

Science, technology and traditional knowledge to protect Northern Plains water resources and communities from hazardous metal exposures

National Institute of Environmental Health Sciences Superfund Research Program P42ES033719

Design: Tammy Granados

Indigenous communities in the Northern Plains suffer from an epidemic of cardiovascular disease and diabetes

- In North Dakota and South Dakota, American Indians have the highest coronary heart disease rates of the US
 - Over 1/3 of deaths occur before the age of 65 years
 - Diabetes burden is 3x higher than White communities
- European colonization and US policies have contributed to these inequalities
- Sovereignty, cultural resilience, and traditional knowledge remain strong and positive influences

Arsenic exposure an established risk factor for disease

Cardiovascular mortality over 20 years in SHS

Moon et al. Ann Intern Med 2013

STUDY

Arsenic exposure an established risk factor for disease

Cardiovascular mortality over 20 years in SHS

Moon et al. Ann Intern Med 2013

Diabetes incidence over 6 years in SHFS

APONG HAR T

Arsenic exposure an established risk factor for disease

Cardiovascular mortality over 20 years in SHS

Moon et al. Ann Intern Med 2013

Diabetes incidence over 6 years in SHFS

Other health endpoints associated with arsenic in the Strong Heart Study: cancers of the lung, prostate and pancreas, chronic kidney disease, impaired lung function

Mining and metal exposures in Indigenous Communities

Lewis et al. Current Environmental Health Reports 2017

Mining and metal exposures in Indigenous Communities

County average uranium levels (µg/L) in public water systems, 2000-2011

Concentration (μ g/L)

Ravalli et al. Lancet Public Health 2022

Lewis et al. Current Environmental Health Reports 2017

Arsenic and uranium spatially correlate in water samples

STRONG HEART Water Study

Marisa Sobel

0	10	20	30	40	50 k

Well Type

- As + U > MCL
- As > MCL
- U > MCL
- As + U ≤ MCL

Geologic Formations

- Qal Alluvium Tw White River Group
- Ta Arikaree Group

Sobel et al. Environ Pollution 2021

Turtle Mountain Trust Lands **MISSOURI BREAKS** Creating Opportunities for Health Turtle Mountain[®] Spirit Lake Reservation Reservation Rocky Boy's Reservation Fort Peck Fort Belknap Indian North Dake Reservation Reservation Fort Berthold Montana Indian Reservation Minnesota Standing Rock Reservation Crow A A A A A Reservation Northern Cheyenne Indian Lake Traverse Reservation Reservation Cheyenne River ADVANCING INNOVATIVE SOLUTIONS THROUGH Reservation South Dakota PARTNERSHIPS, DATA & UNDERSTANDING Lower Brule Pine Ridge Reservation Reservation Flandreau Reservation servation Yankton Reservation Santee Reservation Rosebud Indian Winnebago Reservation lowa Reservation Omaha Reservation

Community Projects & Studies

- The Strong Heart Study is the largest longitudinal study of the American Indian population.
- >90% retention rate
- All of these Lakota communitybased studies and projects are built on the Strong Heart Study foundation

Community Engagement Examples

- Sharing findings at community research symposium
- Supporting water collection

Project 1: Models of groundwater metal exposure

- Characterize factors that control the distribution of As and U in the Northern Plains
 - Aim 1: Increase data density on or near tribal lands
 - Differentiate factors that mobilize As and U
 - Aim 2: Develop groundwater models at the household scale for As and U
 - Aim 3: Estimate long term As and U exposure from drinking water for Project 3
- Plays an integrating role

Co-l

Columbia University

Co-l

Co-l

Co-l

MBIRI

Co-l

Sub co-l

Union College

Aim 2. Prediction models

- Overarching approach
 - Best models should be grounded in a mechanistic understanding of geochemical processes that control water quality.
 - Models need predictor variables at a fine spatial scale to make discrete predictions at fine spatial scale
- Remote sensing: one of the few data sets that provides fine spatial scale data
 - Flooding frequency and flooding duration as master variable

Project 2: Isotope tracers for sources and cycling of metals

ΡI

- Spatial distribution of isotope ratios ("isoscapes") for U and Se isotopes
- Temporal evolution of metal isotope ratios
- → Inform whether contamination is from a local or distant source- even estimate how far it has travelled

Project 2: Isotope tracers for sources and cycling of metals

ΡI

- Spatial distribution of isotope ratios ("isoscapes") for U and Se isotopes
- Temporal evolution of metal isotope ratios
- → Inform whether gw contamination is from a local or distant source- even estimate how far it has travelled

- Novel biomarkers in humans
- Novel application to animal model research

Roll fronts develop in sandstone aquifers

"In configuration, they were something like comets, or crescent moons with trailing horns – convex in the direction in which groundwater had flowed. As Love and his colleagues worked out the chemistry, they began with the fact that six-valent uranium is very soluble, and in oxidized water easily turns into uranyl ions. As the solution moves down the aquifer, a roll front will develop where the water finds an unusual concentration of organic matter. The organic matter goes after the oxygen. The uranium, dropping to a four-valent state, precipitates out as UO_2 – the ore that is called uraninite."

- U isotopes provide mechanistic tracers of redox cycling and U transport
 - ²³⁸U/²³⁵U redox cycling tracer
 - ²³⁴U/²³⁸U source tracer of transport
 - ²³⁵U enrichment in water indicates U removal by reduction
 - In U deposits- $(^{234}U/^{238}U) < 1$
 - Far from U deposits $(^{234}U/^{238}U) > 1$

Project 5: Light-Based Approaches to Effective and Sustainable Small-Scale Water Treatment

 Develop treatment systems that are effective and sustainable by leveraging natural constituents in groundwater including microbes

 \rightarrow Produce and recycle iron (Fe) oxide media for coagulation.

