

Welcome to the CLU-IN Internet Seminar

Contaminated Sediments: New Tools and Approaches for in-situ Remediation - Session IV Sponsored by: National Institute of Environmental Health Sciences, Superfund

Research Program

February 14, 2011, 2:00 PM - 4:00 PM, EST (19:00-21:00 GMT)

Instructors:

Dr. Danny Reible, Bettie Margaret Smith Professor of Environmental Health Engineering, Department of Civil, Architectural and Environmental Engineering, University of Texas (reible@mail.utexas.edu)

Dr. Harold D. May, Professor, Microbiology and Immunology, Medical University of South Carolina (mayh@musc.edu)

Moderator:

Steve Mangion, U.S. EPA Region 1 (mangion.steve@epa.gov)

Visit the Clean Up Information Network online at www.cluin.org

Housekeeping

- Please mute your phone lines, Do NOT put this call on hold
- Q&A
- Turn off any pop-up blockers
- Move through slides using # links on left or buttons

- This event is being recorded
- Archives accessed for free http://cluin.org/live/archive/

Integrating Microbial Biostimulation and Electrolytic Aeration to Degrade POPs

Harold D. May, Kevin R. Sowers Chanlan Chun and Ray Payne

Medical University of South Carolina And University of Maryland

February 14, 2011

Persistent Organic Pollutant: Polychlorinated Biphenyls

Environmental Legacy: Estimated 0.6-1.2 billion kg worldwide

Goal:

Microbial Degradation of PCBs in Aquatic Sediment

Approach:

1.Identify PCB Dechlorinating Bacteria 2.Develop in situ Monitoring Tools 3.Develop Bioaugmentation 4.Test Bioelectrochemical Stimulation

Microbial PCB Degradation

Complementary processes

✓ Aerobic biodegradation Generally with < 4-6 Cl

✓ Anaerobic dechlorination generally with ≥ 3 Cl

Reductive Dechlorination of PCBs

✓ Performed by anaerobes, e.g. members of the Chlorofexi such as strains DF1, SF1 and Dehalococcoides strain CBDB1

✓ Theoretically can produce biphenyl but rarely do. Ordinarily leave mono, di and trichlorobiphenyls behind

Detecting PCB Dechlorinating Bacteria

- Optical density
- Plating
- Direct cell counts
- FIS#

May et al, 2008

High Throughput Microbial Analysis/Monitoring

Bioaugmentation with PCB Dechlorinators

Fagervold, submitted

Aerobic Biodegradation of Biphenyl

Aerobic Biodegradation of PCBs

Bioaugmentation of weathered Aroclors

Baltimore Harbor Sediment: 5-10 ppm weathered PCBs

- 1 liter sediment incubated at 20°C in dark
- indigenous water with no additional nutrients
- PCB dechlorinating anaerobe DF1 and/or PCB degrading aerobe LB400

Bioaugmentation of weathered Aroclors

Dehalohalobium chlorocoercia DF-1 Burkholderia xenovorans LB400

- ullet each mesocosm was inoculated with 5 x 10⁵ cells
- inoculation by direct injection or on solid substrate
- lactate added as carbon source when indicated

Bioaugmentation of Baltimore Harbor Sediment with DF1

DF1 removed about 0.9 chlorines per mol PCB in 120 days.

Bioaugmentation with DF-1 + LB400 Results in Degradation of Weathered PCBs

About 75% of total PCBs by mass degraded through oxidative processes and reductive dechlorination in 90 days. Experiment ongoing.

- \bullet DF-1 detected by dHPLC at similar levels on days 0 and 90 \bullet Fate of LB400 currently being determined

Sediment Bioelectrochemical Reactors (SBRs)

- Microcosm-SBRs
 - Aroclor 1242 impacted sediment (~20 ppm) from Fox River, WI
 - Electrode: Ti sheet (surface area: 12.5 cm²)
 - Applied voltage: 0, 1.5, 2.2, and 3 V

Sediment Bioelectrochemical Reactors (SBRs)

Up to 65% of total weathered PCBs by mass degraded through oxidative processes in 88 days without bioaugmentation. Increasing chlorobenzoates and benzoate detected with all voltages. Analysis continues.

