

April 20, 2015

Mr. Scott Miller Remedial Project Manager Superfund Division Superfund Remedial Branch Section C U.S. EPA Region 4 61 Forsyth Street, SW Atlanta, GA 30303

RE: Transmittal of the Report "Pre-Final Design for Former Process Area In-Situ Geochemical Stabilization Remediation, Former Cabot Carbon/Koppers, Inc. Site, Gainesville, Florida, Version 2"

Dear Mr. Miller:

On behalf of Beazer East, Inc., attached is a copy of the report entitled "*Pre-Final Design* for Former Process Area In-Situ Geochemical Stabilization Remediation, Former Cabot Carbon/Koppers, Inc. Site, Gainesville, Florida, Version 2." Should you require additional information, please feel free to contact me at (303) 665-4390.

Sincerely,

James R. Einkor

James R. Erickson Vice President Principal Hydrogeologist

Enclosure

cc: S. Miller. EPA W. O'Steen, EPA K. Helton, FDEP J. Mousa, ACEPD R. Hutton, GRU M. Brourman, BEI G. Council, Tt Pre-Final Design for Former Process Area In-Situ Geochemical Stabilization Remediation, Former Cabot Carbon/Koppers Inc. Site Gainesville, Florida

Version 2 Operable Units Two and Three (Koppers) Gainesville, Florida EPA ID: FLD980709356

Version 2 April 20, 2015

Prepared on behalf of Beazer East, Inc.

Version 2

Pre-Final Design for Former Process Area In-Situ Geochemical Stabilization Remediation, Former Cabot Carbon/Koppers Inc. Site Gainesville, Florida

APPROVAL

Date: 04/20/15

Gregory W. Council, P.E. Supervising Contractor for Beazer East, Inc. Tetra Tech, Inc.

James R. Einkon

Date: 04/20/15

James R. Erickson Project Manager for Beazer East, Inc. Tetra Tech, Inc.

CERTIFICATION

This report has been reviewed and approved by the undersigned Florida Registered Professional Geologist. Tetra Tech prepared this report in a manner consistent with sound geology practices. Furthermore, either I or engineering staff working under my supervision completed all work described herein (except as otherwise noted) and I have expertise in the discipline used in the production of this document.

Miguel A. Garcia, P.G. Professional Geologist FL 2355

Date: 04/20/15

REVISION HISTORY

Version	Date	Description
1	February 13, 2015	Initial Release
2	April 20, 2015	Revised per EPA/Stakeholder comments

Version 2

TABLE OF CONTENTS

ABBREVIATIONS AND ACRONYMSVI			
1.0	INTRODUCTION	1	
1.1	Overview of ISGS Technology	2	
1.2	Objectives and Approach	2	
1.2.	1 Objectives	2	
1.2.	2 Approach	3	
1.3	Site Location and Description	3	
1.4	Hydrogeology	4	
1.4.	1 Surficial Aquifer	4	
1.4.	2 Hawthorn Group Deposits	4	
1.4.	3 Upper Floridan Aquifer	5	
2.0	PRE-DEMONSTRATION ISGS REMEDY IMPLEMENTATION	7	
2.1	Geochemical Analysis	7	
2.2	Aquifer Tests	8	
2.2.	1 Multiple-Well Pumping Test	8	
2.2.	2 Slug Tests	9	
2.2.	3 Hydraulic-Profiling Tool	.10	
2.3	Pilot Test Implementation	.11	
2.3.	1 Design	.11	
2.3.	2 ISGS Reagent Injections	.12	
2.3.	3 Borehole Short-Circuiting Evaluation	.18	
2.3.	4 Formation Pressurization From Reagent Injection	.18	
2.4	Performance Monitoring	.19	
2.4.	1 DNAPL Collection Procedure	.19	
2.4.	2 DNAPL Recovery Former Process Area	.20	
2.4.	3 ISGS Injections Radius of Influence	.21	
2.5	Zone-of-Discharge	.22	
3.0	PRE-FINAL FULL-SCALE REMEDIATION DESIGN	.26	
3.1	Pilot-Test Lessons Learned	.26	
3.2	Full-Scale Design	.27	
3.3	Full-Scale Implementation	.29	
3.4	Performance Monitoring	.30	
4.0	REFERENCES	.32	

FIGURES

- Figure 1-1. Site location map
- Figure 1-2. Hydrostratigraphy of deposits beneath Site
- Figure 2-1a. Locations of pumping test wells
- Figure 2-1b. Locations of slug test wells
- Figure 2-2. ISGS pilot-test injection point locations
- Figure 2-3. Cross-section locations for ISGS pilot-test area
- Figure 2-4a. Pilot-test cross-section A-A' with targeted injection intervals based on EVS model
- Figure 2-4b. Pilot-test cross-section B-B' with targeted injection intervals based on EVS model
- Figure 2-4c. Pilot-test cross-section C-C' with targeted injection intervals based on EVS model
- Figure 2-5. ISGS DNAPL recovery for Upper Hawthorn wells and TIPs in pilot-test area
- Figure 2-6a. ISGS DNAPL recovery for well HG-36SE
- Figure 2-6b. ISGS DNAPL recovery for TIP 420N/345E
- Figure 2-6c. ISGS DNAPL recovery for TIP 400N/380E
- Figure 2-6d. ISGS DNAPL recovery for TIP 460N/340E
- Figure 2-7. ISGS pilot-test post-injection core locations
- Figure 2-8. Photographs of post-injection treated core
- Figure 2-9a. Radius of influence of injected reagent for pilot-test area, cross-section A-A'
- Figure 2-9b. Radius of influence of injected reagent for pilot-test area, cross-section B-B'
- Figure 2-9c. Radius of influence of injected reagent for pilot-test area, cross-section C-C'
- Figure 2-10. Pre-Demonstration ISGS Injection UIC Monitoring Wells
- Figure 3-1. Three-Dimensional Distribution of DNAPL impacts and targeted injection zones.
- Figure 3-2. Full-scale ISGS injection-point locations for final remediation design
- Figure 3-3a. Cross-section D-D' with full-scale ISGS injection intervals
- Figure 3-3b. Cross-section E-E' with full-scale ISGS injection intervals
- Figure 3-3c. Cross-section F-F' with full-scale ISGS injection intervals
- Figure 3-3d. Cross-section G-G' with full-scale ISGS injection intervals
- Figure 3-4. Location of former Process Area groundwater monitoring wells
- Figure 3-5. Full-scale demonstration ISGS injection UIC monitoring wells

Version 2

TABLES

- Table 1-1.Summary of the former Process Area pilot test dates
- Table 2-1.Summary of pSOD results
- Table 2-2.Comparison of targeted and actual injection volumes for pilot test
- Table 2-3.Pumping-test analysis results
- Table 2-4.Slug-test analysis results
- Table 2-5a.Pre-ISGS pilot test water-quality results for Surficial Aquifer UIC monitoring
wells
- Table 2-5b.Pre-ISGS pilot-test injections water-quality results for Upper Hawthorn UIC
monitoring wells

APPENDICES

- Appendix A Aquifer Testing Results
- Appendix B Hydraulic Profile Tool Results
- Appendix C Injection Volumes and Flow Rates
- Appendix D Formation Injection-Pressure Observations
- Appendix E Post-Injection Core Logs
- Appendix F Full-Scale ISGS Injection Intervals and Volumes
- Appendix G Laboratory Analytical Report

Pre-Final Design for Former Process Area In-Situ Geochemical Stabilization Remediation, Former Cabot Carbon/Koppers Inc. Site Gainesville, Florida

ABBREVIATIONS AND ACRONYMS

Addendum	Proposed DNAPL Recovery and Monitoring Well Locations, Former	
	Process Area In-Situ Geochemical Stabilization Remediation	
	Demonstration Project	
bgs	Below Ground Surface	
COI	Constituent of Interest	
DNAPL	Dense Non-Aqueous Phase Liquid	
EPA	Environmental Protection Agency	
EVS [©]	Environmental Visualization System	
F.A.C.	Florida Administrative Code	
ft	Feet	
g KMnO4/kg	Grams of Potassium Permanganate per Kilogram of Dry Soil	
GCTL	Groundwater Cleanup Target Level	
gpm	Gallons per Minute	
HG	Hawthorn Group	
HPT	Hydraulic-Profile Tool	
ISGS	In-Situ Geochemical Stabilization	
LiCl	Lithium Chloride	
LH	Lower Hawthorn	
LTZ	Lower Transmissive Zone of the Upper Floridan Aquifer	
msl	Mean Sea Level	
PID	Photoionization Detector	
pSOD	Permanganate Soil Oxidant Demand	
ROI	Radius of Influence	
SVOCs	Semi-Volatile Organic Compounds	
Site	Koppers portion of the Cabot Carbon/Koppers Superfund Site	
TIP	Temporary Injection Point	
UH	Upper Hawthorn	
UIC	Underground Injection Control	
UTZ	Upper Transmissive Zone of the Upper Floridan Aquifer	
VOCs	Volatile Organic Compounds	
Workplan	Former Process Area In-Situ Geochemical Stabilization Remediation	
	Demonstration Project Workplan for Hawthorn Group Deposits, Tetra	
	Tech GEO, February 14, 2012	
ZOD	Zone of Discharge	

1.0 INTRODUCTION

This report documents the successful implementation of a pilot test to remediate subsurface dense non-aqueous phase liquids (DNAPLs) at the former Koppers, Inc. portion (the Site) of the Cabot Carbon/Koppers Superfund Site in Gainesville, Florida (Figure 1-1). Included with this report is the proposed design and implementation of the full-scale ISGS treatment of the former Process Area.

A Consent Decree between Beazer and the United States government was entered in the United States District Court for the Northern District of Florida on July 9, 2013. The Consent Decree requires Beazer to conduct certain Remedial Design and Remedial Action activities at the Site. A *Remedial Design Work Plan* (Tetra Tech, 2013) was prepared to describe the various design tasks to be undertaken by Beazer. This *Pre-Final Design* document has been prepared in general accordance with Section 2.4.1.4 of the *Remedial Design Work Plan*.

The *in-situ* geochemical stabilization (ISGS) stabilization demonstration project is partitioned into four phases consisting of the following: 1) <u>Phase I</u> – Process Area Characterization; 2) <u>Phase II</u> - ISGS Reagent Injection; 3) <u>Phase III</u> - Spot Treatment; and 4) <u>Phase IV</u> - Performance Evaluation. Phase I of the ISGS field demonstration project focused on characterization DNAPL impacts in the former Process Area. The results of the Phase I characterization were detailed in the report titled: "*Former Process Area In-Situ Geochemical Stabilization Remediation Demonstration Project: Phase I Characterization*" dated November 13, 2013 (Characterization Report). The pilot test was implemented as part of the Phase II ISGS reagent injection. The timeline for completed Phases I and II tasks is provided in Table 1-1.

The approaches to the Phase I and II work were described in the Tetra Tech GEO workplan titled: "Former Process Area In-Situ Geochemical Stabilization Remediation Demonstration Project Workplan for Hawthorn Group Deposits" dated May 24, 2011, and revised February 14, 2012 (Workplan), and in the Tetra Tech December 14, 2012 addendum "Proposed DNAPL Recovery and Monitoring Well Locations, Former Process Area In-Situ Geochemical Stabilization Remediation Demonstration Project" (Addendum). The Workplan, revised Workplan, and Addendum were approved by the U.S. Environmental Protection Agency (EPA) in email responses dated April 6, 2012; July 17, 2012; and February 11, 2013, respectively.

The ISGS pilot-test implementation approach and post-treatment evaluation were detailed in the Workplan and the Characterization Report. The U. S. EPA approval of the Phase II pilot-test approach was included with the approval of the Workplan (April 6, 2012). The pilot test implementation was consistent with the approach detailed in the Workplan and Characterization Report. The ISGS pilot-test implementation approach and results are presented in Section 2.0.

Section 3.0 of this report describes the Pre-Final Design for the full-scale implementation of the ISGS remedy for the former Process Area. The full-scale ISGS implementation for

the former Process Area was developed, in part, based on data collected from the pilot test. A description of the full-scale injection approach, treatment zones and reagent volumes are included in Section 3.0.

1.1 **OVERVIEW OF ISGS TECHNOLOGY**

The ISGS remediation technology consists of a permanganate-based reagent (RemOx® EC) that is injected into DNAPL impacted zones for the purposes of DNAPL treatment, containment/stabilization and solute flux reduction. Aluminum silicate precipitates, with minor enhanced manganese-oxyhydroxide precipitates, are deposited around DNAPL ganglia and droplets following reagent injection. The precipitate that forms around the DNAPL effectively isolates the free-phase DNAPL from future migration and groundwater dissolution reactions. In addition to containing the free-phase DNAPL, oxidation of dissolved-phase constituents results in a "hardening" or "chemical weathering" of the DNAPL as it loses its more labile semi-volatile organic compounds (SVOCs). The deposition of the mineral shell also reduces the overall formation permeability in the treated area, thereby reducing the volumetric flux of upgradient groundwater into and through the impacted area. The ISGS processes reduce organic constituents downgradient of the treated area. Thus, the remedy will reduce contaminant toxicity, mobility and volume through *in-situ* treatment.

A pilot test for the implementation of the ISGS technology was demonstrated at the Site's former North Lagoon in 2008 (Adventus, 2008 and 2009). The primary objective of the pilot test was to stabilize DNAPLs in the Surficial Aquifer. Results from the pilot test demonstrated that reagent could be successfully delivered to impacted DNAPL zones. In addition, soil cores collected post-pilot test showed geochemical crusts surrounding DNAPL ganglia.

1.2 OBJECTIVES AND APPROACH

1.2.1 OBJECTIVES

The primary objectives of the pre-demonstration ISGS injection testing (i.e., pilot test) were: 1) Evaluate the performance of the ISGS reagent at stabilizing free-phase DNAPLs; 2) Determine radius of influence (ROI) of the injected reagent; and 3) Develop Site-specific injection parameters required for full-scale implementation of the technology in the former Process Area.

Additional information obtained from the pilot test included the following:

- 1) Achievable injection rates and volumes at multiple injection pressures;
- 2) Data from the use of a Hydraulic Profiling Tool (HPT) Test to measure *in-situ* permeability reductions resulting from ISGS reagent precipitation reactions; and

3) Injection-hole abandonment/sealing techniques to minimize short-circuiting during injection at adjacent locations.

1.2.2 APPROACH

The pilot test was performed in the most highly impacted DNAPL area of the former Process Area. This area was specifically chosen based on the elevated DNAPL impacts to ensure that the ISGS remediation technology would be effective for all DNAPLimpacted areas at the Site. The full-scale implementation of the ISGS technology for this Site necessitates a demonstration of its effectiveness for treating all subsurface DNAPL impacts.

The Phase I characterization of the spatial distribution of DNAPL impacts in the former Process Area was performed in 2012 and 2013. This investigation was one of the most extensive characterizations of a historical DNAPL source area. It consisted of installing 105 borings on 40-foot centers to establish the locations with DNAPL impact zones to target during the pilot test. Nine additional monitoring wells and 10 DNAPL recovery wells were installed to monitor the DNAPL impacts and water quality pre- and post-ISGS injections. The Workplan for the pilot test was developed prior to the investigation; based on the investigation, further clarification of approach for the pilot test was provided in the Characterization Report.

The pilot-test area is located in the northeast corner of the former Process Area and was approximately 70 feet by 80 feet. The injection points were located in a grid-like pattern throughout the pilot-test area and included two temporary injection points (TIPs). Most injection locations were advanced to depths between 55 and 65 feet below ground surface (bgs). Direct-push injections were performed with a Geoprobe® rig. Targeted injection depths were determined by the Environmental Visualization System© (EVS[©]) model generated during characterization.

Continuous post-injection, geologic cores were collected from ground surface to the terminus of the borehole at an approximate depth of 65 feet. Post-injection core collection was performed using rotasonic drilling methods. Geologic cores were characterized for the following: 1) Volatile organic vapors (VOCs) using a photo-ionization detector (PID); 2) ISGS reagent presence; and 3) Untreated DNAPL.

1.3 SITE LOCATION AND DESCRIPTION

The Site encompasses approximately 90 acres and is located within the Gainesville city limits in Alachua County, Florida (Figure 1-1). It was used as an active wood-treating facility for more than 90 years, but operations ceased in early 2010. The Site is located in an area of the city that is zoned industrial, with surrounding commercial and residential zoned properties. The adjacent property to the east of the Site is the former Cabot Carbon Superfund Site. This property was redeveloped for commercial use in the 1990s. The adjacent property to the north is the City of Gainesville vehicle/equipment

maintenance facility. The properties to the west are private residences, and the properties to the south are a mixture of commercial and residential properties.

The Site is located on a gently sloping plain at an elevation of approximately 180 feet above mean sea level (msl). The ground surface immediately around the Site has low relief and slopes gently to the northeast. In general, the ground surface at the Site slopes gently to the north. From the southern property boundary to the northern property boundary (approximately 3,000 ft), the land-surface elevation decreases from approximately 190 feet to 170 feet above msl. A stormwater drainage ditch bisects the Site and flows in a north to northeasterly direction.

1.4 HYDROGEOLOGY

The hydrogeology of the Site has been thoroughly investigated and analyzed over the past 25 years by numerous investigations (TRC, 2003; GeoTrans, 2004a, 2004b, 2005 and 2009; Adventus, 2009). Over 200 wells have been installed at the Site and 100 characterization borings in the former Process Area where geologic cores have been collected to characterize deposits. A simplified hydrostratigraphic model of the local geology is shown in Figure 1-2.

1.4.1 SURFICIAL AQUIFER

The Surficial Aquifer consists of approximately 16 to 22 feet of marine-terrace deposits, primarily consisting of unconsolidated, fine- to medium-grained sand with thin layers of interbedded silt and clay deposits. Groundwater flow in the Surficial Aquifer is primarily controlled by surface topography and localized discharge points such as wetlands, creeks, and drainage ditches. The Surficial Aquifer is not a source of potable groundwater on or around the Site.

The local groundwater flow direction for the Surficial Aquifer at the Site is from southwest to northeast. A hydraulic-containment system was installed in the Surficial Aquifer at the Site in 1995 to capture impacted groundwater prior to it flowing off Site. Groundwater extraction occurs from a series of shallow downgradient extraction wells along the eastern and northern property boundary. In addition, four approximately 250- to 300-foot long Surficial Aquifer groundwater collection drains were installed in 2009 adjacent to each of the four former source areas to recover impacted groundwater in proximity to the sources. Total groundwater extraction from the wells and Surficial Aquifer groundwater collection drains per minute (gpm).

1.4.2 HAWTHORN GROUP DEPOSITS

The Hawthorn Group (HG) deposits underlie the Surficial Aquifer and consist of a thick sequence of interbedded low- and moderate-permeability, unconsolidated sedimentary materials. The HG deposits are approximately 115 to 125 feet thick at the Site consisting of low-permeability clay, clayey sand, and silt deposits interbedded with moderate-

permeability sand, silty sand, and carbonate deposits. Three major clay units are present in the HG deposits termed the upper clay, middle clay, and lower clay units. The upper clay unit is approximately 3 to 5 feet thick, the middle clay unit is approximately 10 to 15 feet thick and the lower clay unit is approximately 30 to 35 feet thick at the Site. Moderately permeable sedimentary deposits that lie between the HG upper and middle clay units have been termed the Upper Hawthorn (UH) and moderately permeable sedimentary and carbonate deposits that lie between the HG middle and lower clay units have been termed the Lower Hawthorn (LH) (Figure 1-2).

The HG deposits effectively separate the overlying Surficial Aquifer from the underlying Floridan Aquifer as indicated by the approximately 120 feet of hydraulic-head difference between these two aquifers. The majority of the hydraulic-head loss is across the lower clay unit, with a hydraulic-head difference of approximately 90 feet. Hydraulic-head difference across the upper clay unit is about 2 feet and the head difference across the middle clay unit is about 30 feet. Hence, each of the clay units provides some level of protection, with the upper clay unit acting as the first of three hydraulic traps mitigating vertical DNAPL migration.

Lateral groundwater flow within the UH is generally to the northeast at the Site mirroring the groundwater flow direction in the Surficial Aquifer. Lateral groundwater flow in the LH changes from east to west across the Site. A groundwater divide is present in the LH, which is oriented southeast to northwest. Groundwater flow in the LH on the eastern half of the Site is to the north-northeast and groundwater flow on the western half of the Site is to the north-northwest. The HG deposits are not locally used for potable water due to the low permeability of the formation in this area.

1.4.3 UPPER FLORIDAN AQUIFER

The Floridan Aquifer underlies the HG deposits and is subdivided into two aquifers, the Upper Floridan and the Lower Floridan Aquifers. The Upper Floridan (UF) Aquifer is the most widely used aquifer in this area and locally consists of the Ocala Limestone and Avon Park Formations. The Lower Floridan Aquifer is typically not utilized in this area due to its greater depth. The two primary formations that comprise the UF Aquifer are the Ocala Limestone and the Avon Park Formation (Figure 1-2). The Upper Transmissive Zone (UTZ) is a secondary water-producing interval for the UF Aquifer and is located in the uppermost portion of the Ocala Limestone. The thickness of the UTZ is also highly variable, ranging from 50- to 100-feet in thickness. The Lower Transmissive Zone (LTZ) is the major water-producing interval for the Murphree Wellfield in Alachua County. The LTZ is located at the contact of the Ocala Limestone and Avon Park and is highly variable in thickness ranging from 20 to 100 feet (GeoSys, Inc., 2000).

The top of the Upper Floridan Aquifer is at a depth of approximately 140 to 150 feet at the Site. Regional groundwater flow within this aquifer is to the northeast towards the Murphree wellfield. The cone of depression resulting from the Murphree wellfield encompasses the Site resulting in the northeastern flow direction. The groundwater flow

direction at the Site generally mimics the regional flow direction toward the wellfield; however, secondary permeability features in this aquifer result in some localized variations from the northeastern flow direction. The hydraulic gradient and groundwater velocities are projected to be low between the Site and wellfield.

2.0 PRE-DEMONSTRATION ISGS REMEDY IMPLEMENTATION

The former Process Area pre-demonstration ISGS injection testing was used to determine the effectiveness of ISGS reagent and delivery in order to more effectively implement the full-scale ISGS remedy. The pilot-test location was selected based on the elevated DNAPL impacts in this area, as discussed in section 1.2.2. DNAPL recovery rates and volumes for the pilot test area were the highest for both recovery wells and TIPs.

During the Phase I characterization, the spatial distribution of DNAPL in the Surficial Aquifer and UH was established by utilizing data collected as described in the Characterization Report. EVS[©] software (C Tech, 2010) was used to evaluate the relative DNAPL saturation in three-dimensions. Borehole lithology and relative permeability data were entered into the EVS[©] model to assist with identifying potential lithologic and permeability controls on the reagent injections.

This section will discuss: 1) Geochemical analyses of cores; 2) Aquifer tests results for the former Process Area; 3) Pilot test implementation; 4) Performance monitoring preand post-ISGS treatment; 5) ISGS injections ROI; and 6) Zone-of-discharge monitoring.

2.1 GEOCHEMICAL ANALYSIS

During the Phase I characterization of the former Process Area, select core samples were submitted to analyze the permanganate soil oxidant demand (pSOD) to evaluate effects of short-term ISGS reagent exposure on UH cores, per the approved Workplan. A total of six 5-gallon buckets filled with soil cores were collected during this investigation for laboratory pSOD analysis; four of the 5-gallon buckets were filled with soil from DNAPL-impacted cores and the two remaining 5-gallon buckets were filled with soil from cores that were not visually impacted with DNAPL. Representative DNAPL-impacted cores ("DNAPL-rich") from the Surficial Aquifer were composited into two 5-gallon buckets. Surficial Aquifer soil cores that were not visually impacted cores from the UH were composited into two 5-gallon buckets. Surficial Aquifer soil cores that were not visually impacted soil cores that were not visually impacted soil cores that were not visually impacted cores from the UH were composited into two 5-gallon buckets. Surficial Aquifer soil cores that were not visually impacted with DNAPL were composited into one 5-gallon bucket. Similarly, UH non-impacted soil cores were composited into one 5-gallon bucket. The six 5-gallon buckets of soil core were shipped to Adventus for pSOD analysis.

Results from laboratory pSOD analysis are provided in Table 2-1. For the Surficial Aquifer and UH, the DNAPL-poor (i.e., "non-impacted soil") samples averaged a pSOD value an order of magnitude lower than the DNAPL-rich samples (i.e., creosote DNAPL impacted-soil). The pSOD for DNAPL-poor samples from the former Process Area were 2.90 grams of potassium permanganate per kilogram of dry soil (g KMnO₄/kg) for the Surficial Aquifer and 2.59 g KMnO₄/kg for the UH. In contrast, the pSOD for the DNAPL-rich samples for the Surficial Aquifer ranged from 24.24 and 26.68 g KMnO₄/kg in the former Process Area and former North Lagoon, respectively. The pSOD for the DNAPL-rich samples in the UH were 34.77 and 39.83 g KMnO₄/kg in the former Process Area and former North Lagoon, respectively.

The Workplan proposed column testing of ISGS reagent to evaluate reagent reaction times and effects of long-term injections on permeability of the samples. Initial testing of the reagent on DNAPL-rich soil columns demonstrated that the tests would not provide the necessary data to evaluate the potential reduction in injection rates long-term. With relatively high reagent injection rates (5.6 ml/min), the laboratory was able to saturate the columns after 47 minutes. However, when the injection rates were reduced by a factor of ten (0.57 ml/min), the columns sealed off after reagent penetrated about 1/3 of the way through the column (approximately 76 minutes into the test). With the lower injection reagent rates the laboratory was unable to flush reagent through the soil column prior to the formation of precipitates that effectively sealed the columns. Therefore, Beazer East, Inc. requested and received permission from the EPA (EPA, 2014) to eliminate the column testing.

2.2 AQUIFER TESTS

Aquifer tests were performed to evaluate reduction in the permeability of deposits in the Surficial and UH following full-scale ISGS reagent injections. Aquifer tests in the former Process Area occurred prior to the ISGS reagent injections to assess pre-injection hydraulic-conductivity values. The post-injection hydraulic conductivity tests will be performed after the full-scale ISGS treatment is performed for the former Process Area. Aquifer test locations were chosen for wells with little or no free-phase DNAPL. The AQTESOLV[®] software was used to analyze all aquifer test data.

2.2.1 MULTIPLE-WELL PUMPING TEST

One of the criteria for selecting wells for a multiple-well pumping test was that no DNAPL was present in the well so that the pumped water could be treated at the on-Site water treatment plant. Emulsified DNAPL resulting from the pumping test would clog treatment plant filters. Another criterion was that the wells should be in an area of the former Process Area that will be treated by the full-scale ISGS injections. There are limited wells in proximity (less than 50 feet) to be used for a multiple-well pumping test. There were no UH wells in the former Process Area that did not contain DNAPL. In addition, none of the UH monitoring wells were in proximity to conduct a multiple well test. Therefore, a multiple-well pumping tests was not performed in the UH.

For the Surficial Aquifer pumping test, extraction well M-40BE was utilized as the pumping well and wells PW-1, OW-1, OW-2, M-42BE, and M-41BE were used to monitor the response in the Surficial Aquifer (Figure 2-1a). The pumping test was performed for a period of 6 hours followed by a 1 hour recovery period.

Results for the Surficial Aquifer pumping test are provided in Table 2-3. The AQTESOLV[®] pumping test type-curve matches are provided in Appendix A. The maximum pumping rate that could be sustained without dewatering the pumping well (M-40BE) was approximately 1 gal/min. The drawdown resulting from this pumping

rate was approximately 7.5 feet in the pumping well (M-40BE). Monitoring well PW-1 had approximately 0.2 feet of drawdown and OW-1 had approximately 0.18 feet of drawdown. Analysis results are provided for pumping well M-40BE and observation wells PW-1 and OW-1, located 17 and 22 feet from M-40BE, respectively. Monitoring wells OW-2, M-42BE, and M-41BE are located at distances of 40 to 60 feet from pumping well M-40BE. The pumping test results for observation wells OW-2, M-42BE, and M-41BE are not provided because drawdown affects resulting from M-40BE pumping were not observed at these wells.

The hydraulic-conductivity values calculated for observation wells PW-1 and OW-1 were 10.5 and 13.5 ft/day, respectively. The analysis of drawdown at the pumping well M-40BE resulted in a hydraulic-conductivity value of 0.9 ft/day. This low hydraulic-conductivity value for pumping well M-40BE likely reflects well losses through the well screen and is not representative of formation permeability.

Surficial Aquifer pumping tests were performed at the Site in 1993 and 1994 by McLaren Hart (TRC, 1999). The 1999 TRC report indicated that Surficial Aquifer horizontal hydraulic-conductivity values ranged from 16 to 29 ft/day. The average hydraulic-conductivity of 12.0 ft/day measured in the 2014 pumping test is less than the values measured in 1993 and 1994, but reasonably close given the heterogeneity of the formation.

2.2.2 SLUG TESTS

Five Surficial Aquifer wells and five UH wells were selected for rising/falling head slug tests (Figure 2-1b). For each test, a transducer was placed in the well to monitor the water-level change resulting from instantaneously adding and removing a slug in the well. The rate at which the water level recovers is related to the formation permeability. The procedure for conducting the slug tests was to rapidly insert a 10-ft slug rod into the well to instantaneously displace a column of water (falling-head slug test). The water level was monitored until it recovered to within approximately 10 percent of the static water level (recovery period varied from minutes to hours). Once the water level recovered to static conditions, the rod was removed from the well resulting in an instantaneous decline in water level. The water level recovery to static conditions was a second independent slug test for the well (rising-head slug test). Water-level displacement is plotted against time and compared to theoretical type curves to obtain the hydraulic-conductivity estimate for the formation.

Slug tests were performed in ten monitoring wells as described above. The only exception is that a rising-head slug test was not conducted in monitoring well HG-40SE because the falling-head slug test took more than 3 hours to recover. The hydraulic-conductivity values derived from the rising and falling head slug tests for Surficial Aquifer monitoring wells ranged from 1.5 to 44.7 ft/day (Table 2-4). The average hydraulic-conductivity value for the Surficial Aquifer was 9.2 ft/day (the highest and lowest values were eliminated from the calculated average). The average of the rising and falling head slug tests, for each of the four UH monitoring wells, ranged from 0.5 to

1.2 ft/day (Table 2-4). The hydraulic-conductivity value resulting from the falling-head slug test performed in recovery well HG-40SE of 0.3 ft/day. The average slug test hydraulic-conductivity value for the UH is 0.8 ft/day (the highest and lowest values were eliminated from the calculated average). Based on the slug test results, the Surficial Aquifer permeability is approximately one order of magnitude higher than the UH deposits.

In general, slug test are considered less reliable indicators of average formation permeability because of the small volume of aquifer tested by the slug tests (a few feet radially from the well screen). The pumping test represents average formation permeability at a radius of 10s of feet from the pumping well. The Surficial Aquifer average hydraulic-conductivity value measured from slug tests (9.2 ft/day) was approximately equal to the multi-well pumping test value (12.0 ft/day). Independent measurements of Surficial Aquifer permeability resulted in similar results.

2.2.3 HYDRAULIC-PROFILING TOOL

The relative permeability of deposits within the pre-injection test area was measured with a hydraulic-profiling tool (HPT) to evaluate the potential reduction in permeability preand post ISGS reagent injection. The HPT measures permeability continuously as a function of depth as the tool is advanced. The HPT method utilizes direct-push technology to measure relative permeability of deposits. The method is based on injecting small volumes of fluid, while simultaneously measuring the pressure dissipation as a function of time as the tool is continuously advanced. It was anticipated that approximately five HPT locations would be tested in the pilot test area. The relative permeability of deposits from land surface to the top of the HG middle clay unit was measured with the HPT method to establish baseline conditions in the pre-demonstration area. The Workplan assumed that approximately 3 months following ISGS reagent injections, post-injection HPT measurements will be performed in the test area to evaluate relative reductions in permeability for the area.

HPT testing was performed within a 20 by 20 ft area of the pilot test area (Figure 2-2). Five locations were initially targeted for the HPT testing; however, only three of the locations were tested during the actual implementation. The results of the first three HPT test locations resulted in similar plots of relative permeability; therefore, the HPT testing was not performed at the remaining two locations.

Plots of the HPT test results for the three locations are provided in Appendix B. The estimated hydraulic-conductivity values resulting from the HPT testing were obtained for the Surficial Aquifer and upper 10 feet of the UH. Hydraulic-conductivity values for the lower portion of the UH were too low to be accurately estimated within the sensitivity of the tool and method. The lowest hydraulic-conductivity value discernable with the tool and method was approximately 5 ft/day (1.8×10^{-3} cm/sec). The hydraulic-conductivity values measured during this test ranged from 5 to 45 ft/day. The small volume of aquifer tested by the HPT method raises the question of how representative these values are for the larger-scale average permeability of the pilot-test area. Post-ISGS HPT testing was

not performed since the pre-injection test results did not provide useful information to quantify the larger-scale changes in formation permeability.

2.3 **PILOT TEST IMPLEMENTATION**

2.3.1 DESIGN

The pilot test injection locations strategically target DNAPL impacts identified during the Phase I characterization (Figure 2-3, Figure 2-4a, Figure 2-4b, and Figure 2-4c). The initial pilot test injection point locations presented in the Workplan and Characterization Report were based on a triangular pattern with approximately 20-foot spacing between injection points (Figure 2-3). The 20-foot grid spacing was based on an injection radius of approximately 15 feet. The locations of a few injection points were changed during the field implementation to focus on more recent DNAPL impacts in the western portion of the pilot test area. The more conservative 20-foot grid spacing (10-foot radius) was chosen in order to treat areas that lie between the hypothesized cylindrical treatment areas. The 20-foot grid spacing results in circular areas that overlap by 5 feet and helps to ensure that sufficient volumes of reagent are injected to treat both the cylindrical areas and the intervening areas.

The reagent injection volume was based on previous laboratory column experiments (Adventus, 2004 and 2005). The results of these column experiments demonstrated that a reagent volume of approximately 5 to 10 percent of the pore space was sufficient to treated impacted soils at the Site. The former North Lagoon pilot test estimated a reagent application rate of 6.5 percent of the pore space, which assumed a Surficial Aquifer porosity of 20 percent and a 10 foot ROI and a thickness of 20 feet (Adventus, 2008a). For this pilot test the average effective porosity for the Surficial Aquifer and UH was assumed to be 15 percent, with an injection ROI of 15 feet and a reagent volume of 7 percent of the pore space. The smallest interval treated was 2 feet, the length of the injection tool. Based on the assumptions above, a total of 111 gallons of reagent was required for each 2-foot injection zones.

Top-to-bottom injections were designed to help ensure that the reagent was injected at the target depth. One potential issue with the more traditional bottom-to-top approach to injections is the potential for short-circuiting of reagent in the open borehole below the injection tool, resulting in loss of reagent to intervals not targeted for treatment. A Geoprobe® rig was used for reagent injections. Reagent was injected through a high-pressure hose that ran down the center of the 2-inch inside-diameter (2.25-inch outside-diameter) drill casing and was connected to the 2-foot long injection tool. Targeted injection intervals are provided in Table 2-2.

One TIP was chosen to evaluate the potential reduction in formation and backfill permeability due to precipitation of reacted reagent. The objective of this test was to evaluate the viability of re-using the TIP for multiple injection events. The potential exists for TIPs becoming plugged after one use due to precipitation of reacted reagent. The question addressed by this test is whether TIPs could be used multiple times for future reapplication. The equipment used to mix reagent and inject into the TIP was similar to the direct-push points, with the exception the injection hose was connected directly to the TIP 1-inch PVC casing. The volume of reagent targeted for injection into the TIP was 444 gallons, which is based on an 8-foot long perforated interval.

The RemOx® EC was mixed in 250-gallon totes immediately prior to injections to help ensure that solids added to the mixture stay in solution. Lithium chloride (LiCl) was added to the reagent mixture at a concentration of 6 grams per 250-gallon tote (lithium concentration of approximately 1,000 μ g/L per 250 gal tote). The lithium tracer will be used to help evaluate potential dilution of COIs in post-injection groundwater samples due to pore-water displacement by the reagent.

One issue that was anticipated for the pilot-test injections was daylighting (i.e., short circuiting) of the reagent at surrounding TIPs and previously completed injection points. To prevent potential ISGS reagent daylighting (i.e., flowing vertically upward through the formation and/or borehole and discharging at land surface) the injection borings were abandoned by backfilling with cement-bentonite grout mixture (6.5 gallons per 94 lb sack of cement with 3 to 5 percent bentonite). The injection boreholes were grouted through the same injection casing and high-pressure hose used for the reagent injection. The ability to both inject and grout through the injection casing string was specifically developed for this project to expedite the sealing of the boreholes during full-scale implementation. The procedure for grouting the boreholes was the following:

- 1) Reagent remaining in the injection hose after treating targeted intervals was flushed into the formation with a slug of water;
- 2) The injection string was then pulled up approximately 5 feet to allow the 2-inch long drive tip to fall to the bottom of the hole. This allows for the injection string to act as a tremie pipe, such that grout could flow out the bottom of the string as the casing is removed from the borehole;
- 3) The high-pressure injection hose was connected to the grout pump to place grout as the casing string is removed from the hole.

One of the primary objectives during grouting was to not inject grout out of the borehole and into the formation. The use of a disposable knockout tip in the injection tool allowed the grout to fill the open borehole rather than forcing grout laterally through the injection ports.

2.3.2 ISGS REAGENT INJECTIONS

ISGS reagent injections were performed in general accordance with the Workplan and Characterization Report. The pilot test consisted of injecting reagent via 12 direct-push borings and one TIP (Figure 2-2). The Workplan and Characterization Report stated that 11 direct-push borings would be installed for this pilot test; however, an additional injection point was added to the pilot test program during field implementation to evaluate the potential for reagent short circuiting through non-grouted boreholes. In addition, a few of the proposed injection points were relocated in the field to address impacts based on more recent DNAPL recovery data from TIPs. Injections were performed from March 26 to April 11, 2014.

A Geoprobe® rig was used to install the 12 direct-push injection locations (Figure 2-2). The downhole injection string consisted of 2.25-inch diameter drill rods, 1-inch nominal diameter high-pressure injection hose and a 2-foot long injection tool. Proposed versus actual injection zones and reagent volumes are provided in Table 2-2. Appendix C shows individual injection point injection intervals, volumes, and flow rates. Continuous geologic cores were not collected for the injection point locations; therefore, the stratigraphy for injection points in Appendix C is from TIPs or monitoring wells in proximity to the injection locations.

Two proposed injection-point locations (PT4 and PT8) were not used during the pilot test because reagent originally designated for these locations was reallocated to three new injection point locations (PT12, PT13, and PT14). Injection points (PT12 and PT13) were added in the field to address DNAPL impacts in the western portion of the pilot test area in the vicinity of TIP 420N/345E. Injection point PT14 was added to evaluate the potential for reagent short circuiting through a non-grouted borehole. In addition, to the relocation of the two injection points, some of the originally proposed injection point locations were shifted a few feet to avoid existing structures, such as cement slabs.

Some of the targeted treatment intervals were low-permeability deposits that would not accept the entire volume of reagent proposed for the interval. When reagent refusal was encountered, the reagent volume that could not be injected was injected into deeper targeted intervals. Similarly, when reagent short circuited up the outside of the drill string during injections, injections ceased for this interval; any reagent that was not injected into the interval was added to the volumes injected into deeper intervals. Therefore, some of the targeted injection intervals received less than the targeted volume whereas other intervals received more than the 111 gallons allocated for that interval.

Direct-Push Injections

The injection of reagent via the direct-push method was successful. The method successfully delivered the approximate volume of reagent at the majority of the injection-point locations. The pilot test was designed to inject 18,821 gallons of reagent and a total of 19,512 gallons of reagent was injected.

The injection pressures required to deliver reagent to the targeted intervals was typically less than 80 psi; however, in a few cases pressures around 110 psi were required. Injection pressures tended to be lower in the Surficial Aquifer than in the UH. Once reagent flow was initiated, injection pressures required to maintain flow ranged from less than 20 to 40 psi in the Surficial and 70 to 110 psi in the UH. In general, higher injection pressures were required to maintain flow rates in the UH.

Flow rates are related to injection pressures. Increasing the injection pressure, typically results in increased reagent flow rates for a specific zone. An attempt was made to keep flow rates under 10 gal/min. Flow rates varied in the Surficial Aquifer and UH, with median flow rates of approximately 6 and 8 gal/min, respectively. Flow rates in the lower portion of the Surficial Aquifer and upper clay unit of HG Deposits tended to be slightly higher than zones above or below. Typically, higher sustained injection flow rates resulted when higher initial pressures were required to initiate reagent flow. These higher flow rates likely corresponded to the establishment of preferential flow paths in lower permeability deposits. Hence, flow rates tended to be higher for zones that required higher initial pressures to start flow.

When daylighting was observed, injection for that interval ceased and the injection tool was advanced to the next targeted interval. Reagent that daylighted during injection was captured with a shop vacuum and neutralized with a solution consisting of water, vinegar and peroxide. Residual amounts of remaining reagent were neutralized by spraying with the solution.

The disposable knockout tip was used to grout boreholes at the completion of injection. The knockout tip worked flawlessly and was successfully used to grout all pilot test boreholes.

The following is a summary of individual injection points. More detailed information for each of the injection points is provided in Table 2-2 and Appendix C.

Injection Point PT1

This injection point was designated to receive 2,554 gallons of reagent (Table 2-2). The total volume of reagent was injected; however, 156 gallons targeted for the Surficial Aquifer was injected into the UH due to daylighting issues. Daylighting was observed while injecting into the Surficial Aquifer (13-15 feet bgs) and while injecting into the UH (45-47 feet bgs) (Appendix C).

Injection flow rates ranged from 3 to 8.5 gal/min in the Surficial Aquifer and from 4 to 9 gal/min in the UH.

Injection Point PT2

This injection point was designated to receive 2,443 gallons of reagent (Table 2-2). The total volume of reagent was injected; however, 122 gallons targeted for the Surficial Aquifer was injected into the UH due to daylighting issues.

Daylighting was observed while injecting into the Surficial Aquifer (17-21 feet bgs) and while injecting into the UH (45-47 feet bgs) (Appendix C). The top of the HG upper clay unit is at a depth of approximately 21 feet. Injections were performed from 21 to 23 feet at 3 gal/min and an injection pressure of 80 psi. Injections at this and other locations within the pilot test area demonstrate that reagent can be injected into the lower permeability clays. The post injection cores show that the reagent flowed through bedding planes and sandier units within the upper clay unit.

Injection flow rates ranged from 3.5 to 13 gal/min in the Surficial and 3 to 11 gal/min in the UH.

Injection Point PT3

This injection point was designated to receive 1,055 gallons of reagent (Table 2-2). The total volume of reagent was injected. No daylighting was observed while injecting at this location (Appendix C).

Injection flow rates were 7.5 gal/min in the Surficial Aquifer and ranged from 6 to 8.5 gal/min in the UH.

Injection Point PT4

The injection point was designated to receive 944 gallons of reagent (Table 2-2). A field determination was made to remove this injection point from the pilot test and reallocated the reagent volume proposed for this location to a new location. No reagent was injected at this location.

Injection Point PT5

The injection point was designated to receive 2,332 gallons of reagent (Table 2-2). The total volume of reagent was injected; however, 616 gallons of the reagent targeted for the Surficial Aquifer was injected into the UH due to daylighting issues. Daylighting was observed while injecting into the Surficial Aquifer (11-19 feet bgs) and while injecting into the UH (21-23 feet bgs) (Appendix C).

Injection flow rates ranged from 5 to 5.5 gal/min in the Surficial Aquifer and 4.5 to 11 gal/min in the UH.

Injection Point PT6

The injection point was designated to receive 1,055 gallons of reagent (Table 2-2). Only 839 gallons of reagent was injected at this location. Approximately 216 gallons was not injected because of daylighting issues in the Surficial Aquifer and UH. Daylighting was observed while injecting into the Surficial Aquifer (13-17 feet bgs) and UH (50-54 feet bgs) (Appendix C). The 216 gallons of reagent not injected at this location was injected at PT7.

Injection flow rates ranged from 4 to 11 gal/min in the Surficial Aquifer and 6 to 11 gal/min in the UH.

Injection Point PT7

The injection point was designated to receive 999 gallons of reagent (Table 2-2). All reagent at this location was targeted for injection into the UH. The total volume of reagent was successfully injected. In addition, the 216 gallons of reagent remaining from PT6 was injected at this location. No daylighting was observed while injecting at this location (Appendix C).

Injection flow rates ranged from 4 to 8.5 gal/min in the UH.

Injection Point PT8

The injection point was designed to receive 1,832 gallons of reagent (Table 2-2). A field determination was made to remove this injection point from the pilot test and reallocated the reagent volume initially proposed for this location to a new location. The reagent proposed for this area was reallocated to injection points PT-11 and -12. No reagent was injected at this location.

Injection Point PT9

The injection point was designated to receive 1,888 gallons of reagent (Table 2-2). The total volume was injected; however, 77 gallons targeted for the Surficial Aquifer was injected into the UH because of daylighting issues. Daylighting was observed while injecting into the Surficial Aquifer (21-23 feet bgs) and the UH (25-27 feet bgs) (Appendix C).

Injection flow rates ranged from 5 to 5.75 gal/min in the Surficial Aquifer and 5 to 9.5 gal/min in the UH.

Injection Point PT10

The injection point was designated to receive 1,110 gallons of reagent (Table 2-2). The total volume was injected. A 1-foot zone (25-26 ft bgs) in the Surficial Aquifer was initially designated for treatment with 56 gallons of reagent. Because of the addition of injection points PT12, PT13 and PT14 to this area, the impacted 1-foot zone was determined to be within the radius of influence from injections at these locations. Therefore, a field determination was made to inject the 56 gallons allocated to the Surficial Aquifer into the UH, to allow more treatment of the deeper DNAPL impacts in this area. No daylighting was observed while injecting at this location (Appendix C).

Injection flow rates ranged from 7 to 10 gal/min in the UH.

Injection Point PT11

The injection point was designated to receive 1,277 gallons of reagent (Table 2-2). The total volume was injected; however, 111 gallons targeted for the Surficial Aquifer was injected into the UH due to daylighting issues. Daylighting was observed while injecting into the Surficial Aquifer and upper clay unit (23-25 feet bgs) (Appendix C).

Injection flow rates ranged from 3.5 to 12 gal/min in the UH.

Injection Point PT12

This injection point was added to the pilot test during field implementation, as previously discussed. The total volume injected was 1,832 gallons (Table 2-2). The targeted injection zones and reagent volumes at this location were similar to adjacent injection point PT9. Daylighting was not observed while injecting into the Surficial Aquifer or UH (Appendix C).

Injection flow rates ranged from 5.5 to 8 gal/min in the Surficial Aquifer and 7.5 to 14 gal/min in the UH.

Injection Point PT13

This injection point was added to the pilot test during field implementation, as previously discussed. The total volume injected was 1,832 gallons (Table 2-2). The targeted injection zones and reagent volumes at this location were similar to adjacent injection point PT9. Daylighting was observed while injecting into the Surficial Aquifer (19-21 and 23-25 feet bgs) (Appendix C).

Injection flow rates ranged from 5.75 to 7.5 gal/min in the Surficial Aquifer and 6.5 to 8.5 gal/min in the UH.

Injection Point PT14

This injection point was added to the pilot test during field implementation, to evaluate the potential for reagent short circuiting through non-grouted boreholes. The total volume injected was 595 gallons (Table 2-2). Daylighting was observed while injecting into the Surficial Aquifer (15-17 feet bgs) (Appendix C). Because of daylighting issues the total volume of reagent was not injected into the last of the three targeted zones for Surficial Aquifer.

Injection flow rates ranged from 6.5 to 11 gal/min in the Surficial Aquifer and 5 to 11 gal/min in the UH.

TIP Injections

The ability to perform multiple ISGS reagent injections in to TIPs was tested as part of this demonstration project. The primary objective for reagent injection at TIPs was to evaluate whether the TIP backfill and/or formation becomes plugged over time due to the precipitation of minerals resulting from reagent/organic reactions. A test of multiple injections was performed at one TIP located within the pilot test area.

TIP 440N/380E

TIP 440N/380E is located on the northeastern corner of the pilot test area. This TIP has never contained free-phase DNAPL, since it was installed in 2012; however, it is located in proximity to one of the more highly DNAPL-impacted areas of the former Process Area.

A total of 444 gallons of reagent was injected into the UH via this TIP. A constant injection flow rate of approximately 4 gal/min was maintained, with an injection pressure of 60 psi. No daylighting was observed. Approximately 2 weeks following the initial injection, an additional 100 gallons was injected into this TIP. Initially, a total of 444 gallons was proposed to be injected at this location. Because a constant injection flow rate of 5 gal/min was quickly attained with an injection pressure of 75 psi, it was established that reinjection into a TIP was feasible. Therefore, injections were stopped after 100 gallons, rather than wasting reagent in an area not requiring treatment. The

injection flow rates were essentially the same during both injection events. This test demonstrated that reinjection at TIPs appears viable for the full-scale application, if needed.

TIP 420N/345E

This TIP was initially proposed for reagent injections during the pilot test. DNAPL recovery started at this TIP in early 2014, after the Workplan and Characterization Report were finalized. Because of significant DNAPL recovery at this TIP, it was subsequently decided to use this TIP for pilot test performance monitoring. No reagent injections were performed at this TIP.

2.3.3 BOREHOLE SHORT-CIRCUITING EVALUATION

Injection point PT14 was used to test the potential for short-circuiting of reagent through non-grouted injection points. Injection point PT6 was not grouted following the completion of injections at this location to allow for testing of injections at an adjacent point. Injection point PT14 was installed approximately 10 feet from PT6 and injections were performed into the Surficial and UH. Injections into the Surficial Aquifer at PT14 (10 to 18 feet bgs) resulted in reagent short circuiting outside of the injection casing; therefore, the injection into the Surficial Aquifer was stopped and the injection casing was advanced into the UH (43 to 49 feet bgs) to continue injections.

During the injections into the Surficial Aquifer at PT14, there was no observable shortcircuiting of reagent at the non-grouted injection point PT6; however, the test was stopped before the full volume of reagent was injected. Similarly, there was no observable short circuiting of reagent at PT6 during injections in the UH. PT6 and PT14 were grouted at the completion of the test.

The test did not result in observable reagent short circuiting at an adjacent borehole located approximately 10 feet from the injections. However, the test was not able to evaluate subsurface short circuiting within the open borehole. While this test showed that short circuiting to land surface via a nongrouted borehole did not occur, it did not provide information on short circuiting within boreholes to non-designated treatment zone.

2.3.4 FORMATION PRESSURIZATION FROM REAGENT INJECTION

Continuous water-level monitoring was performed during reagent injections to provide quantitative data on formation pressures. Pressure recording transducers and data loggers were installed in TIPs (440N/380E and 380N/340E) and DNAPL recovery wells (HG-37SE and HG-36SE) during the first 3 days of injections to monitor formation response.

The water-level monitoring during the pilot test demonstrated that reagent injections temporarily pressurize the targeted treatment zones sufficient to result in potential groundwater discharge at land surface via well casings. The pressurized zones resulted in groundwater discharge via uncapped TIPs (400N/380E, 420N/345E, 460N/340E) and

monitoring well HG-36SE within approximately 60 feet of the injections. Groundwater discharge was only observed during reagent injections into the UH, since all TIPs and monitoring wells in this area are screened in the UH. The pressure pulse resulting from injections into the Surficial Aquifer did not result in groundwater discharge since no Surficial Aquifer monitoring points were present in the Pilot Test area. Once well/TIP caps were securely sealed, groundwater discharge ceased. This monitoring demonstrated that increased formation pressures will necessitate the use of tight fitting caps for all TIPs and well casings prior to full-scale injections. Appendix D contains temporal plots of formation water levels during pilot-test injections.

2.4 **PERFORMANCE MONITORING**

The primary short-term objective of the ISGS demonstration program is to contain and stabilize free-phase DNAPLs. The principal short-term (<1 year) performance criteria for the achievement of this objective was a significant reduction in DNAPL recovery volumes in wells and TIPs completed in the former Process Area.

2.4.1 DNAPL COLLECTION PROCEDURE

It is critical that accurate DNAPL recovery volumes were documented for all TIPs and wells at the Site. The performance monitoring is dependent on establishing consistent and accurate recovery volumes in order to evaluate the reductions in recoverable DNAPL post-ISGS treatment. Prior to 2013, DNAPL recovery in monitoring wells at the Site was performed with a bailer. The issue with using a bailer is that it disturbs the DNAPL/water interface resulting in emulsification of the DNAPL within the well. The recovered DNAPL is mixed with water making it difficult to establish the recovered DNAPL volumes. Because of this issue, the method for DNAPL recovery was modified to utilize a peristaltic pump. Dedicated tubing is installed near the base of the well, such that DNAPL is preferentially recovered with little to no water. The recovered DNAPL is collected in 5-gallon buckets and allowed to settle over a period of hours. Once the water/DNAPL interface is reestablished in the bucket, the volume of DNAPL and water is recorded on field forms. The use of a peristaltic pump for DNAPL collection has been ongoing in the former Process Area since 2013. The DNAPL data volumes resulting from this recovery method is accurate and reproducible. Hence, the pre- and post-DNAPL recovery volumes are accurate representations of the effectiveness of the ISGS treatment remedy performance.

2.4.2 DNAPL RECOVERY FORMER PROCESS AREA

The UH is the only geologic unit that has consistent and sustainable DNAPL recovery. Five Surficial Aquifer DNAPL recovery wells were installed in the former Process Area in 2013, but they have failed to produce recoverable DNAPL. Conversely, the five UH DNAPL recovery wells installed in 2013 consistently recover DNAPL. Similarly, 24 of the 101 TIPs installed in the UH consistently recover DNAPL.

A biweekly DNAPL recovery program for the TIPs was started in November 2012 and has been ongoing since this time. Approximately half of the 24 TIPs with recoverable DNAPL did not start producing DNAPL until months after they were installed. A few of the TIPs were installed for over 1 year before they contained recoverable DNAPL. DNAPL recovery volumes for the TIPs range from less than 1 gallon to 22 gallons per 2 week interval.

Limited DNAPL recovery has been ongoing in the former Process Area for over 10 years at two monitoring wells (HG-11S and HG-15S). Based on the 2012 investigation of DNAPL impacts in the former Process Area, five additional DNAPL recovery wells were installed. The five wells installed in 2013 have consistently recovered DNAPL, with recovery volumes ranging from 3 to 15 gallons per 2-week interval. The only exception to 2-week intervals between recovery events was the 6-week interval from early March 2014 to late April 2014 during the pre- and post-pilot test implementation and evaluation. This resulted in increased volumes of recovered DNAPL in late April, with subsequent recovery events returning to trends of decreasing volumes of recovered DNAPL.

The area for the pilot test was selected because of the presence of TIPs and wells with significant volumes of recoverable DNAPL. The test area contains three TIPs (420N/345E, 380N/340E and 400N/380E) and one well (HG-36SE) with recoverable DNAPL. In addition, TIP (460N/340E) is located approximately 5 feet to the north of the designated pilot test area and has recoverable DNAPL.

DNAPL recovery began in the pilot test area in November 2012 with additional recovery locations added in mid- to late-2013 (Figure 2-5). Both the TIPs and recovery well had consistent DNAPL volumes collected up until the pilot-test in March/April 2014. All DNAPL recovery within the treated portion of the pilot-test area showed significant decreases in DNAPL recovery rates and volumes. TIP 380N/340E is located in the southwestern portion of the pilot test area where ISGS injections were not performed. As expected, this TIP did not show a reduction in DNAPL recovery rates.

The following is a summary of DNAPL recovery pre- and post-ISGS injections.

Well HG-36SE

The DNAPL recovery well HG-36SE is located on the eastern portion of the pilot test area (Figure 2-2). Prior to ISGS treatment, this well averaged approximately 15 gallons of DNAPL per recovery event (Figure 2-6a). Immediately following the ISGS injections, DNAPL recovery declined to less than 0.5 gallons per recovery event and

remained at this rate for 4 months before increasing to approximately 2 gal per recovery event. The DNAPL recovery at this well was reduced by 87 to 97 percent.

TIP 420N/345E

This TIP is located on the western side of the pilot test area (Figure 2-2). Prior to ISGS treatment, this TIP averaged approximately 22 gallons of DNAPL per recovery event (Figure 2-6b). Immediately following the ISGS injections, DNAPL recovery declined to approximately 1.5 gallons per event and remained at this rate for 3 months before increasing to approximately 4 gallons per event. The DNAPL recovery at this TIP was reduced by 82 to 93 percent.

TIP 400N/380E

This TIP is located on the eastern side of the pilot test area by DNAPL recovery well HG-36SE (Figure 2-2). Prior to ISGS treatment, this TIP averaged approximately 6 gallons of DNAPL per recovery event (Figure 2-6c). Approximately 2 months following ISGS injections, DNAPL recovery was reduced to approximately 1 gallon per event. The DNAPL recovery at this TIP was reduced by 83 percent.

TIP 460N/340E

This TIP is located approximately 5 feet outside of the northern boundary of the pilot test area (Figure 2-2). Given its location, ISGS treatment of this area was expected to be minimal. Prior to ISGS treatment, DNAPL recovery at this TIP averaged approximately 2.5 gallons per event. Immediately following the ISGS injections, DNAPL recovery increased slightly and then declined to approximately 1.5 gallon per event (Figure 2-6d). The DNAPL recovery at this TIP was reduced by 40 percent.

The post-ISGS treatment performance monitoring resulted in significant reductions in DNAPL recovery rates within the pilot test area. The three TIPs and one recovery well located within and adjacent to the pilot test area showed 40 to 97 percent reductions in DNAPL recovery. The short-term performance criteria were met for this pilot test.

2.4.3 ISGS INJECTIONS RADIUS OF INFLUENCE

Eleven geologic cores were collected in the pilot test area from land surface to the top of the middle clay unit to evaluate the distribution of reagent and non-treated DNAPL. An attempt was made to approximately center most borehole location between injection points to evaluate the treatment radius and coverage within pilot test area. In addition, select core locations were chose to evaluate the reagent distributions at increasing distances from an individual injection point (PTC-1 and -2; PTC-4 and -5), consistent with the approved Workplan. The post-treatment cores were collected approximately 2.5 months (June 23-27, 2014) following the completion of the ISGS injections (Figure 2-7). The following was noted in the descriptions of the cores: 1) Presence/absence of reacted and non-reacted reagent; 2) Percentage of DNAPL treated; 3) PID measurements; and 4) General lithologic descriptions. The field descriptions for the logs are provided in Appendix E.

Cores were collected with a rotasonic drill rig, which employs the use of high-frequency, resonant energy to advance a core barrel and/or override casing into deposits. Core samples were collected using a 6-inch override casing and a 4-inch core barrel. Continuous cores were collected from ground surface to a targeted borehole depth of approximately 65 feet.

Post-ISGS cores were collected within the pilot test area (Figure 2-7). None of the cores contained visible bright purple non-reacted reagent indicating that the majority of the reagent was consumed. The color of the reacted reagent varied depending on the deposit it encountered. In general, the reacted reagent was dark brown to black in color. The reagent turned a bright rusty brown color when encountering iron rich deposits (upper clay unit). In some cases the reacted reagent contained a mottled silvery color within a dark black matrix. The source of this mottled coloration is unknown. The treated zones of the cores reacted with the neutralization solution when sprayed (Figure 2-8). DNAPL staining was observed throughout the cores and in contact with the reagent; however, no free-phase DNAPL was observed in the cores.

The distribution of the reacted ISGS reagent was established by rating the presence of reagent in the cores with a numerical rating of 1 to 3. A rating of 1 indicated that no reagent was present in the section of core. A rating of 2 indicated that reagent was thought to be present based on visual changes in colorations and a slight reaction to the neutralization solution. A rating of 3 indicated that reacted reagent was present in the core section and that it reacted strongly to the neutralization solution.

The numerical ratings for the presence and absence of ISGS reagent was entered into the EVS[©] model to establish the distribution within the pilot-test area. Results of the model analysis are presented in Figures 2-9a, 2-9b, and 2-9c. As shown in these figures, the ISGS reagent was successfully delivered to the majority of the targeted zones. Exceptions are areas where the ISGS injections were not performed or on the edge of the pilot test area.

The results of the post-ISGS core collection demonstrate that the assumed injection radius of 15 feet was conservative. In some locations reagent was encountered at distances of greater than 20 feet from injection points. Similarly, the EVS[©] model predicts that the reagent extended beyond the 15 feet radius. The model also predicted that reagent was delivered to the majority of the targeted areas, with minor evidence of non-treated zones within the test area.

2.5 ZONE-OF-DISCHARGE

A variance was granted by FDEP on July 18, 2008 for the injection of RemOx® EC in Florida. As part of this variance, the FDEP requires that a zone-of-discharge (ZOD) be established downgradient of the treated area. This ZOD is required to be within 150 feet of the injection area, pursuant to the 2008 variance.

The ZOD "permission by variance" was established because the ISGS reagent contains impurities that are not prime constituents of the reagents and the concentrations of the impurities are in excess of their primary groundwater standards. The COIs identified by FDEP that require monitoring in the ZOD are the following: antimony, arsenic, chromium, mercury, beryllium, cadmium, lead, thallium, selenium, molybdenum, sodium, chloride, aluminum, manganese, TDS, pH, iron, and color.

The FDEP approved the Final Underground Injection Control (UIC) Summary and Monitoring Plan for the Pre-demonstration ISGS pilot in an email dated March 21, 2013. As required by the permit, UIC compliance wells and temporary off-site zone-ofdischarge (ZOD) monitoring wells were established to monitor the zone-of-discharge groundwater quality. The permit states the following concerning monitoring:

"Post-injection quarterly monitoring will be conducted until the temporarily exceeded UIC parameters return to standards or site-specific background levels, whichever is less stringent, for a minimum of one year."

A total of three background and five downgradient wells (M-25A, M-25B, M-36B, HG-33S and HG-34S) were established for UIC monitoring (Figure 2-10). The background UIC monitoring wells consist of: one Surficial Aquifer well (M-14); one UH well (HG-24S) and one LH well (HG-22D). The downgradient UIC monitoring wells consist of three Surficial Aquifer (M-25A, M-25B and M-36B) and two UH monitoring wells (HG 33S and HG-34S). In addition, two Temporary ZOD monitoring wells (HG-26S and HG-26D) were established for monitoring in the event COIs are detected in the UIC wells. The permit states:

"Temporary off-site zone-of-discharge (ZOD) monitoring will be conducted for the wells listed in Table 4 if purple-colored groundwater is observed in these wells or if ISGS indicators, including purple water or UIC parameter exceedances, are observed in upgradient UIC compliance wells."

One background monitoring event was performed for all UIC monitoring wells on March 19, 2014, prior to the start of the ISGS injections. The results of the background monitoring demonstrated that a few of the COI required for monitoring by the permit already exceed Florida primary groundwater standards at the Site. The Surficial Aquifer contains three COIs that do not meet Florida groundwater cleanup target levels (GCTLs, Tables 2-5a and 2-5b): 1) Aluminum; 2) Iron; and 3) Manganese. The UH contains three COIs and two field parameters that do not meet Florida GCTLs: 1) Aluminum; 2) Iron; 3) Cadmium; 4) pH; and 5) Color.

Two quarterly sampling events have been performed following the ISGS pilot test injections. The first event was performed approximately 2 months (June 4-5, 2014) following the ISGS injections and the second was performed approximately 4.5 months (August 17-19, 2014) following injections (Tables 2-5a and 2-5b). No purple-colored groundwater was observed. The results of the sampling indicated that some COI concentrations may be increasing in select UIC wells. The COIs with potentially

increasing concentrations in the Surficial Aquifer are the following: Al, As, Cl, Fe, Mn, Na and TDS. Similarly, COIs with potentially increasing concentrations in UH are Al, Cl, Fe, Mn and Na. The following is a brief discussion of these COIs.

Aluminum

It is not clear that the Al concentrations are increasing in either the Surficial or UH monitoring wells. The concentration trends based on two post-ISGS sampling events are variable and inconsistent between total and dissolved concentrations.

The Surficial Aquifer total Al concentration may have increased in monitoring well M-25B; however, the dissolved concentrations for this well remained the same or declined. Similarly, adjacent monitoring well M-25A total Al concentrations decreased since the ISGS injections.

The UH total Al concentrations may show an increase in monitoring well HG-34S; however, the dissolved concentrations are more variable. Conversely, monitoring well HG-33S showed a decrease in concentration. Therefore, an increase in Al concentrations for both the Surficial and UH is suspect.

<u>Arsenic</u>

The Surficial Aquifer As concentrations in M-36B and M-25A show a clear increasing trend post-ISGS injections. The concentration increase for M-36B is the most significant with total As concentrations increasing from less than 1 to $1,570 \mu g/L$ in the first quarterly sampling event. The total As concentration declined to 663 $\mu g/L$ during the second quarter event. The As concentration in M-25A increased from 1.2 to 6.3 $\mu g/L$ and monitoring well M-25B, showed a decrease in concentration. The UH did not show an increasing As concentration trend for either of the UIC wells.

The Surficial Aquifer As concentrations have been historically elevated in this area since monitoring started at the Site. The post-ISGS increase in As concentrations for this area is likely due to the fluid pressure pulse developed during the injections redistributing Asimpacted groundwater in this area.

Chloride

The chloride concentrations at this Site do not exceed Florida GCTLs (250,000 μ g/L); however, there appears to be a slight increase in concentration post ISGS injections for Surficial Aquifer monitoring wells M-25A and M-36B. The only UH monitoring well with a potentially increasing concentration is HG-34S; however, the Cl concentrations data are highly variable and an increasing concentration trend is not clear.

Iron

The Fe concentrations appear to have increased in Surficial Aquifer monitoring wells M-25A and M-36B. Total Fe concentrations increased from 265 to 3,900 μ g/L in M-25A and from 909 to 1,660 μ g/L in M-36B. The post-ISGS Fe concentrations in M-25B essentially remained the same.

The Fe concentration in HG-34S increased from 18 to 317 μ g/L; however, monitoring well HG-33S did not show an increasing trend.

Manganese

The Mn concentration in Surficial Aquifer monitoring well M-25A increased from 0.5 to 12 μ g/L. Monitoring wells M-25B and M-36B did not show any apparent increases in concentrations.

The only UH monitoring well with a potential increase in Mn concentration was HG-34S. The total Mn concentration in this well increased from 0.6 to 12 μ g/L. Both the Surficial and UH Mn concentrations are well below Florida GCTLs (50 μ g/L).

<u>Sodium</u>

The Na concentrations increased on Surficial Aquifer monitoring wells M-25A and M-36B and decreased in M-25B. The Na concentrations increased from 1,610 to 4,510 μ g/L in M-25A and from 6,740 to 33,000 μ g/L in M-36B.

The Na concentration trend for the UH is not clear. The post-ISGS concentration trends for HG-34S is highly variable, with the first quarter Na concentrations decreasing and the second quarter concentrations increasing above the background concentration. The pre and post-ISGS concentration for HG-33S remained essentially the same.

Total Dissolved Solids

The TDS concentration trends for the Surficial Aquifer may have increased slightly from pre- to post-ISGS injections; however, a trend is not clear from the data. Similarly, the concentrations for the UH monitoring wells do not show a clear increasing trend.

<u>Lithium</u>

Lithium was not detected in any monitoring wells post-ISGS pilot test. The absence of lithium in the monitoring wells downgradient of the pilot test area supports the conclusion that changes in constituent concentrations at a few monitoring wells is not due to the dissolution of ISGS reagent. Rather, the injection pressure pulse resulting from the ISGS treatment temporarily redistributed impacted groundwater.

Summary

In summary, the UIC monitoring well concentrations for the Surficial Aquifer showed an increase in concentrations for select COIs. The COIs with apparent increases in concentrations are As, Fe, Mn and Na. The increase in As concentrations is likely due to a redistribution of As-impacted groundwater. The UH monitoring wells do not show a clear increase in concentrations; however, select COIs may have increased slightly. As per the requirement in the permit, the Temporary ZOD monitoring wells will be sampled starting 4th quarter 2014.

3.0 PRE-FINAL FULL-SCALE REMEDIATION DESIGN

The Workplan describes the phased approach to the full-scale ISGS implementation and performance monitoring for the former Process Area. This section provides additional details for the full-scale design and implementation based on the results of the pilot test. The Workplan also details the required performance monitoring for full-scale implementation; Section 3.3 includes a brief discussion of performance monitoring.

The full-scale implementation will follow the same procedures and approaches as documented in the pre-demonstration pilot test performed in 2014. The major changes to this approach will be those needed to scale-up the reagent mixing and the number of simultaneous injection points to achieve higher production rates.

The primary objective of the former Process Area ISGS pilot-test injections was to determine the effectiveness of ISGS reagent performance and injection methods in order to more effectively implement the full-scale ISGS remedy. The results and lessons learned were used to design the full-scale remediation and streamline field implementation.

3.1 PILOT-TEST LESSONS LEARNED

The following is a summary of lessons learned during the 2014 pilot test:

- A 15-foot ROI for the ISGS reagent injections is conservative for both the Surficial and UH; the reagent was successfully delivered to the targeted intervals with approximately 20-foot spacing between injection points;
- The injection tool design was effective for targeting 2-foot intervals. Full-scale injections will utilize two or more Geoprobe rigs with up to two simultaneous injection points per rig. A separate diaphragm pump will be used to inject into each of the points.
- Flow meters were not effective at monitoring injected reagent volumes. The meters failed due to abrasion and plugging after a few hundred gallons were injected. The most effective method for monitoring injected reagent volumes was to manually monitor and record tank volumes during reagent injections;
- The reagent mixing process was effective. A temporary structure will be erected on-Site to accommodate mixing for full-scale implementation;
- A cement/bentonite grout is effective at sealing the borehole after injection. Grouting of the borehole through the ISGS reagent injection string via a knockout plug at base of the tool was successfully tested and will be used for full-scale implementation;

• The potential for short circuiting (i.e., daylighting) of ISGS reagent exists for wells, TIPs, and infrastructure foundations and pathways. All TIPs and monitoring wells will be capped prior to full-scale injections to prevent short-circuiting of groundwater and reagent via these pathways. In addition, containment and neutralization solution will be used in the event of reagent daylighting during injections.

3.2 FULL-SCALE DESIGN

The Phase I characterization and subsequent EVS[©] model were used to identify the distribution of DNAPL impacts to be targeted for full-scale remediation (Figure 3-1). The pre-demonstration pilot-test results indicated that an assumed ROI of 15 feet was sufficient to provide coverage of the target area (Figures 2-9a, 2-9b, and 2-9c).

The location of the full-scale injection points was developed based on a 20-foot triangular pattern over the extent of DNAPL impacts (Figure 3-2). The extent of the injection zone spans approximately 400 feet from north to south and 380 feet from east to west. A total of 253 direct-push injection points and one TIP (380N/180E) will be used to inject ISGS reagent. TIP 380N/180E is the only TIP with a screen interval intersecting the EVS[®] projected DNAPL impacts and which is not currently being used for performance monitoring. Direct-push injections within the pilot-test area will only be performed in areas not previously treated during the pilot test. The need for additional hot-spot treatment in the pilot test area will be determined after the full-scale implementation and short-term performance monitoring.

The EVS[©] model generated during the Phase I characterization was used to identify intervals with DNAPL impacts to be targeted during full-scale remediation (Figure 3-1). The target interval depths range from 3.5 feet bgs to 66.5 feet bgs. Cross sections were developed to show slices through targeted DNAPL impacted areas and the conceptualized ISGS reagent distributions (Figures 3-2a through 3-2d). The injection point grid is based on a triangular injection pattern; therefore, the 2-dimensional cross sections do not show the treatment areas from injection points that fall just outside of the line of section. As a result, injection points on either side of the lines of sections were projected onto the cross section to visually show the complete treatment of the projected DNAPL impacts shown in the cross sections.

The full-scale ISGS injection points were developed based on a uniform triangular grid pattern across the entire former Process Area. Injection grid points that were in areas with no DNAPL impacts were removed from the grid. There were a few areas where the conceptualized ROI did not capture all projected DNAPL impacts. In order to help ensure that these impacted areas were treated, additional injection points were manually added to the grid to address these areas. Therefore, the initially uniform triangular grid was optimized to: 1) Eliminate injection point locations that were outside of DNAPL impacted areas; and 2) Add new injection points to address areas where the assumed ROI was insufficient to capture all impacts in these areas.

Cross-section D-D' is oriented east to west across the northern area of the former Process Area (Figure 3-2) and shows both DNAPL impacts and proposed targeted ISGS treatment zones (Figure 3-3a). The Surficial Aquifer DNAPL impacts are primarily concentrated immediately above the upper clay unit. The UH DNAPL impacts are primarily concentrated in a zone approximately 10 to 20 feet above the middle clay unit; however, there are a few areas along this line of section where DNAPL impacts extend to the top of the middle clay unit. Included on this cross-section is the projected distribution of ISGS reagent in the pilot test area. The zones within the pilot test area that were previously treated will not be re-treated during the full-scale implementation; however, there are a few residual zones within the pilot test area that were not treated. Injection points are included in the full-scale implementation (Figure 3-2) to address the remaining DNAPL-impacts within pilot test area.

Cross-section E-E' is oriented east to west across the southern area of the former Process Area (Figure 3-2) and shows both DNAPL impacts and proposed targeted ISGS treatment zones (Figure 3-3b). The Surficial Aquifer DNAPL impacts are primarily concentrated immediately above the upper clay unit and extend across the majority of the cross section. DNAPL impacts in the central area of the former Process Area extend to within 5 feet of land surface. The UH DNAPL impacts are concentrated in the central area of the former Process Area and extend from the upper clay unit to a zone approximately 10 to 20 feet above the middle clay unit. There are no DNAPL impacts that extend to the top of the middle clay unit along this line of section. Treatment in this area of the Site will be more extensive in the central area than in the eastern or western areas.

Cross-section F-F' is oriented north to south across the western area of the former Process Area (Figure 3-2) and shows both DNAPL impacts and proposed targeted ISGS treatment zones (Figure 3-3c). The Surficial Aquifer DNAPL impacts extend from approximately 5 feet below land surface to the top of the upper clay unit. The Surficial Aquifer impacts extend across the majority of the cross section. The UH DNAPL impacts are concentrated in the southern and central areas of the former Process Area and extend from the upper clay unit to a zone approximately 10 to 20 feet above the middle clay unit. There are no DNAPL impacts that extend to the top of the middle clay unit along this line of section. The majority of the targeted treatment zones are located in the southern portion of the former Process Area.

Cross-section G-G' is oriented north to south across the eastern area of the former Process Area (Figure 3-2) and shows both DNAPL impacts and proposed targeted ISGS treatment zones (Figure 3-3d). The Surficial Aquifer DNAPL impacts extend from approximately 5 feet below land surface to the top of the upper clay unit; however, Surficial Aquifer DNAPL impacts along this line of section appear to be less than in previous section. The UH DNAPL impacts extend across the entire cross section and are concentrated in a zone approximately 10 to 20 feet above the middle clay unit. There are no remaining DNAPL impacts that extend to the top of the middle clay unit along this line of section. The pilot test area had DNAPL-impacted zones that extended to the middle clay unit; however, these zones were previously treated. Similar to cross-section
D-D', the pilot test area only contains a few new injection points to treat areas that did not receive ISGS reagent during the pilot test.

The total volume of ISGS reagent to be injected in the former Process area is 166,571 gallons. A total of 51,809 gallons will be injected into the Surficial Aquifer and 114,762 gallons will be injected into the UH. The reagent volumes for each injection point are provided in Appendix F.

The total volume of DNAPL-impacted deposits to be treated is approximately 78,500 cubic yards (CY). Approximately 24,400 CY of DNAPL-impacted deposits will be treated in the Surficial Aquifer and approximately 54,100 CY will be treated in the UH.

