user’s needs, while ‘building it right’ checks that the specifications
are correctly implemented by the system. In some contexts, it is
required to have written requirements for both as well as formal
procedures for determining compliance.’’ Wikipedia [accessed 11-
12-11]

‘‘Verification is the confirmation of truth or authority. [It is] the
evidence for such a confirmation or a formal assertion of validity.
[It is] the establishment of the correctness of a theory, fact, etc.
or evidence that provides proof of an assertion, theory, etc. Verifi-
cation [is] additional proof that something that was believed (some
fact or hypothesis or theory) is correct; [it] is an affidavit attached
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to a statement confirming the truth of that statement.’’ The Free
Dictionary [www.thefreedictionary.com accessed 11-12-11]

‘The end result of verification is technically not a verified model,
but rather a model that has passed all the verification tests.’’
[jtac.uchicago.edu/conferences/05/resources/V&V_macal_pres.pdf
accessed 11-12-11]

‘‘Model verification is substantiating that the model is trans-
formed from one form into another, as intended, with sufficient
accuracy. Model verification deals with building the model right.
The accuracy of transforming a problem formulation into a model
specification or the accuracy of converting a model representation
from a micro-flowchart form into an executable computer program
is evaluated in model verification.’’ Balci (1997)

‘‘The problem of verification in empirical science resolves itself
therefore, into four aspects: (a) the logical structure of the hypoth-
esis and of the research design, (b) the precision and appropriate-
ness of the methods, (c) the criteria of reliability and/or validity,
and (d) the level of credibility of the investigator. Strength in one
of more of these aspects does not compensate for weakness in
the others; for like the proverbial chain, verification can be no
stronger than the weakest link in the total research effort.’’ Last-
rucci (1963)

‘‘verification: A computer code is ‘verified’ when it is confirmed
that the conceptual model of the real system is adequately repre-
sented by the mathematical solution. Verification can thus be car-
ried out, for example, by intercomparison of codes and by
comparison of numerical codes with analytical solutions.’’ IAEA
(1982)

‘‘The process of determining whether a computational model cor-
rectly implements the intended conceptual model or mathematical
model.’’ IAEA (2007)

‘‘To put it in a nutshell: we can never rationally justify a theory
– that is, a claim to know its truth – but we can, if we are lucky,
rationally justify a preference for one theory out of a set of compet-
ing theories, for the time being; that is, with respect to the present
state of the discussion. And our justification, though not a claim
that the theory is true, can be the claim that there is every indica-
tion at this stage of the discussion that the theory is a better
approximation to the truth than any competing theory so far pro-
posed.’’ Popper (1972)
9. On knowledge

‘‘It isn’t what we don’t know that causes the trouble, it’s what
we think we know that just ain’t so.’’ Will Rogers (1879–1935)

‘‘When you know a thing, to hold that you know it; and when
you do not know a thing, to allow that you do not know it – this
is knowledge.’’ Confucius (551-479 BCE) The Analects

‘‘To know that you do not know is the best. To pretend to know
when you do not know is a disease.’’ Lao-tse, #71 from the Tao Te
Ching

‘‘‘You can know the name of a bird in all the languages of the
world, but when you are finished, you’ll know absolutely nothing
about the bird. . .. So let’s look at the bird and see what it’s doing
– that’s what counts.’ (I learned very early the difference between
knowing the name of something and knowing something.)’’ Feyn-
man (1988)

‘‘What then is time? If no one asks of me, I know: if I wish to
explain to him who asks, I know not.’’ St. Augustine as cited by Rus-
sell (1948)

‘‘‘Knowledge,’ as we have seen, is incapable of precision. All
knowledge is in some degree doubtful, and we cannot say what de-
gree of doubtfulness makes it cease to be knowledge, any more
than we can say how much loss of hair makes a man bald.’’ Russell
(1948)
‘‘‘Knowledge’ is a sub-class of true beliefs. We have just seen
that ‘belief’ is not easy to define, and true is a very difficult term.’’
Russell (1948)

‘‘Indeed, such inadequacies as we have seemed to find in empir-
icism have been discovered by strict adherence to a doctrine by
which empiricist philosophy has been inspired: that all human
knowledge is uncertain, inexact, and partial. To this doctrine we
have not found any limitation whatever.’’ Russell (1948)

‘‘We have found it of paramount importance that in order to
progress we must recognize the ignorance and leave room for
doubt. Scientific knowledge is a body of statements of varying de-
grees of certainty – some most unsure, some nearly sure, none
absolutely certain.’’ Feynman (1999)

‘‘So what we end up having to contend with is the false idea that
science is objective, value-free and is able to give the whole pic-
ture, and the equally false idea that science and literature are fun-
damentally different pursuits. Behind this is the problematic idea
of truth in science and literature. As soon as the idea of an absolute
truth is removed from the centre-stage position and replaced by a
concept of truth relative to some theory, then literary and scientific
truth may converge towards one another. The effect of literature –
and at the heart it is this effect which is the fundamental measure
of literature – is to mould the way we ‘perceive and speak of the
world.’ What literature works on is human perception, through
the medium of a fictional world or framework. This fictional world
is not just an alternative to the real world, but is created in the
mind of the subject through the text. Truth is thus not proposi-
tional but conceptual.’’ Sanitt (1996)

‘‘There may be an eternal objective truth beyond all of our
words, but the minute that truth is spoken by a human being it
ceases to be either eternal or objective. It becomes then truth com-
promised by time, concept, vocabulary, history, and prejudice.’’
Spong (1991)

‘‘Can we devise a universal litmus test for scientific statements
and with it eventually attain the grail of objective truth? Current
opinion holds that we cannot and never will. Scientists and philos-
ophers have largely abandoned the search for absolute objectivity
and are content to ply their trade elsewhere.’’ Wilson (1998)

‘‘For it is of the essence of scientific honesty that you do not pre-
tend to know what you do not know, and of the essence of the sci-
entific method that you do not employ hypotheses which cannot
be tested.’’ Watts (1951)

‘‘Our knowledge of how the world works is limited by at least
five kinds of uncertainty: (1) inadequate knowledge of all the fac-
tors that may influence something, (2) inadequate number of
observations of these factors, (3) lack of precision in the observa-
tions, (4) lack of appropriate models to combine all the information
meaningfully, and (5) inadequate ability to compute from the mod-
els.’’ AAAS (1990)

‘‘We must learn to understand that the content of all knowledge
is empirical; that its test is whether it works; and we must learn to
act on that understanding in the world as well as in the labora-
tory.’’ Bronowski (1951)
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