0

### Solar Installations on Closed Landfills: Technical and Regulatory Considerations

Gabriel Sampson EPA OSRTI NNEMS Fellow

Bren School of Environmental Science and Management University of California, Santa Barbara

Goal

- Summarize the findings from 2009 research, including the following:
  - 1. The opportunity for solar energy on landfills
  - 2. Relevant solar power system technologies
  - 3. Technical challenges
  - 4. Regulatory complications
  - 5. Case evidence

#### **Problem Statement**

- Thousands of closed landfills across US<sup>1</sup>
- EPA OSWER OCPA currently encouraging placement of clean energy on contaminated lands
- Recurring challenges:
  - Technical (e.g. cap integrity and site remedy)
  - Regulatory (state and local)

## Solar Power Systems

- Ground mounted system components
  - Stanchions
  - Footings
    - Shallow concrete pillars;
    - Slab;
    - · Ballasted frames;
    - Driven pile

## Solar Power Systems



)

Solar Technologies

- Photovoltaic
  - Panels
    - 1. Thin film/amorphous
    - 2. Polycrystalline
    - 3. Monocrystalline
  - Mounting structures
    - 1. Fixed tilt
    - 2. Single axis tracker
    - 3. Double axis tracker

## Solar Technologies

- Concentrating Solar Power (CSP)
  - Linear concentrators
     Parabolic trough
     Fresnel reflector
  - 2. Power towers
  - 3. Dish/Engine Systems Small scale production

Weight Considerations

- PV panel weight
  - Thin film
    - · Generally light weight
    - Flexible
    - Less efficient per unit area
  - Crystalline
    - Heavier
    - Rigid
    - More efficient (monocrystalline > polycrystalline)

## Weight Considerations

| Brand      | Model                                | Watts | Weight (lbs) | Watts/<br>Pound | Dimensions<br>(inches) | Cell<br>Type* |
|------------|--------------------------------------|-------|--------------|-----------------|------------------------|---------------|
| Kyocera    | KC 50T                               | 50    | 10           | 5.00            | 25x26                  | P             |
|            | KC 130GT                             | 130   | 26.8         | 4.85            | 56.1x25.7x2.2          | P             |
|            | KD 180GX-<br>LP                      | 180   | 36.4         | 4.95            | 52.8x39x1.4            | P             |
| Mitsubishi | MF120EC4                             | 120   | 25.4         | 4.72            | 56.1x25.4x2.2          | P             |
|            | MF185UD5                             | 185   | 43           | 4.30            | 65.3x32.6x1.81         | P             |
|            | 190BA3                               | 190   | 33           | 5.75            | 52x35x1.8              | P             |
| Sanyo      | HIT Power N<br>215N/HIP-<br>215NKHA5 | 215   | 35.3         | 6.10            | 63.2x32x72.8           | P             |
| REC Solar  | SCM 210WP                            | 210   | 48.4         | 4.33            | 66.55x39.01x1.69       | P             |
| Sharp      | Sharp 140                            | 140   | 32           | 4.38            | 49x39                  | P             |
| SunWize    | SW150                                | 150   | 44           | 3.41            | 66.61x30.27            | M             |
| SolarWorld | SW175                                | 175   | 40           | 4.38            | 63.9x32x1.6            | M             |
| Uni-Solar  | PVL-68                               | 68    | 8.7          | 7.82            | 112.1x15.5x0.2         | A             |
|            | PVL-144                              | 144   | 17           | 8.47            | 216x15.5x0.2           | A             |
| Kaneka     | G-SA060                              | 60    | 30.2         | 1.99            | 39x39x1.6              | A             |

Table 1 – Weight specifications for various solar PV panels. <u>www.wholesalesolar.com</u> P=polycrystalline, M=monocrystalline, A=amorphous thin film

## Weight Considerations



**PV Weight Considerations** 

- System mounting
  - 1. Single and double axis sun trackers
  - 2. Fixed tilt
- Foundations
  - 1. Ballasted platform;
  - 2. Concrete footings (poured and prefabricated);
  - 3. Slab

Wind and Snow Loading

- IEC standards ~ 50 pounds per square foot mechanical loading (wind speed of ~105 mph)
- Consider how wind loading is impacted by operations and maintenance activities
- Snow loading and side slope stability

### Technical Challenges: Landfill Settlement

- Processes
  - 1. Biochemical degradation;
  - 2. Physiochemical changes;
  - 3. Raveling;
  - 4. Any combination of 1-4<sup>3</sup>
- Dependent on waste
  - 1. Age;
  - 2. Depth;
  - 3. Type;
  - 4. Method of placement