3.3 FULL-SCALE IMPLEMENTATION

The 253 direct-push injection points will be advanced using Geoprobe[®] rigs equipped with 2.25-inch diameter, 2-foot long side-port injection tools. A minimum of two drill rigs will be used for the full-scale implementation. Each rig will each be equipped with two injection pumps to allow simultaneous injection in up to four locations. One TIP (380N/180E) will be used for injecting reagent.

Some historic building foundations were encountered during the Phase I characterization, and the characterization boring locations were adjusted to work around these obstructions. For laterally extensive cement slabs, the slab will be cored and the injection point installed through the core hole. If the obstruction is not laterally extensive, the injection points will be moved from the proposed locations to a new location within proximity to the original point. During the Phase I characterization, the boring locations typically needed to be moved less than 5 feet from the original location. If the direct-push injection points are moved more than 5 feet from the original location, the distance will be evaluated to determine if additional reagent or additional injection locations are needed to treat the target zone.

Chemicals required to prepare the ISGS solution include sodium permanganate (40 percent solution) and other liquid and solid chemical reagents as part of the proprietary RemOx® EC formulation. The final ISGS reagent will be a 4.5 percent-weight solution of RemOx® EC. The ISGS solution will be mixed in separate trailers located in a temporary structure. The trailers will be equipped with appropriate means of safe chemical measuring, mixing, and transfer. A perimeter will be set up around the mixing area to prevent unauthorized workers from entering. The reagent solutions will be mixed immediately before injection and transported in 250 gallon totes to the injection locations. A LiCl tracer will be added to the ISGS reagent solution during mixing. The tracer will provide a quantitative measure of groundwater COI concentrations dilution due to ISGS reagent injections. The concentration of LiCl tracer added to the ISGS reagent will be sufficient to provide a 1,000 μ g/L concentration per 250 gallon tote. Lithium is currently being analyzed to a reporting limit of 10 μ g//L.

The injection tools will be advanced to the uppermost target interval, where the reagent volume of 111 gallons per 2-foot interval will be injected. The tool will be advanced to the next interval depth and so on until the lowest target interval is reached for a given injection point. In situations where an individual interval is greater than 2 feet, the tool will be advanced in multiple 2-foot steps over the interval and the specified reagent volume will be appropriately distributed along the target interval. Injection into the TIP will require a reagent volume of 444 gallons.

Based on pilot-test results, the maximum anticipated pressure to establish injection is approximately 120 psi, with an average sustained injection pressure of 40 to 80 psi. During the pilot test, the average pressure required to sustain the injection was 71 psi. Higher pressures were required to establish and maintain injections in the middle to lower sections of the UH. Lower pressures were required to establish and maintain injections in the Surficial Aquifer, with the lowest pressures observed in shallow injections. Similar injection pressures are anticipated for the full-scale ISGS implementation. The minimum and maximum flow rates achieved in the pilot test were 3 gpm and 14 gpm, respectively, with an average flow rate of approximately 5 to 8 gpm. Injection start and end times, pump pressures, flow rates, and injection volumes will be monitored and recorded at each injection location and targeted depth interval.

The pilot test demonstrated that some of the targeted zones will not allow for reagent injection. Several targeted injection intervals that straddled the base of the Surficial Aquifer and the top of the HG upper clay unit did not allow for reagent injection. Similarly, there were a few instances where reagent could not be injected into the base of the UH. It is anticipated that some of the targeted zones will be encountered where reagent injection will not be possible. The total volume of reagent specified for each of the individual injection points will be injected; however, the volume injected at a specific depth may vary depending on reagent refusal. When injection refusal is encountered at a targeted interval, the volume of reagent that was not injected will be injected into the next deeper zone. Similarly, when daylighting occurs at a particular injection zone, the injection will cease. The tool will then be moved to the next deeper injection interval and the volume of reagent remaining from the previous zone will be injected.

After completing injection at the lowest interval, a small amount (less than 25 gallons) of clean water will be injected to clear the hoses and drill string of reagent. The center point in the injection tool will then be removed to allow grout to be injected as the tool is withdrawn.

3.4 PERFORMANCE MONITORING

Performance monitoring is discussed in the Workplan. It will consist of immediate-term, short-term, mid-term and long-term performance monitoring. Performance monitoring will begin approximately 2 weeks following the completion of full-scale treatment and will continue for up to 5 years as detailed in the Workplan. DNAPL gauging will be performed in all TIPs and monitoring/recovery wells in the former Process Area. DNAPL recovery will be performed in all TIPs and recovery wells with recoverable

DNAPL on a biweekly basis. The frequency of DNAPL recovery will be evaluated after the first 3 months and the frequency may be reduced to once every 4 weeks for select wells.

Groundwater sampling will be performed in existing UIC, ZOD and performance monitoring wells located downgradient of the ISGS treatment area (Figures 2-10 and 3-4). The proposed monitoring well sampling and frequency is discussed in the Workplan.

Post-treatment geologic cores will be collected approximately 6 months following completion of reagent injection, as discussed in the Workplan. The number and location of post-treatment cores will be determined based on a combination of pre-treatment characterization and post-treatment DNAPL recovery data. Implementation will commence upon EPA approval of the proposed cores.

Aquifer testing will be performed to evaluate reduction in permeability approximately 6 to 9 months following full-scale implementation. The Workplan describes the approach to post ISGS testing. A multiple well pumping test will be performed at Surficial Aquifer recovery well M-40BE, with monitoring in observation wells PW-1 and OW-1. Slug tests will be performed in the same Surficial Aquifer and UH recovery wells tested prior to the ISGS injections and described in Section 2.2 of this report.

3.5 ZONE-OF-DISCHARGE

As discussed in Section 2.5, ZOD monitoring will occur after the full-scale demonstration ISGS injections are completed, as required by the FDEP. The monitoring wells will be as shown on Figure 3-5.

4.0 **REFERENCES**

Adventus Americas, Inc. 2004. Final Report – Engineering Optimization Tests for ISBS Technology, Koppers Inc. Site, Gainesville, Florida. November 4, 2004. Project number AAI4-043.

Adventus, 2008. Adventus Americas, Inc., Phase I ISBS Field Pilot Study Report, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida, February 5, 2008.

Adventus, 2009. Adventus Americas, Inc., Final Report ISBS Pilot Study – Field Performance Assessment, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida, January 30, 2009.

C Tech Development Corporation, 2010. EVS/MVS Help Version 9.83, online, accessed September 24, 2013.

EPA, 2014, Letter correspondence, March 18, 2014.

GeoSys, 2000, Update of the Geology in the Murphree Well Field Area, prepared for Gainesville Regional Utilities, April, 2000.

GeoTrans, 2004a, Data Report for Additional Investigation of Hawthorn Group DNAPL Source Evaluation for the Koppers Industries Property, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida, September, 2004.

GeoTrans 2004b, Addendum 6: Groundwater Flow and Transport Model, Draft Report, Koppers, Inc. Site, Gainesville, Florida, October, 2004.

GeoTrans, 2005, Addendum to the Floridan Aquifer Monitoring Program, Supplemental Upper Floridan Aquifer Monitoring Well Installation, Koppers, Inc. Site, Gainesville, Florida, February 28, 2005.

GeoTrans, 2009, Supplemental 2009 Hawthorn Group Investigation and Monitoring Well Installation Report, Koppers Inc. Site, Gainesville, Florida, August 14, 2009.

Tetra Tech, 2013. Former Process Area In-Situ Geochemical Stabilization Remediation Demonstration Project: Phase I Characterization Former Cabot Carbon/Koppers Inc. Site, Gainesville, Florida, December 9, 2013.

Tetra Tech, 2013. Remedial Design Work Plan, Cabot/Koppers Superfund Site, Operable Units Two through Five (Koppers), Gainesville, Florida, EPA ID: FLD980709356, Version 2, December 9, 2013.

Tetra Tech GEO, 2012. Former Process Area In-Situ Geochemical Stabilization Remediation Demonstration Project Workplan for Hawthorn Group Deposits, Former Koppers Inc. Site, Gainesville, Florida, revised February 14, 2012. TRC, 1999, Revised Supplemental Feasibility Study Volumes 1 and 2, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida, September 1999.

TRC, 2003. TRC Environmental Solutions, Inc., Addendum Hawthorn Group Field Investigation Report, Cabot Carbon/Koppers Superfund Site, Gainesville, FL, August 2003.

FIGURES

GAINESVILLEVISGS_PROCESS_AREA_REMEDIATION\CAD\DWG_AUTOCAD_FILES_10-7-13_FROM_STERLING\1-2.DWG

T:\Gainesville\ISGS_Process Area Remediation\Upper Hawthorn\Pilot Test\Field Forms and Maps\Fig 2-2 Inj Point Locations.dwg

T:\Gainesville\ISGS_Process Area Remediation\Upper Hawthorn\Pilot Test\Field Forms and Maps\Fig 2-7 Core Locations.dwg

1. ISGS Reagent adjacent to and surrounding DNAPL blebs in split core.

2. DNAPL blebs in left half of core after neutralization of ISGS reagent. Unchanged right half of core.

TITLE: PHOTOGRAPHS OF POST-INJECTION TREATED CORE				
LOCATION: Cabot Carbon/Koppers Superfund Site Gainesville, Florida				
	· · · · · · · · · · · · · · · · · · ·	APPROVED	JE	FIGURE
-	TETRA TECH	DRAFTED	LD	• •
		PROJECT #	117-2201329	2-8
		DATE	8-12-14	

Targeted ISGS Treatment

Explanation

Distance represents coordinate spacing in State Plane Florida 0903 Northern Zone (1983, US survey ft)

ISGS injection intervalsNAPL Impacts

TITLE: THREE-DIMENSIONAL DISTRIBUTION OF DNAPL IMPACTS AND TA	RGETED INJECTION ZONES
---	-------------------------------

LOCATION:	Cabot Carbon/Koppers Superfund Site, Gainesville, Florida			
		APPROVED	JE	FIGURE
	TETRA TECH	DRAFTED	AW	2.4
		PROJECT #	117-2201329	3-1
		DATE	10/30/14	

t:\gainesville\isgs_process area remediation\cad\pilot test rpt\figure 3-2_all labeled.dwg

Explanation

Distance represents coordinate spacing in State Plane Florida 0903 Northern Zone (1983, US survey ft)

ISGS injection intervals on section line.
Offset injection intervals north and south of line.
Note: injection radius shown is 15 feet.

NAPL Impacts

Explanation

Distance represents coordinate spacing in State Plane Florida 0903 Northern Zone (1983, US survey ft)

ISGS injection intervals on section line. Offset injection intervals north and south of line. Note: injection radius shown is 15 feet.

NAPL Impacts

251,800

251,900

252,000

252,200

252,300

Distance (ft)

Explanation

Distance represents coordinate spacing in State Plane Florida 0903 Northern Zone (1983, US survey ft)

ISGS injection intervals on section line. NAPL Impacts

TITLE: CROSS-SECTION F'-F WITH FULL SCALE ISGS INJECTION INTERVALS				
LOCATION: Cabot Carbon/Koppers Superfund Site, Gainesville, Florida				
	APPROVED	JE	FIGURE	
	DRAFTED	AW		
	PROJECT #	117-2201329	3-3 C	
	DATE	10/30/14		

Distance (ft)

Distance represents coordinate spacing in State Plane Florida 0903 Northern Zone (1983, US survey ft)

ISGS injection intervals on section line. NAPL Impacts

TITLE:	CROSS-SECTION G'-G WITH FULL-SCALE ISGS INJECTION INTERVALS			
LOCATION:	LOCATION: Cabot Carbon/Koppers Superfund Site, Gainesville, Florida			
	$\overline{}$	APPROVED	JE	FIGURE
	TL TETRA TECH	DRAFTED	AW	
		PROJECT #	117-2201329	3-3d
		DATE	10/30/14	

TABLES

Task	Start Date	End Date
Initial Phase 1 Characterization	7/23/2012	8/29/2012
DNAPL Recovery	11/5/2012	ongoing
Additional Phase 1 Characterization and Well Installation	4/1/2013	4/16/2013
Aquifer Tests	3/17/2014	3/21/2014
Hydraulic Profile Tool Tests	3/24/2014	3/25/2014
ISGS Pilot Test Injections	3/25/2014	4/11/2014
Post-ISGS Radius of Influence Cores	6/23/2014	6/26/2014

Table 1-1. Summary of the Former Process Area Pilot Test Dates
Sample ID	Geologic Unit	Area/ Sample Description	Initial KMnO4 (g/L)	Final KMnO4 (g/L)	pSOD (g KMnO4/kg dry soil)	Average pSOD (g KMnO4/kg dry soil)
1	N/A	Blank	20	20.01	N/A	N/A
11	Surficial	Drawn Ameri	20	18.55	2.9	
12	Surficial	Surficial Clean	20	18.61	2.77	2.90
13	Surficial	Sumeral Clean	20	18.48	3.04	
14	Surficial		20	8.09	23.79	
15	15 Surficial	Surficial NA D	20	7.83	24.33	24.24
16	Surficial	Sufficial NAPL	20	7.69	24.59	
17	Surficial	North Lagoan/	20	5.91	28.2	
18	Surficial Surfi	North Lagoon/	20	6.71	26.57	26.68
19	Surficial	Sufficial NAPL	20	7.34	25.27	
2	Hawthorn	Drocoss Area/	20	18.75	2.5	
3	Hawthorn	Howthern Clean	20	18.68	2.64	2.59
4	Hawthorn	Hawmonn Clean	20	18.68	2.64	
5	Hawthorn	Due sees Auss/	20	1.29	37.38	
6	Hawthorn	Howthorn NA D	20	3.32	33.35	34.77
7	Hawthorn	Hawulotti NAFL	20	3.23	33.57	
8	Hawthorn	North Lagoon &	20	0	40.02	
9	Hawthorn	Drip Track/	20	0.13	39.76	39.83
10	Hawthorn	Hawthorn NAPL	20	0.17	39.7	7

 Table 2-1.
 Summary of pSOD Results

N/A = Not Applicable

pSOD = Permanganate Soil Oxidant Demand

Aqueous phase volume = 0.1 L

Mass dry soil weight = 0.05 kg

		Zone V	olume Inject	ted (gal)	Total Volume Injected (gal)				
Injection Point	Hydrogeologic Unit	Target	Actual	Difference	Target	Actual	Difference		
DT1	Surficial	944	787	-157	2 554	2 553	1		
PII	Upper Hawthorn	1,610	1,766	156	2,334	2,333	-1		
DTO	Surficial	888	766	-122	2 4 4 2	2 4 4 2	0		
F12	Upper Hawthorn	1,555	1,677	122	2,445	2,445	0		
DT 2	Surficial	222	222	0	1.055	1.054	1		
F15	Upper Hawthorn	833	832	-1	1,055	1,034	-1		
	Surficial	0	0	0	044	0	044		
P14	Upper Hawthorn	944	0	-944	944	0	-944		
DTF5	Surficial	944	328	-616	0.000	0.000	0		
P15	Upper Hawthorn	1,388	2,004	616	2,332	2,332	0		
DTT/	Surficial	500	347	-153	1.055	020	-216		
P16	Upper Hawthorn	555	492	-63	1,055	839			
DT7	Surficial	0	0	0	000	1.015	216		
P17	Upper Hawthorn	999	1,215	216	999	1,215			
PT8 ¹	Surficial	333	0	-333	1.022	0	1.022		
	Upper Hawthorn	1,499	0	-1,499	1,832	0	-1,032		
DTO	Surficial	333	256	-77	1.000	1.000	0		
P19	Upper Hawthorn	1,555	1,632	77	1,888	1,888			
	Surficial	56	0	-56	1 1 1 0	1 1 1 0	0		
P110	Upper Hawthorn	1,055	1,110	55	1,110	1,110	U		
DTI 1	Surficial	111	0	-111	1.077	1.07(-1		
PIII	Upper Hawthorn	1,166	1,276	110	1,277	1,276			
$\mathbf{DT} 1 2^2$	Surficial	0	610	610	0	1.022	1,832		
PT12 ⁻	Upper Hawthorn	0	1,222	1,222	0	1,832			
DT1 2 ²	Surficial	0	504	504	0	1 0 2 1	1 021		
PT13 ⁻	Upper Hawthorn	0	1,327	1,327	0	1,831	1,831		
$\mathbf{DT}14^2$	Surficial	0	262	262	0	505	505		
P114	Upper Hawthorn	0	333	333	0	393	595		
440NU290E finet	Surficial	0	0	0	444	444	0		
440N/380E - 11rst	Upper Hawthorn	444	444	0	444	444	0		
44011/2005	Surficial	0	0	0	111	100	244		
44UN/38UE - second	Upper Hawthorn	444	100	-344	444	100	-344		
	Surficial	0	0	0	111	0	111		
420N/345E	Upper Hawthorn	444	0	-444	444	U	-444		
Totals					18,821	19,512	691		

Table 2-2. Comparison of Targeted and Actual Injection Volumes For Pilot Test

¹ Injection Point not used
² New Injection Points added in field
³ Test stopped in field at 100 gallons; injection rate unchanged from 3/28/2014

Pumping	Observation	Distance from	Analysis	Transmissivity (ft²/day)	Hydraulic Conductivity ⁽¹⁾ (ft/day)		
Well	Well	Well (ft)	Method	Well Result	Well Result	Average	
	M-40BE	0 Theis		16.2	0.9	N/A	
M-40BF	PW-1	17.3	Theis	183.3	10.5	11.97	
	OW-1	22.5	Theis	235.5	13.5		
	OW-2 ⁽²⁾	41.1	N/A	N/A	N/A	N/A	
	M-41BE ⁽²⁾	53.6	N/A	N/A	N/A	N/A	
	M-42BE ⁽²⁾	60.7	N/A	N/A	N/A	N/A	

 Table 2-3. Pumping Test Analysis Results.

⁽¹⁾ Average Surficial Aquifer Saturated Thickness = 17.5 feet

⁽²⁾ No hydraulic response observed

Geologic Unit	Well Name	Date	Test Type	Analysis Method	Hydraulic Conductivity (feet/day)		
					Test	Average	
	M 29DE	2/19/2014	Falling Head	Bouwer-Rice	45.95	44.60	
	WI-JODE	3/18/2014	Rising Head	Bouwer-Rice	43.42	44.69	
	M 20DE	2/19/2014	Falling Head	Bouwer-Rice	1.52	1.51	
	M-39DE	3/18/2014	Rising Head	Bouwer-Rice	1.51	1.51	
Surficial	M 40DE	2/19/2014	Falling Head	Bouwer-Rice	4.39	5.13	
Surficial	WI-40DE	3/18/2014	Rising Head	Bouwer-Rice	5.88		
	M 41DE	2/19/2014	Falling Head	Bouwer-Rice	19.30	18 44	
	WI-41DE	3/18/2014	Rising Head	Bouwer-Rice	17.58	10.44	
	MADE	2/19/2014	Falling Head	Bouwer-Rice	3.41	3.04	
	WI-42DE	5/16/2014	Rising Head	Bouwer-Rice	4.48	5.74	
	ИС 225	3/20/2014-	Falling Head	Bouwer-Rice	1.26	1 10	
	ПО-525	3/21/2014	Rising Head	Bouwer-Rice	1.13	1.19	
	UC 27SE	2/10/2014	Falling Head	Bouwer-Rice	1.16	1.24	
	П О- 3/5Е	5/19/2014	Rising Head	Bouwer-Rice	1.33	1.24	
IIII	UC 29SE	2/10/2014	Falling Head	Bouwer-Rice	0.65	0.62	
UH	NO-30SE	5/19/2014	Rising Head	Bouwer-Rice	0.58	0.02	
	HG 208E	3/20/2014-	Falling Head	Bouwer-Rice	0.43	0.49	
	110-375E	3/21/2014	Rising Head	Bouwer-Rice	0.52	0.48	
	HG AOSE	3/10/2014	Falling Head	Bouwer-Rice	0.29	0.29	
	110-403E	5/17/2014	Rising Head	N/A	N/A		

Table 2-4. Slug-Test Analysis Results

N/A = Not Applicable

Table 2-5a. Pre- and Post-ISGS pilot-test water-quality results for Surficial Aquifer UIC monitoring wells.

		Well ID	M-14 ⁽⁵⁾	M-25A	M-25A	M-25A	M-25B	M-25B	M-25B	M-36B	M-36B	M-36B
		UIC Well Type	Background	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance
		Sample Date	1/16/2008 SMD	3/18/2014	6/4/2014 SMD	8/17/2014 SMD	3/18/2014 SMD	6/4/2014 SMD	8/17/2014 SMD	3/18/2014	6/4/2014 SMD	8/19/2014 SMD
		Sample Type	SMP	SMP	SMP	SMP	SMP	SMP	SMP	SMP	SMP	SMP
	Federal	Florida GCTL ⁽²⁾										
Analyte	MCL											
Total Metals (µg/L)												
ALUMINUM	50 ⁽¹⁾	$200^{(4)}$	222	192	153	30 I	39	97 I	122	96	812	324
ANTIMONY	6	6 ⁽³⁾	< 10	1.2	0.450 J	0.440 I	< 0.160	< 0.160	< 0.160	< 0.160	0.810 J	0.450 I
ARSENIC	10	10 ⁽³⁾	6	1.2	4.1	6.3	4.0	3.6	2.4	0.78	1,570	663
BERYLLIUM	4	4 ⁽³⁾	< 4	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032
CADMIUM	5	5 ⁽³⁾	< 5	< 0.090	< 0.090	< 0.09	< 0.090	0.150 J	< 0.09	< 0.090	0.280 J	< 0.09
CHLORIDE	250,000 ⁽¹⁾	250,000 ⁽⁴⁾	6,100	1,300	6,000	3,500	26,700	20,300	11,900	7,800	17,800	17,100
CHROMIUM	100	100 ⁽³⁾	< 5	< 0.18	< 0.18	< 0.18	0.30	0.36 J	0.39 I	< 0.18	0.52 J	0.43 I
IRON	300 ⁽¹⁾	300 ⁽⁴⁾	428	265	3,900	3,520	286	247	266	909	1,660	1,560
LEAD	15	15 ⁽³⁾	< 3	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	0.56	0.16 I
LITHIUM	-	140 ⁽²⁾	NA	< 10.0	< 10	< 10	< 10.0	< 10	< 10	< 10.0	< 10	< 10
MANGANESE	50 ⁽¹⁾	50 ⁽⁴⁾	2.1	0.5	12	7.6	63	51	58	27	19	20
MERCURY	2	2 ⁽³⁾	< 0.2	< 0.012	0.013 I	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
MOLYBDENUM	-	35 ⁽²⁾	NA	2.80	1.6 J	1.70 I	< 0.28	< 0.28	< 0.28	2.30	6.30	5.80
SELENIUM	50	50 ⁽³⁾	< 5	< 1.1	< 1.1	1.2 I	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
SODIUM	-	$160,000^{(3)}$	3,350	1,610	4,510	3,340	17,100	16,200	13,600	6,740	33,000	30,500
THALLIUM	2	2 ⁽³⁾	< 10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dissolved Metals (µg/L)												
ALUMINUM	50 ⁽¹⁾	$200^{(4)}$	NA	112	112	68 I	95	98 I	81 I	110	74 I	65 I
ANTIMONY	6	6 ⁽³⁾	NA	1.6	0.370 I	0.620 I	< 0.160	< 0.160	< 0.160	< 0.160	0.750 J	0.470 I
ARSENIC	10	10 ⁽³⁾	NA	0.51	4.6	5.5	3.2	3.9	2.1	< 0.42	1,600	663
BERYLLIUM	4	4 ⁽³⁾	NA	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032
CADMIUM	5	5 ⁽³⁾	NA	< 0.090	< 0.090	< 0.09	< 0.090	< 0.090	< 0.09	< 0.090	< 0.090	< 0.09
CHROMIUM	100	100 ⁽³⁾	NA	< 0.18	< 0.18	< 0.18	0.45	0.35 I	0.36 I	< 0.18	0.37 I	0.29 I
IRON	300 ⁽¹⁾	300 ⁽⁴⁾	NA	< 2.5	4,510	3,250	245	248	281	753	1,560	1,500
LEAD	15	15 ⁽³⁾	NA	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12
LITHIUM	-	$140^{(2)}$	NA	NA	< 10	< 10	NA	< 10	< 10	NA	< 10	< 10
MANGANESE	50 ⁽¹⁾	50 ⁽⁴⁾	NA	0.4	13	7.9	63	50	59	27	18	20
MERCURY	2	2 ⁽³⁾	NA	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	0.019 I	< 0.012	< 0.012	< 0.012
MOLYBDENUM	-	35 ⁽²⁾	NA	2.70	1.4 I	1.80 I	< 0.28	< 0.28	0.41 I	2.20	5.90	5.20
SELENIUM	50	50 ⁽³⁾	NA	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
SODIUM	-	160,000 ⁽³⁾	NA	1,590	4,460	3,280	17,500	16,400	14,000	6,770	30,400	30,900
THALLIUM	2	2 ⁽³⁾	NA	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Other Parameters												
TOTAL DISSOLVED SOLIDS (µg/L)	500,000 ⁽¹⁾	500,000 ⁽⁴⁾	60,200	163,000	231,000	194,000	196,000	177,000	180,000	163,000	197,000	188,000
pH (S.U.)	6.5 - 8.5 ⁽¹⁾	6.5 - 8.5 ⁽⁴⁾	4.7	7.45	6.97	7.43	7.00	6.88	7.24	7.83	6.63	6.61
COLOR (color units)	15 ⁽¹⁾	15 ⁽⁴⁾	NA	< 5.0	10	< 5.0	10.0	15.0	15.0	10.0	10.0	15.0

Notes:

I = The reported value is between the laboratory method and practical quantitation limit.

J = Estimated value.

NA = Not analyzed.

Concentration exceeds Florida GCTL

Concentration exceeds Federal MCL

 $^{(1)}\mbox{Federal MCL}$ is the Secondary Drinking Water Standard

 $^{\left(2\right) }$ Florida Groundwater Cleanup Target Levels (GCTLs) are

guidelines as set forth in 62-777 Florida Administrative Code (F.A.C.)

⁽³⁾ Florida GCTL is the Primary Drinking Water Standard as set forth in 62-550 F.A.C.

⁽⁴⁾ Florida GCTL is the Secondary Drinking Water Standard as set forth in 62-550 F.A.C.

⁽⁵⁾ As reported in ISBS Pilot Study Report, January 30, 2009, Adventus

 Table 2-5b. Pre- and Post-ISGS pilot-test injections water-quality results for Upper Hawthorn UIC monitoring wells.

		Well ID	HG-22D	HG-22D	HG-22D	HG-24S	HG-24S	HG-24S	HG-33S	HG-33S	HG-33S	HG-34S	HG-34S	
		UIC Well Type Sample Date Sample Type	Background 3/19/2014 SMP	Background 6/5/2014 SMP	Background 8/17/2014 SMP	Background 3/18/2014 SMP	Background 6/4/2014 SMP	Background 8/17/2014 SMP	Compliance 3/19/2014 SMP	Compliance 6/5/2014 SMP	Compliance 8/20/2014 SMP	Compliance 3/19/2014 SMP	Compliance 6/5/2014 SMP	
Analyte	Federal MCL	Florida GCTL ⁽²⁾												
Total Metals (µg/L)						u						u.		
ALUMINUM	50 ⁽¹⁾	200 ⁽⁴⁾	165	215	40 I	68	201	240	304	156	72 I	478	611	Γ
ANTIMONY	6	6 ⁽³⁾	0.470	0.920 I	0.290 I	< 0.160	< 0.160	< 0.160	< 0.160	< 0.160	< 0.160	< 0.160	0.180 I	Γ
ARSENIC	10	10 ⁽³⁾	0.88	< 0.42	0.84 I	2.7	2.5	2.7	0.78	< 0.42	< 0.42	0.69	< 0.42	
BERYLLIUM	4	4 ⁽³⁾	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	
CADMIUM	5	5 ⁽³⁾	15	28	2.0	0.090	0.280 J	0.18 I	< 0.090	< 0.090	< 0.09	< 0.090	< 0.090	
CHLORIDE	250,000 ⁽¹⁾	250,000 ⁽⁴⁾	3,100	2,200	5,700	9,100	9,100	9,200	7,800	7,900	8,000	28,500	24,500	Γ
CHROMIUM	100	100 ⁽³⁾	11	1.2	5.2	< 0.18	0.38 J	0.48 I	0.32	< 0.18	< 0.18	< 0.18	0.2	
IRON	300 ⁽¹⁾	300 ⁽⁴⁾	927	450	796	830	1,120	961	999	892	1,010	18	282	
LEAD	15	15 ⁽³⁾	< 0.12	0.32 I	0.16 I	< 0.12	0.6	0.56	< 0.12	0.12 I	< 0.12	< 0.12	< 0.12	Γ
LITHIUM	-	140 ⁽²⁾	< 10.0	< 10	< 10	< 10.0	< 10	< 10	< 10	< 10	< 10	< 10.0	< 10	
MANGANESE	50 ⁽¹⁾	50 ⁽⁴⁾	16	6.6	28	26	34	33	28	28	27	0.6	11	
MERCURY	2	2 ⁽³⁾	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	
MOLYBDENUM	-	35 ⁽²⁾	2.10	2.40	5.60	5.70	5.80	5.20	1.80	2.70	1.60 I	7.50	6.00	
SELENIUM	50	50 ⁽³⁾	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	
SODIUM	-	160,000 ⁽³⁾	2,810	1,680	7,760	5,420	5,420	5,180	6,640	6,530	6,790	11,000	8,740	
THALLIUM	2	2 ⁽³⁾	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Dissolved Metals (µg/L)								-						
ALUMINUM	50 ⁽¹⁾	200 ⁽⁴⁾	120	61 I	73 I	96	76 I	51 I	99	32 I	69 I	470	304	
ANTIMONY	6	6 ⁽³⁾	0.380	0.820 I	0.280 I	< 0.160	< 0.160	< 0.160	< 0.160	< 0.160	< 0.160	0.250	0.340 I	
ARSENIC	10	10 ⁽³⁾	0.62	0.42	0.50 I	2.4	2.5	2.6	< 0.42	< 0.42	0.48 I	0.53	0.52 I	
BERYLLIUM	4	4 ⁽³⁾	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	
CADMIUM	5	5 ⁽³⁾	0.570	3.900	< 0.09	< 0.090	< 0.090	< 0.09	< 0.090	< 0.090	< 0.09	< 0.090	< 0.090	
CHROMIUM	100	100 ⁽³⁾	0.55	< 0.18	1.3	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	
IRON	300 ⁽¹⁾	300 ⁽⁴⁾	340	160	192	744	952	690	887	772	799	5.4	52 I	
LEAD	15	15 ⁽³⁾	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	0.17 I	< 0.12	< 0.12	0.12	
LITHIUM	-	140 ⁽²⁾	NA	< 10	< 10	NA	< 10	< 10	NA	< 10	< 10	NA	< 10	ſ
MANGANESE	50 ⁽¹⁾	50 ⁽⁴⁾	11	4.6	27	27	32	31	27	26	27	0.3	11	
MERCURY	2	2 ⁽³⁾	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	
MOLYBDENUM	-	35 ⁽²⁾	1.80	2.0 I	5.50	5.80	6.10	5.00	1.90	2.80	1.60 I	8.00	5.80	ſ
SELENIUM	50	50 ⁽³⁾	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	
SODIUM	-	160,000 ⁽³⁾	2,740	1,780	7,410	5,490	5,120	4,950	6,720	6,760	6,370	11,000	8,910	
THALLIUM	2	2 ⁽³⁾	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	Γ
Other Parameters														
TOTAL DISSOLVED SOLIDS (µg/L)	500,000 ⁽¹⁾	500,000 ⁽⁴⁾	154,000	133,000	177,000	132,000	121,000	107,000	162,000	162,000	169,000	119,000	153,000	Γ
pH (S.U.)	6.5 - 8.5 ⁽¹⁾	6.5 - 8.5 ⁽⁴⁾	7.62	7.43	8.18	7.68	7.71	7.99	7.86	7.77	7.73	8.92	9.27	
COLOR (color units)	15 ⁽¹⁾	15 ⁽⁴⁾	30.0	25.0	5.0	< 5.0	< 5.0	< 5.0	5.0	10.0	10.0	5.0	15.0	

Notes:

I = The reported value is between the laboratory method and practical quantitation limit.

J = Estimated value.

NA = Not analyzed.

Concentration exceeds Florida GCTL

Concentration exceeds Federal MCL

⁽¹⁾ Federal MCL is the Secondary Drinking Water Standard

⁽²⁾ Florida Groundwater Cleanup Target Levels (GCTLs) are

guidelines as set forth in 62-777 Florida Administrative Code (F.A.C.)

⁽³⁾ Florida GCTL is the Primary Drinking Water Standard as set forth in 62-550 F.A.C.

⁽⁴⁾ Florida GCTL is the Secondary Drinking Water Standard as set forth in 62-550 F.A.C.

HG-34S
ompliance
8/21/2014
SMP
673
< 0.160
0.44 I
< 0.032
< 0.09
35,400
< 0.18
317
< 0.12
< 10
12
< 0.012
3.70
< 1.1
13,700
< 0.05
633
< 0.160
0.70 I
< 0.032
< 0.09
< 0.18
84 I
< 0.12
< 10
8.6
< 0.012
3.40
< 1.1
14,300
< 0.05
131,000
9.24
10.0

APPENDIX A

AQUIFER TESTING RESULTS

APPENDIX B

HYDRAULIC PROFILE TOOL RESULTS

APPENDIX C

INJECTION VOLUMES AND FLOW RATES

TITLE: REAGENT FLOW RATE FOR PT-2 WITH AVERAGE AND MAXIMUM INJECTION PRESSURES					
LOCATION: Cabot Carbon/Koppers Superfund Site Gainesville, Florida					
		APPROVED	JE	FIGURE	
	ETRA TECH	DRAFTED	LD		
		PROJECT #	117-2201329	∣ PT-2h	
		DATE	4-28-14		

Note: Borehole log on left is for adjacent TIP 400N/380E.

TITLE: REAGENT FLOW RATE FOR PT-5 WITH AVERAGE AND MAXIMUM INJECTION PRESSURES					
LOCATION: Cabot Carbon/Koppers Superfund Site Gainesville, Florida					
		APPROVED	JE	FIGURE	
	ETRA TECH	DRAFTED	LD		
		PROJECT #	117-2201329	PT-5h	
		DATE	4-28-14		

Note: Borehole log on left is for adjacent TIP 400N/380E.

TITLE: REAGENT VOLUME INJECTED INTO PT-11 WITH AVERAGE AND MAXIMUM INJECTION PRESSURES							
LOCATION:	LOCATION: Cabot Carbon/Koppers Superfund Site Gainesville, Florida						
		APPROVED	JE	FIGURE			
	ETRA TECH	DRAFTED	LD	l			
		PROJECT #	117-2201329	PT-11d			
		DATE	5-9-14	1			

Note: Borehole log on left is for adjacent TIP 460N/340E.

TITLE: REAGENT FLOW RATE FOR PT-11 WITH AVERAGE AND MAXIMUM INJECTION PRESSURES						
LOCATION:	CATION: Cabot Carbon/Koppers Superfund Site Gainesville, Florida					
		APPROVED	JE	FIGURE		
	EIRAIECH	DRAFTED	LD			
		PROJECT #	117-2201329	PT-11		
		DATE	5-9-14	1		

h

Note: Borehole log on left is for adjacent TIP 460N/340E.

APPENDIX D

FORMATION INJECTION-PRESSURE OBSERVATIONS

APPENDIX E

POST-INJECTION CORE LOGS

DRE LOG FORM SOIL

	Boring	ID:	7	Date: /		Casing /	110041		
	Logge	F [(<u> </u>	24/14	Core Dia. (in):	4.75/4	<u> </u>	Log Sheet of
		1 8 K	T JE	,	Time: ()70	25	Finish Time: 090	08	Core Recovery (ft): 05
1	Core Interval (feet BGS)	PID screen (ppm internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
A V	1	43	NI		Black	100%	GW	Black	Impreted Soils 0-3.5 Bgg
	2								· · · · · · · · · · · · · · · · · · ·
0-80	3						SP		
50% V Records	4 — 	1(_3				61			
	6								
	7							*	
-	8	9.0	Y			V	V SP		
1	9	12.8	Y3	100%	Brown	1057.		9-10.5	mostly reddich brown; some steel blobs; looks, reacted
L	10		¥	V		×	$-\vee$		<u> </u>

. 1

	Boring	PTC	-)	Date:	24/14	Casing / Core Dia. (in):		Core Log Sheet Z of 7	
	Logge	er(s):	J J	E O	Start Time: 70.4	5	Finish Time: 90	09 Core Recovery (ft): 10/10 - interval From 8-18	
Photos	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
YI	10	1.	Y3	1007	Reddich Bran	007	SP	Reddith Birryn - Solid color	
1 J	, 11	16.0		<i>σ</i>					
	-								
	12 —					4			
	13 —							Steel blue sheen from 12.5-13 bas - blobs of steel blue sheep	
	14				c				
	-								
<	15 —								
		Ż	Q Y 72	507	It Grey Martin	507		15.5-16 Marbled color dark grey, reddith brown Steel Hur, Shoe	0.0
	_	12,2	NI	0%	0			16th Notural Colored Sands	~(
	17 -				N//	<u>۷</u>		24	
V		12.0			Nativel	UL.			
1	18 —	1=-	NI	07	It. greyblobs	301-	SP	19-72- mort natural send mines - new blacks	
	19 -	20.3			. 09			the set of the set of the set of the set	
	0 -	44.0				1			
\sim	20		l V	U					

12

PROCESS AREA DNAPL INVESTIGATIO Beazer-Koppers, FL Project: 117-2201330

	Borin	g ID: PTC	-1	Date: 6	24/14	Casing / Core Dia. (in):		Core Log Sheet <u>3</u> of <u>7</u>
	Logg	^{jer(s):} Ki		1	Staft Time: 070	5	Finish Time: 209	Core Recovery (ft):
D.L	Core interval	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
Preto	20		N	01?	Note of with very	30%	SP	
*	21 -				01000			
	-		J]	\downarrow			
	- 22	24.1	Y	120%	Redition brown	1007		22-26 verded DNAPL? - marbled color from 22-225
	23 -	44			Steely Lloe			Solid color down to top of clay @ 26 reddish form
	-	133			Keddish brun			
	24 -							
	25 -				└── / ──			· · · · · · · · · · · · · · · · · · ·
	-							
Ċ	26 -	28	N	04	Natural	D"/r	CL	Stiff clay from 26-
	27 -		1					
\checkmark								
	28 -	44.2	Y	50%	Reddichbrown	50%	LL/SC	DEcoloration days Sundy, lawyortwas within class - Roddshow
Ì	29	56	J		glong Lawindon	1		appears to be venicited DNAPC
			N	<u>61</u>		0.7	CL 1	Mostly solid clay - mohor stringers of Reddich bown
	_ 30_			<u>l</u> dr		<u> </u>	L .¥	1 VI TROK 60 21.3, 30.5

PROCESS AREA DNAPL INVESTIGATIO PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-2201330

The .

В	Boring	D: PTC.	-1	Date:	12412	Casing / Core Dia. (in):			Core <u>5</u> of <u>7</u>
L	.oggei	r(s): K-	T/JE		Start Time: 0705		Finish Time: 809		Core Recovery (ft): 10/10
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	•
ľ	40		N	6,2	Napual	03)	<u> </u>		
	41	0.0							
						11/			
	42 —	7013	NZ		RILLE	107	(-1)		
		2000			Mary Brown	1005			
-	43		N		Natural	(2°2	SM		
		6.6					Ī		
	44							49-45	5 - Nº diaco
	45				<u>ل</u>	· · ·			
					Marblel	302			
	46 —	-			<u> </u>				
8		20		16			+ /		•
-	47 —					×			
			-		Natural 1		+ +	20 10	
-	48 —	7.77	1 X	× 57	Mallalt	507	5 M	48-	57- dis lord - fillow has the the
		000		<u> </u>	discolored				Cirenate Cirenate
	49 —	102				1002			49-50 coloris colid, NARL

	Boring I	DEPTC	,-1	Date: 6/	24/14	Casing / Core Dia. (in):	4.75/4"	Core Log Sheet <u>7</u> of <u>7</u>	
	Logger	^{(s):} K	٢	/	Start Time: 705		Finish/ 000 Time: 000	Core Recovery (ft): 65	
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
5	60	0,0	N	07	Natural	07	SM	No discourtion all ratin	
V	61 —								
	62							*	
	63								
	64								
	65 —	U	V		4	Y		TD = 65' bas	
	66 —								
	67								
	68 —							ст. Т.	
	69 —								
	70								

	SOI Boring	g ID:	R R	E LO	DG	FOF	RM Dep	oth Int	PRO Beaze erval (CESS A <u>r-Koppe</u> ft bgs):	AREA ers, FL	DNAP Teti Core	L INVE ra Tech Run N	ESTIG, 117 umber:	AT 7-2201	UPF 336	PER HA	WTHORI	N GROUP <u> - CAscade</u> Core Length (ft):		TECH
	Core	Interv _ of _		7 SF	eet		Ful	l lengt	h Cori 90	ng Time	(min):	Logg	er(s):	harl TI	LAMPE	9n	Start	<u>123/14</u> [500	Finish (65)	Core Recovery	/ " / (ft):
1	 Core Interval (feet BGS) 	Drilling Rates PID screen (ppm)	internal core	Odor 1	Exte	ant of APL 3 4 5	IS Rea Pre (Y	GGS agent esent 7/N)		APL REG (%)	Color	, Hue, C (wet)	hroma	% Gravel	% Sand	%Silt	% Clay	USCS Classification		Notes:	
J.	1				X	1)													
	2					X) i [1	0 .7. D'(,								GC GC	₩.		
5/8/	4				X				(37.								21			
	5				X													SP			
	6				X													SP			
~	7 •8				X		13		•									Sĩ		20WV	i
	9				X		K			1. D.L.		Dury Lidnt						SP GW ZP	8.5-DullRed mix	el gruel à fires	
V	10		_		\wedge			\mathbf{V}	•	/		J						1			

-

Borin	ig IE): P	TC-	2	- 4		Depth I	nterval (ft bgs):		Core Run N	lumbei	:		Date	123/14	Core Length (ft): Casing/Core Dia. (in):
5	_of				yten	of	Full len	oth Coring Time	e (min):	Logger(s):				Start Time:		Finish Core Recovery (ft):
& Core Interval (feet BGS)	Drilling Rates	PID screen (ppm internal core	Odor	1 2	NAP 2 3	4 5	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color,	Hue, Chroma (wet)	% Gravel	% Sand	%Silt	% Clay	USCS Classification	Notes:
41																40-44 - No discoloration
12	_															
3																
4							۲ ، ۱ .	55%				92		< 10	Snoke	
5							Y P	35%			• • • • • • • •				Jupe	35% discolution 44-45
6																4/5-4-1000 45-40.5
7							V ?	60%								47-48 All Lal Dill a Will
3							V 7	100% 40%							SM	ellite bar a 111 by his initial
,		20			_		¥7	11.011							<u> </u>	Lesting the practice algebration 401

SOII	CURE	106	FORM
JOIL	CONL	LOG	

-

dia.

*	Bori	ng ID	PT	-7-	-2	•		Depth	Inte	erval (ft bgs):		Core Run N	lumber		<u> </u>	Date:	172/44	Core Length (ft):	Casing/Core Dia. (in):
	Cor	e Inter 2_ of		og S _7	hee	t		Full le	ngtl	h Coring Time 今前	(min):	Logger(s):	KT	nonys	จา	Start Time:	<u>~/14</u>	Finish Time:	Core Recovery (ft):
and the second	Core Interval (feet BGS)	Drilling Rates	ru screen (ppm) internal core	Odor	Ex N 1 2	tent IAPL	of - 4 5	ISGS Reage Prese (Y/N	S int nt)	NAPL Treated (%)	Color,	Hue, Chroma (wet)	% Gravel	% Sand	%Silt	% Clay	USCS Classification		Notes:
ĺ	50		206					42		80%							SM	Marble discoloration	G~
J	51 -							Y2		801							CN		
	52 -		<u> </u> e														SPI		
								4	3	557.									
	53 —	•	370					V7.		100%									
	54 —							Y7		201									
	55		30			****		12		20%									
6	56 —							I		< 31.									
t l	57 —	1	.B							0%								No Discolo	ration 56-65'
	58 —		.3					+					-					Did wors	et day layer a
	59 —	Ì	0.2														24 k		
	60							V		V							V		

Bori		י. <u>ר</u>	TC	-2	-	De	pth Int	erval (ft bg	s):	Core Run N	lumber	:		Date:	23/14	Core Length (ft):	Casing/Core Dia. (in):
Core	e Inte /o	erval	Log S 2	heet		Fu	II lengt	h Coring Ti	me (min):	Logger(s):	Kr			Start Time:	211	Finish Time:	Core Recovery (ft):
8 Core Interval (feet BGS)	Drilling Rates	PID screen (ppm) internal core	Odor	1 2	APL	- 18 Re Pr (` 5	SGS agent esent r/N)	NAPL Treated (%	6) Color,	Hue, Chroma (wet)	% Gravel	% Sand	%Silt	% Clay	USCS Classification		Notes:
61				-		/									SM		
·		3.4					$\overline{\mathcal{N}}$										
62 —		<u> </u> ,)															
63 —		0,0		_			$\left \right $		_								
64 —		<u>م م</u>															
65 		0.0				1	J									TD = (5)	
66 —																	
67 —																	
68																	
3 9 —				+													

	Borina	ID:		IDate:	7 7			
	j	PTC	-3		1210/14		4.75 "/4	Core 7
	Logge				1 Stort	<u> Core Dia. (in):</u>		Log Sheet _ L of _/
	20990	^{((0).} K	٢		Time: 4Ar	2		Core
			<u> </u>	T			11me. / [$\frac{1}{2} = \frac{1}{12} \frac{1}{2} \frac$
	_	dd						
) S S S	an (ISGS	1				
	l të ig	alce	Reagent	NAPL	Color, Hue,			
	et	l s ü	Present	Treated	Chroma	Percent	USCS	
	ರೆಕ್		(Y/N)	(%)	(wet)	Discoloration	Classification	n Notes:
	0			$\overline{\Omega}$	1.0			
	0.00		1V		NN_			10 - A No Recovery
1							l y'	
	1			1-1	tot.			
	-				15hd	-100-2C		
					11/2		NR	
	2 —	+			<u> </u>		- J	
					Hack	1003	Gu	
al a				+ +	- Mont	1001		
1	3 —						I DR	
							1	
	1			+ + -		¥ (
					Dark Back	536		
	-							
1.	-							
V				1.).				
\sim	5 —		- ¥	₩	₩ .	- V	V/	
\bigcirc					Natival	(\mathcal{T})	SP	
. 1								
	6 —							
1								
				t - t	┠───┟──┤			
	7							
	-			┠──┠───				
						ا رل		
	8							
	10							
	9 —				┟╌━──┟───┟			
L	10		\underline{v}	V		\checkmark		
					9 E C C	14) Ja(-1)		

PROCESS AREA DNAPL INVESTIGATIO Beazer-Koppers, FL Project: 117-2201355

Boring I	D: PTC.	-3	Date:	26/14	Casing / Core Dia. (in):	4.75"/4	h Core Log Sheet Z of 7
Logger	r(s): Kr	-	1	Start Time: 1400		Finish Time:)44	Core Recovery (ft): 1/10
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
10		Y	Loo?	Rusty Red	002	SP	100se Sand - Rusty Red - Mast Percetive to Sprany - Fizzes & color chone
11				Marble red		Sc	Sitty church Sid, medium dense, Mubled color mostly Shades of Kith reddille Louis - Some shoes blobs helpis
12 —							of sheen metallic grey ; Not very reactive to Sprzy - Minor fizz
 13				Dark Reduct		SP	Loose Sand - Dark reddigh brown
				Brown			All reagent impriced - Not very reactive to Sprzy - Million fizz
 15							
							- Minor fizz + Slight color Change 10-10 Shows chrons back at reaction with
							The Spring (Neutralization Spring) - Rusty Re
18		4?	503?	Notwal/	501		CONT DUNNS MOST FEACTION
19 —				jimpea			· · · · · · · · · · · · · · · · · · ·
20							

	вогіпд	PTC	-3	Date:	126/14	Casing /	475"/	Core 2 7
	Logge	r(s):			Start III or	Core Dia. (in):	Finish,	Log Sheet of
					Time: 1900		Time: 1945	Recovery (ft): 10/10
	i Interval BGS)	screen (ppr nal core	ISGS Reagent	NAPL	Color, Hue,			
	Core (feet	PID :	(Y/N)	(%)	(wet)	Percent Discoloration	USCS Classification	Notes:
2	20		Y 2.	102	Markledlight	107	SP	
	24		Y	1002	Reddish bonn	1003		Post son
V	21		-1			1006	J.	Kergent Shows up 20.5 where Sails change draw tricily to
							<	reach brown; Turns white 3 fizzes with Spran
	22				Martied Vieds's		<u>L</u> SM	Medlin derse Sitty changes and - Marked Colors from Rusty Red & Reldish
					browns			Drown to Sheen metalliz grey; inhite & fizzes with sprey
	23		N?	× 57	12 det oran	12	S/	
	_			- 05-	Madrid			Red color disappens @ Z3. Suis become stiffer /dense
	24				1 mi alla			Marbled Colors - light grey orner metalliz grey
								plastic like cohorden - Little to No Stainly
	25							Splay = brings out only Sheen : Nofizzor color change
1	-+							
0	26			-++			C P/ci	
Ĭ					Jatura		JUCL	interlaminated Clays & Sind
5	27					- Çi-	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Derse Clay Natural
7			V		Black			
0	28		Y I	1007	Natural Rivery Rod	1002	Y	0.2 thick NAPL Statuted Grand lense @ 27.5' -
				-]07	Narmal	- 61-		
1	29 —		4					minor valsty red Sud barnhations interlaminuted with day 6 218
-			N	- Val				10-10-0
	30		_¥_	_01	NAPL 1	lon	245M	[5 NAPL valing] - 29.5'

	Boring	D: PTC.	-3	Date: 6/2	26/14	Casing / Core Dia. (in):	4.75 /4	" Core <u>4</u> of <u>7</u>
	Loggei	r ^{(s):} K	t	1	Start Time: 100		Finish Time: 144	5 Core Recovery (ft): 10/12
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
ļ	30		Ν	0%	Netual/NAPL	502	SM	
Ļ	31 —				NAPLSTAN	909	GV	NAPL Statued gravels - Very dark with brown (B NAPL VErby)
	 32							
0	 33				Natural	0%	SC	Creamy white Colored clayer sand with black speckles physicile
L	34 —							Sands & littlics) with gravel - No discoloration
	35							
	36 —							
	37 —							
	38 —		U				×	-NAPL Seam @ 38.5
ļ.	39 —				NAPL STAND	1007	GW	-NAPL impacted gravels
	40			V	L	d	SC_	· · · ·

PROCESS AREA DNAPL INVESTIGATIO

	Boring	PT2	1-3	Date:	26/14	Casing /	4:75"/4	4 Core	
	Logge	er(s):	KT	{	Start Time: 1400	<u>10010 Dia. (iii).</u>	Finish Time: 1446	Core Recovery (#): 10, 5 11	
	Core Intervat (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
	40		N	02	Natural	10.3	GW	Lense of NAPL impacted gravel 1 @ 40	
	41				1	· · · · · · · · · · · · · · · · · · ·		Natural below 40.2	
					<u> </u>		Ston		
	42 —					1	SCEW		
	-				WARL grossy you Brown	1 705	QW	greesy yellowith brown discoloration	
	43								
			8						
0	44		N V	402?	Natural Natural	107.	S	- 44.2 thin lage of NAPL - verets with Spring - reagent?	
L	_45		1	0					
1					NAPL Strine	852	GW	NotPL imported arrive S	
)	46 —						1	No reaction to Sterry	
V									
	47								
			 	7.07	Strockeright		V	L Zebra Stripes of discolometron	
	48 —		- <u>Y7</u> V7	30 6- 7 36-27	NAPL 3 relds	- 50Z	56	Readish brown Streets - discontinuis- Minn Newtonito Spray colar d	metfizz
			1:	20/10 2.	NHPL Strived	6		Dark NAPL Strine) Internal 49-51-No reaction to spray	
	49 —							/ Vo Color Indication at Unreacted reagent (Rivery Rod)	
	50		X	Ň					

	Boring			Date:	Zichin	Casing /	4-75-1/4	Core 1 7
	Logger	<u>C</u> r(s):		<i>@</i> /	Stárt	Core Dia. (in):	Finish	Log Sheet
			KT	$- \wedge$	Time: (70)		Time: 445	Recovery (ft): De 1/10
	Core Interval (feet BGS)	PID screen (ppm internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
	50		¥?	102"	NAPL STINE	863	SM/SC	forthe we
1	51						ľ	1-0019 10
			\checkmark		V	607		
	52		Y	809	NAPL & RustaRd	1		Rush, Red Stated and the Alder
					3 Natival			Matural Sand Antrix: doesn't fulled halling along
	53 —							Migrates vertically through ant care Alling
				V		502		NAPL VOINCEIRY POLYCOLI COLE JOURNAS
	54			403				
						402		Ruty Red Reacts with Spran - FIEZOS & Dreamans
0	55			5				Jan Jan Jacob Jaco
				802				
	56 —			1				
2								
	57		_			802		
) ja	58 —		\vee	,V	\checkmark		V	
			Y_	1057	Rusty feel & Black	1002		Black NAPL Surrounded by Risty Red Reagent
8	59 —		_}					Reagent is following vertical flow paths of
							_	NAPL
	60			✓	V			

V

PROCESS AREA DNAPL INVESTIGATIO PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-2201330

TE TETRA TEC

Boring I	D: PTC	-3	Date: 6/2	26/14	Casing / Core Dia. (in):	4.75 "/4"	Core 7 of 7
Logger	(s):	<τ		Start Time:	<u></u>	Finish Time:	Core Becovery (ft):
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
60		Ý	1007	Risty Rai/NAPL	803	SM	
61				Nitual	562		The NAPL is surranted by pusty Redunceated reagen The Risty Red is a Find around the NAPL
62							
63					1006		
64							
65			¥		V	¥	
67							
68							
69							
70							

	Boring	PT	C-4	Date: (e)	125/14	Casing / Core Dia. (in):	4.75"/4	Log Sheet of 7
	Loggei	r(s):	KT	/	Start/ Time: 340	<u>,</u>	Finish Time:	Core Recovery (ft): Ŭ- 8 4,5/8
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
ì	0	Ũ	Ņ	0	Black	1002	Gw	Black Stained Surface Soils
	1 —			4				
		U					JP	
	2 —				Light 1. Ste had	002		V
D					Dectard	07		Matural Colored Sude Lagre 1
	3							1 Juli Chur Onois, 1902 app
0	4 —							
		0						
	5 —							
	6 —	()						
	7							
	8	~	$ \downarrow$	Ý.	UF			
	-	0				/		
NY.	9 —							
1	10		Y	1002	Dark Reldish	1002		9.5-18 derk warde S. 1.
			. 1		Black Ducole7	<u>_</u>		Contrapolitice Maria
8	10		<u> \</u>	1005	Black Burple?	1006		1. J. 10 aark purple Santa
J

Í	Boring I	D: PTC	2-4	Date:	25/14	Casing / Core Dia. (in):	4.75"/4	ⁿ Core <u>2</u> of <u>7</u>
	Logger	(s):	Kī	Ĺ.	Stárt Time: 1340		Finish / Time:	Core Recovery (ft): 9.3/10
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	(Notes:
i	10	Ø	Y	1003	Dark reddith	1007	_SP_	purple Sands, Lasse
ļ	11 —				Black (Purple?))		
		0						
	12							
	13 —	0						
		-						
	14 —	0						
	15	Û						
	16	\cap						
		0						
	17 —							
	18	0	 		<u> </u>			
	19 —							
	20		\vee					

	Boring	ID: P	C-4	Date: ()	25/14	Casing / Core Dia. (in):	4.75 1/4	Core Log Sheet 3 of 7
	Logge	er(s):	KT		Start Time: 34	5	Finish Time:	Core Recovery (ft): 10.3 / 10'
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
	20	0	Y	003	Dark Reddal Black	1007		
J	21	0						
Ö	 22	0	N N	07 1	Natural	02	SAA	
0	 23	1.3			NAOVA1			plastiz like cohesion, siltz sinks, Marbled Color, No Sheep
L	 24	3.7						
	25						CL/SC	
	26 —					52	EL	Miner purple Sitering in classlager
į	27 —	70			NHAL Staining	562	CL/SC	this Napl colored stringer
l	28 —	70	N	V 02	Natural Stained	07	Emk	class a real Stand with AHPI (Level 4)
	29		<u> </u>	<u> </u>				Changer graver started with with (Level i)
	30		V			802	J	

	Boring	ID: PTO	(-4	Date:	25/14	Casing / Core Dia. (in):	4.75/4	" Core " Core
	Logge	er(s):	KT	i	Start Time: 348	<u> </u>	Finish Time: 4	30 Core Becovery (ft): [0/](2
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	30	5.0	N	O	Natural	02	SM/SC	Silty Clance Sand with black photohete lithics
	31 —							No discoloration of set
V								Creany white color
	32 —		-+					
	-							
	33	7.7						
	34							
	35							
		2.2						
	36 —-							
		10.9						
E	-37 —-	113			Stal	1000	GMELL	
J		11-		V	Jaina	1	UNDW	Changen gravel - Stringd with NAPL
D					Natural	62	SM	Silty clanger Sed Correction to Spray (Neutral Gites of mal
¥	39 —	0.0						phasephyte
	40		V	U I	V	4	V	

	Boring	ID: PTC-	-4	Date:	25/14	Casing / Core Dia. (in):	4.75"/4	Core Log Sheet 5 of 7	
2	Logge	r(s): [<ī		Start Time: 34)	Finish Time: 430	$\frac{\text{Core}}{\text{Recovery (ft):}} \frac{1}{2} \frac{2}{0}$	
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	Ŋ
0	40	D.8	N	03	Waturol	63	Smisc		
4	41 —	14	5		J.				
1	-	153			Stained MAR	1006	GN	(Dravelly Clay Starro) @ 41-41. 5; Reacted to the neutralization 5	Spray
ì	42	1.)			10pmel		Divise		
V	43								
	- 44	3							
1	45 —	91			Stained	502		Gravelly clays Strined @ 44.5 3 4 5.8, 46.5, 47.8.	
J	-							No reaction to Spray	
	46 —	150			<u> </u>				
D	47	0.6			Natural	07			
	- †								
	48 —			+	Stained	103	SA	ENDED Some with Jam P 49+ 12	
V		80						String Joils recrusing with depin from 1003	
	49 —				-				
	50			U	V		V V		

	Boring I	D: PT	7-4	Date: 0	25/14	Casing / Core Dia. (in):	4.75"/4	Core $\int_{0}^{4} \int_{0}^{2} \int_{0}^{2}$
	Logger	r(s):		/	Staft Time:)うり)	Finish Time:	$\frac{\text{Core}}{\text{Recovery (ft): } 10.5/10}$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
1	50 	148	N	07	Stained	906	SM	decreased NAPL Standy with doub
L	51 —	165	47			577		No visual Indication of Reagent
	52 —	100				109		phote like cohesion from 51 to 58 (reached NAPL?)
	53				V	- 10 <u>j</u>		karselowit dance 6
\mathcal{O}					Notural	67		
V	54	0.0						
	55	00						· · · · · · · · · · · · · · · · · · ·
	56	0.0						
	57							
	58	0.0	N	V	ď	V		
	59							
	60		T	V				

PROCESS AREA DNAPL INVESTIGATIO PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-22013

	Boring I	D: PT(5-4	Date: (g/	25/14	Casing / Core Dia. (in):	4.75"/4	4	Core Log Sheet of
	Logge	r(s):	KT		Start Time: 가ን니)	Finish Time: 43	D	Core Recovery (ft): 6/7
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
)	60		N	0	Natural	62	S/4		No discoloration or Steining
	61 —				1				Derker color Alan Greany white more brown
	62 —								
	 63								
	 64								
	65				<u> </u>		V	<	TD=105
	66								
	67	-							
	68 —		1						
	69 —								
	70								

Ò

Boring	PTZ	2-5	Date:	25/4	Casing / Core Dia. (in):	4.75	4" Core of 7
Logge	r(s):	KT	[Stant Time:	$\overline{\boldsymbol{\Sigma}}$	Finish Time:	$\frac{\text{Core}}{\text{Becovery (ft)}} 5/8$
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	00	N	Ø	Black	1002	SP	
1							2
2	0.0						
-							
3 —				7Bon St. 1	1.257		
4	<i>0</i> .0			Natural	1		
					V		
5					<u> </u>		
6	0.0			V	Y		
				Natural	07		
7							
8	Ø.O			4			
i'en			1				
9 —							
10		V	V	Ŷ	V	V	

l

_ [Boring	ID:		Date: (Construct (
		PTC	-5	6/	25/14	Casing /	4-75/0	_ #	Core 7 7
- F	ogge	er(s):	11	{-	Start	Core Dia. (in):		L	Log Sheet of
			KI		Time: 01F	5	Time: 10	り	Core 9/10
		(mq							
	s)	en (p	ISGS						·
	BGS B	cree al ci	Reagent	NAPL	Color, Hue,				
	Core	ID s	Present (Y/N)	Treated	Chroma	Percent	USCS		
F	10		N7	(10)	(wei)	Discoloration	Classification	Notes:	
		$\mathcal{O}_{\mathcal{O}}$	11	1201!	Dar KRollin	002	SP		et la cal et la la la la la la
				(Bluck	1		- Pise	a sammer saw string dark black with a red
	11 —							- the	- from 10-20 - toose Schuster Sm) - C
								10-	-7%
	12	D.O							
•	13 —								
		0.0							
1	4								
		O.D							
	_								
1	5	BO							
		0.0							
	6					-41	<i>§</i>		
[0	60							
	-+	0.0		<u> </u>			6		
1	7					2	5		
	1	0.0					11		
	- 1		24						
1	в —	6			¥	_\V	Y		
		ViU			R		4 B	2.	
		I T					2.1.		
19	,								
Í	_	- 1/							
20		~	∇	\mathbb{N}		∇	V		
							N.		
							Stars d		

V

PROCESS AREA DNAPL INVESTIGATION PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-2201330

10

	Бонну	PT	65	Date:	25/14	Casing / Core Dia. (in):	4.75/	4 Core
	Logge	r(s):	KT		Start	7 7	Finish Time: 100	$\frac{\text{Core}}{\text{Recovery (ff): } / 0 / (2)}$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	20	0	Y?	1001?	Durk Reddish	6007	SP	As about to 28
l	21 —				Black			All looks like permanente
		0						Stains gloves purple
	22 —	0						
	23							
	_	0						
	24 —	0						
	25							
	_	0						
	26 —	0						
	27							
		6						
	28	_U		3,12	Lighter aren			
	29 —		N	<i>U.u ·</i>	Creem Cohre		SME	Change from poorly gaded Staturated Sande to silter clances Sands
	20				Native	502	+	Contrast in Color to Creamy white with Edger phosphase lithing
L	30		y		¥	/	/	NO Clan Layer

ſ	Boring	ID: PTC	-5	Date: 6/2	5/14	Casing / Core Dia. (in):	4.75 4"	Core 4 of 7
Ī	Logge	r(s):	<t< td=""><td></td><td>Start Time: 1015</td><td></td><td>Finish / Time: 160</td><td>Core Recovery (ft): 0/10</td></t<>		Start Time: 1015		Finish / Time: 160	Core Recovery (ft): 0/10
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	30	D	N	07	Natural	03	SC	
	31 —	0						
	32 —	0						
	33 —	31						
	 34 —							
		28						
T		68.3			Stated	306		Minor Seams of Stained core
4		10.3			1 Salum	53		
l	38 -	59.9 68.8		V	String	501	<u>Ow</u>	Napl Stained gravelly dry - anneg gravel with sand
0	-				Natural	03	SC	225
¥	39 —							- one Strined Jense Q DE= 7
	40		\checkmark	V	V	\bigvee		2

PROCESS AREA DNAPL INVESTIGATIO

	Boring	D: PTC	5-5	Date:	5/4	Casing /	4.75/4	a Core 5 of 7
	Logger	r(s):	K	<u> </u>	Start Time: 015		Finish Time: 100	$\frac{1}{2} \frac{1}{2} \frac{1}$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	40	6.	N	07	Natural		SC	
-	41				SL 1		XEL	GRAVEL LEASES have NHPL Standy
	42	195	2		Othines	1002	GW	Reaction to Neutrilization Spray For 41,5 to 43
	42		L			1062		Charges from an oily brown color to cream white
0	43				Notur	<u>B</u> 3	SC	Pending Proves a Brown IVAR- Color - Vigher 110
	44 —	10 1			light grey Siter	1003		0
1		12.0			V Eli	1207		
1	45				Othined 1	205	GW	
	46	114						
	47				'	1003	GV	
	48 —	<i>لفاله</i>	¥	Ý	· /	302	SC	
						90-1003	_SM_	
	49				1			
	50		V	Ų		V	U	

-15

	Boring	ID: Pr		Date: /		Casing /	61 - 1	
	Logae	r(s):	<u> </u>	<i>0</i> /	25/jy	Core Dia. (in):	4,75/L	Log Sheet of
			KT		Time: 0	15	Time:	O Core Recovery (ft): $1(.3/10)$
,	Core Interval (feet BGS)	PID screen (ppm internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
(50	191	N	D	Stained dark bra	· 802	SM	VPM Stamed 3 loss add a in 1 m P
	51 —	14			NAPL			148 to 54; belaw 54 it looks natural with
	52					566		9 possible darker color that the creany white
						b		No Reaction to Neutralization S. DA. 4
	53 —	740				1827		
	54					J		
		A			Natural?	07		
	55 —	U_{-}		_				
	56 —							
	_							
	57 —	0						
	58	0	Y					
	59 —	0						
	50	0						
	î				¥	¥L		

0

Boring I	D: PTC	-5	Date: 6/	25/14	Casing / Core Dia. (in):	4.75/4	,	Core of
Logger	(s):	Kr	í	Start DI5	5	Finish Time:	D	Core Recovery (ft): 6/7
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
60	0	N	62	Notural	_ 67_	SM		No Stadning - all Notural Soldy Sand
61				·				May be a little dawker than the creany white;
-	ä							tooks a bit greyer.
62	6	$\left - \right $						
-								
63 —								
64								
	0							
65 —				V		×		TB=1.5
66								
		 	ļ					
67								
-		+						
68								
69								
70								

	Boring	ID: PTC.	- 6	Date:	25/14	Casing / Core Dia. (in):	475/4		Core Log Sheet	of 7		
	Logge	r(s): KT	_		Stárt Time: 0740)	Finish 9-3	୬୦	Core Recovery (ft):	5/8		
	Core Interval (feet BGS)	PID screen (ppm) internat core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:				
Ü	0		N	07	Natural		GW					
	1							·				
											<u></u>	
(2 —				Black	1002			· · · · · · · · · · · · · · · · · · ·			
d	-	971			Stained Bran							
	3 —	1-6					SP					·······
	-											
	4 —									· · · · · · · · · · · · · · · · · · ·		
	5											
	_											
	6											
									•	····· ·	<u></u>	
	7											
		3										
	8				Standlak	1027	SP					
					Brann						<u></u>	
	9											
	10		V	V	5	V	\vee			, <u>, , , , , , , , , , , , , , , , , , </u>		

 \mathbf{V}

Boring	ID: PTC	-6	Date:	6/25/14	Casing / Core Dia. (in):	4.75/4	Core Log Sheet Z of 7	
Logge	r(s):	Kt		Start Time: 074	Ho	Finish Time: 930	Core Recovery (ft): 1/P./10	
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
10		Ņ	0	Stailed Bran	100%	SP	B-11 - BIL Sant has a sheen: PID is higher MOREGREY	
11	35.8	V						
	2.0	<u> </u>	Y?	Marbled chr			11-20 Mostly dark brown to dark brown.	
12 —							Color becomes Marted with Totobs of metalliz	MORE
) 8						Sheer (steal grey) - the sheer part becomes only when	raht
13 —	1-0			/			Spraged with Nertralization Solution	
14	D i						Could be a water table feature - LNAPL on top	
	0-6						with reacted Sonds below-	
15 —							Junds are laose	
16	01							
	0.1							
17								
	0.0		51			2/		
18 —					- Y			
19 —								
···								
20	0.0	\checkmark	U	\lor	<u>v</u>			

1	Boring	PTC	-6	Date: 6/2	5/14	Casing / Core Dia. (in) [.]	4.75"/4	Core 3 of 7
	Loggei	r(s):	k	Í.T	Start Time: 07	40	Finish Time:	30 Core $2/10$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
1	20 21		¥?	1003	Marbled Stadled	1009	SP	
3		0.3 97.8	¥7	302	Malahut	527	510	To city of the Set I and the set I
	23	22.2			Sumo Notive		J SC	Color with oily sheer, naturation & reddil brown not as dark: Cohesion is not losse, not brittle, breaks in a more
	24	Ð	N	67	Notuci	03	SCKL	plastic manmer
8	25							
	27							
D	28	77 6	NO	1002 63	Fustyred brown Notural	672 672	Y	0.1' thick lense of Rusty reddish brown Sand-Appears treated dive to Rusty red Color from inon
V	29						V CL/SC	Base of day - shift in color from Red Bound Souls to
	30		J.		V		L'	Creamy white suds with clay 3 black phosphetic lithic

	Boring	PTC	-6	Date:	25/14	Casing / Core Dia. (in):	4.75"/4	Core 5 of 7
	Logge	r(s): K	T	t	Start Time: 074	D	Finish Time: 930	p Core 11/10
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
Õ	40		N	62	Natural	02	50	
	41				1	j	4	
		0						
1	42 —	71			Stained	1007	GW	a ravel once
Û	—				Natural	02	SC	
	43	13				1		
	—	112				4	V	
i	44	51		12	Stailed	1001	GV	
	45	i.			320287aund	307	J SM	She have a Stabel bus de also
	46	720						a 46.5, 47, 48
		27.0						
	47 —	ш			Strad			
	48	98	NJ NJ	63	Stellne	90-1207		VOD. CHANN) - 1-
	49 —				Charle -			y y strined saves
	50						4	

	Boring	ID:		Date: (/ /		<u> </u>		
	<u> </u>	PTO	<u> </u>	6	25/14	Core Dia. (in):	4.75%	4"	Core
	Logge	er(s):	Kτ	/	Start	40	Finish 70-	30	Core
		Ê		Τ	Time: 07		Time: 073		Recovery (ft): 0/10
	Core Interval (feet BGS)	PID screen (ppr internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
{	50	141	N7	07	Stained	90-1003	SM	<<	
	51				churk brown			T	The Stained portions do not veret with depth The Stained portions do not veret with
	52 —	149				803		T	P Most Sty) a t P 110 to
						529			appears
					Airt	- 905		- Te	have a slight red tilt -questionable reaction
	53 —				Sais				
ŝ					Thinks	- 325			
2	54								
1		15	•			30%			
di.	55								
3	~					307			
	56 —		X			Am			
			- 14		Natural	06			
	57 —								
		0.0							
	58		-	/		1			
				1			SM		
	-		- -						
5	59 —			_					
	_								
E	0		V		\checkmark		V		

0

b

PROCESS AREA DNAPL INVESTIGATIO PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-2201330

	Boring	ID: PT-	.7	Date: (0/	24/14	Casing / Core Dia. (in):	4.75"/4	4-Ind Core of F
	Logge	r(s):	T		Start Time: ĵ92	15	Finish Time: 102	D30 Core Recovery (ft): 65
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	n Notes:
J	0		_N	07	Black	1007	GW	Black Sunficial gravels 3 sil
J	1 —		-/					
	2 —	120						
U-8	3 —						<pre><pre></pre></pre>	
502	4 —				R	×	50	
4	 5	160			- Drawn	 	 	Brown Sand
	6							
	7 —							×
	8 —	201	V				 	
	9	1805	1				7	
		107	V	4	V	\bigvee	2 M	

	Boring	ID: PTI	(-7	Date:	24/14	Casing / Core Dia. (in):	4.75/4"	}	Core 2 of 7
	Logge	er(s): KT	/JE	7	Start Time: 6945		Finish Time: 03	0	Core Recovery (ft):
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
0	10		Y?	2012	Natural	202	SM	9-10:	3 minor stringers of errors
i	11	28.8	<u> </u>	1007	Dirkduil rodduh	1002		10.3-	10.7 - Dack dull reddish bown with some steel, blue bill.
			77	2027	Notical with cross	207			- Seam of rended Drugpl
	12		J	An	J	1	V	11-12	Minor Stringers at orange discoloration 7- Spine from
			N	61	Some dukgay	967.	- JP		isolated to this lowingtions ISGS? 9-10.3
	13 —	44	-1		Othining			12-16	Darker colored Swit marbled
	14	482							
	15 —	72)							
		25.6							
0	16	18.6			Notural	07			
	17					L			
i		25.8			Some durkgrey	807			
	18 —		Y		Stamus	l	Y		
0		17			Notral	0]			
	19 —							d	
~	_	25	-V			-			
	20			Y		V	\vee		

PROCESS AREA DNAPL INVESTIGATIO

f.

