Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)

NIEHS SRP P42 Research Program
Northeastern University; University of Puerto Rico; University of Michigan
West Virginia University, Silent Spring Institute, EarthSoft

Directors: Akram N. Alshawabkeh & José F. Cordero

This project is supported by Grant Award Number P42ES017198 from the National Institute of Environmental Health Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health.

www.neu.edu/protect
Outline

• PROTECT Center Overview
• PROTECT Approach
• PROTECT Projects and Cores
• Acknowledgements
PROTECT Center

• Started in April 2010
• Involves many institutions and partners:
 – Northeastern University, University of Puerto Rico, University of Michigan, West Virginia University, Silent Spring Institute, EarthSoft Inc.
• Holistic source-to-outcome approach
• Diverse expertise
 – engineers, biochemists, electrochemists, toxicologists, epidemiologist, biostatisticians, pediatricians, agronomist, hydrogeologists, and social scientists.

www.neu.edu/protect 3
Key Aspects

• Preterm Births
• Superfund Sites in Northern Puerto Rico
• Karst Hydrogeology
• Contamination focus
 – Chlorinated Solvents
 – Phthalates
Babies born before 37 completed weeks of gestation are considered preterm. **Puerto Rico** has the highest rate (17.7%) of any U.S. jurisdiction. Below only Malawi (18.1%) globally.
Preterm Birth

• Preterm birth (PTB) is the leading cause of neonatal mortality in the US, contributing to over one-third of infant deaths.

• Results in high incidence of health complications that can lead to lifelong disabilities.

• Preterm birth is a major, costly health problem in the US.

• Known risk factors for prematurity do not explain the marked increase in preterm births in the US and Puerto Rico.
Contamination in Puerto Rico

- 200+ Hazardous Waste Sites
- 16 Active Sites listed on the National Priority List (NPL); 22 Historical Sites
- Many sites include unlined landfills above aquifer in karst geologic formations
- Aquifer is primarily limestone with highly permeable karst aquifers from which most of the wells draw water
Karst

2012 Field Trip, PR

www.neu.edu/protect
About 40% of the groundwater used for drinking comes from karst aquifers. Other parts of the world with large areas of karst include China and Europe.
Research Questions

- What is the contribution of environmental contamination to preterm birth in PR?
- How significant is karst water as a route of exposure?
- Can we develop better strategies for detection and green remediation to minimize or prevent exposure to environmental contamination?
PROTECT Components

• 5 Projects
 – 3 Biomedical (Projects 1, 2 and 3)
 – 2 Environmental (Projects 4 and 5)

• 2 Research Support Cores
 – Human Subjects and Sampling Core
 – Data Management and Modeling Core

• 4 Enrichment Cores
 – Administrative Core
 – Research Translation Core
 – Training Core
 – Community Engagement Core
PROTECT Projects

- Project 1: Molecular epidemiology study
- Project 2: Mechanistic pathways study
- Project 3: Non-targeted analysis study
- Project 4: Fate and transport study
- Project 5: Remediation study
PROTECT Approach

Scientific Knowledge – Technology Transfer – Information for Public – Trained Workforce

A Administrative
 - 5 Green Remediation
 - 4 Fate and Transport

B Research Translation
 - D Data Management and Modeling

C Human Subjects and Sampling
 - Environmental
 - Biomedical

F Community Engagement
 - 3 Nontargeted Chemical Analysis
 - 2 Mechanistic Toxicology

E Training
 - 1 Targeted Epidemiology

Contaminant exposure analyzed from source to outcome

Key:
- Records
- Data
- Questionnaires
- Blood
- Urine
- Water
- Placenta

www.neu.edu/protect
PROTECT Team

A. Alshawabkeh
Civil Engineering

T. Sheahan
Civil Engineering

R. Giese
Biochemical Sciences

R. Loch-Caruso
Toxicology

P. Brown
Sociology & Health Sciences

D. Kaeli
Computer Engineering

I. Padilla
Environmental Engineering

J. Cordero
MD, Pediatrics

J. Meeker
Epidemiology

C. Velez Vega
Social Work

www.neu.edu/protect
Human Subjects Core and Biomedical Projects (1, 2 and 3)

