0 ### Solar Installations on Closed Landfills: Technical and Regulatory Considerations Gabriel Sampson EPA OSRTI NNEMS Fellow Bren School of Environmental Science and Management University of California, Santa Barbara Goal - Summarize the findings from 2009 research, including the following: - 1. The opportunity for solar energy on landfills - 2. Relevant solar power system technologies - 3. Technical challenges - 4. Regulatory complications - 5. Case evidence #### **Problem Statement** - Thousands of closed landfills across US¹ - EPA OSWER OCPA currently encouraging placement of clean energy on contaminated lands - Recurring challenges: - Technical (e.g. cap integrity and site remedy) - Regulatory (state and local) ## Solar Power Systems - Ground mounted system components - Stanchions - Footings - Shallow concrete pillars; - Slab; - · Ballasted frames; - Driven pile ## Solar Power Systems) Solar Technologies - Photovoltaic - Panels - 1. Thin film/amorphous - 2. Polycrystalline - 3. Monocrystalline - Mounting structures - 1. Fixed tilt - 2. Single axis tracker - 3. Double axis tracker ## Solar Technologies - Concentrating Solar Power (CSP) - Linear concentrators Parabolic trough Fresnel reflector - 2. Power towers - 3. Dish/Engine Systems Small scale production Weight Considerations - PV panel weight - Thin film - · Generally light weight - Flexible - Less efficient per unit area - Crystalline - Heavier - Rigid - More efficient (monocrystalline > polycrystalline) ## Weight Considerations | Brand | Model | Watts | Weight (lbs) | Watts/
Pound | Dimensions
(inches) | Cell
Type* | |------------|--------------------------------------|-------|--------------|-----------------|------------------------|---------------| | Kyocera | KC 50T | 50 | 10 | 5.00 | 25x26 | P | | | KC 130GT | 130 | 26.8 | 4.85 | 56.1x25.7x2.2 | P | | | KD 180GX-
LP | 180 | 36.4 | 4.95 | 52.8x39x1.4 | P | | Mitsubishi | MF120EC4 | 120 | 25.4 | 4.72 | 56.1x25.4x2.2 | P | | | MF185UD5 | 185 | 43 | 4.30 | 65.3x32.6x1.81 | P | | | 190BA3 | 190 | 33 | 5.75 | 52x35x1.8 | P | | Sanyo | HIT Power N
215N/HIP-
215NKHA5 | 215 | 35.3 | 6.10 | 63.2x32x72.8 | P | | REC Solar | SCM 210WP | 210 | 48.4 | 4.33 | 66.55x39.01x1.69 | P | | Sharp | Sharp 140 | 140 | 32 | 4.38 | 49x39 | P | | SunWize | SW150 | 150 | 44 | 3.41 | 66.61x30.27 | M | | SolarWorld | SW175 | 175 | 40 | 4.38 | 63.9x32x1.6 | M | | Uni-Solar | PVL-68 | 68 | 8.7 | 7.82 | 112.1x15.5x0.2 | A | | | PVL-144 | 144 | 17 | 8.47 | 216x15.5x0.2 | A | | Kaneka | G-SA060 | 60 | 30.2 | 1.99 | 39x39x1.6 | A | Table 1 – Weight specifications for various solar PV panels. <u>www.wholesalesolar.com</u> P=polycrystalline, M=monocrystalline, A=amorphous thin film ## Weight Considerations **PV Weight Considerations** - System mounting - 1. Single and double axis sun trackers - 2. Fixed tilt - Foundations - 1. Ballasted platform; - 2. Concrete footings (poured and prefabricated); - 3. Slab Wind and Snow Loading - IEC standards ~ 50 pounds per square foot mechanical loading (wind speed of ~105 mph) - Consider how wind loading is impacted by operations and maintenance activities - Snow loading and side slope stability ### Technical Challenges: Landfill Settlement - Processes - 1. Biochemical degradation; - 2. Physiochemical changes; - 3. Raveling; - 4. Any combination of 1-4³ - Dependent on waste - 1. Age; - 2. Depth; - 3. Type; - 4. Method of placement ### Technical Challenges: Landfill Settlement - Differential settlement - Impacts on site remedy - 1. Surface cracks; - 2. Water drainage system; - 3. Leachate and gas piping; - 4. Surface depressions; - 5. Underground utilities - Impacts on solar system structures - 1. Piers and footings; - 2. Aspect of solar panels ### Technical Challenges: Landfill Settlement - When settlement is a concern - 1. Tracking vs. fixed mounting structures - 2. Foundation