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Purpose of this project
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* In situ anaerobic bioremediation of c’| \c|

halogenated pollutants with organohalide- PCE
respiring bacteria (OHRB) has limitations

(e.g., cDCE/VC accumulation, toxic co-
contaminants)

* Pyrogenic Carbonaceous Matter (PCM) shows
promise in promoting OHRB-driven
bioremediation; however, how PCM properties
shape microbial communities is unclear.

Goal of the project
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« Apply trans-disciplinary approaches in molecular microbial ecology and materials science to
develop tailored PCM that improves halogenated organic pollutant bioremediation outcomes.

Hypotheses

« Tailored PCM shapes microbial community interaction networks and positively influences reductive

dehalogenation processes.

« Tailored PCM sequesters (emerging) pollutants that are recalcitrant or inhibitory to OHRB. 5



OHRB use reductive dehalogenase enzymes (RDases)
to catalyze chlorinated ethene dechlorination
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Initial findings: PCE-fed dechlorinating culture (SDC-9™) stalls
at cDCE (no biochar) but generates ethene (with poplar
biochar)

No biochar With poplar biochar
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Dehalococcoides mccartyii with vcrA grow more effectively In
bottles with (and attaches to) poplar biochar

i - SDC-9 on bioch
SDC-9 dehalogentation biomarkers on biochar

1x104

/ 1x100-
Dhc 16S VCrA

Dhc 16S, vcrA (copies/rxn)

= = = = =
X X X X X
= = = = =
o o o o o
N &) iZD ~ (o]

Dhc 16S, vcrA (copies/rxn)

* Increased vcrA indicates
20 40 60 Improved potential to
time (day) convert cDCE to ethene
<+ Dhc 16S without biochar # Dhc 16S with biochar * Ratio of vcrA/Dhc 16S on
vCcrA without biochar * vcrA with biochar biochar = 25.7% 6

=
X
=
o
w
|

o



Technical approach

Aim 1. Provide a tunable PCM platform for synthesizing
PCM-like polymers where surface charge and redox-active
properties can be varied individually.

@ Auxiliary Community °
@ OHRB \

Before adding material

Polychlorinated biphenyls

cl Cl
1,1,4-TCA \l/ Chloroform
Cl

Cl

CI—CI;_

Aim 1 Aim 2
Aim 2. Quantify the effects of individual PCM surface

properties on microbial interaction networks and subsequent

performance of an organohalide-respiring mixed culture.

Aim 3
Aim 3. Develop tailored PCM for enhanced OHRB-

driven bioremediation, contaminant mixture retention,
and validate its performance in microcosms. -



Pyrogenic Carbonaceous Matter (PCM)

What properties of PCM best supports the microbial network?
PCM (biochar, activated carbon) as passive adsorbents: large surface area, high pore volume, apolar surface

Recent studies suggest PCM are reactive and promote biotransformation of certain contaminants
Redox status and surface properties of PCM may affect its reactivity and can vary significantly across PCM types
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PCM-like Polymers to Elucidate Mechanisms

1.6x10°
Like PCM, PCM-like polymers (PLPs) have:
|. large surface area and high microporosity, " 1.2x10*]
Il.  highly conjugated and amorphous, 3
lll. superior affinity towards apolar organic contaminants. ® 0.8x10°-
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Li, Z., ... Xu, W. "Probing the surface reactivity of pyrogenic carbonaceous materials (PCM) through synthesis of PCM-like conjugated microporous polymers, Environ. Sci. Technol., 2019.
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Technical approach - Aim 1
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PCM-like polymer membranes

PLP-0-X (X=400, 600,
700, 800, and 900)

Expected outcomes

Provides a platform to systemati-
cally increase the polyaromatic ring
clusters; as T increases, the aver-
age size of ring cluster will in-
crease.

Benchmark for success

Conductivity increases from PCM-0
(not conductive) to PCM-0-900;
Characteristic peaks in FTIR, XPS,
and solid-state NMR will be used to
confirm the structure

Hydroquinone and quinone func-
tional groups are incorporated into
the polymer network, which con-
veys electron exchange capacity.

Both polymers are not conductive;

Characteristic peaks in FTIR, XPS,

and solid-state NMR will be used to
confirm the structure

O coo O coo :’I“ O
PLP-COOH

PLP-(CH3)sN*

Negatively and positively charged

polymer networks can be synthe-

sized respectively, which will repel
or attract bacteria.

Both polymers are not conductive;

Characteristic peaks in FTIR, XPS,

and solid-state NMR will be used to
confirm the structure
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Results - Aim 1
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Initial experiments with PCE (40 mg/L) and PCM-
like polymers (PLP)

Poplar biochar x2 PLP-0-700 PLP-0 GAC
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PCM-like polymers (PLP)
can be highly sorptive

PCE sorption with ~1 g loading
PLP > GAC > poplar biochar

PCE sorption likely to interfere with
growth of OHRB and will complicate
analyses

Next steps:

PCE/PLP isotherm experiments
Experiments with lower PLP loading
Develop less sorptive PLP
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Backup slides



A) Biochar sample with biofilm. DAPI stained cells (blue) are attached to the biochar surface (grey). This is a composite
of 27 individual images collected as a stack with a total thickness of 8 um. B) The entire bacterial community was imaged
by non-specific staining with DAPI, and C) Dehalococcoides (Dhc) cells were detected in the biofilm using fluorescent in
situ hybridization (FISH) probes. The arrows indicate several Dhc cells detected by both DAPI and FISH.



Butyrate did not accumulate in SDC-9 cultures
grown in the presence of poplar biochar

No biochar With poplar biochar
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 Lactate (25 mM) fed twice per week as a source of electron
donor for reductive dechlorination (and methanogenesis)



PCE-fed SDC-9 generates more methane Iin the presence
of poplar biochar
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Characterization of PLPs

. ' ' ' ‘ Table 1. Conductivity, surface area and EDC of PLP,, PLP ..., and PLP

Sample | Conductivity, o (S/m) | Surface area (m?/g) | EDC (mmol,./gp, p)
Yag
-u A— PLPO 1.96 x 1077 398.8 N.D.
PLPy.0, | 0.187 1132.8 1.831 +0.137
PLP oy [2.85x 1077 133.3 1.859 + 0.073
PLP-0 PLP-OH

N\
4
N\
4
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Characterization of PLPs
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PLP-700 0.668 0.187
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E, mV vs SHE

Characterization of PLPs
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Oxidizing agent: 0.05 M 1,
Reducing agent: 0.025 M NaBH,

Sample: 2.5 g/L of PLPs in 0.2 M ammonium buffer
at pH 10 (PLP-OH, red)

Blank: 0.2 M ammonium buffer at pH 10 (black)

An excess amount of NaBH, was added to
completely reduce the sample; |, was then used to
generate an oxidizing titration curve.

EDC was determined by the difference of
consumed |, between samples and blank
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