Presented by José Cordero
Human Subjects and Sampling Core

Leader: José Cordero

• Maintain the infrastructure for recruitment and follow-up.
• Conduct sequential interviews, abstract medical records, and collect biological and environmental samples
• Process, archive, and distribute collected samples to project investigators;
• In collaboration with the Data Core, maintain a repository of samples with an integrated database.
• Relatively large area (~1000 mi2) with significant socioeconomical diversity

 => Requires strong community engagement component
Participant Follow-up – Human Subjects Core -

Screening & Recruitment

Study Subject

First Visit (Clinic) 16-20 weeks
- V1 Interview
- Medical Record Abstraction
- Biological Samples
- Product Use

Second Visit (Clinic) 20-24 weeks
- V2 Interview
- Home Geographical Coordinates
- Environmental and Biological Samples
- Product Use

Second Visit (Clinic) 24-28 weeks
- V3 Interview & Food Frequency
- Medical Record Abstraction
- Biological Samples
- Product Use

Third Visit (Clinic) 24-28 weeks

Delivery & Postpartum (Clinic)
- Interview
- Medical Record Abstraction
- Cord Blood Samples, Placental tissue

www.neu.edu/protect
PROTECT Recruitment
As of July 2015

<table>
<thead>
<tr>
<th>STATUS</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screened</td>
<td>1341</td>
</tr>
<tr>
<td>Eligible</td>
<td>1102</td>
</tr>
<tr>
<td>Recruited</td>
<td>951</td>
</tr>
<tr>
<td>Pregnancy completed</td>
<td>580</td>
</tr>
<tr>
<td>Live births</td>
<td>545</td>
</tr>
<tr>
<td>Other outcomes</td>
<td>38</td>
</tr>
<tr>
<td>Pregnancy in progress</td>
<td>190</td>
</tr>
</tbody>
</table>

Withdrawal Rate

<table>
<thead>
<tr>
<th>40%</th>
<th>30%</th>
<th>20%</th>
<th>10%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.neu.edu/protect
Project 1: Molecular Epidemiology Study of Phthalate Exposure and Preterm Birth in Puerto Rico
Leader: John Meeker; University of Michigan

- Investigate associations between exposure to phthalates during pregnancy and preterm birth.
- Identify connections between environmental chemicals and markers of inflammation, oxidative stress, and endocrine disruption.
- Determine factors associated with increased phthalate exposure to inform effective exposure and risk reduction efforts.
Project 1 Selected Results

✓ Urinary phthalate biomarkers can be detected in all women in the PROTECT cohort.

✓ Levels for certain phthalates are elevated in the PROTECT cohort compared to women of reproductive age in the United States (NHANES).

✓ Specific behaviors (use of perfume, makeup, and other personal care products) and conditions (drinking water source) may lead to elevated phthalate exposure levels and may represent points of intervention.

✓ Project 1 recently found strong and significant positive relationships between multiple phthalates in urine and markers of oxidative stress.
Project 1 Selected Results

- Drinking or cooking with water from private wells associated with higher DEHP metabolites, but not statistically significant (small N thus far).
- Increased MEP associated with: Use of perfume; Use of colored cosmetics and Use of nail polish.
- Increased MCNP or MCOP associated with:
 - Plastic cistern for water storage
 - Microwaving food/drinks in plastic containers
 - Consumption of ice cream or chicken
Project 2: Toxicant Activation of Pathways of Preterm Birth in Gestational Tissues
Leader: Rita Loch-Caruso, University of Michigan

