
Understanding and enhancing PFAS phytoremediation mechanisms using hemp plants

R01ES032712

Progress in Research May 13, 2022

Team Members

Vasilis Vasiliou, Toxicology, metabolomics imaging MS

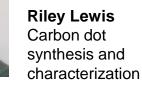
Principal Investigators

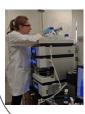
Christy Haynes Nanomaterials. nanotoxicity, analytical methods

Jason C. White, Phytoremediation. nanotechnology

Collaborators

Georgia Charkoftaki, LC-MS, PFAS detection

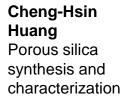



Nubia Zuverza-Mena, Phytoremediation, nanotechnology

Sara Thomas, LC-MS, PFAS detection

Trainees


Sara Nason, LC-MS. PFAS detection. phytoremediation


Predrag Petrovic, Computational modeling

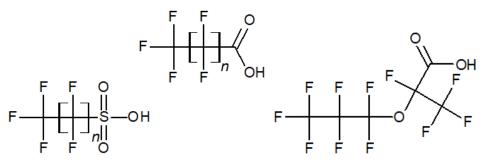
James Licato, PFAS analytics, MS

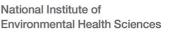
Phil Zuccaro.

National Institute of **Environmental Health Sciences**

UNIVERSITY OF MINNESOTA **Driven to Discover®**

SCHOOL OF Yale


PFAS


PFAS: Per- and Polyfluoroalkyl Substances

- Molecules that contain carbonfluorine chains
 - Over 10,000 listed on US EPA website
 - "Forever chemicals" that don't degrade
- In use since the 1940s
- Used in many consumer products
- Widely spread environmental contaminants

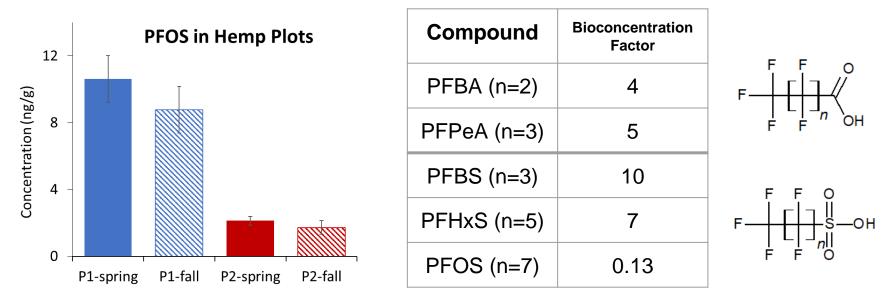
Project Beginnings

- The burn house and parking lot located at the former Loring Air Force Base in northern Maine were used for firefighting drills and testing
- The land now belongs to the Aroostook Band of the Micmac Nation, an indigenous people
- Community members reached out to CAES for help with a hemp phytoremediation project focused on cleaning up PFAS

Field Team at Loring Air Force Base

Analytical Methods

- LC-HRMS based analysis of soil and plant tissue
- Targeted list of ~30 PFAS
- Non-targeted analysis with FluoroMatch and Compound Discoverer
 - Found over 90 suspected PFAS in Loring soil
 - Aided in development of FluoroMatch software updates
- Methods also used in additional projects - like this one
- Always interested in additional collaborations!

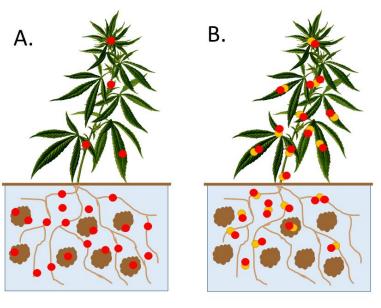


UNIVERSITY OF MINNESOTA Driven to Discover® Yale SCHOOL OF PUBLIC HEALTH

6

Preliminary Data

- Statistically significant decreases in soil PFOS in both hemp growth plots
- Lower bioconcentration for longer chain PFAS