	Boring	PTC	-7	Date:	24/14	Casing / Core Dia. (in):	4/-		Core of 7
	Logge	r(s): K	THE	1	Start Time: 094	5	Finish Time: 07	30	Core Recovery (ft): 65
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
0	20		Ņ	61	(Vature)	97	SP		
	21	29							
			Y7						
	22 —		N	1.00	V			Z1.5	- thin (< 0.1) Seam of metallic shown steel Tren
(;	. —		Y	10077	John reddish bra	r 1007		22-2	5- Solid redlish brown color - Reasent?
	23 —					<u> </u>			Consistercy seems of little fitmer - Unclear
	24 —								
	25				V				
	25	390			on instituts	509		25-2°	7 sellally Bo at for almost
	26				of total		Y	<u>_</u>	Sind. La ministron .
				:			SC		Carling Carring Port
	27 —			V		ł	ł		
0				02	Natural	0.7	<u>CL</u>	27-	27.5 Natural Clay dense
(28 —		-Y	1002 20 1000	ting DemsofR	gur. 50?	-V	27.	5-28- Treated NAPL? in day-Reddish Brown
							SC	5	praned with Moutrilization Solution 3 the Redhow Brown
0	29			 	NGL	67	5	Col	or Changed abruptly to the Natural Chy Color
<u> </u>	30			V.	1 VAUVICA				

	Boring	PTC	-7	Date:	24/14	Casing / Core Dia. (in):	4.75/4	4 Core 4 7
	Logge	^{r(s):} K	Γ		Start Time: 094	5	Finish Time: しりうし	50 Core 65
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	n Notes:
(30		Ν	06	Notral . M Sia	203	GV	Sprel Sand fines New - No indication of Areated 30-38
	31 —				String	1	v	except along this Seens @ 31 # < 0.1 frick
0		46			Nation	- 02	SW	greatly Sand with flus
	32	10			Stassa	1 A		30-38 Jooks like Conktest cream
Ú).		415			Natural	<u>606</u>		
0	33 —	-10			1)		
	34							
							Sm	
_	35 —	38			ARC2CL	0.2		
		408			21700	907,		3
0	36 —	G7			- CN sty al	Ba		
		16				05		
	37							
	38 —		V	V			\checkmark	
							SM	
	39 —							
	40		\checkmark	\checkmark		\checkmark	\mathbf{V}	

	Boring ID: PTC-7			Date:		Casing /	4.75 /	$4^{\prime\prime}$ Core 5 of 7	
	Logge	er(s): X	T JE		Start Time: 945	<u>10010 Did. (iii).</u>	Finish Time:)のろ	\mathcal{O} Core \mathcal{O}/\mathcal{O}	
	Core Intervat (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	3
0	40 —	34	Ņ	07	Natural	63	SM		
	41 —								
-	-42	7%			Ka				
t	_	040		- /	STUDEN		OV	NaPL in gravel - Staining not very apparent	
0	43 —			.*	Neitral		SK		
	44 —						Y		
Ì		420			NAPL		GW	NAPL Stained growel - Staining not very gopwent	
1	45 —	Mal	Y	1002	Rost. Q.)	1557	SC	45-45 F Q 1 Q 1 R 1 R 1110 - 01 1	
Ó	46 —	1.52	N	03	Natural	07	SA	with Neutralization Spiny back to natural color	
				- }				Rusty Red Jogstift fillow laminotrons	C.
	47 —			V					
t	48 —	586		07		1002		47.8-48- DNAPL- darker brown color	
		1174	Ņ.		Dork granist	902		48-53 - Dark Stalked core Mostly dark grey with	
-	49 —				red			a slight rusty three to the Color - could	
300	50		V	V		V	\forall	NAPL 3-4 rather	

	Boring	PTC	2-7	Date:	24/14	Casing / Core Dia. (in):		<u> </u>	Core
	Logge	er(s):	KT		Start Time: 09	45	Finish Time:)0	Core Recovery (ft): 48-58 13ft f core
	e finterval t BGS)	screen (ppm) nal core	ISGS Reagent Present	NAPL Treated	Color, Hue,	Dorroent	//200		Adjust #ing 48- 505'60'
	50	PID	(Y/N)	(%)	(wet)	Discoloration	USCS Classification	Notes:	58-65 recovery is 5'of care
(119	N	02	Stand	1000	5M		
	51 —					Alter 2.		· · · · · · · · · · · · · · · · · · ·	
	52								
6	53	676	4			67	+		
J	54 —	115			- / UNIL			No	Staining From 53-58 to 63
	55 —								
	56	135							
	57 —								
	58			1	~	×	7		
4	59	19.5							
	60		V	V			V		

	Boring	D: PTC	[-7	Date:	24/14	Casing / Core Dia. (in) [.]	4.75/4	Core 7 of 7
	Logge	er(s): Ka			Start Time: 091	15	Finish Time: 63	Core Recovery (ft): /05
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	60 		N	07	Natural	62	SM	
1	61 —	16.3						Ne Stating to 6.5'
	_			<u> </u>				0
	62			<u> </u>				
		384						
	63 —							
	64							
-	65 —		V.	- \	V			$Th_{-} _{-}$
								1 0 - 107
	dd						×	
	67 —							
	68 —							
	—							
• =	69							
	70							

<----

PROCESS AREA DNAPL INVESTIGATIO PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-2201355 TETRA TEC

ĺ	Boring	D: PTC	.6	Date: 6/	24/14	Casing / Core Dia. (in):	4.75"/4	ท	Core Log Sheet	_ of _7_		
	Loggei	^{(s):} Kt	-		Start Time: 435	1	Finish Time: 5	30	Core Recovery (ft):	From Oto 8	4'recover	
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:)	
	0		N	07	BLACK	1003	GV			<u></u>		
	1 —											
	2											
		73										
	3 —											
						i.						, 177 A
	4				Dark Brown	1007	SP					
	5 —				(Statuel)							
2		307)							
	6											
	7											
										······································		
5	8 —	1046	Ň	02	Matrix	07	SM	8-11	No discolo	whon		
ţ	9 —			¥ P					,			
										.		
	10					X						

	Boring I	ID: PTC-	8	Date: (o/	24/14	Casing / Core Dia. (in):	4.75/4		Core Log Sheet 2_ of 7_
20	Logge	r(s): KT	-	1	Start Time: 435	-	Finish (Time: (53	0	Core Recovery (ft): 65
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
0	10		Ŋ	50	Natural	5	SM	-	
	11 —				~	2			
t	-	256			Stained	1007		11	
	12 —			V	903	J			
					1				
	13 —							- N.	
Noting	 14		NE	~	N	R	NR	e!	No Recovery 12-18
F	15 —								0
	16 —								
	17 —			(
Ň	18 —	1.4		07	Nichol	67	SP		
1	19 —							19.5-	- black looking Stringers (= 0.1' fuil) - Namal?
	20				V				

Boring ID: PTC-8 Date: 4/26/14 Casing / Casing / Core Dia. (in): 4-7					Casing /	4:77	Core 7 7
Logge	r(s): K	t J	Ξ/ Ε	Stárt Time:	>5	Finish Time: (53)	Core
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
20		N	67	Natural		SP	
21 —		12	4.9	L	0.7		
		1	801	Staine) Marbled	906		ZI-27 - michled coloration from grey, brown light tan
22				Colors			plastic-like Cohesion - Reacted Nep 1?
23							
	917						
24 —	712						
25							
26 —	301						
27		V V	57	- ¥	507	1.15.	
		_	<u> </u>			64/36	Discrete Mind of unsected reagent through top of Clay
28		Ý	 }		¥	ČL	- Invited Chief Sinds
29		1				T	- Ventralization Hund Charge it change color
30			V	\vee			

	SOIL		LOG F	ORM 6/24/10	PROCESS AF Beazer-Koppe	REA DNAPL IN ers, FL Proje	VESTIGATIO ect: 117-2201:	10 PPER HAWTHORN GROUP
	Boring	D: PT(-9	Date: 4/	26/14	Casing /	4.75/4	f" Core H 7
	Logge	r(s):	KT JE		Start Time: 1435	<u>10010 Dia. (117.</u>	Finish Time: 53	Core
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	n Notes:
Ì	30	355	Y	502	inter pringted	502	CLASC	< outrole limitation inthis heater (also # Ed. toulf Al al i to 10
	31 —				purple	L	, Ja-	Unvegited veggest
	-	307			Dark Steelze	1007	GM	31-32 spartially treated NAPL + Revent Doesent
~	32 —		V.	~?		V		
0	-		- <u>P</u>	<u> </u>	NATURI	67		No diBioloriton 32-33
	33 —	540	-V V	6	N.C.	. 37		
		510		-507	\$ R	100 5		33-34.5 Sprinting Treated NAPL 3 Reagent present
	34		V		UINA		Sal	
0	35 —		N	62	Natural Actival	07		34.5 to 38 Network - No discoloration
	26		<u>9</u>	1	inding			
	36							
	37	31						
	38			Y		Y	5	
	39 —	17						
	40		V	\checkmark		• 1		

	SOIL	RE	LOG F	0RM	PROCESS AF Beazer-Koppe	REA DNAPL IN ers, FL Proje	VESTIGATIO ct: 117-22013	
	Boring	ID: P+/.	- <u>k</u>	Date: 4/	las lus	Casing /	475 "/1	Core
	Logge	er(s): V	σ τ/τε	<i>/</i>	Start K2	<u>Core Dia. (in):</u>	Finish in 2	Core
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	40		N	0	NAtura	62	SC	
	41 —							
i	42	218	V?		Ish's full and	1/วา	GAA	
	43 —	102	N		Stained green	1007	SC	gowelly day (2) 12: - Min area of discologition, Reagent prospect?
	 44 		¥7.		light dull brown	207	GM	gravely clay with sand a 99 - this are of discolution
	45 —		<u></u> Л		V	J	SM	
0	46	800	Yz, N	507	Bark	302		Reagent & NAPL present in this zone (0.2'thick)@45.8' - Somewhat 40-40 how and all I have a like to Negrel
0	47							Staining core - NAPL:
ī	48			On I	Dark Bonn.	1002	Sa	13 IS
	49	1700			Staming			
	50		\checkmark	\checkmark			V	

Boring ID: PTC-9 Date: Use of the content of the conten	ESTIGATIO PPER HAWTHORN GROUP				
Logger(s): KT/JE Staft 1435 Finish Core Recovery (ft): 13' from 48					
	L 58'				
Solution Solution Solution ISGS Barrier Barrier ISGS Reagent NAPL Color, Hue, Barrier Barrier Present Treated Chroma Percent USCS Barrier Color, Hue, Color, Hue, Color, Hue, Present USCS Color, Hue, Color, Hue, Color, Hue, Color, Hue, USCS Color, Hue, Color, Hue, Color, Hue, USCS					
1 50 N B7 Drok Brown 1007 SM All Stailed to 57					
51					
52 - 410					
Duk Brown July Brown NAPL Sta	Min & Natural Cohr				
53 / Vectral 2th	Span				
54					
240					
55					
Natural OS 55-58 No Staining					
57					
58 19.5 V V V					
59 12.7					
	·				

	SOIL		LOG F	ORM <u>6/24/14</u>	PROCESS Af Beazer-Koppe	REA DNAPL IN ers, FL Proje	VESTIGATIO	BOPPER	R HAWTHORN GROUP	TETRA TEC
	Boring	PTC	- 8		26/14	Casing /	4.75'	14"	Core 7 7	
	Logge	r(s): K	T/TE	/	Start		Finish	20	Core	
		Ê	100			,	Time: 70		Recovery (ft): Q	
	Core Interval (feet BGS)	PID screen (pp internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:		
0	60		N	07	Matural	07	SM		markly P Mp' 1	
J			1				1		Staming Trem 68-6	9 29-
-	61									0
		10								
	62									
							—_ _			
	63 —									
	64 —		V	¥	V	V	J.			
	_							T	D=1.4'	
	65 —								<u> </u>	
	66						<u></u>			
	00						······			
	67							•		
- 1	68 —								······································	
	69 —									
l	70									

	SOIL		LOG F	ORM	PROCESS AF Beazer-Koppe	REA DNAPL IN ers, FL Proje	VESTIGATIO ect: 117-22013	
	Logge	PTC r(s):	-9		26/14	Casing / Core Dia. (in):	4.75/4	Log Sheet of to 7 8/6/14
			<u>(</u>	r	Time: 040		Time: 13	D Core Recovery (ft): 0/0
	 Core Interval (feet BGS) 	PID screen (ppr internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
NR Ø.	1					۵		
	2				NR			0-4 No Recovery
	3							
١	5		Ņ	0	BLACK	1002	GW SP	
	6				Light Brown	Nâpml		
n	7			2	2			
Nothing	8		Y (.	· · · · · · · · · · · · · · · · · · ·	Keddizh Brow	Regul?	¥ 	Rusty red/Reldish Brown Loose Sund @ 7.5
Ĩ	9						NR	8-11 No Recovery Continues Ell'

Boring ID:	PTC-	9	Date:	126/14	Casing / Core Dia. (in):	4.75 %	Core 2 of 7
Logger(s)): K	ίτ_		Staft Time: 184	0	Finish Time: 3	\mathcal{D} Core $\mathcal{V}(\mathcal{H})$
(feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
11		V	1.20	0	NR	å S P	NR
12		1 	1004	Kusty Ked	05 1		11-12.5 Kusty Red losse Send - Reagent: Foarts well with Spray. Fizzes & charges color
13		+		purple-ish tat		Sc	12.5 to 18 has a purpilich live but does not a
14							For Fizzes but doesn't Change color from Spran Reacher Prizzes but doesn't Change color from Spran
15							Marbled color - plastic like cohesion This is the tight Sands that have a clar mixture
16		_					= take on a marble like color
17				,			
18		Y	V 803	I tht purple	802	57	
19						SM	
20		Ň	V	\checkmark	<u>t</u>		
PROCESS AREA DNAPL INVESTIGATIO

Boring	^{ID:} P7	7-9	Date:	26/14	Casing / Core Dia. (in):	4:75"/	Gore 3 of 7
Logger	r(s):	KT	1	Staft Time: [04	ν 'υ	Finish Time:	3D Core Recovery (ft): 10/10
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
20			(0)3	Purple/ Durk Red	1007	SM	20-28 is discolored silver Sands in various Colors from Lark peddetsh plack (purple) + light purple. The different colors are
22						· · · ·	likely NAPL @ Various Stages of Reaction 20-21 - there are some blobs with a steal grey sheen-
23 24		-					The Plastic bag is stained with NAPL
25							•
26						SC	Ċ
27							
28		Y/V	102	Nature]	102	CL	28.5-31- (L to SC interballed Miner and
30					L	CLÍSC	Sanjai - J

	Boring I	ID:		Date: C	(,	Casing /	Core		
		<u>P70</u>	-9	(q/	Z6/14	Core Dia. (in):	4.75/4"		Log Sheet <u>4</u> of <u>7</u>
	Logger	r(s):	Kr		Stárt Time: 04	40	Finish Time:)(3	5	Core Becovery (ft):)0/10
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
0	30		N?	D	Nation	102	CL/SC		
i	31		N	Y	L NAPLSHU	002	Sk!	Gee	long Charge to the Creang white charge grounds # Sails
	32					1007. 103	GW SL	a1	No Reaction to Sorra
0	33				Nutral Striked NAPL	1003			Joo Jo Gray
	34						GW		
	35						SC		
	36				NAPL/Natin1	+ 583		507 Nap	Laboy Jonizations
	37								0
Ò	38		N	0	Vatural	02	3C		
	39								
3	40					·•	_		

	Boring I	D: PTC	-9	Date: (q	124/14	Casing / Core Dia. (in):		Core Log Sheet 5 of 7
	Logger	(s):	l	KT (Start Time: 104	0	Finish Time:)[37	\mathcal{D} Core Recovery (ft): $\int \partial / l \partial$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
)	40		\mathcal{N}	0	Natural	67	50	Sondy dus with age
	41							
	42							
	43							
								@ 43 the cremy whitish nutrix gets a first darker from
	44 —	,						Stalala
	45						Gw	
				Y D.M		Y	SC	
	46 —		- Y_	100 1	RUST FOI	100%		Reagent present @ 75.5 3 47; Justy ped blobs
					NASPE Stain	<u>- 506</u>		Fulling the Subjection of Toor & change of the
	47 —			867	Rusty Re)	40°	J	national colors
	48				NAPL Stath	l	ξW	
			N7	N7.	NAPL Stain	1007	SC/SM	from 48to 54 - NAPL String Soils - decrease with
	49	-					{	Depth, No obvious Rusty Red Staining
l	50		V	<u>v</u>		V		

PROCESS AREA DNAPL INVESTIGATION PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-220133

 \mathcal{X}

	Boring	D: PTC	9	Date:	26/14	Casing / Core Dia. (in):	4.75"/4	Core (2 of 7
	Logger	(s):	KT		Start Time: 10 Y	0	Finish Time:	$\frac{\text{Core}}{\text{Recovery (ff)}} = \frac{10/10}{10/10}$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
L	50		NR	?	NAPL Stated	1002	SCISM	(see previous pane)
	51 —						1	
								No Unreacted Reagent (Rush Red) present
	52					702		
	53 —							
						- Vin		
-	54 —		¥ Y	105	M.H. Mari	501		59-59.5
	55 —				Minor rusty			Unrevited reagent; Not continuous along bedding; Mostly
	56 —				Yeo			discontinuous Blobs
	_	<u>. </u>						
	57		_					
	58 —						¥.	
	59 —							
	60		152	07,	NATUR	02		No dizioloation fam 59-5- (05 bas

	Boring	ID: Pt	7-9	Date: 6	126/14	Casing / Core Dia (in) [.]	4.75"	140	Core 7 7
	Logge	r(s):	KT		Start D9	0	Finish Time: 13	 ט	Core G/2
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
Ô	60 		N	B	Natural	03	SCK		
	61 —								
	62 —								
	 63								
	 64								
	65		\bigvee						
									TD=65
								<u> </u>	
	67								
	68 —							<u> </u>	
	69 —								
	70						-		0

PROCESS AREA DNAPL INVESTIGATIO

	Boring	PTC	-10	Date: .	5/14	Casing / Core Dia. (in):	4.75"/	(n	Core
	Logge	r(s):	KT	l	Start Time:)	545	Finish Time:)	Core Recovery (ff): 1/2 - 2
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
[0		N	Ο	Black	1,007	Gu		
	1								
							JP_		
	2	0					<u> </u>		
	3				Dark Ban				
	4	0				L			
Ò					Notual	02			
	5 —								
2		Ð							
	ь —								
	7 —								
		Б							
	8 —	0						<u>-</u>	
		0	dr l		N/				
	9						ĭ		
	10	0		V	V	V	\bigvee		

	Boring I	D: PTO	C-10	Date:	5/14	Casing / Core Dia (in):	4.75 "/	4^{μ} Core 2 of 7
	Logger	(s):	KT	/	Start Time: 1545	<u> </u>	Finish Time: 1/04	Core Becovery (ff): 8,5/0
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
Ô	10	O	N	03	Naturi	67	SP	
	11		+	1			41	
			Y?	?			SC/	Consistery begins to shifter. plastic like cohesing
	12	0					('	Marble like color mixed saids + clays, color
								of clay is green & sand is light brown - Martele like
	13 —							mixture No Stan.
		6						The plastiz like Coheston is unpatiral folling
	14	<u> </u>						Manbe Reasent - No Color change indiciting
								reagent prosent, Neader MATL:
	15							
	16							
	17 —	O					¥	
							SP	Clean Sand from 17-20
	18 —	0			<u> </u>			
		<u>()</u>						
	19	- U						Sanala
1	20				Stationa	J		all App B-19-70
	L		J	L. Y	Gilyshin			

	Boring	ID: FT	610	Date: 0/	25/14	Casing / Core Dia. (in):	4.75"	14" Core 3 of 7	
	Logge	r(s):	KΤ	1	Start Time: 54	5 5	Finish Time:	D Core Recovery (ft): O/O	
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
	20		?	7	Marble with	103	SM	laninated chrycysity Sade. Mostly brown with blacks	
	21 —				Stown		1	of Steel gren is blobs of Sheen	
								No purple Calor of indication of unprended reagent	
	 23	0.9							
	24								
				ν					
	25	42.0							
	26 —		¥	*	×.	¥	5		
0		ZÓ	V	V	, 6	~~~	CL/SM		
1	27 —	57	47	507!	Black Str	1002	/	26.5-27- dark black Staining - No Vection to Spray- lots of	fizziy
0		7.3	<u>N</u>	-0	Ivarual	06		-Sheen on Surface - NAPL - Dark brown Streek on pol	ABTIC
	28 —		- Y		Notrel	07			
	20				1 000001		1	I comy write changey Sitty Suds with block phosphete littics	
	29	0.0				L.	X		
(30	76.3	V	√	Strind	1002	UW	Napl Steined gavel less from 29.9-30.2	

PROCESS AREA DNAPL INVESTIGATIO

	Boring	1D: PTO	C- IV	Date:	25/14	Casing / Core Dia. (in):	4.75 /4	⁴ Core 4 of 7
	Logge	er(s):	KT	6	Stárt Time: 15 t	15	Finish Time:	4() Core Becovery (ft): D/D
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
8	30	9.0	N	07	Notun	02	SC	
10	31 —	521			Stained NATURAL	(003. 07	GW Sc	chigging gravel - MAPL
16	32 —	53.3	Yr.	7.	Stained Natural	losz 02		Thin D. 2 Seam BlackStand-granular - glong lawingthin - planar - darkest of all Stations - Regsport D - NB perton + Some
	33 —			•				Reliter NAPC?)
	34 —	0						
	35 —	0						
	36 — 	0						
	37 —				Stained	100%	Św	Stained NAPL gave lesse @ 37.5' only 0.1' thick of
D	38 —	0			Matura (50	Sitahing
1	39 — —	0						
	40		\checkmark	\vee		V	V	

	Boring	ID: PTC	10	Date:	25/14	Casing /	4.75"/4	Core 5 of 7
	Logge	r(s):	K	7	Start	15	Finish	
	<u></u>	e (mqq)						$\frac{O}{(ft): (ft): (ft) + ($
	Core Interv (feet BGS)	PID screen internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
0	40	0	Ν	09		5	54/sm	Creany white cleaner silty said with oh solutize littles
	41 —	6			· · · · · · · · · · · · · · · · · · ·			disidered gravel Lenses at 44, 46, 47.5, 48
	42	Ø						Some of the Alter lack to a li
	42 <u> </u>	4.6			Here change	083		(Revent Packa) NAPL?
	43 —				~ Intredante			
		5.1				0		
1	44 —	71.5			NAPLSHA	1017	Gω	
0	45	46			Nghel	63	50	
-		50						
0	46	147.1				1003	Gw	
	47	42					30	
1		22			Stend	6002	(Jw	
0	48 —	108	4	4	Storied		Gu	
,		117					- JA	Started with NHR decreases with depth from 48 to 54
	49	· · · ·						
	50		V	9	V		V	

	Boring	D: PTC	-10	Date: 🧑	25/14	Casing / Core Dia. (in):	4.75 /4	4" Log Sheet & of 7
	Logge	r(s):	<1	l	Start Time: 154	15	Finish Time:	40 Core Recovery (ft): $9.8/10$
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
l	50		N	0	Stained NHPL	803	SM	Silty saw with NITAL staining. Staining decreases with
	51 —	30			1			depth.
						J		
	52	11.0				565		
		40						
	53 —	lau				301		
					8	01.0		
0	54 —				MAtural	61	Sc	
	55							
		20						
	56							
	_	1						
	57 —	70				127		
l	_	176		sl	Strine)			
	58	95				¥	Sc/5m	
	- 99 							
	60							

Bonng	PT	6-10	Date:	25/14	Casing /	4.75"	Core 7 of 7
Logge	r(s):	KT	{	Start Time: 154	5	Finish Time: 1/4	$\frac{1}{10} \text{Core} \frac{1}{10} \frac{1}{10} $
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
60		N	0	Milval 3 Stand	50%	SC/SM	Napl Ctaled 5 1
61	33	Ċ.		(1		No Indication of reasent present build a color
							Some of the NAPL looks black &
62 —							goonwar/coystelline - Rongout Reacting with NAAR
63 —	·						
64							
	58						
65 —				V			
							1.D=65'bys
66							Q
67 —							
68 —							
69							
70							

	Borii	ng ID: PT	2-11	Date:	26/14	Casing / Core Dia. (in):	4.75"/4	V Core		
	Log	ger(s):	KT		Staft Time: 07	30	Finish Time:	Core Recovery (ft): 3/9		
	Core Interval	(teet BGS) PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:		
	- 1 -							G-5 Nos Flowery		
	- 2									
	- 3 -									
	- 4									
	- 5									
l	- 6		N	03	Black	1003				
	- 7						SP			
2	- 8			~	Natura 1	02				
	- 10			er L		¥	CL/SM	9.5-16 CL/SM, dense medium etilf		

	Boring ID: PTC-11			Date: Casing / Core Dia. (in):): 4.75"/4"		¢ ¹¹	Core 2 of 7
	Loggei	r(s):	(T		Start Time: 073	0	Finish Time:	33	0	Core Recovery (ft):
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classificati	ion	Notes:	
0	10		\mathcal{N}	Q7	Neutral	07	CLISA	C	Mixo	Sanda Janet class mostly SC.
	11 —				Í) '		1		
	12									
	13 —									
	14 —									
				_				_		
	15 —									
8								-		
	16						SP SP	-+	1	Schulpha
	47								0054	SAUGATO Sal
	1/									
	18			J		V			10 - 2	
			Y2	462:	Marble	403	Y		10-20 Loose	Sand with Blobs of discolorition. bound and
	19					1				
	20			l l						- 4

	Boring ID: PTC-11			Date: ////////////////////////////////////		Casing / 4:75"/4"		4" Core Z of 7
	Logge	^{r(s):} KT	· · ·	7_	Start Time: 673	<u>30</u>	Finish Time: 33	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
	Core Intervat (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
l	20		77	5022	Mabled bows	5027	SM	20-26 - Murbled color
	21							Not purch streng little to NO sheen
	22 —							Visible
	23 —							
	24 —				Marbledwith			
	25				more reddijh tint			
0	26 —			202	Malticolored	307	Y CLEM	interbolded clauset sale - Sank right and strake Zlag
ŀ	27 —				Along Lawindos			Color changes along laminations
	28		Y	- Y			Ý	
	29 —					ď		
	30		Ň	03	NAPL Strined	1007	GW	clayer gravels with NHPL

PROCESS AREA DNAPL INVESTIGATION PPER HAWTHORN GROUP Beazer-Koppers, FL Project: 117-22013

	Boring ID: FtC-[[Date: Casing /			4.75 "/4	Core 4 of 7	
	Loggei	r(s): k	T		Start	730	Finish G	
	Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:
l	30		N?	7	Stalmer	502	GUER	- Goully denot sat of a labor site Shart me
	31 —				Davk Brown			MARL. NAPL looks black speckled - Miherlozed?
į								Reacted Reagent?
λ	32		- k		Nich (K		
U	33 —				/Vatural			Greany white clayer Stude with angular black course Sinds/1. this No discoloration
	34							
	35							
	36							
12	37							
	38		Ý	¥		¥		Į į
	39							
3	40				V	Y		4)

1

Borin	oring ID: PTC-11 Date: Casing Core D		Casing / Core Dia. (in):	Casing /		Core Log Sheet 5 of 7		
Logg	jer(s):	KT		Start Time: 073	30	Finish Time:	50	Core Recovery (ft): 0.3/1D
Core Interval (feet BGS)	PID screen (ppm)	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
) ⁴⁰ _		Ň		Natural	62	SC		· · · · · · · · · · · · · · · · · · ·
_ 41 -		×	pg	J.	L	4	æ	41 - Creany white changes to an obvious
_		Yes	1063	Rust Red	1003			Ruty Red color
42 -								
-								Surrounds Black NAPL @ 44' 45'
43 –								And in blobs throughof
-								The prosty bed Matrix Teacts with the
44 –			Sog			GW		Weithall Barrow Thria
45			102			50		Reagent doesn't follow planar pattern
-	_							No bedany planes apparent seems to
46 -								Teirel Though Metrix
47								
48 —		\downarrow	V.	\checkmark	V			
_		Y	201	Mosthy dull	606	ŠC.		
49 —				With Down NI	ser l			
- 50				Rust Red				

Boring	Boring ID: Date:		Date:	Casing / Core Di		4.75"/0	Give Core Log Sheet Log of 7		
Loggei	^{r(s):} K	T	/	Start Time: 07	<u>きいい りん (111):</u> ろひ	Finish Time: 08	$\frac{1}{30} = \frac{1}{100} 1$		
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:		
50		<u> </u>	203	Mostly WAR	805	SZ -	48-52.5 Mostly NHPL Stained with occassional vier		
51 —				Striked v/			hel coloring - Mostly unreacted		
52				Kustka					
53			1002	Rost Red	1002		52554.5 - Matrix's Stained Rust Rel		
54			202 1907						
55			107	Mostly Natural	203		54.5-58' Mustly Noticel with Some NAPE Standy less Seagent		
56 —				of NAPL 3 Rust Red			Blub of reacted PAPL? @ 56		
57 —									
58		V V	110	Man	103		FedE Man and Cil Ma		
59			486	Natura/Rec	ynt		Rust Red Blokes of Reagent		
60						4			

Boring ID:		Date: 6/26/14		Casing / Core Dia. (in): 4.75 ^w /4"		141	Core 7 of 7	
Logger	^{r(s):} K	Í.T	ŕ	Start Time: 07	130	Finish Time:		Core 6/7
Core Interval (feet BGS)	PID screen (ppm) internal core	ISGS Reagent Present (Y/N)	NAPL Treated (%)	Color, Hue, Chroma (wet)	Percent Discoloration	USCS Classification	Notes:	
60		Y	10-207	NAPL/Natural	1 50?	SM	Mosth	NAPL from 58-59
61				Rust Red "			Rais	+ Red Coloring throughout in Blobs + lines along edge of core (Arrifact of drilling)
62							j	Reacts with Neutralization Soliton
63 —								
64								
65		\mathbf{V}	\checkmark	V	V	1		
66			·					TD=65
67								
68								
69								
70								

APPENDIX F

FULL-SCALE ISGS INJECTION INTERVALS AND VOLUMES

Injection	Hydrogeologic	Reagent	Total Reagent		
Point	Unit	Volume (gal)	Volume (gal)		
ID001	Surficial	527	527		
16001	Upper Hawthorn	N/A	527		
10002	Surficial	N/A	120		
11002	Upper Hawthorn	139	139		
10003	Surficial	194	10/		
11 003	Upper Hawthorn	N/A	174		
10004	Surficial	222	222		
11 004	Upper Hawthorn	N/A			
10005	Surficial	222	222		
11003	Upper Hawthorn	N/A			
10006	Surficial	221	415		
12000	Upper Hawthorn	194	415		
10007	Surficial	N/A	222		
IP007	Upper Hawthorn	222	222		
IDOOO	Surficial	749	005		
IP008	Upper Hawthorn	56	805		
IP009	Surficial	194	4.4.4		
	Upper Hawthorn	250	444		
IP010	Surficial	278	507		
	Upper Hawthorn	250	527		
10011	Surficial	N/A	150		
IP011	Upper Hawthorn	472	472		
	Surficial	416			
IP012	Upper Hawthorn	N/A	416		
II 012	Surficial	N/A	150		
IP013	Upper Hawthorn	472	472		
TD 0.1.4	Surficial	333	1,013		
IP014	Upper Hawthorn	680			
	Surficial	361	2(1		
IP015	Upper Hawthorn	N/A	361		
	Surficial	389	(0.1		
IP016	Upper Hawthorn	305	694		
	Surficial	N/A	<i></i>		
IP017	Upper Hawthorn	527	527		
770.4.0	Surficial	389			
IP018	Upper Hawthorn	N/A	389		
770.4.0	Surficial	250			
IP019	Upper Hawthorn	250	500		
IDCCC	Surficial	N/A	200		
IP020	Upper Hawthorn	389	389		
IDCCC	Surficial	N/A	100		
IP021	Upper Hawthorn	139	139		
	Surficial	139			
IP022	Upper Hawthorn	N/A	139		

Full-Scale ISGS Injection Invervals and Volumes

Injection	Hydrogeologic	Reagent	Total Reagent		
Point	Unit	Volume (gal)	Volume (gal)		
ID0.23	Surficial	189	550		
11023	Upper Hawthorn	361	550		
10024	Surficial	888	000		
11024	Upper Hawthorn	111	999		
10025	Surficial	222	629		
1F023	Upper Hawthorn	416	030		
10026	Surficial	N/A	629		
1F020	Upper Hawthorn	638	038		
10027	Surficial	111	111		
1F027	Upper Hawthorn	N/A	111		
10029	Surficial	412	(0)(
1P028	Upper Hawthorn	194	606		
10020	Surficial	280	(04		
IP029	Upper Hawthorn	414	694		
10020	Surficial	222	(11		
IP030	Upper Hawthorn	389	611		
10021	Surficial	278	416		
IP031	Upper Hawthorn	139	416		
10022	Surficial	500	740		
IP032	Upper Hawthorn	250	/47		
10022	Surficial	343	002		
IP033	Upper Hawthorn	638	982		
10024	Surficial	283	022		
IP034	Upper Hawthorn	638	922		
10025	Surficial	250	970		
1P035	Upper Hawthorn	611	860		
IP035	Surficial	N/A	520		
IP036	Upper Hawthorn	520			
10027	Surficial	189	328		
IP037	Upper Hawthorn	139			
10020	Surficial	527	1 120		
1P038	Upper Hawthorn	611	1,139		
10020	Surficial	235	022		
1P039	Upper Hawthorn	598	833		
100.40	Surficial	305	016		
IP040	Upper Hawthorn	611	916		
100.41	Surficial	222			
IP041	Upper Hawthorn	555	///		
100.42	Surficial	167	0(1		
IP042	Upper Hawthorn	694	861		
100.42	Surficial	N/A	222		
1P043	Upper Hawthorn	333	333		
IDO 4.4	Surficial	N/A	200		
1P044	Upper Hawthorn	389	389		

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent		
Point	Unit	Volume (gal)	Volume (gal)		
ID0/15	Surficial	194	111		
11043	Upper Hawthorn	250	444		
10046	Surficial	489	1 166		
11 040	Upper Hawthorn	677	1,100		
10047	Surficial	694	1 027		
1104/	Upper Hawthorn	333	1,027		
10049	Surficial	389	666		
11 040	Upper Hawthorn	278	000		
10040	Surficial	305	1 2 2 2		
11049	Upper Hawthorn	1,027	1,332		
10050	Surficial	703	1.906		
19050	Upper Hawthorn	1,194	1,896		
10051	Surficial	111	022		
IP051	Upper Hawthorn	722	833		
10072	Surficial	N/A	120		
IP052	Upper Hawthorn	139	139		
100.52	Surficial	250	250		
IP053	Upper Hawthorn	N/A	250		
IP054	Surficial	305	170		
	Upper Hawthorn	167	472		
10055	Surficial	N/A	5 00		
IP055	Upper Hawthorn	500	500		
ID056	Surficial	N/A	5 00		
IP056	Upper Hawthorn	500	500		
10057	Surficial	472	1 120		
IP05/	Upper Hawthorn	666	1,138		
10050	Surficial	472	1 249		
1P058	Upper Hawthorn	777	1,249		
10050	Surficial	N/A	111		
IP059	Upper Hawthorn	111			
100/0	Surficial	N/A	167		
IP060	Upper Hawthorn	167	167		
	Surficial	228	1.007		
IP061	Upper Hawthorn	799	1,027		
ID0 (O	Surficial	444	016		
IP062	Upper Hawthorn	472	916		
ID 0 (A	Surficial	N/A	0.50		
IP063	Upper Hawthorn	972	972		
TRAC :	Surficial	139			
1P064	Upper Hawthorn	527	666		
	Surficial	611			
IP065	Upper Hawthorn	861	1,471		
	Surficial	240			
IP066	Upper Hawthorn	926	1,166		

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent		
Point	Unit	Volume (gal)	Volume (gal)		
10067	Surficial	N/A	527		
11007	Upper Hawthorn	527	527		
10068	Surficial	N/A	130		
11008	Upper Hawthorn	139	139		
10060	Surficial	N/A	120		
11 009	Upper Hawthorn	139	139		
10070	Surficial	167	111		
1F070	Upper Hawthorn	278	444		
10071	Surficial	111	1 240		
1F0/1	Upper Hawthorn	1,138	1,249		
10072	Surficial	N/A	(11		
IP072	Upper Hawthorn	611	611		
10072	Surficial	N/A	4.4.4		
IP0/3	Upper Hawthorn	444	444		
10074	Surficial	194	1 1 1 0		
IP0/4	Upper Hawthorn	916	1,110		
IP075	Surficial	N/A	222		
	Upper Hawthorn	333	333		
IP076	Surficial	N/A	(20		
	Upper Hawthorn	638	038		
10077	Surficial	N/A	170		
IP0//	Upper Hawthorn	472	472		
10070	Surficial	N/A	416		
IP078	Upper Hawthorn	416	416		
10070	Surficial	194	000		
IP079	Upper Hawthorn	694	888		
IP079	Surficial	172	866		
1P080	Upper Hawthorn	694			
10091	Surficial	N/A	629		
11081	Upper Hawthorn	638	638		
10092	Surficial	250	022		
11082	Upper Hawthorn	583	833		
10093	Surficial	244	1 166		
11085	Upper Hawthorn	922	1,100		
10094	Surficial	N/A	555		
1P084	Upper Hawthorn	555	333		
10095	Surficial	N/A	167		
1P085	Upper Hawthorn	167	107		
	Surficial	N/A	200		
12080	Upper Hawthorn	389	289		
10007	Surficial	N/A	200		
1908/	Upper Hawthorn	389	389		
IDOOO	Surficial	N/A	<i></i>		
12099	Upper Hawthorn	555	222		

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent		
Point	Unit	Volume (gal)	Volume (gal)		
IDU80	Surficial	N/A	583		
11 009	Upper Hawthorn	583	565		
IDUOU	Surficial	167	583		
11 090	Upper Hawthorn	416	565		
ID001	Surficial	111	999		
11 0 9 1	Upper Hawthorn	888			
10002	Surficial	N/A	527		
11 092	Upper Hawthorn	527	527		
10003	Surficial	N/A	280		
11 095	Upper Hawthorn	389	389		
10004	Surficial	N/A	527		
11094	Upper Hawthorn	527	527		
10005	Surficial	363	1 4 4 2		
16093	Upper Hawthorn	1,080	1,445		
10004	Surficial	172	590		
1P090	Upper Hawthorn	416	389		
IP097	Surficial	305	960		
	Upper Hawthorn	555	860		
IP098	Surficial	171	072		
	Upper Hawthorn	801	972		
ID000	Surficial	167	777		
1P099	Upper Hawthorn	611	///		
ID100	Surficial	250	072		
IP100	Upper Hawthorn	722	972		
ID101	Surficial	N/A	1.055		
IP101	Upper Hawthorn	1,055	1,035		
ID102	Surficial	N/A	333		
IP102	Upper Hawthorn	333	333		
ID102	Surficial	136	552		
11105	Upper Hawthorn	416			
ID104	Surficial	111	022		
11104	Upper Hawthorn	722	833		
ID105	Surficial	N/A	444		
11103	Upper Hawthorn	444	444		
ID106	Surficial	N/A	527		
IP100	Upper Hawthorn	527	527		
ID107	Surficial	194	005		
IP107	Upper Hawthorn	611	803		
10100	Surficial	194	620		
18108	Upper Hawthorn	444	038		
ID100	Surficial	N/A	750		
18109	Upper Hawthorn	750	/30		
ID110	Surficial	N/A	1 002		
18110	Upper Hawthorn	1,083	1,083		

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
ID111	Surficial	N/A	205	
11 1 1 1	Upper Hawthorn	305	303	
IP112	Surficial	462	1 629	
	Upper Hawthorn	1,176	1,038	
ID112	Surficial	111	555	
11115	Upper Hawthorn	444	333	
ID114	Surficial	278	740	
11114	Upper Hawthorn	472	/49	
ID115	Surficial	N/A	961	
11115	Upper Hawthorn	861	801	
ID116	Surficial	194	611	
IPIIO	Upper Hawthorn	416	011	
ID117	Surficial	139	000	
IP117	Upper Hawthorn	861	999	
ID110	Surficial	N/A	000	
IP118	Upper Hawthorn	999	999	
ID110	Surficial	N/A	470	
11119	Upper Hawthorn	472	472	
ID120	Surficial	111	444	
IP120	Upper Hawthorn	333	444	
ID121	Surficial	167	(11	
IP121	Upper Hawthorn	444	011	
10122	Surficial	230	701	
IP122	Upper Hawthorn	472	/01	
10102	Surficial	N/A	555	
IP125	Upper Hawthorn	555	222	
10124	Surficial	N/A	416	
11124	Upper Hawthorn	416	410	
ID125	Surficial	N/A	629	
11123	Upper Hawthorn	638	038	
ID126	Surficial	N/A	740	
11 120	Upper Hawthorn	749	749	
ID127	Surficial	N/A	805	
11 127	Upper Hawthorn	805	805	
ID120	Surficial	N/A	416	
IP128	Upper Hawthorn	416	416	
ID120	Surficial	N/A	205	
11129	Upper Hawthorn	305	505	
IP130	Surficial	472	750	
	Upper Hawthorn	278	/30	
ID121	Surficial	247	005	
11131	Upper Hawthorn	559	605	
ID122	Surficial	443	1 250	
11132	Upper Hawthorn	916	1,339	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
IP133	Surficial	N/A	583	
11133	Upper Hawthorn	583	303	
IP134	Surficial	N/A	750	
	Upper Hawthorn	750	750	
ID125	Surficial	139	072	
11155	Upper Hawthorn	833	912	
ID136	Surficial	500	1.055	
11150	Upper Hawthorn	555	1,055	
ID127	Surficial	N/A	592	
11137	Upper Hawthorn	583	383	
ID120	Surficial	N/A	111	
11138	Upper Hawthorn	111	111	
ID120	Surficial	305	205	
11139	Upper Hawthorn	N/A	305	
ID140	Surficial	162	440	
IP140	Upper Hawthorn	278	440	
ID141	Surficial	N/A	1 1 1 0	
IP141	Upper Hawthorn	1,110	1,110	
ID142	Surficial	N/A	205	
IP142	Upper Hawthorn	305	305	
ID142	Surficial	N/A	470	
IP143	Upper Hawthorn	472	472	
ID144	Surficial	167	005	
IP144	Upper Hawthorn	638	805	
ID145	Surficial	N/A	250	
IP145	Upper Hawthorn	250	250	
ID146	Surficial	N/A	120	
IP140	Upper Hawthorn	139	139	
ID147	Surficial	111	250	
IP147	Upper Hawthorn	139	250	
ID140	Surficial	472	905	
IP148	Upper Hawthorn	333	803	
ID140	Surficial	922	022	
IP149	Upper Hawthorn	N/A	922	
ID150	Surficial	416	1.592	
1P150	Upper Hawthorn	1,166	1,582	
IP151	Surficial	N/A	555	
	Upper Hawthorn	555	333	
ID150	Surficial	N/A	777	
IP152	Upper Hawthorn	777	///	
ID152	Surficial	500	016	
18133	Upper Hawthorn	416	910	
ID154	Surficial	N/A	777	
18154	Upper Hawthorn	777	///	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
ID155	Surficial	888	888	
11 1 3 3	Upper Hawthorn	N/A	000	
IP156	Surficial	861	1 221	
	Upper Hawthorn	361	1,221	
ID157	Surficial	N/A	888	
11 157	Upper Hawthorn	888	000	
ID158	Surficial	167	638	
11138	Upper Hawthorn	472	038	
ID150	Surficial	N/A	628	
11 1 3 9	Upper Hawthorn	638	038	
ID160	Surficial	N/A	222	
11100	Upper Hawthorn	333	222	
ID161	Surficial	N/A	592	
11101	Upper Hawthorn	583	383	
ID162	Surficial	N/A	120	
IP162	Upper Hawthorn	139	139	
ID162	Surficial	101	167	
11105	Upper Hawthorn	66	107	
ID164	Surficial	500	500	
IP104	Upper Hawthorn	N/A	500	
ID165	Surficial	916	016	
11105	Upper Hawthorn	N/A	910	
ID166	Surficial	666	2.27(
IP100	Upper Hawthorn	1,610	2,270	
ID1/7	Surficial	111	044	
IP167	Upper Hawthorn	833	944	
ID1 (0	Surficial	N/A	1 104	
11100	Upper Hawthorn	1,194	1,194	
ID160	Surficial	N/A	592	
11109	Upper Hawthorn	583	383	
ID170	Surficial	107	107	
11170	Upper Hawthorn	N/A	107	
ID171	Surficial	278	279	
11 1 / 1	Upper Hawthorn	N/A	278	
ID172	Surficial	458	1.007	
IP172	Upper Hawthorn	638	1,097	
IP173	Surficial	278	1 4 4 2	
	Upper Hawthorn	1,166	1,445	
ID174	Surficial	N/A	777	
111/4	Upper Hawthorn	777	111	
ID175	Surficial	N/A	500	
181/2	Upper Hawthorn	500	500	
ID17(Surficial	N/A	800	
111/0	Upper Hawthorn	899	899	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
ID177	Surficial	N/A	151	
IF 1 / /	Upper Hawthorn	151	131	
IP178	Surficial	472	172	
	Upper Hawthorn	N/A	472	
ID170	Surficial	222	555	
111/9	Upper Hawthorn	333	555	
10190	Surficial	838	2.526	
11180	Upper Hawthorn	1,688	2,320	
ID101	Surficial	722	1 221	
112181	Upper Hawthorn	500	1,221	
ID102	Surficial	444	1 221	
IP182	Upper Hawthorn	887	1,331	
ID102	Surficial	181	1 4 4 4	
IP183	Upper Hawthorn	1,262	1,444	
ID104	Surficial	222	222	
IP184	Upper Hawthorn	N/A	222	
ID105	Surficial	250	200	
IP185	Upper Hawthorn	139	389	
ID106	Surficial	257	451	
IP186	Upper Hawthorn	194	451	
10107	Surficial	832	1 (02	
IP187	Upper Hawthorn	861	1,693	
ID100	Surficial	N/A	1 077	
IP188	Upper Hawthorn	1,277	1,277	
ID (CC	Surficial	278	1.004	
11189	Upper Hawthorn	817	1,094	
ID100	Surficial	N/A	120	
11190	Upper Hawthorn	139	139	
ID101	Surficial	N/A	250	
11191	Upper Hawthorn	250	230	
ID102	Surficial	N/A	104	
11192	Upper Hawthorn	194	194	
ID102	Surficial	999	1 217	
11195	Upper Hawthorn	218	1,217	
ID104	Surficial	194	527	
IP194	Upper Hawthorn	333	527	
IP195	Surficial	938	1 740	
	Upper Hawthorn	811	1,/49	
ID104	Surficial	842	2 276	
11190	Upper Hawthorn	1,435	2,276	
ID107	Surficial	528	1,360	
1119/	Upper Hawthorn	832		
10100	Surficial	244	016	
IP198	Upper Hawthorn	672	916	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
ID100	Surficial	972	1 240	
11199	Upper Hawthorn	278	1,249	
IP200	Surficial	111	111	
	Upper Hawthorn	N/A	111	
10201	Surficial	302	202	
1F201	Upper Hawthorn	N/A	302	
10202	Surficial	844	044	
11 202	Upper Hawthorn	99	244	
10203	Surficial	583	592	
11203	Upper Hawthorn	N/A	383	
10204	Surficial	182	(11	
IP204	Upper Hawthorn	429	011	
10205	Surficial	N/A	111	
1P205	Upper Hawthorn	111	111	
10207	Surficial	70	250	
IP206	Upper Hawthorn	180	250	
10207	Surficial	916	1 221	
IP207	Upper Hawthorn	305	1,221	
10200	Surficial	167	270	
IP208	Upper Hawthorn	111	278	
10200	Surficial	1,027	1 41 6	
IP209	Upper Hawthorn	389	1,416	
10210	Surficial	888	1 1 2 0	
IP210	Upper Hawthorn	250	1,138	
ID011	Surficial	N/A		
IP211	Upper Hawthorn	666	000	
IDA1A	Surficial	250	207	
IP212	Upper Hawthorn	57	307	
ID212	Surficial	305	205	
IP215	Upper Hawthorn	N/A	305	
10214	Surficial	512	592	
IP214	Upper Hawthorn	71	385	
10215	Surficial	694	072	
IP215	Upper Hawthorn	278	972	
10216	Surficial	146	200	
IP216	Upper Hawthorn	243	389	
10017	Surficial	122	2(1	
IP217	Upper Hawthorn	139	261	
10010	Surficial	N/A	(04	
1P218	Upper Hawthorn	694	694	
ID210	Surficial	139	120	
1219	Upper Hawthorn	N/A	139	
10220	Surficial	146	146	
1P220	Upper Hawthorn	N/A	140	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
10221	Surficial	638	1.055	
117221	Upper Hawthorn	416	1,035	
IP222	Surficial	888	1 592	
	Upper Hawthorn	694	1,382	
10222	Surficial	N/A	222	
117225	Upper Hawthorn	333	333	
10224	Surficial	213	212	
117224	Upper Hawthorn	N/A	215	
10225	Surficial	111	111	
117223	Upper Hawthorn	N/A	111	
10226	Surficial	N/A	120	
IP220	Upper Hawthorn	139	139	
10227	Surficial	302	202	
IP227	Upper Hawthorn	N/A	302	
10220	Surficial	139	205	
IP228	Upper Hawthorn	167	305	
10220	Surficial	191	(20)	
IP229	Upper Hawthorn	448	639	
10220	Surficial	N/A	205	
IP230	Upper Hawthorn	305	305	
10221	Surficial	N/A	104	
IP231	Upper Hawthorn	194	194	
10000	Surficial	N/A	104	
IP232	Upper Hawthorn	194	194	
IDCCC	Surficial	N/A	2.61	
IP233	Upper Hawthorn	361	301	
10224	Surficial	N/A	111	
IP234	Upper Hawthorn	111	111	
10225	Surficial	N/A	111	
1P235	Upper Hawthorn	111	111	
10226	Surficial	N/A	250	
1P230	Upper Hawthorn	250	250	
10227	Surficial	278	270	
1P237	Upper Hawthorn	N/A	278	
10220	Surficial	N/A	222	
IP238	Upper Hawthorn	222	222	
IP239	Surficial	N/A	777	
	Upper Hawthorn	777	111	
102.40	Surficial	N/A	270	
1P240	Upper Hawthorn	278	278	
10041	Surficial	111	111	
18241	Upper Hawthorn	N/A	111	
102.42	Surficial	N/A	111	
18242	Upper Hawthorn	111	111	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

Injection	Hydrogeologic	Reagent	Total Reagent	
Point	Unit	Volume (gal)	Volume (gal)	
IP243	Surficial	N/A	416	
	Upper Hawthorn	416	410	
ID244	Surficial	N/A	416	
11/244	Upper Hawthorn	416	410	
IP245	Surficial	N/A	000	
11 243	Upper Hawthorn	999	999	
10246	Surficial	N/A	777	
11/240	Upper Hawthorn	777	///	
10247	Surficial	N/A	444	
11/247	Upper Hawthorn	444	444	
10249	Surficial	N/A	205	
117240	Upper Hawthorn	305	303	
10240	Surficial	N/A	167	
11249	Upper Hawthorn	167	107	
IP250	Surficial	N/A	250	
	Upper Hawthorn	250	230	
IP251	Surficial	N/A	222	
11 231	Upper Hawthorn	333	555	
10252	Surficial	N/A	777	
11 232	Upper Hawthorn	777	///	
IP253	Surficial	N/A	280	
1233	Upper Hawthorn	389	509	
280NI/190E	Surficial	N/A	555	
380IN/180E	Upper Hawthorn	555	333	
Total	Surficial	51,809	166 571	
Total	Upper Hawthorn	114,762	100,371	

Full-Scale ISGS Injection Invervals and Volumes (cont'd)

N/A = Not Applicable

APPENDIX G

LABORATORY ANALYTICAL REPORT

Service Request No: J1402025

April 09, 2014

Ms. Angela Gatchie Field and Technical Services, LLC 200 Third Avenue Carnegie, PA 15106

Laboratory Results for: Gainesville March 2014 UIC GW Monitoring/OM-0450-14

Dear Ms. Gatchie:

Enclosed are the results of the sample(s) submitted to our laboratory on March 19, 2014. For your reference, these analyses have been assigned our service request number **J1402025**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at Craig.Myers@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Craig Myers Project Manager

Page 1 of 523

ADDRESS 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 PHONE 904-739-2277 FAX 904-739-2011 ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTORR

TABLE OF CONTENTS

ALS Lab Reference No.: J1402025 Non CLP Tier IV (w/ Raw Data)

	No.
Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Identification Cross-Reference.	4
Data Qualifiers	5
Acronyms	6
Chain of Custody Documentation	7
Summary Package	
Metals	
General Chemistry and Physical Parameters	
Validation Package	134

Validation Packag	зе	134
Metals		
General C	Themistry and Physical Parameters	

This report contains a total of 523 pages

Page

ALS ENVIRONMENTAL, INC.

Client:Beazer East, Inc.Service Request No.:J1402025Project:Gainesville March 2014 UIC GW MonitoringDate Received:03/19/2014Sample Matrix:WaterDate Received:03/19/2014

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV, validation deliverables including all summary forms and associated raw data. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Seven water samples were received for analysis at ALS Environmental on 03/19/2014. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at $\leq 6^{\circ}$ C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Metals Analyses:

Method 6010B: The control criterion for the serial dilution analysis of Total Aluminum and Iron for sample J1402025-007 is not applicable. The concentration of the analyte in the parent sample is less than 10x the reporting limit. No further corrective action was required.

Method 6010B: The control criterion for the serial dilution analysis of Dissolved Antimony, Arsenic, Cadmium, Chromium, and Molybdenum for sample J1402025-007 and Dissolved Aluminum for sample J1402025-002 is not applicable. The concentration of the analyte in the parent sample is less than 10x the reporting limit. No further corrective action was required.

General Chemistry Analyses:

No significant data anomalies were noted with this analysis.

Approved by

Date
\sim

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
J1402025-001	GAIN-M-25A-031814	3/18/14	10:53
J1402025-002	GAIN-M-36B-031814	3/18/14	11:49
J1402025-003	GAIN-HG-24S-031814	3/18/14	13:35
J1402025-004	GAIN-M-25B-031814	3/18/14	14:28
J1402025-005	GAIN-HG-33S-031914	3/19/14	08:41
J1402025-006	GAIN-HG-34S-031914	3/19/14	09:28
J1402025-007	GAIN-HG-22D-031914	3/19/14	11:15

4

Data Qualifiers

Inorganic Data

* The result is an outlier. See case narrative.

- # The control limit criteria are not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.

Metals Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The result was determined by Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- A The tentatively identified compound is a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria were exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides)
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Petroleum Hydrocarbon Specific

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Chain of Custody Documentation

9143 Philips Highway, Suite 200 Jacksonville, Florida 32256 Phone: (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

100377									Notes:	A CONTRACTOR OF A CONT		adrian may observe the second and the second of the second and the second and the second and the second and the									Page 1 of 1	
KEF.#	Beazer East, Inc.	(412) 706-2278	sciark.2006@1-ts.com															S	Janos	-ver	7601 M	
	Client:	Contact:																R	H	J	, FI. W	
RECORD/LABORA REQUEST FORM	Field & Technical Services	200 Third Avenue	Carnegle, PA 15100	(412) 279-3363													by: Turnaround Requirements	Rush	ho 105	Standard X	424	
CUSTODY F	Company:	Address:				s: JAT	SIQ_DA_SJATƏM OT_DA_SJATƏM	HNO3 HNO3		ба 4а		4 4	iku da da	lin ka	ба бе бе	44 44	Relinguished t	A Alle	Name: Nrc	AC.	5.109/04) Nia
CHAIN OF	ЗW				ring_001	Analysis sis binonde	D_100D_80T_Hq	Preservative None	Total Bottle Count		3	e	<i>м</i>	3	m	3		EPC Signatu	Printed		3.3 Date/Tin	
	esville March 2014 UIC (itoring	-0450-14	mora)EX	rch 2014 UIC GW Monito	Sample Identification			na mar sa na sa na	GAIN-M-25A-031814	CAIN-M-36B-031814	GAIN-HG-24S-031814	GAIN-M-25B-031814	GAIN-HG-33S-031914	GAIN-HG-34S-031914	GAIN-HG-22D-031914	Religionary	Signatures MM	Printed Marme: //	The A	Data/Time://///	
	Gair Mon	NO O	Š		Ma		15112200 0022000000000000000000000000000			A0	AQ	AQ	AQ	AQ	AQ	AQ	Vacana and a survey of the sur	Pull	neroda i si tanan-ozolovoldi sussionisti		\$4 5	(d
<u></u>	ω.	iber:		ethod		Samp Ting b	59°011127.4511127.051101012.0500013.45111			1053	1149	1335	1428	0841	0928	1115	ld peysint	R.C	n Clark	2	9/2014 125	/ 0
	Project Nam	Project Nur	ranoi aini y.	Shipment M	Program:	Sample Date				03/18/2014	03/18/2014	03/18/2014	03/18/2014	03/19/2014	03/19/2014	03/19/2014	Relinc	signature: Sec.	Printed Name:		Date/Time: 03/1	

lient:	Rear	<u>~</u>	Service Reque	st #:	NU	Dar	241	1
roject:	000-01		R		"Logonado de la composición de la compo			900 ⁴
ooler rec	eived on <u>3.</u>	<u>a.u.</u>	and opened on	9.10	1. YBy	SR.		
ourief	RALS UPS FEDE	X Client Othe	r	Airbill #				
1	Were custody seals of	on outside of cooler	r?		Yes	No		
	If yes, how many and	I where?			(#: <u>\</u> on	lid)	other	
2	Were seals intact and	l signature and dat	e correct?		Yes	No	N/A	
3	Were custody papers	properly filled out	t?		Yes	No	N/A	
4	Temperature of cooler	(s) upon receipt (Sho	ould be > 0°C and < 6°C)	2.7			-	
5	Thermometer ID				11			
6	Temperature Blank I	Present?			Yes	No		
7	Were Ice or Ice Pack	s present			Tce	Ice Packs	5	No
8	Did all bottles arrive	in good condition	(unbroken, etc)?		Yes	No	N/A	
9	Type of packing mat	erial present			Netting	Vial Holde	r Bubble	: Wrap
					Paper	Styrofoam	Other	N/A
10	Were all bottle labels	s complete (sample	e ID, preservation, e	tc)?	Yes	No	N/A	
11	Did all bottle labels a	and tags agree with	o custody papers?		Yes	No	N/A	
12	Were the correct bot	tles used for the te	ests indicated?		Yes	No	N/A	
13	Were all of the preserved	bottles received with	the appropriate preserva	tive?	Yes	No	N/A	
4	(HNO3 pH<2) H2SO4 Reservative additions noted be	pH<2 ZnAc2/Na	aOH pH>9 NaOH	pH>12	HCl pH<2			
14	Were all samples rec	eived within analy	sis holding times?		Yes	No	N/A	
15	Were all VOA vials free	of air bubbles? If prese	ent, note below		Yes	No	<u>(N/A)</u>	- Digg
16	Where did the bottle	s originate?			ALS	Client		
	Sample ID	Reagent	Lot #	ml add	ed Initials I	Date/Time		
						danski dala dan coliki adamadan in		
							1	
							-	
							-	
							-	
			-07/0-201010-18/00-00-00-00-00-00-00-00-00-00-00-00-00-				-	
ş ş°,*	, 3/ 1		· · · · · · · · · · · · · · · · · · ·		l			
dditiona	comments and/or expl	anation of all discr	repancies noted abor	ve:			2002.02.00.000000000000000000000000000	
				00000.0000.0000.0000.0000.0000.0000.000		a na sa		

Client approval to run samples if discrepancies noted:

Date:

	Note that p	n is cne(ok and m	ieers me	requirec	ulo ud r	tenon iis	lea In un	s conum	Ineau	annes.	S OTHERWIS	e noteo	ON THE C	DOLET FO	CIDE TOL										
-																										
ntainer -	40mL 40r	1L 40mL G	125mL1	P F	5mL125	mL250r	71250m	LI250mL	P P	P P	0m1250	ml500ml	500mL	500mL50	0mL5001 P G	비구	≓∣⊶	ر ا	<u>ب</u> ان	15	G 4	02 80 G 60	C 1602	P 100ml	P R	ISC.
Serve	DH NA	Na2 S203	N/A	HCI H25	SO4 HNC	A/N EC	H2SO4	HND3	ZnAc2/ NaOH N	AOH Noe'	NH M	D3 N/A	Î	12SO4 HI	VO3 N//	AIN V	HNO3	N/A	H CH	2504	2	AN MA	NB	Na2 S203	NIA	
d. pH	N/A <2	NA	N/A	<2×	2	N/N Z	0	22	6<	>12		2 N/A	8	-2	<2 NJ	A/N P	2	NIA	Ŷ	2	V/A	/A N/P	NA	NIA	NIA	3/A
nple #	-				, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	-							,		•	* **							1			
····																										
															~	~										
0 <															1/	458 101										
4 1					-										1											
ι Γρ															1											
in in in															1											
															Å											
φ																										
n ç																										
2 ;																		Ť								
<u>, i i i i</u>																										
2 -																										
+ u																										
0 9																										
2 5																										
- 02			1																							
19																										
20																										
5																										
22																										
33																										
24																										
25																										
<u>5</u> 0										<u>and</u>																
27																										
28																									<u></u>	
29 E																										
30																										
31																										
32										<u></u>																
33																										
34																										
35																							11:11			
36																										
37																										
38													Ĩ													
39										<u></u>																
ş									-				Ì													

Jacksonville Laboratory Condition Upon Receipt - Sample pH

SMF-2 Page 1 of 1

6 : VUA pH checks are perform CUR Preservation Checklist

10/11/2013

Summary Package

9143 Philips Highway, Suite 200 Jacksonville, Florida 32256 Phone: (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

Inorganic Analysis: <u>Metals</u>

Summary Package

Sample and QC Results

Total Metals - COVER PAGE -INORGANIC ANALYSIS DATA PACKAGE

Client: B	eazer East, Inc.						
SDG No.:	J1402025	Method Type:	6010B/602	0/74		SOW No.:	
Contract:	OM-0450-14	Lab Code:	ALJCK	Case No.:	84.84.850000 1991	SAS No.:	
	Lab Sample ID	Client Sample	ID		QC Des	cription	
	J1402025-001	GAIN-M-25A-0	31814	*******		anten de la ministra de la companya	
	J1402025-002	GAIN-M-36B-0	31814				
	J1402025-003	GAIN-HG-24S-	031814				
	J1402025-003S	GAIN-HG-24S-	031814S		Matrix S	spike	
	J1402025-003SD	GAIN-HG-24S-	031814SD		Matrix S	spike Duplicate	
	J1402025-004	GAIN-M-25B-0	31814				
	J1402025-005	GAIN-HG-33S-	031914				
	J1402025-006	GAIN-HG-34S-	031914				
	J1402025-007	GAIN-HG-22D-	-031914				
	J1402025-007S	GAIN-HG-22D-	<u>-031914S</u>		Matrix S	Spike	
	J1402025-007SD	GAIN-HG-22D-	-031914SD		Matrix S	pike Duplicate	
Vere ICP	interelement cor	rections appl	ied?	Ve	s/No	Ves	
JOLO LOL		cecerono appr	1 CU .	10	.57 110	100	#100000-01-01-00-00-00-00-00-00-00-00-00-
Vere ICP If ve	background corrects - were raw data	ctions applie	d? efore	Ye	s/No	Yes	
appli	cations of backgr	cound correct.	ions?	Y	es/No	No	

Comments: ____ Perkin Elmer MSF program is used for IEC corrections

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Onthe	Name:	Craig Myers
Date:	4/8/14	Title:	Project Manager

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East, Inc.		SDO	No.:	<u>J14020</u>	25	Metho	d Type:			
Sample ID: J1402025-001					Client ID: (GAIN-M-2	5A-031814			
Matrix: WATER	Date Re	ceived:	3/	19/2014	Level:	LC)W			
% Solids:	Sample	Wt/Vol:	51	0.0	- Final Vol	: 50	0.0			
Prep Batch ID: 204592	2			rep Date:	3/21/20	14				
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	192	ug/L			6010B	11	100	1.00	3/21/2014	20:24:50
Antimony	1.2	ug/L			6020	0.160	1.0	1.00	3/24/2014	18:08
Arsenic	1.2	ug/L			6020	0.42	1.0	1.00	3/24/2014	18:08
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:08
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:08
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:08
Iron	265	ug/L			6010B	2.5	100	1.00	3/21/2014	20:24:50
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:08
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:24:50
Manganese	0.5	ug/L	i		6020	0.1	2.0	1.00	3/24/2014	18:08
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:33:54
Molybdenum	2.80	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:08
Selenium	уновны о Уронани	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:08
Sodium	1610	ug/L			6010B	29	500	1.00	3/21/2014	20:24:50
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:08

Comments:

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East, In		SDG	S No.:	J14020	25	Metho	d Type:			NORMOTO 2014 NORMATING AND
Sample ID: J1402025-0)02				Client ID: (GAIN-M-3	6B-031814			
Matrix: WATER	Date Re	ceived:	3/	19/2014	Level:	LC)W	Processes of		
% Solids:	Sample	Wt/Vol:	5	0.0	Final Vol	: 5	0.0			
Prep Batch ID: 204	4592		F	rep Date:	3/21/20	14				
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	96	ug/L	I		6010B	11	100	1.00	3/21/2014	20:29:43
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:13
Arsenic	0.78	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:13
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:13
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:13
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:13
Iron	909	ug/L			6010B	2.5	100	1.00	3/21/2014	20:29:43
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:13
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:29:43
Manganese	27	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:13
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:35:03
Molybdenum	2.30	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:13
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:13
Sodium	6740	ug/L			6010B	29	500	1.00	3/21/2014	20:29:43
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:13

Comments:

•_____•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East, Inc	*	SDG	No.:	J14020	25	Metho	d Type:			***********
							240.021014			
Sample ID: J1402025-0	03				Client ID: (JAIN-HG-	248-031814		ing in the state of the first state of the	
Matrix: WATER	Date Re	ceived:	3/	19/2014	Level:)W	eluilpinelph		
% Solids:	Sample	Wt/Vol:	5	0.0	Final Vol	: 50	0.0			
Prep Batch ID: 204	1592		P	rep Date:	3/21/20	14				
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	68	ug/L	I		6010B	11	100	1.00	3/21/2014	20:34:36
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:18
Arsenic	2.7	ug/L			6020	0.42	1.0	1.00	3/24/2014	18:18
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:18
Cadmium	0.090	ug/L	i		6020	0.090	0.400	1.00	3/24/2014	18:18
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:18
Iron	830	ug/L			6010B	2.5	100	1.00	3/21/2014	20:34:36
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:18
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:34:36
Manganese	26	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:18
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:36:12
Molybdenum	5.70	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:18
Selenium	years years	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:18
Sodium	5420	ug/L			6010B	29	500	1.00	3/21/2014	20:34:36
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:18

Comments:

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East, Inc.		SDC	5 No.:	J14020	25	Metho	d Type:			
Sample ID: J1402025-004					Client ID: (GAIN-M-2	5B-031814			
Matrix: WATER	Date Re	eceived:	3/	19/2014	Level:)W	594540504005r		
% Solids:	Sample	Wt/Vol:	5	0.0	Final Vol	: 50	0.0			
Prep Batch ID: 204592)		F	rep Date:	3/21/20	14				
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	39	ug/L	I		6010B	11	100	1.00	3/21/2014	20:47:29
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:23
Arsenic	4.0	ug/L			6020	0.42	1.0	1.00	3/24/2014	18:23
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:23
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:23
Chromium	0.30	ug/L	i		6020	0.18	1.0	1.00	3/24/2014	18:23
Iron	286	ug/L			6010B	2.5	100	1.00	3/21/2014	20:47:29
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:23
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:47:29
Manganese	63	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:23
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:47:01
Molybdenum	0.28	ug/L	U		6020	0.28	2.00	1.00	3/24/2014	18:23
Selenium	1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:23
Sodium	17100	ug/L			6010B	29	500	1.00	3/21/2014	20:47:29
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:23

Comments:

.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J14020	25-005				Client ID: (GAIN-HG-:	33S-031914			
Matrix: WATER	Date R	eceived:	3/	19/2014	Level:)W			
% Solids:	Sample	Wt/Vol:	5	0.0	Final Vol	: .5().0			
Prep Batch ID:	204592		P	rep Date:	3/21/20	14				
			trebeckilde endersen.				*****		Anal	ytical
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum	304	ug/L			6010B	11	100	1.00	3/21/2014	20:52:22
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:38
Arsenic	0.78	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:38
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:38
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:38
Chromium	0.32	ug/L	i		6020	0.18	1.0	1.00	3/24/2014	18:38
Iron	999	ug/L			6010B	2.5	100	1.00	3/21/2014	20:52:22
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:38
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:52:22
Manganese	28	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:38
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:48:08
Molybdenum	1.80	ug/L	i		6020	0.28	2.00	1.00	3/24/2014	18:38
Selenium	Nu . se	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:38
Sodium	6640	ug/L			6010B	29	500	1.00	3/21/2014	20:52:22
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:38

Comments:

-

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East, Inc.		SDG	i No.:	J14020	25	Metho	d Type:		- Dillingung and a state of the	
Sample ID: J1402025-006					Client ID: (GAIN-HG-	345-031914			
Matrix: WATER	Date Re	l	3/	19/2014	Level	10)W			
	Date Received:			17/2014	LJC V CE.) vv	inionalitement		
% Solids:	Sample	Wt/Vol:	5	0.0	Final Vol	: 50	0.0			
Prep Batch ID: <u>204592</u>			1	rep Date:	3/21/20	14				
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	478	ug/L			6010B	11	100	1.00	3/21/2014	20:57:14
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:43
Arsenic	0.69	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:43
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:43
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:43
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:43
Iron	18	ug/L	I		6010B	2.5	100	1.00	3/21/2014	20:57:14
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:43
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:57:14
Manganese	0.6	ug/L	i		6020	0.1	2.0	1.00	3/24/2014	18:43
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:49:16
Molybdenum	7.50	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:43
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:43
Sodium	11000	ug/L			6010B	29	500	1.00	3/21/2014	20:57:14
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:43

-

Comments:

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East, Inc.		SDC	S No.:	J14020	25	Metho	d Type:			SPECIFIC STREET,
Sample ID: J1402025-007					Client ID: (GAIN-HG-:	22D-031914			
Matrix: WATER	Date Re	eceived:	3/	19/2014	Level:	LC)W			
% Solids:] Sample	Wt/Vol:	5	0.0	- Final Vol	: 5(0.0	damin furthering man		
Prep Batch ID: 20459	2		Prep Date:		3/21/2014			Ex/20010		
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	165	ug/L	<u>,</u>		6010B	11	100	1.00	3/21/2014	21:02:07
Antimony	0.470	ug/L	i		6020	0.160	1.0	1.00	3/24/2014	18:48
Arsenic	0.88	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:48
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:48
Cadmium	15	ug/L			6020	0.090	0.400	1.00	3/24/2014	18:48
Chromium	11	ug/L			6020	0.18	1.0	1.00	3/24/2014	18:48
Iron	927	ug/L			6010B	2.5	100	1.00	3/21/2014	21:02:07
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:48
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	21:02:07
Manganese	16	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:48
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:50:24
Molybdenum	2.10	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:48
Selenium	1.1	ug/L	U		6020	becomes n	2.0	1.00	3/24/2014	18:48
Sodium	2810	ug/L			6010B	29	500	1.00	3/21/2014	21:02:07
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:48

*

Comments:

Client: Beazer East, Inc.		SDG No.:			
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:	SAS No.:	411412000000000000000000000000000000000
Initial Calibration Source:	Inorganic Ventures				
Continuing Calibration Source:	High Purity STDs				

Sample I	Sample ID Analyte	Resu le ID Analyte ug/		True Value ug/L	% Recovery	6 Acceptance very Window (%R)	Method	Analysis Date	Analysis Time	Run Number
ICV										
10 1	Aluminum	50100.00	50000	100	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1	
	Iron	39200.0	40000	98	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1	
	Lithium	5130.00	5000	103	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1	
	Sodium	20600.00	20000	103	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1	
CCV										
	Aluminum	4980.00	5000	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1	
	Iron	5080.0	5000	102	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1	
	Lithium	4970.00	5000	99	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1	
	Sodium	25100.00	25000	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1	
CCV										
	Aluminum	4900.00	5000	98	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1	
	Iron	4980.0	5000	100	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1	
	Lithium	4980.00	5000	100	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1	
	Sodium	25200.00	25000	101	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1	
CCV										
	Aluminum	4890.00	5000	98	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1	
	Iron	4980.0	5000	100	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1	
	Lithium	4980.00	5000	100	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1	
	Sodium	25200.00	25000	101	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1	
CCV										
	Aluminum	5010.00	5000	100	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1	
	Iron	5060.0	5000	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1	
	Lithium	5020.00	5000	100	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1	
	Sodium	25300.00	25000	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1	
CCV										
	Aluminum	4890.00	5000	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1	
	Iron	4900.0	5000	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1	
	Lithium	5040.00	5000	101	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1	
	Sodium	25400.00	25000	102	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1	

Client: Beazer East, Inc.		SDG No.: J1402025				
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:		SAS No.:	
Initial Calibration Source:	Inorganic Ventures					
Continuing Calibration Source:	High Purity STDs					

Sample I	Sample ID Analyte	Result True Value Analyte ug/L ug/L F		% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV									
	Aluminum	4900.00	5000	98	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Iron	4930.0	5000	99	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Lithium	5050.00	5000	101	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Sodium	25400.00	25000	102	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
CCV									
001	Aluminum	4930.00	5000	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Iron	4950.0	5000	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Lithium	5050.00	5000	101	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Sodium	25400.00	25000	102	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
0.017									
CCV	Aluminum	4960.00	5000	00	90.0 110.0	6010D	3/22/2014	00.40	02211441
	Iron	4900.00	5000	100	90.0 - 110.0	6010D	3/22/2014	00.49	032114A1
	Lithium	5080.00	5000	100	90.0 - 110.0	6010D	3/22/2014	00.49	032114A1
	Sodium	25400.00	25000	102	90.0 - 110.0	6010D	2/22/2014	00.49	032114A1
	Sourum	2.5400.00	25000	102	70.0 - 110.0	00100	<i>J12212</i> 014	00.49	032114A1
CCV									
	Aluminum	4980.00	5000	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Iron	4990.0	5000	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Lithium	5110.00	5000	102	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Sodium	25600.00	25000	102	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
ICV									
	Antimony	50.5	50	101	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Arsenic	48.1	50	96	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Beryllium	19.6	20	98	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Cadmium	25.7	25	. 103	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Chromium	50.8	50	102	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Lead	50.4	50	101	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Manganese	50.9	50	102	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Molybdenum	51.4	50	103	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Selenium	51.1	50	102	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Thallium	49.2	50	98	90.0 - 110.0	6020	3/24/2014	17:03	032414A

Client: Beazer East, Inc.		SDG No.:		
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:	
Initial Calibration Source:	High Purity Standards			
Continuing Calibration Source:	Inorganic Ventures	-		

Sample I	D Analyte	Result 7 Analyte ug/L		Result True Value % A Analyte ug/L ug/L Recovery Wi		Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV-	Ysseed									
	Antimony	50.1	50	100	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Arsenic	50.7	50	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Beryllium	24.0	25	96	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Cadmium	20.6	20	103	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Chromium	50.1	50	100	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Lead	25.4	25	102	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Manganese	101.0	100	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Molybdenum	101.0	100	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Selenium	101.0	100	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
	Thallium	10.0	10	100	90.0 - 110.0	6020	3/24/2014	17:28	032414A	
CCV-	2									
001	Antimony	49.5	50	99	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Arsenic	51.5	50	103	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Beryllium	23.6	25	94	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Cadmium	21.0	20	105	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Chromium	50.0	50	100	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Lead	25.6	25	102	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Manganese	102.0	100	102	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Molybdenum	100.0	100	100	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Selenium	102.0	100	102	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
	Thallium	10.0	10	100	90.0 - 110.0	6020	3/24/2014	18:28	032414A	
CCV-	3									
	Antimony	50.3	50	101	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Arsenic	51.6	50	103	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Bervllium	25.1	25	100	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Cadmium	21.2	20	106	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Chromium	50.9	50	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Lead	25.5	25	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Manganese	102.0	100	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Molybdenum	101.0	100	101	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Selenium	102.0	100	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A	
	Thallium	10.1	10	101	90.0 - 110.0	6020	3/24/2014	19:29	032414A	

Client: Beazer East, Inc.			SDG No.:	J1402025	maniman	
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:		SAS No.:	
Initial Calibration Source:	High Purity Standards					
Continuing Calibration Source:	Inorganic Venture	5				

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV-	4	40.0	~ ^	0.0	00.0 110.0	(000	0.001.0001.1	20.20	0004444
	Antimony	49.0	50	98	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Arsenic	51.5	50	103	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Beryllium	26.6	25	106	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Cadmium	20.4	20	102	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Chromium	50.8	50	102	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Lead	25.6	25	102	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Manganese	102.0	100	102	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Molybdenum	101.0	100	101	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Selenium	101.0	100	101	90.0 - 110.0	6020	3/24/2014	20:29	032414A
	Thallium	10.1	10	101	90.0 - 110.0	6020	3/24/2014	20:29	032414A
ICV									
	Mercury	4.97	5	99	90.0 - 110.0	7470A	3/24/2014	19:22	032414C
CCV-	1								
	Mercury	5.02	5	100	80.0 - 120.0	7470A	3/24/2014	19:39	032414C
CCV-	2								
	Mercury	5.03	5	101	80.0 - 120.0	7470A	3/24/2014	19:54	032414C
CCV-	3								
	Mercury	5.01	5	100	80.0 - 120.0	7470A	3/24/2014	20:04	032414C