materials - 3. Weight of solar array - Mitigation - 1. Simultaneous closure and development - 2. Previously closed landfills ### Technical Challenges: Cover Material Integrity - Clearing and grading activities - Cover thickness and risk to cap performance - 1. Redistribute or import new soil - 2. Support foundation - 3. Trenching for electrical lines - Regulatory restrictions ### Technical Challenges: Slide Slope Stability - Slope instability generally decreases with time⁴ - · Constructing on steep slopes - 1. Increased erosion and stormwater control - 2. Increased O&M costs - 3. Foundation considerations - Snow and ice loading ## Technical Challenges: Future Site Remedy Management - Consider - 1. Settlement surveys; - 2. Landfill gas surveys; - 3. Gas extraction activities; - 4. Erosion inspections; - 5. Cap maintenance - Access roads ### Technical Challenges: Review | Complication | Challenges | Potential Remedy | Example | |----------------------------|---|--|---| | Steep side
slope | Anchoring solar panels Stormwater Erosion Snow & wind loading | Flexible PV laminates Other light weight solar system that provides secure foundations Re-grading and soil amendments | Tessman Road
Landfill case
study | | Thin landfill
cap cover | Puncturing landfill
cap | Light weight, non-invasive
foundations Ballasted solar platforms
and shallow footings | Fort Carson
Army Base case
study | | Settlement | Depressions Infiltration System foundations Gas and leachate piping Underground utilities | Fixed tilt mounting
structures Light weight shallow
footings and ballast Pre-closure mitigation Geogrid reinforcement Selective placement (older
waste, construction and
demolition waste) | Pennsauken
Landfill, Holmes
Road Landfill | | Wind and snow
loading | System connections Foundation stability | Use solar panels and
mounting structures with
high mechanical load rating Avoid side slope placement | Not available | | Routine cap
maintenance | Settlement surveys Gas extraction
activities Erosion inspections Vegetation
management | Plan solar array placement
around monitoring well
heads Design panel height to
allow for routine
landscaping practices Existing permanent access
roads | Not available | # Regulatory Complications: Permitting - RCRA Subtitle D - · State and local government responsible - 2008 survey⁵ - 13 states responded - No ordinances against landfill development - Permitted closure? - Alternative cover design # Regulatory Complications: Permitting Roberts, M., Perera, K., Alexander, T., Walker, T. "Alternative Landfill Closure: Solar Energy Cover System." 2008. Engineering design paper provided by Tony Walker, Republic Services, <a href="mailto:twitten:twitt Regulatory Complications Permitting - Solid waste site assignment; - Landfill property deed; - · Environmental site assessment; - · Closure permit and certification; - · Site plan; - Landfill capping design plan; - Post-closure use design plan; - Storm waster drainage/Run-off control plan; - Storm water erosion control plan; - Landfill gas control and monitoring plan; - Geotechnical stability and settlement analysis; - · Capping system interface; - Utilities description; - Environmental monitoring description; - Qualitative health and environmental risk assessment; - Post-closure monitoring and maintenance plan; - Financial assurance; - · Wetlands protection plan; - Documentation that the site is in compliance with state environmental protection statutes⁶ # Regulatory Complications: Zoning and Land Use - Refer to local government ordinances - Notify local planning department and enforcement agencies - e.g. Minnesota - MPCA owns 25 of 112 landfills under CLP - MPCA has right to limit land use on all sites7 ### Regulatory Complications: Environmental Site Investigations - Environmental site investigation - Previously conducted ESI - Refer