### Technical Challenges: Landfill Settlement

- Differential settlement
  - Impacts on site remedy
    - 1. Surface cracks;
    - 2. Water drainage system;
    - 3. Leachate and gas piping;
    - 4. Surface depressions;
    - 5. Underground utilities
  - Impacts on solar system structures
    - 1. Piers and footings;
    - 2. Aspect of solar panels

### Technical Challenges: Landfill Settlement

- When settlement is a concern
  - 1. Tracking vs. fixed mounting structures
  - 2. Foundation materials
  - 3. Weight of solar array
- Mitigation
  - 1. Simultaneous closure and development
  - 2. Previously closed landfills

### Technical Challenges: Cover Material Integrity

- Clearing and grading activities
- Cover thickness and risk to cap performance
  - 1. Redistribute or import new soil
  - 2. Support foundation
  - 3. Trenching for electrical lines
- Regulatory restrictions

### Technical Challenges: Slide Slope Stability

- Slope instability generally decreases with time<sup>4</sup>
- · Constructing on steep slopes
  - 1. Increased erosion and stormwater control
  - 2. Increased O&M costs
  - 3. Foundation considerations
- Snow and ice loading

## Technical Challenges: Future Site Remedy Management

- Consider
  - 1. Settlement surveys;
  - 2. Landfill gas surveys;
  - 3. Gas extraction activities;
  - 4. Erosion inspections;
  - 5. Cap maintenance
- Access roads

### Technical Challenges: Review

| Complication               | Challenges                                                                                                | Potential Remedy                                                                                                                                                                                                       | Example                                         |
|----------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Steep side<br>slope        | Anchoring solar panels     Stormwater     Erosion     Snow & wind loading                                 | Flexible PV laminates     Other light weight solar system that provides secure foundations     Re-grading and soil amendments                                                                                          | Tessman Road<br>Landfill case<br>study          |
| Thin landfill<br>cap cover | Puncturing landfill<br>cap                                                                                | Light weight, non-invasive<br>foundations     Ballasted solar platforms<br>and shallow footings                                                                                                                        | Fort Carson<br>Army Base case<br>study          |
| Settlement                 | Depressions     Infiltration     System foundations     Gas and leachate piping     Underground utilities | Fixed tilt mounting<br>structures     Light weight shallow<br>footings and ballast     Pre-closure mitigation     Geogrid reinforcement     Selective placement (older<br>waste, construction and<br>demolition waste) | Pennsauken<br>Landfill, Holmes<br>Road Landfill |
| Wind and snow<br>loading   | System connections     Foundation stability                                                               | Use solar panels and<br>mounting structures with<br>high mechanical load rating     Avoid side slope placement                                                                                                         | Not available                                   |
| Routine cap<br>maintenance | Settlement surveys     Gas extraction<br>activities     Erosion inspections     Vegetation<br>management  | Plan solar array placement<br>around monitoring well<br>heads Design panel height to<br>allow for routine<br>landscaping practices Existing permanent access<br>roads                                                  | Not available                                   |

# Regulatory Complications: Permitting

- RCRA Subtitle D
- · State and local government responsible
- 2008 survey<sup>5</sup>
  - 13 states responded
  - No ordinances against landfill development
- Permitted closure?
- Alternative cover design

# Regulatory Complications: Permitting



Roberts, M., Perera, K., Alexander, T., Walker, T. "Alternative Landfill Closure: Solar Energy Cover System." 2008. Engineering design paper provided by Tony Walker, Republic Services, <a href="mailto:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitten:twitt

Regulatory Complications
Permitting

- Solid waste site assignment;
- Landfill property deed;
- · Environmental site assessment;
- · Closure permit and certification;
- · Site plan;
- Landfill capping design plan;
- Post-closure use design plan;
- Storm waster drainage/Run-off control plan;
- Storm water erosion control plan;
- Landfill gas control and monitoring plan;

- Geotechnical stability and settlement analysis;
- · Capping system interface;
- Utilities description;
- Environmental monitoring description;
- Qualitative health and environmental risk assessment;
- Post-closure monitoring and maintenance plan;
- Financial assurance;
- · Wetlands protection plan;
- Documentation that the site is in compliance with state environmental protection statutes<sup>6</sup>

# Regulatory Complications: Zoning and Land Use

- Refer to local government ordinances
- Notify local planning department and enforcement agencies
- e.g. Minnesota
  - MPCA owns 25 of 112 landfills under CLP
  - MPCA has right to limit land use on all sites7

### Regulatory Complications: Environmental Site Investigations

- Environmental site investigation
  - Previously conducted ESI
  - Refer to local regulator
- · Confirm location of well heads
  - Plan placement accordingly