Total Metals - 2b -CRDL STANDARD FOR AA & ICP

Client: Beazer East, Inc.					SDG				
Contra	act: O <u>M-0450-14</u>		Lab Co	de: <u>ALJCK</u>	Case No:			SAS No.:	
AA CF	RDL Standard Source:				eladorská eladorské e				
ІСР С	RDL Standard Source:	Hig	h Purity STDs						
		<u> </u>							
Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	Method	Analysis Date	Analysis Time	Run Number
MDI									
IVIICI	Aluminum	68.60	100	69	50 - 150	6010B	3/21/2014	18.15	032114A1
	Iron	106.0	100	106	50 - 150	6010B	3/21/2014	18:15	032114A1
	Lithium	98.8	20	99	50 - 150	6010B	3/21/2014	18:15	032114A1
	Sodium	546.00	500	109	50 - 150	6010B	3/21/2014	18:15	032114A1
MRL									
	Antimony	1.07	1	107	50 - 150	6020	3/24/2014	17:13	032414A
	Arsenic	0.66	1	66	50 - 150	6020	3/24/2014	17:13	032414A
	Beryllium	0.44	.5	88	50 - 150	6020	3/24/2014	17:13	032414A
	Cadmium	0.39	.4	98	50 - 150	6020	3/24/2014	17:13	032414A
	Chromium	0.99	1	99	50 - 150	6020	3/24/2014	17:13	032414A
	Lead	0.37	.5	74	50 - 150	6020	3/24/2014	17:13	032414A
	Manganese	2.02	2	101	50 - 150	6020	3/24/2014	17:13	032414A
	Molybdenum	1.93	2	96	50 - 150	6020	3/24/2014	17:13	032414A
	Selenium	1.73	2	86	50 - 150	6020	3/24/2014	17:13	032414A
	Thallium	0.17	.2	85	50 - 150	6020	3/24/2014	17:13	032414A
MRL	0.1								
I V H R & R.J.	Mercury	0.10	.1	100	50 - 150	7470A	3/24/2014	19:25	032414C

Client: B	Beazer East, Inc.				S	DG No.: J140)2025	150055000450000000000000000000000000000	Nacional Antonio Antoni		
Contract:	: OM-0450-14		Lab Code:	ALJCK	C	Case No.:			SAS No.:		
						vensione		-Contactive Research Addressen Ser	2000Cm		-
					, ,						829
Sample II	D Analyta	Result	Acceptance	Conc	MDI	MDI	Mathad	Analysis	Analysis	Run	
Jamhie II		ug/1.		Quai	IVERAL	IVERNEJ I	vietiiou	Date	Inne	R % 63 23	Devisor
ICR											
ICD	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	18.05	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	18:05	032114A1	
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	18:05	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	18:05	032114A1	
									10.05		
CCR											
CCD	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	18:39	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	18:39	032114A1	
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	18:39	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	18:39	032114A1	
CCP											
CCD	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	10.46	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	10.46	032114A1	
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	19.40	032114A1	
	Sodium	35.600	+/-500.000	Ι	29.000	500.000	6010B	3/21/2014	19.46	032114A1	
									19.10		
CCD											
CCD	Aluminum	11.000	+/-100.000	IJ	11.000	100.000	6010B	3/21/2014	20.42	032114A1	
	Iron	2.50	+/-100.00	Ŭ	2.50	100.00	6010B	3/21/2014	20.42	032114A1	
	Lithium	10.0	+/-100.0	Ŭ	10.0	100.0	6010B	3/21/2014	20.42	032114A1	
	Sodium	29.000	+/-500.000	Ū	29.000	500.000	6010B	3/21/2014	20.42	032114A1	
									20.42		
CCB											
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	21.34	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	21.34	032114A1	
									1.JT		
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	21:34	032114A1	

Client: Be	eazer East, Inc.		demonstrate from the content		S	DG No.: J140)2025			
Contract:	OM-0450-14		Lab Code:	ALJCK	<u> </u>	Case No.:		S	AS No.:	
		Result	Accentance	Conc				Analysis	Anolycic	
Sample ID	Analyte	ug/L	Limit	Qual	MDL	MRL	Method	Date	Time	Run
ССВ	Aluminum	11 000	+/-100 000	IJ	11 000	100 000	6010B	3/21/2014	· · · · · ·	032114A1
	Iron	2.50	+/-100.00	Ŭ	2.50	100.00	6010B	3/21/2014	22.22	032114A1
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	22.22	032114A1
	Sodium	35.000	+/-500.000	I	29.000	500.000	6010B	3/21/2014	22.22	032114A1
				-		000000	00102	0.21,2011	<u> </u>	
CCR										
000	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	23:14	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	23:14	032114A1
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	23:14	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	23:14	032114A1
CCB										
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	00:02	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	00:02	032114A1
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/22/2014	00:02	032114A1
	Sodium	29.900	+/-500.000	I	29.000	500.000	6010B	3/22/2014	00:02	032114A1
~~~~										
ССВ	Aluminum	11.000	+/-100.000	Υī	11.000	100.000	60100	3/22/2014	00 #3	02011441
	Iron	2.50	+/-100.000	U U	2 50	100.000	6010D	3/22/2014	00:53	032114A1
	Lithium	10.0	+/-100.00	П	10.0	100.00	6010B	3/22/2014	00:53	032114A1
	Sodium	29.000	+/-500.000	U	29 000	500.000	6010B	3/22/2014	00:53	032114A1
	Souran	29.000	1 500.000	0	29.000	500.000	0010D	5/22/2014	00:53	052114/41
CCB										
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	01:41	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	01:41	032114A1
	Lithium	10.0	+/~100.0	U	10.0	100.0	6010B	3/22/2014	01:41	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	01:41	032114A1

Client: B	eazer East, Inc.		othereside with resolutions		S	SDG No.: J14	02025				
Contract:	OM-0450-14		Lab Code:	ALJCK	(	Case No.:	<b></b>	SA	AS No.:	an a	5830785 (PSA)
Sample IE	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
U CAR											
ICB	Antimony	0.30	+/-1.00	i	0.16	1.00	6020	3/24/2014	17.00	032414A	
	Arsenic	0.30	+/-1.00	Ĩ	0.42	1.00	6020	3/24/2014	17.00	032414A	
	Bervllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	17.00	032414A	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	17.08	032414A	
	Chromium	0.18	+/-1.00	Ŭ	0.18	1.00	6020	3/24/2014	17.08	032414A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	17.08	032414A	
	Manganese	0.12	+/-2.00	Ū ·	0.12	2.00	6020	3/24/2014	17.08	032414A	
	Molybdenum	0.28	+/-2.00	U	0.28	2.00	6020	3/24/2014	17.08	032414A	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	17.08	032414A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	17:08	032414A	
CCD 1											
CCB-I	Antimony	0.16	+/-1 00	I	0.16	· 1.00	6020	3/24/2014	17.22	032414A	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	17.22	032414A	
	Bervllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	17.33	032414A	
	Cadmium	0.09	+/-0.40	Ŭ	0.09	0.20	6020	3/24/2014	17.22	032414A	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	17.33	032414A	
	Lead	0.12	+/-0.50	U	0.12	0.50	602.0	3/24/2014	17.22	032414A	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	17.33	032414A	
	Molybdenum	0.55	+/-2.00	* 1004	0.28	2.00	6020	3/24/2014	17.33	032414A	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	17.33	032414A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	17.33	032414A	
									17.55		
CCR.2											
	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/24/2014	18-33	032414A	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	18:33	032414A	
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	18:33	032414A	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	18:33	032414A	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	18:33	032414A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	18:33	032414A	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	18:33	032414A	
	Molybdenum	0.28	+/-2.00		0.28	2.00	6020	3/24/2014	18:33	032414A	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	18:33	032414A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	18:33	032414A	

Client: Bo	eazer East, Inc.				S	DG No.: J14	02025				
Contract:	OM-0450-14		Lab Code:	ALJCK		Case No.:		S/	AS No.:		and the second
Sample ID	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
CCB-3											
CCD-5	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/24/2014	10.34	032414A	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	19.34	032414A	
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	19.34	032414A	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	19.34	032414A	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	19.34	032414A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	19.34	032414A	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	19.34	032414A	
	Molybdenum	0.28	+/-2.00	U	0.28	2.00	6020	3/24/2014	19.34	032414A	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	19.34	032414A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	19:34	032414A	
						6					
CCB-4	Antimony	0.16	1/100	ΪŤ	0.16	1.00	6020	2/04/2014		0224143	
	Amuniony	0.10	+/-1.00	U U	0.10	1.00	6020	3/24/2014	20:34	032414A	
	Regullium	0.42	+/-1.00	U U	0.42	1.00	6020	3/24/2014	20:34	032414A	
	Cadmium	0.03	+/=0.30	U	0.03	0.50	6020	3/24/2014	20:34	032414A	
	Chromium	0.09	+/-0.40	U	0.09	1.00	6020	3/24/2014	20:34	022414A	
	Lead	0.10	+/-0.50	U U	0.10	0.50	6020	3/24/2014	20:34	032414A	
	Manganese	0.12	+/-2.00	U II	0.12	2.00	6020	2/24/2014	20:34	022414/4	
	Malyhdenum	0.12	+/-2.00	U U	0.12	2.00	6020	2/24/2014	20:34	032414A	
	Selenium	1.10	+(-2.00	п	1 10	2.00	6020	3/24/2014	20:34	032414/	
	Thallium	0.05	+/-0.20	U U	0.05	0.20	6020	3/24/2014	20:34	032414A	
	i nannann	0.05	17-0.20	0	0.05	0.20	0020	5/24/2014	20:34	032414/	
ICB											
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	19:24	032414C	
CCB-1											
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	19:41	032414C	
CCD1											
₹.₹.£ <b>}</b> ™ <i>‰</i>	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	10.56	032414C	
	~								17.00		

Client: B	Client: Beazer East, Inc.		MANG THE REAL PROPERTY CONTENT	SDG No.: J1402025						
Contract: OM-0450-14		4400477917791777777777777777777777777777	Lab Code: ALJCK			Case No.:		SAS No.:		
Sample II	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run
CCB-3	Mercury	0.012	+/-0.100	U	0.012	0.10	00 7470A	3/24/2014	20:06	032414C

### Total Metals - 3b -PREPARATION BLANK SUMMARY

Client: Be	eazer East, Inc.		anioutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutranoutran			SDG	No.: J140	2025			A600/09/07/07/07/07/07/07/07/07/07/07/07/07/07/	
Contract:	OM-0450-14		La	b Cod	e: ALJCK	Case	No.:		SAS	No.:		Name and Address
Sample ID	) Analyte	Result (ug/L)	Conc Qual	Q	Acceptance Limit	MDL	MRL	Method	Analysis Date	Analysis Time	Run	100002302
MB-02131	-02		WATE	2								
	Aluminum	11.000	U		+/-11.000	11.000	100.000	6010B	3/21/2014	19:05	032114A1	
	Iron	9.600	I		+/-2.500	2.500	100.000	6010B	3/21/2014	19:05	032114A1	
	Lithium	10.000	U		+/-10.000	10.000	100.000	6010B	3/21/2014	19:05	032114A1	
	Sodium	29.000	U		+/-29.000	29.000	500.000	6010B	3/21/2014	19:05	032114A1	
MB-02159	-02		WATEI	ł								
	Mercury	0.012	U		+/-0.012	0.012	0.100	7470A	3/24/2014	19:26	032414C	
MB-02134	-04		WATEF	t								
	Antimony	0.160	U		+/-0.160	0.160	1.000	6020	3/24/2014	17:38	032414A	
	Arsenic	0.420	U		+/-0.420	0.420	1.000	6020	3/24/2014	17:38	032414A	
	Beryllium	0.032	U		+/-0.032	0.032	0.500	6020	3/24/2014	17:38	032414A	
	Cadmium	0.091	U		+/-0.091	0.091	0.400	6020	3/24/2014	17:38	032414A	
	Chromium	0.180	U		+/-0.180	0.180	1.000	6020	3/24/2014	17:38	032414A	
	Lead	0.120	U		+/-0.120	0.120	0.500	6020	3/24/2014	17:38	032414A	
	Manganese	0.120	U		+/-0.120	0.120	2.000	6020	3/24/2014	17:38	032414A	
	Molybdenum	0.280	U		+/-0.280	0.280	2.000	6020	3/24/2014	17:38	032414A	
	Selenium	1.100	U		+/-1.100	1.100	2.000	6020	3/24/2014	17:38	032414A	
	Thallium	0.050	U		+/-0.050	0.050	0.200	6020	3/24/2014	17:38	032414A	

#### Total Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	azer East, Inc.		DAILTAGING MODIA		SDG	No.: J1402025			
Contract:	OM-0450-14		Lab Co	de: ALJCK	Cas	e No.:		SAS No	• •
ICS Source	Source: Result ple ID Analyte ug/L			Instr	ument ID:	PE Optima ICI	р		
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSA	Aluminum	752000	750000	100	90 1000/	60100	2/21/2014	19.10	02311441
	Iron	668000	750000	100	80 - 120%	6010B	3/21/2014	18:19	022114A1
	Lithium	008000	/30000	89	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Sadium	-0 24			0.0  to  0.0	6010B	3/21/2014	18:19	032114A1
	Soutum	54			0.0 to 0.0	0010B	3/21/2014	18:19	032114A1
ICSAB									
	Aluminum	766000	752000	102	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Iron	677000	752000	90	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Lithium	2250.0	2000	112	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Sodium	11200	10000	112	80 - 120%	6010B	3/21/2014	18:27	032114A1
ICSA									
ICON	Aluminum	757000	750000	101	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Iron	667000	750000	89	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Lithium	-5			0.0 to 0.0	6010B	3/22/2014	01:21	032114A1
	Sodium	28			0.0 to 0.0	6010B	3/22/2014	01:21	032114A1
ICSAB									
	Aluminum	770000	752000	102	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Iron	678000	752000	90	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Lithium	2300.0	2000	115	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Sodium	11400	10000	114	80 - 120%	6010B	3/22/2014	01:29	032114A1
ICSA									
	Antimony	0.1			-2.0 to 2.0	6020	3/24/2014	17:18	032414A
	Arsenic	0.7			-2.0 to 2.0	6020	3/24/2014	17:18	032414A
	Beryllium	-0.074			-1.000 to 1.000	6020	3/24/2014	17:18	032414A
	Cadmium	0.1			-0.8 to 0.8	6020	3/24/2014	17:18	032414A
	Chromium	1.0			-2.0 to 2.0	6020	3/24/2014	17:18	032414A
	Lead	0.0			-1.0 to 2.0	6020	3/24/2014	17:18	032414A
	Manganese	0.3			-4.0 to 4.0	6020	3/24/2014	17:18	032414A
	Molybdenum	1110.0	1000		80 - 120%	6020	3/24/2014	17:18	032414A
	Selenium	-1.7			-4.0 to 4.0	6020	3/24/2014	17:18	032414A
	Thallium	0.0			-0.4 to 0.4	6020	2/24/2014	177.10	0204144

#### **Total Metals** - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	azer East, Inc.		Kionimissekiasek		SDO	G No.: J1402025			
Contract:	OM-0450-14		Lab Co	de: ALJCK	Са	se No.:		SAS No	0 2 0
ICS Source	Ω 6 ₩ 4		y quag quad a sub tray and y and y and g and subserved and the objects	Instru	ment ID:	ICP-MS			
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSAB									
	Antimony	20.7	20	104	80 - 120%	6020	3/24/2014	17:23	032414A
	Arsenic	20.9	20	104	80 - 120%	6020	3/24/2014	17:23	032414A
	Beryllium	10.200	10	102	80 - 120%	6020	3/24/2014	17:23	032414A
	Cadmium	8.2	8	102	80 - 120%	6020	3/24/2014	17:23	032414A
	Chromium	21.8	20	109	80 - 120%	6020	3/24/2014	17:23	032414A
	Lead	10.1	10	101	80 - 120%	6020	3/24/2014	17:23	032414A
	Manganese	41.6	40	104	80 - 120%	6020	3/24/2014	17:23	032414A
	Molybdenum	1110.0	1040	107	80 - 120%	6020	3/24/2014	17:23	032414A
	Selenium	39.3	40	98	80 - 120%	6020	3/24/2014	17:23	032414A
	Thallium	4.0	4	100	80 - 120%	6020	3/24/2014	17:23	032414A

				4 (1973) 10 1	Total Meta - 5a -	als	A 1879 197 7				
Client: Bea	zer East, In	с.	MA	ATK	LOW		ARY SDG No.:	J1402025			
Contract:	<u>OM-045</u>	0-14	Lab Code: ALJCK			*****	Case No.:	64000000000000000000000000000000000000	SA	S No.:	ananona mangana manga
Matrix:	WATER		Sample ID:	J14	02025-003	Clie	nt ID: GAIN	I-HG-24S-0318	14S		
Percent Sol	ids for Sar	nple: 0.00	Spiked ID:	J14(	02025-003S	Per	cent Solids fo	r Spike Sample	: 0.00		Section and the
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Mercury	ug/L	75 - 125	1.23		0.01	U	1.25	98		7470A	

			MATRIX	SDU	Total Meta - 5a -	ls	TIMMAD	7			
Client: Bea	zer East, In	с.	Level:	VE LE	LOW		SDG No.:	<u>J1402025</u>			
Contract:	<u>OM-045</u>	50-14	Lab Code: ALJCK			nennen normalisemanurausseumit	Case No.:		SA	S No.:	
Matrix:	WATER		Sample ID:	J14	02025-003	Clie	nt ID: GAIN	-HG-24S-0318	14SD		
Percent Sol	ids for Sar	nple: 0.00	Spiked ID:	J14(	02025-003SD	Per	cent Solids fo	r Spike Sample	e: 0.00		
Acceptance Analyte Units Limit %R			MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Mercury	ug/L	75 - 125	1.23		0.01	U	1.25	98		7470A	

					Total Meta	als					
			M	ATR	IX SPIKE S	U <b>MM</b> A	ARY				
Client: Bea	azer East, In	с.	Level:		LOW		SDG No.:	J1402025			
Contract:	<u>OM-045</u>	60-14	Lab (	Code:	ALJCK		Case No.:		SA	S No.:	
Matrix:	WATER	1 - 	Sample ID:	J14	02025-007	Clie	nt ID: GAIN	-HG-22D-0319	145		
Percent Sol	lids for San	nple: 0.00	Spiked ID:	J14(	02025-007S	Per	cent Solids fo	r Spike Sample	: 0.00		
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	zeningunonen
Aluminum	ug/L	75 - 125	5380.000		165.000		5000	104		6010B	
Iron	ug/L	75 - 125	6100.000		927.000		5000	103		6010B	
Lithium	ug/L	75 - 125	5130.0000		10.0000	U	5000	103		6010B	
Sodium	ug/L	75 - 125	28700.000		2810.000		25000	104		6010B	

					Total Meta - 5a -	ls					
			MATRIX	SPII	<b>KE DUPLIC</b> A	ATE S	SUMMAR	Y			
Client: Bea	azer East, In	IC.	Level:		LOW	20102	SDG No.:	J1402025		New Operation States and the system management	
Contract:	<u>OM-045</u>	50-14	Lab C	Code:	ALJCK		Case No.:		SAS	5 No.:	
Matrix:	WATER	<u> </u>	Sample ID:	J14	02025-007	Clie	ent ID: GAIN	I-HG-22D-0319	14SD		
Percent Sol	lids for Sar	<b>nple:</b> 0.00	Spiked ID:	02025-007SD	Per	ercent Solids for Spike Sample: 0.00					
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Aluminum	ug/L	75 - 125	5270.000		165.000		5000	102		6010B	
Iron	ug/L	75 - 125	6090.000		927.000		5000	103		6010B	
Lithium	ug/L	75 - 125	5140.0000		10.0000	U	5000	103		6010B	
Sodium	ug/L	75 - 125	28800.000		2810.000		25000	104		6010B	

## Total Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Beaz	er East, Inc.		M3			SDG N	o.: <u>J1402</u>	025		
Contract:	<u>OM-0450-14</u>		Lab Code: Al	JCK	Case	No.:		SAS N	Vo.:	willigene of will be a state of the optimizer of the optizer of the optimizer of the optimizer of the optimi
Matrix:	WATER	Level:	LOW		Clier	nt ID: 🤇	GAIN-HG-24S	-031814A		
Sample ID:	J1402025-003	Spiked	ID: J14020	)25-003	3A					
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Mercury	ug/L	75 - 125	4.93	}	0.(	)1 U		98	3	7470A

# 

Client: Beazer East, Inc. SDG No.: 11402025								*****		
Contract:	OM-0450-14 Lab Code: ALJCK				Case N	Case No.: SAS No.:				
Matrix:	WATER Level: LOW Client ID: GAIN-HG-22D-031							0-031914A		
Sample ID:	e ID: J1402025-007 Spiked ID: J1402025-007A									
Anolyto	₹ ĭ °4	Acceptance	Spiked	~	Sample	G	Spike	%	Oual	Method
Analyte	Units	Limit %R	Result	С	Result	C	Added	Recovery	~	
Aluminum	ug/L	75 - 125	Result 5240.000	С	Result 165.000	C	5000	102		6010B
Aluminum Iron	ug/L ug/L	75 - 125 75 - 125	Result 5240.000 5940.000	С	Result 165.000 927.000	C	5000 5000	102		6010B 6010B
Aluminum Iron Lithium	ug/L ug/L ug/L	75 - 125 75 - 125 75 - 125 75 - 125	Result   5240.000   5940.000   5210.00	<u> </u>	Result 165.000 927.000 10.00	U	5000 5000 5000	102 100 104		6010B 6010B 6010B
## ALS Environmental

			DUPLIC	Tot	tal Metals -6- SAMPLE SUM	MMARY	7		
Client: Be	azer East, Inc.		Level:	LO	W	SDG I	No.: J <u>14</u>	02025	
Contract:	<u>OM-0450-14</u>		Lab Code	e: <u>A</u>	LJCK	Case I	No.:		SAS No.:
Matrix:	Contract: OM-0450-14 Matrix: WATER Percent Solids for Sample: 0.00		Sample ID:	J1402	2025-007S	Client	t ID: GAIN	I-HG-22D-0	31914SD
Percent So	lids for Sample	e: 0.00	Duplicate ID:	J1402(	)25-007SD	Perce	nt Solids fo	or Duplicate	: 0.00
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method
Aluminum	ug/L	0 - 30	5380.000		5270.000		2		6010B
Iron	ug/L	0 - 30	6100.000		6090.000		0		6010B
Lithium	ug/L	0 - 30	5130.0000		5140.0000		0.2		6010B
Sodium	ug/L	0 - 30	28700.000		28800.000		0		6010B

## ALS Environmental

			DUPLIC	Tot	al Metals - 6 - SAMPLE SUM	MMARY	,			
Client: Be	azer East, Inc.		Level:	LC	)W	SDG N	No.: J <u>14</u>	02025		
Contract:	<u>OM-0450-14</u>		Lab Cod	e: <u>A</u>	LJCK	Case N	∛o.:	Dubachida waxaa waxaa waxaa waxaa da ahaa ahaa ahaa ahaa ahaa ahaa ah	SAS No.:	
Matrix:	WATER		Sample ID:	J1402	2025-0038	Client	ID: GAI	I-HG-24S-0.	31814SD	and the main state
Percent So	lids for Sample	e: 0.00	Duplicate ID:	: J14020	)25-003SD	Percer	nt Solids fo	r Duplicate	: 0.00	
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method	
Mercury	ug/L	0 - 30	1.23		1.23		0		7470A	

## Total Metals - 7 -LABORATORY CONTROL SAMPLE SUMMARY

Client: 1	Beazer East, Inc					SDG No.: J1	402025		
Contract	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:	
Aqueous	LCS Source:	High Purity STD	S		Solid 1	LCS Source:			
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method	
LCS-0213	1-01								
	Aluminum	ug/L	5000	5020		100	80.0 - 120.0	6010B	
	Iron	ug/L	5000	5030		101	80.0 - 120.0	6010B	
	Lithium	ug/L	5000	5050		101	80.0 - 120.0	6010B	
	Sodium	ug/L	25000	25400		102	80.0 - 120.0	6010B	

## Total Metals - 7 -LABORATORY CONTROL SAMPLE SUMMARY

Client:	Beazer East, Inc.		00011001110010001100011000011000000000			SDG No.: J1	402025		
Contract	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:	og var kan soo gan sa
Aqueous	s LCS Source: Ino	rganic Venti	ures		Solid	LCS Source:			
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method	
LCS-0213	4-03								
	Antimony	ug/L	50	51.7		103	80.0 - 120.0	6020	
	Arsenic	ug/L	50	52.0		104	80.0 - 120.0	6020	
	Beryllium	ug/L	25	26.5		106	80.0 - 120.0	6020	
	Cadmium	ug/L	20	21.2		106	80.0 - 120.0	6020	
	Chromium	ug/L	50	52.0		104	80.0 - 120.0	6020	
	Lead	ug/L	25	26.6		106	80.0 - 120.0	6020	
	Manganese	ug/L	100	105.0		105	80.0 - 120.0	6020	
	Molybdenum	ug/L	100	104.0		104	80.0 - 120.0	6020	
	Selenium	ug/L	100	103.0		103	80.0 - 120.0	6020	
	Thallium	ug/L	10	10.3		103	80.0 - 120.0	6020	

## Total Metals - 7 -LABORATORY CONTROL SAMPLE SUMMARY

Client:	Beazer East, Inc.					SDG No.: .	1402025		economic contents and
Contrac	Contract: OM-0450-14		Lab Co	de: ALJCK		Case No.:	alata kata kata ing taga a Koometri ambaka she oni ta ta taga ang ang ang ang ang ang ang ang ang	SAS No.:	
Aqueous	SLCS Source: Inc	organic Ventu	ures		Solid 1	LCS Source:			
Sample ID	queous LCS Source: Inorganic Venture mple ID Analyte Units		True Value	Result	С	% Recoverv	Acceptance	Mathad	
International Contraction Contraction					0	110001013	H_JEFE2 ECO	IARCEROO	
LCS-0215	9-01							INICUIOU	

### **Total Metals**

#### - 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.		00000000000000000000000000000000000000			9	DG No.: J140	2025	sha
Contract:	O <u>M-0450-14</u>		L	ab Code	ALJCK	(	Case No.:		SAS No.:
Matrix:	WATER	Lev	vel: LOW	EDAX.4		Client ID:	<u>GAIN-HG-</u> 2	22D-031914L	net bler konstant stel el en europa
Sample ID:	J1402025-007					Serial Dilu	ution ID: J1402	025-007L	
Analyte	Initial Result ug/L	С	Serial Result ug/L	С	% Difference	Qual	Acceptance Limits	Method	
Aluminum	165.000		101.000	Ň	38.8		10.00 %	6010B	und die Keinen der Samuele mit ander mit die Schneiden und der Kannen die Keine die Keine die Keine soneren. Be
Iron	927.000		1140.000		23.0	Е	10.00 %	6010B	
Lithium	10.000	U	10.000	U			10.00 %	6010B	
Sodium	2809.000		2961.000		5.4		10.00 %	6010B	

## ALS Environmental

## Total Metals - 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.		MELONSCHILLING (TAMBALI CHA			1	SDG No.:	J <u>1402025</u>	aon
Contract:	OM-0450-14		Lal	) Code	: ALJCK		Case No.:		SAS No.:
Matrix:	WATER	Level:	LOW			Client ID	: <u>GAIN-</u>	HG-24S-031814L	unnaliseuroneen võivie
Sample ID:	J1402025-003					Serial Dil	ution ID: J	1402025-003L	
Analyte	Initial Result ug/L	С	Serial Result ug/L	С	% Difference	Qual	Acceptanc Limits	e Method	
Mercury	0.01	U	0.01	U			10.00 %	7470A	

#### Total Metals - 10 -METHOD DETECTION LIMITS

Client	Beazer East, Inc.			SDG No.: JI	402025		
Contr	act: O <u>M-0450-14</u>	Lab Code	: A <u>LJCK</u>	Case No.:	-	SAS No.:	
	Analyte	Wave- length (nm)	MDL ug/L	MRL ug/L			
Cetac Hg A	Analyzer			Date: 1/11/2012			
	Mercury	253.70	0.012	0.100			
ICP-MS				Date: 1/20/2012			
	Antimony	123	0.16	1.00			
	Arsenic	75	0.42	1.00			
	Beryllium	9	0.032	0.50			
	Cadmium	114	0.09	0.40			
	Chromium	52	0.18	1.00			
	Lead	208	0.12	0.50			
	Manganese	55	0.12	2.00			
	Molybdenum	98	0.28	2.00			
	Selenium	82	1.10	2.00			
	Thallium	205	0.050	0.20			
PE Optima	a ICP			Date: 2/3/2012			
	Aluminum	308.215	11.00	100.00			
	Iron	273.955	2.50	100.00			
	Lithium	610.784	10.00	100.00			
	Sodium	589.592	29.00	500.00			

#### **Total Metals** - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Eas	st, Inc.		SDG N	lo.: J1402025			
Contract: OM-04	50-14 Lab Code: ALJ	CK	Metho	d: <u>P</u>	998-1029-1029-1029-1029-1029-1029-1029-1029	annan ann an ann ann ann ann an ann an a	defendenten begennen
A semingrafing a semingrafic seminary seminary seminary seminary seminary seminary seminary seminary seminary s			Case N	10.:	SAS No.:		****
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204592						
MB-02131-02	MB-02131-02	MB	WATER	3/21/14	50.0	50.0	
LCS-02131-01	LCS-02131-01	LCS	WATER	3/21/14	50.0	50.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-007S	GAIN-HG-22D-031914S	MS	WATER	3/21/14	50.0	50.0	
J1402025-007SD	GAIN-HG-22D-031914SD	MSD	WATER	3/21/14	50.0	50.0	

#### Total Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer E	ast, Inc.		SDG N	lo.: J1402025			
Contract: OM-0	450-14 Lab Code: AI	JCK	Metho	d: <u>MS</u>	0+0 X		
			Case N	10.:	SAS No.:		
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204596						
MB-02134-04	MB-02134-04	MB	WATER	3/21/14	50.0	50.0	
LCS-02134-03	LCS-02134-03	LCS	WATER	3/21/14	50.0	50.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/21/14	50.0	50.0	

886

#### Total Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Eas	t, Inc.		SDG N	Io.: J1402025			
Contract: OM-04:	50-14 Lab Code: AL.	ICK	Metho	d: <u>CV</u>			viječanini kroja za kladni kratni pre
			Case N	lo.:	SAS No.:		
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204622						
MB-02159-02	MB-02159-02	MB	WATER	3/21/14	40.0	40.0	
LCS-02159-01	LCS-02159-01	LCS	WATER	3/21/14	40.0	40.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-003S	GAIN-HG-24S-031814S	MS	WATER	3/21/14	40.0	40.0	
J1402025-003SD	GAIN-HG-24S-031814SD	MSD	WATER	3/21/14	40.0	40.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	40.0	40.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	40.0	40.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/21/14	40.0	40.0	

## Total Metals 14

Client: <u>Beazer East</u>	:, Inc.	****		00033-040-81004	000405000000	0104	Co	ntr	act		-	-	OM	[0	45(	) — :	1.4				-		000000000000				
Lab Code: <u>ALJCK</u>		Case	No.:	menionimini	demonstrative buildings		10.00	SA	S 1	No.	8 9	NO					S	DG	No			<u>J1</u>	40	202	25		
Instrument ID Number:	PE Oj	ptima	ICP				Me	the	d:		Р				Ē	Rur	N	umk	er		C	)32	11	4A	1		
Start Date: 3/21/201	4							E	nd	Da	ite	•	3/	22	/20	)14	1		*******								
FDA	1		1	<b>I</b>					0.0000000000000000000000000000000000000		NICIONATARIAN			ana	أتتدأ		2	200-2000000	99994600 <b>1</b> 4		taanohitoisinsi					unesito.co.co.uu	autorenad
Sample	D/F	Time	% R	-	l a	7	Б	Б	C	C	6	C			ار	M	- M	U	N	R	G	a	N	773	1	7	C
No.				L	B	s	A	E	D	A	R	0	υ	E	B	G	N	G	I	17	E	G	A	L		N	N
CALIB BLANK	1.00	1741	I	x							l I	1		x		0.000000							x				unteresteria
CALIB STD 1	1.00	1746		x		1		ĺ						x									X			$\square$	
CALIB STD 2	1.00	1751		x	<u> </u>		<u> </u>	<u> </u>						x							 		x				'
CALIB STD 3	1.00	1755		x		Ī	<u> </u>	İ						x								<u> </u>	x				
CALIB STD 4	1.00	1758		x				1					]	x									x		$\square$	$\square$	
ICV	1.00	1801	1	x		İ	1	ĺ						х									x		$\square$		
ICB	1.00	1805		x	İ	1	1	İ T						x									x			$\square$	
ZZZZZZ	1.00	1810		1		İ	1	İ													[					$\square$	
MRL	1.00	1815	<u>.</u>	x		İ	Ì	İ						x									x				
ICSA	1.00	1819		x		Î	İ	ļ						x								1	x			$\square$	
ICSAB	1.00	1827	1	x	<u> </u>	İ	İ	İ			ĺ	<b> </b>	Î	x	ĺ								x		$\square$		
CCV	1.00	1835	1	x		Î								x									x		$\square$	$\square$	
ССВ	1.00	1839		x		İ		[						x								ĺ	X		$\square$	$\square$	
ZZZZZ	2.00	1844		1		Ì	l	ĺ			1				Ì								Ì			$\square$	
ZZZZZ	5.00	1852	Ī	1	1	ĺ	1	l				Ì										Í			$\square$		
ZZZZZ	2.00	1857		Î		Í.	Ì	Î																			1
MB-02131-02	1.00	1905		x	ĺ	Ī	Ì	Ī						x									x			$\square$	
LCS-02131-01	1.00	1910		X			1							x									X				
ZZZZZ	1.00	1914		1	1		Ì	1														1				$\square$	
ZZZZZ	1.00	1923				Ī																					
ZZZZZZ	1.00	1928		Ī	Ī	1	I	Ī																		$\square$	
ZZZZZZ	1.00	1933		Ì		Ī	Ī	Ì							ĺ										$\square$	$\square$	
ZZZZZ	1.00	1938		Ī		l																					
CCV	1.00	1942	1	x							1			x								[	X				
ССВ	1.00	1946		x		1	1							X									X				
ZZZZZ	1.00	1951																									
ZZZZZ	1.00	1955					1																				
ZZZZZZ	1.00	2000																									
ZZZZZZ	1.00	2005	1																								-
ZZZZZZ	1.00	2010																									
22222	1.00	2015																									
ZZZZZ	1.00	2019																									
GAIN-M-25A-031814	1.00	2024		X										X									X				
GAIN-M-36B-031814	1.00	2029		X										X									X				
GAIN-HG-24S-031814	1.00	2034		X										X								1	X				
CCV	1.00	2038		X										x									X				

## Total Metals 14

Client: <u>Beazer East</u>	, Inc.	securi y de constante de constante de constante de constante de constante de constante de constante de constant			***	-	Co	ntr	act	t:	or which have the	2016/1010/2015	ON	1-0	45(	)-:	14		ton ( a bom a bo				Juniowith-Constant		THE REAL PROPERTY OF		
Lab Code: ALJCK		Case	No.:					SA	S 1	No.	. :	102		2012/04/10/06/10/06		unitrapina	S	DG	Nc	). I		JI	.40	20:	25	****	
Instrument ID Number:	PE OI	otima	ICP				Me	tho	od:		P				I	Rur	ı N	luml	bei	* •	(	232	211	4A	1		
Start Date: 3/21/201	4				NULLOONON			E	nd	Da	ate	8 8	3/	22	/2(	)14	4			1900 H			<u>Lennendiddinedin</u> e		gayaqiayaladida		
EPA			1	Γ										Ana	lvi		3		nainasticus	socialistis							
Sample	D/F	Time	% R		le	a		l p					Г <u>с</u>	F		M	м	ы	N	R	G	ľa	TN	171	v	7	C
No.				L	В	s	A	E	ם	A	R	õ	σ	E	B	G	N	G	I	2,	E	G	A	L		N	N
CCB	1 00	2042	l T		 		<u>  ·</u>			1	l	ľ							ľ			l I	$\frac{1}{1x}$	1			
GAIN-M-25B-031814	1 00	2042			<u> </u>	<u> </u>	1	<u> </u>		L	<u> </u>	<u> </u>	<u> </u> 									┢──	1x	L		$\vdash$	
GAIN-HG-33S-031914	1 00	2052	+	x	<u> </u>	<u> </u>	 	<u> </u>	L	L 	L 	<u> </u>	L 							L			x	L 			
GAIN-HG-34S-031914	1.00	2057		x		<u> </u>	<u> </u> 	I		L 	I	<u> </u>	L						-		L	<u> </u>	x	 		$\square$	
GAIN-HG-22D-031914	1.00	2102		$\frac{1}{x}$			 			L 	l ]								L 	L 			x	I ]			
GAIN-HG-22D-0319148	1.00	2106		$\frac{1}{x}$	<u> </u>		<u> </u> 			I 	I	<u> </u>	L						 		L 	-	T _x	I 		$\vdash$	
GAIN-HG-22D-0319148	1.00	2109	<u> </u>	x		$\left  \right $	<u> </u>			L 	L		 	X				$\left  \right $			L	┢──	T _x	L		$\square$	
GAIN-HG-22D-031914L	5.00	2113		$\frac{1}{x}$	<u> </u>	$\vdash$	<u> </u>			 	 			x x							L	1	Tx	 		$\vdash$	
GAIN-HG-22D-031914A	1.00	2117	1	x			1			L 	L 			x		_			I 	I	L	$\square$	Ix	<u> </u> 		$\vdash$	
ZZZZZZ	1.00	2121	1	1	<u> </u>	<b> </b>	<u> </u>	<u> </u>		L 	L		<u> </u>									-	1			┝──┥	
ZZZZZZ	1.00	2126	1	$\vdash$	l	[	/ 	L	L	L	ـــــــ ا		l						 	l	L		<u> </u>	( 			
CCV	1.00	2130		x	<u> </u>	<u> </u>	L			I 	<u> </u>			v								 	x	<u> </u>		$\square$	
ССВ	1.00	2134		x	[					<u> </u>	L	<u> </u>	I 	x							L		x	<u> </u>		$\vdash$	mmenen
ZZZZZZ	1.00	2138	1	1			1			L 	L 	ļ											1	L 		$\square$	
ZZZZZZ	1.00	2142	1	$\frac{1}{1}$	i 	<u> </u>	<u> </u>	i		i [	I	i 	L 						 		L 	Ī	1	L [	$\square$	$\square$	-
ZZZZZZ	1.00	2146	1	$\square$		<u> </u>	1		I	L 		$\square$											1				
ZZZZZZ	1.00	2149	1	+	I	1	I	<u> </u>		L 	<u> </u>										L 	$\square$	+			H	
ZZZZZZ	5.00	2153				<u> </u>				L								<u> </u>				1	1				
ZZZZZ	1.00	2157		$\frac{1}{1}$				<u> </u>			<u> </u>	Ī	L										+	! 			
ZZZZZ	1.00	2201		1		<u> </u>		l	<u> </u>	[			L									İ	1				
ZZZZZZ	1.00	2206		$\uparrow$		<u> </u>	<u> </u>	<u> </u>			<u>ا</u>	Ī	I 									1	$\mathbf{T}$	L			
ZZZZZZ	1.00	2210	1	1	ĺ	Í	1	İ			, 		ĺ								l 	Í	f	L			
ZZZZZZ	1.00	2214	1			<u> </u>		Ī					<u> </u>								L	Γ					
CCV	1.00	2218		x		İ –	1	<b> </b>						x								$\square$	x		Г		
ССВ	1.00	2222		x			1.	İ						x									x			Π	
ZZZZZZ	1.00	2227	1	1			1	1														İ					
ZZZZZZ	1.00	2232		T			1	İ														Ī	$\uparrow$				
ZZZZZZ	1.00	2236	1	1	1	Ì	1	1				1			Ì						<u></u>	İ					
ZZZZZZ	1.00	2239		l		Ī									l							ĺ	Ī				
ZZZZZ	5.00	2243					İ	<u> </u>				1										İ	1			$\square$	
ZZZZZ	1.00	2247					Too and the second	-														Concession of					***
ZZZZZ	1.00	2251				Ì				[	1											l	T			Π	
ZZZZZ	1.00	2256		Í											ĺ							ĺ					*********
ZZZZZ	1.00	2301			1																	Ì	1	1			NewCORRECT.
ZZZZZ	1.00	2306						1					Seator Land														olomation:
CCV	1.00	2311		X										X								No.	X		Π	$\square$	

Client: Beazer East	s, Inc.				*****	Nider	Co	ntr	act	t:	Distance of the second	Levenueuu	4O	1-0	45	0-:	14	****									alation
Lab Code: ALJCK		Case	No.:			WEICH CHILDREN LOW	Independent	SA	SI	No.			Bancoulderan**		00.00.000.000 ~~~~~~~~~~~~~~~~~~~~~~~~~		S	DG	No	÷. :		J1	40	20:	25		
Instrument ID Number:	PE Oj	ptima	ICP				Me	tho	d:		Р				3	Rur	ı N	uml	ber		(	)32	211	4A	1		
Start Date: 3/21/201	14		*****					F	nd	Da	ite	9 9 9	3/	22	/20	014	1		****	NUMBO	ander	********		20000000000000		and a	
EPA			l								********	altrainen de		Ana	ly	tes	3			********	SINCONDAINCONDON	MENNAGATIAN	01/10/00/00				
Sample	D/F	Time	% R	A	s	A	в	в	С	С	С	С	С	F	P	М	М	н	N	ĸ	s	A	N	T	v	Z	С
NO.				L	в	s	A	E	D	A	R	0	σ	E	в	G	N	G	I		E	G	A	L		N	N
ССВ	1.00	2314		†x			$\mathbf{T}$	$\square$						x	NUTRE OF STREET								x				
ZZZZZZ	1.00	2319		T	Ì	Ī	1	Ī					L			uiniscratura)											
ZZZZZZ	1.00	2323		Ť	İ	İ	1	1						$\square$													
ZZZZZZ	1.00	2327		$\mathbf{T}$	1	Ī	1	t													l						
ZZZZZZ	1.00	2331		1	İ	1	İ	İ																			
ZZZZZZ	1.00	2335		1		Ī	1	ĺ					1												Π		
ZZZZZZ	5.00	2338		T	İ	Ī	1	İ				Ì													$\square$		
ZZZZZZ	1.00	2343	1	İ		ĺ	Ì	Ī																	$\square$	$\square$	
ZZZZZZ	1.00	2346		1			İ	T																			
ZZZZZZ	1.00	2351		1		l	1				L																
ZZZZZZ	1.00	2356		1	ĺ	İ	1																			$\square$	
CCV	1.00	2359	1	x			1	1						x									x				
ССВ	1.00	0002		$\mathbf{x}$	T	ſ	Ī							x									x				-
ZZZZZZ	1.00	0007		$\square$	Ì	Ī	İ	İ																			_
ZZZZZZ	1.00	0013	1	İ	İ	İ		<u> </u>																			
ZZZZZZ	1.00	0017		$\square$		<u> </u>		Ī																			*****
ZZZZZZ	1.00	0022		1	İ	İ	ĺ	İ																			-
ZZZZZ	1.00	0025				Ī	1	İ							1												ENDOLUCIDITX
ZZZZZZ	1.00	0030	1	Ī			<u> </u>																				00000000
ZZZZZ	1.00	0035		1			1				**********																MIMAGAN
ZZZZZ	1.00	0038		İ		İ	1																				-
ZZZZZZ	5.00	0041		1	1	İ																					
ZZZZZ	1.00	0046		1		<u> </u>	1															$\square$				$\neg$	
CCV	1.00	0049		x			Ì							x									x			T	-0000000
ССВ	1.00	0053		X			İ							x									X			T	
ZZZZZ	1.00	0057		Í																						T	
ZZZZZZ	1.00	0102	İ	Ī		Ī					03/04/04/04/04				Ì											T	,000,000,000
ZZZZZ	1.00	0107		I		ĺ		I																		$\uparrow$	
ZZZZZ	1.00	0112					ĺ																			1	10000000
ZZZZZ	1.00	0117					1		ĺ																		
ICSA	1.00	0121		X										x						1			X				
ICSAB	1.00	0129		X		l								x	ĺ					Î			X		Ī	1	
CCV	1.00	0137		X			1							x									X		1		
ССВ	1.00	0141	1	X			1		l	1				x	1	1	********						x	1		1	300%3400%

Client: <u>Beazer Eas</u>	t, Inc.			000000000000000000000000000000000000000	******	-	Coi	ntr	act	t:	With Classific With	*****	OM.	<u>1-0</u>	45(	)-1	4					-			ANDOLONGERS		m
Lab Code: ALJCK		Case	No.:	and the second second	lanature statutes to		mitir	SA	S I	No.	:	coulous a					SI	DG	No			<u>J1</u>	402	202	25		
Instrument ID Number:	ICP-N	4S					Me	the	bd:	1	MS				F	lun	N	umk	er	:	C	)32	41	4A			
Start Date: 3/24/203	1.4			5000-210-000-00	nopulois			E	nd	Da	te	* *	3/	24	/20	)14	ļ			2940	49600	****	20 <b>-</b> 475-570-570	e anna h-Cacimilae	200000000	-	
EDA	T			Γ		******	20000000000000000000000000000000000000	*****		******				àna	1 274						tentorento				waronerisme	saitm-eboroandar	
Sample	D/F	Time	% R		Q	R		G	6		~	C	7	<b>E</b>		M	м	tr	N	×	e	a	N	m	v	7	
No.				L	B	S	A	E	D	A	R	0	σ	E	B	G	N	G	I	77	D E	G	A	L		N	N
Cal Blank	1 00	1637	1		X	x		x	x	_	x				xI		x l				x	persona and		x		-	
Cal 1	1.00	1643		$\vdash$	X	x	<u> </u>	X	x		x				x		x				X			X			
Cal 2	1.00	1648		$\left  \right $	x	x	L	x	X		x				x		x				x			x			
Cal 3	1.00	1653		$\left  - \right $	x	x	I 	x	x		x				x		x				x			X		$\neg$	- i
Cal 4	1.00	1658	<u> </u>		x	x	L	x	x		x				x		x				X			x		-+	-i
ICV	1.00	1703		$\square$	X	x		X	x		X				x	┥	x				X			X			-
ICB	1.00	1708			Х	X		X	x	L	X				x		x				X			x		$\neg$	-
MRL	1.00	1713	<u> </u>	$\left  \right $	X	x		x	x		X				x		x				X			x		$\top$	-
ICSA	1.00	1718			х	x	L	x	x		X				x		x				X			x		$\neg \uparrow$	-i
ICSAB	1.00	1723	1	$\square$	х	x		x	X		x				x	1	x				X			x			-1
CCV-1	1.00	1728	1	$\square$	x	x	I	x	x		X				x		x				X			X		$\neg$	- i
CCB-1	1.00	1733	1		х	x		x	X		x				x		x				X			x		$\neg \uparrow$	-1
MB-02134-04	1.00	1738			Х	х		x	x		X				x		x				X			x			
LCS-02134-03	1.00	1743			x	x		x	X		x				x		x				X			x		1	-
ZZZZZZ	1.00	1748	1												1	1	1									T	-i
ZZZZZZ	1.00	1753		$\square$												1	İ										-i
ZZZZZZ	1.00	1758	1												Ì	T							-			Ť	-i
ZZZZZZ	1.00	1803	1				1																				Ī
GAIN-M-25A-031814	1.00	1808	1		X	X		Х	X		X				X	Î	X				X			X			
GAIN-M-36B-031814	1.00	1813			Х	X		Х	Х		X	Ì			X		X				Χ			X			
GAIN-HG-24S-031814	1.00	1818		Ì	Х	x	ĺ	x	Х		Х				x		X				X			X		T	-i
GAIN-M-25B-031814	1.00	1823	l		Х	х		х	х		X				x		X				X			X			-i
CCV-2	1.00	1828			Х	х		х	Х		X				x		X				Х			X		T	
CCB-2	1.00	1833			Х	x		X	X		X				x		x				X			X		Π	
GAIN-HG-33S-031914	1.00	1838			Х	х	l	х	Х		Х				x		X				X			Х			
GAIN-HG-34S-031914	1.00	1843			Х	X		X	X		X				x		x				Χ			X			
GAIN-HG-22D-031914	1.00	1848			Х	Х		Х	X		X				x		X				Χ			X			
ZZZZZ	1.00	1853																									
ZZZZZZ	1.00	1858																									
ZZZZZ	1.00	1903																									
ZZZZZ	5.00	1908																									
222222	1.00	1913			ogenerativate												l				hotanomano						
ZZZZZZ	1.00	1919											******													Ĺ	
222222	1.00	1924	ļ		-																						
CCV-3	1.00	1929			Χ	Χ	-	Χ	X		X				X		X				X			X			
CCB-3	1.00	1934			Х	X		X	X		X				X		X				X			X			

Client: Beazer East				-	issun	Coi	ntr	ac	t:	wheeledworkshop	ana ang ang ang ang ang ang ang ang ang	OM	í-0	45	0-:	14			adalah karanga	ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL						Jane	
Lab Code: ALJCK		Case	No.:					SA	ls i	No .	• •						S	DG	No	. :		J1	40	202	25		
Instrument ID Number:	ICP-1	MS		-	maniat		Me	atho	od:		MS			000000000000	3	Rur	ı N	uml	oer	1	(	)32	:41	4A			
Start Date: 3/24/201	.4							E	nd	Da	ite	•	3/	24	/2	014	1										
EPA					*******			*****					Å	Ana	ly	tes	3			04000000	******	30003000000				9-2-4	
Sample No.	D/F	Time	* R	AL	S B	A S	B A	B E	C D	C A	C R	с 0	C U	F E	P B	M G	M N	н G	N I	ĸ	S E	A G	N A	T L	v	Z N	C N
ZZZZZZ	1.00	1939																									
ZZZZZZ	1.00	1944																									
222222	1.00	1949																									
ZZZZZZ	1.00	1954					l																				
ZZZZZZ	1.00	1959							I	1																	
ZZZZZZ	1.00	2004								1																	
ZZZZZZ	1.00	2009						1																			
ZZZZZZ	1.00	2014					l		1	1.												$\square$					
ZZZZZZ	1.00	2019																									
ZZZZZZ	1.00	2024																									
CCV-4	1.00	2029			Х	x		x	X		X				x		X				X			X			
CCB-4	1.00	2034			Х	X		X	x		X				Х		Х				X			X			

Client: Beazer East	, Inc.		Constant Asian Designation of the Designation of the Designation of the Designation of the Designation of the D			etasia	Coi	ntr	act	•••			OM	<u>[-0</u>	45(	)-:	14										IIMB
Lab Code: ALJCK		Case	No.:	Manzakatoria	ahanantarata			SA	.S 1	No.		3300	\$11189@001070		NC/40/20/20/200000		SI	DG	No.	:		J1.	402	202	!5		
Instrument ID Number:	Ceta	e Hg A	nalyze	r			Me	the	d:		CV				ł	Run	N	umb	er:		0	32	41	4C			
Start Date: 3/24/201	4				vimortiv			E	nd	Da	te		3/	24	/2(	)14	ji k				100403403	67 <b>0-18-18</b>				~	
															******												
EPA		nonnen ander de la competition de la competition de la competition de la competition de la competition de la co	]				*********		(Deperforment)	****			į	Ana	ly	tes	5										
Sample	D/F	Time	% R	A	s	A	в	в	С	С	C	С	С	F	P	м	м	н	N	K	s	A	N	T	v	Z	С
No.		:		L	в	s	A	E	D	A	R	0	σ	Е	в	G	N	G	I		E	G	A	L		N	N
Calibration Blank	1.00	1910									ſ	ĺ			ĺ			X	Ť	Ť	Ť	Ť	İ		ľ		
Standard #1	1.00	1911										Ī						X		T	T						
Standard #2	1.00	1912		1							<u> </u>							x		1	Ť						
Standard #3	1.00	1914		1	<b> </b>	Ī						Ī						X	T		T						
Standard #4	1.00	1916				1												X	T								
Standard #5	1.00	1917		Î		Ì						Ī						X		Ī	T		Î				
Standard #6	1.00	1919		Î		ſ						Í	Î					x		ĺ	Ī		Ī				
ICV	1.00	1922		Ī	<u> </u>	Ì						Ì	Ì					X	Ī	Ì	T		Ì				
ICB	1.00	1924		Ī				ĺ				Î						X	T		T	Î					
MRL 0.1	1.00	1925		1		İ						1						x		Ì	T						
MB-02159-02	1.00	1926		[	ĺ	1					l	Î						X	Ī	Ī	T						
LCS-02159-01	1.00	1927				İ						İ						x			T					$\square$	
ZZZZZZ	1.00	1929		l	Ī	ĺ					1	Ī							Ī	Î	Ī		I				
ZZZZZZ	1.00	1930		İ	1															1	I						
ZZZZZZ	1.00	1931		l		l					l	Ī	1								Ι	İ					Γ
ZZZZZZ	1.00	1932						l																			
GAIN-M-25A-031814	1.00	1933		1								I						X									
GAIN-M-36B-031814	1.00	1935									Į							Х									
GAIN-HG-24S-031814	1.00	1936																X									
GAIN-HG-24S-031814S	1.00	1937											The second					X									
CCV-1	1.00	1939																X									
CCB-1	1.00	1941																X									L
GAIN-HG-24S-031814S	1.00	1942																X									
GAIN-HG-24S-031814A	1.00	1943																X									
GAIN-HG-24S-031814L	5.00	1945									<u> </u>							X									Ļ
GAIN-M-25B-031814	1.00	1947		No. Inc. in the second								L						X									L
GAIN-HG-33S-031914	1.00	1948																X									L
GAIN-HG-34S-031914	1.00	1949						L				L						x									L
GAIN-HG-22D-031914	1.00	1950										Ļ						X			_			]			Ļ
ZZZZZ	1.00	1951						L				l														Ļ	L
ZZZZZZ	1.00	1952				ļ						<u> </u>	-					a tradicidad de la construcción de la construcción de la construcción de la construcción de la construcción de		And Contract of Long	e (associated					$\square$	<u> </u>
ZZZZZZ	1.00	1953										Ļ														$\square$	Ļ
CCV-2	1.00	1954				-			ļ	L		ļ	L					Χ									Ļ
CCB-2	1.00	1956			ļ	ļ			<u> </u>		-		Ĺ			poceepointed		X	-	1							<u> </u>
222222	1.00	1958		Ļ		ļ						-		<u> </u>		antart with we shaled		09,009,000			ļ	-					ļ
ZZZZZZ	1.00	1959				l																					L

Client: Beazer East	z, Inc.		****			an an an an an an an an an an an an an a	Coi	ntr	act	t:			OM	-0	45(	) — :	14		****	-	Nonestingung	ERGINALISI	NULLOCOLONY		insistentististe		anados
Lab Code: <u>ALJCK</u>		Case	No.:	electrolecter	tion would divide the first			SA	s I	No.	*	Initol	100000 E-10000000				S	DG	No			<u>J1</u>	40:	202	25	actual canadadowa	-
Instrument ID Number:	Ceta	c Hg A	nalyze	r			Me	the	od:	(	cv				I	Rur	ı N	umk	er		С	)32	41	4C			
Start Date: 3/24/201	L4							E	nd	Da	te		3/	24	/20	014	1			-							
EPA		01991/00100/001000000000000000000000000				****						aan maan ah	Į	lna	ly1	tes	3			minninghighes		***********	********	uaactournew/de	eannsticentist	000000000000000000000000000000000000000	
Sample No.	D/F	Time	%R	A L	S B	A S	B A	B E	C D	C A	C R	с 0	C ບ	F E	P B	M G	M N	H G	N I	K	S E	A G	N A	T L	v	Z N	C N
ZZZZZZ	1.00	2000		ĺ							outerate state		Ť		İ												
ZZZZZZ	1.00	2001	l																								
ZZZZZZ	1.00	2002																									
ZZZZZZ	1.00	2003																									
CCV-3	1.00	2004																X									
CCB-3	1.00	2006																X									

Client:	Beaz	er Eas	st, Inc.							Cor	ıtr	act	а ; 9 9	<	OM-	-04	50	-1	4							10-1			
Lab Code:	ALJC	K	(	Case No	)		MMAANDUNECIUM	CHEROCOLDONIA	NATION TO A	SAS	S N	o.:	:				ajeren eren eren eren eren eren eren eren		SI	G	No.	. :	J	14(	)20	)25			-
Instrument	ID Nu	mber:	PE	Optima	ICP		~		101500	Met	:ho	d:		P	-	-	1	Rur	ı N	uml	cer	::		03	321	.14	A1		****
Start Date:	: 3	/21/20	)14							En	d D	)at	е:		3/	/22	/2	01	4										
EPA							*******	****	sidani colynolania	California (California)	orostani totora	adaigte dataina	*****	Ì	Ana	ly	tes	\$	introduction and				223363/10700- <b>4</b> 73	natonindalarda	100000000000000000000000000000000000000	ALL COLONING PORT	4004340.0440.0440.04	**************	
Sample			D/F	Time	% R	R	la	Γ.	Гм	10	ρ	Þ	ρ	Q	g	SN	q	m	17	TAT	Т		T	Γ	<b>[</b>		<b></b>	Π	
140.							ΰ	II	0	s	D	-	T	I			R	I	Ŭ		N								
CALIB BLA	NK	Ĩ	1.00	17:41			T	x		1	Ī	Ì											Ì	İ					$\neg$
CALIB STD	1		1.00	17:46		4		X		T						Ì		0.000					İ					M	Ť
CALIB STD	2		1.00	17:51			1	X		1	İ	İ			İ		uenakeiain						İ					Πİ	Ť
CALIB STD	3		1.00	17:55				X	1	İ	İ	Ì				Ţ						Í	İ	Ī				ΓÌ	Ť
CALIB STD	4		1.00	17:58		-	f	х		Í	Í				Γİ.			912101012					İ	ĺ	İ			ΓŤ	Ť
ICV			1.00	18:01		1	T	x	hairean	† –	İ				İ	İ		Kannanga					İ					ГÌ	m
ICB			1.00	18:05			1	х	h		İ				İ	Ì								, 				Πİ	Ť
ZZZZZZ			1.00	18:10		İ	t				İ												Í				m	Πİ	Ť
MRL			1.00	18:15		1	İ	Х			İ				Π	j		cazatana					İ.					ΓŤ	mt
ICSA			1.00	18:19				х		<u> </u>	İ					j							İ					Πİ	Ť
ICSAB			1.00	18:27		1	1	Х		ľ	l	İ			İ	j							İ					ΓŤ	Ť
ccv			1.00	18:35		1		Х							T	İ										****		ΠŤ	Ť
ССВ			1.00	18:39			l	х				İ				,												ΠŤ	T
ZZZZZZ		Í	2.00	18:44		Ť	t		Ī	İ	İ			Γİ	Πİ	İ				*****			İ					Πİ	Ť
ZZZZZZ		İ	5.00	18:52			İ				Ī							ing sing of the										ГÌ	Ť
ZZZZZZ			2.00	18:57						ĺ				h	T	İ												Π	Ť
MB-02131-	02		1.00	19:05				Х																					
LCS-02131	-01		1.00	19:10			director and	Х																				ΠÌ	Ť
ZZZZZZ		Í	1.00	19:14		Ī				Ì						ĺ											Π	Ť	Ť
ZZZZZZ			1.00	19:23						diaminanya:																		T	Ī
ZZZZZZ			1.00	19:28			Ī																					Π	T
ZZZZZZ			1.00	19:33																								T	T
ZZZZZ			1.00	19:38												i											Residence and	T	T
CCV			1.00	19:42				Х																				Π	T
ССВ			1.00	19:46				Х																				Π	T
ZZZZZZ			1.00	19:51		[ <u> </u>																						T	T
ZZZZZZ			1.00	19:55																		*******	[					Π	
ZZZZZ			1.00	20:00																									
ZZZZZZ			1.00	20:05													I										Sector Sector		
ZZZZZZ			1.00	20:10																									
ZZZZZZ			1.00	20:15																				e mod (1969)			********		
ZZZZZ		-	1.00	20:19	CCCCCCC_CCCCCCCCCCCC																	******		2009 2009 Statistics	sen93639999				

Client: Beazer Ea	st, Inc.					-		Cor	ıtr	act	5:	(	OM-	-04	150	-1	4	•Gebruices-carding	NOTOT/GOOD				- decterni			an januari januar	
Lab Code: ALJCK	annoise an annoise an annoise annoise annoise annoise annoise annoise annoise annoise annoise annoise annoise a	Case No	),:	202.02/01/02/01/02	101014014-0000	CANADA STATE	ateen	SAS	3 N	io.:		samalanes			100700-000-000-00	2240HRINETIC	SI	G	No.		J	14	020	025	;	outsigners and the	1000em
Instrument ID Number:	PE	Optima	ICP		****		Destaction	Met	cho	d:		P	-	ngawa lakun		Rui	n N	fuml	cer			0	32:	114	Al		1040-415-022400
Start Date: 3/21/2	014							En	d I	)at	e:		3/	/22	2/2	01	4										
EPA													Ana	ly	tes	3									*****	widebookers	
Sample No.	D/F	Time	% R	в	A U	L I	м 0	o s	P D	P	P T	S I	s	SN	S R	r I	ΰ	W	I N	:							
GAIN-M-25A-031814	1.00	20:24		$\square$	1	X		T	T	Ì		İ				İ	$\square$	İ			İ	İ	İ	İ	İ	İ	
GAIN-M-36B-031814	1.00	20:29		1		X	<b> </b>	1	İ	İ	ſ			20020303			İ				Ī	İ	İ	İ	İ	İ	
GAIN-HG-24S-031814	1.00	20:34		l		X		1	İ	İ			İ				İ	İ			İ	İ	İ	İ.	İ.	İ	
CCV	1.00	20:38		$\uparrow$	1	x			İ	İ	İ		ГÌ				İ	İ		<u> </u>	İ	† T	İ	İ	İ	† T	İ
CCB	1.00	20:42				x			İ	İ							İ				Ì	İ	İ –	İ	İ	İ	İ
GAIN-M-25B-031814	1.00	20:47		T	†—	X	<u>Farmen</u>	Í	İ	İ	<u> </u>		M				İ				Í	İ	İΠ	Í	İ	†	İ T
GAIN-HG-33S-031914	1.00	20:52				x		1	İ								Ì	İ T			İ		Í	İ		İ	
GAIN-HG-34S-031914	1.00	20:57		Ì	T	х		ļ	Ī				İ				İ				İ	İ	İ	İ	İ	İ	
GAIN-HG-22D-031914	1.00	21:02		$\uparrow$	1	x			İ	İ			İ				İ				İ	İ	İ	Í	İ		
GAIN-HG-22D-031914	1.00	21:06		1	ĺ	Х											İ				Ì	İ	İ			, 	
GAIN-HG-22D-031914	1.00	21:09			1	X			İ				Ń	ineleune)			l				Ì	İ	İ	İ	Í		
GAIN-HG-22D-031914	5.00	21:13				X	automension				parame		Ī						1007200200		ĺ	İ	İ		İ	Ī	
GAIN-HG-22D-031914	1.00	21:17				X			ĺ	İ			Ī								ľ	İ	İ	İ		İ	
ZZZZZZ	1.00	21:21		Î	Ī	İ		İ	Ι	Γ							Ī					Ī	Ī	Ī	Γ	Γ	
ZZZZZZ	1.00	21:26			ļ.	l			Ī													ĺ	İ	İ	jamans	Ē	
CCV	1.00	21:30				X		an								Ī		ĺ	Γ								
ССВ	1.00	21:34		Î		X			Ī							10900-000 <del>000</del>				Constant areas		İ	İ	Í	İ.		
ZZZZZZ	1.00	21:38				1																	Ì				
ZZZZZ	1.00	21:42		İ	İ																ĺ	ĺ	Ì	İ			
ZZZZZZ	1.00	21:46			İ					İ					alaite maine					<b>2</b> 0000000000	Ĺ	İ		İ	Ē	m	
ZZZZZ	1.00	21:49								I										*****							nessaansa
ZZZZZ	5.00	21:53																			İ	l'anna	Ì		ľ		
ZZZZZ	1.00	21:57			Ì			(annuarous					Í														
ZZZZZZ	1.00	22:01				ľ				ĺ					NOT STREET								l				
ZZZZZZ	1.00	22:06									olidateiseis		Í									ľ	İ			M	
ZZZZZ	1.00	22:10														200120002							-			Π	
ZZZZZ	1.00	22:14			İ								Preservi		6000525489									ľ			
CCV	1.00	22:18			İ	Х			[ 	Π									T				l				
CCB	1.00	22:22			Í	X													j	inin nizeda		ľ				m	
ZZZZZ	1.00	22:27		Ì	decension of								Ť						j			Í				m	
ZZZZZ	1.00	22:32		T		Automosi autor							Ì						ĺ						Π	Π	
ZZZZZ	1.00	22:36		Ť	Ì	1				ľ	NALES IN NUMBER		m	10000000	sectorem												

#### ANALYSIS RUN LOG

Client:	Beazer E	ast, Inc.			64				Cor	ıtr	act	t:	-	OM-	-04	50	-1	4										outoomita
Lab Code:	ALJCK		Case No	).:					SAS	5 N	ю.		simers					SI	G	No	. :	J	14	020	025	;	OWCONSERV	0000000
Instrument	ID Number	: <u>PE</u>	Optima	ICP		oji li kara kara		partico	Met	:ho	d:		P	na anna anna anna anna anna anna anna			Rui	n N	lum	beı	•••		0:	32:	114	A1	*	-
Start Date	: <u>3/21/</u>	2014							En	d I	Dat	e :		3,	/22	2/2	201	4										
EPA					Ι			****					11-0-04-0400-0-0-	Ana	aly	tes	s	******	evoceska zoto			505meettae	********	42429491044234	***********	Dentitation of the	WANNESSAGE	
Sample		D/F	Time	% R			Τ.	м	10	P	Γρ	ρ	s	ß	SM	S	m	 TT	W	T _T	Γ	Γ		Γ	Ī	Γ	Γ	T
1						σ	I	0	s	D	4	T	I			R	Î	Ĭ		N			- North Cold Barrier					
ZZZZZZ		1.00	22:39		T	1		ĺ	Ì				Ι	1			Ī	Í	ĺ	ĺ	T	Ì	İ	İ	İ	İ	İ	T
ZZZZZZ		5.00	22:43			1	1	İ		Í		ľ		Ī			ĺ			ĺ	İ		İ		İ	İ	Ì	Ť
ZZZZZZ		1.00	22:47		1	T		ſ	T	İ	İ	İ	$\uparrow$	Ì			İ	İ	İ	Ì	İ	, T	İ	İ	İ	İ	İ	İ
ZZZZZZ		1.00	22:51		$\top$			T	1	İ	İ	İ	Τ	İ			İ	Ì		İ	İ	İ	İ.	İ	İ.	İ	İ	İ
ZZZZZZ		1.00	22:56					1		İ	İ	İ	-	İ			İ	İ		İ	İ		İ	İ	İ	İ	İ	İ
ZZZZZZ		1.00	23:01		$\uparrow$	1	$\square$	t	$\uparrow$	İ	İ	İ	1	Í			j	İ		İ	İ	İ –	İ	İ	İ	İ	Ť	İ
ZZZZZZ		1.00	23:06		$\uparrow$			$\square$	$\square$	İ	İ	İ	1								İ	l	 	İ	ŕ	İ	ľ	-
CCV		1.00	23:11		$\uparrow$	$\square$	x	$\uparrow$			†	İ	$\uparrow$		<u> </u>			T		Ī	İ			†	┢╴	$\frac{1}{1}$	$\frac{1}{1}$	t
ССВ		1.00	23:14		1	-	x		$\uparrow$	İ	Ϋ́	<u> </u>	-		-						İ			ľ	<u>†</u>	İ	h	
ZZZZZZ		1.00	23:19						┢━━		İ		l				h				h				l		Ī	┢
ZZZZZZ		1.00	23:23		$\uparrow$	-	<b>†</b>	$\vdash$	-		†	1	$\dagger$				İ –			<u> </u>			1		Ì	Γ	ľ	+
ZZZZZZ		1.00	23:27		-	-		$\square$	1		† –	İ	h									$\square$		<u> </u>	<u> </u>	┢	†	┢
ZZZZZZ		1.00	23:31		+	$\uparrow$		<u> </u>			h		1									$\Gamma$	[	ľ	l	h	┢	┢
ZZZZZZ		1.00	23:35		$\dagger$	İ	İ	Ī	i T		Ť	ĺ	1		_			1			ľ				ĺ	l		†
ZZZZZZ		5.00	23:38		1	1					† –	ĺ	┢								h	ľ				h		┢
ZZZZZZ		1.00	23:43		+				┢──		İ		-								†	h		h	İ	h	┢	1
ZZZZZZ		1.00	23:46			$\uparrow$		1	<u> </u>		İ	ĺ	+	T				ĺ								h		
ZZZZZZ		1.00	23:51		+	-			-					İ								ľ						1
ZZZZZZ		1.00	23:56		$\uparrow$	$\uparrow$	Ī		$\square$		ľ	İ	$\uparrow$									ľ				h	Ī	† –
CCV		1.00	23:59		1	1	x		T			ľ	-	T						<u> </u>	<u> </u>	h				<b></b>	h	ľ
ССВ		1.00	00:02		$\uparrow$	1	x		$\square$		İ	İ		h							İ	ľ						
ZZZZZZ		1.00	00:07		┢	1		┢──	┢──		Ì			Ħ							l							
ZZZZZZ		1.00	00:13			l			1		İ			İ	2202020000						ľ							Ē
ZZZZZZ		1.00	00:17		$\uparrow$			1			İ	1		$\square$							İ	ſ			ľ			Î
ZZZZZZ		1.00	00:22		$\uparrow$				<u> </u>		l				86400000000		<b></b>				<b> </b>	Γ		-			pouneses.	T.
ZZZZZZ		1.00	00:25		T				t		İ	İ	t	Ħ														İ
ZZZZZZ		1.00	00:30		T	T			l	İ	Ì	l	1								<u> </u>	h				, and		l
ZZZZZZ		1.00	00:35	an an an an an an an an an an an an an a										$\mathbf{T}$													<u> </u>	
ZZZZZZ		1.00	00:38		$\uparrow$	İ								$\square$	5551857910								proven-see					ĺ
ZZZZZZ		5.00	00:41		1	İ	-						-						o Hillionna						in the second	, isosof	h	-
ZZZZZZ		1.00	00:46			ĺ		Constant of the local data		-	ĺ		h	m			20120303030		pieministrationese		piezostana (		Provincial			personal sectors		
CCV		1.00	00:49			-	X	ŀ			İ		İ	m									rue constanti					

60

Client:	Beazer Ea	st, Inc.			Lances Division	ningentus Becheventus	9480		Con	tr	act		(	OM-	-04	50	-1	4	6212800486100				****	webstantona	****			0407
Lab Code:	ALJCK		Case No	).; 	cumberanc	in the local data and the second		858m)	SAS	N	0.:	;	0.000	a constances of	Culomba Zarlando	union and the second	GALASSACH	SD	G)	No.		J	14(	)2(	)25	1	Gautoncounters	moni
Instrument	ID Number:	PE	Optima	ICP				50000	Met	:ho	d:		Р		NDNIDED/	]	Rur	ı N	uml	oer			03	321	14	A1		
Start Date	: 3/21/2	014							End	d D	at	е:		3,	/22	/2	01	4	oroute and a set	antinen								
EPA				1	Τ							******	000000000000	Ana	aly	tes	3	nan-even-survey			********				122200020000	vojani/voesió		
Sample No.		D/F	Time	%R	В	A U	L I	м 0	o s	P D	P	P T	s I	s	SN	s R	T I	υ	W	I N								
ССВ		1.00	00:53	Γ	$\uparrow$	T	x		$\Box$		İ	Ì	İ						[		T	Ì			Ì	İ		
ZZZZZZ		1.00	00:57								İ	Ì	ĺ	İ										Γ	Γ			
ZZZZZZ		1.00	01:02													*****												
ZZZZZZ		1.00	01:07							l			Ι															
ZZZZZZ		1.00	01:12								Ī											Π						
ZZZZZZ		1.00	01:17			Ī			Γ					l								I						
ICSA		1.00	01:21		Ī	Ī	X			Ι												Ι						
ICSAB		1.00	01:29				X		Γ				Ī									Ι						
CCV		1.00	01:37				X							Π								Ι		Γ	Γ	Γ		
ССВ		1.00	01:41		l		X				l		Ī	l								I			Γ		Γ	

Client:	Beazer Ea	st, Inc.					www.com		Со	ntr	ac	t:	(	OM-0	450	)-1	4					an a line of section in the			Lowestic		
Lab Code:	ALJCK		Case No	).:	prima production		******		SA	SN	Io.	e *		an	)G 🗄	No.	, a	J.	1.40	)20	25			8400			
Instrument	ID Number:	ICP	-MS				anan tanàn amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin		Me	thc	od:		Ms	3		Ru	n N	iuml	oer	n. a . 0		03	324	14	A	Nefana kepina pang	*****
Start Date:	3/24/2	014							Er	ld 1	Dat	:e:		3/2	4/:	201	4		5580/405475075								
EPA						******								Anal	yte	S	*********	*2000940990000	*****	********	00100000000000	2000242002000					
Sample		D/F	Time	81	R  -	BZ	T	T. M	0	ΤΡ	Tp	P	s	s s	a s	<b>F</b>	TT	W	Т		$\square$					Π	
10.						τ	,	IO	S	D		T	I		R	I			N								
Cal Blank		1.00	16:37			Τ		3		Τ	1		Π	İ	T	T	Ι				$\square$						
Cal 1		1.00	16:43			ľ	Ť	3	C	Ť	Í			İ		Ì	Ī		ĺ						XCOLUME		RECEIPTION
Cal 2		1.00	16:48					2			Ī	Ī			Ī	l											
Cal 3		1.00	16:53	Ì	1	T	Ť	12		Ť	İ	Ī		ΪÍ	Í	Ì	İ	l		Ì						Í	Ì
Cal 4		1.00	16:58					2		ĺ	İ	Ī		Í	l	l	Ì				Π				****	Í	
ICV		1.00	17:03			Ť	T	2		İ	İ	İ	T	İ	İ	İ		l	İ	İ	M					Ť	-
ICB		1.00	17:08			ĺ		7			İ	İ	Í	İ	Ť	İ				ĺ	Π			moneri		Ť	JOSSIC
MRL		1.00	17:13				Ť	7		İ	Ť	İ	Ť	Ϊİ	l	Ī	I		İ	İ –	П				, and the second	Ť	
ICSA		1.00	17:18					2		İ	İ	İ		İΤ	İ	İ	İ		İ	ĺ	m			İ	İ	Ť	İ
ICSAB		1.00	17:23					2	-		-	İ	l	İΤΪ	ĺ	İ	Í				M				Ì	ΠÌ	
CCV-1		1.00	17:28				Ť	7	5	j	İ			İΤ	l	İ		Ì							Ī	Ť	Ť
CCB-1		1.00	17:33				T	X	5			İ		İΤΪ	Ī	Ť	Í		İ.		M		Ī	Ī	Ť	Ť	ľ
MB-02134-	04	1.00	17:38			T	T	2		İ	ĺ	Ť		İ	Ť	İ	Ì		İ		M			j	Ī	Ť	Ť
LCS-02134	-03	1.00	17:43		T	T	T	12		Ì	İ	İ	1	Ī	Í	İ	Ť	İ	ĺ	ĺ	Π			nistanan		Ť	
ZZZZZZ		1.00	17:48			T	T		-	İ		İ	Í	İİ	Ť	İ	İ	İ		İ	Ш				Ť	Í	
ZZZZZZ		1.00	17:53							ĺ	İ	İ	l	İ	İ	İ	İ	ĺ		İ.	П		Ī	j		Ť	
ZZZZZZ		1.00	17:58						T	T	Ì	İ.		İ	Î		Í	ĺ					ession		T		T
ZZZZZ		1.00	18:03				Ť					Í	ĺ	İ	Í		İ	ľ			İ				-		, , , , , , , , , , , , , , , , , , ,
GAIN-M-25	A-031814	1.00	18:08			ľ	paneadore 	2	C	Ī		l		Í	ĺ	lagiesennera							ĺ		200022000		1000000
GAIN-M-36	B-031814	1.00	18:13			Ì		3		Ī	l	Í	1	İ	Ì		İ		l		Π					Ť	Ť
GAIN-HG-2	4S-031814	1.00	18:18					Σ			Γ	T		TT	T	T											
GAIN-M-25	B-031814	1.00	18:23					3		Í	Ì	Ī		Ī	I	Ī	Ī		[		Π					finistramental	
CCV-2		1.00	18:28					2	5			Ι			Τ	l	Ī				$\square$				Ī	T	
CCB-2		1.00	18:33					X		Τ	T		Ī		Τ	Τ									l	Π	
GAIN-HG-3	38-031914	1.00	18:38					2		Τ	I				Τ	T											T
GAIN-HG-3	4s-031914	1.00	18:43			T	T	2	:		l	Ī	Ì		I	Ī					Π						
GAIN-HG-2	2D-031914	1.00	18:48				ľ	3		l	T			Πİ	l		I				Π		Ī			Ī	Ī
ZZZZZ		1.00	18:53				T	İ	Ī	T	ĺ	Ī	Ī	Ī	l	Ī	Í				Π		Ī	ĺ			encessi
ZZZZZ		1.00	18:58	l				l			Ī	l		T	ĺ	Ì					Π			ĺ	Ì	T	Ì
ZZZZZ		1.00	19:03			Í	Ť		T	Τ	Τ		Ī	T		Τ	l	Γ			Π		l	I	Í		Ī
ZZZZZ		5.00	19:08					Ì					I	Π		I											
ZZZZZ		1.00	19:13				T		T			I														I	Received and

Client:	Beazer Ea	st, Inc.	-		*****		olona		Con	ıtr	act	ه ها ه در	(	DM-	-04	150	-1	4									www.com	010017
Lab Code:	ALJCK		Case No	).: 				99405	SAS	N	o.:	:	10094000	2200 million				SI	G	No	. :	J	140	)20	)25	i Dettoretoretor	0.02256664464646	chando
Instrument	ID Number:	ICP	-MS			****	a de constante de la constante de la constante		Met	:ho	d:		MS	2	nastantin		Rui	n N	uml	ber			03	324	114	A		
Start Date	: 3/24/2	014							End	d D	)at	e:		3,	/24	1/2	01	4										
EPA					Γ									Ana	aly	tes	3			0424040202	*****				Lotamentus	*******		
Sample No.	1	D/F	Time	8 R	в	A U	L I	м 0	o s	P D	P	P T	s I	s	SN	s R	T I	σ	W	I N								
ZZZZZZ		1.00	19:19	ĺ	t	1				İ –			İ					1		İ	Ē	ĺ					İ	
ZZZZZZ		1.00	19:24		Ť	1	İ		İ	Ī	l		T					İ		İ	Ī	Ī				<b></b>	I	Í
CCV-3		1.00	19:29	ĺ	T			X		I	l				0020320							I						
CCB-3		1.00	19:34					X			Ì																Ī	
ZZZZZZ		1.00	19:39			1																Γ						
ZZZZZZ		1.00	19:44			Ι																						
ZZZZZZ		1.00	19:49																									
ZZZZZZ		1.00	19:54																									
ZZZZZZ		1.00	19:59																									
ZZZZZZ		1.00	20:04																									
ZZZZZZ		1.00	20:09																									
ZZZZZZ		1.00	20:14																									
ZZZZZZ		1.00	20:19		Ι																							
ZZZZZZ		1.00	20:24		Ι	Ι	l			Ι	Γ	Ι	Ι															
CCV-4		1.00	20:29					X																				
CCB-4		1.00	20:34	l	Ī		I	X	Π	Γ		T	Π									Ī					I	

Client:	Beazer Ea	st, Inc.				ine verale and				Cor	ıtr	act	t:	(	-MC	04	50	-1	4			-				****			
Lab Code:	ALJCK	(	Case No	).:	energia de la constante			1010000000000	niedemonter	SI	G	No.	*	J:	140	)20	25			640									
Instrument	ID Number:	Cet	ac Hg	Ana	lyz	er		1946COARTING		Met	:ho	d:		<u></u>	7	100000	1	Rur	ı N	uml	oer	::		03	324	114	С	********	
Start Date	3/24/2	014								En	d D	at	е:		3/	24	/2	01	4	-									
EPA						A.199400.4460.446	04440040494	*********		19009112422004555					Ana	ly	tes	5		200200000	*300*45****			house and the second			800506044	MOLIMPION	30009909900000
Sample No.		D/F	Time	Q.	R	В	A U	L I	м 0	o s	P D	P	P T	s I	s	SN	S R	T I	σ	W	I N								
Calibrati	on Blank	1.00	19:10							Ī					Ī		·					Γ							
Standard	#1	1.00	19:11			ana	Ī	Ì						l															
Standard	#2	1.00	19:12					-		†		İ	ľ	1	İ	İ	****					ľ	m						
Standard	#3	1.00	19:14									İ	İ		İİ	İ	*****		Ì			Ì	İ						
Standard	#4	1.00	19:16						ľ	Γ	İ	İ	ĺ	ſ	ΓŤ	Ť						İ	П	M					
Standard	#5	1.00	19:17									İ	İ	† 	İΤ	İ	*******											T	
Standard	#6	1.00	19:19							<u> </u>	İ	Ì	İ	<b> </b>	İΤΤ	İ							m	Π					
ICV		1.00	19:22										İ	ſ	İΤ	İ						 	m	m				Π	<u> </u>
ICB		1.00	19:24								İ		İ		İTİ	Ì			İ				m						
MRL 0.1		1.00	19:25						herener				İ		Γİ	Í		*******	ĺ				m						
MB-02159-	02	1.00	19:26									ſ	İ	<u>†</u>	İΤ	İ						İ		m			-		
LCS-02159	-01	1.00	19:27			<b>This court</b>									ΓŤ	İ		200000600	·			<u> </u>	m						
222222		1.00	19:29			*******	******			han			Ì	İ	İ	j		a katene				İ							
ZZZZZZ		1.00	19:30			ana) (h.u		<u> </u>		İ				İ	İΤΤ	İ	internanie					ĺ	İ	m			Ì	T	
ZZZZZZ		1.00	19:31			55971493 559711493					ĺ	ĺ	Í		ΓŤ	nonsnoù I							m	M			Î		
ZZZZZZ		1.00	19:32							†******			Ì		İ	Ì			010000000					M			T	T	PERSONAL
GAIN-M-25	A-031814	1.00	19:33			())) ()) ())							İ			Ť													1000000000
GAIN-M-36	B-031814	1.00	19:35			8096-0045				İ			İ			Ť	598933		******									20000020	
GAIN-HG-2	4s-031814	1.00	19:36							ľ				Í	ΠŤ	İ	ĺ	20822(2)(22)					Π	ГÌ					
GAIN-HG-2	4s-031814	1.00	19:37												Ī	Ť					ann an the second		Π	M					
CCV-1		1.00	19:39			an the state								(economic and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		İ								Π			Ī	Ì	80103/002956408
CCB-1		1.00	19:41	Print Contractory Contra	and the second	Π	l												Reservation	BOULDAINS									
GAIN-HG-2	4S-031814	1.00	19:42																										
GAIN-HG-2	4S-031814	1.00	19:43												Π								Π	Π			Ī		
GAIN-HG-2	4s-031814	5.00	19:45											Ī	T	Í	ĺ						Π		01031005		Ĭ		id Kerancinos
GAIN-M-25	B-031814	1.00	19:47				nisionananan in								Í	Í	-						Π	Π	ĺ	Ī	T		
GAIN-HG-3	38-031914	1.00	19:48			80.999000				I					Ì		l						Π	Ī			DECEMBER	İ	SAGENOISE STR
GAIN-HG-3	4S-031914	1.00	19:49		ĺ		******	CMANING STOCK							Í	İ	Ì						M	Í	ĺ	ĺ	İ	Ī	
GAIN-HG-2	2D-031914	1.00	19:50								CALCOLOGICAL DE		Í	-	ΠÌ	j		100000000					Π	Î			Ì	Ì	encurrent
ZZZZZ		1.00	19:51		ĺ	antes de bar									Í	İ	i ann an												
ZZZZZZ		1.00	19:52		ĺ																	en-exemple					SUBCOMPUT	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ACTION COLORING
ZZZZZ		1.00	19:53													Í				un constanti			M		ĺ	ĺ	******	anna i	

Client:	Beazer Ea	ast, Inc.			*****		1950		Con	ntr	act	е о 25 К	(	ОM·	-04	50	-1	4				Theory and a state of the	****		-			
Lab Code:	ALJCK		Case No	>.:	Gendy Voters in Dans			Nations	SAS	5 N	o.:	6	100030000	2000/02/00/02/07	No.C.2.2.3.000.041		105600	SE	G	No.		J.	14(	)2(	)25	;		identi
Instrument	ID Number:	: <u>Cet</u>	ac Hg	Analyz	zer		elezzierenziew	minn	Met	:ho	d:		<u></u>	7	CONSIGN	]	Rur	ı N	uml	cer	n e 		03	324	114	С		-
Start Date	: 3/24/2	2014							En	d D	at	e:		3	/24	/2	01	4										
EPA			******		Τ	andret belanmet konneren	Carl (20011100)				*****			Ana	aly	tes	3						000000000000000000000000000000000000000					
Sample No.		D/F	Time	%R	В	A U	L I	м 0	o s	P D	P	P T	s I	s	SN	S R	T I	υ	W	I N								
CCV-2		1.00	19:54		T	1			ţ	Ē			İ												İ	İ	İ	
CCB-2		1.00	19:56		T	T				l	İ	ľ		İ		999-0-000 000					İ				Í	İ	İ	
ZZZZZZ		1.00	19:58			İ				ĺ				Ť.							ĺ	Π			İ	Ĺ	İ	
ZZZZZZ		1.00	19:59		T	l							İ	l											ĺ	İ	Ī	
ZZZZZZ		1.00	20:00			Ī																Π			I		Ī	
ZZZZZZ		1.00	20:01			Ι																					Ι	
ZZZZZZ		1.00	20:02																									NAMESI ON COLUMN
ZZZZZZ		1.00	20:03	1		Ī																				Γ		
CCV-3		1.00	20:04			Ι																Π				Γ		
CCB-3		1.00	20:06		I	Γ			I					]							I	Π		$\square$		[	Ι	

#### **Dissolved Metals** - COVER PAGE -**INORGANIC ANALYSIS DATA PACKAGE**

Client: B	eazer East, Inc.								
SDG No.:	J1402025	Method Type:	6010B/602	0/74		SOW No.:			
Contract:	OM-0450-14	Lab Code:	ALJCK	Case No.:	Gentered	SAS No.:			
	Lab Sample ID	Client Sample	ID		QC Desc	ription			
	J1402025-001	GAIN-M-25A-0	31814						
	J1402025-001S	GAIN-M-25A-0	318145		Matrix Sr	oike			
	J1402025-001SD	GAIN-M-25A-0	31814SD		Matrix Sp	oike Duplicate			
	J1402025-002	GAIN-M-36B-0	31814		CONTROLOGORIZATION CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	*****	Antoniologia		
	J1402025-002S	GAIN-M-36B-0	31814S		Matrix Sp	oike			
	J1402025-002SD	GAIN-M-36B-0	31814SD		Matrix Sp	oike Duplicate	REERONADORDATIN		
	J1402025-003	GAIN-HG-24S-	031814			20 mar 1997 for 2011 and 2014 a Sawin Article Structure Contra Contra Contra Contra Contra Contra Contra Contra			
	J1402025-004	GAIN-M-25B-0	31814						
	J1402025-005	GAIN-HG-33S-	031914						
	J1402025-006	GAIN-HG-34S-	031914						
	J1402025-007	GAIN-HG-22D-	031914						
	J1402025-007S	GAIN-HG-22D-	0319145		Matrix Sp	oike			
	J1402025-007SD	GAIN-HG-22D-	031914SD		Matrix Sp	oike Duplicate			
Were ICP	interelement corre	ections appl	ied?	Ye	s/No	Yes _	name set a first concernance source	Yes _	
appli	cations of backgro	und correct:	ions?	Ye	es/No	No			

Comments: Perkin Elmer MSF program is used for IEC corrections

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Calle	Name:	Craig Myers
Date:	4/8/14	Title:	Project Manager

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J1402	025-001					Client ID: (	GAIN-M-2:	5A-031814			
Matrix: WATE	R	] Date Re	ceived:	3/	19/2014	Level:	LC	)W			
% Solids:		Sample	Wt/Vol:	5	0.0	Final Vol	: 50	0.0			
Prep Batch ID:	204591			P	rep Date:	3/21/20	14		COLLIGAT		
Analyte	Conc	centration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum		112	ug/L	********************		6010B	11	100	1.00	3/22/2014	00:25:55
Antimony		1.6	ug/L			6020	0.160	1.0	1.00	3/27/2014	00:13
Arsenic		0.51	ug/L	i		6020	0.42	1.0	1.00	3/27/2014	00:13
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:13
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:13
Chromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:13
ron		2.5	ug/L	U		6010B	2.5	100	1.00	3/22/2014	00:25:55
ead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:13
Aanganese		0.4	ug/L	i		6020	0.1	2.0	1.00	3/27/2014	00:13
Aercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:01:52
Aolybdenum		2.70	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:13
selenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:13
odium		1590	ug/L			6010B	29	500	1.00	3/22/2014	00:25:55
hallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:13

æ

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J140202	5-002				Client ID: (	GAIN-M-3	6B-031814			
Matrix: WATER	Date R	eceived:	3/	19/2014	Level:	LC	)W			
% Solids:	Sampl	e Wt/Vol:	5	0.0	Final Vol	: 5(	0.0			
Prep Batch ID:	204591		F	rep Date:	3/21/20	14				
	~								Anal	ytical
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum	110	ug/L			6010B	11	100	1.00	3/22/2014	00:30:47
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:18
Arsenic	0.42	ug/L	U		6020	0.42	1.0	1.00	3/27/2014	00:18
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:18
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:18
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:18
Iron	753	ug/L			6010B	2.5	100	1.00	3/22/2014	00:30:47
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:18
Manganese	27	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:18
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:09:33
Molybdenum	2.20	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:18
Selenium	your .	ug/L	U		6020	, buotet	2.0	1.00	3/27/2014	00:18
Sodium	6770	ug/L			6010B	29	500	1.00	3/22/2014	00:30:47
Thallium	0.05	uø/L	U		6020	0.05	0.20	1.00	3/27/2014	00.18

-

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J1402	025-003					Client ID: (	GAIN-HG-2	248-031814			
Matrix: WATE	R	Date Re	ceived:	3/	19/2014	Level:	LC	W	0000000000		
% Solids:		Sample	Wt/Vol:	5	0.0	Final Vol	: 50	).0			
Prep Batch ID:	204591			P	rep Date:	3/21/20	14				
										Anal	ytical
Analyte	Conce	ntration	Units	C	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum		96	ug/L	I		6010B	11	100	1.00	3/22/2014	00:57:58
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:23
\rsenic		2.4	ug/L			6020	0.42	1.0	1.00	3/27/2014	00:23
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:23
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:23
Chromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:23
ron		744	ug/L			6010B	2.5	100	1.00	3/22/2014	00:57:58
Lead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:23
Manganese		27	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:23
Aercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:10:42
Aolybdenum		5.80	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:23
selenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:23
Sodium		5490	ug/L			6010B	29	500	1.00	3/22/2014	00:57:58
hallium		0.05	119/1	Ħ		6020	0.05	0.20	1.00	3/27/2014	00.23

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J14020	)25-004				Client ID: (	GAIN-M-2:	5B-031814			
Matrix: WATEI	R Date R	eceived:	3/	19/2014	Level:		W			
% Solids:	Sampl	e Wt/Vol:	5	0.0	Final Vol	: 50	0.0			
Prep Batch ID:	204591		F	Prep Date:	3/21/20	14				
									Anal	ytical
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum	95	ug/L	Ι		6010B	11	100	1.00	3/22/2014	01:02:5
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:28
Arsenic	3.2	ug/L			6020	0.42	1.0	1.00	3/27/2014	00:28
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:28
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:28
Chromium	0.45	ug/L	i		6020	0.18	1.0	1.00	3/27/2014	00:28
Iron	245	ug/L			6010B	2.5	100	1.00	3/22/2014	01:02:5
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:28
Manganese	63	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:28
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:11:5
Molybdenum	0.28	ug/L	U		6020	0.28	2.00	1.00	3/27/2014	00:28
Selenium	Annual	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:28
Sodium	17500	ug/L			6010B	29	500	1.00	3/22/2014	01:02:5
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:28

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J1402025-	005				Client ID: (	GAIN-HG-:	338-031914	****		
Matrix: WATER	Date I	Received:	3/	19/2014	Level:	LC	)W	Nodewalarsce		
% Solids:	Samp	le Wt/Vol:	5	0.0	Final Vol	: 5(	).0			
Prep Batch ID: 20	4591		P	rep Date:	3/21/20	14				
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum	99	ug/L	I		6010B	11	100	1.00	3/22/2014	01:07:4
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:43
Arsenic	0.42	ug/L	U		6020	0.42	1.0	1.00	3/27/2014	00:43
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:43
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:43
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:43
ron	887	ug/L			6010B	2.5	100	1.00	3/22/2014	01:07:4
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:43
Manganese	27	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:43
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:16:1
Molybdenum	1.90	ug/L	i		6020	0.28	2.00	1.00	3/27/2014	00:43
Selenium	yuur , a	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:43
Sodium	6720	ug/L			6010B	29	500	1.00	3/22/2014	01:07:4
Fhallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:43

.

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J1402025-	006				Client ID: (	GAIN-HG-	348-031914			
Matrix: WATER	Date Re	eceived:	3/	/19/2014	Level:	L	SW			
% Solids:	Sample	Wt/Vol:	. 5	0.0	Final Vol	: 5	0.0			
Prep Batch ID: 20	4591			Prep Date:	3/21/20	14				
	~		~						Anal	ytical
Analyte	Concentration	Units	C	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum	470	ug/L			6010B	11	100	1.00	3/22/2014	01:12:37
Antimony	0.250	ug/L	i		6020	0.160	1.0	1.00	3/27/2014	00:49
Arsenic	0.53	ug/L	i		6020	0.42	1.0	1.00	3/27/2014	00:49
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:49
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:49
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:49
Iron	5.4	ug/L	I		6010B	2.5	100	1.00	3/22/2014	01:12:37
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:49
Manganese	0.3	ug/L	i		6020	0.1	2.0	1.00	3/27/2014	00:49
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:17:22
Molybdenum	8.00	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:49
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:49
Sodium	11000	ug/L			6010B	29	500	1.00	3/22/2014	01:12:37
Fhallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00.49

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J14020	)25-007	*******				Client ID: (	GAIN-HG-	22D-031914			
Matrix: WATER	}	Date Re	ceived:	3/	19/2014	Level:		W	#000507399		
% Solids:		Sample	Wt/Vol:	50	0.0	Final Vol	: 51	0.0			
Prep Batch ID:	204591			P	rep Date:	3/21/20	14		anno constant		
										Anal	ytical
Analyte	Conce	ntration	Units	C	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum		120	ug/L			6010B	- 11	100	1.00	3/22/2014	01:17:29
Antimony		0.380	ug/L	i		6020	0.160	1.0	1.00	3/28/2014	14:23
Arsenic		0.62	ug/L	i		6020	0.42	1.0	1.00	3/28/2014	14:23
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/28/2014	14:23
Cadmium		0.570	ug/L			6020	0.090	0.400	1.00	3/28/2014	14:23
Chromium		0.55	ug/L	i		6020	0.18	1.0	1.00	3/28/2014	14:23
ron		340	ug/L			6010B	2.5	100	1.00	3/22/2014	01:17:29
_ead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/28/2014	14:23
Manganese		11	ug/L			6020	0.1	2.0	1.00	3/28/2014	14:23
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:18:29
Molybdenum		1.80	ug/L	i		6020	0.28	2.00	1.00	3/28/2014	14:23
Selenium		1.1	ug/L	U		6020		2.0	1.00	3/28/2014	14:23
Sodium		2740	ug/L			6010B	29	500	1.00	3/22/2014	01:17:29
Thallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/28/2014	14:23

## ALS Environmental

## Dissolved Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		SDG No.: J	1402025	ambarmaan	
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	1005995/009564/001494/004920000000000000000000000000000000	SAS No.:	
Initial Calibration Source:	Inorganic Ventures				
Continuing Calibration Source:	High Purity STDs	88			

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
ICV									
101	Aluminum	50100.00	50000.0	100	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Iron	39200.0	40000.0	98	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Sodium	20600.00	20000.0	103	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
CCV									
	Aluminum	4980.00	5000.0	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Iron	5080.0	5000.0	102	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Sodium	25100.00	25000.0	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
CCV									
	Aluminum	4900.00	5000.0	98	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	Iron	4980.0	5000.0	100	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	Sodium	25200.00	25000.0	101	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
CCV									
	Aluminum	4890.00	5000.0	- 98	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
	Iron	4980.0	5000.0	100	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
	Sodium	25200.00	25000.0	101	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
CCV									
	Aluminum	5010.00	5000.0	100	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
	Iron	5060.0	5000.0	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
	Sodium	25300.00	25000.0	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
CCV									
	Aluminum	4890.00	5000.0	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Iron	4900.0	5000.0	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
CCV									
	Aluminum	4900.00	5000.0	98	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Iron	4930.0	5000.0	99	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1

74

## Dissolved Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		SDG No.: J1402025				
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:			
Initial Calibration Source:	Inorganic Ventures					
<b>Continuing Calibration Source:</b>	High Purity STDs	•				

Sample II	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CON									
LL V	Aluminum	4930.00	5000.0	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Iron	4950.0	5000.0	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/21/2014	23.59	032114A1
	Sourani			8. O 667	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001010	0.21.2011	20101	
CCV									
001	Aluminum	4960.00	5000.0	99	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	Iron	4990.0	5000.0	100	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
CCV									
	Aluminum	4980.00	5000.0	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Iron	4990.0	5000.0	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Sodium	25600.00	25000.0	102	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
								•	
ICV									
	Mercury	4.96	5.00	99	90.0 - 110.0	7470A	3/24/2014	16:54	032414B
COV	¥								
CCV-	Mercury	5.00	5.00	100	80.0 - 120.0	7470 4	3/24/2014	17.12	032414B
	whereary	5.00	5.00	100	80.0 - 120.0	1410/4	J/27/2017	1/.12	0524140
CCV-	2								
	Mercury	5.00	5.00	100	80.0 - 120.0	7470A	3/24/2014	17:30	032414B
CCV-	3								
	Mercury	4.99	5.00	100	80.0 - 120.0	7470A	3/24/2014	17:45	032414B
## **Dissolved Metals** - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		SDG No.: J14020	025	
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:	
Initial Calibration Source:	High Purity Standards			
Continuing Calibration Source:	Inorganic Ventures			

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
ICV									
	Antimony	49.4	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Arsenic	51.2	50.0	102	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Beryllium	20.0	20.0	100	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Cadmium	23.8	25.0	95	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Chromium	48.8	50.0	98	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Lead	49.7	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Manganese	49.4	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Molybdenum	49.6	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Selenium	49.1	50.0	98	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Thallium	48.9	50.0	98	90.0 - 110.0	6020	3/26/2014	23:08	032614B
CCV-	1								
	Antimony	50.2	50.0	100	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Arsenic	51.2	50.0	102	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Beryllium	24.6	25.0	98	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Cadmium	19.5	20.0	98	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Chromium	49.5	50.0	99	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Lead	26.1	25.0	104	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Molybdenum	103.0	100.0	103	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/26/2014	23:33	032614B
CCV-	7								
	Antimony	49.2	50.0	98	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Arsenic	51.2	50.0	102	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Beryllium	25.9	25.0	104	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Cadmium	19.1	20.0	96	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Chromium	48.8	50.0	98	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Lead	26.0	25.0	104	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Molybdenum	99.9	100.0	100	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Thallium	10.1	10.0	101	90.0 - 110.0	6020	3/27/2014	00:33	032614B

## Dissolved Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		SDG No.: J1402025					
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:		SAS No.:		
Initial Calibration Source:	High Purity Standards						
<b>Continuing Calibration Source:</b>	Inorganic Ventures	<u>S</u>					

Sample II	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV-3	3								
	Antimony	48.7	50.0	97	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Arsenic	52.3	50.0	105	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Beryllium	24.3	25.0	97	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Cadmium	19.3	20.0	96	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Chromium	49.7	50.0	99	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Lead	26.1	25.0	104	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Molybdenum	100.0	100.0	100	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Selenium	103.0	100.0	103	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/27/2014	01:34	032614B
CCV-4	4								
	Antimony	48.0	50.0	96	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Arsenic	49.8	50.0	100	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Beryllium	24.2	25.0	97	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Cadmium	18.8	20.0	94	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Chromium	47.5	50.0	95	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Lead	25.4	25.0	102	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Manganese	98.4	100.0	98	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Molybdenum	97.3	100.0	97	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Selenium	99.4	100.0	99	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Thallium	10.1	10.0	101	90.0 - 110.0	6020	3/27/2014	01:54	032614B
ICV									
101	Antimony	50.4	50.0	101	90.0 - 110.0	6020	3/28/2014	13-37	032814A
	Arsenic	50.5	50.0	101	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Beryllium	18.7	20.0	94	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Cadmium	25.4	25.0	102	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Chromium	50.2	50.0	100	90.0 - 110.0	6020	3/28/2014	13.37	032814A
	Lead	48.3	50.0	97	90.0 - 110.0	6020	3/28/2014	13-37	032814A
	Manganese	49.7	50.0	99	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Molybdenum	50.9	50.0	102	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Selenium	50.4	50.0	101	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Thallium	48.7	50.0	97	90.0 - 110.0	6020	3/28/2014	13:37	032814A

## Dissolved Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		<b>SDG No.:</b> J1402025				
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:		SAS No.:	
Initial Calibration Source:	High Purity Standards					
Continuing Calibration Source:	Inorganic Ventures					

Sample II	) Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV-1									
	Antimony	50.5	50.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Arsenic	50.7	50.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Beryllium	24.1	25.0	96	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Cadmium	21.1	20.0	106	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Chromium	50.6	50.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Lead	24.8	25.0	99	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Molybdenum	104.0	100.0	104	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/28/2014	14:02	032814A
CCV-2									
	Antimony	51.5	50.0	103	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Arsenic	50.0	50.0	100	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Beryllium	25.5	25.0	102	90.0 - 110.0	6020	3/28/2014	15:03	032814A
1	Cadmium	20.8	20.0	104	90.0 - 110.0	6020	3/28/2014	15:03	032814A
1	Chromium	50.8	50.0	102	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Lead	25.3	25.0	101	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Manganese	102.0	100.0	102	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Molybdenum	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/28/2014	15:03	032814A
CCV-3	\$								
	Antimony	50.3	50.0	101	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Arsenic	51.4	50.0	103	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Beryllium	25.0	25.0	100	90.0 - 110.0	6020	3/28/2014	15:38	032814A
(	Cadmium	20.6	20.0	103	90.0 - 110.0	6020	3/28/2014	15:38	032814A
1	Chromium	50.9	50.0	102	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Lead	25.3	25.0	101	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Manganese	102.0	100.0	102	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Molybdenum	100.0	100.0	100	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Selenium	102.0	100.0	102	90.0 - 110.0	6020	3/28/2014	15:38	032814A
,	Thallium	10.4	10.0	104	90.0 - 110.0	6020	3/28/2014	15:38	032814A

#### Dissolved Metals - 2b -CRDL STANDARD FOR AA & ICP

Client:	Beazer East, Inc.				SDC	G No.: J <u>14(</u>	)2025		
Contrac	et: 0 <u>M-0450-14</u>		Lab Co	de: ALJCK	Case No:			SAS No.:	
AA CRI	DL Standard Source:								
ICP CF	RDL Standard Source:	Hig	sh Purity STDs	NOVINI U V U V V V U V V U V V V V V V V V V					
Sample ID	) Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	Method	Analysis Date	Analysis Time	Run Number
MRL									
1	Aluminum	68.60	100.0	69	50 - 150	6010B	3/21/2014	18:15	032114A1
I	Iron	106.0	100.0	106	50 - 150	6010B	3/21/2014	18:15	032114A1
ŝ	Sodium	546.00	500.0	109	50 - 150	6010B	3/21/2014	18:15	032114A1
MRL 0	).1								
ľ	Mercury	0.10	0.10	100	50 - 150	7470A	3/24/2014	16:57	032414B
MRL									
1	Antimony	1.13	1.00	113	50 - 150	6020	3/26/2014	23:18	032614B
/	Arsenic	1.07	1.00	107	50 - 150	6020	3/26/2014	23:18	032614B
I	Beryllium	0.48	0.50	96	50 - 150	6020	3/26/2014	23:18	032614B
(	Cadmium	0.38	0.40	95	50 - 150	6020	3/26/2014	23:18	032614B
(	Chromium	1.12	1.00	112	50 - 150	6020	3/26/2014	23:18	032614B
I	Lead	0.27	0.50	54	50 - 150	6020	3/26/2014	23:18	032614B
ľ	Manganese	2.05	2.00	102	50 - 150	6020	3/26/2014	23:18	032614B
ľ	Molybdenum	1.98	2.00	99	50 - 150	6020	3/26/2014	23:18	032614B
S	Selenium	1.73	2.00	86	50 - 150	6020	3/26/2014	23:18	032614B
	Fhallium	0.20	0.20	100	50 - 150	6020	3/26/2014	23:18	032614B
MRI.									
/	Antimony	1.22	1.00	122	50 - 150	6020	3/28/2014	13:47	032814A
1	Arsenic	1.24	1.00	124	50 - 150	6020	3/28/2014	13:47	032814A
I	Beryllium	0.50	0.50	100	50 - 150	6020	3/28/2014	13:47	032814A
(	Cadmium	0.44	0.40	110	50 - 150	6020	3/28/2014	13:47	032814A
(	Chromium	0.89	1.00	89	50 - 150	6020	3/28/2014	13:47	032814A
I	Lead	0.52	0.50	104	50 - 150	6020	3/28/2014	13:47	032814A
ĥ	Manganese	2.04	2.00	102	50 - 150	6020	3/28/2014	13:47	032814A
Ņ	Molybdenum	2.04	2.00	102	50 - 150	6020	3/28/2014	13:47	032814A
8	Selenium	1.88	2.00	94	50 - 150	6020	3/28/2014	13:47	032814A
1	Thallium	0.20	0.20	100	50 - 150	6020	3/28/2014	13:47	032814A

Client: B	eazer East, Inc.		038/02090/08/00/08/8			5DG No.: J14	02025				
Contract:	OM-0450-14		Lab Code:	ALJCK	(	Case No.:		S.	SAS No.:		
Sample II	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
ICR											
КD	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	18.05	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	18:05	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	18:05	032114A1	
CCB											
CCD	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	18.39	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	18.39	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	18:39	032114A1	
CCR											
000	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	19:46	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	19:46	032114A1	
	Sodium	35.600	+/-500.000	Ι	29.000	500.000	6010B	3/21/2014	19:46	032114A1	
ССВ											
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	20:42	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	20:42	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	20:42	032114A1	
ССВ											
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	21:34	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	21:34	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	21:34	032114A1	
ССВ											
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	22:22	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	22:22	032114A1	
	Sodium	35.000	+/-500.000	possed	29.000	500.000	6010B	3/21/2014	22:22	032114A1	
ССВ											
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	23:14	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	23:14	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	23:14	032114A1	

Client: Be	eazer East, Inc.		SDG No.: J1402025								
Contract:	OM-0450-14		Lab Code:	ALJCK	C	lase No.:		SA	S No.:		
			aatundoliinem			DESI260	******	a na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na ma	valvädendoor	ne na canada na canada canada na canada na canada na canada na canada na canada na canada na canada na canada n	pinetaine
Sample ID	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL I	Method	Analysis Date	Analysis Time	Run	
CCB											
000	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	00:02	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	00:02	032114A1	
	Sodium	29.900	+/-500.000	I	29.000	500.000	6010B	3/22/2014	00:02	032114A1	
ССВ											
002	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	00:53	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	00:53	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	00:53	032114A1	
CCP											
CCB	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	01-41	032114A1	
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	01.41	032114A1	
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	01:41	032114A1	
LOD											
ICB	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	16:56	032414B	
CCB-1											
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	17:15	032414B	
CCB-2											
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	17:32	032414B	
CCB-3											
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	17:47	032414B	

Client: Be	Client: Beazer East, Inc.				S	DG No.: J14	02025				
Contract:	OM-0450-14		Lab Code:	ALJCK	C	Case No.:		SA	SAS No.:		
											-
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
ICB	Antimony	0.54	+/ 1.00	;	0.16	1.00	6020	2/26/2014	00.10	0226140	
	Arsenic	0.34	+/-1.00	I I I	0.10	1.00	6020	3/20/2014	23:13	032614D	
	Beryllium	0.42	+/-0.50	U U	0.42	0.50	6020	3/26/2014	23:13	032614D	
	Cadmium	0.05	+/-0.30	U U	0.03	0.50	6020	3/26/2014	23:13	032614B	
	Chromium	0.09	+/-1.00	U	0.09	1.00	6020	3/26/2014	23:13	032614D	
	Lead	0.10	+/-0.50	· U	0.13	0.50	6020	3/26/2014	23:13	032614B	
	Manganese	0.12	+/-2.00	U U	0.12	2.00	6020	3/26/2014	23:13	0220140	
	Molyhdenum	0.12	+/-2.00	i	0.12	2.00	6020	3/26/2014	23:13	032614B	
	Selenium	1.10	+/-2.00	I	1 10	2.00	6020	3/26/2014	23:13	032614B	
	Thallium	0.05	+/-0.20	U U	0.05	0.20	6020	3/26/2014	23:13	032614B	
	mannann	0.05	17 0.20	0	0.00	0.20	0020	5/20/2014	23:13	0520140	
CCB-1											
	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/26/2014	23:38	032614B	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/26/2014	23:38	032614B	
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/26/2014	23:38	032614B	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/26/2014	23:38	032614B	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/26/2014	23:38	032614B	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/26/2014	23:38	032614B	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/26/2014	23:38	032614B	
	Molybdenum	0.59	+/-2.00	i	0.28	2.00	6020	3/26/2014	23:38	032614B	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/26/2014	23:38	032614B	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/26/2014	23:38	032614B	
CCB-2											
000 2	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/27/2014	00:38	032614B	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/27/2014	00:38	032614B	
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/27/2014	00:38	032614B	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/27/2014	00:38	032614B	
	Chromium	0.18	+/-I.00	U	0.18	1.00	6020	3/27/2014	00:38	032614B	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/27/2014	00:38	032614B	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/27/2014	00:38	032614B	
	Molybdenum	0.28	+/-2.00	U	0.28	2.00	6020	3/27/2014	00:38	032614B	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/27/2014	00:38	032614B	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/27/2014	00:38	032614B	

Client: B	eazer East, Inc.				S	SDG No.: J14	02025				
Contract:	OM-0450-14		Lab Code:	ALJCK	(	Case No.:	n teoristi ta 1990 este este a su a s	SAS No.:			
Sample IE	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
CCD 2											
CCB-3	Antimony	0.19	+/-1 00	i	0.16	1.00	6020	3/27/2014	01.20	032614B	
	Arsenic	0.42	+/-1.00	Ĩ	0.10	1.00	6020	3/27/2014	01:39	032614B	
	Beryllium	0.03	+/-0.50	л П	0.03	0.50	6020	3/27/2014	01:39	032614B	
	Cadmium	0.09	+/-0.40	U	0.09	0.50	6020	3/27/2014	01:39	032614B	
	Chromium	0.18	+/-1.00	U U	0.18	1.00	6020	3/27/2014	01:39	032614B	
	Lead	0.12	+/-0.50	U	0.13	0.50	6020	3/27/2014	01:39	032614D	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/27/2014	01:39	032614D	
	Molyhdenum	0.12	+/-2.00	i	0.12	2.00	6020	3/27/2014	01:39	032014D	
	Selenium	1 10	+/-2.00	т П	1.10	2.00	6020	3/27/2014	01:39	032614D	
	Thallium	0.05	+/-0.20	U U	0.05	0.20	6020	3/27/2014	01:39	032614B	
		0,00		0	0.00	0.20	0020	5/2//2014	01:59	0520140	
CCB-4											
	Antimony	0.17	+/-1.00	ì	0.16	1.00	6020	3/27/2014	01:59	032614B	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/27/2014	01:59	032614B	
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/27/2014	01:59	032614B	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/27/2014	01:59	032614B	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/27/2014	01:59	032614B	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/27/2014	01:59	032614B	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/27/2014	01:59	032614B	
	Molybdenum	0.28	+/-2.00	i	0.28	2.00	6020	3/27/2014	01:59	032614B	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/27/2014	01:59	032614B	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/27/2014	01:59	032614B	
ICB											
	Antimony	0.56	+/-1.00	1	0.16	1.00	6020	3/28/2014	13:42	032814A	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/28/2014	13.42	032814A	
	Beryllium	0.03	+/-0.50	i	0.03	0.50	6020	3/28/2014	13.42	032814A	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/28/2014	13.42	032814A	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/28/2014	13.42	032814A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/28/2014	13.42	032814A	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/28/2014	13.47	032814A	
	Molybdenum	0.35	+/-2.00	i	0.28	2.00	6020	3/28/2014	13-47	032814A	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/28/2014	13.42	032814A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	13-42	032814A	
									x x here		

Client: Bo	eazer East, Inc.	184688666666666666666666666666666666666			S	DG No.: J14	02025	senni dala dana kasi ng kasi ng kasi ng kasa ng kasi ng kasi ng kasi ng kasi ng kasi ng kasi ng kasi ng kasi ng			
Contract:	OM-0450-14		Lab Code:	ALJCK		Case No.:	Normina inclusione anima	SA	and a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of t	taiduly/we-searce	
Sample ID	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
~~~~											
CCR-I	Antimony	0.21	+/-1.00	8	0.16	1.00	6020	3/28/2014	14.00	0228144	
	Arsenic	0.42	+/-1.00	I	0.42	1.00	6020	3/28/2014	14:08	032814A	
	Beryllium	0.03	+/-0.50	П	0.42	0.50	6020	3/28/2014	14:08	0328144	
	Cadmium	0.09	+/-0.40	U	0.09	0.30	6020	3/28/2014	14:08	032814A	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/28/2014	14:08	032814A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/28/2014	14:08	0328144	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/28/2014	14:08	032814A	
	Molybdenum	0.65	+/-2.00	i	0.28	2.00	6020	3/28/2014	14.00	032814A	
	Selenium	1.10	+/-2.00	Ū	1.10	2.00	6020	3/28/2014	14.00	032814A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	14:08	032814A	
CCB-2											
	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/28/2014	15:08	032814A	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/28/2014	15:08	032814A	
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/28/2014	15:08	032814A	
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/28/2014	15:08	032814A	
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/28/2014	15:08	032814A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/28/2014	15:08	032814A	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/28/2014	15:08	032814A	
	Molybdenum	0.35	+/-2.00	ì	0.28	2.00	6020	3/28/2014	15:08	032814A	
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/28/2014	15:08	032814A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	15:08	032814A	
CCB-3	A	0.14	. / 1 00	* *	A A A			A 10 0 10 0 1		0000	
	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/28/2014	15:43	032814A	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/28/2014	15:43	032814A	
	Gadaration	0.03	+/-0.50	U	0.03	0.50	6020	3/28/2014	15:43	032814A	
	Chromium	0.09	+/0.40	U	0.09	0.40	6020	3/28/2014	15:43	032814A	
	Lond	0.18	T/-1.00	U	0.18	1.00	6020	3/28/2014	15:43	032814A	
	Managerere	0.12	+/-0.50	U	0.12	0.50	6020	3/28/2014	15:43	032814A	
	Malukdamu	0.12	+/-2.00	U	0.12	2.00	6020	3/28/2014	15:43	032814A	
	Salanium	U.32 1 IA	T/-2.00	يًّ ت س	0.28	2.00	0020	3/28/2014	15:43	032814A	
	Thelling	1.10	+/-2.00	U	1.10	2.00	6020	3/28/2014	15:43	032814A	
	rnallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	15:43	032814A	