Problem with pH

(Redox, O_2 and H_2 gradients follow suit)

High current density : 0.067 mA/cm² Low current density : 0.003 mA/cm² (3.8-4.4 V, 15.2-17.6 mW) (2.0-2.5 V, 0.036-0.045 mW)

Electrode potential vs. Ag/AgCl Cathode: -1.6 V (H₂ generation) Anode: 2.5 V (O₂ generation)

Electrode potential vs. Ag/AgCl Cathode: -1.1 V (H₂ generation) Anode: 1.4 V (no or slow O₂ generation)

Conclusions

- Bioaugmentation results in 75% PCB degradation in 90 days
- Application of 1.5V results in 65% PCB degradation
- · Anaerobic oxidation of PCBs is hypothesized
- Repeated polarization is successful and avoids pH problems

Future Goals

- Determine full extent of effect of bioaugmentation and electrochemical stimulation
- Determine extent of repeated polarization
- Combine bioaugmentation and electrochemical stimulation
- · Test in situ

Danny Reible

Environmental and Water Resources University of Texas

FUNNEL AND GATE APPROACH FOR ACTIVE SEDIMENT CAPS

CO-INVESTIGATORS:

G. LOWRY, K. GREGORY, CARNEGIE-MELLON J. HUGHES, GATECH

Sediment In-situ Capping/Treatment

- Reduce risk by:
 - Stabilizing sediments
 - Physically isolating sediment contaminants
 - Reducing contaminant flux to benthos and water column
- Sand effective for strongly solid associated contaminants
- "Active caps" for other situations (w/amendments)
- Funnel and Gate approach to maximize ability to place/replace amendments

Project Objectives and Scope

- Can a funneling cap effectively contain contaminants and effectively channel interstitial fluids (water or NAPL) to a collection or treatment gate
- Can treatment gates composed of reactive materials effectively manage residual contamination from the insitu treatment zone
- Scope
 - Preliminary studies with sorbents (e.g. organoclays and activated carbon)
 - Hollow fiber membrane to introduce oxygen in reduced environment
 - Low voltage electrodes to encourage development of appropriate redox conditions

Hollow fiber membrane to introduce oxygen & encourage aerobic degradation Zone of Ather hollogical engrapero. Sampling Valve Sampling Valve Feed valve Feed valve Air indet Pressurized air indet Pressurized air indet 133

The idea of electro-reactive capping

• Functions:

- Provide redox control
- Direct reduction and oxidation on electrode surface
- Deliver electron donor and acceptor for further degradation

• Advantages:

- Real time and site-specific control
- complete mineralization of contaminants through sequential reduction and oxidation

The idea of electro-reactive capping

- Functions:
 - Provide redox control
 - Direct reduction and oxidation on electrode surface
 - Deliver electron donor and acceptor for further degradation
- Advantages:
 - Real time and site-specific control
 - complete mineralization of contaminants through sequential reduction and oxidation

Conceptual model- Electrode cap Cap - Water Interface Porous Anode Porous Cathode Cap - Water Interface Sediment - Cap Interface

Configuration for PAH oxidation

 Anode at depth to encourage oxidizing conditions where normally strongly reducing conditions exist

Influence of voltage

• Real-time control of electron donor production in the cap by adjusting voltage

PAH biodegradation in slurry

- PAH degradation under aerobic and nitrate reducing condition
 - To verify PAH biodegradation potential by indigenous microbe in sediment
 - To prove that biodegradation rate is faster in more oxidizing condition (aerobic condition)
- Electrode enhanced degradation of PAH in slurry
 - To examine the feasibility of electrode enhanced biodegradation of PAH in slurry phase

Side View

■ Top View

Redox in deep oxidation mode

- Anode at depth (sediment-cap interface)
- PAH degradation mode

Redox control by electrodes

- Proof of concept was successful
- Electrodes could establish oxidizing conditions at the anode
 - Currently studying degradation and increases in PAH degrading genes as per slurry experiments
- pH changes were always associated with redox changes
 - Currently studying use of siderite (iron carbonate) as buffer material to control pH

Intermediate Scale Demonsration

 Large flume demonstrations in cooperation with Bayani Cardenas (UT Geosciences)

• 2 dimensional flow (upwelling, river flow, hyporheic

exchange)

Conclusions

- Funnel and gate approach allows significantly more complex and sophisticated capping
 - Regular replacement of finite capacity sorbents
 - Sustainable biodegradation
- Hollow fiber membranes to introduce air/oxygen and encourage aerobic degradation
 - Enhanced degradation shown
- Low power electrodes for encouragement of reduction/oxidation at different layers in sediments
 - Enhanced degradation shown in idealized systems
 - In-sediment studies ongoing
 - Intermediate scale demonstrations planned

Resources & Feedback

- To view a complete list of resources for this seminar, please visit the **Additional Resources**
- Please complete the <u>Feedback Form</u> to help ensure events like this are offered in the future