### Regulatory Complications Liability

- CERCLA
- · Brownfields Law
- EPA tools
- State liability protection

### Regulatory Complications Liability

| State         | Liability Protection                                                          |  |  |  |
|---------------|-------------------------------------------------------------------------------|--|--|--|
| Massachusetts | Parties that complete a site cleanup have liability protection against        |  |  |  |
|               | Commonwealth claims for response action and natural resource damage           |  |  |  |
|               | costs once cleanup is complete.                                               |  |  |  |
| Michigan      | The Michigan Natural Resources and Environmental Protection Act of 199        |  |  |  |
|               | exempts landowners from liability for contamination if they perform an        |  |  |  |
|               | environmental investigation and submit it to state authorities within 45 days |  |  |  |
|               | of purchasing the land.                                                       |  |  |  |
| New Jersey    | New Jersey offers limited coverants not to sue, innocent land purchaser       |  |  |  |
|               | defenses, and Prospective Purchaser Agreements.                               |  |  |  |
| Oregon        | Oregon offers a Prospective Purchaser Agreement.                              |  |  |  |
| Pennsylvania  | Parties may be excluded from liability for state approved cleanups.           |  |  |  |
| Wisconsin     | The Wisconsin Remediation and Redevelopment program consolidates many         |  |  |  |
|               | state and federal programs into a single program to assist in the             |  |  |  |
|               | redevelopment of contaminated lands. Certain parties may be found to have     |  |  |  |
|               | limited liability through the state's Voluntary Party Liability Exemption.    |  |  |  |

National Association of Local Government Environmental Professionals, Northeast-Midwest Institute. "
Unlocking Brownfields: Keys to Community Revitalization." Retrieved online from <a href="http://www.resourcesaver.com/file/toolmanager/CustomO93C337F65023.pdf">http://www.resourcesaver.com/file/toolmanager/CustomO93C337F65023.pdf</a> on August 4, 2009.

## Case Evidence: Fort Carson

- Site Name: Fort Carson, SWMU 9
   Location: Fort Carson, CO, Region 8
   Site Type: Construction debris landfill
- · Size: 2 megawatt
- Panels: First Solar FS-272 72.5 watt amorphous thin film
- Inverters: 500 kilowatt SATCON, 408 volts DC power to 200 volt AC, 2400 amps
- Transformers: 500 kilovolt-amps 200 volts/12,470 volts
- **Footings**: 30" wide x 30" deep, 120" long, 6" above grade, 24" below grade, 24' on center spacing, anchor bolts for front and rear stanchions;
- Stanchions: 4" 60 gauge steel, 101" height in rear, 25" height in front;
- Beams and supports: 12 gauge steel C-channels, 287" long, 10" deep, slots cut into beams to allow for side-to-side adjustment, rails are 16 gauge z-channels, rails support module clips and are secured to the beams in front and rear.
- Vince Guthrie, Utility Programs, Fort Carson, Vincent.guthrie@us.army.mil



Retrieved from flickr.com



Retrieved from flickr.com

#### Case Evidence: Holmes Road Landfill

Site Name: Holmes Road Landfill
 Location: Houston, TX, Region 6
 Site Type: Municipal solid waste landfill

• Size: 10 megawatt (projected)

- Status: Under review
- · Fixed tilt single axis mounting structures;
- · Poured concrete footings;
- · Amorphous thin film solar photovoltaic panels;
- 500 kilowatt inverters;
- 21,740 AMAT line.
- Rob Lawrence, Senior Policy Advisor, US EPA Region 6, <u>Lawrence.rob@epa.gov</u>, 214-665-6580
- SRA International. "Solar Power Analysis and Design Specifications: Technical Assistance to the City of Houston." Retrieved online from <a href="http://www.epa.gov/brownfields/sustain\_plts/factsheets/houston\_solar.pdf">http://www.epa.gov/brownfields/sustain\_plts/factsheets/houston\_solar.pdf</a> on July 30, 2009.

Case Evidence: Nellis Air Force Base

- · Site Name: Nellis Air Force Base
- Location: Nellis Air Force Base, NV, Region 9
- Site Type: Municipal solid waste landfill
- Size: 14.2 megawatts
- Panels: 72, 416 SunPower Corporation, SANYO, SunTech Power Holdings, and Evergreen Solar, Inc. crystalline panels.
- Mounting Structure: 5,821 SunPower T20 and SunPower Tracker single axis sun tracking systems;
- · Foundation: Concrete footing foundations;
- Inverter: 54 Xantrex Technology, Inc.
- Nellis Air Force Base Internal and Media Relations, 702-652-2407
- SunPower. "Nellis Air Force Base Case Study Fact Sheet." Retrieved from http://us.sunpowercorp.com/business/success-stories/success-story-pdfs/federal-government/SPWRNellis\_CS.pdf on August 4, 2009.
- Nellis Air Force Base. "Nellis Air Force Base Solar Power System Fact Sheet." Retrieved from <a href="http://www.nellis.af.mil/shared/media/document/AFD-080117-043.pdf">http://www.nellis.af.mil/shared/media/document/AFD-080117-043.pdf</a> on August 6, 2009.