Dissolved Metals - 3b -PREPARATION BLANK SUMMARY

Client: Bea	zer East, Inc.			SDG No.: J1402025								
Contract: (DM-0450-14		Lab	Code:	ALJCK	Case	No.:	Zypertörsti 4 kolmita tyrittikki komunikati oksikk	SAS	No.:		
Sample ID	Analyte	Result (ug/L)	Conc Qual	Q	Acceptance Limit	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
MB-02113-0)2		WATER									
	Mercury	0.012	U		+/-0.012	0.012	0.100	7470A	3/24/2014	16:59	032414B	
MB-02130-()2		WATER									
	Aluminum	79.700	I		+/-11.000	11.000	100.000	6010B	3/22/2014	00:17	032114A1	
	Iron	16.000	Ι		+/-2.500	2.500	100.000	6010B	3/22/2014	00:17	032114A1	
;	Sodium	29.000	U		+/-29.000	29.000	500.000	6010B	3/22/2014	00:17	032114A1	
MB-02133-()4		WATER									
	Antimony	0.250	i		+/-0.160	0.160	1.000	6020	3/26/2014	23:43	032614B	
	Arsenic	0.420	U		+/-0.420	0.420	1.000	6020	3/26/2014	23:43	032614B	
	Beryllium	0.032	U		+/-0.032	0.032	0.500	6020	3/26/2014	23:43	032614B	
	Cadmium	0.091	U		+/-0.091	0.091	0.400	6020	3/26/2014	23:43	032614B	
	Chromium	0.200	i		+/-0.180	0.180	1.000	6020	3/26/2014	23:43	032614B	
	Lead	0.120	U		+/-0.120	0.120	0.500	6020	3/26/2014	23:43	032614B	
	Manganese	0.120	U		+/-0.120	0.120	2.000	6020	3/26/2014	23:43	032614B	
	Molybdenum	0.390	• trool		+/-0.280	0.280	2.000	6020	3/26/2014	23:43	032614B	
	Selenium	1.100	U		+/-1.100	1.100	2.000	6020	3/26/2014	23:43	032614B	
	Thallium	0.050	U		+/-0.050	0.050	0.200	6020	3/26/2014	23:43	032614B	
MB-02258-0)2		WATER									
	Antimony	0.160	U		+/-0.160	0.160	1.000	6020	3/28/2014	14:13	032814A	
	Arsenic	0.420	U		+/-0.420	0.420	1.000	6020	3/28/2014	14:13	032814A	
	Beryllium	0.032	U		+/-0.032	0.032	0.500	6020	3/28/2014	14:13	032814A	
	Cadmium	0.091	U		+/-0.091	0.091	0.400	6020	3/28/2014	14:13	032814A	
	Chromium	0.180	U		+/-0.180	0.180	1.000	6020	3/28/2014	14:13	032814A	
	Lead	0.120	U		+/-0.120	0.120	0.500	6020	3/28/2014	14:13	032814A	
	Manganese	0.380	ì		+/-0.120	0.120	2.000	6020	3/28/2014	14:13	032814A	
	Molybdenum	0.310	e sou		+/-0.280	0.280	2.000	6020	3/28/2014	14:13	032814A	
1	Selenium	1.100	U		+/-1.100	1.100	2.000	6020	3/28/2014	14:13	032814A	
	Thallium	0.050	U		+/-0.050	0.050	0.200	6020	3/28/2014	14:13	032814A	

Dissolved Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	azer East, Inc.								
Contract:	OM-0450-14		Lab Co	de: ALJCK	Cas	e No.:		SAS No.	4 16
ICS Source				Instru	iment ID:	PE Optima ICP			
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSA									
	Aluminum	753000	750000	100	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Iron	668000	750000	89	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Sodium	34			0.0 to 0.0	6010B	3/21/2014	18:19	032114A1
ICSAB									
	Aluminum	766000	752000	102	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Iron	677000	752000	90	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Sodium	11200	10000	112	80 - 120%	6010B	3/21/2014	18:27	032114A1
ICSA									
	Aluminum	757000	750000	101	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Iron	667000	750000	89	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Sodium	28			0.0 to 0.0	6010B	3/22/2014	01:21	032114A1
ICSAB									
	Aluminum	770000	752000	102	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Iron	678000	752000	90	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Sodium	11400	10000	114	80 - 120%	6010B	3/22/2014	01:29	032114A1
ICSA									
	Antimony	0.2			-2.0 to 2.0	6020	3/26/2014	23:23	032614B
	Arsenic	-0.5			-2.0 to 2.0	6020	3/26/2014	23:23	032614B
	Beryllium	0.024			-1.000 to 1.000	6020	3/26/2014	23:23	032614B
	Cadmium	0.1			-0.8 to 0.8	6020	3/26/2014	23:23	032614B
	Chromium	1.1			-2.0 to 2.0	6020	3/26/2014	23:23	032614B
	Lead	-0.2			-1.0 to 2.0	6020	3/26/2014	23:23	032614B
	Manganese	0.4			-4.0 to 4.0	6020	3/26/2014	23:23	032614B
	Molybdenum	1100.0	1000.0	110	80 - 120%	6020	3/26/2014	23:23	032614B
	Selenium	0.1			-4.0 to 4.0	6020	3/26/2014	23:23	032614B
	Thallium	0.0			-0.4 to 0.4	6020	3/26/2014	23:23	032614B

Dissolved Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	azer East, Inc.				SDG	No.: J1402025			
Contract:	OM-0450-14		Lab Co	de: ALJCK	Cas	e No.:		SAS No.	*
ICS Source	3 ¢ ****			Instru	ument ID:	ICP-MS		NG REAL PARTY	
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSAB									
	Antimony	21.0	20.0	105	80 - 120%	6020	3/26/2014	23:28	032614B
	Arsenic	21.7	20.0	108	80 - 120%	6020	3/26/2014	23:28	032614B
	Beryllium	9.630	10.000	96	80 - 120%	6020	3/26/2014	23:28	032614B
	Cadmium	7.6	8.0	95	80 - 120%	6020	3/26/2014	23:28	032614B
	Chromium	22.1	20.0	110	80 - 120%	6020	3/26/2014	23:28	032614B
	Lead	10.0	10.0	100	80 - 120%	6020	3/26/2014	23:28	032614B
	Manganese	41.2	40.0	103	80 - 120%	6020	3/26/2014	23:28	032614B
	Molybdenum	1150.0	1040.0	111	80 - 120%	6020	3/26/2014	23:28	032614B
	Selenium	41.1	40.0	103	80 - 120%	6020	3/26/2014	23:28	032614B
	Thallium	4.0	4.0	100	80 - 120%	6020	3/26/2014	23:28	032614B
ICSA									
	Antimony	0.1			-2.0 to 2.0	6020	3/28/2014	13:52	032814A
	Arsenic	0.5			-2.0 to 2.0	6020	3/28/2014	13:52	032814A
	Beryllium	0.025			-1.000 to 1.00	0 6020	3/28/2014	13:52	032814A
	Cadmium	0.3			-0.8 to 0.8	6020	3/28/2014	13:52	032814A
	Chromium	0.7			-2.0 to 2.0	6020	3/28/2014	13:52	032814A
	Lead	0.1			-1.0 to 2.0	6020	3/28/2014	13:52	032814A
	Manganese	0.3			-4.0 to 4.0	6020	3/28/2014	13:52	032814A
	Molybdenum	1050.0	1000.0	105	80 - 120%	6020	3/28/2014	13:52	032814A
	Selenium	1.0			-4.0 to 4.0	6020	3/28/2014	13:52	032814A
	Thallium	0.0			-0.4 to 0.4	6020	3/28/2014	13:52	032814A
ICSAB									
	Antimony	20.9	20.0	104	80 - 120%	6020	3/28/2014	13:57	032814A
	Arsenic	20.7	20.0	104	80 - 120%	6020	3/28/2014	13:57	032814A
	Beryllium	9.240	10.000	92	80 - 120%	6020	3/28/2014	13:57	032814A
	Cadmium	8.1	8.0	101	80 - 120%	6020	3/28/2014	13:57	032814A
	Chromium	21.7	20.0	108	80 - 120%	6020	3/28/2014	13:57	032814A
	Lead	9.9	10.0	99	80 - 120%	6020	3/28/2014	13:57	032814A
	Manganese	40.8	40.0	102	80 - 120%	6020	3/28/2014	13:57	032814A
	Molybdenum	1100.0	1040.0	106	80 - 120%	6020	3/28/2014	13:57	032814A
	Selenium	41.9	40.0	105	80 - 120%	6020	3/28/2014	13:57	032814A
	Thallium	4.0	4.0	100	80 - 120%	6020	3/28/2014	13:57	032814A
			9996166115991174611591159115062471691191611916119101917231150					<u> </u>	

Dissolved Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Beazer East, Inc.			02HH193000000		SD	G No.: J14020	25		
Contract: ON	Lab Code:	ALJCK	C	ase No.:		SAS No.:			
ICS Source:				Instru	ment ID:	ICP-MS			
Sample ID	Analyte	Result ug/L	True Value ug/L I	% Recovery	Acceptanc Window	e Method	Analysis Date	Analysis Time	Run Number

	Dissolved Metals - 5a - MATRIX SPIKE SUMMARY												
Client: Beazer East, Inc. Level: LOW SDG No.: J1402025													
Contract:	<u>OM-045</u>	0-14	Lab (Code:	ALJCK		Case No.:		\$A	NS No.:	itaniasi coorsonaisonai		
Matrix:	WATER		Sample ID:	J14	102025-001	Clie	nt ID: GAIN	-M-25A-03181	4S	MCM/1010474 E01002-00109 E0100940-00004974.25			
Percent Soli	ids for San	nple: 0.00	Spiked ID:	J14(02025-001S	Pero	cent Solids fo	r Spike Sample	: 0.00				
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method			
Mercury	ug/L	75 - 125	1.23		0.01	U	1.25	98		7470A			

	Dissolved Metals - 5a -											
			MATRIX	SPII	KE DUPLICA	ATE S	SUMMARY	l III				
Client: Bea	izer East, In	C.	Level:	holosialaisekaisekaise	LOW		SDG No.:	J1402025		States and a state and a state and a state and a state and a state and a state and a state and a state and a st		
Contract:	<u>OM-045</u>	0-14	Lab C		Case No.:		SA	S No.:				
Matrix:	WATER		Sample ID:	J14	102025-001	Clie	ent ID: GAIN	-M-25A-03181	4SD			
Percent Sol	ids for San	nple: 0.00	Spiked ID:	J14(02025-001SD	Per	cent Solids fo	r Spike Sample	e: 0.00			
Acceptance MSD Result Sample Analyte Units Limit %R C Result							Spike Added	% Recovery	Qual	Method		
Mercury	ug/L	75 - 125	1.24		0.01	U	1.25	98		7470A		

Dissolved Metals - 5a - MATRIX SPIKE SUMMARY											
Client: Bea	azer East, In	<u>c.</u>	Level:		LOW	2017/07/04/0	SDG No.:	J1402025			
Contract:	<u>OM-045</u>	50-14	Lab Code: ALJCK			Case No.: SAS No.:				5 No.:	
Matrix:	WATER		Sample ID:	J14	02025-002	Clie	ent ID: GAIN	-M-36B-03181	4S	22.28/29/20/20/20/20/20/20/20/20/20/20/20/20/20/	
Percent Sol	lids for Sar	nple: 0.00	Spiked ID:	02025-002S	Percent Solids for Spike Sample: 0.00					****	
Acceptance Analyte Units Limit %R			Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Aluminum	ug/L	75 - 125	5230.000		110.000		5000	102		6010B	
Iron	ug/L	75 - 125	5800.000		753.000		5000	101		6010B	
Sodium	ug/L	Sodium ug/L 75 - 125 32200.000 6770.000 25000 102 6010B									

Dissolved Metals - 5a -												
			MATRIX	SPIE	KE DUPLIC A	ATE S	SUMMARY	Y				
Client: Beazer East, Inc. Level: LOW SDG No.:												
Contract:	<u>OM-045</u>	0-14	Lab C	Code:	ALJCK	Case No.: SAS No.						
Matrix:	WATER		Sample ID:			Clie	nt ID: GAIN	I-M-36B-03181	4SD			
Percent Soli	Percent Solids for Sample: 0.00			J14()2025-002SD	Per	cent Solids fo	r Spike Sample	e: 0.00			
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method		
Aluminum ug/L 75 - 125			5100.000 110.000		5000 100			6010B				
Iron	ug/L	75 - 125	5720.000		753.000		5000	99		6010B		
Sodium	ug/L	75 - 125	32200.000		6770.000		25000	102		6010B		

Dissolved Metals - 5a -MATRIX SPIKE SUMMARY

			11.42		AZA DE ARAEJ D		ALL L			
Client: Beazer East, Inc.		Level:	1211012000	LOW		SDG No.:	J1402025			
Contract:	<u>OM-045</u>	50-14	Lab (Lab Code: ALJCI		-	Case No.:		SAS	3 No.:
Matrix:	WATER		Sample ID:	J14	102025-007	25-007 Client ID: GAIN-HG-2			14S	
Percent Solids for Sample: 0.00		Spiked ID: J1402025-007S		Percent Solids fo		or Spike Sample: 0.00				
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Antimony	ug/L	75 - 125	51.60		0.38		50.0	102		6020
Arsenic	ug/L	75 - 125	50.80		0.62		50.0	100		6020
Beryllium	ug/L	75 - 125	23.3		0.0	U	25.0	93		6020
Cadmium	ug/L	75 - 125	20.6		0.6		20.0	100		6020

Thallium	ug/L	75 - 125	10.10	0.05	U	10.0	101	6020
Selenium	ug/L	75 - 125	92.6	1.1	U	100.0	93	6020
Molybdenum	ug/L	75 - 125	106.00	1.82		100.0	104	6020
Manganese	ug/L	75 - 125	110.0	11.0		100.0	99	6020
Lead	ug/L	75 - 125	24.60	0.12	U	25.0	98	6020
Chromium	ug/L	75 - 125	52.40	0.55		50.0	104	6020
Cadmium	ug/L	75 - 125	20.6	0.6		20.0	100	6020

Dissolved Metals - 5a MATRIX SPIKE DUPLICATE SUMMARY Client: Beazer East, Inc. Level: LOW SDG No.: J1402025

 Contract:
 OM-0450-14
 Lab Code:
 ALJCK
 Case No.:
 SAS No.:

 Matrix:
 WATER
 Sample ID:
 J1402025-007
 Client ID:
 GAIN-HG-22D-031914SD

 Percent Solids for Sample:
 0.00
 Spiked ID:
 J1402025-007SD
 Percent Solids for Spike Sample:
 0.00

Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual Method
Antimony	ug/L	75 - 125	52.10		0.38		50.0	103	6020
Arsenic	ug/L	75 - 125	51.40		0.62		50.0	102	6020
Beryllium	ug/L	75 - 125	23.5		0.0	U	25.0	94	6020
Cadmium	ug/L	75 - 125	20.9		0.6		20.0	102	6020
Chromium	ug/L	75 - 125	52.90		0.55		50.0	105	6020
Lead	ug/L	75 - 125	24.90		0.12	U	25.0	100	6020
Manganese	ug/L	75 - 125	120.0		11.0		100.0	109	6020
Molybdenum	ug/L	75 - 125	106.00		1.82		100.0	104	6020
Selenium	ug/L	75 - 125	94.4		1.1	U	100.0	94	6020
Thallium	ug/L	75 - 125	10.20		0.05	U	10.0	102	6020

Dissolved Metals - 5b -POST DIGEST SPIKE SUMMARY SDG No

Client: Beaz	er East, Inc.	****	-	SDG No.:							
Contract:	<u>OM-0450-14</u>		Lab Code: AL	JCK	Case	No.:	enementationen anteressen operationen anteressen operationen anteressen operationen anteressen operationen anter	SAS M	io.:		
Matrix:	WATER	Level:	LOW		Clien	t ID:	GAIN-M-25A-	031814A			
Sample ID:	J1402025-001	Spiked	ID: J14020	25-001	A						
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Mercury	ug/L	75 - 125	4.94		0.0	1 U	5.00	. 99)	7470A	

Dissolved Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Beazer East, Inc. SDG No.: J1402025										
Contract:	<u>OM-0450-14</u>		Lab Code: ALJ	CK	Case N	0.:		SAS N	0.:	wheel we want to be a state of the state of the state of the state of the state of the state of the state of the
Matrix:	WATER	Level:	LOW		Client	ID: C	AIN-M-36B-	031814A		
Sample ID:	J1402025-002	Spiked	ID: J140202	5-002	2A					
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Aluminum	ug/L	75 - 125	5270.000		110.000		5000	103		6010B
Iron	ug/L	75 - 125	5800.000		753.000		5000	101		6010B
Sodium	ug/L	75 - 125	32400.000		6770.000		25000	103		6010B

96

Dissolved Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Beaz	er East, Inc.		SDG No.:
Contract:	<u>OM-0450-14</u>	Lab Code: ALJCK	Case No.: SAS No.:
Matrix:	WATER	Level: LOW	Client ID: GAIN-HG-22D-031914A
Sample ID:	J1402025-007	Spiked ID: J1402025-007A	

Analyte	Units	Acceptance Limit %R	Spiked Result	Sample C Result	С	Spike Added	% Recovery	Qual	Method
Antimony	ug/L	75 - 125	51.00	0.38		50.0	101		6020
Arsenic	ug/L	75 - 125	50.70	0.62		50.0	100		6020
Beryllium	ug/L	75 - 125	24.00	0.03	U	25.0	96		6020
Cadmium	ug/L	75 - 125	21.20	0.57		20.0	103		6020
Chromium	ug/L	75 - 125	52.00	0.55		50.0	103		6020
Lead	ug/L	75 - 125	24.80	0.12	U	25.0	99		6020
Manganese	ug/L	75 - 125	114.00	11.20		100.0	103		6020
Molybdenum	ug/L	75 - 125	105.00	1.82		100.0	103		6020
Selenium	ug/L	75 - 125	97.40	1.10	U	100.0	97		6020
Thallium	ug/L	75 - 125	10.30	0.05	U	10.0	103		6020

Dissolved Metals - 6 -																			
	DUPLICATE SAMPLE SUMMARY																		
Client: Bea	zer East, Inc.		Level:	LC)W	SDG N	lo.: J <u>14</u>	02025	KERCONTERPENDING MARKARANG AND MARKARANG MARKARANG MARKARANG MARKARANG MARKARANG MARKARANG MARKARANG MARKARANG										
Contract:	<u>OM-0450-14</u>		Lab Cod	e: <u>AI</u>	JCK	Case N	lo.:		SAS No.:	16-11-21-11-11-11-11-11-11-11-11-11-11-11-									
Matrix:	WATER		Sample ID:	J1402	2025-007S	Client	ID: GAIN	-HG-22D-0	31914SD	all a fui									
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method										
Antimony	ug/L	0 - 30	51.60		52.10	an de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	1		6020										
Arsenic	ug/L	0 - 30	50.80		51.40		1		6020										
Beryllium	ug/L	0 - 30	23.3		23.5		1		6020										
Cadmium	ug/L	0 - 30	20.6		20.9		the second secon		6020										
Chromium	ug/L	0 - 30	52.40		52.90		1		6020										
Lead	ug/L	0 - 30	24.60		24.90		1		6020										
Manganese	ug/L	0 - 30	110.0		120.0		9		6020										
Molybdenum	ug/L	0 - 30	106.00		106.00		0		6020										
Selenium	ug/L	0 - 30	92.6		94.4		2		6020										
Thallium	ug/L	0 - 30	10.10		10.20		1		6020										

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

98

			DUPLIC	Disso CATE S	lved Metals -6- SAMPLE SUM	MMARY				
Client: Bea	zer East, Inc.		Level:	LC)W	SDG N	lo.: J <u>14</u>	02025		
Contract:	OM-0450-14		Lab Cod	e: <u>Al</u>	LJCK	Case N	lo.:		SAS No.:	
Matrix:	WATER		Sample ID:	J1402	2025-0018	Client	ID: GAIN	I-M-25A-03	1814SD	10000004000000000000000000000000000000
Percent Sol	ids for Sample	: 0.00	Duplicate ID:	J14020	25-001SD	Percen	t Solids fo	or Duplicate	: 0.00	
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method	
Mercury	ug/L	0 - 30	1.23		1.24		1		7470A	

			DUPLIC	Disso CATE S	Ived Metals -6- SAMPLE SUM	MMARY	<i>č</i>			
Client: Be	azer East, Inc.	25000/11/270000000000000000000000000000000	Level:	LC)W	SDG 1	No.: J <u>14</u>	02025	MARKENARDORR BORING AND AND AND AND AND AND AND AND AND AND	
Contract:	OM-0450-14		Lab Code	e: <u>Al</u>	JCK	Case I	No.:		SAS No.:	
Matrix:	WATER		Sample ID:	J1402	2025-0028	Client	ID: GAIN	I-M-36B-03	1814SD	
Percent So	lids for Sample	e: 0.00	Duplicate ID: J1402025-002SD			Perce	: 0.00			
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method	
Aluminum	ug/L	0 - 30	5230.000		5100.000		3		6010B	*****
Iron	ug/L	0 - 30	5800.000		5720.000		theorem		6010B	
Sodium	ug/L	0 - 30	32200.000		32200.000		0		6010B	

Client:	Beazer East, Inc.			SDG No.: J1402025						
Contrac	et: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:		
Aqueous	s LCS Source: In	organic Vent	ures		Solid	LCS Source:				
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method		
LCS-0211	13-01									

Client: I	Beazer East, Inc.		21131311114410000019100010001910900001012410404000000	SDG No.: J1402025						
Contract	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:		
Aqueous	LCS Source: H	ligh Purity ST	Ds		Solid 1	LCS Source:				
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method		
LCS-0213	0-01									
	Aluminum	ug/L	5000	5210		104	80.0 - 120.0	6010B		
	Iron	ug/L	5000	5050		101	80.0 - 120.0	6010B		
	Sodium	ug/L	25000	25600		102	80.0 - 120.0	6010B		

Client:	Beazer East, Inc.		Noncompositions and a substantial statements and a substantial s			SDG No.: J1	402025					
Contrac	t: OM-0450-14	ocolimicours endrum schedung te dremmins and an	Lab Co	de: ALJCK		Case No.:		SAS No.:				
Aqueous	Aqueous LCS Source: Inorganic Ventures				Solid I	LCS Source:						
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method				
LCS-0213	33-03		nyenti worti faiti rendenda orazi faiti dia italiyetti etterana			onan fan general fan de	52.4		105	80.0 - 120.0	6020	
	Arsenic	ug/L	50.0	52.1		104	80.0 - 120.0	6020				
	Beryllium	ug/L	25.0	25.1		100	80.0 - 120.0	6020				
	Cadmium	ug/L	20.0	19.8		99	80.0 - 120.0	6020				
	Chromium	ug/L	50.0	50.9		102	80.0 - 120.0	6020				
	Lead	ug/L	25.0	27.1		108	80.0 - 120.0	6020				
	Manganese	ug/L	100.0	104.0		104	80.0 - 120.0	6020				
	Molybdenum	ug/L	100.0	103.0		103	80.0 - 120.0	6020				
	Selenium	ug/L	100.0	100.0		100	80.0 - 120.0	6020				
	Thallium	ug/L	10.0	10.5		105	80.0 - 120.0	6020				

Client: 1	Beazer East, Inc.					SDG No.: J1402025				
Contract	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:		
Aqueous	LCS Source: Ino	rganic Ventu	ires		Solid 1	LCS Source:				
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method		
LCS-0225	8-01									
	Antimony	ug/L	50.0	52.3		105	80.0 - 120.0	6020		
	Arsenic	ug/L	50.0	51.2		102	80.0 - 120.0	6020		
	Beryllium	ug/L	25.0	24.2		97	80.0 - 120.0	6020		
	Cadmium	ug/L	20.0	20.7		104	80.0 - 120.0	6020		
	Chromium	ug/L	50.0	52.3		105	80.0 - 120.0	6020		
	Lead	ug/L	25.0	25.7		103	80.0 - 120.0	6020		
	Manganese	ug/L	100.0	107.0		107	80.0 - 120.0	6020		
	Molybdenum	ug/L	100.0	105.0		105	80.0 - 120.0	6020		
	Selenium	ug/L	100.0	101.0		101	80.0 - 120.0	6020		
	Thallium	ug/L	10.0	10.2		102	80.0 - 120.0	6020		

Dissolved Metals

-9-

SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.	055111110111111111111111111111111111111	socialization			SI	DG No.:	J1402025	899
Contract:	OM-0450-14	00000700700000000000000000000000000000	weetenewstan	Lab Code:	ALJCK	Ca	ase No.:		SAS No.:
Matrix:	WATER	Level:	LO	<u>N</u>		Client ID:	GAIN	-HG-22D-031914L	
Sample ID:	J1402025-007					Serial Dilut	ion ID: 、	J1402025-007L	
Analyte	Initial Result ug/L	С	Serial Result ug/L	С	% Difference	Qual	Acceptan Limits	ce Method	
Antimony	0.38		0.16	U	100.0		10.00 %	6020	
Arsenic	0.623		0.420	U	100.0		10.00 %	6020	
Beryllium	0.032	U	0.032	U			10.00 %	6020	
Cadmium	0.570		0.730	i	28		10.00 %	6020	
Chromium	0.547		0.180	U	100.0		10.00 %	6020	
Lead	0.120	U	0.120	U			10.00 %	6020	
Manganese	11.200		12.200		9		10.00 %	6020	
Molybdenum	1.820		3.400	i	87		10.00 %	6020	
Selenium	1.100	U	1.100	U			10.00 %	6020	
Thallium	0.050	U	0.050	U			10.00 %	6020	s

105

Dissolved Metals

- 9 -

SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.	****	Demounthistonentroleteretare			é	SDG No.:	J <u>1402025</u>	an
Contract:	OM-0450-14		Lat	Code:	ALJCK	(Case No.:		SAS No.:
Matrix:	WATER	Level:	LOW			Client ID:	GAIN-I	M-25A-031814L	
Sample ID:	J1402025-001					Serial Dili	ution ID: J	1402025-001L	
Analyte	Initial Result ug/L	С	Serial Result ug/L	С	% Difference	Qual	Acceptanc Limits	e Method	
Mercury	0.01	U	0.01	U		*******	10.00 %	7470A	

Dissolved Metals - 9 -

SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.					;	SDG N	lo.: J <u>1402</u>	025	10991
Contract:	O <u>M-0450-14</u>	Lab	Lab Code: ALJCK			Case No.:			SAS No.:	
Matrix:	WATER	Level:	LOW			Client ID	: <u>G</u>	AIN-M-36	B-031814L	
Sample ID:	J1402025-002					Serial Dil	ution l	D: J14020	25-002L	
Analyte	Initial Result ug/L	S R C u	erial esult 1g/L	С	% Difference	Qual	Acce Li	ptance mits	Method	
Aluminum	110.000	13	4.000	Ι	21.8		10.	00 %	6010B	
Iron	753.000	82	6.000		9.7		10.	00 %	6010B	
Sodium	6772.000	692	25.000		2.3		10.	00 %	6010B	

Dissolved Metals - 10 -METHOD DETECTION LIMITS

Client: Beazer East, Inc.				SDG No.: J1402025					
Contract: OM-0450-14		Lab Code	: A <u>LJCK</u>	Case No.:	SAS No.:				
	Analyte	Wave- length (nm)	MDL ug/L	MRL ug/L					
Cetac Hg A	Analyzer Mercury	253.70	0.012	Date: 1/11/2012 0.100					
ICP-MS				Date: 1/20/2012					
	Antimony	123	0.16	1.00					
	Arsenic	75	0.42	1.00					
	Beryllium	9	0.032	0.50					
	Cadmium	114	0.09	0.40					
	Chromium	52	0.18	1.00					
	Lead	208	0.12	0.50					
	Manganese	55	0.12	2.00					
	Molybdenum	98	0.28	2.00					
	Selenium	78	1.10	2.00					
	Thallium	205	0.050	0.20					
PE Optima	a ICP			Date: 2/3/2012					
	Aluminum	308.215	11.00	100.00					
	Iron	273.955	2.50	100.00					
	Sodium	589.592	29.00	500.00					

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Eas	t, Inc.		SDG N	SDG No.: J1402025				
Contract: OM-04	50-14 Lab Code:	ALJCK Method: CV Case No.:			SAS No.:	AND DE ALTO DE ALTO DE LOCAL DE LOCAL DE LOCAL DE LOCAL DE LOCAL DE LOCAL DE LOCAL DE LOCAL DE LOCAL DE LOCAL D		
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids	
Batch Number:	204565							
MB-02113-02	MB-02113-02	MB	WATER	3/20/14	40.0	40.0		
LCS-02113-01	LCS-02113-01	LCS	WATER	3/20/14	40.0	40.0		
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/20/14	40.0	40.0		
J1402025-001S	GAIN-M-25A-031814S	MS	WATER	3/20/14	40.0	40.0		
J1402025-001SD	GAIN-M-25A-031814SD	MSD	WATER	3/20/14	40.0	40.0		
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/20/14	40.0	40.0		
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/20/14	40.0	40.0		
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/20/14	40.0	40.0		
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/20/14	40.0	40.0		
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/20/14	40.0	40.0		
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/20/14	40.0	40.0		

J1402025-004

J1402025-005

J1402025-006

J1402025-007

GAIN-M-25B-031814

GAIN-HG-33S-031914

GAIN-HG-34S-031914

GAIN-HG-22D-031914

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer East	, Inc.	SDG No.: J1402025						
Contract: OM-0450-14 Lab Code:		ALJCK	Method: <u>P</u> Case No.:		SAS No.:			
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids	
Batch Number:	204591							
MB-02130-02	MB-02130-02	MB	WATER	3/21/14	50.0	50.0		
LCS-02130-01	LCS-02130-01	LCS	WATER	3/21/14	50.0	50.0		
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	50.0	50.0		
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	50.0	50.0		
J1402025-002S	GAIN-M-36B-031814S	MS	WATER	3/21/14	50.0	50.0		
J1402025-002SD	GAIN-M-36B-031814SD	MSD	WATER	3/21/14	50.0	50.0		
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	50.0	50.0		

WATER

WATER

WATER

WATER

3/21/14

3/21/14

3/21/14

3/21/14

SAM

SAM

SAM

SAM

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Ea	ast, Inc.			SDG N	No.: J1402025	i i		
Contract: OM-0450-14 Lab Code:			ALJCK Method: MS					arranten merken som som som som som som som som som som
Mathematics and an and an and an and an and an and an and an and an and an and an and an and an and an and an a		Maintaise Hinn and account of the		Case No.:		SAS No.:		000234054000900
Sample ID	Client ID		Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204595							
MB-02133-04	MB-02133-04		MB	WATER	3/21/14	50.0	50.0	
LCS-02133-03	LCS-02133-03		LCS	WATER	3/21/14	50.0	50.0	
J1402025-001	GAIN-M-25A-0318	314	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002	GAIN-M-36B-0318	314	SAM	WATER	3/21/14	50.0	50.0	
J1402025-003	GAIN-HG-24S-031	814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-004	GAIN-M-25B-0318	314	SAM	WATER	3/21/14	50.0	50.0	
J1402025-005	GAIN-HG-33S-031	914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-006	GAIN-HG-34S-031	914	SAM	WATER	3/21/14	50.0	50.0	
Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer East, Inc.		SDG No.:	: J1402025			
Contract: OM-0450-14	Lab Code: ALJCK	Method:	MS			
		Case No.:	0 0	SAS No.:	65007451050707555500000000000000000000000	magangolog
Some la ID	San	iple Motuir	Program Dada	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent

Sample ID	Client ID	I ype	Matrix	Prep Date			Solids
Batch Number:	204900						
MB-02258-02	MB-02258-02	MB	WATER	3/26/14	50.0	50.0	
LCS-02258-01	LCS-02258-01	LCS	WATER	3/26/14	50.0	50.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/26/14	50.0	50.0	
J1402025-007S	GAIN-HG-22D-031914S	MS	WATER	3/26/14	50.0	50.0	
J1402025-007SD	GAIN-HG-22D-031914SD	MSD	WATER	3/26/14	50.0	50.0	

Dissolved Metals

14

ANALYSIS RUN LOG

Client: Beazer East	:, Inc.					0002	Cox	ntr	act	C:	40000000000 VI 414		ON	1-0	45	0-3	14										
Lab Code: ALJCK		Case	No.:			çenter çenter		SA	s 1	No.	8 9	5.0				*****	S	DG	No			<u>J1</u>	40:	202	25		
Instrument ID Number:	PE Oj	ptima	ICP				Me	the	od:		Ρ				3	Rur	ı N	umł	er	•	C)32	11	4A.	1		
Start Date: 3/21/201	.4				000000			E	nd	Da	ate	* •	3/	22	/2	014	4				-		******		ejempänisikeriin		
	I		1	T	white a second	******					anter the state of			NCT ATTACK					uionouscon	aucounters	Naciatination	soulikoonateni	tenentianentia	washiceitada		*****	*******
EPA	א/ת	Time	% R				r	r			r	T		Ana	ly 	tes	3				·		r	·		,	
No.	-/-			A T.	S	A	B	B		C A	C	C		F	P	M	M	H	N T	K	S	A	N	T T	V	Z	C
	1 00		l T	- Li - Li						5				12		G	1 2.4	9		_	-£1						TA
CALIB BLANK	1.00	1741					L	I		00/09/200000	L			X			L		\square							\vdash	
CALIB STD 2	1 00	1751		X		L	L	<u> </u>			<u> </u>	\vdash					l		$\left - \right $							\vdash	
CALTE STD 3	1 00	1755	1	X			I I				l I	1	{													┝──┨	
CALTE STD 4	1.00	1758		x			I I	 			 	-	1	$\hat{\nabla}$			L		$\left \right $				x				
ICV	1.00	1801		x				l			 	<u> </u>	I	$\frac{\Lambda}{v}$					\vdash				x				
ICB	1.00	1805		x		l	L 	┢──			I 	[x			\square	
ZZZZZZ	1.00	1810				l	L 				l 		I 						\square							\vdash	
MRL	1.00	1815		x		[l 	<u> </u>			I		L	x			(
ICSA	1.00	1819		x			L	<u> </u>) 	<u> </u>	L 	x			l						x				
ICSAB	1.00	1827		x			L				i 		l	x					\square				x				
CCV	1.00	1835		x										x					\vdash				x				
ССВ	1.00	1839		x			L 				L 	1		x					\square				x			i	
ZZZZZZ	2.00	1844						 				İ					<u> </u>		\square				\square		\square		
ZZZZZ	5.00	1852						 			i 	İ							\square								
ZZZZZZ	2.00	1857	1	T				1				İ															
ZZZZZZ	1.00	1905	1					Ì				Î							\square								
ZZZZZZ	1.00	1910						ĺ			1								\square				\square				
ZZZZZ	1.00	1914		Í																					Î	\square	GRONDOWDER
ZZZZZ	1.00	1923									1							hasacostraved									Internities
ZZZZZ	1.00	1928						Ī				1														\square	
ZZZZZ	1.00	1933										Ì														\square	
ZZZZZ	1.00	1938																									
CCV	1.00	1942		x										x									x				
ССВ	1.00	1946		x									1	x									X				
ZZZZZ	1.00	1951																									
ZZZZZ	1.00	1955					L				L																
ZZZZZ	1.00	2000									L																
ZZZZZ	1.00	2005																									
ZZZZZ	1.00	2010					L				L						-										vouncerom
222222	1.00	2015																									Antonota
ZZZZZZ	1.00	2019									L																
ZZZZZZ	1.00	2024								aronora	L																****
222222	1.00	2029		ļ							L					NO CALORIZA				*****							DOTIONUS
ZZZZZ	1.00	2034						<u> </u>			l												ļ				хаалири
CCV	1.00	2038		X										x									X	Contrast (1999)			