- Delineate the role of reactive oxygen species (ROS) in adverse pregnancy outcomes and tissue responses in rodents exposed to toxicants
- Develop and use in vitro models of human placenta and extraplacental membranes to identify mechanistic links between toxicant exposures and preterm birth
- Determine how immune cells contribute to toxicant-induced responses relevant to preterm birth
- Identify toxicant-induced modification of host defense against microbial infection of gestational tissues as a potential contributing factor to preterm birth
Diverse toxicants may contribute to preterm birth risk through an oxidative stress mechanism.
Project 2 Selected Findings

• A phthalate metabolite (MEHP) stimulates ROS generation and prostaglandin expression in human placental cells (trophoblasts & macrophages) in vitro

• The trichloroethylene metabolite DCVC inhibits bacteria-stimulated host defense responses important for tissue resistance to microbial infection in human extraplacental membranes in vitro

• Pregnant rats exposed to TCE had litters with decreased fetal weight, placental oxidative DNA damage, and maternal inflammation
The TCE metabolite DCVC inhibits TNF-α production which is important for tissue defense against infection.

The phthalate metabolite MEHP stimulates freshly isolated human placental macrophages to increase production of prostaglandins, important activators of labor.

Reproductive Toxicology

The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine but not trichloroacetate inhibits pathogen-stimulated TNF-α in human extraplacental membranes in vitro

Erica Boldenow, Iman Hessen, Mark C. Chames, Chuanyu Xi, Rita Loch-Caruso

Reproductive Biology and Endocrinology

Mono-ethylhexyl phthalate stimulates prostaglandin secretion in human placental macrophages and THP-1 cells

Lauren M Tetz, David M Aronoff, and Rita Loch-Caruso

Graphs

- **A** PGE₂
- **B** PGF₂α

www.neu.edu/protect
Project 3: Discovery of Xenobiotics Associated with Preterm Birth
Leader: Dr. Roger Giese, Northeastern Univ.

- Discover xenobiotics such as toxicant metabolites that contribute to preterm birth
- Explore xenobiotic profiles in the urine, placental tissues and water
- Compare patterns of DNA adducts in human placenta and laboratory-stressed placental cell cultures
Project 3 Selected Results

✓ Introduced PROTECT-developed xenobiotic detection technology called the Porous Extraction Paddle (PEP) for convenient extractions at remote sites – Patent application filed

✓ Developed CAX-B, a novel mass tag for ultrasensitive detection – Provisional patent application filed

✓ Increased detection of the urinary sulfateome by 75-fold (up to 1129 nonpolar sulfates)
Project 3 Selected Results

Two LC-UV chromatograms from 2 PEP extracts of urine 6 weeks apart: high reproducibility is seen.

Detection of 160 amol of thymidine by CAX-Mass Spectrometry

www.neu.edu/protect
Environmental Projects (3 and 4) and Data Management Core

Presented by Ingrid Padilla
Project 4: Dynamic Transport and Exposure Pathways of Contaminants in Karst Groundwater Systems
Leader: Ingrid Y. Padilla, Univ. of Puerto Rico, Mayagüez

- Characterize fate and transport of contaminants in karst groundwater (conduit and diffusion dominated flow)
 - Fundamental Processes at Lab Scale
 - Applied Technologies at the Field Scale
- Assess spatial and temporal (historical and current) variability in water quality in groundwater and tap water
- Study contaminant distribution resulting from changes in contaminant sources, hydrologic conditions, remedial activities, and site management
- Develop new predictive tools to reduce exposure
Project 4 Selected Results

✓ Spatiotemporal analysis of groundwater data reflects extensive contamination

✓ Refined spatiotemporal analysis show significant variability in the distribution of CVOCs

Padilla et al., 2015

www.neu.edu/protect

Yu et al., 2015
Project 4 Selected Results

- Higher detection frequencies and concentrations of phthalates are associated with regions of highest aquifer permeabilities and sinkhole density.