Retrieved from flickr.com

#### Case Evidence: Tessman Road Landfill

- · Site Name: Tessman Road Landfill
- · Location: San Antonio, TX
- Site Type: Municipal Solid Waste Landfill
- Size: 182 megawatt hours
- Geomembrane: Firestone 60 millimeter thermoplastic polyolefin.
- Panels: 1,050 Uni-Solar photovoltaic laminates (PVL) flexible panels positioned parallel to the landfill grade. Dimension for the panels is 15.5"x216"x0.25".
- Adhesive: SikaLastomer-68 ethylene propylene copolymer.
- Tony Walker, Republic Services, 480-627-7088
- Solar Cap Project. Republic Services, Inc. 2008. Retrieved from <a href="http://www.fhsanantonio.com/video/republic/">http://www.fhsanantonio.com/video/republic/</a> on August 10, 2009.
- Roberts, M., Perera, K., Alexander, T., Walker, T. "Alternative Landfill Closure: Solar Energy Cover System." 2008. Engineering design paper provided by Tony Walker, Republic Services, twalker@republicservices.com



Photo courtesy of Tony Walker, Republic Services 34

## Case Evidence: Pennsauken, NJ

- Site Name: Pennsauken Landfill
   Location: Pennsauken, NJ
- · Site Type: Municipal Solid Waste Landfill
- Size: 2.1 megawatt
- Panels: Crystalline photovoltaic;
- Mounting Structures (top deck): Concrete ballasted;
- Mounting Structures (side slop): Pre-cast concrete footings.
- Mark Messics, P.E., Senior Business Development Manager, PPL Renewable Energy, <u>mcmessics@pplweb.com</u>
- Messics, Mark. "Case Study: Pennsauken Landfill Solar Project." Presented at Renewable Energy at Closed Landfill Workshop. Mansfield/Foxboro Holiday Inn, Mansfield, MA. June 17, 2009. Retrieved from <a href="http://www.mass.gov/dep/energy/pennsauk.pdf">http://www.mass.gov/dep/energy/pennsauk.pdf</a> on August 13, 2009.





Conclusions

- New and developing practice
- A number of benefits
- Recurring challenges
- Engineering measures available
- Complicated regulatory context

#### References

- <sup>1</sup>Suflita, J.M., Gerba, C.P., Ham, R.K., Palmisano, A.C., Rathje, W.L., Robinson, J.A. "The World's Largest Landfill: A Multidisciplinary Investigation. *Environmental Science and Technology* 26.8 (1992): 1486-1495.
- <sup>2</sup>Stoddard, L., Abiecunas, J., O'Connel, R. "Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California." NREL/SR-550-39291. Golden, CO: National Renewable Energy Laboratory, 2006. Available online at <a href="http://www.nrel.gov/csp/pdfs/39291.pdf">http://www.nrel.gov/csp/pdfs/39291.pdf</a>.
- <sup>3</sup>Christensen, T.H., Cossu, R., Stegmann, R. Landfilling of Waste: Barriers. London: E & FN Spon, 1994. Electronic.
- <sup>4</sup>Misgav, A., Perl, N., Avnimelech, Y. "Selecting a Compatible Open Space Use for a Closed Landfill Site." *Landscape and Urban Planning* 55.2 (2001): 95-111. Electronic.
- Masson, P.T. 2008. "Should Landfills be Redeveloped: What do Various States Think?" Presented at 2008 Solid Waste Association of North America 23rd Annual Northwest Regional Solid Waste Symposium. McMenamins Edgefield, Troutdale, OR. April 17, 2008. Retrieved from <a href="http://www.swanaoregon.org/symposium\_2008.htm">http://www.swanaoregon.org/symposium\_2008.htm</a> on July 21, 2009.
- <sup>6</sup>Massachusetts Department of Environmental Protection. 2009. "Landfill Post-Closure Use Permitting Guidelines." Retrieved from <a href="http://www.mass.gov/dep/recycle/laws/policies.htm#lfpcguid">http://www.mass.gov/dep/recycle/laws/policies.htm#lfpcguid</a> on July 20, 2009.
- <sup>7</sup>Minnesota Pollution Control Agency. "Closed Landfill Program Land Use Planning." September 2008. Retrieved online from <a href="http://www.pca.state.mn.us/publications/c-clf1-02.pdf">http://www.pca.state.mn.us/publications/c-clf1-02.pdf</a> on August 11, 2009.

### Thank You

After viewing the links to additional resources, please complete our online feedback form.