Client: Beazer East	z, Inc.						Coi	ntr	aci	Ŀ:			OM	<u>1-0</u>	45)-:	14			-			ور معاون و معاون و معاون و																	
Lab Code: ALJCK	***	Case	No.:		Carlo Danish Conta			SA	s 1	No.	. a	1000					S	DG	No			J1	40:	202	25															
Instrument ID Number:	PE O	otima	ICP				Me	the	od:		Ρ]	Rur	N N	umk	ber	:	C)32	211	4A	L															
Start Date: 3/21/201	4	ne Som het men de en skriven de nd	Da	ite	9 8	3/	22	/20)14	1	*****	xonnexoro	2000						nes																					
FPA	1		1	Γ					ana na kata na kata na kata na kata na kata na kata na kata na kata na kata na kata na kata na kata na kata na						1			dansan kale Usi	******	alays warnes	Managaman and Salahan			6				- ¥ -	200	> >4	17	2.7	T		71	1	m	77	-	
No.				L	B	S	в А	D E	b	A	R	0	υ	r E	B	M G	M N	н G	NI	r	E	A G	A	T L	V	N	N													
CCB	1 00	2042	1			<u> </u>				-	etatorio isoa	pennen		1000-50000 V P		MARRIER		were the second				11796.00000			pensitiona	-														
ZZZZZZ	1 00	2042			l		L							X												\vdash	<u> </u>													
 ZZZZZZ	1 00	2052	I			I	L				L															$\left - \right $	-													
ZZZZZZ	1 00	2057						l 		L											<u> </u>				\neg	$\left \right $	<u> </u>													
ZZZZZZ	1.00	2102	1	1				L																	\neg	┝─┥														
ZZZZZZ	1.00	2106																								\vdash														
ZZZZZZ	1.00	2109				l		l																		\square	 													
ZZZZZZ	5.00	2113	l	\square		l					L	L								·							-													
ZZZZZZ	1.00	2117					L	I			L												\square		\neg	\vdash	-													
ZZZZZZ	1.00	2121									l																<u> </u>													
ZZZZZZ	1.00	2126		\square																			\square	\neg	\neg		 													
CCV	1.00	2130		x										x											\neg	┢╼┥	-													
ССВ	1.00	2134		x										x						l																				
ZZZZZZ	1.00	2138																																						
ZZZZZZ	1.00	2142																																						
ZZZZZZ	1.00	2146																																						
ZZZZZZ	1.00	2149						******						····																										
ZZZZZ	5.00	2153																																						
ZZZZZ	1.00	2157																							1															
ZZZZZ	1.00	2201																																						
ZZZZZZ	1.00	2206																							T															
ZZZZZZ	1.00	2210																																						
ZZZZZ	1.00	2214		Î																					T															
CCV	1.00	2218		x										x									x																	
ССВ	1.00	2222		X										x									X	İ	Î		********													
ZZZZZZ	1.00	2227																									unduring.													
ZZZZZZ	1.00	2232																									No.													
ZZZZZZ	1.00	2236																																						
ZZZZZ	1.00	2239																		1																				
ZZZZZ	5.00	2243																and the second se	-	California de la califo					or verifying the															
ZZZZZZ	1.00	2247																Per la transmission		and the second	ALVING CAN		1																	
ZZZZZ	1.00	2251																																						
ZZZZZZ	1.00	2256					and the second second																			Ī														
ZZZZZZ	1.00	2301					ning and the								and the second																									
222222	1.00	2306																																						
CCV	1.00	2311		X										x									Х																	

Client: Beazer East	z, Inc.			0.0000000000000000000000000000000000000		22523	Co	ntr	aci	٤:			OM	1-0	45)-:	14			****						****	-
Lab Code: ALJCK	*1514035935935500000000000000000000000000000	Case	No.:					SA	SI	No.	6 0	****				-	S	DG	No).:		J1	40	202	25	LEVAL DISCOVERING	
Instrument ID Number:	PE Oj	otima	ICP				Me	the	od:		Р]	Rur	ı N	luml	ber	n e 2 4	()32	211	4A	1		
Start Date: 3/21/201	4							E	nd	Da	ite	a 9	3/	22	/20)14	4			-							
۲۰ ۲۶ ۳	1		-	1							TELEVICION DANAGENE	NO NO DO NO DO NO DO	*******	8	 9		*******	2012/02/02/02/02/02		CANCELLOWERADIO	1.11.2.4000000	20040edestroeen	ann an Antones	012002000000	oosaaaseenaa		
Sample	D/F	Time	% R			Γ.		-						hiid	ТY Г	.es	5		Γ	1		Γ.	1		1		
No.					B	A S	A	BE	D	C A	R	0	υ	r E	B	M G	M N	H G	N I	ĸ	SE	G	N A	L	× I	N	N
CCB		001 A	I T		-	-				nonecessary.		consector			1500000	645405000		-	-				V	-		-	
222222	1.00	2314	<u> </u>	╞	[<u> </u>	<u> </u>	ļ	<u> </u>					X					 		L				$\left - \right $		
7.7.7.7.7.	1.00	2313	1	<u> </u>	L	ļ	<u> </u>	<u> </u>	<u> </u>			<u> </u>						\vdash	L	\square			<u> </u>	L	$\left - \right $	$\left - \right $	<u> </u>
7.7.7.7.7.	1.00	2323	I	+			 	<u> </u>										\square	l						$\left - \right $	\vdash	⊢
7.7.7.7.7.7	1.00	2321	L	 		 	L	<u> </u>										\square	ļ	$\left - \right $		<u> </u>			$\left \right $	$\left \right $	
7.7.7.7.7.7	1.00	2331	1	╞──	 		ļ											\square		\square			<u> </u>		μ	$\left - \right $	\vdash
7.7.7.7.7.7.	5.00	2330	1	<u> </u>			l I		<u> </u>											$\left - \right $		l			$\left - \right $	\vdash	<u> </u>
7.	1 00	2333	<u> </u>	┨───		1 I	<u> </u>		l									 				<u> </u>	<u> </u>		┝─┦	$\left - \right $	\vdash
7.7.7.7.7.7.	1.00	2345	<u> </u>	<u> </u>			<u> </u>	I														L		<u> </u>	—	$\left - \right $	
7.7.7.7.7.7.	1.00	2340	1	┼──	<u> </u>		<u> </u>								\neg			$\left - \right $	l I		L	 			\vdash	$\left - \right $	<u> </u>
7.7.7.7.7.7.	1 00	2356		<u> </u>	 		<u>}</u>	l 										$ \vdash $		\square							<u> </u>
CCV	1.00	2350	<u> </u>	<u>↓</u>	L		L											\vdash	<u> </u>	$\left - \right $				 	$\left - \right $	\vdash	<u> </u>
ССВ	1 00	0002			<u> </u>		L I						$ \square $		\neg				L			l	n V	<u> </u>		$\left \right $	<u> </u>
ZZZZZZ	1 00	0002	<u> </u>				L								-			┝──┥		$\left \right $					$\left - \right $	$\left - \right $	—
222222	1 00	0013		<u> </u>		 	l													\vdash				$\left - \right $	\vdash	\vdash	<u> </u>
MB-02130-02	1.00	0017		x			L	L						v				┝───┦			<u>.</u>		x			$\left - \right $	
LCS-02130-01	1.00	0022					L 	L												\square		 	x	l		\vdash	<u> </u>
GAIN-M-25A-031814	1.00	0025		x			<u> </u>											$\left - \right $					x				<u> </u>
GAIN-M-36B-031814	1.00	0030		Ix	l		L	l						x				┝───┦					X				
GAIN-M-36B-031814S	1.00	0035		x	<u> </u>		L							X									X			\square	
GAIN-M-36B-031814SD	1.00	0038		x			L							x				$\left - \right $					x				
GAIN-M-36B-031814L	5.00	0041		x			L	 						x									X				
GAIN-M-36B-031814A	1.00	0046		x			I	I						x									X			\square	
CCV	1.00	0049	1	x										x									x				
ССВ	1.00	0053		x	1			L						x									X				
GAIN-HG-24S-031814	1.00	0057	1	x				 						x									X				
GAIN-M-25B-031814	1.00	0102		x										x									Х				
GAIN-HG-33S-031914	1.00	0107		x										x									X				
GAIN-HG-34S-031914	1.00	0112		x										x									X				
GAIN-HG-22D-031914	1.00	0117		X										x									X				bibeuritport#7
ICSA	1.00	0121		X										X									X			Î	
ICSAB	1.00	0129		X										x									X				
CCV	1.00	0137		X										X									X				
ССВ	1.00	0141		X										X									X			Î	

Client:	Beazer East	:, Inc.					60109	Co	ntr	ac	t:			OM	<u>۱</u> –0	45	0-1	14										-
Lab Code:	ALJCK	96-8400-841-841-841-841-841-841-841-841-841-841	Case	No.:				8820	SP	s i	No.	, :			2014/02/1414-0104	-	abazmenna	S	DG	No.		ĸ	J1 (402	202	25	manacantana	
Instrumen	t ID Number:	Ceta	c Hg A	nalyze	r			Me	the	od:		CV				1	Rur	ı N	umk	er:		0	32	41	4B			
Start Date	e: 3/24/201	.4							E	nd	Da	ate	* *	3/	24	/2	014	1				Anatolia	200000000000		in a share a share a share a share a share a share a share a share a share a share a share a share a share a s		ESSIF	
				1	<u> </u>	tiniki webraitar		anter talantine an							02209028408						*****	1010000000		acteria activitation de la constanti de la constanti de la constanti de la constanti de la constanti de la cons	alese paçatatio	0101112	UMANAAAAAAAAAAA	
E Sat	PA	א/ת	Timo	& R		8	Y	1			,	r		2 	Ana	ly	tes	3							2000000000	r	T	<u> </u>
N	io.	~~/ ~		U at	A L	S B	A S	B A	BE	C D	C A	C R	0	0 0	F E	P B	M G	M N	H G	N I I	K	S E	A G	N A	T L	V	Z N	C N
Calibrat	ion Blank	1.00	1643						İ	İ		İ	İ	m					X		Ť	Ť	İ		an persona a	m	m	
Standard	#1	1.00	1644		Ì				ĺ	ĺ							*****		Х	Ì		1						
Standard	#2	1.00	1645						Ì	1						ĺ	**********		x		Ī	Ť						
Standard	#3	1.00	1647	İ			ĺ		ĺ	Ì				Î					x		T	1						
Standard	#4	1.00	1648		ĺ			ĺ	1										х		Ī	T						
Standard	#5	1.00	1650				Ì			İ			ĺ						х	T	Ī	1						
Standard	#6	1.00	1652						Î	İ									х	Ī	T	T						
ICV		1.00	1654				İ		İ										x	\neg	T	\uparrow						
ICB	*****	1.00	1656					[Ī			i							x	T	Ť	l	T					
MRL 0.1	kalé. Kalé seren kana kana kana kana kana kana kana ka	1.00	1657		<u> </u>				T										x	\neg	T	1						
MB-02113	-02	1.00	1659					i	1			<u> </u>							x	Ī	Ť	Ť	Ī					\square
LCS-0211	3-01	1.00	1700						İ			<u> </u>							Х	\neg	╈	\uparrow	\neg	1				<u> </u>
GAIN-M-2	5A-031814	1.00	1701									 							X	\neg	\uparrow	\neg	1					
GAIN-M-2	5A-031814S	1.00	1702																X		Ì	1		j				
GAIN-M-2	5A-031814SD	1.00	1704		<u> </u>				İ			l							x	ľ	Ī	\uparrow	1	 				
GAIN-M-2	5A-031814A	1.00	1706									<u>.</u> 							X	\uparrow		\uparrow					\square	
GAIN-M-2	5A-031814L	5.00	1708									[X		T	\uparrow						
GAIN-M-3	6B-031814	1.00	1709									l							X	-	1	\uparrow	1				H	-
GAIN-HG-	24S-031814	1.00	1710					L	<u> </u>										x		1		\neg					-
GAIN-M-2	5B-031814	1.00	1711																X			1	\neg	1				-
CCV-1		1.00	1712																x	1	Ť							—
CCB-1	044D0664444484846647040644444444444444444444	1.00	1715													\neg			x	1	1	T	\neg	Ī			\square	
GAIN-HG-	335-031914	1.00	1716																x	\neg	Ť	\uparrow		1				
GAIN-HG-	345-031914	1.00	1717																x		Ť	\top	\neg			\square		
GAIN-HG-	22D-031914	1.00	1718																X	T	Ī	T						
ZZZZZZ		1.00	1719																	\neg	l	Ī	1	Ť			Π	
ZZZZZZ		1.00	1720															Ì			T	T	1					
ZZZZZZ		1.00	1722																		1	Ť						
ZZZZZZ		1.00	1723																ĺ		T	T						
ZZZZZZ		1.00	1725																	T	Ī	T		i				
ZZZZZZ		1.00	1727																ĺ									
ZZZZZZ		5.00	1728			****								Π	ĺ				ĺ		Ī	.	\neg					
CCV-2		1.00	1730																X	l		T	Ť					
CCB-2		1.00	1732															1	X			Ī			ATINGCONDAN			100100000
ZZZZZŻ		1.00	1733						********						T	1						Ī	Ť					
ZZZZZZ		1.00	1734												ĺ	Î		Ì		1		1	1	<u> </u>				

Client: Beazer East	z, Inc.		*****			1000	Co	ntr	ac	t:			ON	1-0	45	0:	14	Marking ECCI				mandan		10101040-010-04144			water
Lab Code: ALJCK		Case	No.:				Gener	SZ	ls i	No.	. e			200000000000000000000000000000000000000			S	DG	No			J1	40	202	25		2020/2014/2014/00/2014
Instrument ID Number:	Ceta	c Hg A	nalyze	r			Me	eth	od:	-	CV	alannoono			1	Rur	ı N	uml	ber		()32	241	4B		ndadab	
Start Date: 3/24/201	4							E	nd	Da	ite	*	3/	24	/20)14	1	0/06040404990		and a							
EPA				Γ	******			aledalee laneis	*****	******				Ana	ly	tes	3					andren farmen freedow	n-handonsione		100000000000000000000000000000000000000)	********
Sample No.	D/F	Time	%R	A L	S B	A S	B A	B E	C D	C A	C R	с 0	С U	F E	P B	M G	M N	н G	N I	ĸ	S E	A G	N A	T L	V	Z N	C N
ZZZZZZ	1.00	1735			Ι			Ι																			
ZZZZZZ	1.00	1736																									
ZZZZZZ	1.00	1737			1		1																				
ZZZZZZ	1.00	1738					1																				
ZZZZZZ	1.00	1740		Ī	I	1			Ι																		
ZZZZZZ	1.00	1741		-																						[
222222	1.00	1742			I			Ι																			<u> </u>
ZZZZZZ	1.00	1743		Ī		1																					
CCV-3	1.00	1745	1			Ι		l	Ī									X									
CCB-3	1.00	1747		Ι	Γ			Ι										X									

Client: <u>Beazer Eas</u>	t, Inc.	****	N0080031040912 N003949 000844545			olana	Co	ntr	ac	t:			OM	-04	50	-14	-	*12+001+1-1-1-1	-	Antipipalitika antipi	AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	and the second second second second second second second second second second second second second second second	stantrategoran	mannananan	Non-Lin Lin Lin Lin Lin Lin Lin Lin Lin Lin	04
Lab Code: ALJCK		Case	No.:				00504	SZ	ls	No.	•	0000-00					DG	Nc).:		J1	402	202	25		*******
Instrument ID Number:	ICP-1	MS					Me	th	od:		MS				Rı	n Þ	īuml	ber		()32	:61	4B			
Start Date: 3/26/20	14				******			E	Ind	Da	te	:	3/	27/	20:	4			101509	64005	100000000000000000000000000000000000000	100404000000		sunatsunta	10	
	1		1	1	****			MN0505925		Mandaraania	onioriatzikizonak	inda kanalan kan			Anoministantise	tratalogicant	Miratowiewskiw	inen kan mana	debalanteriska	kan colimientos	nationenieumie	micensistainesi	landad a data da da da da da da da da da da da da da	*****	mithicitymeteria	
EPA		Time	% R			T		.			· · · · · · ·		¥ r	ina]	.yte	s T		T	·	ł		·				MODEL CONTRACTOR
No.		di diskbiliyo	0 20	A	S	A	B	B	C	C	C	C	C	F	PN	M	H	N T	K	S	A	N	T	v	Z	С
			-	L.L.	D						ĸ	<u> </u>	4	<u> </u>			L G	- -	anaanan a						-14	
Cal Blank	1.00	2243	I	ļ	X	<u> x</u>	Ļ	X	X	<u> </u>	X	Ļ			хĻ		ļ	<u> </u>		X		Щ	X	ļļ		behalossalar
Cal 1	1.00	2248	<u> </u>	<u> </u>	X	X	Ļ	X	X		X				хĻ	X	<u> </u>	ļ		X		Ц	X	<u> </u>		
Cal 2	1.00	2253	<u> </u>	<u> </u>	X	X	Ļ	X	X		X				<u>x </u>		<u> </u>	Ļ		X		Ц	X		ļ	
Cal 3	1.00	2258		Ļ	X	X	Ļ	X	X		X		_		× L	X	Ļ	Ļ		X	\square	Ц	X			
Cal 4	1.00	2303	ļ	Ļ	X	X	Ļ	X	X		X		ļ		x	X	<u> </u>	ļ	Ļ	X		ĻЦ	x	Щ		
ICV	1.00	2308			X	X		X	X		X			!	x	X	<u> </u>	L		X			Х			
ICB	1.00	2313	L		X	X	L	X	X		X				x	X		L		X			Х			
MRL	1.00	2318	L		x	x		x	x		x				x	x				x			x			
ICSA	1.00	2323			x	x		X	x		X				хL	X				X			х			
ICSAB	1.00	2328			X	x		x	X		X				x	X				X			х			
CCV-1	1.00	2333			X	x		X	X		X				x	X	1			X			x			
CCB-1	1.00	2338			X	x		x	X		X		1		х	X				X			x		Π	KARGAGE
MB-02133-04	1.00	2343	1		X	x		x	x		x			[:	хŢ	X				X			x			
LCS-02133-03	1.00	2348			х	x		x	X		x		T		x	x	Ì	Ī		X			x			
ZZZZZZ	1.00	2353		Î		Ī		ĺ	Ì			Ī			Ī	İ	Ī	İ						Ì	Ì	
ZZZZZZ	1.00	2358	1			1	1	ĺ	İ			Ì		1		İ	1	Ī						Ť	T	
ZZZZZZ	1.00	0003				İ	Ì	ĺ	İ			Ī	Î		T	T		Î				\square	T		T	Andonean
ZZZZZZ	1.00	8000	<u> </u>			Ī	1	t	t				1		Ī	1	İ	İ						T		4940340
GAIN-M-25A-031814	1.00	0013		Î	Х	X		x	X		X	Ī			x	x	[1		X			X			
GAIN-M-36B-031814	1.00	0018			X	X		x	X		X	1			x	x	1			X			x			SPATEORS
GAIN-HG-24S-031814	1.00	0023		\square	x	x	<u>.</u>	x	x		X		\uparrow		$\frac{1}{x}$	$\frac{1}{x}$	<u> </u>		ا ا	X			x		T	
GAIN-M-25B-031814	1.00	0028	1		x	x	İ	x	x		x	Ī	\neg		x	\mathbf{x}	1			x			\mathbf{x}	$\neg \uparrow$	$\neg \uparrow$	
CCV-2	1.00	0033	İ		x	x	1	x	x		x	Ť	\uparrow		x	\mathbf{x}	1	İ –		x			\mathbf{x}		$\neg \uparrow$	
CCB-2	1.00	0038	1		x	x	<u> </u>	x	x		x	1	\neg		x	\mathbf{x}	1	<u> </u>		x			x		$\neg \uparrow$	8999900
GAIN-HG-33S-031914	1.00	0043	1		x	\mathbf{x}		x	x		x	\neg	\neg	1	\mathbf{x}	Tx	1	<u> </u>		x			\mathbf{x}			
GAIN-HG-34S-031914	1.00	0049		\square	x	x	L 	\mathbf{x}	\mathbf{x}		x		\neg		xT	$f_{\rm x}$		I		x			$\overline{\mathbf{x}}$		\neg	*******
ZZZZZZ	1.00	0054					I]	<u> </u>	<u> </u>				-+	<u> </u>	+	1		1					\neg			******
ZZZZZZ	1.00	0059				<u> </u>	L 	I					\neg	+		Ī							\neg	\neg	\neg	******
ZZZZZZ	1.00	0104	1				<u>.</u> 	L	L							1				$\left \right $	\square		-+			
ZZZZZ	5.00	0109		$\left \right $				<u> </u>				L		<u> </u>	-	+							-+	-+	-+	
ZZZZZ	1.00	0114				<u> </u>		l									l	l								(adotano)
ZZZZZ	1.00	0119	1	$\left \right $												l					\square		<u> </u>	\neg		uvene
ZZZZZ	1 1 00	0124	<u>i</u>	1		L	I	<u> </u>	<u> </u>			<u>i</u>			-					$\left \right $	$ \neg $				+	BRANES
2.2.2.2.2.2	1 1 00	0129	1		ana di kani kana									ľ		1								-+	<u> </u>	SPENdialay
CCV-3	1 1 00	0134			y	l I y		l v			y I				$\frac{1}{x}$			ļ				\square	$\frac{1}{\chi}$			
L	1 1 00	0120		<u> </u>	~ v		 									$\frac{1}{2}$	[]	ļ	ļļ				$\frac{2}{\sqrt{2}}$		+	20100202
ب <i>سدب</i> ت	1 1.00	0722			22	1			A	1	\sim		1. Complete	-	ns į					$ \wedge $			~	T'AND	1	

Client: Beazer East	z, Inc.	*****	ini Metineko inan kontantan en k	diaaktalaattadaa	ninunassian	ovad	Coi	ntr	ac	t:			OM-	-04	150	-1	4							official statements	12411490110945	100000000000000000000000000000000000000	1000
Lab Code: ALJCK		Case	No.:	*****			seniar	SA	s I	No.	8 9	60307700		100000000000000000000000000000000000000		0000	SD	G	No	8 Q		J1	40	20:	25		
Instrument ID Number:	ICP-I	MS	0001/2000000-0000-0000-0000-0000-000-000		adobuscos		Me	th	od:	l	MS				R	un	Nu	mb	er	•)32	261	.4B		No.	
Start Date: 3/26/201	.4							E	nd	Da	te	•	3/2	27/	20	14	*****										
EPA					*****	*******							A	nal	Lyt	es			**********	*****	LESCORRECTOR	elananezetteei	scowistersed		*22010-025100	utramundations	AAADHOONTOOL
No.	D/F	Time	*R	A L	S B	A S	B A	B E	C D	C A	C R	с 0	C U	F E	P I B	M 1 G 1	1 1 1 1	H G	N I	ĸ	S E	A G	N A	T L	v	Z N	C N
ZZZZZZ	1.00	0144	[İΠ			Í	Contraction of		T			Ť			Ť	ŕ	Ť			m		İ	İ			, in the second
ZZZZZ	1.00	0149													T	Ť	T	Ì						1			
CCV-4	1.00	0154			х	x		x	X		X		Í		x		x				X			x			
CCB-4	1.00	0159]		х	x		x	X		Х				x		x				X			X			

*

Client: Beazer East	:, Inc.			NALINIMI		1000	Coi	ntr	ac	t:			OM	-04	150)-1	4		****	watermentertai	-	u Chine March and	Tainaisso du canvacos		ROCKUMATUR	adutosamenan	une .
Lab Code: ALJCK		Case	No.:	and the local data in the	deli-entitédeixente		endo	SA	s I	No.	e e						SI	G	No			J1	.40	20:	25	NEWSONWOOD	
Instrument ID Number:	ICP-1	MS					Me	the	od :	1	MS				F	un	Nı	ımł	ber	• •	()32	281	4A			
Start Date: 3/28/201		nizolationini del neocontra del neoconario e			peeding			E	Ind	Da	te	6 6	3/	28,	/20	14	agen Libert an Armanna			100007	Account	Interlogical Assessed			ang data mentangan	lation	
EPA			l		*******					1000000000000	10100000000		2	\na	lyt	es				ызпарнократия	MERENARDAR	********	inging subscription and	ininaanan ahaana	0000000000	Distances	-
Sample	D/F	Time	% R	A	S	A	В	в	С	C	C	C	с	F	P	м	м	H	N	K	s	A	N	T	v	Z	С
NO.				L	в	S	A	E	D	A	R	0	σ	E	в	G	N	G	I		E	G	A	L		N	N
Cal Blank	1.00	1312		-	X	х	İ	X	X	İ	X	İ	internet	$\neg \uparrow$	χŤ	Ť	xİ			m	X		m	X	'n	İ d	takatapaké
Cal 1	1.00	1317	1	İ	X	х		x	X		Х		1	Ī	\mathbf{x}		x				X	<u> </u>		X			
Cal 2	1.00	1322			x	x		x	X		X		Ī	1	x	1	x				x		\square	X		i t	
Cal 3	1.00	1327			x	x		x	X		х		Ť	1	x	T	x				x	<u> </u>		x		\square	ali perta perta da
Cal 4	1.00	1332	Ì	ſ	х	x		x	X		X		ĺ	Î	x	\uparrow	x				x			X		Ħ	
ICV	1.00	1337	l	1	x	x		x	x		x				x	\uparrow	x				x			X		\square	0000000
ICB	1.00	1342	<u></u>	1	x	x		x	X		X			1	x	\uparrow	x				x		\square	x		\square	******
MRL	1.00	1347	1		x	x		x	x		X		1	Ť	x	\uparrow	\mathbf{x}				x			x		Ηt	prosiption
ICSA	1.00	1352			x	x		x	X		x		1	Ť	\mathbf{x}	Ť	\mathbf{x}				X		H	x		i-t	
ICSAB	1.00	1357			x	x		x	X		х			T	x	\uparrow	\mathbf{x}				x	<u> </u>		x		\vdash	-
CCV-1	1.00	1402	<u> </u>		x	x		x	X		x		1		x	T	\mathbf{x}				x	 	\square	x		i f	
CCB-1	1.00	1408			x	x		x	x		х			1	x	\uparrow	\mathbf{x}				x	<u> </u>		x		\vdash	*****
MB-02258-02	1.00	1413	[х	x		x	X		x		\neg	$\neg \uparrow$	x	Ť	x				x			x		ΓŤ	
LCS-02258-01	1.00	1418			x	x	I	x	x		x			$\neg \uparrow$	\mathbf{x}	\uparrow	x				x	 		x		\square	
GAIN-HG-22D-031914	1.00	1423			x	x		x	x		x		-	\neg	$\overline{\mathbf{x}}$		\mathbf{x}				x	<u>i</u>		x		\square	
GAIN-HG-22D-031914S	1.00	1428		\square	x	x	L	x	X		x		\neg		$\frac{1}{x}$		x				x	İ	\square	x		\vdash	and the second
GAIN-HG-22D-031914S	1.00	1433			x	x		x	x		x			-	x	\uparrow	$\frac{1}{x}$	\neg			x		\square	x			60.00440
GAIN-HG-22D-031914L	5.00	1438			X	x		x	X		x		\neg	1	x		$\frac{1}{x}$				x		\square	x		\square	**
GAIN-HG-22D-031914A	1.00	1443			X	x		x	X		x			<u> </u>	$\frac{1}{x}$		x				x			X			Estation
ZZZZZZ	1.00	1448								LL 			\neg		1											\vdash	-
ZZZZZZ	1.00	1453											\neg	\uparrow	\uparrow	+	\uparrow	\neg								\square	
ZZZZZZ	1.00	1458											\neg		+	\uparrow	\uparrow									\vdash	
CCV-2	1.00	1503			X	x		х	X		x		$\neg \uparrow$		\mathbf{x}^{\dagger}	\uparrow	$\frac{1}{x}$	\neg			x			x			
CCB-2	1.00	1508		\square	x	x		х	x		x			$\neg \uparrow$	\mathbf{x}^{\dagger}	+	$\frac{1}{x}$				x		\square	x			
ZZZZZZ	1.00	1513												$\neg \uparrow$	-+	T	\uparrow										14000044
ZZZZZZ	1.00	1518		\square									Ť	\neg	\uparrow	T	\uparrow	\neg	\neg	1			\square				-
ZZZZZZ	5.00	1523											\neg	\neg	$\overline{1}$	\uparrow	+	\neg					\square				*****
ZZZZZZ	1.00	1528		\square									\uparrow	-+	\uparrow	\uparrow	+						\square	\neg			
ZZZZZZ	1.00	1533														\uparrow	$\frac{1}{1}$										
CCV-3	1.00	1538			X	X		X	X		X		\neg		x		x				X		\square	X			
CCB-3	1.00	1543			X	X		X	X		x				xl		xl				xl			X			
ZZZZZZ	1.00	1548		[-]								1	-	\neg		1						streambrochied		700000000			
ZZZZZ	1.00	1553																				533-349-949-94					

Inorganic Analysis: General Chemistry and Physical Parameters

Summary Package

Sample and QC Results

Client:Beazer East, Inc.Service Request:J1402025Project:Gainesville March 2014 UIC GW Monitoring/OM-0450-14Date Collected:3/18/14 - 3/19/14Sample Matrix:WaterDate Received:3/19/14

Analysis Method: 300.0

Chloride

Commente Norme	Lab Cada	Docult A	MDI	MINI	Dilution	Date	Date Analyzed	Note
Sample Name	Lab Coue	Nesun V	IVINC	IVELPE.	1 4000	LIACIALLES	1 8 21 21 2 2 2 2 2	11000
GAIN-M-25A-031814	J1402025-001	1.3	1.0	0.2	1	NA	3/21/14 21:15	
GAIN-M-36B-031814	J1402025-002	7.8	1.0	0.2	1	NA	3/21/14 21:31	
GAIN-HG-24S-031814	J1402025-003	9.1	1.0	0.2	1	NA	3/21/14 21:47	
GAIN-M-25B-031814	J1402025-004	26.7	1.0	0.2	Yuuuuu	NA	3/21/14 22:35	
GAIN-HG-33S-031914	J1402025-005	7.8	1.0	0.2	1	NA	3/21/14 22:51	
GAIN-HG-34S-031914	J1402025-006	28,5	1.0	0.2	1	NA	3/21/14 23:07	
GAIN-HG-22D-031914	J1402025-007	3.1	1.0	0.2	1	NA	3/21/14 23:23	
Method Blank	J1402025-MB	ND U	1.0	0.2	1	NA	3/21/14 13:21	

Units: mg/L Basis: NA

	Analytical Report		
Client:	Beazer East, Inc.	Service Request:	J1402025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/18/14 - 3/19/14
Sample Matrix:	Water	Date Received:	3/19/14
		Timitas	ColorUnite
		UIIIS:	CONTONIES

Analysis Method: SM 2120 B

Color, True

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	ND U	5.0	5.0	1	NA	3/19/14 18:15	
GAIN-M-36B-031814	J1402025-002	10.0	5.0	5.0	Ĩ	NA	3/19/14 18:19	
GAIN-HG-24S-031814	J1402025-003	ND U	5.0	5.0	1	NA	3/19/14 18:20	
GAIN-M-25B-031814	J1402025-004	10.0	5.0	5.0	1	NA	3/19/14 18:27	
GAIN-HG-33S-031914	J1402025-005	5.0	5.0	5.0	1	NA	3/19/14 18:30	
GAIN-HG-34S-031914	J1402025-006	5.0	5.0	5.0	1	NA	3/19/14 18:32	
GAIN-HG-22D-031914	J1402025-007	30.0	5.0	5.0	1	NA	3/19/14 18:34	
Method Blank	J1402025-MB	ND U	5.0	5.0	1	NA	3/19/14 18:08	

Basis: NA

	Analytical Report		
Client:	Beazer East, Inc.	Service Request:	J1402025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/18/14 - 3/19/14
Sample Matrix:	Water	Date Received:	3/19/14
		Units:	pH Units
Analysis Method:	SM 2120 B	Basis:	NA

Analysis Method: SM 2120 B

pH of Color Analysis

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	6.96			1	NA	3/19/14 18:15	
GAIN-M-36B-031814	J1402025-002	7.48			1	NA	3/19/14 18:19	
GAIN-HG-24S-031814	J1402025-003	7.27	-		1	NA	3/19/14 18:20	
GAIN-M-25B-031814	J1402025-004	6.41	~		1	NA	3/19/14 18:27	
GAIN-HG-33S-031914	J1402025-005	7.41	wet		The second second second second second second second second second second second second second second second se	NA	3/19/14 18:30	
GAIN-HG-34S-031914	J1402025-006	9.00			1	NA	3/19/14 18:32	
GAIN-HG-22D-031914	J1402025-007	7.17	-		1	NA	3/19/14 18:34	

	Analytical Report		
Client:	Beazer East, Inc.	Service Request:	J1402025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/18/14 - 3/19/14
Sample Matrix:	Water	Date Received:	3/19/14
*			

Analysis Method: SM 2540 C

Units: mg/L Basis: NA

Solids, Total Dissolved

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	163	10	10	1	NA	3/21/14 16:00	
GAIN-M-36B-031814	J1402025-002	163	10	10	1	NA	3/21/14 16:00	
GAIN-HG-24S-031814	J1402025-003	132	10	10	1	NA	3/21/14 16:00	
GAIN-M-25B-031814	J1402025-004	196	10	10	1	NA	3/21/14 16:00	
GAIN-HG-33S-031914	J1402025-005	162	10	10	1	NA	3/21/14 16:00	
GAIN-HG-34S-031914	J1402025-006	119	10	10	1	NA	3/21/14 16:00	
GAIN-HG-22D-031914	J1402025-007	154	10	10	1	NA	3/21/14 16:00	
Method Blank	J1402025-MB	ND U	10	10	1 .	NA	3/21/14 16:00	

Analytical Report

Client:	Beazer East, Inc.	Service Request:	J1402025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/18/14 - 3/19/14
Sample Matrix:	Water	Date Received:	3/19/14

Analysis Method: SM 4500-H+ B

Units: pH Units Basis: NA

pН

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	7.45	***		1	NA	3/21/14 21:02	Q
GAIN-M-36B-031814	J1402025-002	7.83			1	NA	3/21/14 21:13	Q
GAIN-HG-24S-031814	J1402025-003	7.68	-		The second second second second second second second second second second second second second second second se	NA	3/21/14 21:21	Q
GAIN-M-25B-031814	J1402025-004	7.00	~		1	NA	3/21/14 21:30	Q
GAIN-HG-33S-031914	J1402025-005	7.86	-		1	NA	3/21/14 21:38	Q
GAIN-HG-34S-031914	J1402025-006	8.92	-		1	NA	3/21/14 21:46	Q
GAIN-HG-22D-031914	J1402025-007	7.62	-		1	NA	3/21/14 21:55	Q

QA/QC Report

Client:	Beazer East, Inc.
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14
Sample Matrix:	Water

Service Request: J1402025 Date Collected: 3/19/14 Date Received: 3/19/14 Date Analyzed: 3/21/14

Matrix Spike Summary General Chemistry Parameters

Sample Name:	GAIN-HG-22D-031914
Lab Code:	J1402025-007

Units: mg/L Basis: NA

Analytical Method: 300.0

		GAIN-H N J14	+G-22D-031 / latrix Spik /02025-007N	914MS e 4S	
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Chloride	3,1	53.5	50.0	101	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

		QA/Q	C Report					
Client: Project: Sample Matrix:	Beazer East, Inc. Gainesville March 2014 UIC Water	GW Monitoring	z/OM-0450-	-14		Service Rec Date Colle Date Rec Date Ana	quest: J14 ected: 3/1 eived: 3/1 lyzed: 3/1	02025 8/14 9/14 9/14
		Replicate Sa General Chem	mple Sumn listry Parar	nary neters				
Sample Name: Lab Code:	GAIN-M-25A-031814 J1402025-001					U B	nits: Colo asis: NA	rUnits
Analyte Name	Method	LOQ	MDL	Sample Result	GAIN-M- 4E Duplica J140202: Result	25A-03181 DUP te Sample 5-001DUP Average	RPD	RPD Limit
Color, True	SM 2120 B	5.0	5.0	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

		QA/Q	C Report					
Client: Project: Sample Matrix:	Beazer East, Inc. Gainesville March 2014 UIG Water	C GW Monitorin	g/OM-0450-	14		Service Ree Date Coll Date Rec Date Ana	quest: J ected: 3 eived: 3 lyzed: 3	1402025 /18/14 /19/14 /21/14
		Replicate Sa General Chen	imple Summ histry Paran	ary neters				
Sample Name: Lab Code:	GAIN-M-25B-031814 J1402025-004					U B	nits: mg asis: N/	g/L A
Analyte Name	Method	LOQ	MDL	Sample Result	GAIN-M- 4E Duplica J140202: Result	25B-03181 DUP te Sample 5-004DUP Average	RPD	RPD Limit
Solids, Total Dissolved	I SM 2540 C	10	10	196	194	195	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

		QA/Q	C Report					
Client: Project: Sample Matrix:	Beazer East, Inc. Gainesville March 2014 UIC Water	GW Monitoring	g/OM-0450-	14		Service Ree Date Colle Date Rec Date Ana	quest: J14 ected: 3/19 eived: 3/19 lyzed: 3/23	02025 9/14 9/14 1/14
		Replicate Sa General Chem	mple Summ listry Paran	nary neters				
Sample Name: Lab Code:	GAIN-HG-22D-031914 J1402025-007					U B	nits: mg/L asis: NA	,
Analyte Name	Method	LOQ	MDL	Sample Result	GAIN-HC 14] Duplica J140202: Result	3-22D-0319 DUP te Sample 5-007DUP Average	RPD	RPD Limit
Chloride	300.0	1.0	0.2	3.1	3.0	3.05	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

		QA/Q	C Report					
Client: Project: Sample Matrix:	Beazer East, Inc. Gainesville March 2014 UIC C Water	GW Monitoring	g/OM-0450-	14		Service Rec Date Colle Date Rec Date Anal	quest: J14 ected: 3/19 eived: 3/19 lyzed: 3/2	02025 9/14 9/14 1/14
	(Replicate Sa General Chem	mple Summ istry Paran	iary neters				
Sample Name: Lab Code:	GAIN-HG-22D-031914 J1402025-007					U B	nits: pHU asis: NA	Jnits
Analyte Name	Method	LOQ	MDL	Sample Result	GAIN-HC 14] Duplica J140202 Result	3-22D-0319 DUP te Sample 5-007DUP Average	RPD	RPD Limit
pH	SM 4500-H+ B			7.62	7.62	7.62	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Beazer East, Inc.Project:Gainesville March 2014 UIC GW Monitoring/OM-0450-14Sample Matrix:Water

Service Request: J1402025 Date Analyzed: 3/19/14 -3/21/14

Lab Control Sample Summary General Chemistry Parameters

Units: ColorUnits Basis: NA

		Lab C J14	Control Sam	ple S	
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Color, True	SM 2120 B	30.0	25.0	120	80 - 120

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Beazer East, Inc.Project:Gainesville March 2014 UIC GW Monitoring/OM-0450-14Sample Matrix:Water

Service Request: J1402025 Date Analyzed: 3/19/14 -3/21/14

Lab Control Sample Summary General Chemistry Parameters

Units: mg/L Basis: NA

		Lab C J14	Control Samp 102025-LCS	ple	
Analyte Name	Method	Result	Spike Amount '	% Rec	% Rec Limits
Chloride Solids, Total Dissolved	300.0 SM 2540 C	50.1 301	50.0 300	100 100	90 - 110 85 - 115

Results flagged with an asterisk (*) indicate values outside control criteria.

Validation Package

9143 Philips Highway, Suite 200 Jacksonville, Florida 32256 Phone: (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

Inorganic Analysis: <u>Metals</u>

Validation Package

Sample and QC Results

140000

Total Metals - COVER PAGE -INORGANIC ANALYSIS DATA PACKAGE

	J1402025	Method Type:	6010B/602	0/74		SOW No.:
Contract:	OM-0450-14	Lab Code:	ALJCK	Case No.:	mahamanah ahan Select 2015 - Al Andrew Shifts and Andrew Shifts	SAS No.:
	Lab Sample ID	Client Sample	ID		QC Desc	cription
	J1402025-001	GAIN-M-25A-0	31814	en er hannen en en en en en en en en en en en en		***************************************
	J1402025-002	GAIN-M-36B-0	31814			
	J1402025-003	GAIN-HG-24S-	031814			
	J1402025-003S	GAIN-HG-24S-	<u>031814S</u>		Matrix S	pike
	J1402025-003SD	GAIN-HG-24S-	031814SD		Matrix S	pike Duplicate
	J1402025-004	GAIN-M-25B-0	31814			
	J1402025-005	GAIN-HG-33S-	031914			
	J1402025-006	GAIN-HG-34S-	031914			
	J1402025-007	GAIN-HG-22D-	031914			
	J1402025-007S	GAIN-HG-22D-	031914S		Matrix S	pike
	J1402025-007SD	GAIN-HG-22D-	031914SD		Matrix S	pike Duplicate
ere ICP	interelement cor:	rections appl	ied?	Ye	s/No	Yes
ere ICP ere ICP If ve	interelement cor: background corrects - were raw data	rections appl ctions applie generated be	ied? d? efore	Ye Ye	s/No s/No	Yes

Comments: Perkin Elmer MSF program is used for IEC corrections

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Ozella
Date:	48/14

Name: Craig Myers

Claig Wiyel

Title: Project Manager

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J1402	2025-001					Client ID: 0	GAIN-M-2	5A-031814			
Matrix: WATE	R] Date Re	ceived:	3/	19/2014	Level:	LC	OW			
% Solids:		Sample	Wt/Vol:	5	0.0	- Final Vol	: 5	0.0			
Prep Batch ID:	204592		- <u>11- 11- 11- 11- 11- 11- 11- 11- 11- 1</u>	P	rep Date:	3/21/20	14				
	**************************************									Anal	ytical
Analyte	Con	centration	Units	С	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum		192	ug/L			6010B	11	100	1.00	3/21/2014	20:24:50
Antimony		1.2	ug/L			6020	0.160	1.0	1.00	3/24/2014	18:08
Arsenic		1.2	ug/L			6020	0.42	1.0	1.00	3/24/2014	18:08
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:08
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1,00	3/24/2014	18:08
Chromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:08
Iron		265	ug/L			6010B	2.5	100	1.00	3/21/2014	20:24:50
Lead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:08
Lithium		10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:24:50
Manganese		0.5	ug/L	i		6020	0.1	2.0	1.00	3/24/2014	18:08
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:33:54
Molybdenum		2.80	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:08
Selenium		1,1	ug/L	υ		6020	1.1	2.0	1.00	3/24/2014	18:08
Sođium		1610	ug/L			6010B	29	500	1.00	3/21/2014	20:24:50
Thallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:08

.

Sample ID: J1402025-002					Client ID: (GAIN-M-3	6B-031814			
Matrix: WATER	Date Re	eceived:	3/	19/2014	Level:	LC)W	<u></u>		
% Solids:	Sample	Wt/Vol:	5	0.0	- Final Vol	: 5(0.0			
Prep Batch ID: 20459	2		P	rep Date:	3/21/20	14				
Analyta	Concentration	Inite		Qual	Mathod	MDI	MDI	ກະເ	Anal	ytical Timo
Aluminum	96	110/1	<u>г</u>	Quai	6010R	11	100	1 00	3/21/2014	20.29.4
Antimony	0.160	ug/L	Û		6020	0.160	1.0	1.00	3/24/2014	18:13
Arsenic	0.78	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:13
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:13
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:13
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:13
ron	909	ug/L			6010B	2.5	100	1.00	3/21/2014	20:29:43
.ead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:13
ithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:29:43
Aanganese	27	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:13
Aercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:35:03
4olybdenum	2.30	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:13
eleníum	1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:13
Sodium	6740	ug/L			6010B	29	500	1.00	3/21/2014	20:29:43
hallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:13
			• • • • • • • • • • • • • • • • • • •							

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Beazer East,	lnc.		SDG	No.:	J14020	25	Metho	d Type:	·····	<u></u>	<u> </u>
Rich William and General American and an an an and a strain and an n kan kan kan kan ka	1	1216220200703000000000000000000000000000000	dedikelikezanim		a de seu se se se se se se se se se se se se se	4853053979402473969847477284		504840400000000000000000000000000000000	<i>8766689</i> 89999999999999999999999999999999	-	
Sample ID: J140202	5-003		1			Client ID: (GAIN-HG-	24S-031814			
Matrix: WATER		Date Received:		3/	19/2014	Level:	LC)W			
% Solids:		- Sample	Wt/Vol:	5	0.0	– Final Vol	: 50	0.0			
Prep Batch ID:	204592	•		F	rep Date:	3/21/20	14				
Analyte	Con	centration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum		68	ug/L	I		6010B	11	100	1.00	3/21/2014	20:34:36
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:18
Arsenic		2.7	ug/L			6020	0.42	1.0	1.00	3/24/2014	18:18
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:18
Cadmium		0.090	ug/L	i		6020	0.090	0.400	1.00	3/24/2014	18:18
Chromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:18
ron		830	ug/L			6010B	2.5	100	1.00	3/21/2014	20:34:36
Lead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:18
Lithium		10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:34:36
Manganese		26	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:18
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:36:12
Molybdenum		5.70	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:18
Selenium		¥	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:18
Sodium		5420	ug/L			6010B	29	500	1.00	3/21/2014	20:34:36
Thallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:18

۰

Comments:

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: J1402	2025-004					Client ID:	GAIN-M-2	25B-031814			
Matrix: WATE	ER	Date Received:		3/19/2014		Level:	L	LOW			
% Solids:		Sample	Wt/Vol:	5	0.0	Final Vol	: 5	0.0			·
Prep Batch ID:	204592			P	rep Date:	3/21/20	14				
Analyte	Con	centration	Units	с	Ouai	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum		39	ug/L	I	<u> </u>	6010B	11	100	1.00	3/21/2014	20:47:29
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:23
Arsenic		4.0	ug/L			6020	0.42	1.0	1.00	3/24/2014	18:23
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:23
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:23
Chromium		0.30	ug/L	i		6020	0.18	1.0	1.00	3/24/2014	18:23
iron		286	ug/L			6010B	2.5	100	1.00	3/21/2014	20:47:29
Jead		0.12	ug/L	υ		6020	0.12	0.50	1.00	3/24/2014	18:23
Lithium		10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:47:29
Manganese		63	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:23
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:47:01
Molybdenum		0.28	ug/L	U		6020	0.28	2.00	1.00	3/24/2014	18:23
Selenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:23
Sodium		17100	ug/L			6010B	29	500	1.00	3/21/2014	20:47:29
Thallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:23

-

Comments:

Sample ID: J1402	2025-005					Client ID:	GAIN-HG-3	38-031914			
Matrix: WATE	ER	Date Re	Date Received:		19/2014	Level:	LC	LOW		~	
% Solids:]	Sample	Wt/Vol:	5	0.0	- Final Vol	: 50).0			
Prep Batch ID:	204592				'rep Date:	3/21/20	14	-			
Analyte		Concentration	Finits		Qual	Method	MDI.	MRI	nii	Anal Date	ytical Time
Aluminum		304	ug/L		Zuni	6010B	11	100	1.00	3/21/2014	20.52.2
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:38
Arsenic		0.78	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:38
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:38
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:38
Chromium		0.32	ug/L	i		6020	0.18	1.0	1.00	3/24/2014	18:38
lron		999	ug/L			6010B	2.5	100	1.00	3/21/2014	20:52:2
Lead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:38
Lithium		10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:52:22
Manganese		28	ug/L			6020	0,1	2.0	1.00	3/24/2014	18:38
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:48:0
Molybdenum		1.80	ug/L	i		6020	0.28	2.00	1.00	3/24/2014	18:38
Selenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:38
Sodium		6640	ug/L			6010B	29	500	1.00	3/21/2014	20:52:22
Thallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:38

Sample ID: J1402	Sample ID: J1402025-006					Client ID: (GAIN-HO	G-34S-031914			-
Matrix: WATE	R	Date Re	ceived:	3/	19/2014	Level:		LOW			
% Solids:		 Sample Wt/Vol:		50.0				50.0			
Prep Batch ID:	204592			F	rep Date:	3/21/20	14				
Y 4		······	.	~		·				Anat	ytical
Analyte	(oncentration	Units	<u> </u>	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum		478	ug/L			6010B	11	100	1.00	3/21/2014	20:57:14
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/24/2014	18:43
Arsenic		0.69	ug/L	i		6020	0.42	1.0	1.00	3/24/2014	18:43
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:43
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/24/2014	18:43
Chromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/24/2014	18:43
ron		18	ug/L	I		6010B	2.5	100	1.00	3/21/2014	20:57:14
_ead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:43
Lithium		10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	20:57:14
Manganese		0.6	ug/L	i		6020	0.1	2.0	1.00	3/24/2014	18:43
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:49:10
Molybdenum		7.50	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:43
Selenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:43
Sodium		11000	ug/L			6010B	29	500	1.00	3/21/2014	20:57:14
Fhallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:43

Sample ID: J1402	2025-007				Client ID:	GAIN-HG-	22D-031914			
Matrix: WATE	ER Date	Received:	3/	/19/2014	Level:		DWW			
% Solids:	Sam	Sample Wt/Vol:		50.0	Final Vol	: 50	0.0			
Prep Batch ID:	204592		J	Prep Date:	3/21/20	14				
Analyte	Concentratio	n Units		Oust	Method	MDL	MRL	Dil	Anal Dote	ytical Time
Aluminum	165	110/L			6010B	11	100	1.00	3/21/2014	21.02.05
Antimony	0.470	ug/L	i		6020	0.160	1.0	1.00	3/24/2014	18:48
Arsenic	0.88	ug/L	í		6020	0.42	1.0	1.00	3/24/2014	18:48
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/24/2014	18:48
Cadmium	15	ug/L			6020	0.090	0.400	1.00	3/24/2014	18:48
Chromium	. 11	ug/L			6020	0.18	1.0	1.00	3/24/2014	18:48
iron	927	ug/L			6010B	2.5	100	1.00	3/21/2014	21:02:07
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/24/2014	18:48
Lithium	10.0	ug/L	U		6010B	10.0	100	1.00	3/21/2014	21:02:07
Manganese	16	ug/L			6020	0.1	2.0	1.00	3/24/2014	18:48
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	19:50:24
Molybdenum	2.10	ug/L			6020	0.28	2.00	1.00	3/24/2014	18:48
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/24/2014	18:48
Sodium	2810	ug/L			6010B	29	500	1.00	3/21/2014	21:02:07
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/24/2014	18:48

Total Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		SDG No.: J1402025	MALINOV
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:
Initial Calibration Source:	Inorganic Ventures		
Continuing Calibration Source:	High Purity STDs	-	

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
ICV				•					
101	Aluminum	50100.00	50000	100	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Iron	39200.0	40000	98	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Lithium	5130.00	5000	103	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Sodium	20600.00	20000	103	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
CCV									
	Aluminum	4980.00	5000	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Iron	5080.0	5000	102	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Lithium	4970.00	5000	99	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Sodium	25100.00	25000	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
CCV									
	Aluminum	4900.00	5000	98	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	Iron	4980.0	5000	100	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	Lithium	4980.00	5000	100	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	Sodium	25200.00	25000	101	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
CCV									
	Aluminum	4890.00	5000	98	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
	Iron	4980.0	5000	100	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
·	Lithium	4980.00	5000	100	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
	Sodium	25200.00	25000	101	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
CCV									
001	Aluminum	5010.00	5000	100	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
	Iron	5060.0	5000	101	90:0 - 110:0	6010B	3/21/2014	21:30	032114A1
	Lithium	5020.00	5000	100	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
	Sodium	25300.00	25000	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
CCV									
	Aluminum	4890.00	5000	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Iron	4900.0	5000	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Lithium	5040.00	5000	101	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Sodium	25400.00	25000	102	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1

144

Total Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.		SDG No.: J140202	25	
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:	
Initial Calibration Source:	Inorganic Ventures	100040711111111111111111		
Continuing Calibration Source:	High Purity STDs			

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV									
	Aluminum	4900.00	5000	98	90.0 - 110.0	6010B	3/21/2014	23:11	032114AI
	Iron	4930.0	5000	99	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Lithium	5050.00	5000	101	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Sodium	25400.00	25000	102	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
CCV									
CC 7	Aluminum	4930.00	5000	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	lron	4950.0	5000	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Lithium	5050.00	5000	101	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Sodium	25400.00	25000	102	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
CCV	6 I	4060.00	5000	00	00.0 110.0	(010D	2/22/2014	00.40	02211441
	Iron	4960.00	5000	99	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	HOII Lithium	4990.0	5000	100	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	Sodium	3080.00	25000	102	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	Soulain	25400.00	25000	102	90.0 - 110.0	00100	5/22/2014	00.49	034114A1
CCV									
	Aluminum	4980.00	5000	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Iron	4990.0	5000	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Lithium	5110.00	5000	102	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Sodium	25600.00	25000	102	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
ICV									
-	Antimony	50.5		101	90.0 - 110.0	6020	3/24/2014	17:03	-032414A
	Arsenic	48.1	50	96	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Beryllium	19.6	20	98	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Cadmium	25.7	25	. 103	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Chromium	50.8	50	102	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Lead	50.4	50	101	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Manganese	50.9	50	102	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Mołybdenum	51.4	50	103	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Selenium	51.1	50	102	90.0 - 110.0	6020	3/24/2014	17:03	032414A
	Thallium	49.2	50	98	90.0 - 110.0	6020	3/24/2014	17:03	032414A

Total Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.	An and a second and a second and a second a second a second a second a second a second a second a second a seco	SDG No.: J1402025	uuunnuu ee
Contract: 0M-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:
Initial Calibration Source:	High Purity Standards		
Continuing Calibration Source:	Inorganic Ventures	**	

Sample ID) Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
									5
CCV-1									
1	Antimony	50.1	50	100	90.0 - 110.0	6020	3/24/2014	17:28	032414A
1	Arsenic	50.7	50	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A
I	Beryllium	24.0	25	96	90.0 - 110.0	6020	3/24/2014	17:28	032414A
(Cadmium	20.6	20	103	90.0 - 110.0	6020	3/24/2014	17:28	032414A
(Chromium	50.1	50	100	90.0 - 110.0	6020	3/24/2014	17:28	032414A
I	Lead	25.4	25	102	90.0 - 110.0	6020	3/24/2014	17:28	032414A
ľ	Manganese	101.0	100	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A
]	Molybdenum	101.0	100	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A
5	Selenium	101.0	100	101	90.0 - 110.0	6020	3/24/2014	17:28	032414A
-	Thallium	10.0	10	100	90.0 - 110.0	6020	3/24/2014	17:28	032414A
CCV-2	!								
	Antimony	49.5	50	99	90.0 - 110.0	6020	3/24/2014	18:28	032414A
	Arsenic	51.5	50	103	90.0 - 110.0	6020	3/24/2014	18:28	032414A
]	Beryllium	23.6	25	94	90.0 - 110.0	6020	3/24/2014	18:28	032414A
	Cadmium	21.0	20	105	90.0 - 110.0	6020	3/24/2014	18:28	032414A
(Chromium	50.0	50	100	90.0 - 110.0	6020	3/24/2014	18:28	032414A
]	Lead	25.6	25	102	90:0 - 110.0	6020	3/24/2014	18:28	032414A
	Manganese	102.0	100	102	90.0 - 110.0	6020	3/24/2014	18:28	032414A
·	Molybdenum	100.0	100	100	90.0 - 110.0	6020	3/24/2014	18:28	032414A
:	Selenium	102.0	100	102	90.0 - 110.0	6020	3/24/2014	18:28	032414A
	Thallium	10.0	10	100	90.0 - 110.0	6020	3/24/2014	18:28	032414A
CCV-3	5								
	Antimony	50.3	50	101	90.0 - 110.0	6020	3/24/2014	19:29	032414A
· · · · · · · · · · · · · · · · · · ·	Arsenic	51.6			90.0-110.0		3/24/2014	19:29	032414A
	Beryllium	25.1	25	100	90.0 - 110.0	6020	3/24/2014	19:29	032414A
	Cadmium	21.2	20	106	90.0 - 110.0	6020	3/24/2014	19:29	032414A
1	Chromium	50.9	50	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A
	Lead	25.5	25	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A
	Manganese	102.0	100	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A
	Molybdenum	101.0	100	101	90.0 - 110.0	6020	3/24/2014	19:29	032414A
	Selenium	102.0	100	102	90.0 - 110.0	6020	3/24/2014	19:29	032414A
	Thallium	10.1	10	101	90.0 - 110.0	6020	3/24/2014	19:29	032414A

Total Metals - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Beazer East, Inc.			SDG No.: J1	402025	544 B 24	
Contract: OM-0450-14	Lab Code: A	ALICK	Case No.:		SAS No.:	
Initial Calibration Source:	High Purity Standards	a a a a a a a a a a a a a a a a a a a				
Continuing Calibration Source:	Inorganic Ventures					

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
0014									
CCV-4	timony	40 A	50	08	90.0 - 110.0	6020	3/24/2014	20-20	0324144
Arc	enic	51.5	50	103	90.0 - 110.0	6020	3/24/2014	20.27	032414A
Ret	rullium	26.6	25	105	90.0 - 110.0	6020	3/24/2014	20.29	032414A
Doi Cov	dmium	20.0	20	100	90.0 - 110.0	6020	3/24/2014	20.22	0324147
Cau	romium	50.8	50	102	90.0 - 110.0	6020	3/24/2014	20.27	0324147
Uni Loc	ad	30.8 35.6	25	102	90.0 - 110.0	6020	3/24/2014	20.29	032414A
Ma	au Inganese	102.0	100	102	90.0 - 110.0	6020	3/24/2014	20.27	032414A
ivia Mo	Jubdenum	102.0	100	101	90.0 - 110.0	6020	3/24/2014	20.23	032414A
Nio Sal	anium	101.0	100	101	90.0 - 110.0	6020	3/24/2014	20.29	0324145
Tha	allium	101.0	100	101	90.0 - 110.0	6020	3/24/2014	20:29	032414A
ICV Me	ercury	4.97	5	99	90.0 - 110.0	7470A	3/24/2014	19:22	032414C
CCV-1 Me	ercury	5.02	5	100	80.0 - 120.0	7470A	3/24/2014	19:39	032414C
CCV-2 Me	ercury	5.03	5	101	80.0 - 120.0	7470A	3/24/2014	19:54	032414C
CCV-3 Me	ercury	5.01	5	100	80.0 - 120.0	7470A	3/24/2014	20:04	032414C
Total Metals - 2b -CRDL STANDARD FOR AA & ICP

Client:	Beazer East, Inc.				SDC	9 No.: J <u>14(</u>	02025		
Contra	et: 0 <u>M-0450-14</u>		Lab Cod	le: ALICK	Case No:			SAS No.:	
AA CF	DL Standard Source:			••••••••••••••••••••••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·		
ICP C	RDL Standard Source	: <u>Hig</u>	h Purity STDs						
Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	Method	Analysis Date	Analysis Time	Run Number
MRL									
	Aluminum	68.60	100	69	50 - 150	6010B	3/21/2014	18:15	032114A1
	Iron	106.0	100	106	50 - 150	6010B	3/21/2014	18:15	032114A1
	Lithium	98.8	20	99	50 - 150	6010B	3/21/2014	18:15	032114A1
	Sodium	546.00	500	109	50 - 150	6010B	3/21/2014	18:15	032114A1
MRL									
	Antimony	1.07	1	107	50 - 150	6020	3/24/2014	17:13	032414A
	Arsenic	0.66	1	66	50 - 150	6020	3/24/2014	17:13	032414A
	Beryllium	0.44	.5	88	50 - 150	6020	3/24/2014	17:13	032414A
	Cadmium	0.39	.4	98	50 - 150	6020	3/24/2014	17:13	032414A
	Chromium	0.99	1	99	50 - 150	6020	3/24/2014	17:13	032414A
	Lead	0.37	.5	74	50 - 150	6020	3/24/2014	17:13	032414A
	Manganese	2.02	2	101	50 - 150	6020	3/24/2014	17:13	032414A
	Molybdenum	1.93	2	96	50 - 150	6020	3/24/2014	17:13	032414A
	Selenium	1.73	2	86	50 - 150	6020	3/24/2014	17:13	032414A
	Thallium	0.17	.2	85	50 - 150	6020	3/24/2014	17:13	032414A
MRL	0.1								
	Mercury	0.10	. I	100	50 - 150	7470A	3/24/2014	19:25	032414C