to local regulator - · Confirm location of well heads - Plan placement accordingly ### Regulatory Complications Liability - CERCLA - · Brownfields Law - EPA tools - State liability protection ### Regulatory Complications Liability | State | Liability Protection | | | | |---------------|---|--|--|--| | Massachusetts | Parties that complete a site cleanup have liability protection against | | | | | | Commonwealth claims for response action and natural resource damage | | | | | | costs once cleanup is complete. | | | | | Michigan | The Michigan Natural Resources and Environmental Protection Act of 199 | | | | | | exempts landowners from liability for contamination if they perform an | | | | | | environmental investigation and submit it to state authorities within 45 days | | | | | | of purchasing the land. | | | | | New Jersey | New Jersey offers limited coverants not to sue, innocent land purchaser | | | | | | defenses, and Prospective Purchaser Agreements. | | | | | Oregon | Oregon offers a Prospective Purchaser Agreement. | | | | | Pennsylvania | Parties may be excluded from liability for state approved cleanups. | | | | | Wisconsin | The Wisconsin Remediation and Redevelopment program consolidates many | | | | | | state and federal programs into a single program to assist in the | | | | | | redevelopment of contaminated lands. Certain parties may be found to have | | | | | | limited liability through the state's Voluntary Party Liability Exemption. | | | | National Association of Local Government Environmental Professionals, Northeast-Midwest Institute. " Unlocking Brownfields: Keys to Community Revitalization." Retrieved online from http://www.resourcesaver.com/file/toolmanager/CustomO93C337F65023.pdf on August 4, 2009. ## Case Evidence: Fort Carson - Site Name: Fort Carson, SWMU 9 Location: Fort Carson, CO, Region 8 Site Type: Construction debris landfill - · Size: 2 megawatt - Panels: First Solar FS-272 72.5 watt amorphous thin film - Inverters: 500 kilowatt SATCON, 408 volts DC power to 200 volt AC, 2400 amps - Transformers: 500 kilovolt-amps 200 volts/12,470 volts - **Footings**: 30" wide x 30" deep, 120" long, 6" above grade, 24" below grade, 24' on center spacing, anchor bolts for front and rear stanchions; - Stanchions: 4" 60 gauge steel, 101" height in rear, 25" height in front; - Beams and supports: 12 gauge steel C-channels, 287" long, 10" deep, slots cut into beams to allow for side-to-side adjustment, rails are 16 gauge z-channels, rails support module clips and are secured to the beams in front and rear. - Vince Guthrie, Utility Programs, Fort Carson, Vincent.guthrie@us.army.mil Retrieved from flickr.com Retrieved from flickr.com #### Case Evidence: Holmes Road Landfill Site Name: Holmes Road Landfill Location: Houston, TX, Region 6 Site Type: Municipal solid waste landfill • Size: 10 megawatt (projected) - Status: Under review - · Fixed tilt single axis mounting structures; - · Poured concrete footings; - · Amorphous thin film solar photovoltaic panels; - 500 kilowatt inverters; - 21,740 AMAT line. - Rob Lawrence, Senior Policy Advisor, US EPA Region 6, <u>Lawrence.rob@epa.gov</u>, 214-665-6580 - SRA International. "Solar Power Analysis and Design Specifications: Technical Assistance to the City of Houston." Retrieved online from http://www.epa.gov/brownfields/sustain_plts/factsheets/houston_solar.pdf on July 30, 2009. Case Evidence: Nellis Air Force Base - · Site Name: Nellis Air Force Base - Location: Nellis Air Force Base, NV, Region 9 - Site Type: Municipal solid waste landfill - Size: 14.2 megawatts - Panels: 72, 416 SunPower Corporation, SANYO, SunTech Power Holdings, and Evergreen Solar, Inc. crystalline panels. - Mounting Structure: 5,821 SunPower T20 and SunPower Tracker single axis sun tracking systems; - · Foundation: Concrete footing foundations; - Inverter: 