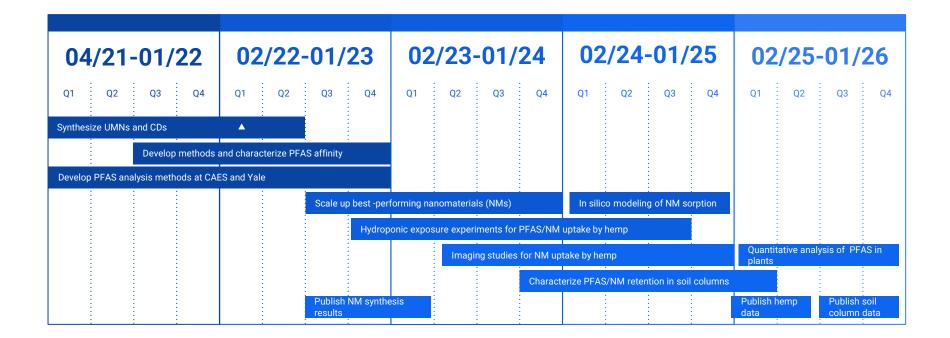

Overarching goal: use novel materials to make phytoremediation a viable solution for removing a wide range of PFAS from soil

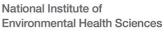
Specific Aim 1: <u>Synthesize novel nanomaterials (NNMs)</u> <u>designed to sorb PFAS and translocate through plants</u>

Haynes Group, University of Minnesota - nanomaterial synthesis/characterization, analytical method development

Specific Aim 2: <u>Determine capacity of NNMs to promote</u> <u>PFAS uptake into plants and retain PFAS in soils</u>.

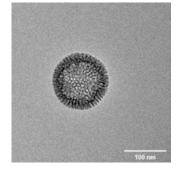
- **CAES team** plant growth, PFAS measurement, soil column studies
- Vasiliou Group, Yale University imaging studies and computational modeling

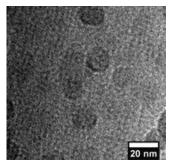




Overall Project Timeline

UNIVERSITY OF MINNESOTA Driven to Discover®



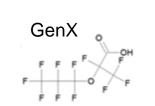

S

Overall Plan for Aim 1

Ultraporous Mesostructured Silica Nanoparticles (UMNs):

Carbon Dots (CD):

National Institute of Environmental Health Sciences



UNIVERSITY OF MINNESOTA Driven to Discover®

-S-OH

PFOS

PFBS

Yale

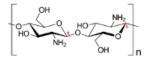
SCHOOL OF

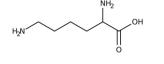
PUBLIC HEALTH

PFOA

Characterize PFAS affinity for UMNs with varied:

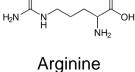
- Hydrophobicity
- Surface charge


Characterize PFAS affinity for CDs with varied:


- Amine content
- Surface charge

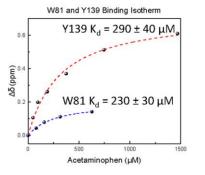
Specific Aim 1: Carbon dots

Carbon dot synthesis: microwave-assisted hydrothermal synthesis with amine rich precursors

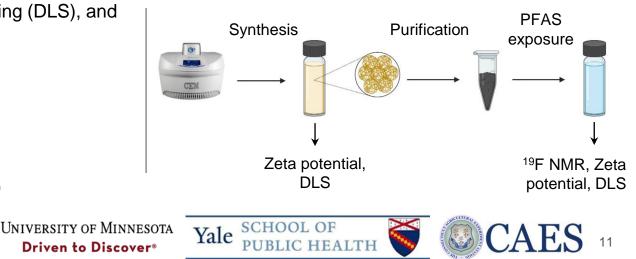


Chitosan

L-Lysine



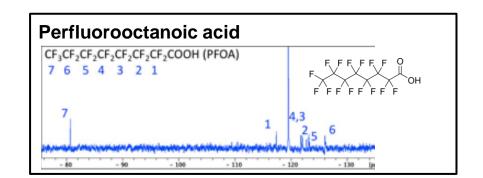
Urea

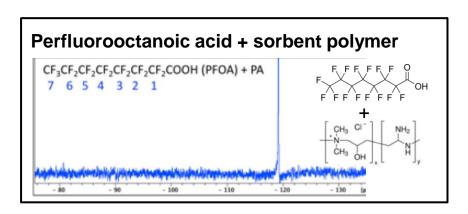


Characterization and sorption assessment:

Zeta potential, dynamic light scattering (DLS), and ¹⁹F NMR

Experimental setup:

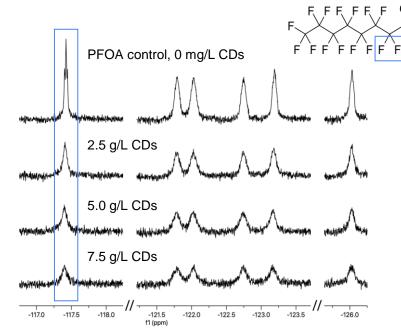


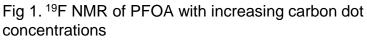


Why ¹⁹F NMR?

Goal: determine most effective carbon dots at PFAS sorption

- Only detects fluorine
 - Assess CD/PFAS solution directly
- No sample processing (filter, column, etc)
- Gives insight into local environment of fluorine atoms
 - Changes in peak intensity and location
- Quantify interactions between PFAS and CDs to compare effectiveness




University of Minnesota Driven to Discover®

Using ¹⁹F NMR to assess PFAS sorption

Chitosan, lysine, malic acid	
Zeta potential	+22 mV
Avg. size	80 nm

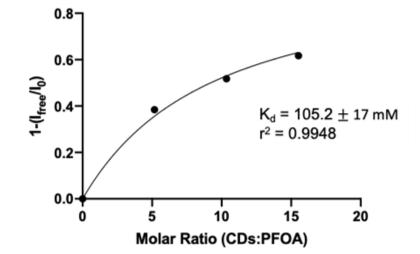
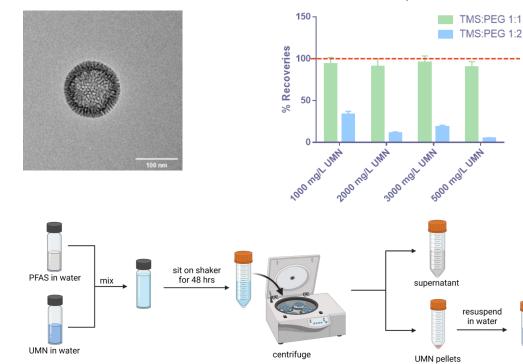


Fig 2. CD/PFOA binding curve from peak intensity changes $^{19}\mathrm{F}\ \mathrm{NMR}$



UNIVERSITY OF MINNESOTA Driven to Discover®

ЮH

Specific Aim 1: Ultraporous Mesostructured Silica

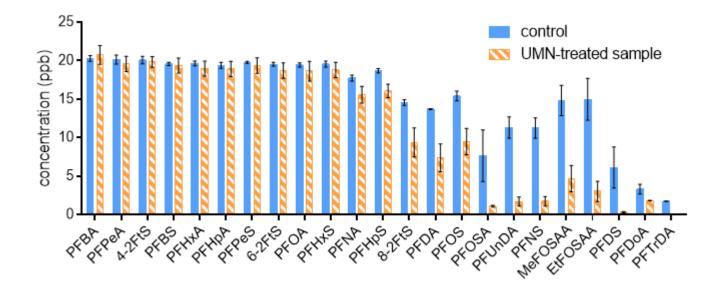
Initial PFOA exposure data:

Initial GenX exposure data:

% recovery < 100%: UMNs taking up PFAS

National Institute of Environmental Health Sciences

es 🔼


UNIVERSITY OF MINNESOTA Driven to Discover®

14

CAES Preliminary Analysis of UMN/PFAS Sorption

The best early candidate silica nanoparticle has significant affinity for hydrophobic PFAS based on LC-HRMS analysis at CAES.

15

Acknowledgements

- NIEHS Superfund Research Program
- Upland Grassroots
 - Chelli Stanley
- Micmac Nation
- CAES
 - Carlos Tamez
 - Ricardo Posada
- University of Minnesota
 - Center for Sustainable Nanotechnology
- Yale University