. Total Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: B	eazer East, Inc.				S	DG No.: J140)2025	IIID680946 BIJM DATE THE ANALYSIS		
Contract:	OM-0450-14		Lab Code:	ALJCK	C	Case No.:		SA	AS No.:	
C. MILLING										
Sample II) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL M	Method	Analysis Date	Analysis Time	Run
ICD										
IСВ	Aluminum	11,000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	18.05	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	18:05	032114A1
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	18:05	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	18:05	032114A1
000										
CCB	Aluminum	11.000	+/-100 000	IJ	11 000	100.000	6010B	3/21/2014	18.20	032114A1
	Iron	2.50	+/-100.00	U U	2.50	100.00	6010B	3/21/2014	10.37	032114A1
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	18.37	032114A1
	Sodium	29.000	+/-500.000	Ū	29.000	500.000	6010B	3/21/2014	18:39	032114A1
									10.57	
~~~~										
ССВ	Aluminum	11.000	+/-100.000	TE	11.000		6010R	3/21/2014	10-16	03211441
	Iron	2.50	+/-100.000	Ц	2 50	100.000	6010B	3/21/2014	19:40	032114/11
	Lithium	10.0	+/-100.00	n	10.0	100.00	6010B	3/21/2014	19:40	03211441
	Sodium	35,600	+/-500.000	I	29,000	500.000	6010B	3/21/2014	19:40	032114A1
				-		0000000	00102		19.40	
CCB	A 1	11.000	100.000	* 1	11.000	100.000	60100	2/21/2014		02011443
	Alumnum	2.50	+/-100.000	U	2.50	000,001	60100	3/21/2014	20:42	022114A1
	Fithium	2.50	+/ 100.00	0	2.50	100.00	6010B	3/21/2014	20:42	022114A1
	Sodium	29 000	+/-500.000	U II	20.01	500.000	6010B	3/21/2014	20:42	032114A1
	Jourum	29.000	17-500.000	0	29.000	500.000	00100	J/21/2014	20:42	052114/1
CCB	4.7			۰.		400 00-	~~~~~			
	Aluminum	11.000	+/~100.000	·U	11.000	100.000	6010B	3/21/2014	21:34	032114A1
	IFON	- 2,50~ ~	+/-100.00		2.50	100:00	6010B	-3/21/2014-	21:34	-032114A1
	Limium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	21:34	032114A1
	Soaium	29.000	+/-500.000	U	29,000	500.000	6010B	3/21/2014	21:34	032114A1

#### Total Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Bo	eazer East, Inc.	1994-2017 HINS TANKS CAN BE AN IOSAN BEAGE	DEFECTIVEMENT	SDG No.:       J1402025         Lab Code:       ALJCK       Case No.:       SAS No.:								
Contract:	OM-0450-14		Lab Code:	ALJCK	(	Case No.:		S/	SAS No.:         alysis bate       Time       Run         /2014       22:22       032114A1         /2014       00:02       032114A1         /2014       00:53       032114A1			
Sample ID	) Anałyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run		
ССВ												
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	22:22	032114A1		
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	22:22	032114A1		
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	22:22	032114A1		
	Sodium	35.000	+/-500.000	I	29.000	500.000	6010B	3/21/2014	22:22	032114A1		
ССВ												
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	23:14	032114A1		
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	23:14	032114A1		
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/21/2014	23:14	032114A1		
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	23:14	032114A1		
CCR												
CCD	Aluminum	11,000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	00:02	032114A1		
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	00:02	032114A1		
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/22/2014	00:02	032114A1		
	Sodium	29.900	+/-500.000	I	29.000	500.000	6010B	3/22/2014	00:02	032114A1		
CCD												
CCB	Aluminum	11.000	+/-100 000	a de la companya  3/22/2014	00.53	032114A1						
	lron	2.50	+/~100.00	U	2.50	100.00	6010B	3/22/2014	00.53	032114A1		
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/22/2014	00.55	032114A1		
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	00:53	032114A1		
000									**			
ССВ	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	01:41	032114A1		
	-Iron	2.50	+/-100.00			1.00.00	-6010B	-3/22/2014-	01:41	-032114A1		
	Lithium	10.0	+/-100.0	U	10.0	100.0	6010B	3/22/2014	01:41	032114A1		
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	01:41	032114A1		

150

#### Total Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Be	eazer East, Inc.	SDG No.:       J1402025         Lab Code:       ALJCK       Case No.:       SAS No.:								
Contract:	OM-0450-14	111111-1111111-1111-111-11-1-1-1-1-1-1	Lab Code:	ALJCK		Case No.:		S/	LS No.:	
Sample ID	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run
ICB										
	Antimony	0.30	+/-1.00	i	0.16	1.00	6020	3/24/2014	17.08	032414A
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	17:08	032414A
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	17:08	032414A
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	17:08	032414A
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	17:08	032414A
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	17:08	032414A
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	17:08	032414A
	Molybdenum	0.28	+/-2.00	U	0.28	2.00	6020	3/24/2014	17:08	032414A
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	17:08	032414A
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	17:08	032414A
CCB-1										
000	Antimony	0.16	+/-1.00	U	0.16	· 1.00	6020	3/24/2014	17:33	032414A
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	. 17:33	032414A
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	17:33	032414A
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	17:33	032414A
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	17:33	032414A
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	17:33	032414A
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	17:33	032414A
	Molybdenum	0.55	+/-2.00	i	0.28	2.00	6020	3/24/2014	17:33	032414A
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	17:33	032414A
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	17:33	032414A
CCB-2										
	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/24/2014	18:33	032414A
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	18:33	032414A
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	18:33	032414A
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	18:33	032414A
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	18:33	032414A
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	18:33	032414A
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	18:33	032414A
	Molybdenum	0.28	+/-2.00	U	0.28	2.00	6020	3/24/2014	18:33	032414A
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	18:33	032414A
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	18:33	032414A

151

#### Total Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Be	eazer East, Inc.		RLINEW, 4 FORM 4		S	DG No.: J14	02025	11		
Contract:	OM-0450-14		Lab Code:	ALJCK		Case No.:		S/	AS No.:	<u></u>
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run
CCB-3						-				
0000	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/24/2014	19:34	032414A
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/24/2014	19:34	032414A
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/24/2014	19:34	032414A
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/24/2014	19.34	032414A
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/24/2014	19:34	032414A
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/24/2014	19.34	032414A
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/24/2014	19.34	032414A
	Molybdenum	0.28	+/-2.00	U	0.28	2.00	6020	3/24/2014	19:34	032414A
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/24/2014	19:34	032414A
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/24/2014	19:34	032414A
						ż				
CCB-4	Antimony	0.14	1.1.00	TT	0.16	1.00	6020	2/04/2014		0224144
	Aroonio	0.10	+/-1.00	U H	0.10	1.00	6020	3/24/2014	20:34	032414A
	Regullium	0.42	+/ 0.50	U	0.42	0.50	6020	3/24/2014	20:34	032414A
	Cadmium	0.03	+/-0.30	U U	0.03	0.30	6020	3/24/2014	20:34	032414A
	Chromium	0.09	+/-0.40	U 11	0.19	1.00	6020	3/24/2014	20:34	032414A
	Land	0.10	+/ 0.50	U TI	0.10	1.00	6020	2/24/2014	20:34	032414A
	Manganese	0.12	+/ 2.00	U	0.12	2.00	6020	3/24/2014	20:34	032414A
	Maluhdenum	0.12	+/-2.00	о П	0.12	2.00	6020	3/24/2014	20:34	032414A
	Salanium	1.10	+/-2.00	U TI	0.26	2.00	6020	3/24/2014	20:34	032414A
	Thallium	0.05	+/-2.00	U U	0.05	2.00	6020	2/24/2014	20:34	032414A
	i naman	0.05	17-0.20	0	0.05	0.20	0020	5/24/2014	20:34	032414A
ICB	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	19:24	032414C
CCB-1	Mercury	0.012	+/-0.100	υ	0.012	0.100	7470A	3/24/2014	19:41	032414C
CCB-2	Mercury	0.012	+/-0,100	U	0.012	0.100	7470A	3/24/2014	19:56	032414C

#### Total Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Be	eazer East, Inc.				S	DG No.: J	1402025						
Contract:	OM-0450-14		Lab Code:	ALJCK	C	ase No.:		S/	\S No.:				
	del de la de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la	uleyininin asaa ahaa ahaa ahaa ahaa ahaa ahaa aha	5	*****	n Galanda Mariana Mariana Mariana Mariana Mariana Mariana Mariana Mariana Mariana Mariana Mariana Mariana Maria Mariana mangana mariana mariana mariana mariana mariana mariana mariana mariana mariana mariana mariana mariana m			1027/12180821011121808210	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	and a second state of the second second second second second second second second second second second second s			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run			
CCB-3	Mercury	0.012	+/-0.100	U	0.012	0.1	00 7470A	3/24/2014	20:06	032414C			
						· ·							
	:												

153

#### Total Metals - 3b -PREPARATION BLANK SUMMARY

Client: Be	eazer East, Inc.					SDG	No.: J140	2025	****	<u> </u>		
Contract:	OM-0450-14		Lab	Code	ALJCK	Case	No.:	<del></del>	SAS No.:			
Sample ID	) Analyte	Result (ug/L)	Conc Qual	Q	Acceptance Limit	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
MB-02131	-02		WATER									
	Aluminum	11.000	U		+/-11.000	11.000	100.000	6010B	3/21/2014	19:05	032114A1	
	Iron	9.600	Ι		+/-2.500	2.500	100.000	6010B	3/21/2014	19:05	032114A1	
	Lithium	10.000	υ		+/-10.000	10.000	100.000	6010B	3/21/2014	19:05	032114A1	
	Sodium	29.000	U		+/-29.000	29.000	500.000	6010B	3/21/2014	19:05	032114A1	
MB-02159	-02		WATER									
	Mercury	0.012	U		+/-0.012	0.012	0.100	7470A	3/24/2014	19:26	032414C	
MB-02134	04		WATER									
	Antimony	0.160	U		+/-0.160	0.160	1.000	6020	3/24/2014	17:38	032414A	
	Arsenic	0.420	U		+/-0.420	0.420	1.000	6020	3/24/2014	17:38	032414A	
	Beryllium	0.032	U		+/-0.032	0.032	0.500	6020	3/24/2014	17:38	032414A	
	Cadmium	0.091	U		+/-0.091	0.091	0.400	6020	3/24/2014	17:38	032414A	
	Chromium	0.180	U		+/-0.180	0.180	1.000	6020	3/24/2014	17:38	032414A	
	Lead	0.120	U		+/-0.120	0.120	0.500	6020	3/24/2014	17:38	032414A	
	Manganese	0.120	U		+/-0.120	0.120	2.000	6020	3/24/2014	17:38	032414A	
	Mołybdenum	0.280	U		+/-0.280	0.280	2.000	6020	3/24/2014	17:38	032414A	
	Selenium	1.100	U		+/-1.100	1.100	2.000	6020	3/24/2014	17:38	032414A	
	Thallium	0.050	U		+/-0.050	0.050	0.200	6020	3/24/2014	17.38	032414A	

#### Total Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	azer East, Inc.	155511501150115011501150115011501150115	NAMES CANTOLON		SDG	No.: J1402025			
Contract:	OM-0450-14		Lab Co	de: ALJCK	Cas	e No.:		SAS No	
ICS Source	e:			Instru	ument ID:	PE Optima ICP	·····		
i fan men an skjelert terhen yn fan geregen	antan tanaharan kanan		20053452452465246524653476537335	Diamana ang ang ang ang ang ang ang ang ang	an an an an an an an an an an an an an a	an hada mana kana kana kana kana kana kana kan	10525422154442221114645445245	NI TO STOLEN AND AND AND AND AND AND AND AND AND AN	
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSA									
<b>IC</b> ON	Aluminum	753000	750000	100	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Iron	668000	750000	89	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Lithium	<del>-</del> 6			0.0 to 0.0	6010B	3/21/2014	18:19	032114A1
	Sodium	34			0.0 to 0.0	6010B	3/21/2014	18:19	032114A1
ICSAB						~			
	Aluminum	766000	752000	102	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Iron	677000	752000	90	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Lithium	2250.0	2000	112	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Sodium	11200	10000	112	80 - 120%	6010B	3/21/2014	18:27	032114A1
ICSA									
	Aluminum	757000	750000	101	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Iron	667000	750000	89	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Lithium	-5			0.0 to 0.0	6010B	3/22/2014	01:21	032114A1
	Sodium	28			0.0 to 0.0	6010B	3/22/2014	01:21	032114A1
ICSAB									
	Aluminum	770000	752000	102	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Iron	678000	752000	90	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Lithium	2300.0	2000	115	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Sodium	11400	10000	114	80 - 120%	6010B	3/22/2014	01:29	032114A1
ICSA									
	Antimony	0.1			-2.0 to 2.0	6020	3/24/2014	17:18	032414A
	Arsenic	0.7			-2.0 to 2.0	6020	3/24/2014	17:18	032414A
	Beryllium	-0.074			-1.000 to 1.00	0 6020	3/24/2014	17:18	032414A
	Cadmium	0.1			-0.8 to 0.8	6020	3/24/2014	17:18	032414A
	Chromium	0,1			-2.0 to 2.0	6020	3/24/2014	17:18	032414A
	Lead	0.0			-1.0 to 2.0	6020	3/24/2014	17:18	032414A
	Manganese	0.3			-4.0 to 4.0	6020	3/24/2014	17:18	032414A
	Molybdenum	1110.0	1000	111	80 - 120%	6020	3/24/2014	17:18	032414A
	Selenium	-1.7			-4.0 to 4.0	6020	3/24/2014	17:18	032414A
	Thallium	0.0			-0.4 to 0.4	6020	3/24/2014	17:18	032414A

Thallium

4.0

4

#### Total Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	azer East, Inc.				SDG	No.: J1402025			
Contract:	OM-0450-14		Lab Co	de: ALJCK	Cas	e No.:		SAS No	
ICS Source				lnstru	ment ID:	ICP-MS	,,		
Sample ID	Anałyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSAB									
	Antimony	20.7	20	104	80 - 120%	6020	3/24/2014	17:23	032414A
	Arsenic	20.9	20	104	80 - 120%	6020	3/24/2014	17:23	032414A
	Beryllium	10.200	10	102	80 - 120%	6020	3/24/2014	17:23	032414A
	Cadmium	8.2	. 8	102	80 - 120%	6020	3/24/2014	17:23	032414A
	Chromium	21.8	20	109	80 - 120%	6020	3/24/2014	17:23	032414A
	Lead	10.1	10	101	80 - 120%	6020	3/24/2014	17:23	032414A
	Manganese	41.6	40	104	80 - 120%	6020	3/24/2014	17:23	032414A
	Molybdenum	1110.0	1040	107	80 - 120%	6020	3/24/2014	17:23	032414A
	Selenium	39.3	40	98	80 - 120%	6020	3/24/2014	17:23	032414A

100

80 - 120%

6020

3/24/2014

17:23

032414A

			M	ATR]	Total Meta - 5a - IX SPIKE SI	als UMM/	ARY			
Client: Be	azer East, In	с.	Level:		LOW		SDG No.:	J1402025		<u></u>
Contract:	<u>OM-045</u>	0-14	Lab C	ode:	ALJCK		Case No.:		SAS	S No.:
Matrix: Percent So	WATER	nple: 0.00	Sample ID: Spiked ID:	J14 J14(	02025-003 02025-003S	Clie	ent ID: <u>GAIN</u> cent Solids fo	-HG-24S-0318 r Spike Sample	14S e: 0.00	
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Mercury	ug/L	75 - 125	1.23		0.01	U	1.25	98		7470A

. . . .

			MATRIX	SDII	Total Meta - 5a - KE DUPLICA	ls NTF S	TIMMADY	<i>y</i>			
Client: Be	azer East, In	c	Level:		LOW		SDG No.:	<u>J1402025</u>			
Contract:	<u>OM-045</u>	50-14	Lab C	ode:	ALJCK		Case No.:		SA	S No.:	
Matrix:	WATER		Sample ID:	J14	402025-003	Clie	ent ID: <u>GAIN</u>	-HG-24S-0318	14SD		
Percent So	lids for Sau	nple: 0.00	Spiked ID:	J14	02025-003SD	Per	cent Solids fo	r Spike Sample	e: 0.00	STATISTICS CONTRACTOR OF STATISTICS	
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Mercury	ug/L	75 - 125	1.23		0.01	U	1.25	98		7470A	

f

					Total Meta - 5a -	ŧls					
			M	ATRI	X SPIKE SI	JMMA	IRY				
Client: Beaz	zer East, Inc	2,	Level:		LOW		SDG No.:	_J1402025		110-114 (Autor & Contractor & Contractor & Contractor	
Contract:	<u>OM-045</u>	0-14	Lab C	ode:	ALJCK		Case No.:	****	SA	S No.:	ah 1900 da an bha fan Nachar
Matrix:	WATER		Sample ID:	J14	02025-007	Clie	nt ID: GAIN	-HG-22D-0319	14S		
Percent Solids for Sample: 0.00			Spiked ID: J1402025-007S Percent Solids for Spike Sample: 0.00								
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Aluminum	ug/L	75 - 125	5380.000		165.000		5000	104		6010B	
Iron	ug/L	75 - 125	6100.000		927.000		5000	103		6010B	
Lithium	ug/L	75 - 125	5130.0000		10.0000	U	5000	103		6010B	
Sodium	ug/L	75 - 125	28700.000		2810.000		25000	104		6010B	

•

Client: Be	azer East, In	с.	Level:		LOW		SDG No.:			115-16-15-79-16-17-17-17-17-17-17-17-17-17-17-17-17-17-
Contract: <u>OM-0450-14</u>		Lab Code: ALJCK		Case No.:		SAS No.:				
Matrix:	WATER		Sample ID:	J14	102025-007	Clie	ent ID: GAIN	-HG-22D-0319	14SD	
Percent So	Percent Solids for Sample: 0.00		Spiked ID:	J1402025-007SD		Percent Solids fo		or Spike Sample: 0.00		
Analyte	Units	Acceptance Limit %R	MSD Result	c	Sample Result	С	Spike Added	% Recovery	Qual	Method
luminum	ug/L	75 - 125	5270.000		165.000		5000	102		6010B
on	ug/L	75 - 125	6090.000		927.000		5000	103		6010B
,ithium	ug/L	75 - 125	5140.0000		10.0000	U	5000	103		6010B
adium	nø/L	75 - 125	28800.000		2810.000		25000	104		6010B

,

Client: Beazer East, Inc.

# Total Metals - 5b -POST DIGEST SPIKE SUMMARY SDG No.: J1402025

Contract:	OM-0450-14	La	b Code: ALJCK	Case No.:		SAS No					
Matrix: Sample ID:	WATER J1402025-003	Level: Spiked ID	LOW 2: J1402025-003	Client ID: A	GAIN-HG-24S-(	)31814A					
understanden son sin ander an an an an an an an an an an an an an	doggan general kan de sense op aan general wat weer general wat de sense die sense die sense die sense die sens	Acceptance	Spiked	Sample	Spike	0/0	ng	Result C	Added	Recovery	Qual Method
---------	-------	----------	----------	----------	-------	----------	-------------				
Mercury	ug/L	75 - 125	4.93	0.01 U	5	98	7470A				

#### Total Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Beaz	er East, Inc.		-	SDG No.:								
Contract:	<u>OM-0450-14</u>		Lab Code: ALJ	b Code: ALJCK Case No.:						SAS No.:		
Matrix:	WATER	Level:	LOW		Client	ID: <u>(</u>	GAIN-HG-22E	0-031914A				
Sample ID:	J1402025-007	Spiked	ID: J140202	5-007	7 A	ta interestantica						
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method		
Aluminum	ug/L	75 - 125	5240.000		165.000		5000	.102		6010B		
Iron	ug/L	75 - 125	5940.000		927.000		5000	100		6010B		
Lithium	ug/L	75 - 125	5210.00		10.00	U	5000	104		6010B		
Sodium	ug/L	75 - 125	28800.000		2810.000		25000	104		6010B		

			DUPLIC	Tot ATE S	al Metals -6- SAMPLE SUN	MMARY	2			
Client: Be	azer East, Inc.		Level:	LC	)W	SDG 1	No.: J <u>14</u>	02025		
Contract:	<u>OM-0450-14</u>		Lab Code	:: <u>A</u> l	LJCK	Case	No.:		SAS No.:	
Matrix:	WATER	estado en estado en esta de la compañía da compañía da compañía da compañía da compañía da compañía da compañía	Sample ID:	J1402	2025-007S	Client	ID: GAIN	I-HG-22D-0	31914SD	
Percent So	lids for Sample	e: 0.00	Duplicate ID:	J14020	25-007SD	Perce	nt Solids fo	r Duplicate	: 0.00	
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method	
Aluminum	ug/L	0 - 30	5380.000	******	5270.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	CONTROL OF FORTH AND AND AND AND AND AND AND AND AND AND	6010B	
ron	ug/L	0 - 30	6100.000		6090.000		0		6010B	
r tet to u		ô 3ô	£130.0000		61.40.0000		0.2		60100	
Limum	ug/L	0 - 30	5130.0000		5140.0000		0.2		00100	

			DUPLIC	Tot ATE S	al Metals - 6 - SAMPLE SUI	MMARY			
Client: Bea	izer East, Inc.	en europaan van van van van van van van van van	Level:	LC	)W	SDG N	lo.: J <u>14</u>	02025	
Contract:	<u>OM-0450-14</u>	1819-18-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-	Lab Code	e: <u>Al</u>	JCK	Case N	lo.:		SAS No.:
Matrix:	WATER		Sample ID:	J1402	2025-003S	Client	ID: GAI	V-HG-24S-0	31814SD
Percent Sol	ids for Sample	: 0.00	Duplicate ID:	J14020	25-003SD	Percen	t Solids fo	or Duplicate	: 0.00
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method
Mercury	ug/L	0 - 30	I.23		1.23		0		7470A

### Total Metals -7-LABORATORY CONTROL SAMPLE SUMMARY

Client:	Beazer East, Inc.					SUG NO.: 11	402023			
Contrac	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:	Million and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	SAS No.:		
Aqueous	LCS Source: Hi	gh Purity ST	Ds		Solid 1	LCS Source:	********			
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method		
_CS-0213	1-01									
	Aluminum	ug/L	5000	5020		100	80.0 - 120.0	6010B		
	Iron	ug/L	5000	5030		101	80.0 - 120.0	6010B		
	Lithium	ug/L	5000	5050		101	80.0 - 120.0	6010B		
	Sodium	ug/L	25000	25400		102	80.0 - 120.0	6010B		

### Total Metals - 7 -LABORATORY CONTROL SAMPLE SUMMARY

Client:	Beazer East, Inc.	*****			SDG No.: J1402025					
Contrac	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:		
Aqueou	s LCS Source: Ino	rganic Vent	ures	0942945045719901229991994194194	Solid LCS Source:					
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method		
LCS-0213	34-03									
	Antimony	ug/L	50	51.7		103	80.0 - 120.0	6020		
	Arsenic	ug/L	50	52.0		104	80.0 - 120.0	6020		
	Beryllium	ug/L	25	26.5		106	80.0 - 120.0	6020		
	Cadmium	ug/L	20	21.2		106	80.0 - 120.0	6020		
	Chromium	ug/L	50	52.0		104	80.0 - 120.0	6020		
	Lead	ug/L	25	26.6		106	80.0 - 120.0	6020		
	Manganese	ug/L	100	105.0		105	80.0 - 120.0	6020		
	Molybdenum	ug/L	100	104.0		104	80.0 - 120.0	6020		
	Selenium	ug/L	100	103.0		103	80.0 - 120.0	6020		
	Thallium	ug/L	10	10.3		103	80.0 - 120.0	6020		

### Total Metals - 7 -LABORATORY CONTROL SAMPLE SUMMARY

Client:	Beazer East, Inc.	2000/11/00 01 / 2000-11201-10 Construction - 1000-100		SDG No.: J1402025						
Contrac	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:	NIL NIL & ZATERIA A DA CHAROLOGICZI I STRATE, I E CAROLOGICZIA	SAS No.:		
Aqueous	s LCS Source: 1	norganic Ventu	ires	a far a far an an an an an an an an an an an an an	Solid	LCS Source:				
Sample ID	Analyte	Units	True Value	Result	с	% Recovery	Acceptance Limits	Method		
LCS-0215	59-01	· · · · · · · · · · · · · · · · · · ·				*******		., .,,	<u></u>	
	Mercury	ug/L	1.25	1.22		98	80.0 - 120.0	7470A		

## Total Metals

#### - 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.	****	17-16-14-10-11-11-11-11-11-11-11-11-11-11-11-11-			1	SDG No.:	J <u>1402025</u>	-
Contract:	OM-0450-14		L	ab Code:	ALJCK	3452-0554 Protection 729-74	Case No.:		SAS No.:
Matrix:	WATER	Level	: <u>LOW</u>	( 		Client ID	GAIN	-HG-22D-031914L	
Sample ID:	J1402025-007		n brack Sayde - Sanarda Shi Garda Sanarda (1994) 2019	ite and the state of the state of the state of the state of the state of the state of the state of the state of		Serial Dil	ution ID:	J1402025-007L	110042942945117062010022012012012012012012012012012012012
Analyte	Initial Result ug/L	С	Serial Result ug/L	C	% Difference	Qual	Acceptar Limits	ice Method	
Aluminum	165.000		101.000	I	38.8		10.00 %	6010B	
Iron	927.000		1140.000		23.0	Е	10.00 %	6010B	
Lithium	10.000	U	10.000	U			10.00 %	6010B	
Sodium	2809.000		2961.000		5.4		10.00 %	6010B	

### **Total Metals**

-9-

#### SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	izer East, Inc.	-	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		S	DG No.: J <u>14(</u>	)2025	Money.					
Contract:	OM-0450-14	*****	Lab Cod	e: ALJCK	С	Case No.:	******	SAS No.:					
Matrix:	WATER	Level:	LOW		Client ID:	GAIN-HG-	24S-031814L	· · · · · · · · · · · · · · · · · · ·					
Sample ID:	J1402025-003		an a suite an		Serial Dilu	tion ID: J1402	2025-003L	un aug szerene kelőlészelőkések közös késéketeszeleketeszeleteteszeleteteszeleteteszeleteteszeleteteszeletetes					
Analyte	Initial Result ug/L	Se Re C uş	rial sult g/L C	% Difference	Qual	Acceptance Limits	Method						
Mercury	0.01	U 0.	.01 U			10.00 %	7470A	<u>an - Ender and Annald					
						· ·							

#### Total Metals - 10 -METHOD DETECTION LIMITS

Client: Beazer Ea	st, Inc.		SDG No.: 11402	025
Contract: O <u>M-04</u>	50-14 Lab C	Code: ALJCK	Case No.:	SAS No.:
Ana	Wave- length (nm) yte	MDL ug/L	MRL ug/L	
Cetac Hg Analyzer			Date: 1/11/2012	
Mercury	253.70	0.012	0.100	
ICP-MS			Date: 1/20/2012	
Antimony	123	0.16	1.00	
Arsenic	75	0.42	1.00	
Beryllium	9	0.032	0.50	
Cadmium	114	0.09	0.40	
Chromiu	n 52	0.18	1.00	
Lead	208	0.12	0.50	
Mangane	se 55	0.12	2.00	
Molybder	1um 98	0.28	2.00	
Selenium	82	1.10	2.00	
Thallium	205	0.050	0.20	
PE Optima ICP			Date: 2/3/2012	
Aluminur	n 308.215	11.00	100.00	
Iron	273.955	2.50	100.00	
Lithium	610.784	10.00	100.00	
Sodium	589.592	29.00	500.00	
Iron Lithium Sodium	273.955 610.784 589.592	2.50 10.00 29.00	100.00 100.00 500.00	

### Total Metals - 12 -LINEAR RANGES

Client: Beazer East, Inc.	and a start for particular start and the	SDG No.:	J14020 <u>25</u>		
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	THE REPORT OF THE TAXABLE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	SAS No.:	
Instrument ID: I <u>CP-MS</u>		Date: 12/3	1/2013		

Analyte	Integration Time (sec)	LDR ug/L
Antimony	15.00	5000
Arsenic	15.00	5000
Beryllium	15.00	3000
Cadmium	15.00	2500
Chromium	15.00	5000
Lead	15.00	5000
Manganese	15.00	5000
Molybdenum	15.00	5000
Selenium	15.00	5000
Thallium	15.00	5000

171

### Total Metals - 12 -LINEAR RANGES

Client: Beazer East	, Inc.			SDG N	ie.:	J14020 <u>25</u>		
Contract: OM-045	50-14	Lab Code:	ALICK	Case N	lo.:	ula and a substantial contraction of the substantial sector of the substantial substantial substantial substant	SAS No.:	
Instrument ID:	PE Optima ICP			Date:	12/31	/2013		

Analyte	Integration Time (sec)	LDR ug/L
Aluminum	5.00	1000000
Iron	5.00	1200000
Lithium	5.00	50000
Sodium	5.00	500000

172

#### Total Metals - 13 -SAMPLE PREPARATION SUMMARY

SDG No.: J1402025 Client: Beazer East, Inc. Method: P Contract: OM-0450-14 Lab Code: ALJCK SAS No.: Case No .: **Final Sample** Initial Sample Volume (mL) Sample Size(mL) Percent Solids **Prep Date** Sample ID Type Matrix **Client ID** 204592 **Batch Number:** MB-02131-02 MB WATER 3/21/14 50.0 50.0 MB-02131-02 LCS-02131-01 LCS-02131-01 LCS WATER 3/21/14 50.0 50.0 WATER 50.0 50.0 J1402025-001 GAIN-M-25A-031814 SAM 3/21/14 SAM WATER 3/21/14 50.0 50.0 J1402025-002 GAIN-M-36B-031814 WATER 50.0 50.0 GAIN-HG-24S-031814 SAM 3/21/14 J1402025-003 .50.0 WATER 3/21/14 50.0 J1402025-004 GAIN-M-25B-031814 SAM 50.0 50.0 J1402025-005 GAIN-HG-33S-031914 SAM WATER 3/21/14 50.0 WATER 3/21/14 50.0 J1402025-006 GAIN-HG-34S-031914 SAM J1402025-007 GAIN-HG-22D-031914 SAM WATER 3/21/14 50.0 50.0 J1402025-007S GAIN-HG-22D-031914S MS WATER 3/21/14 50.0 50.0 J1402025-007SD GAIN-HG-22D-031914SD MSD WATER 3/21/14 50.0 50.0

#### Total Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Ea	ast, Inc.		SDG N	lo.: J1402025			
Contract: OM-04	450-14 Lab Code:	ALJCK	Metho Case N	d: <u>MS</u>	SAS No.:		<u> </u>
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initiał Sample Size(mL)	Final Sample Volume (mL)	Percen
Batch Number:	204596						
MB-02134-04	MB-02134-04	MB	WATER	3/21/14	50.0	50.0	
LCS-02134-03	LCS-02134-03	LCS	WATER	3/21/14	50.0	50.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/21/14	50.0	50.0	

#### Total Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Eas	st, Inc.		SDG N	io.: J1402025			
Contract: OM-04	50-14 Lab Code: A	LJCK	Metho	d: <u>CV</u>		nan a ha fa fa fa fa fa fa fa fa fa fa fa fa fa	
			Case N	lo.:	SAS No.:		
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204622						
MB-02159-02	MB-02159-02	MB	WATER	3/21/14	40.0	40.0	
LCS-02159-01	LCS-02159-01	LCS	WATER	3/21/14	40.0	40.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-0038	GAIN-HG-24S-031814S	MS	WATER	3/21/14	40.0	40.0	
J1402025-003SD	GAIN-HG-24S-031814SD	MSD	WATER	3/21/14	40.0	40.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	40.0	40.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	40.0	40.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	40.0	40.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/21/14	40.0	40.0	

Lab Code:     ALJCK     Case No.:       Instrument ID Number:     PE Optima ICP       Start Date:     3/21/2014       EPA Sample No.     D/F     Time       CALIB BLANK     1.00     1741       CALIB STD 1     1.00     1746       CALIB STD 2     1.00     1751       CALIB STD 3     1.00     1755       CALIB STD 4     1.00     1758       ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1827       ICCV     1.00     1839       ZZZZZZ     2.00     1844				- Me	SA tho	S 1 od:	. مة	: P					 Run	SI	)G imb	No	.:	, O	J1 /	402	202	5		
Instrument ID Number:     PE Optima ICP       Start Date:     3/21/2014       EPA Sample No.     D/F     Time     % R       CALIB BLANK     1.00     1741     1       CALIB STD 1     1.00     1746     1       CALIB STD 2     1.00     1751     1       CALIB STD 3     1.00     1755     1       CALIB STD 4     1.00     1758     1       ICV     1.00     1801     1       ICB     1.00     1805     1       ZZZZZZ     1.00     1815     1       ICSAB     1.00     1827     1       CCV     1.00     1835     1       CCB     1.00     1839     1       ZZZZZZ     2.00     1844     1	1			Me	the	od:	]	P				F	۲un	Nī	າກາໂຕ	e٣		0	30		ለአጓ			
EPA Sample No.     D/F     Time     % R       CALIB BLANK     1.00     1741        CALIB STD 1     1.00     1746        CALIB STD 2     1.00     1746        CALIB STD 4     1.00     1751        CALIB STD 4     1.00     1755        CALIB STD 4     1.00     1758        ICV     1.00     1801        ICB     1.00     1805        ZZZZZZ     1.00     1810        MRL     1.00     1815        ICSA     1.00     1827        CCV     1.00     1835        CCB     1.00     1839        ZZZZZZ     2.00     1844	1						-								_		•	0		• سلد سلم	5477			
EPA Sample No.     D/F     Time     % R       CALIB BLANK     1.00     1741        CALIB STD 1     1.00     1746        CALIB STD 2     1.00     1751        CALIB STD 3     1.00     1755        CALIB STD 4     1.00     1758        ICV     1.00     1801        ICB     1.00     1805        ZZZZZZ     1.00     1815        ICSA     1.00     1827        CCV     1.00     1835        CCB     1.00     1839        ZZZZZ     2.00     1844	1				ন্থ	nđ	ກະ	+0		3/	 22	/20	114											
EPA Sample No.       D/F       Time       % R         CALIB BLANK       1.00       1741          CALIB STD 1       1.00       1746          CALIB STD 2       1.00       1751          CALIB STD 3       1.00       1755          CALIB STD 4       1.00       1758          ICV       1.00       1801          ICB       1.00       1805          ZZZZZZ       1.00       1815          ICSA       1.00       1815          ICSAB       1.00       1827          CCV       1.00       1835          CCB       1.00       1839          ZZZZZZ       2.00       1844	1					110	24										•							
Sample No.       D/F       Time       % R         CALIE BLANK       1.00       1741          CALIE STD 1       1.00       1746          CALIE STD 2       1.00       1751          CALIE STD 3       1.00       1755          CALIE STD 4       1.00       1758          ICV       1.00       1801          ICB       1.00       1805          ZZZZZZ       1.00       1815          ICSA       1.00       1815          ICSAB       1.00       1827          CCV       1.00       1835          CCB       1.00       1839										2	١na	lyt	es											1
No.       1.00       1741         CALIB BLANK       1.00       1741         CALIB STD 1       1.00       1746         CALIB STD 2       1.00       1751         CALIB STD 3       1.00       1755         CALIB STD 4       1.00       1758         ICV       1.00       1801         ICB       1.00       1805         ZZZZZZ       1.00       1810         MRL       1.00       1815         ICSA       1.00       1827         CCV       1.00       1835         CCB       1.00       1839         ZZZZZZ       2.00       1844	A	s	А	B	в	С	cl	С	С	cl	F	P	м	м	н	N	ĸ	s	A	N	r	v	z	d
CALIB BLANK     1.00     1741       CALIB STD 1     1.00     1746       CALIB STD 2     1.00     1751       CALIB STD 3     1.00     1755       CALIB STD 4     1.00     1758       ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	L	в	s	A	E	D	A	R	0	υ	E	в	G	N	G	I		E	G	A	L		NI	N
CALIB STD 1     1.00     1746       CALIB STD 2     1.00     1751       CALIB STD 3     1.00     1755       CALIB STD 4     1.00     1758       ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	x					1					X			$\frac{1}{1}$			Ì			x	1	ľ	-	
CALIB STD 2     1.00     1751       CALIB STD 3     1.00     1755       CALIB STD 4     1.00     1758       ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	x										x					-				x	+		T	- 1
CALIB STD 3     1.00     1755       CALIB STD 4     1.00     1758       ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	x			[					Í		x									x			1	-i
CALIB STD 4     1.00     1758       ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	x			[				1		1	x	ĺ				1				x	T		T	-j
ICV     1.00     1801       ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZ     2.00     1844	x										x									x			T	-j
ICB     1.00     1805       ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZ     2.00     1844	X									j	x		maada	T		Ì				X	1	Ì		- 1
ZZZZZZ     1.00     1810       MRL     1.00     1815       ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	X						Í			Ì	x	Ì								x				-j
MRL       1.00       1815         ICSA       1.00       1819         ICSAB       1.00       1827         CCV       1.00       1835         CCB       1.00       1839         ZZZZZZ       2.00       1844	1								Ī		Í	Ì	1	Ī		Ī	Ī				1			-
ICSA     1.00     1819       ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	X						1	Ì		Ì	x					j				x	Î			1
ICSAB     1.00     1827       CCV     1.00     1835       CCB     1.00     1839       ZZZZZZ     2.00     1844	x						Ì				x								Ì	X	1	ľ		-j
CCV       1.00       1835         CCB       1.00       1839         ZZZZZZ       2.00       1844	x								Í		x		-	Ī		-				x			$\top$	Ī
CCB       1.00       1839         ZZZZZZ       2.00       1844	x								1	1	x					_				xI		1		- 1
222222 2.00 1844	X		ĺ						ĺ		x		Ť					T		x				Ī
	1												Ť			T		T		- Î		Ì	T	
ZZZZZZ 5.00 1852	1																Į	T		ļ	Ť			
ZZZZZZ 2.00 1857				<u> </u>					1				! 	-			ئىــــــ					-	1	Ē
MB-02131-02 1.00 1905	X										x			ļ						x	T	[	1	- i
LCS-02131-01 1.00 1910	x		<b> </b>	<u> </u>							x									x	Ī	T		-i
ZZZZZZ 1.00 1914		1									1		1				 	Ī				1		-i
ZZZZZZ 1.00 1923	1											1								1				-i
ZZZZZZ 1.00 1928	1									1											Ī		1	-
ZZZZZZ 1.00 1933	1	<u> </u>		ļ												ĺ	 		_	ĺ	Ī	ĺ		-
ZZZZZZ 1.00 1938		1	Ì								Î					Í				1	ĺ			Ĩ
CCV 1.00 1942	x	Ì									x							T		x		T	1	-i
CCB 1.00 1946	x			1							x								:	x		1	$\neg$	- 1
ZZZZZZ 1.00 1951	1		İ	1						Í	Ì	1	Ì	1			 				Ī			
ZZZZZZ 1.00 1955		1		ĺ						Î	[	1	f							Ī		1		-
ZZZZZZ 1.00 2000	1			-						Ì		Ì	Í							ĺ	ĺ		T	7
ZZZZZZ 1.00 2005	Ī			]							Ì		$\uparrow$								Ì		T	vee.
ZZZZZZ 1.00 2010	1							ĺ			Ì				Í				-			T		-
ZZZZZZ 1.00 2015	1		[	[					 	[						**************************************			ĺ	^-				- 1
ZZZZZZ 1.00 2019	1		1	l						Ì				1		Ì					1			-i
GAIN-M-25A-031814 1.00 2024	neivane en el J	*********		 5	//////////////////////////////////////	in the second																		
GAIN-M-36B-031814 1.00 2029	X	1						ł		-	Х		Î	1	{	1		) I	- 1	~ !	1		ŧ	
GAIN-HG-24S-031814 1.00 2034	X X		 								X X									x X				
CCV 1.00 2038	X X X										X X X									x X X				_

Client: <u>Beazer East</u>	z, Inc.		2.5.4723474410000000000000000000000000000000000			uni.	Coi	ntr	ac	t:			OM	í-0	45	0-:	14										
Lab Code: ALJCK		Case	No.:					SA	S	No.	. :						S	DG	No	.:		<u>J1</u>	40:	202	25		
Instrument ID Number:	PE O	otima	ICP				Me	etho	od:		P					Rur	ı N	umł	ser	::	C	)32	11	4A:	1		
Start Date: 3/21/201	.4		·····					E	ind	Da	ate	:	3/	22	/2	014	1									**	
<b>F</b>	,		1	1						····· ·-									-	ni katalan				<del></del>	<del></del>	, <u>.</u>	1
EPA	n/#	Wimo	9 D			4	·		······			·····		Ana	ly	tes	3		·····	<b></b> 1	·	,	<b></b> ,	·	·		
No.	DIE		0 5	A	S	A	B	в	C	C	C	C	C	E	P	M	M	H	N	ĸ	S	A	Ň	T	V	Z	C
				ىد	B	12	L A	<u> </u>	Ľ		K			<u>ب</u>	5	5	1N	6			<u>گ</u>	9		ا سار مستحسن		IN	11
ССВ	1.00	2042		X	ļ	ļ	Į	ļ	<u> </u>	<u> </u>	<u> </u>	[		х		ļ						ļ	X	<u> </u>	<u> </u>	]	
GAIN-M-25B-031814	1.00	2047		X					L					X						Ľ		ļ	Х				
GAIN-HG-335-031914	1.00	2052		x			<u> </u>					1		x									X				
GAIN-HG-34S-031914	1.00	2057		x			<u> </u>			I	[			x		[					<u> </u>		X				
GAIN-HG-22D-031914	1.00	2102		X						[				x									x				
GAIN-HG-22D-031914S	1.00	2106		X										Х									X				
GAIN-HG-22D-031914S	1.00	2109		X			-			1				X									X				
GAIN-HG-22D-031914L	5.00	2113		X	[	Ι	Ī		Γ					X		[							X				
GAIN-HG-22D-031914A	1.00	2117		X	l	l	1		l	l	1			x				l					х				
ZZZZZZ	1.00	2121	1	1	Ì	1		1		1								<u> </u>							$\square$		
ZZZZZZ	1.00	2126	1	1		1	1	1	1	1		1		1				1		<u> </u>	·						
CCV	1.00	2130	1	X	T	1	.		1	ļ		1		x				<u> </u>		Ē			x		T I		_ i
CCB	1.00	2134	-	x	1	1	1	1	1	1	1	1		x		1		1					x				ī i
ZZZZZ	1.00	2138		1		1	1	1			<u> </u>					<u> </u>		1							$\square$		
ZZZZZZ	1.00	2142	1	1	1		1	1		1		İ				 		1							$\square$	1	
ZZZZZZ	1.00	2146	1	1	1	ţ	1	1	1	1		1				<u> </u>		<u> </u>				<u></u>					
ZZZZZZ	1.00	2149	1	1		1	1	1	1	Î		1		[	<u> </u>			1									
ZZZZZ	5.00	2153	1	1	1	1		1	<u> </u>	1	1			[		<u> </u>		<u> </u>			ļ	 					
ZZZZZ	1.00	2157	1	1		1		1		1	1	1			 						 						
ZZZZZZ	1.00	2201	1	1		$\uparrow$	 	1	<u> </u>	<u> </u>	<u>}</u>		[	<u> </u>	<u> </u>	<u> </u>		1							$\square$		ì
ZZZZŻ	1.00	2206	1	1.	1		1	1	1	1	<u>)</u> 		[ 	1	 		 	1			 						
ZZZZZZ	1.00	2210	1	+							1	<u> </u>					{								i I		
ZZZZZ	1.00	2214	1	1	1	1	1	†		1	<u>+</u>	1						1				<b> </b>				$\neg$	¦
CCV	1.00	2218	-	x		1	[	1	1	1		1	L	x				}			[		x				
ССВ	1.00	2222		x	<u> </u>	1	<u></u>	1		1	<u> </u>	ĺ			1	[		L	[								
ZZZZZZ	1.00	2227		1		1		$\uparrow$			<u> </u> 	$\square$		1			1				 						;
ZZZZZ	1.00	2232		+		1	1	1		1	<u> </u>		!	<u> </u>				1	$\square$					 			ł
ZZZZZZ	1.00	2236	1			1	1	+	┢	<u> </u>	<u> </u>	+	 			<u> </u>			$\left  \right $		[	i	$\vdash$		$\square$		
ZZZZZ	1.00	2239				 	<u> </u>	+		1	<u> </u>		L			 	ļ	<u> </u>			 			]			
ZZZZZZ	5.00	2243	1	1	 	1	<u>{</u> 	1	<u> </u>	1 	1	 	<u>                                      </u>	1		<u> </u>	 	<u> </u>	<u> </u>		 			l			I
222222	1.00	2247	-1	1		1	1 	1	<u> </u>	ļ	<u> </u> 	<u> </u> 	ł Į	ļ	ļ	!	<u></u> ]	<u> </u>	 	ļ		<u> </u>					MANKAGAN PE
22222	1 1 00	2251	1		+	1	1	1	ĺ	1	<u> </u>	ĺ	<u>i</u> [	<u></u>			<u>.</u>	<u>i .</u>		<u> </u>				;			
7.7.7.7.7.7	1 1 00	2256		- <u>i</u>			<u>i</u>			 	L		1				ļ	1	<b> </b>	┝──┙	<b>  </b>		$\square$				
ZZZZZ	1 1 00	2201			<u> </u>	<u> </u>	<u></u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>		<u> </u>			L	ļ		نــــــــــــــــــــــــــــــــــــ			
7.7.7.7.7.7.	1 1 00	2305	1	1	<u>í</u> [	1	1	1		<u> </u> 	L	Í I	į 		i	i 	i 	I	i	 		 		arinaurener			
CCV	1 1 00	2000 7211	1		$\vdash$	1	F	1					[	**	<b> </b>		 		┝─┤	┝──┥	Ļ	$\square$			┝─┥		
	1 1.00	414	1	$\Gamma_{V}$	1	1	1	1	1	1	1	1	1	<u>1X</u>	<u> </u>	1	1	1		L	<u> </u>	L		]			I

Client: Beazer East	, Inc.						Cor	ntr	aci	::		. he is the set of the s	OM	i-04	450	-14										~
Lab Code: ALJCK		Case	No.:		17-7-1 L VIA 2-14			SA	.S 1	No.	:						SDG	Ň¢	>.:		J1	40:	202	25	-	
Instrument ID Number:	PE O	otima	ICP				Me	the	od:		р				R	un	Num	be:	c :	(	032	11	4A	1		
Start Date: 3/21/201	. 4	******	- « « « « « « « « « « « « « « « « « « «					E	nd	Da	te	:	3/	22,	/20	14					V2017, 110				-	
EPA				[									ž	Ana	lyt	es		******								
Sample No.	D/F	Time	8 R	A	s	A	в	в	С	С	С	с	С	F	P	MM	H	N	K	s	A	N	Т	v	Z	C
					В	S	A	£1		A	R		U	Ľ	B	N خ	6			LE LE	6	A	<u>ل</u> لاً ا		N	N
ССВ	1.00	2314		X		[								Х			T					X				
ZZZZZZ	1.00	2319	<u> </u>	<u> </u>													L.			1						
ZZZZZZ	1.00	2323																	<u> </u>					$\square$		
ZZZZZZ	1.00	2327																		<u> </u>						
ZZZZZZ	1.00	2331				l				-										[						
ZZZZZZ	1.00	2335																		1						
ZZZZZZ	5.00	2338															1			1						
ZZZZZZ	1.00	2343	l	1			[								Ţ	[	]	l	ĺ							
222222	1.00	2346		1											ĺ	T		1	1	1					T	
ZZZZZZ	1.00	2351		1	1	1									l		1	Ť	1	Ì						
ZZZZZZ	1.00	2356		1		1	ĺ								1		1	1	1	1						
CCV	1.00	2359	ł	x		1								x	Ť		1	Ť	İ	1		х				044055
ССВ	1.00	0002		X		1								x		T	1	1	1	1		x		Ì		
ZZZZZZ	1.00	0007			[	1				L					1	1		1	1	1	<b> </b>			$\square$	ΠŤ	
ZZZZZZ	1.00	0013		1		1			1						1				1	1				Ē	$\square$	
ZZZZZZ	1.00	0017	1	1	1									i i i i i i i i i i i i i i i i i i i	T		1	Ť	1	1					$\square$	
ZZZZZZ	1.00	0022				T											1	1	1	1					T	
ZZZZZZ	1.00	0025	1	1	1	Í	[		1								1		1	1	Π			$\square$	T	
ZZZZZZ	1.00	0030	1	1	1												1			1					ΠŤ	
ZZZZZZ	1.00	0035		1	1	1	L										<u> </u>	$\uparrow$	1	1						
ZZZZZ	1.00	0038		1		<u> </u>									<u> </u>	<u> </u>	+	+	1	1						
ZZZZZZ	5.00	0041		1	<u> </u>	†	<u> </u>	l							-			1	1	1						
ZZZZZ	1.00	0046		<u>}</u>		<del> </del>		[									1	1	1	<u>I</u>		l				
ccv	1.00	0049		x		1								x	-		+	1	1	I		x				
ССВ	1.00	0053	<u>.</u>	x	[	l	1		<u>.                                    </u>					x			1	1	1	<u>k</u>		x				
ZZZZZ	1.00	0057	1		1	1		1									1		1	1 					$\square$	
ZZZZZZ	1.00	0102	<u> </u>			Î		[							<u> </u>		1	1	1	1 						
ZZZZZZ	1.00	0107						1							-		1	ſ	1	*****						
ZZZZZZ	1.00	0112		1	1		1 	۱ 	<u> </u>	L							+	$\uparrow$	1	<u></u>	$\vdash$					
ZZZZZZ	1.00	0117	1		<u> </u>		1	[]	L									1	<u> </u>	<u>i</u>						
L ICSA	1.00	0121	<u> </u>	X	<u>.</u>		I	<u> </u>						w l		<u> </u>	+	1		<u> </u>	$\left  \right $	x				~~~~
ICSAB	1.00	0129			1	<u> </u>		ł						41 V			1		1		$\vdash$	x I				-
CCV	1.00	0137	1	1 X	-	<u> </u>	İ	-			_				1	1			1	<u>;</u>		y I				
CCB	1 00	01/11			<u> </u>	Ļ	I	<u> </u>	 						-+		+		1	1	$\left  - \right $	v I		$\neg$		

Client: Beazer Last	t, inc.	itr	act	::		******		1-0	40	<u>ו – ר</u>	. 41															
Lab Code: ALJCK	514.15-1-14717-241-254(1416-174144492-)	Case	No.:				-	SA	S 1	Ňo.	:	_					SI	DG	No	.:		J1	402	202	5	···,
Instrument ID Number:	ICP-N	<b>1</b> S					Me	tho	od:	ł	MS				ł	Run	Ñ	umł	er	::	C	32	41	4A		
Start Date: 3/24/201	L 4	u)/2000/10000.0000/100000/102000						E	nd	Da	te	:	3/	24	/20	014	-									-
EPA							*********						;	Ana	ly	tes									MARAELOT	
Sample	D/F	Time	% R	A	s	A	B	в	С	c	c	с	С	F	P	м	м	H	N	K	s	A	N	T	v	z
NO.				L	в	S	A	E	D	A	R	0	σ	E	в	G	N	G	Ţ		E	G	A	Ъ		N
Cal Blank	1.00	1637			X	X	ŕ	X	Χ	o-anacced	X	munouou			x		x		WWIDENOIS		X			X		T
Cal 1	1.00	1643			x	х		Х	Х		x				X		x				Х			x		
Cal 2	1.00	1648			x	x		X	Х		x				x	Ī	х			$\square$	х			x	Î	
Cal 3	1.00	1653		Î	x	х		х	Х		x				x		X				х	·		x		
Cal 4	1.00	1658		1	X	x		X	Х	1	x				X	Ì	X				х			x		1
ICV	1.00	1703			x	X		х	Х		х				Х		X				Х			X		
ICB	1.00	1708		1	x	X		X	X		X				X		X				X			X		
MRL	1.00	1713		1	x	х		х	х		X				Х		X				х			x		
ICSA	1.00	1718		1	X	X		X	Х	Ì	x	1			X	I	x				х			x		
ICSAB	1.00	1723			x	х		х	х		x				x		x				х			x		
CCV-1	1.00	1728			X	X		X	X		X				x		X				х			x		
CCB-1	1.00	1733		l	X	х		х	X	ł	x	·			х		x				х			x		
MB-02134-04	1.00	1738		1	x	X		X	X	Ī	x				x		x				X			x		
LCS-02134-03	1.00	1743		1	x	x		х	Х		x	·			x		X				х			x		
ZZZZZZ	1.00	1748																								
ZZZZZZ	1.00	1753		1												ĺ										
ZZZZZ	1.00	1758																								
ZZZZZ	1.00	1.803																								
GAIN-M-25A-031814	1.00	1808			X	x		Х	X		X				x		X				X			x		
GAIN-M-36B-031814	1.00	1813			X	Х		Х	Х		Х				Х		x				Х			Х		
GAIN-HG-24S-031814	1.00	1818			X	X		х	Х		X				X		X				х			x		
GAIN-M-25B-031814	1.00	1823			X	х		Х	X		х				Х		X				х			x		
CCV-2	1.00	1828			X	х		Х	X		х				х		X				x			X		
CCB-2	1.00	1833			x	х		х	Х		x				x		х				Х			X		
GAIN-HG-338-031914	1.00	1838			x	x		x	x		x				x		X				X			x		
GAIN-HG-348-031914	1.00	1843			X	X		Х	X		Х		[		X		X				Х			X		
GAIN-HG-22D-031914	1.00	1848		<u> </u>	x	X	<b></b>	Х	X		x				X		x				х			x		
22222	1.00	1853		<u> </u>	[	L																				
ZZZZZ	1.00	1858	ļ	<u> </u>	<u> </u>	ļ								ļ												,
22222	1.00	1903			Ļ	ļ	-						L							Ļ						
ZZZZZZ	5.00	1908		-	ļ					-				-411/4/14/12/1	anstannan	wannande			111100000000							
ZZZZZZ	1.00	1913							L				conteras	chokeeluu							water water		ĺ			
ZZZZZZ	1.00	1919		<u> </u>	Į	<u> </u>			<u> </u>																	
ZZZZZ	1.00	1924		<u> </u>	ļ	<u> </u>																				
CCV-3	1.00	1929		-	X	X		Х	X		X				X	l	x				Х			хI		
CCB-3	1.00	1934			X	X		х	X		X			ŀ	$ \mathbf{x} $		X			1	X			x		

Client: Beazer Eas	st, Inc.	MALESIELY STOPPO FACERUMA		~~~~~	تترانكا فبلعديد		Cor	ntr	act	t:.			OM	<u>1-0</u>	45	0-	14								*****	1100000000	101404
Lab Code: ALJCK		Case	No.:				144	SA	s I	Ño.	:						s	DG	Nc	.:		J1	40	202	25		
Instrument ID Number:	ICP-	MS					Me	th	od:	]	MS				1	Rui	n N	umi	oer	::	(	)32	241	4A			
Start Date: 3/24/20	)1.4							E	nd	Da	te	:	3/	24	/2	01	4										
epa														Ana	ly	tes	3					-GAUNGATO MINUT	DOLLARA			·····	
Sample No.	D/F	Time	% R	A L	S B	A S	B A	B E	C D	C A	C R	с 0	с U	F E	P B	M G	M N	H G	N I	ĸ	S E	À G	N A	T L	V	Z N	C N
ZZZZZZ	1.00	1939			-	<u>.</u>									THE OWNER OF STREET		unanana a				È		İ	inaan ay sa ah ah ah ah ah ah ah ah ah ah ah ah ah			CONTRACTOR STOL
ZZZZZZ	1.00	1944	1			ĺ																					
ZZZZZZ	1.00	1949				Ī															[		<u> </u>				
ZZZZZZ	1.00	1954	1					1						•									Ì	1			
ZZZZZZ	1.00	1959	1			1		]	Î							l							]	]			
ZZZZZZ	1.00	2004	1						1									]					-	ł			
ZZZZZZ	1.00	2009				Î																	[				
ZZZZZZ	1.00	2014				1																					
ZZZZZZ	1.00	2019		Ī		l	1				·												1				
ZZZZZZ	1.00	2024															ľ	}									
CCV-4	1.00	2029			x	x		X	X		Х				X		X	[			X			X			
CCB-4	1.00	2034			х	X		х	x		х				х		х				X			X	{		<u> </u>

180

Client: <u>Beazer East</u>	, Inc.				1000-004-000	án (	Cor	ntr	act	::_			OM	-0	45	0-3	14										
Lab Code: <u>ALJCK</u>		Case	No.:					SA	s i	No.	:						S	DG	No	. :		J1	402	202	25		
Instrument ID Number:	Ceta	c Hg A	nalyze	I.			Me	the	od:		CV				1	Rur	n N	umb	er	:	C	32	41	4C			
Start Date: 3/24/201	4							E	nd	Da	ite	:	3/	24	/20	01,	1			~						-	
FPA	1		1	I										Ana	lv	tes									<del></del>	<u> </u>	<u> </u>
Sample	D/F	Time	% R	7		A	B	Ð		2	- C	C		R	- <u>-</u> P	м	м	H	N	ĸ	S	A	N	ጥ	v	7.	C
NO.				L	в	ŝ	A	E	D	A	R	õ	ס	E	B	G	N	Ģ	I		E	G	A	L		N	N
Calibration Blank	1.00	1910											İ					X						994 <u>3-016</u> 4			
Standard #1	1.00	1911	ļ				1											x									
Standard #2	1.00	1912	1	ļ	[			ļ										X									
Standard #3	1.00	1914	1											Î				X							$\square$		Γ
Standard #4	1.00	1916																х									
Standard #5	1.00	1917		1						te included the								X		1							Γ
Standard #6	1.00	1919		1	1													X									Γ
ICV	1.00	1922	1	[	Í	1		1						ĺ				X		1							
ICB	1.00	1924					ĺ											X									
MRL 0.1	1.00	1925		1	Ì		1		1									X		1			[				
MB-02159-02	1.00	1926		Ì		Ì	[	1						Ì		·		X									
LCS-02159-01	1.00	1927		1			[		1									x									
222222	1.00	1929	[	Ì		Ì	Ì	Ì				ļ														•	
ZZZZZZ	1.00	1930					1000 ACCORD		1		1																
ZZZZZZ	1.00	1931		1		1					[									angag-ameri							Ī
ZZZZZZ	1.00	1932		1	1	1	1	1			1									1							Γ
GAIN-M-25A-031814	1.00	1933	1		1	İ	1	1	Ì	ļ						Ì		X		1	1						Γ
GAIN-M-36B-031814	1.00	1935		1			l					ł						X									
GAIN-HG-245-031814	1.00	1936		Í		1			1									X			ļ						
GAIN-HG-24S-031814S	1.00	1937		1	Ī	Î		1	1									X									
CCV-1	1.00	1939		1	ļ	1		1	1							Ì		X									
CCB-1	1.00	1941		1	1		1	1										X									
GAIN-HG-24S-031814S	1.00	1942		1	Γ	1	1	1	1									X									
GAIN-HG-24S-031814A	1.00	1943				1			1									X						ļ			
GAIN-HG-24S-031814L	5.00	1945	ŀ			[										İ		X									
GAIN-M-25B-031814	1.00	1947		1	1	1	1		1									X						Ì.			
GAIN-HG-33S-031914	1.00	1948			1		1	Γ	I									X					ł				
GAIN-HG-34S-031914	1.00	1949		Τ	[	1	1			1								X			1						
GAIN-HG-22D-031914	1.00	1950	· ·		l		1		ļ	ļ	]						ļ	X									
222222	1.00	1951					Ĺ	ĺ		l			i														
ZZZZZ	1.00	1952																								L	
ZZZZZZ	1.00	1953														1										daugour	
CCV-2	1.00	1954					-									k.		X									
CCB-2	1.00	1956		1			-			1	L							X			-						
ZZZZZ	1.00	1958																			-						
ZZZZZ	1.00	1959		1				}																			

Client: Beazer East, Inc.									Contract:						OM-0450-14														
Lab Code: ALJCK Case No.:							SAS No.:										s	DG	Ñc	.:		J1402025							
Instrument ID Number: Cetac Hg Analyzer						Method: CV Ru										Rur	ı N	umł	ber	::		032414C							
Start Date: 3/24/201	.4							E	nd	Da	te	:	3/	24	/2(	01	4												
EPA	(		[										Į	Ana	ly	tes	3							0.00007960					
Sample No.	D/F	Time	%R	A L	S B	A S	B A	B E	C D	C A	C R	с 0	с ʊ	F E	P B	M G	M N	н G	N I	ĸ	S E	A G	N A	T L	v	Z N	C N		
ZZZZZ	1.00	2000									25,01054														Ĺ	Ì			
ZZZZZZ	1.00	2001																							1				
ZZŻŻZŻ	1.00	2002					[																-	1					
ZZZZZZ	1.00	2003					Į	Į																Ĺ					
CCV-3	1.00	2004								Ù								X						Ĺ					
CCB-3	1.00	2006																X											

182

#### Total Metals -14-

#### ANALYSIS RUN LOG

Client: <u>Beazer H</u>	Beazer Ea	st, Inc.							Cor	ıtr	aci	OM-0450-14																																									
Lab Code:	ALJCK	Case No.: PE Optima ICP							SAS No.:										G :	No.	. :	J1402025																															
Instrument	ID Number:							Method:							P Ru:					ber	::	032114A1																															
Start Date: 3/21	3/21/2	014							End Date:					3/	/22	/2	01	.4																																			
Instrument ID Start Date: EPA Sample No. CALIE BLANK CALIE STD 1 CALIE STD 2 CALIE STD 2 CALIE STD 3 CALIE STD 3 CALIE STD 4 ICV ICB ZZZZZZ MRL ICSA ICSA ICSA CCV CCB ZZZZZZ ZZZZZZ ZZZZZ ZZZZZ ZZZZZ MB-02131-02 LCS-02131-01 ZZZZZZ		D/F		******											1y	tes	3																																				
			Time	8 R	в	A U	L I	M O	o s	P D	P	P T	s I	S	SN	s R	T I	ΰ	W	I N																																	
CALIB BLA	NK	1.00	17:41				X						Ī									Ì		İ	Ī	Π																											
CALIB STD	1	1.00	17:46				Х	-		l	Ì				Í	Í								Ì		Ē																											
CALIB STD	2	1.00	17:51			1	X		aliana ana	İ	Í						où den tu tade te			ļ	ļ	Í		-																													
CALIB STD	3	1.00	17:55	<u> </u>		Ì	Х	1	, in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	İ	Ì	ĺ			ĺ							Í			İ		Ť																										
CALIB STD	4	1.00	17:58		1		Х				Ī															Π																											
ICV	noonnanasalaksiikiidenkkenkenseterenaalinen	1.00	18:01		Î	1	X			Ī															Í	Π	Í																										
ICB		1.00	18:05		1		Х		Ì	l					Ì							İ		ľ			Ť																										
ZZZZZZ		1.00	18:10					ļ	1		Í				outer south			******						İ	Ì	Ē																											
MRL		1.00	18:15				X			ļ	Ì			Í				rinstanista				Í		Ì		Ń	Ť																										
ICSA		1.00	18:19			1	Х			ĺ	Í	İ			ļ	ĺ						ĺ		İ	ļ		Ì	antikin																									
ICSAB		1.00	18:27				Х			Í		ĺ												ľ	Ì		Ì																										
ccv	initiation initiation minitary are a faith and an	1.00	18:35				Х			Í	Î		1		Í	*******	ION THE OWNER			-																																	
ССВ		1.00	18:39		1	Î	X						Í				***	10014 3004				ĺ	ľ	Ì			T	 																									
ZZZZZZ		2.00	18:44			Ì.			Ť	Ì	Ì						w sustou										Ì	-																									
ZZZZZZ		5.00	18:52							{					Ì			0.5m.4401			-				a ge an an Anna		2.00	18:57		1					T	Ī	T																
MB-02131-	02	1.00	19:05		Ī		X			l	Ì											5					in a scalar	-tanaa-																									
LCS-02131	-01	1.00	19:10			-	X				Ì	Ĩ					interiorien			Concentration of Concentration		(MICCHOON)				-																											
ZZZZZ		1.00	19:14	******																		ĺ		-				201007																									
ZZZZZ		1.00	19:23										el noissed									-						(Adaption)																									
ZZZZZZ		1.00	19:28								ļ					1												-																									
ZZZZZZ		1.00	19:33					Į	1	Į																	T																										
ZZZZZ	99991100 - 999991 - 999991 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999 - 9999	1.00	19:38							l			Ì									Γ						-																									
CCV		1.00	19:42	1-1649-19-09-09-09-09-09-09-09-09-09-09-09-09-09		Î	X		T		Ī		Ì				n Mail Cana										NGLOWING .																										
ССВ		1.00	19:46				X			1		[										(AZ 2000563						alibetat																									
ZZZZZ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.00	19:51		Ì		1		ĺ		ļ														[	Ì	Ť																										
ZZZZZ		1.00	19:55							ļ	1	l								[		ļ,	ļ				T																										
ZZZZZ	an ya ku	1.00	20:00		Į		l						AD444547145			Ì		NOMING										anna an																									
ZZZZZ		1.00	20:05	Statement (*********	זאמיבאקיקיפטיי				1						ļ		2013025047	22588888888				) }	}				Ť																										
ZZZZZ		1.00	20:10		1	1	Ī			1	Ţ	1	Ì	Π	İ	j	. <u>1072-000 2</u>							l l		Ĭ	ļ	*****																									
ZZZZZ	namana kalali (di kalali kalendar kerdi kalendar kalendar kalendar kalendar kalendar kalendar kalendar kalendar	1.00	20:15	276669903555522250842550594442	onal Assessed	22102904-008(0)	- 												noveren e						antenno zace	manada	annannin 																										
ZZZZZ		1.00	20:19	an an an an an an an an an an an an an a	oodennoore	Northin training		Shacksoula 	eleneranea				1	ΠÌ				an Manada in	ina konsensio	enterniteren		T.	pioinstaulus			, and the second			_		Con	tr	act		· _	OM-	-04	50	-1	4													
--------------------------	----------	----------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------	-------------	----------------	--------	--------------	------------	---------------	------------	-------------------------------------------	-------------	------------	-------------------------	----------	----------	------------------	--------	---------------------	-----------------	---------------	-----------	-----	-----------	--------------------------																											
Lab Code: ALJCK		Case No			Z-M.MO***JM			SAS	N	o.:		1911116-		97044×34	10-0-10-0 (1-0-1-1-		SD	G	ÑO.	:	J	140	)20	25																													
Instrument ID Number:	PE	Optima	ICP		<u> </u>			Met	ho	d:		P			1	Rur	n N	uml	oer	:		03	321	.14	A1																												
Start Date: 3/21/2	014							End	1 D	at	e:		3,	/22	/2	01	4																																				
EPA				1									Ana	ly	tes	3																																					
Sample No.	D/F	Time	₹R	в	A U	L I	M O	o s	P D	P	P T	s I	s	SN	s R	r I	υ	พ	I N																																		
GAIN-M-25A-031814	1.00	20:24		1	1	x	1					Ì													$\square$																												
GAIN-M-36B-031814	1.00	20:29			1	X						<u> </u>													<u> </u>	Ť																											
GAIN-HG-24S-031814	1.00	20:34		-		X		1										İ								Í																											
CCV	1.00	20:38	ini dan shi da masar da sa sa d			X						dioversitation	Í												ГŤ	Ť																											
CCB	1.00	20:42			Ť.	x		Ì		Í	İ	¢1000000	ľ											ĺ	Π	Ť																											
GAIN-M-25B-031814	1.00	20:47			Ì	X		1			ĺ				(Seriens)				ĺ							Ť																											
GAIN-HG-335-031914	1.00	20:52		1	T	X	İ	1	Ì		ĺ	1	[						1						Π	Ť																											
GAIN-HG-345-031914	1.00	20:57			1	X						Í													Ē	Ţ																											
GAIN-HG-22D-031914	1.00	21:02		1	1	X																			ΓŤ	Ť																											
GAIN-HG-22D-031914	1.00	21:06		1	1	X	Ī	Ì				<b>†</b>			seraetone										ΓÌ	Ī																											
GAIN-HG-22D-031914	1.00	21:09		1		х																			ΓŤ	Í																											
GAIN-HG-22D-031914	5.00	21:13			ļ	X						1											(CESSEAR)		Ē	Ť																											
GAIN-HG-22D-031914	1.00	21:17				X						ajumano es		a Odali si				iantaratana I	Ī		conticulated of				Π																												
22222	1.00	21:21																							Πİ																												
ZZZZZ	1.00	21:26	intikintestaineinisintikaineiniaine	ized and the data				1														-																															
CCV	1.00	21:30			1	X		1			ľ	Ì			in particulary of the s			ľ																																			
ССВ	1.00	21:34	******			X		Ì																																													
	1.00	21:38	KINI MULANGA MULANA MULANA MULANA MULANA MULANA			ağının yanışı						al an an an an an an an an an an an an an								oliaitakatoanti 	tanin tine tine					100000																											
ZZZZZ	1.00	21:42	i den de la desta de la desta de la desta de la de La desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la d																						Π	T																											
ZZZZZ	1.00	21:46													******				-						Π																												
ZZZZZZ	1.00	21:49			1							denaisure;																																									
ZZZZZZ	5.00	21:53		1	1				Ī													Π																															
ZZZZZ	1.00	21:57				-		1											1																																		
ZZZZZ	1.00	22:01	****																							(Construction																											
ZZZZZ	1.00	22:06								ļ	[	Ì	[	·				 																																			
ZZZZZ	1.00	22:10		(			1				[	-	1									Π	Π		Ť																												
ZZZZZ	1.00	22:14	uniterranitation (a)					ALCOND.											press.						ГŤ																												
CCV	1.00	22:18			l	X				ļ			[						ĺ		ļ	Γ			Π																												
CCB	1.00	22:22	222752863999999997		ĺ	X					2004361020		[		activity for the	(a)	********				yananana.	personation (				Competence of the second																											
22222	1.00	22:27	eleviti en la la la malemania		1	Ì	Ī	Ī	1		(	1	Ī												Ē	T																											
ZZZZZZ	1.00	22:32			ĺ	ļ	İ	stores and a	(eensooper	-		1							Ĩ			Π	M		Į.	Ì																											
ZZZZZ	1.00	22:36		uninfestimeter		September 1995	1	1.	anitiatez	insensona 		descrievent	eniones 		ouniteenes	anxon ax																																					

Client:	Beazer Ea	st, Inc.		······					Cor	tr	act	<b>t</b> :	(	-MC	-04	50	-1	4	<i>ee 1</i> 0		<del></del>							<u></u>
Lab Code:	ALJCK		Case No	), : 	nananana,	07463.0143.0246			SAS	N	o.:	:	Manada	Dellanderad				sr	G	No.	. :	J	14	020	025	r 		-
Instrument	ID Number:	PE	Optima	ICP					Met	ho	d:		P				Rur	n N	uml	ber	::		0	32:	114	A1		
Start Date:	: 3/21/2	014							End	i D	at	e:		3,	/22	2/2	01	4										
EPA	· · ·				T									Ana	ly	te	5											
Sample No.		D/F	Time	8 R	в	A	L	м	0	P	Þ	2	s	s	SN	S	r	υ	W	I			Γ					
ZZZZZZ		1 00	22.30			-	<u> </u>					<u>-</u>	- 			<u> </u>	<u>+</u> 			1N		<u>{</u> 		<u> </u> 	<u> </u> 		┢━╋	
222222		5 00	22.33	Bernanski serietar I	-				Contribution of Contribution				ļ		-							 	-					
ZZZZZZ		1 00	22.47		+					1	1				_		1									-	┝─┼	
ZZZZZZ		1 00	22:51														-						l					
ZZZZZZ		1.00	22:56				ļ		-															-		┢─┤	-+	
222222		1.00	23:01		-				<u> </u>		Ĭ		<u> </u>							2		[	<u> </u>	[				-+
ZZZZZZ	******	1.00	23:06	2013):1011112:002:0000	$\frac{1}{1}$		ľ							H			-				-		h	1				T
ccv		1.00	23:11		<u> </u>	<u> </u>	X	 				}	<u> </u>					) 							<u> </u>			-+
ССВ		1.00	23:14		1		X		<u> </u>														Ī					
ZZZZZZ		1.00	23:19				<u>.</u>		<u>  </u>						فبجمعه		ľ						1				Ť	-+
ZZZZZZ		1.00	23:23															-						1	í T		$\neg \uparrow$	·
ZZZZZZ		1.00	23:27														1						†	İ	ļ -		$\neg$	
ZZZZZZ		1.00	23:31				demonation		Ī				frances.		saaan		in the second second second second second second second second second second second second second second second						1					
ZZZZZZ		1.00	23:35														İ					ľ	İ	† –	İ	İ		
ZZZZZZ		5.00	23:38		<u> </u>	Í																	İ	İ	İ		Í	
ZZZZZZ		1.00	23:43												*******	******	-						Ì			Ē		
ZZZZZZ		1.00	23:46														İ	******		den Gestine	in the second second		Í					
ZZZZZZ		1.00	23:51			(anomoneci																ļ	Í	İ				
ZZZZZZ		1.00	23:56	*********				******										17) milet 154 (m								raamina o		omensiye
CCV		1,00	23:59				Х																İ			Π	•	Ť
CCB		1.00	00:02				Х																					Ť
ZZZZZ2		1.00	00:07					[					l							COCCURATE	ydann 202	[	Ţ					
ZZZZZZ		1.00	00:13																								T	
ZZZZZZ		1.00	00:17																					ļ				
ZZZZZZ		1.00	00:22										[															
ZZZZZZ		1.00	00:25																			l						
ZZZZZZ		1.00	00:30		-										Į							[						
ZZZZZZ		1.00	00:35	54-520-40-520-40-520-60-520-520-520-520-520-520-520-520-520-52																			[					
ZZZZZZ		1.00	00:38																		Clather on the							Τ
ZZZZZ		5.00	00:41									220240920																[
ZZZZZZ	ania de activitation de la companya de la companya de la companya de la companya de la companya de la companya	1.00	00:46			-				2007252						ninseiseinen		454551100										
CCV		1.00	00:49				X																				T	

.

#### Total Metals -14-

Client: Beazer Ea	st, Inc.							Con	tr	act	::	(	OM-	-04	50	-1	4										
Lab Code: ALJCK		Case Nc	×.:				~~	SAS	N	o.:	:						SI	G	No.	:	J	14	02(	325	5		
Instrument ID Number:	PE	Optima	ICP					Met	ho	d:		₽				Rui	n N	uml	per	:		0	32:	114	IA1		
Start Date: 3/21/2	014							End	1 D	at	e:		3	/22	2/2	01	4										
EPA				Ī									Ana	aly	tes	3											
Sample No.	D/F	Time	%R	в	A U	L I	м 0	o s	P D	P	P T	s	s	SN	S R	r 1	υ	W	I N								
ССВ	1.00	00:53		1		Х				ļ		Ţ			]	Γ	J	[		[	Ī	Γ	Τ	Ī			
ZZZZZ	1.00	00:57										-		ľ											l		107GROW
ZZZZZ	1.00	01:02		1								İ						[			ľ	Ĩ					
ZZZZZZ	1.00	01:07			1		Ì			Ì			ļ				-				-					T	
ZZZZZZ	1.00	01:12								ĺ	Ī	1	Í						Ī	ľ	Ì	T	T				
ZZZZZZ	1.00	01:17		1	Ì											I					1				Ī	Ī	
ICSA	1.00	01:21				Х				l						ſ								T	Ţ	Γ	
ICSAB	1.00	01:29				X				ļ											l	T	Ţ	Γ		Ţ	
ccv	1.00	01:37	D.: SAS NO.: SDG NO.: J1402025 a ICP Method: P Run Number: 032114A1 End Date: $3/22/2014$ R = A = L = M = D = D = D = D = D = D = D = D = D																								
CCB	1.00	01:41				X	[	Γ									1	[			T	T	T		T	Τ	T

Client:	<u>Beazer Ea</u>	st, Inc.				n - 1724)			Con	tra	act	::		)M-	04	50	-1	4								ONROTTON													
Lab Code:	ALJCK		Case No	).;		10772777777777			SAS	N	5.:							SD	G :	Ňо.	:	J:	140	20	25			-											
Instrument	ID Number:	ICP	-MS	<u></u>	0 084.		www		Met	ho	i:		MS	-		ļ	Run	ı N	umì	cer	::		03	324	14	<u>A</u>		****											
Start Date	3/24/2	014							Enc	i D	ate	e:	· .	3/	24	/2	01	4																					
EPA					Ι								Ζ	Ana	ly	tes	3																						
Sample No.		D/F	Time	8 R	в	A U	L I	M O	o s	P D	₽	P T	s I	S	SN	s R	r I	σ	W	I N																			
Cal Blank		1.00	16:37		ſ	1		x	†						Ī										Ì	Ť		1											
Cal 1		1.00	16:43					X						İ		NIGHT OF	ontonika								Í		1												
Cal 2		1.00	16:48		1			Х	1						Ì								-																
Cal 3		1.00	16:53		-	-	unysauuna	X	1						nooraaniy 	****	****			*******	inina ana					ano an		Ť											
Cal 4		1.00	16:58		Ì			X						ĺ	İ											Ī	ļ	Ť											
ICV		1.00	17:03		T			Х	Ī					Í	Í												Ì												
ICB	éleméneszetetek keletetetetetetetetetetetetetetetetetete	1.00	17:08					X							ļ	accomite						ſ				ľ													
MRL		1.00	17:13	í				X	Ī					İ	ļ											Ť	Ť	Ť											
ICSA		1.00	17:18		1			X						j	ĺ										Ì		<u> </u>	Ť											
ICSAB		1.00	17:23			<u> </u>	<b>nomen</b> orme	X	1			0.0000000	-	ļ	Í											Ť	Ť												
CCV-1		1.00	17:28			İ		X						j	Ì	ĺ										Ť	Ť	Ť											
CCB-1		1.00	17:33					Х		******		244007014		ļ														-											
MB-02134-	04	1.00	17:38		ļ			X	den ser ser ser ser ser ser ser ser ser ser	[	, of a characterized	****			Ì	ACCORPORATE		ann ta ann an	X							ļ													T
ZZZZZŻ	*****	1.00	17:48			-			ĺ																														
ZZZZZZ	nan na chairtean dh'ann ann an ann ann ann ann ann ann ann	1.00	17:53		-			nerata and	-																	T	Ī												
ZZZZZZ	this in since the second states and the second states and the second states and the second states and the second	1.00	17:58						for an inclusion of		columnative	aniconstance															-												
ZZZZZZ	annan merakan karapan sana karapan						assessing.	STATE OF STREET					57712545596	NUMBER		STATISTICS OF					20000000																		
GAIN-M-25	À-031814	1.00	18:08			-		Х							MAISSIGN																								
GAIN-M-36	B-031814	1.00	18:13					X																			-												
GAIN-HG-2	45-031814	1.00	18:18					X																															
GAIN-M-25	B-031814	1.00	18:23					X																															
CCV-2		1.00	18:28					X				2000209															****												
CCB-2	anan kanan	X	Į																																				
GAIN-HG-3	35-031914	1.00	18:38		-	l		X																	[]														
GAIN-HG-3	45-031914	1.00	18:43					X						Î										-															
GAIN-HG-2	2D-031914	1.00	18:48			l		X																-course			-												
ZZZZZZ		1.00	18:53		]																																		
ZZZZZZ	0289-000775827-000582699789887709798867472982674208	1.00	18:58						ĺ	-					Ì									ACCONSISTER				ļ											
ZZZZZ	niana (ny fisianganjanjanjanjanjanjanjanjanjanjanjanjanja	1.00	19:03								ज्ञात्रवारसः	No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Concession, No. of Conces			Nonisculut and	- Carlo										NUMERAL	MARRISHED A	1											
ZZZZZZ		5.00	19:08												Ī	÷				in the					Í		-	micolanistipe											
ZZZZZ	*******	1.00	19:13		artin Database																	unicasian 				1989/2020/04	ACCESSION	arcelation of the last											

Client:	Beazer Ea	ast, Inc.					-		Con	tr	act	:	-	DM-	-04	50	1	4							-			
Lab Code:	ALJCK		Case No	).: 		6.000-01-01-00-0-0			SAS	N	0.3	•						SI	G	No.	. :	J.	14(	)20	)25			
Instrument	ID Number:	ICP	-MS					متغليو	Met	:ho	d:		MS	š		:	Rui	n N	umi	ber	::		03	324	14	A		
Start Date	: 3/24/2	2014							En	d E	at	e:		3,	/24	1/2	01	4										
EPA	*********			5 5	T							700080607790.		Āna	ly	tes	3									<del></del>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Sample No.	\$	D/F	Time	* R	в	A U	L I	м 0	o s	P D	P	P T	s I	s	SN	S R	T I	υ	W	I N								
ZZZZZZ		1.00	19:19	ļ	Τ								[							Ī			$\square$				Π	
ZZZZZZ		1.00	19:24																ļ	ļ								
CCV-3		1.00	19:29					X				1000					ĺ			Γ								
CCB-3	usedanikimin na sustani na dindindi mila di k	1.00	19:34					X		]	Ī									Γ	Ι							
ZZZZZZ		1.00	19:39																									
ZZZZZZ		1.00	19:44									l																
ZZZZZ	Magan	1.00	19:49							[										Į		ļ						
ZZZZZZ		1.00	19:54																									
ZZZZZ		1.00	19:59							}					Į													
ZZZZZZ		1.00	20:04															[			ł							
ZZZZZ		1.00	20:09												{													
ZZZZZZ		1.00	20:14								ļ																	
ZZZZZ		1.00	20:19							l										l								
ZZZZZZ		1.00	20:24								]			ļ				]				[	[					
CCV-4		1.00	20:29					X				Ĩ			]													
CCB-4		1.00	20:34					X	Ī	ł	I		I	1	I				ľ	T	Ī	Ī	<u> </u>					

Client:	Beazer Ea	st, Inc.				er-c+7			Con	tr	act	::	<u>_</u>	-MC	04	50	-1	4										<u></u>																										
Lab Code:	ALJCK	(	Case No	».:					SAS	N	0.3	:			101.000 (101.000 (101.000			SD	GI	NO.	:	J	140	)20	25																													
Instrument	ID Number:	Cet	ac Hg	Analyz	er		uncerence		Met	ho	d:		CV	,		3	Rur	ı N	uml	ber	:		03	324	14	c																												
Start Date	: 3/24/2	014							End	i D	at	e:		3/	/24	/2	01	4																																				
EPA	1	Į											ž	Ana	ly	tes	3	<b></b>																																				
Sample No.		D/F	Time	%R	в	A U	L I	м О	o s	P D	Ð	P T	s I	s	SN	S R	r I	υ	W	I N																																		
Calibrati	on Blank	1.00	19:10																																																			
Standard	#1	1.00	19:11		-					-bieneria																000000																												
Standard	#2	1.00	19:12			Ì					Ì				Í												Ť																											
Standard	#3	1.00	19:14			Ì				Ì	İ	İ						anethen a		ptersind Md		9040399466994			****	T	ļ																											
Standard	#4	1.00	19:16		Í			-	ğanananı 	ĺ					İ	j	- and as Car						Π			T	İ	Ť																										
Standard	#5	1.00	19:17	]				hawaran 		İ	İ															Ì	Ì																											
Standard	#6	1.00	19:19		j	İ	1	ŀ	1	İ	İ										[ 						ļ																											
ICV		1.00	19:22		Î	1		<u> </u>	İ.					Ť	İ											Í	Ť																											
ICB		1.00	19:24					(							İ	İ							ίπ i			Ń	Ť																											
MRL 0.1	C Land Colline Contraction Contraction Contraction Contraction	1,00	19:25			<u>+</u>	docresource	[	1	ĺ	Ì				أشصسهم												İ																											
MB-02159-	-02	1.00	19:26							ĺ					, ,												Ť																											