- Enhance treatment through light to change water contaminants to less soluble forms.
- Develop a drinking water quality monitor into the treatment system
 - \rightarrow Test water treatment systems to ensure it is working well.
- **Translation goal: begin to adapt and commercialize research designs** in collaboration with MBIRI and community members for product development related to improved water treatment.

• Current Reactor Design (Adelina Rolea)

Project 3: Health effects of metals in Native American communities: a multi-omics longitudinal study

Hypotheses:

- As and U exposures have latent and concurrent cardiometabolic effects
- As and U exposures induce epigenomic and metabolomic changes leading to increased cardiometabolic risk

Project 3: Health effects of metals in Native American communities: a multi-omics longitudinal study

Hypotheses:

• As and U exposures have latent and concurrent cardiometabolic effects

ONGE

• As and U exposures induce epigenomic and metabolomic changes leading to increased cardiometabolic risk

Metallomics Core Facility

Kathrin Rony Schilling Chiugo Olgica Izuchukwu Balac

ICPMS: Inductively couple plasma mass spectrometry HPLC: High performance chromatography MC: multi-collector to measure ions

Elements

HPLC-ICPMS

Species

MC-ICPMS

Isotopes

N~8,300 Samples for 22 projects in 2022

Maternal DNA methylation signatures of arsenic exposure is associated with adult offspring insulin resistance in the Strong Heart Study

Christian K. Dye^{a,*}, Arce Domingo-Relloso^{a,b}, Allison Kupsco^a, Naomi E. Tinkelman^a, Miranda J. Spratlen^a, Anne K. Bozack^c, Maria Tellez-Plaza^b, Walter Goessler^d, Karin Haack^e, Jason G. Umans^{f,g}, Andrea A. Baccarelli^a, Shelley A. Cole^e, Ana Navas-Acien^a

^a Department of Environmental Health Sciences, Columbia University, New York, New York, USA

^b Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain

- ^c Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- ^d Institute of Chemistry, University of Graz, Graz, Austria
- ^e Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
- ^f MedStar Health Research Institute, Washington, DC, USA

^g Center for Clinical and Translational Sciences, Georgetown-Howard Universities, Washington, DC, USA

Environment International

Volume 173, March 2023, 107774

Christian Dye Post-doc CU

Maternal DNA methylation signatures of arsenic exposure is associated with adult offspring insulin resistance in the Strong Heart Study

Christian K. Dye^{a,*}, Arce Domingo-Relloso^{a,b}, Allison Kupsco^a, Naomi E. Tinkelman^a, Miranda J. Spratlen^a, Anne K. Bozack^c, Maria Tellez-Plaza^b, Walter Goessler^d, Karin Haack^e, Jason G. Umans^{f,g}, Andrea A. Baccarelli^a, Shelley A. Cole^e, Ana Navas-Acien^a

^a Department of Environmental Health Sciences, Columbia University, New York, New York, USA

^b Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain

- ^c Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- ^d Institute of Chemistry, University of Graz, Graz, Austria
- ^e Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
- ^f MedStar Health Research Institute, Washington, DC, USA

^g Center for Clinical and Translational Sciences, Georgetown-Howard Universities, Washington, DC, USA

Environment International

Volume 173, March 2023, 107774

The association between maternal As-related DNA methylation with offspring insulin resistance was attenuated after adjustment for offspring adiposity but not for maternal adiposity

Christian Dye Post-doc CU

Project 4: Causal molecular mechanisms linking drinking water metal exposures to cardiometabolic disease

Project 4: Causal molecular mechanisms linking drinking water metal exposures to cardiometabolic disease

Aims 1 and 2 experiments

co-Pl

Expected impacts in 5 years

- Predictions on where to drill for low As and U groundwater and which groundwater to use for community water systems
- Data on the distance the groundwater U is coming from, key information for our tribal partners
- Advanced understanding of the latent and concurrent effects of As and U, and relevant pathways
- Validated new isotope biomarkers of As and U uptake and cycling for toxicological and epidemiological research
- Positioned to help launch a tribally owned company to scale production and distribution of the remediation technologies including prediction models and long-lasting treatment filters with automated detection of contaminants

Indigenous principles that motivate our work and partnership

- Value traditional knowledge
 - Water is life (Mní wičhóni)
 - 7th generation principle: how our decisions affect our descendants
- Collective leadership
- Sovereignty and data ownership

Image: Dakota access pipeline protest

Study Team

Director PI of Project 3

Co-PIs of Project 2

Co-Director PI of Project 1

CEC Leader Admin Core

Co-PIs of Project 4

OST Leader Project 3, CEC Co-I

MBIRI Director Senior advisor Project 3, 5 Co-I

DMAC Leaders

Co-PIs of Project 3

PI of Project 5 CEC Co-leader

Scientific

coordinator

Business Manager

Columbia University Northern Plains Superfund Research Program (CUNP-SRP)

External Advisory Committee Members (EAC)

Bhramar Mukherjee (Chair), PhD, Chair of Biostatistics, School of Public Health, University of Michigan

Paul M. Bradley, PhD, MS, Research Ecologist/Hydrologist, US Geological Survey

Otakuye Conroy-Ben, PhD, Associate Professor, School of Sustainable Engineering and the Build Environment, Arizona State University

CAPT David Harvey, **MS**, **MPH**, Deputy Director of the Division of Sanitation Facilities Construction, Indian Health Service.

Dean Jones, PhD, Professor of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University

Donald Smith, PhD, Distinguished Professor of Microbiology and Environmental Toxicology, University of California