54 Xantrex Technology, Inc. - Nellis Air Force Base Internal and Media Relations, 702-652-2407 - SunPower. "Nellis Air Force Base Case Study Fact Sheet." Retrieved from http://us.sunpowercorp.com/business/success-stories/success-story-pdfs/federal-government/SPWRNellis_CS.pdf on August 4, 2009. - Nellis Air Force Base. "Nellis Air Force Base Solar Power System Fact Sheet." Retrieved from http://www.nellis.af.mil/shared/media/document/AFD-080117-043.pdf on August 6, 2009. Retrieved from flickr.com #### Case Evidence: Tessman Road Landfill - · Site Name: Tessman Road Landfill - · Location: San Antonio, TX - Site Type: Municipal Solid Waste Landfill - Size: 182 megawatt hours - Geomembrane: Firestone 60 millimeter thermoplastic polyolefin. - Panels: 1,050 Uni-Solar photovoltaic laminates (PVL) flexible panels positioned parallel to the landfill grade. Dimension for the panels is 15.5"x216"x0.25". - Adhesive: SikaLastomer-68 ethylene propylene copolymer. - Tony Walker, Republic Services, 480-627-7088 - Solar Cap Project. Republic Services, Inc. 2008. Retrieved from http://www.fhsanantonio.com/video/republic/ on August 10, 2009. - Roberts, M., Perera, K., Alexander, T., Walker, T. "Alternative Landfill Closure: Solar Energy Cover System." 2008. Engineering design paper provided by Tony Walker, Republic Services, twalker@republicservices.com Photo courtesy of Tony Walker, Republic Services 34 ## Case Evidence: Pennsauken, NJ - Site Name: Pennsauken Landfill Location: Pennsauken, NJ - · Site Type: Municipal Solid Waste Landfill - Size: 2.1 megawatt - Panels: Crystalline photovoltaic; - Mounting Structures (top deck): Concrete ballasted; - Mounting Structures (side slop): Pre-cast concrete footings. - Mark Messics, P.E., Senior Business Development Manager, PPL Renewable Energy, <u>mcmessics@pplweb.com</u> - Messics, Mark. "Case Study: Pennsauken Landfill Solar Project." Presented at Renewable Energy at Closed Landfill Workshop. Mansfield/Foxboro Holiday Inn, Mansfield, MA. June 17, 2009. Retrieved from http://www.mass.gov/dep/energy/pennsauk.pdf on August 13, 2009. Conclusions - New and developing practice - A number of benefits - Recurring challenges - Engineering measures available - Complicated regulatory context #### References - ¹Suflita, J.M., Gerba, C.P., Ham, R.K., Palmisano, A.C., Rathje, W.L., Robinson, J.A. "The World's Largest Landfill: A Multidisciplinary Investigation. *Environmental Science and Technology* 26.8 (1992): 1486-1495. - ²Stoddard, L., Abiecunas, J., O'Connel, R. "Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California." NREL/SR-550-39291. Golden, CO: National Renewable Energy Laboratory, 2006. Available online at http://www.nrel.gov/csp/pdfs/39291.pdf. - ³Christensen, T.H., Cossu, R., Stegmann, R. Landfilling of Waste: Barriers. London: E & FN Spon, 1994. Electronic. - ⁴Misgav, A., Perl, N., Avnimelech, Y. "Selecting a Compatible Open Space Use for a Closed Landfill Site." *Landscape and Urban Planning* 55.2 (2001): 95-111. Electronic. - Masson, P.T. 2008. "Should Landfills be Redeveloped: What do Various States Think?" Presented at 2008 Solid Waste Association of North America 23rd Annual Northwest Regional Solid Waste Symposium. McMenamins Edgefield, Troutdale, OR. April 17, 2008. Retrieved from http://www.swanaoregon.org/symposium_2008.htm on July 21, 2009. - ⁶Massachusetts Department of Environmental Protection. 2009. "Landfill Post-Closure Use Permitting Guidelines." Retrieved from http://www.mass.gov/dep/recycle/laws/policies.htm#lfpcguid on July 20, 2009. - ⁷Minnesota Pollution Control Agency. "Closed Landfill Program Land Use Planning." September 2008. Retrieved online from http://www.pca.state.mn.us/publications/c-clf1-02.pdf on August 11, 2009. ### Thank You After viewing the links to additional resources, please complete our online feedback form.