- Marked differences in detection frequencies and concentrations between source water and tap water.
Project 4 Selected Results

✓ Laboratory-Scale
 ✓ Develop statistical characterization of preferential flow paths and quantified transport parameters that are to be used for predictive purposes

✓ Spring Watershed characterization
 ✓ Translates what we learn from lab-scale experiments into what is happening at the field scale

(Anaya et al. 2014)
Project 5: Green Remediation by Solar Energy Conversion into Electrolysis in Groundwater
Leader: Akram Alshawabkeh, Northeastern Univ.

- Evaluate electrolysis for manipulating redox conditions in groundwater
- Evaluate transformation of TCE and other contaminants in pore fluid by electrolysis
- Assess toxicity evolution
- Engineer system for field implementation
Project 5 - Electrochemical Transformation Mechanisms

- Use electrolysis to promote oxidation in groundwater
- Use electrolysis to promote reduction in groundwater

Figure 1. Proof-of-concept of invention
Project 5 Selected Results

✓ Transformation of all dissolved TCE from groundwater

✓ Delineation of transformation mechanisms

✓ Demonstrated simultaneous transformation of contaminant mixtures

✓ Patent application filed for novel two electrode remediation system

✓ Working on pilot-testing
Data Management and Modeling Core
Leader: David Kaeli, Northeastern Univ.

Data Sources
- Questionnaires
- Information Abstracted by Core, Raw Data Imported
- Records
- Placenta
- Blood
- Samples Analyzed by Projects, Raw Data Imported
- Urine
- Water

PROTECT Data Repository

End Users
- PROTECT Researchers and Trainees
- Approved External Stakeholders (via RTC)
- Public (via CEC)
Data Management and Modeling Core - By the Numbers

• Human Subject Data
 – 3,193 total fields/participant; Presently 15 different forms
 – Close to ~1.5M records!

• Environmental Data
 – 1048 wells (14 of them include water contaminant data)
 – 35 springs (3 of them include water contaminant data)
 – Field data; 9 wells and 2 springs are sampled twice a year
 – Tap water data: 13 contaminants

• Targeted Exposure Data
 – 51 targeted chemicals * ~8 fields * # of participant
 • 19 Phthalates and Phenols
 • 18 Trace Metal
 • 14 Pesticides

• Non-targeted Biological Data
 – 5 fields, >1B data points in 6 urine samples
 • Mass-to-charge values
 • Data peaks
Community Engagement Core
Leaders: Carmen Velez Vega, UPR
Phil Brown, Northeastern Univ.

- PROTECT Wins the 2015 People’s Choice Award at the EPA Community Involvement Training Conference
- PROTECT Researchers Partner with March of Dimes in San Juan
- The CEC has brought a number of community partners together to form a Community Advisory Board that include Ciudadanos en Defensa del Ambiente (CEDDA; Citizens for Environmental Defense), Ciudadanos del Karso (Citizens of the Karst), and COTICAM (Steering Committee for Environmental Quality).
Partners and Collaborators

- Collaboration with local stakeholders
- Health care professional groups
- Local Community Health Centers
- Environmental advocacy groups
Acknowledgments

http://www.northeastern.edu/protect/

This work is supported by Award Number P42ES017198 from the National Institute Of Environmental Health Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of Environmental Health Sciences or the National Institutes of Health.
For More Information

– Website: www.northeastern.edu/PROTECT
– Email: protect-info@coe.neu.edu
– or contact Rachel Grashow
 Phone: (617) 373-4153
 r.grashow@neu.edu

– Previous CLU-IN presentation:
 Integrating Data from Multidisciplinary Research,
 Session I: Introducing the Big Picture
 Sponsor: NIEHS SRP
 https://clu-in.org/conf/tio/IntegratingData1/
Upcoming Conferences

• NIEHS SRP Annual Conference; Nov. 18 – 20, 2015; San Juan, PR
 – http://www.northeastern.edu/srp2015/

• Karst, Groundwater Contamination & Public Health; Jan 27 – 30, 2016; San Juan, PR
 – http://karstwaters.org/conferences/kgcph/