LCS-02159	9-01	1.00	19:27		formain [				hassenne						*******								i T			Ť	Ī																											
ZZZZZZ		1.00	19:29			l		<u>h</u> uma			Ì	İ				********	haxense	20000	000000	of the second second		07700.000					Ì	Î																										
ZZZZZZ		1.00	19:30			1	Ť			İ	j	<u> </u>	1				-									$\square$	Ť	İ																										
ZZZZZZ		1.00	19:31							ļ	Í					on cicano												Ţ																										
ZZZZZZ	en en en inden in de ser in de ser in de ser in de ser in de ser in de ser in de ser in de ser in de ser in de	1.00	19:32					(					ļ	-									Ē																															
GAIN-M-25	5A-031814	1.00	19:33		1	Ì					Í																	İ																										
GAIN-M-36	B-031814	1.00	19:35		-	-											87 <b>02</b> 770	2006020000				******	i m				÷																											
GAIN-HG-2	4S-031814	1.00	19:36				(	<b>.</b>		Í	Í												Π		mananamana		, and the second	1.00	19:37			T		<u> </u>	-														j			Ē	Ī	_
CCV-1		1.00	19:39						l	İ																Ń	Ì																											
CCB-1		1.00	19:41		Í	1	Ì				ġ <b>in co</b> nte				ĺ				9014200000				Π																															
GAIN-HG-2	24S-031814	1.00	19:42		Γ	1	1		† –	İ	Í	ĺ												-																														
GAIN-HG-2	245-031814	1.00	19:43		İ	aduanuo anu							homewe											OVER WO	0.000																													
GAIN-HG-2	245-031814	5.00	19:45			1	1		ĺ		İ	[	<b> </b>																																									
GAIN-M-2	5B-031814	1.00	19:47		ĺ		ļ	ĺ	ļ	]	l		Ì	ŀ												Π	Ī																											
GAIN-HG-3	338-031914	1.00	19:48			-	1				}		l															monatanni																										
GAIN-HG-3	34S-031914	1.00	19:49		-	-	-	Ì	Í		Ī										[																																	
GAIN-HG-2	2D-031914	1.00	19:50								Ì							011074740		an 76656566666666	1.00	19:51		an season		in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	ydsagarowy		and an an an an an an an an an an an an an		1096910 	10-11/14/20-0			unecostation)					yzneremarae			16.12.0 × 16.12	Ī										
ZZZZZZ	******	1.00	19:52	1	ţ	Ì				ļ	İ	Ì			Í		<u> </u>				ĺ		Π			M																												
ZZZZZ	y han die die de staat wat die staat die die die die die die die die die die	1.00	19:53		-	1	aleren er en er er er er er er er er er er er er er		ajanga ang							2210202	u an -1-104						Cor	tr	act	::	(	OM-	~04	50	-1	4																						
-------------	------------	----------	-----------------------	---------	------------	--------	---------------------	----------	-------------	--------	-----	--------	----------	-----	-----	--------	------------	-----	-----	--------	-----	---------	-----	-----	-----	---	-----------	--																										
Lab Code:	ALJCK		Case No	>.: 	NO.NINO DI		<b>-</b> 72%2544444		SAS	Ň	ο.	:						SD	G	No.	. :	J	14(	020	)25	,	****																											
Instrument	ID Number:	Cet	ac Hg	Analyz	zer				Met	ho	d:		<u> </u>	7			Rui	n N	umì	per	::		0:	324	114	C																												
Start Date:	: 3/24/20	014							En	1 0	at	e:		3,	/24	/2	01	4																																				
EPA	[				1			<u> </u>						Ana	aly	tes	3					<u></u>	·																															
No.		D/F	Time	8 R	в	A U	L I	м 0	o s	P D	P	P T	s I	s	SN	s R	r T	υ	W	I N					Ī																													
CCV-2		1.00	19:54		1	Ī						Į	Ť									Ī		Ť	Ì	İ	П																											
CCB-2		1.00	19:56		-				ŚCIECZICZ (					Í								Ī	-	Ì	ļ		m																											
ZZZZZZ		1.00	19:58			ļ																																																
ZZZZZŻ		1.00	19:59		in want		lessroum:				Í						1000000	[																																				
ZZZZZZ		1.00	20:00		Ī	Ī							Ī									Γ		ĺ			$\square$																											
ZZZZZZ		1.00	20:01							l	I													I	Ì																													
ZZZZZZ		1.00	20:02			l								Ī			Urr faanse									l																												
ZZZZZZ		1.00	20:03	ļ																				Į																														
CCV-3		1.00	20:04																			I																																
CCB-3	]	1.00	20:06								Γ		Γ				*****							I		1	10000000																											

~...

#### Dissolved Metals - COVER PAGE -INORGANIC ANALYSIS DATA PACKAGE

SDG No.:	J1402025	Method Type:	6010B/602	0/74		SOW No.:	
Contract:	OM-0450-14	Lab Code:	ALJCK	Case No.:		SAS No.:	
	Lab Sample ID	Client Sample	ID		QC Des	cription	
	J1402025-001	GAIN-M-25A-0	31814				
	J1402025-001S	GAIN-M-25A-0	31814S		Matrix S	pike	
	J1402025-001SD	GAIN-M-25A-0	31814SD		Matrix S	pike Duplicate	
	J1402025-002	GAIN-M-36B-0	31814				
	J1402025-002S	GAIN-M-36B-0	31814S		Matrix S	pike	
	J1402025-002SD	GAIN-M-36B-0	31814SD		Matrix S	pike Duplicate	
	J1402025-003	GAIN-HG-24S-	031814				
	J1402025-004	GAIN-M-25B-0	31814				
	J1402025-005	GAIN-HG-33S-	031914	•			
	J1402025-006	GAIN-HG-34S-	031914				
	J1402025-007	GAIN-HG-22D-	031914				
	J1402025-007S	GAIN-HG-22D	-031914S		Matrix S	pike	
	J1402025-007SD	GAIN-HG-22D-	031914SD		Matrix S	pike Duplicate	
Were ICP	interelement cor	rections appl	ied?	Ye	s/No	Yes	
Were ICP	background correct	ctions applie	d?	Ye	s/No	Yes	
If ye appli	s - were raw data cations of backgr	a generated be cound correct.	efore ions?	Ye	es/No	No	

Comments: Perkin Elmer MSF program is used for IEC corrections

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Calla	Name:	Craig Myers
Date:	4/8/14	Title:	Project Manager
	÷		191

ø

# **Dissolved Metals**

Sample ID: J140	2025-001					Client ID: (	GAIN-M-2	5A-031814			]
Matrix: WATI	ER	Date Ro	eceived:	3/	19/2014	Level:		)W			
% Solids:		Sample	Wt/Vol:	5	0.0	Final Vol:	: 50	).0			
Prep Batch ID:	204591			F	'rep Date:	3/21/201	14				
b . / .		<i>(</i> <b>, , , , , , , , , , , , , , , , , , ,</b>	<b>X</b> T <b>4</b> .		0	<b>N</b> <i>M</i> - <i>X</i> - <b>X</b>		24123		Anal	ytical
huminum	Cor	112	Units	<u> </u>	Quai	A010D	11	100	-1.00	2/22/2014	00.25.5
Antimony		112	ug/L	-		60105	0.160	100	1.00	3/27/2014	00.25.5
uniniony Arsenic		0.51	ug/L	i		6020	0.100	1.0	1.00	3/27/2014	00.13
Recyllium		0.032	ug/L	r Ti		6020	0.42	0.500	1.00	3/27/2014	00.13
admium		0.090	ug/L	U		6020	0.092	0.400	1.00	3/27/2014	00.13
bromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:13
ron		2.5	ug/L	U		6010B	2.5	100	1.00	3/22/2014	00:25:5:
lead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:13
Aanganese		0.4	ug/L	i		6020	0.1	2.0	1.00	3/27/2014	00:13
Aercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:01:5
Aolybdenum		2.70	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:13
elenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:13
odium		1590	ug/L			6010B	29	500	1.00	3/22/2014	00:25:5:
***		0.05	110/1	ŧΙ		6020	0.05	0.20	1.00	3/27/2014	00:13

Sample ID: J1402025-002	!				Client ID: (	GAIN-M	-36B-031814			
Matrix: WATER	Date Re	ceived:	3.	/19/2014	Level:		LOW	Several and a second second second second second second second second second second second second second second		
% Solids:	Sample	Wt/Vol:	-	50.0	Final Vol	:	50.0			
Prep Batch ID: 2045	91			Prep Date:	3/21/20	14				
							*******		Anal	ytical
Analyte	Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum	110	ug/L			6010B	11	100	1.00	3/22/2014	00:30:4
Antimony	0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:18
Arsenic	0.42	ug/L	U		6020	0.42	1.0	00.1	3/27/2014	00:18
Beryllium	0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:18
Cadmium	0.090	ug/L	U		6020	0.090	0.400	1,00	3/27/2014	00:18
Chromium	0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:18
ron	753	ug/L			6010B	2.5	100	1.00	3/22/2014	00:30:4
ead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:18
Manganese	27	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:18
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:09:3
Molybdenum	2.20	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:18
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:18
Sodium	6770	ug/L			6010B	29	500	1.00	3/22/2014	00:30:4
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:18
Comments:										
				÷						
	*****									<u></u>

Sample ID: J140	2025-003	*****				Client ID: (	3AIN-HG-2	245-031814			
Matrix: WATI	ER	Date Re	ceived:	3/	19/2014	Level:	LC	W			
% Solids:		Sample	Wt/Vol:	5	0.0	Final Vol	: 5(	).0			
Prep Batch ID:	204591			F	rep Date:	3/21/20	14				
Analyte		Concentration	Units	С	Qual	Method	MDL	MRL	Dil	Anal Date	ytical Time
Aluminum		96	ug/L	Į	*******	6010B	11	100	1.00	3/22/2014	00:57:58
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:23
Arsenic		2.4	ug/L			6020	0.42	1.0	1.00	3/27/2014	00:23
Beryllium	· .	0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:23
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:23
Chromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:23
fron		744	ug/L			6010B	2.5	100	1.00	3/22/2014	00:57:58
Lead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:23
Manganese		27	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:23
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:10:42
Molybdenum		5.80	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:23
Selenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:23
Sodium		5490	ug/L			6010B	29	500	1.00	3/22/2014	00:57:58
Challium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:23
·											

Sample ID: J1402	2025-004					Client ID: (	GAIN-M	-25B-031814			
Matrix: WATE	ER	] Date Re	ceived:	3/	19/2014	Level:		LOW			
% Solids:		Sample	Wt/Vol:	5	0.0	Final Vol	:	50.0			
Prep Batch ID:	204591			F	rep Date:	3/21/20	14				
· · · · · · · · · · · · · · · · · · ·										Anal	ytical
Analyte	Cone	centration	Units	С	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum		95	ug/L	1		6010B	11	100	1.00	3/22/2014	01:02:5
Antimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	00:28
Arsenic		3.2	ug/L			6020	0.42	1.0	1.00	3/27/2014	00:28
Beryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:28
Cadmium		0.090	ug/L	U		6020	0.090	0.400	1.00	3/27/2014	00:28
Chromium		0.45	ug/L	i		6020	0.18	1.0	1.00	3/27/2014	00:28
ron		245	ug/L			6010B	2.5	100	1.00	3/22/2014	01:02:5
_ead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:28
Manganese		63	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:28
Mercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:11:5
Molybdenum		0.28	ug/L	U		6020	0.28	2.00	1.00	3/27/2014	00:28
Selenium		1,1	ug/L	U		6020	1,1	2.0	1.00	3/27/2014	00:28
Sodium		17500	ug/L			6010B	29	500	1.00	3/22/2014	01:02:5
Fhallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:28

Sample ID: J1402	2025-005					Client ID: GAIN-HG-33S-031914				••••••••••••••••••••••••••••••••••••••	
Matrix: WATE	R	Date Re	ceived:	3/	/19/2014	Level:		OW	<del></del>		
% Solids:		Sample	Wt/Vol:	5	50.0	Final Vol	: 5	0.0			
Prep Batch ID:	204591			1	Prep Date:	3/21/20	14				
										Anal	ytical
nalyte	Cor	icentration	Units	C	Qual	Method	MDL	MRL	Dil	Date	Time
luminum		99	ug/L	I		6010B	11	100	1.00	3/22/2014	01:07:43
ntimony		0.160	ug/L	U		6020	0.160	1.0	1.00	3/27/2014	. 00:43
rsenic		0.42	ug/L	U		6020	0.42	1.0	1.00	3/27/2014	00:43
eryllium		0.032	ug/L	U		6020	0.032	0.500	1.00	3/27/2014	00:43
admium		0.090	ug/L	U	-	6020	0.090	0.400	1.00	3/27/2014	00:43
hromium		0.18	ug/L	U		6020	0.18	1.0	1.00	3/27/2014	00:43
on		887	ug/L			6010B	2.5	100	1.00	3/22/2014	01:07:43
ead		0.12	ug/L	U		6020	0.12	0.50	1.00	3/27/2014	00:43
langanese		27	ug/L			6020	0.1	2.0	1.00	3/27/2014	00:43
lercury		0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:16:12
lolybdenum		1.90	ug/L	i		6020	0.28	2.00	1.00	3/27/2014	00:43
elenium		1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:43
odium		6720	ug/L			6010B	29	500	1.00	3/22/2014	01:07:43
hallium		0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:43
Comments:									., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					•						

Sample ID: J140202	25-006				Client ID: (	GAIN-HG-	34S-031914			
Matrix: WATER	Date I	Received:	3/	19/2014	Level:		)W			
% Solids:	Samp	le Wt/Vol:	5	0.0	Final Vol	: 50	0.0	·		
Prep Batch ID:	204591		F	rep Date:	3/21/20	14				
t nalvta	Concentration	¥1=side		Omal	Náothod	84153	MOI	T>:1	Anal	ytical
Aluminum		no/I	<u> </u>	Quai	KALAD	11	100	1.00	2/22/2014	01.12.22
Antimony	0.250	ng/l	;		6020	0 160	100	1.00	3/27/2014	01.12.57
Arsenic	0.53	ug/l	í		6020	0.100	1.0	1.00	3/27/2014	00.49
Bervllium	0.032	ng/L	, T		6020	0.032	0.500	1.00	3/27/2014	00.49
Cadmium	0.090	ug/L	п		6020	0.052	0.300	1.00	3/27/2014	00.49
Chromium	0.18	ug/L	Ū		6020	0.020	1.0	1.00	3/27/2014	00.49
ron	. 5.4	ug/L	r		6010B	2.5	100	1.00	3/22/2014	01-12-37
_ead	0.12	- <u>s</u> -2 ug/L	î U		6020	0.12	0.50	1.00	3/27/2014	00:49
Manganese	0.3	ug/L	i		6020	0.1	2.0	. 1.00	3/27/2014	00:49
Mercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:17:22
Molybdenum	8.00	ug/L			6020	0.28	2.00	1.00	3/27/2014	00:49
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/27/2014	00:49
Sodium	11000	ug/L			6010B	29	500	1.00	3/22/2014	01:12:37
Thallium	0.05	ug/L	U		6020	0.05	0.20	1.00	3/27/2014	00:49

Sample ID: J1402025-007					Client ID: (	GAIN-HG-2	22D-031914			
Matrix: WATER	Date Re	ceived:	3/	19/2014	Level:	LC	)W			
% Solids:	Sample	Wt/Vol:	5	0.0	- Final Vol	: 50	0.0			
Prep Batch ID: 204591	•		F	Prep Date:	<u>3/21/20</u>	14				
									Anal	ytical
Lnalyte	Concentration	Units	C	Qual	Method	MDL	MRL	Dil	Date	Time
Aluminum	120	ug/L			6010B	11	100	1.00	3/22/2014	01:17:29
Antimony	0.380	ug/L	i		6020	0.160	1.0	1.00	3/28/2014	14:23
Arsenic	0.62	ug/L	i		6020	0.42	1.0	1.00	3/28/2014	14:23
Beryllium	0.032	ug/L	U -		6020	0.032	0.500	1.00	3/28/2014	14:23
Cadmium	0.570	ug/L			6020	0.090	0.400	1.00	3/28/2014	14:23
Chromium	0.55	ug/L	i		6020	0.18	1.0	1.00	3/28/2014	14:23
ron	340	ug/L			6010B	- 2.5	100	1.00	3/22/2014	01:17:29
Lead	0.12	ug/L	U		6020	0.12	0.50	1.00	3/28/2014	14:23
Manganese	- 11	ug/L			6020	0.1	2.0	1.00	3/28/2014	14:23
Aercury	0.012	ug/L	U		7470A	0.012	0.10	1.00	3/24/2014	17:18:29
Aolybdenum	1.80	ug/L	i		6020	0.28	2.00	1.00	3/28/2014	14:23
Selenium	1.1	ug/L	U		6020	1.1	2.0	1.00	3/28/2014	14:23
Sodium	2740	ug/L			6010B	29	500	1.00	3/22/2014	01:17:29
Thallium	0.05	ug/L	υ		6020	0.05	0.20	1.00	3/28/2014	14:23

Client: Beazer East, Inc.		SDG No.: J1402025	1049JUM
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:
Initial Calibration Source:	Inorganic Ventures		
<b>Continuing Calibration Source:</b>	High Purity STDs	-	

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
ICV									
	Aluminum	50100.00	50000.0	100	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Iron	39200.0	40000.0	98	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
	Sodium	20600.00	20000.0	103	90.0 - 110.0	6010B	3/21/2014	18:01	032114A1
CCV									
	Aluminum	4980.00	5000.0	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Iron	5080.0	5000.0	102	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
	Sodium	25100.00	25000.0	100	90.0 - 110.0	6010B	3/21/2014	18:35	032114A1
CCV									
	Aluminum	4900.00	5000.0	98	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	íron	4980.0	5000.0	100	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
	Sodium	25200.00	25000.0	101	90.0 - 110.0	6010B	3/21/2014	19:42	032114A1
CCV									
CC V	Aluminum	4890.00	5000.0	- 98	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
	Iron	4980.0	5000.0	100	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
	Sodium	25200.00	25000.0	101	90.0 - 110.0	6010B	3/21/2014	20:38	032114A1
CCV									
UCY.	Aluminum	5010.00	5000.0	100	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
	Iron	5060.0	5000.0	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
	Sodium	25300.00	25000.0	101	90.0 - 110.0	6010B	3/21/2014	21:30	032114A1
CCV									
	Aluminum	4890.00	5000.0	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Iron	4900.0	5000.0	98	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/21/2014	22:18	032114A1
rev									•
	Aluminum	4900.00	5000.0	98	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Iron	4930.0	5000.0	99	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1
	Sodium	. 25400.00	25000.0	102	90.0 - 110.0	6010B	3/21/2014	23:11	032114A1

Client: Beazer East, Inc.		SDG No.: 1	11402025	
Contract: OM-0450-14	Lab Code: ALIC	CK Case No.:	SAS No.:	
Initial Calibration Source:	Inorganic Ventures			
Continuing Calibration Source:	High Purity STDs	Name and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o		

Sample II	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV									
	Aluminum	4930.00	5000.0	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Iron	4950.0	5000.0	99	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/21/2014	23:59	032114A1
CCV									
	Aluminum	4960.00	5000.0	99	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	Iron	4990.0	5000.0	100	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
	Sodium	25400.00	25000.0	102	90.0 - 110.0	6010B	3/22/2014	00:49	032114A1
CCV									
	Aluminum	4980.00	5000.0	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Iron	4990.0	5000.0	100	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
	Sodium	25600.00	25000.0	102	90.0 - 110.0	6010B	3/22/2014	01:37	032114A1
ICV									
	Mercury	4.96	5.00	99	90.0 - 110.0	7470A	3/24/2014	16:54	032414B
CCV-	1								
	Mercury	5.00	5.00	100	80.0 - 120.0	7470A	3/24/2014	17:12	032414B
CCV-	2								
	Mercury	5.00	5.00	100	80.0 - 120.0	7470A	3/24/2014	17:30	032414B
CCV-	3								
	Mercury	4.99	5.00	100	80.0 - 120.0	7470A	3/24/2014	17:45	032414B

Client: Beazer East, Inc.			SDG No.:	J1402025		
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:	**************************************	SAS No.:	
Initial Calibration Source:	High Purity Standards					
Continuing Calibration Source:	Inorganic Venture	S	***			

Sample ĭ	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
ICV									
	Antimony	49.4	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Arsenic	51.2	50.0	102	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Beryllium	20.0	20.0	100	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Cadmium	23.8	25.0	95	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Chromium	48.8	50.0	98	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Lead	49.7	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Manganese	49.4	50.0	99	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Molybdenum	49.6	50.0	99	90.0 - 110.0 ⁻	6020	3/26/2014	23:08	032614B
	Selenium	49.1	50.0	98	90.0 - 110.0	6020	3/26/2014	23:08	032614B
	Thallium	48.9	50.0	98	90.0 - 110.0	6020	3/26/2014	23:08	032614B
CCV-	I								
	Antimony	50.2	50.0	100	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Arsenic	51.2	50.0	102	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Beryllium	24.6	25.0	98	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Cadmium	19.5	20.0	98	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Chromium	49.5	50.0	99	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Lead	26.1	25.0	104	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Molybdenum	103.0	100.0	103	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/26/2014	23:33	032614B
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/26/2014	23:33	032614B
CĊV-	2								
	Antimony	49.2	50.0	98	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Arsenic	51.2	50.0	102	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Beryllium	25.9	25.0	104	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Cadmium	19.1	20.0	96	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Chromium	48.8	50.0	98	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Lead	26.0	25.0	104	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Molybdenum	99.9	100.0	100	90:0 - 110.0	6020	3/27/2014	00:33	032614B
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/27/2014	00:33	032614B
	Thallium	10,1	10.0	101	90.0 - 110.0	6020	3/27/2014	00:33	032614B

Client: Beazer East, Inc.	-	SDG No.: J1402025		
Contract: OM-0450-14	Lab Code: ALJCK	Case No.:	SAS No.:	
Initial Calibration Source:	High Purity Standards			
Continuing Calibration Source:	Inorganic Ventures			

Sample II	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV-	3								
	Antimony	48.7	50.0	97	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Arsenic	52.3	50.0	105	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Beryllium	24.3	25.0	97	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Cadmium	19.3	20.0	96	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Chromium	49.7	50.0	99	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Lead	26.1	25.0	104	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Molybdenum	100.0	. 100.0	100	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Selenium	103.0	100.0	103	90.0 - 110.0	6020	3/27/2014	01:34	032614B
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/27/2014	01:34	032614B
CCV-	4								
	Antimony	48.0	50.0	96	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Arsenic	49.8	50.0	100	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Beryllium	24.2	25.0	97	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Cadmium	18.8	20.0	94	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Chromium	47.5	50.0	95	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Lead	25.4	25.0	102	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Manganese	98.4	100.0	98	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Mołybdenum	97.3	100.0	97	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Selenium	99.4	100.0	99	90.0 - 110.0	6020	3/27/2014	01:54	032614B
	Thallium	10.1	10.0	101	90.0 - 110.0	6020	3/27/2014	01:54	032614B
ICV									
	Antimony	50.4	50.0	101	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Arsenic	50.5	50.0	101	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Beryllium	18.7	20.0	94	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Cadmium	25.4	25.0	102	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Chromium	50.2	50.0	100	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Lead	48.3	50.0	97	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Manganese	49.7	50.0	99	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Molybdenum	50.9	50.0	102	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Selenium	50.4	50.0	101	90.0 - 110.0	6020	3/28/2014	13:37	032814A
	Thallium	48.7	50.0	97	90.0 - 110.0	6020	3/28/2014	13:37	032814A

Client: Beazer East, Inc.				SDG No.: JI	1402025	1420143011	
Contract: OM-0450-14		ab Code:	ALJCK	Case No.:	November 1995 - 1995 - 1996 - 1996 - 1996 - 1996	SAS No.:	
Initial Calibration Source:	High Purity S	Standards					
Continuing Calibration Source:	Inorgani	c Venture	<u> </u>				

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	Method	Analysis Date	Analysis Time	Run Number
CCV-	1								
	Antimony	50.5	50.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Arsenic	50.7	50.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Beryllium	24.1	25.0	96	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Cadmium	21.1	20.0	106	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Chromium	50.6	50.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Lead	24.8	25.0	99	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Manganese	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Molybdenum	104.0	100.0	104	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	14:02	032814A
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/28/2014	14:02	032814A
CCV-	2								
	Antimony	51.5	50.0	103	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Arsenic	50.0	50.0	100	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Beryllium	25.5	25.0	102	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Cadmium	20.8	20.0	104	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Chromium	50.8	50.0	102	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Lead	25.3	25.0	. 101	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Manganese	102.0	100.0	102	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Molybdenum	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Selenium	101.0	100.0	101	90.0 - 110.0	6020	3/28/2014	15:03	032814A
	Thallium	10.3	10.0	103	90.0 - 110.0	6020	3/28/2014	15:03	032814A
CCV-	3								
	Antimony	50.3	50.0	101	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Arsenic	51.4	50.0	103	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Beryllium	25.0	25:0	100	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Cadmium	20.6	20.0	103	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Chromium	50.9	50.0	102	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Lead	25.3	25.0	101	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Manganese	102.0	100.0	102	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Molybdenum	100.0	100.0	100	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Selenium	102.0	100.0	102	90.0 - 110.0	6020	3/28/2014	15:38	032814A
	Thallium	10.4	10.0	104	90.0 - 110.0	6020	3/28/2014	15:38	032814A

#### Dissolved Metals - 2b -CRDL STANDARD FOR AA & ICP

Client: E	Beazer East, Inc.	5479 37 57 57 57 57 57 57 57 57 57 57 57 57 57	80-0-1111-1-0-1111-1-		SDC	G No.: J <u>14(</u>	02025		
Contract	: O <u>M-0450-14</u>		Lab Co	de: ALJCK	Case No:			SAS No.:	
AA CRD	L Standard Source:								
ICP CR	DL Standard Source:	Hig	h Purity STDs						*****
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	Method	Analysis Date	Analysis Time	Run Number
<b>BAT</b> NI									
A	luminum	68 60	100.0	69	50 - 150	6010B	3/21/2014	18.15	032114A1
]r	'nn	106.0	100.0	106	50 - 150	6010B	3/21/2014	18:15	032114A1
S	odium	546.00	500.0	109	50 - 150	6010B	3/21/2014	18:15	032114A1
MDLO	Ĩ								
MILL U. N	4 dercury	0.10	0.10	100	50 - 150	7470A	3/24/2014	16:57	032414B
MRL									
А	antimony	1.13	1.00	113	50 - 150	6020	3/26/2014	23:18	032614B
A	arsenic	1.07	1.00	107	50 - 150	6020	3/26/2014	23:18	032614B
В	leryllium	0.48	0.50	96	50 - 150	6020	3/26/2014	23:18	032614B
C	admium	0.38	0.40	95	50 - 150	6020	3/26/2014	23:18	032614B
C	hromium	1.12	1.00	112	50 - 150	6020	3/26/2014	23:18	032614B
L	ead	0.27	0.50	54	50 - 150	6020	3/26/2014	23:18	032614B
Ν	langanese	2.05	2.00	102	50 - 150	6020	3/26/2014	23:18	032614B
N	Aolybdenum	1.98	2.00	99	50 - 150	6020	3/26/2014	23:18	032614B
S	elenium	1.73	2.00	86	50 - 150	6020	3/26/2014	23:18	032614B
Т	hallium	0.20	0.20	100	50 - 150	6020	3/26/2014	23:18	032614B
MRL									
A	Antimony	1.22	1.00	122	50 - 150	6020	3/28/2014	13:47	032814A
A	Arsenic	1.24	1.00	124	50 - 150	6020	3/28/2014	13:47	032814A
E	Beryllium	0.50	0.50	100	50 - 150	6020	3/28/2014	13:47	032814A
C	Cadmium	0.44	0.40	110	50 - 150	6020	3/28/2014	13:47	032814A
C	Chromium	0.89	1.00	89	50 - 150	6020	3/28/2014	13:47	032814A
L	lead	0.52	0.50	104	50 - 150	6020	3/28/2014	13:47	032814A
N	langanese	2.04	2.00	102	50 - 150	6020	3/28/2014	13:47	032814A
	/lolybdenum	2.04	2.00	102	50 - 150	6020	3/28/2014	13:47	032814A
S	lelenium	1.88	2.00	94	50 - 150	6020	3/28/2014	13:47	032814A
Т	hallium	0.20	0.20	100	50 - 150	6020	3/28/2014	13:47	032814A

# Dissolved Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Beazer East, Inc.					S	DG No.: J140	)2025			
Contract:	OM-0450-14		Lab Code:	ALJCK	C	ase No.:		SA	LS No.:	
		ander and a second state of the second state of the second state of the second state of the second state of the	nyan di kilamay kanan melakakan dali di kilabahan kata dara pang	<u></u>	583999					<u>genering bester test angenere termine test statistication</u>
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL I	Method	Analysis Date	Analysis Time	Run
ICR										
100	Aluminum	11.000	+/-100.000	·U	11.000	100.000	6010B	3/21/2014	18:05	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	18:05	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	18:05	032114A1
ССВ	Aluminum	11.000	+/-100 000	TI	11.000	100.000	60108	3/21/2014	10.20	03711441
	Irop	2.50	+/-100.000	U U	2 50	100.000	6010B	3/21/2014	18:39	03211441
	Sodium	29.000	+/-500.000	n	29 000	500.000	6010B	3/21/2014	10.20	032114/1
	Soutum	¥7.000	11000.000	0	27.000	500.000	001015	Ji Zu 17 Zu 0 1 -T	18:39	05211-711
ССВ										
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	19:46	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	19:46	032114A1
	Sodium	35.600	+/-500.000	I	29.000	500.000	6010B	3/21/2014	19:46	032114A1
CCR										
CCD	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	20.42	032114A1
	Iron	2.50	+/-100.00	·U	2.50	100.00	6010B	3/21/2014	20:42	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	20:42	032114A1
0.00										
ССВ	Aluminum	11.000	+/-100 000	I I	11.000	100.000	6010R	3/21/2014	<b>01.</b> 0 <i>4</i>	03211441
	Iron	2.50	+/-100.00	U	2.50	100.000	6010B	3/21/2014	21.34	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	21:34	032114A1
CCB	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	22:22	032114A1
	Iron	2.50	+/-100.00	υ	2.50	100.00	6010B	3/21/2014	22:22	032114A1
	Sodium	35.000	+/-500.000	I	29.000	500.000	6010B	3/21/2014	22:22	032114A1
CCR										
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/21/2014	23:14	032114A1
	lron	2.50	+/-100.00	U	2.50	100.00	6010B	3/21/2014	23:14	032114A1
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/21/2014	23:14	032114A1

### Dissolved Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Beazer East, Inc.					. 9	SDG No.: J140	02025	******		
Contract:	OM-0450-14		Lab Code:	ALJCK	(	Case No.:			4S No.:	
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Viethod	Analysis Date	Analysis Time	Run
СВ										
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	00:02	032114A1
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	00:02	032114A1
	Sodium	29.900	+/-500.000	Ι	29.000	500.000	6010B	3/22/2014	00:02	032114A
ССВ									·	
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	00:53	032114A
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	00:53	032114A
	Sodium	29,000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	00:53	032114A
ССВ										
	Aluminum	11.000	+/-100.000	U	11.000	100.000	6010B	3/22/2014	01:41	032114A
	Iron	2.50	+/-100.00	U	2.50	100.00	6010B	3/22/2014	01:41	032114A
	Sodium	29.000	+/-500.000	U	29.000	500.000	6010B	3/22/2014	01:41	032114A
СВ										
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	16:56	032414B
CCB-1										
	Mercury	0.012	+/-0.100	υ	0.012	0.100	7470A	3/24/2014	17:15	032414B
CB-2										
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	17:32	032414B
CB-3			· · · · · · · · · · · · · · · · · · ·							
	Mercury	0.012	+/-0.100	U	0.012	0.100	7470A	3/24/2014	17:47	032414B

### Dissolved Metals -- 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Beazer East, Inc.				S	DG No.: 314	02025	~~~~~				
Contract:	OM-0450-14		Lab Code:	ALJCK	C	ase No.:	115:03****C#D1+26:000**	SAS No.:			
Sample IE	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
ICD		. ·									
ICB	Antimony	0.54	+/-1.00	i	0.16	1.00	6020	3/26/2014	22.12	032614B	
	Arsenic	0.54	+/-1.00	. I	0.10	1.00	6020	3/26/2014	23:13	032614B	
	Bervllium	0.03	+/-0.50	U U	0.03	0.50	6020	3/26/2014	23.13	032614B	
	Cadminm	0.09	+/-0.40	U U	0.09	0.20	6020	3/26/2014	23:13	032614B	
	Chromium	0.18	+/-1.00	U U	0.18	1.00	6020	3/26/2014	23.13	032614B	
	Lead	0.12	+/-0.50	. II	0.12	0.50	6020	3/26/2014	23.13	032614B	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/26/2014	23.13	032614B	
	Molyhdenum	0.36	+/-2.00	i	0.28	2.00	6020	3/26/2014	23.13	032614B	
	Selenium	1.10	+/-2.00	Tl	1 10	2.00	6020	3/26/2014	23.13	032614B	
	Thallium	0.05	+/-0.20	Ŭ	0.05	0.20	6020	3/26/2014	23:13	032614B	
~ ~ ~ .											
CCB-1	Antimony	0.16	+/-1.00	<b>1</b> 1	0.16	1.00	6020	3/36/2014	<b>0</b> 0 00	0226140	
	Amenic	0.10		11	0.10	1.00	6020	2/26/2014	23:38	0320140	
	Bendlium	0.42	+/-0.50	U U	0.42	0.50	6020	3/26/2014	23:38	032614B	
	Cadmium	0.05	+/-0.30	U TI	0.03	0.50	6020	3/26/2014	23:38	032614B	
	Chromium	0.18	+/-0.40	1	0.09	1.00	6020	3/26/2014	23:38	032614B	
	Lead	0.12	+/-0.50	11	0.10	0.50	6020	3/26/2014	23:38	032614B	
	Manganese	0.12		U U	0.12	2.00	6020	3/26/2014	23:38	032614B	
	Malyhdenum	0.12	+/-2.00	i	0.12	2.00	6020	3/26/2014	23:38	032014D	
	Selenium	1.10	+/-2.00	I I	1 10	2.00	6020	3/26/2014	23:38	032614B	
	Thallium	0.05	+/-0.20	Ŭ	0.05	0.20	6020	3/26/2014	23:38	032614B	
CCB-2	A	0.16		¥T	0.16	1.00	(030	2/27/2014		022/145	
	Antimony	0.16	+/-1.00	U	0.16	1.00	6020	3/2//2014	00:38	032614B	
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/2//2014	00:38	0326148	
	Codenium	0.03	+/-0.50	U	0.03	0.50	6020	3/27/2014	00:38	032614B	
	Caomium	0.09	+/-0.40	U	0.09	0.40	6020	3/2//2014	00:38	032614B	
	Caromium	0.15	+/~1.00	U	0.18	1.00	6020	3/2//2014	00:38	032614B	
	Manganaa	0.12	+/-0.50	U	0.12	0.50	6020	3/2//2014	00:38	032614B	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/2//2014	00:38	032614B	
	Morybaenum	U.28	+/-2.00	U	0.28	2.00	6020	3/2//2014	00:38	032614B	
	Selenium	1,10	+/-2.00	U	1.10	2.00	6020	3/27/2014	00:38	032614B	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/27/2014	00:38	032614B	

# Dissolved Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Beazer East, Inc.		05 MIX 04 MIX 82 MIX 14		S	DG No.: J14	02025				
Contract:	OM-0450-14		Lab Code:	ALICK	(	Case No.:		\$ <i>A</i>	AS No.:	
Sample II	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run
CCR-3										
CCD-5	Antimony	0.19	+/-1.00	i	0.16	1.00	6020	3/27/2014	01-39	032614B
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/27/2014	01.39	032614B
	Beryllium	0.03	+/-0.50	U	0.03	0.50	6020	3/27/2014	01.39	032614B
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/27/2014	01.39	032614B
	Chromium	0.18	+/-1.00	U	0.18	1.00	6020	3/27/2014	01.39	032614B
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/27/2014	01:39	032614B
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/27/2014	01:39	032614B
	Molybdenum	0.30	+/-2.00	i	0.28	2.00	6020	3/27/2014	01:39	032614B
-	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/27/2014	01:39	032614B
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/27/2014	01:39	032614B
CCB 4										
CCD-4	Antimony	0.17	+/~1.00	i	0.16	1.00	6020	3/27/2014	01-50	032614B
	Arsenic	0.42	+/-1.00	Ĩ	0.42	1.00	6020	3/27/2014	01.57	032614B
	Bervllium	0.03	+/-0.50	U	0.03	0.50	6020	3/27/2014	01.59	032614B
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/27/2014	01.59	032614B
	Chromium	0.18	+/-1.00	Ŭ	0.18	1.00	6020	3/27/2014	01.59	032614B
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/27/2014	01.59	032614B
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/27/2014	01.59	032614B
	Molybdenum	0.28	+/-2.00	i	0.28	2.00	6020	3/27/2014	01.59	032614B
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/27/2014	01.59	032614B
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/27/2014	01:59	032614B
ICD										
ЮВ	Antimony	0.56	+/-1.00	í	0.16	1.00	6020	3/28/2014	12:40	032814A
	Arsenic	0.42	+/-1.00	U	0.42	1.00	6020	3/28/2014	12.42	032814A
	Beryllium	0.03	+7-0.50	-	0.03	0.50	6020	3/28/2014	13.42	032814A
	Cadmium	0.09	+/-0.40	U	0.09	0.40	6020	3/28/2014	13.42	032814A
	Chromium	0.18	+/-1.00	Ū	0.18	1.00	6020	3/28/2014	13.42	032814A
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/28/2014	13:42	032814A
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/28/2014	13:42	032814A
	Molybdenum	0.35	+/-2.00	ì	0.28	2.00	6020	3/28/2014	13:42	032814A
	Selenium	1.10	+/-2.00	υ	1.10	2.00	6020	3/28/2014	13:42	032814A
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	13:42	032814A

## Dissolved Metals - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Beazer East, Inc.				S	DG No.: JI	402025		MANDER DAG STORAGE			
Contract:	OM-0450-14		Lab Code:	ALJCK	(	Case No.:		5/	AS No.:		
Sample II	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	MRL	Method	Analysis Date	Analysis Time	Run	982
CCB-1											
CCD-1	Antimony	0,21	+/-1.00	ì	0.16	1.0	6020	3/28/2014	14.08	032814A	
	Arsenic	0.42	+/-1.00	U	0.42	1.0	0 6020	3/28/2014	14.08	032814A	
	Beryllium	0.03	+/-0.50	Ū	0.03	0.5	0 6020	3/28/2014	14:08	032814A	
	Cadmium	0.09	+/-0.40	U	0.09	0.4	0 6020	3/28/2014	14.08	032814A	
	Chromium	0.18	+/-1.00	U	0.18	1.0	6020	3/28/2014	14:08	032814A	
	Lead	0.12	+/-0.50	U	0.12	0.5	6020	3/28/2014	14:08	032814A	
	Manganese	0.12	+/-2.00	U	0.12	2.0	6020	3/28/2014	14:08	032814A	
	Molybdenum	0.65	+/-2.00	i	0.28	2.0	6020	3/28/2014	14:08	032814A	
	Selenium	1.10	+/-2.00	U	1.10	2.0	6020	3/28/2014	14:08	032814A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	14:08	032814A	
CCB-2											
CCB-2	Antimony	0.16	+/-1.00	U	0.16	1.0	6020	3/28/2014	15:08	032814A	
	Arsenic	0.42	+/-1.00	U	0.42	1.0	0 6020	3/28/2014	15.08	032814A	
	Beryllium	0.03	+/-0.50	U	0.03	0.5	6020	3/28/2014	15:08	032814A	
	Cadmium	0.09	+/-0.40	υ	0.09	0.4	0 6020	3/28/2014	15:08	032814A	
	Chromium	0.18	+/-1.00	U	0.18	1.0	6020	3/28/2014	15:08	032814A	
	Lead	0.12	+/-0.50	U	0.12	0.5	0 6020	3/28/2014	15:08	032814A	
	Manganese	0.12	+/-2.00	U	0.12	2.0	6020	3/28/2014	15:08	032814A	
	Molybdenum	0.35	+/-2.00	ī	0.28	2.0	6020	3/28/2014	15:08	032814A	
	Selenium	1.10	+/-2.00	υ	1.10	2.0	6020	3/28/2014	15:08	032814A	
	Thallium	0.05	+/-0.20	U	0.05	0.2	6020	3/28/2014	15:08	032814A	
CCB-3											
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Antimony	0.16	+/-1.00	U	0.16	1.0	6020	3/28/2014	15:43	032814A	
	Arsenic	0.42	+/-1.00	U	0.42	1.04	6020	3/28/2014	15:43	032814A	
	Beryllium	0.03	+7-0.30	U	0.03	0.5	6020	3/28/2014	15:43	032814A	
	Cadmium	0.09	+/-0.40	U	0.09	0.4	6020	3/28/2014	15:43	032814A	
	Chromium	0.18	+/-1.00	U	0.18	1.0	6020	3/28/2014	15:43	032814A	
	Lead	0.12	+/-0.50	U	0.12	0.50	6020	3/28/2014	15:43	032814A	
	Manganese	0.12	+/-2.00	U	0.12	2.00	6020	3/28/2014	15:43	032814A	
	Mołybdenum	0.52	+/-2.00	i	0.28	2.04	6020	3/28/2014	15:43	032814A	•
	Selenium	1.10	+/-2.00	U	1.10	2.00	6020	3/28/2014	15:43	032814A	
	Thallium	0.05	+/-0.20	U	0.05	0.20	6020	3/28/2014	15:43	032814A	

Dissolved Metals - 3b -PREPARATION BLANK SUMMARY

Client: Bea	izer East. Inc.		SDG No.: J1402025							11 (11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Contract: (OM-0450-14		Lab	Code	ALJCK	Case	Case No.:		SAS No.:			
Sample ID	Analyte	Result (ug/L)	Conc Qual	Q	Acceptance Limit	MDL	MRL	Method	Analysis Date	Analysis Time	Run	
VIB-02113-0	02		WATER									
	Mercury	0.012	U		+/-0.012	0.012	0.100	7470A	3/24/2014	16:59	032414B	
AB_07130_	û ?		WATED				·					
nD-02130-0	4 huminum	70 700	NALON 1		±/-11.000	E1 000	100.000	60100	3/22/2014	00.17	032114 & 1	
	Iran	16.000	ı I		+/-2 500	2 500	100.000	60108	3/22/2014	00.17	03211441	
	Sodium	29.000	r i		+/-29.000	2.500	500.000	6010B	3/22/2014	00.17	032114/1	
	oomin	27.000	0		17-27.000	27.000	500.000	00100	572272014	00.17	0521111711	
MB-02133-	94		WATER									
	Antimony	0.250	i		+/-0.160	0.160	1.000	6020	3/26/2014	23:43	032614B	
	Arsenic	0.420	U		+/-0.420	0.420	1.000	6020	3/26/2014	23:43	032614B	
	Beryllium	0.032	U		+/-0.032	0.032	0.500	6020	3/26/2014	23:43	032614B	
	Cadmium	0.091	U		+/-0.091	0.091	0.400	6020	3/26/2014	23:43	032614B	
	Chromium	0.200	i		+/-0.180	0.180	1.000	6020	3/26/2014	23:43	032614B	
	Lead	0.120	U		+/-0.120	0.120	0.500	6020	3/26/2014	23:43	032614B	
	Manganese	0.120	U		+/-0.120	0.120	2.000	6020	3/26/2014	23:43	032614B	
	Molybdenum	0.390	i		+/-0.280	0.280	2.000	6020	3/26/2014	23:43	032614B	
	Selenium	1.100	U		+/-1.100	1.100	2.000	6020	3/26/2014	23:43	032614B	
	Thallium	0.050	U		+/-0.050	0.050	0.200	6020	3/26/2014	23:43	032614B	
MR_07758_	ስን		WATED									
	Antimony	0 160	TI III		+/_0.160	0.160	1.000	6020	3/28/2014	14.13	0328144	
	Arsenic	0.100	0 11		+/-0.420	0.100	1.000	6020	3/28/2014	14.13	032814A	
	Bervllium	0.032	U U		+/-0.032	0.540	0.500	6020	3/28/2014	14.13	0328144	
	Cadmium	0.091	U U		+/-0.091	0.052	0.400	6020	3/28/2014	14.13	0328144	
	Chromium	0.180	U U		+/-0.180	0.021	1 000	6020	3/28/2014	14.13	0328144	
	Lead-				+/-0.120	0.120	0.500	6020	3/28/2014	14.13		
	Manganese	0.380	i		+/-0.120	0.120	2.000	6020	3/28/2014	14.13	()328144	
	Molyhdenum	0.310	ì		+/-0 280	0.720	2.000	6020	3/28/2014	14.12	0328144	
	Selenium	1,100	()		+/-1 100	1 100	2.000	6020	3/28/2014	14.13	032814A	
	Thallium	0.050	U U		+/-0.050	0.050	0.200	6020	3/28/2014	14-13	0328144	
	mannum	0.020	U		TI-0.000	0.050	0.200	0020	312012V14	14.13	032014A	

Dissolved Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Beazer East, Inc.			SDG No.: J1402025		
Contract: OM-0450-14	Lab Code:	ALJCK	Case No.:	SAS No.:	DIN RUSSING REALIZING CONTINUE CONTINUE CONTINUE
ICS Source:	II. LILLANDIARTY (EDBOMA)	Instrument ID:	PE Optima ICP		

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number
ICSA									
ICSA	Aluminum	753000	750000	100	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Iron	668000	750000	89	80 - 120%	6010B	3/21/2014	18:19	032114A1
	Sodium	34			0.0 to 0.0	6010B	3/21/2014	18:19	032114A1
ICSAB									
	Aluminum	766000	752000	102	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Iron	677000	752000	90	80 - 120%	6010B	3/21/2014	18:27	032114A1
	Sodium	11200	10000	112	80 - 120%	6010B	3/21/2014	18:27	032114A1
ICSA									
	Aluminum	757000	750000	101	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Iron	667000	750000	89	80 - 120%	6010B	3/22/2014	01:21	032114A1
	Sodium	28			0.0 to 0.0	6010B	3/22/2014	01:21	032114A1
ICSAB								i.	
	Aluminum	770000	752000	102	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Iron	678000	752000	90	80 - 120%	6010B	3/22/2014	01:29	032114A1
	Sodium	11400	10000	114	80 - 120%	6010B	3/22/2014	01:29	032114A1
ICSA									
	Antimony	0.2			-2.0 to 2.0	6020	3/26/2014	23:23	032614B
	Arsenic	-0.5			-2.0 to 2.0	6020	3/26/2014	23:23	032614B
	Beryllium	0.024			-1.000 to 1.000	6020	3/26/2014	23:23	032614B
	Cadmium	0.1			-0.8 to 0.8	6020	3/26/2014	23:23	032614B
	Chromium	1.1			-2.0 to 2.0	6020	3/26/2014	23:23	032614B
	Lead	-0.2			-1.0 to 2.0	6020	3/26/2014	23:23	032614B
	Manganese	0.4			-4.0 to 4.0	6020	3/26/2014	23:23	032614B
	Molybdenum	1100.0	1000.0	110	80 - 120%	6020	3/26/2014	23:23	032614B
	Selenium	0.1			-4.0 to 4.0	6020	3/26/2014	23:23	032614B
	Thallium	0.0			-0.4 to 0.4	6020	3/26/2014	23:23	032614B

211

Dissolved Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Be	eazer East, Inc.				SDG N	o.: J1402025				
Contract:	OM-0450-14		Lab Co	de: ALJCK	Case !	No.:	SAS No.:			
ICS Sourc	e:			Instru	ument ID: IC	P-MS				
	2009490502770500710702702762762767767667789		Saung-construction and statements and		*****		nya magang kanya kang dapat manak kanya di aming aming ang dapat kanya di kanya di kanya di kanya di kanya di k	manan anto ang ang ang		
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Method	Analysis Date	Analysis Time	Run Number	
ICSAB	4									
	Antimony	21.0	20.0	105	80 - 120%	6020	3/26/2014	23:28	032614B	
	Arsenic	21.7	20.0	108	80 - 120%	6020	3/26/2014	23:28	032614B	
	Beryllium	9.630	10.000	96	80 - 120%	6020	3/26/2014	23:28	032614B	
	Cadmium	7.6	8.0	95	80 - 120%	6020	3/26/2014	23:28	032614B	
	Chromium	22.1	20.0	110	80 - 120%	6020	3/26/2014	23:28	032614B	
	Lead	10.0	10.0	100	80 - 120%	6020	3/26/2014	23:28	032614B	
	Manganese	41.2	40.0	103	80 - 120%	6020	3/26/2014	23:28	032614B	
	Molybdenum	1150.0	1040.0	111	80 - 120%	6020	3/26/2014	23:28	032614B	
	Selenium	41.1	40.0	103	80 - 120%	6020	3/26/2014	23:28	032614B	
	Thallium	4.0	4.0	100	80 - 120%	6020	3/26/2014	23:28	032614B	
ICSA		·								
	Antimony	0.1			-2.0 to 2.0	6020	3/28/2014	13:52	032814A	
	Arsenic	0.5			-2.0 to 2.0	6020	3/28/2014	13:52	032814A	
	Beryllium	0.025			-1.000 to 1.000	6020	3/28/2014	13:52	032814A	
	Cadmium	0.3	i.		-0.8 to 0.8	6020	3/28/2014	13:52	032814A	
	Chromium	0.7			-2.0 to 2.0	6020	3/28/2014	13:52	032814A	
	Lead	0.1			-1.0 to 2.0	6020	3/28/2014	13:52	032814A	
	Manganese	0.3			-4.0 to 4.0	6020	3/28/2014	13:52	032814A	
	Molybdenum	1050.0	1000.0	105	80 - 120%	6020	3/28/2014	13:52	032814A	
	Selenium	1.0			-4.0 to 4.0	6020	3/28/2014	13:52	032814A	
	Thallium	0.0			-0.4 to 0.4	6020	3/28/2014	13:52	03 28 14A	
ICSAE	\$									
	Antimony	20.9	20.0	104	80 - 120%	6020	3/28/2014	13:57	032814A	
	Arsenic	20.7	20.0	104	80 - 120%	6020	3/28/2014	13:57	032814A	
	Beryllium	9.240	10.000	92	80 - 120%	6020	3/28/2014	13:57	032814A	
	Cadmium	8.1	8.0	101	80 - 120%	6020	3/28/2014	13:57	032814A	
	Chromium	21.7	20.0	108	80 - 120%	6020	3/28/2014	13:57	032814A	
	Lead	9.9	10.0	99	80 - 120%	6020	3/28/2014	13:57	032814A	
	Manganese	40.8	40.0	102	80 - 120%	6020	3/28/2014	13:57	032814A	
	Mołybdenum	1100.0	1040.0	106	80 - 120%	6020	3/28/2014	13:57	.032814A	
	Selenium	41.9	40.0	105	80 - 120%	6020	3/28/2014	13:57	032814A	
	Thallium	4.0	4.0	100	80 - 120%	6020	3/28/2014	13:57	032814A	
								A 1 A		

Dissolved Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Beaze	r East, Inc.		Bauchanneteran	SDG No.: J1402025								
Contract: ON	4-0450-14		Lab Code:	ALJCK	C	Case No.:		SAS No.:				
ICS Source:			Instrument ID:		ICP-MS		10.00.00.00.00.00.00.00.00.00.00.00.00.0					
		an manana an an an an an an an an an an an a			na an an an an an an an an an an an an a							
Sample ID	Analvte	Result ug/L	True Value ug/L	% Recoverv	Acceptan Window	ce Method	Analysis Date	Analysis Time	Run Number			

			M	E ATR)issolved M - 5a - IX SPIKE SI	etals UMM4	ARY				
Client: Beazer East, Inc.			Level: LOW			SDG No.:	J1402025	2011/02/01 D0222000/01 -01			
Contract:	Contract: <u>OM-0450-14</u> Matrix: WATER		Lab Code: ALJCK				Case No.:	SAS No.:			
Matrix:			Sample ID:	J14	J1402025-001		nt ID: GAIN	N-M-25A-031814S			
Percent Solids for Sample: 0.00		Spiked ID:	Spiked ID: J1402025-001S			Percent Solids for Spike Sample: 0.00					
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Mercury	ug/L	75 - 125	1.23		0.01	U	1.25	98		7470A	

			ኤ.«. / ምነጭ የጭ	D	issolved Me - 5a -	tals	ታ የ የ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ ይ	۲			
Client: Be	azer East, Ir		MAIRIX Level:	SPIR	LOW	- 1162	SDG No.:	<u>J1402025</u>			
Contract:	Contract: <u>OM-0450-14</u>		Lab Code: ALJCK		ALJCK	Case No.:		******	SAS	5 No.:	
Matrix:	WATE	2	Sample ID:	J1402025-001		Client ID: GAIN		N-M-25A-031814SD			
Percent So	lids for Sai	npie: 0.00	Spiked ID:	J14(02025-001SD	Percent Solids for Spike Sample:			e: 0.00		
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Mercury	ug/L	75 - 125	1.24		0.01	U	1.25	98		7470A	

.

			M	D ATRI	issolved M - 5a - X SPIKE SU	etals UMMA	ARY					
Client: Bea	zer East, In	C.	Level:		LOW		SDG No.:	J1402025				
Contract: <u>OM-0450-14</u>		Lab Code: ALJCK				Case No.:	SAS No.:					
Matrix:	WATER		Sample ID:		02025-002	Client ID: GAIN		N-M-36B-031814S				
Percent Sol	ids for San	nple: 0.00	Spiked ID:	J14()2025-002S	Per	cent Solids fo	r Spike Sample	e: 0.00		****	
Analyte	Units	Acceptance Límit %R	Spiked Result	C	Sample Result	С	Spike Added	% Recovery	Qual	Method	<u></u> ,	
Aluminum	ug/L	75 - 125	5230.000		110.000		5000	102		6010B		
Iron	ug/L	75 - 125	5800.000		753.000		5000	101		6010B		
Sodium	ug/L	75 - 125	32200.000		6770.000		25000	102		6010B		

			MATRIX	E SPII	issolved Me - 5a - KE DUPLICA	tals ATE S	SUMMARY	ł			
Client: Bea	izer East, In	с.	Level:		LOW		SDG No.:	J1402025			·
Contract: <u>OM-0450-14</u>		Lab Code: ALJCK		Case No.: SAS No.:			No.:				
Matrix: WATER		Sample ID:	314	02025-002	Client ID: GAIN-M-36B-031814SD						
Percent Sol	ids for Sar	n ple: 0.00	Spiked ID:	J14(02025-002SD	Per	cent Solids fo	r Spike Sample	e: 0.00	Normalasiya (Arasja Nakarazar Arabida)	ejaranistikarrarministrik (12
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method	
Aluminum	ug/L	75 - 125	5100.000		110.000		5000	100		6010B	
Iron	ug/L	75 - 125	5720.000		753.000		5000	99		6010B	
Sodium	ug/L	75 - 125	32200.000		6770.000		25000	102		6010B	

Dissolved Metals - 5a -MATRIX SPIKE SUMMARY

Client: Beaz	zer East, Inc.	Level:	LOW	SDG No.:	11402025
Contract:	OM-0450-14	Lab C	ode: <u>ALICK</u>	Case No.:	SAS No.:
Matrix:	WATER	Sample ID:	J1402025-007	Client ID: GAIN	I-HG-22D-031914S
Percent Soli	ds for Sample: 0.00	Spiked ID:	J1402025-007S	Percent Solids fo	r Spike Sample: 0.00
	-				

Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Antimony	ug/L	75 - 125	51.60		0.38		50.0	102		6020
Arsenic	ug/L	75 - 125	50.80		0.62		50.0	100		6020
Beryllium	ug/L	75 - 125	23.3		0.0	U	25.0	93		6020
Cadmium	ug/L	75 - 125	20.6		0.6		20.0	100		6020
Chromium	ug/L	75 - 125	52,40		0.55		50.0	104		6020
Lead	ug/L	75 - 125	24.60		0.12	U	25.0	98		6020
Manganese	ug/L	75 - 125	110.0		11.0		100.0	99		6020
Molybdenum	ug/L	75 - 125	106.00		1.82		100.0	104		6020
Selenium	ug/L	75 - 125	92.6		1.1	U	100.0	93		6020
Thallium	ug/L	.75 - 125	10.10		0.05	U	10.0	101		6020

Thallium

75 - 125

ug/L

10.20

			MATRIX	I SPII)issolved Me - 5a - KE DUPLICA	tals	SUMMAR	Y		
Client: Bea	zer East, In	с.	Level:		LOW		SDG No.:	J1402025		
Contract:	<u>OM-045</u>	0-14	Lab Code: ALJCK		Case No.:		SAS No.:			
Matrix:	WATER		Sample ID:	J14	102025-007	Client ID: GAIN-HG-22D-03			14SD	A LANA ATA AND AN A TATIS AN ANTINA
Percent Soli	ids for San	nple: 0.00	Spiked ID:	J14	02025-007SD	Per	cent Solids fo	r Spike Sample	: 0.00	
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Antimony	ug/L	75 - 125	52.10		0.38		50.0	103		6020
Arsenic	ug/L	75 - 125	51.40		0.62		50.0	102		6020
Beryllium	ug/L	75 - 125	23.5		0.0	U	25.0	94		6020
Cadmium	ug/L	75 - 125	20.9		0.6		20.0	102		6020
Chromium	ug/L	75 - 125	52.90		0.55		50.0	105		6020
Lead	ug/L	75 - 125	24.90		0.12	U	25.0	100		6020
Manganese	ug/L	75 - 125	120.0		11.0		100.0	109		6020
Molybdenum	ug/L	75 - 125	106.00		1.82		100.0	104		6020
Selenium	ug/L	75 - 125	94.4		1.1	U	100.0	94		6020

0.05

U

10.0

102

6020
Dissolved Metals - 5b -POST DIGEST SPIKE SUMMARY

		1001010101			
Client: Beaz	er East, Inc.		SDG No.:	J1402025	-
Contract:	OM-0450-14	Lab Code: ALJO	CK Case No.:	SAS No.:	
Matrix:	WATER	Level: LOW	Client ID: GAIN	M-25A-031814A	
Sample ID:	J1402025-001	Spiked ID: J140202	5-001A		
		Accentance Spiked	Samule Su	ike %	

Analyte	Units	Limit %R	Result	С	Result	С	Added	Recovery	Qual	Method	
Mercury	ug/L	75 - 125	4.94		0.0	1 U	5.00	99		7470A	

220

ug/L

ug/L

75 - 125

75 - 125

Iron

Sodium

Dissolved Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Beaz	er East, Inc.		•	SDG No.: <u>J1402025</u>						
Contract:	OM-0450-14]	Lab Code: ALJ	CK	Case	No.:		SASIN	io.:	
Matrix:	WATER	Level:	LOW		Clien	t ID:	GAIN-M-36B-	031814A		
Sample ID:	J1402025-002	Spiked	ID: J140202	25-002	A					
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Aluminum	ug/L	75 - 125	5270.000		110.000	0	5000	103		6010B

753.000

6770.000

5000

25000

101

103

6010B

6010B

5800.000

32400.000

221

Dissolved Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Beaz	er East, Inc.		SDG No.:
Contract:	OM-0450-14	Lab Code: <u>ALJCK</u>	Case No.: SAS No.:
Matrix:	WATER	Level: LOW	Client ID: GAIN-HG-22D-031914A
Sample ID:	J1402025-007	Spiked ID: J1402025-007A	

Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Qual	Method
Antimony	ug/L	75 - 125	51.00		0.38		50.0	101		6020
Arsenic	ug/L	75 - 125	50.70		0.62		50.0	100		6020
Beryllium	ug/L	75 - 125	24.00		0.03	U	25.0	96		6020
Cadmium	ug/L	75 - 125	21.20		0.57		20.0	103		6020
Chromium	ug/L	75 - 125	52.00		0.55		50.0	103		6020
Lead	ug/L	75 - 125	24.80		0.12	U	25.0	99		6020
Manganese	ug/L	75 - 125	114.00		11.20		100.0	103		6020
Molybdenum	ug/L	75 - 125	105.00		1.82		100.0	103		6020
Selenium	ug/L	75 - 125	97.40		1.10	U	100.0	97		6020
Thallium	ug/L	75 - 125	10.30		0.05	U	10.0	103		6020

·			DUPLIC	Dissol	ved Metals - 6 - AMPLE SUN	, Mmary	,				
Client: Bea	zer East, Inc.		Level:	LC	W	SDG N	No.: J <u>14(</u>	02025			
Contract:	<u>OM-0450-14</u>		Lab Code: <u>ALJCK</u>			Case N	Case No.: SAS No.:			M77581.071	
Matrix: WATER			Sample ID: <u>J1402025-007S</u>				Client ID: GAIN-HG-22D-031914SD				
Percent Soli	ids for Sample	: 0.00	Duplicate ID: J1402025-007SD			Percei	Percent Solids for Duplicate: 0.00				
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method		
Antimony	ug/L	0 - 30	51.60		52.10		1	····	6020		
Arsenic	ug/L	0 - 30	50.80		51.40		1		6020		
Beryllium	ug/L	0 - 30	23.3		23.5		1		6020		
Cadmium	ug/L	0 - 30	20.6		20.9		1	н. Н	6020		
Chromium	ug/L	0 - 30	52.40		52.90		1		6020		
Lead	ug/L	0 - 30	24.60		24.90		1	•	6020		
Manganese	ug/L	0 - 30	110.0		120.0		9		6020		
Molybdenum	ug/L	0 - 30	106.00		106.00		0	:	6020		
Selenium	ug/L	0 - 30	92.6		94.4		2		6020		
Thallium	ug/L	0 - 30	10.10		10.20		1		6020		

			DUPLIC	Disso. CATE S	lved Metals -6- SAMPLE SUI	MMARY	č			
Client: Be	eazer East, Inc.	·····	Level:	Level: LOW			No.: J <u>14</u>	02025		
Contract:	<u>OM-0450-14</u>		Lab Cod	e: <u>A</u> l	LJCK	Case	No.:		SAS No.:	
Matrix:	WATER		Sample ID:	J1402	2025-0018	Clien	t ID: GAI	N-M-25A-03	1814SD	
Percent So	olids for Sample	e: 0.00	Duplicate ID	: J14020	025-001SD	Perce	nt Solids fo	or Duplicate	: 0.00	
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method	
Mercury	ug/L	0 - 30	1.23		1.24		1		7470A	

			DUPLIC	Disso Cate 9	lved Metals -6- SAMPLE SUN	AMARY	Ż			
Client: Ber	azer East, Inc.	- · · · · · · · · · · · · · · · · · · ·	Level:	LC	<u>w</u>	SDG I	No.: J <u>14</u>	02025		
Contract:	<u>OM-0450-14</u>		Lab Code	e: <u>A</u>	JCK	Case	Vo.:	FARMENT STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED	SAS No.:	
Matrix:	WATER		Sample ID:	J140	2025-0028	Client	ID: GAIN	I-M-36B-03	1814SD	
Percent Solids for Sample: 0.00			Duplicate ID: J1402025-002SD			Perce	: 0.00			
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	Method	
Aluminum	ug/L	0 - 30	5230.000		5100.000		3		6010B	
Iron	ug/L	0 - 30	5800.000		5720.000		1		6010B	
Sodium	ug/L	0 - 30	32200.000		32200.000		0		6010B	

Dissolved Metals - 7 -LABORATORY CONTROL SAMPLE SUMMARY

Client: Beazer East, Inc.			100 ¹ - 1121 - 1122 -			SDG No.: J1402025				
Contract: OM-0450-14		Lab Co	Lab Code: ALJCK		Case No.:		SAS No.:			
Aqueous	s LCS Source: In	organic Vent	ures		Solid	LCS Source:		anna vezzarza menemen konstruktiva konstruktiva sete a sete sete sete sete sete sete s		
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method		
LCS-0211	13-01			*****		*********				
	Mercury	ug/L	1.25	1.25		100	80.0 - 120.0	7470A		
								*		
	*									

Dissolved Metals -7-LABORATORY CONTROL SAMPLE SUMMARY

Chem: E	Deazer East, Inc.					SING NO.: JI	404043		
Contract	: OM-0450-14		Lab Co	de: ALJCK		Case No.:	ANSWERSTON	SAS No.:	
Aqueous	LCS Source: Hig	gh Purity ST	Ds		Solid 3	LCS Source:			
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method	
LCS-0213	0-01					104	00.0.100.0	601.0D	
	Aluminum	ug/L	5000	5210		104	80.0 - 120.0	6010B	
	fron	ug/L	5000	2020		101	80.0 - 120.0	GULUB	
	Soaium	ug/L	25000	25600		102	80.0 - 120.0	6010B	
	,								
	-								
							····· · ····· ····· · ···· · ····· · ····	· · · · · · · · · · · · · · · · · · ·	

Dissolved Metals -7-LABORATORY CONTROL SAMPLE SUMMARY

Client: Beazer East, Inc.			25425CondSon42722825000000000000000000000000000000000			SDG No.: J1	402025		
Contrac	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:		SAS No.:	
Aqueous	s LCS Source: Ino	rganic Venti	ares		Solid	LCS Source:			
Sample ID	Analyte	Units	True Value	Result	с	% Recovery	Acceptance Limits	Method	
LCS-0213	3-03	CA3-44-49-10-1-89-004095400095400400							
	Antimony	ug/L	50.0	52.4		105	80.0 - 120.0	6020	
	Arsenic	ug/L	50.0	52.1		104	80.0 - 120.0	6020	
	Beryllium	ug/L	25.0	25.1		100	80.0 - 120.0	6020	
	Cadmium	ug/L	20.0	19.8		99	80.0 - 120.0	6020	
	Chromium	ug/L	50.0	50.9		102	80.0 - 120.0	6020	
	Lead	ug/L	25.0	27.1		108	80.0 - 120.0	6020	
	Manganese	ug/L	100.0	104.0		104	80.0 - 120.0	6020	
	Molybdenum	ug/L	100.0	103.0		103	80.0 - 120.0	6020	
	Selenium	ug/L	100.0	100.0		100	80.0 - 120.0	6020	
	Thallium	ug/L	10.0	10.5		105	80.0 - 120.0	6020	

Dissolved Metals -7-LABORATORY CONTROL SAMPLE SUMMARY

Client: Beazer East, Inc.				SDG No.: J1402025										
Contrac	t: OM-0450-14		Lab Co	de: ALJCK		Case No.:	NALIYO MANDALIYA KANA		Solid	LCS Source:				
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	Method						
LCS-0225	58-01		1000 AVIII - CALINA CONTRACTOR AND A TAXANO AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A CALINA AND A											
	Antimony	ug/L	50.0	52.3		105	80.0 - 120.0	6020						
	Arsenic	ug/L	50.0	51.2		102	80.0 - 120.0	6020						
	Beryllium	ug/L	25.0	24.2		97	80.0 - 120.0	6020						
	Cadmium	ug/L	20.0	20.7		104	80.0 - 120.0	6020						
	Chromium	ug/L	50.0	52.3		105	80.0 - 120.0	6020						
	Lead	ug/L	25.0	25.7		103	80.0 - 120.0	6020						
	Manganese	ug/L	100.0	107.0		107	80.0 - 120.0	6020						
	Mołybdenum	ug/L	100.0	105.0		105	80.0 - 120.0	6020						
	Selenium	ug/L	100.0	101.0		101	80.0 - 120.0	6020						
	Thallium	ug/L	10.0	10.2		102	80.0 - 120.0	6020						

Dissolved Metals

- 9 -

SERIAL DILUTION SAMPLE SUMMARY

Client: Beazer East. Inc.			 .			S	DG No.: <u>J1</u>	1402025	
Contract:	O <u>M-0450-14</u>			Lab Code:	ALJCK	С	ase No.:		SAS No.:
Matrix:	WATER	Level:	LO	W		Client ID:	GAIN-H	G-22D-031914L	
Sample ID:	J1402025-007					Serial Dilu	tion ID: J14	402025-007L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Analyte	Initial Result ug/L	С	Serial Result ug/L	С	% Difference	Qual	Acceptance Limits	Method	
Antimony	0.38		0.16	U	100.0		10.00 %	6020	
Arsenic	0.623		0.420	U	100.0		10.00 %	6020	
Beryllium	0.032	U	0.032	U			10.00 %	6020	
Cadmium	0.570		0.730	i	28		10.00 %	6020	
Chromium	0.547		0.180	U	100.0		10.00 %	6020	
Lead	0.120	U	0.120	U			10.00 %	6020	
Manganese	11.200		12.200		9		10:00 %	6020	
Molybdenum	1.820		3.400	i	87		10.00 %	6020	
Selenium	1.100	U	1.100	U			10.00 %	6020	
Thallium	0.050	U	0.050	U			10.00 %	6020	

Dissolved Metals

- 9 -

SERIAL DILUTION SAMPLE SUMMARY

Client: Bea	zer East, Inc.					5	SDG No.:	J <u>1402025</u>	
Contract:	OM-0450-14		La	b Code	: ALJCK		Case No.:		SAS No.:
Matrix:	WATER	Level:	LOW			Client ID:	GAIN	-M-25A-031814L	
Sample ID:	J1402025-001					Serial Dil	ution ID:	J1402025-001L	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 - 199
Analyte	Initiał Result ug/L	С	Serial Result ug/L	С	% Difference	Qual	Acceptan Limits	nce Method	
Mercury	0.01	U	0.01	U			10.00 %	6 7470A	,

.

Dissolved Metals

- 9 -

SERIAL DILUTION SAMPLE SUMMARY

Client: Beazer East, Inc. SI					DG No.: J	1402025			
Contract:	O <u>M-0450-14</u>		Lat	o Code:	ALJCK	С	ase No.:		SAS No.:
Matrix:	WATER	Level:	LOW			Client ID:	<u>GAIN-M</u>	1-36B-031814L	
Sample ID:	J1402025-002					Serial Dilu	tion ID: J1	402025-002L	
Analyte	Initial Result ug/L	Se Ri C u	erial esult g/L	C	% Difference	Qual	Acceptance Limits	Method	
Aluminum	110.000	134	4.000	I	21.8		10.00 %	6010B	
iron	753.000	820	5.000		9.7		10.00 %	6010B	
Sodium	6772.000	692	5.000		2.3		10.00 %	6010B	

Dissolved Metals - 10 -METHOD DETECTION LIMITS

Client	Client: Beazer East, Inc.		SDG No.: J <u>1402025</u>						
Contr	act: 0 <u>M-0450-14</u>	Lab Code	: A <u>LJCK</u>	Case No.:	SAS No.:				
	Analyte	Wave- length (nm)	MDL ug/L	MRL ug/L					
Cetac Hg A	Analyzer Mercury	253.70	0.012	Date: 1/11/2012 0.100					
ICP-MS				Date: 1/20/2012					
	Antimony	123	0.16	1.00					
	Arsenic	75	0.42	1.00					
	Beryllium	9	0.032	0.50					
	Cadmium	114	0.09	0.40					
	Chromium	52	0.18	1.00					
	Lead	208	0.12	0.50					
	Manganese	55	0.12	2.00					
	Molybdenum	98	0.28	2.00					
	Selenium	78	1.10	2.00					
	Thallium	205	0.050	0.20					
PE Optima	a ICP		·	Date: 2/3/2012					
	Aluminum	308.215	11.00	100.00					
	Iron	273.955	2.50	100.00					
	Sodium	589.592	29.00	500.00					

Dissolved Metals - 12 -LINEAR RANGES

Client: Beazer East	, Inc.	inte		SDG No.:	J14020 <u>25</u>		
Contract: OM-045	60-14	Lab Code:	ALICK	Case No.:		SAS No.:	
Instrument ID:	I <u>CP-MS</u>			Date: 12/3	1/2013		

Analyte	Integration Time (sec)	LDR ug/L		
Antimony	15.00	5000		
Arsenic	15.00	5000		
Beryllium	15.00	3000		
Cadmium	15.00	2500		
Chromium	15.00	5000		
Lead	15.00	5000		
Manganese	15.00	5000		
Molybdenum	15.00	5000		
Selenium	15.00	5000		
Thallium	15.00	5000		

Dissolved Metals - 12 -LINEAR RANGES

Client: Beazer East	, Inc.		SDG No.:	J1402025		Selection and the second second second second second second second second second second second second second s
Contract: OM-045	0-14	Lab Code: ALICK	Case No.:	NorthBookstoterstoterstoterstoterstoter	SAS No.:	
Instrument ID:	PE Optima ICP		Date: 12/3	31/2013		
			200 Million			

Analyte	Integration Time (sec)	LDR ug/L	
Aluminum	5.00	1000000	
lron	5.00	1200000	
Sodium	5.00	500000	

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Eas	t, Inc.		SDG N	lo.: J1402025			
Contract: OM-045	50-14 Lab Code: AL	JCK	Metho Case N	d: <u>CV</u>	SAS No.:		
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204565						
MB-02113-02	MB-02113-02	MB	WATER	3/20/14	40.0	40.0	
LCS-02113-01	LCS-02113-01	LCS	WATER	3/20/14	40.0	40.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/20/14	40.0	40.0	
J1402025-001S	GAIN-M-25A-031814S	MS	WATER	3/20/14	40.0	40.0	
J1402025-001SD	GAIN-M-25A-031814SD	MSD	WATER	3/20/14	40.0	40.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/20/14	40.0	40.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/20/14	40.0	40.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/20/14	40.0	40.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/20/14	40.0	40.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/20/14	40.0	40.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/20/14	40.0	40.0	

236

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Eas	t, Inc.		SDG N	o.: J1402025			
Contract: OM-045	0-14 Lab Code: A	ALJCK	Metho Case N	1: <u>P</u>	SAS No.:		******
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204591						
MB-02130-02	MB-02130-02	MB	WATER	3/21/14	50.0	50.0	
LCS-02130-01	LCS-02130-01	LCS	WATER	3/21/14	50.0	50.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002S	GAIN-M-36B-031814S	MS	WATER	3/21/14	50.0	50.0	
J1402025-002SD	GAIN-M-36B-031814SD	MSD	WATER	3/21/14	50.0	50.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/21/14	50.0	50.0	

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

Client: Beazer Ea	ist, Inc.		SDG No.: J1402025				
Contract: OM-0450-14 Lab Code:		ALJCK	Metho	Method: MS			
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent Solids
Batch Number:	204595						
MB-02133-04	MB-02133-04	MB	WATER	3/21/14	50.0	50.0	
LCS-02133-03	LCS-02133-03	LCS	WATER	3/21/14	50.0	50.0	
J1402025-001	GAIN-M-25A-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-002	GAIN-M-36B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-003	GAIN-HG-24S-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-004	GAIN-M-25B-031814	SAM	WATER	3/21/14	50.0	50.0	
J1402025-005	GAIN-HG-33S-031914	SAM	WATER	3/21/14	50.0	50.0	
J1402025-006	GAIN-HG-34S-031914	SAM	WATER	3/21/14	50.0	50.0	

Dissolved Metals - 13 -SAMPLE PREPARATION SUMMARY

1990 - C.

Client: Beazer E	ast, Inc.		SDG N	io.: J1402025	: J1402025				
Contract: OM-0	1450-14 Lab Code:	ALJCK	Method: <u>MS</u>		SAS No.:				
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Final Sample Volume (mL)	Percent		
Batch Number:	204900								
MB-02258-02	MB-02258-02	MB	WATER	3/26/14	50.0	50.0			
LCS-02258-01	LCS-02258-01	LCS	WATER	3/26/14	50.0	50.0			
J1402025-007	GAIN-HG-22D-031914	SAM	WATER	3/26/14	50.0	50.0			
J1402025-007S	GAIN-HG-22D-031914S	MS	WATER	3/26/14	50.0	50.0			
J1402025-007S	D GAIN-HG-22D-031914SD	MSD	WATER	3/26/14	50.0	50.0			

Dissolved Metals 14

ANALYSIS RUN LOG

Client: <u>Beazer East</u>	, Inc.						Coi	ntr	aci	L: .			OM	-0	45)-:	14										
Lab Code: ALJCK		Case	No.:					SA	s i	No.	;						s	DG	No	۰.:		Jl	40:	20:	25		
Instrument ID Number:	PE O	otima	ICP				Me	th	od:		P				1	Rur	n N	uml	oer	::	(032	211	4A	1		
Start Date: 3/21/201	.4							E	Ind	Da	ite	:	3/:	22,	/2()14	4										
لاطغ	[R	<u> </u>											1 5 7 1	-00					<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						<u> </u>
Sample	D/F	Time	8 R	Ì		1.	<u> </u>	-							-1			++				1,	1.7	<u>,</u>	177	177	
No.				A L	B	A S	A	E	D	C A	R	0	ΰ	E	B	M G	M N	н G	N I	r	E	G	A	L		N	N
CALIB BLANK	1.00	1741		X									T	x							İ		X				
CALIB STD 1	1.00	1746]	X										x							}	1	\mathbf{x}				
CALIB STD 2	1.00	1751		X				1						x									x				
CALIB STD 3	1.00	1755	Ì	x	[1	Ì]						x						Γ	1		X	[
CALIB STD 4	1.00	1758	[x				l						x									x				
ICV	1.00	1801	1	x		Ì		1						x						human	1	1	X			•	
ICB	1.00	1805		x			1	Ì	Ī					x							1	Ī.	X				
ZZZZZZ	1.00	1810			10-100000A	1			1					1						-	Ī	[
MRL	1.00	1815		x	ĺ	ĺ								x							Î	1	x				
ICSA	1.00	1819	· · ·	x		1	1	1	1					x						Γ	1	T	X				
ICSAB	1.00	1827	ļ	x				j	Ì					x		00000				Ī	1		X.				
CCV	1.00	1835	<u> </u>	x	<u>.</u>	1		İ	1					x						Ì	Ī	Ì	X				
ССВ	1.00	1839		x	1	1		ĺ						x							1	1	x	Ī			
ZZZZZZ	2.00	1844		İ	1	1		l	Ì										6/////	T	1	1	İ	[1	
ZZZZZ	5.00	1852	1	1		1	[1	Ì									1		\Box	1	1	Ì			1	
ZZZZZ	2.00	1857	}	Ì		1		1	1								ĺ			T	$\overline{1}$	1	1				Γ
ZZZZZZ	1.00	1905		1			1		1												1	Ī	ļ		[
ZZZZZ	1.00	1910		†	1	1	[1	1									l		Ī	1	Ī	Ì]		Í	
ZZZZZZ	1.00	1914		1	<u> </u>			1	Ī								[Ī	1	Ī	Ì				
ZZZZZ	1.00	1923	1	1	1	1	1	1	1					İ						T	1	Î	Ì				
ZZZZZZ	1.00	1928	1	1		1		1	1					Ì						Γ	1	T	1	1			
ZZZZZZ	1.00	1933	ļ	1			<u></u>	1	1					·				1		Ī	Ť	T			 	İ	Γ
ZZZZZ	1.00	1938	[1	1		ĺ	1	1		i –						Í			Ì	Ī	1	1				Ì
ccv	1.00	1942		X	1	1	Ì	Í	1					x				1					x				
ССВ	1.00	1946		x	Ì	1	1	1	İ					x						Γ	1	1	\mathbf{x}]		1	
ZZZZZZ	1.00	1951	1	1	1	1		1	1											Ī	1	Î	1			1	
ZZZZZZ	1.00	1955		1	Í	ŀ		Î	İ									[Ī	1	Ī	1		—	Î	Γ
22222	1.00	2000		1	Í				1					1		*******					1	Ī	1				
ŻZZZZZ	1.00	2005	1	1	1	1		1	l								Ē	1		Ī	1	l	Ī			Ī	Γ
222222	1.00	2010	1	Í		1		1	Ì]			+ 			<u> </u>		Γ	Ī	1	1	l	Ī			
	1.00	2015	1	1		Î	1	1			1	[1	for an annual sector	former	-		1			-	1
ZZZZZZ	1.00	2019	1	Ì	Ì	ļ	[Ì			1		ĺ			ļ				l	1					
ZZZZZ	1.00	2024		Ì	1	Í		<u>,</u>		laidaina bi	drietonie d o Contente			orrestantit	مىرىمۇتارمۇمۇر مەركەمۇتارمۇمۇر			and the state of t	li penpinanensi L	Annese A				0-11-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		Construction of the local data	Paparentes
ZZZZZZ	1.00	2029	- <u>h</u>	1	1	1			Ì	1									1	Γ	ŀ	1	Ī			1	Γ
ZZZZZZ	1.00	2034				1	**************************************		Î		[\square							Ì		1	Í	haarannoor		l	
ccv	1.00	2038	1	X	1			1	Î	 				x				Ì			Ī	1	X	Ì			

Client: <u>Beazer East</u>	:, Inc.				0.75 90.55	_	Coi	ntr	act	t:			OM	í-0	45)-:	4	<u> </u>	<u> </u>								
Lab Code: ALJCK		Case	No.:		-	-	SA	s I	No.	:	_					S	DG	No			J1	402	202	25	-0400.444		
Instrument ID Number:	PE Or	otima	ICP				Me	th	od:		P				ł	Run	N	umk	ser	::	C	32	11	4A	1		
at 7/21/201	4							T	قہ س	-			2/	 ' つ つ	121	11/	1										
Start Date: 3/21/201	- 4							£	'nQ	νe	te	:	57	<u> </u>	/ 2\	, , , , , , , , , , , , , , , , , , , ,	*			-							
EPA	[[1								******		Ana	lvt	ces			******		******						
Sample	D/F	Time	% R		s	A	B	B	l c	С	C	C	c	ਸ		м	м	ਸ	N	R	9	A	N	m	v	7	c
No.				L	в	s	A	E	D	A	R	0	U	E	B	G	N	G	I		Ē	G	A	L		N	N
	1.00	2042		$\frac{1}{x}$								-		x	; 								X				
ZZZZZZ	1.00	2047	[1	<u> </u>	<u> </u>	<u> </u>			 				^													
222222	1.00	2052	1	<u>†</u>	1	1	<u> </u> 	<u> </u>	1 	l	l		l						 								<u> </u>
ZZZZZZ	1.00	2057]	†			<u>.</u>				<u> </u>								,								<u> </u>
ZZZZZZ	1.00	2102	1	1	<u> </u>	L	I İ	L	(]	l	! 		L 														
ZZZZZZ	1.00	2106	<u>د</u>				 			 	i									 							
ZZZZZZ	1.00	2109	[<u> </u> .	 		<u>. </u>]	(]	 															
ZZZZZZ	5.00	2113		1		$\left \right $	1		-		<u> </u>																
222222	1.00	2117		 			i		<u>(</u>	l İ		<u> </u>	<u> </u>														_
ZZZZZZ	1.00	2121	1		\vdash			<u> </u>			 		L						I								
222222	1.00	2126	<u> </u> [- <u> </u>	 		1 1	1	I	1	l	I [<u> </u>
CCV	1.00	2130	1	x			1		<u> </u>		<u> </u>		<u> </u>	v									x				
ССВ	1.00	2134	1]		 	[<u>}</u>		 	i 	<u>!</u>		L	x									x				
ZZZZZZ	1.00	2138	<u> </u>	1			1			[[~1													
222222	1.00	2142	1	1	1	I 	i		<u> </u>	datementu 		<u> </u>	1							[]	[<u> </u>
ZZZZZZ	1.00	2146	<u> </u>	1		1	<u>L</u>	1	<u> </u>	 	 	 	I														
ZZZZZZ	1.00	2149		1		[<u>i</u>		<u> </u>	L	L	i 									[
ZZZZZZ	5.00	2153	<u> </u>	1		<u>{</u>]	1 		[<u>.</u> 		1														-
ZZZZZZ	1.00	2157	<u>.</u>	1	1	1	<u>k</u>	<u> </u>			l]															
ZZZZZZ	1.00	2201	<u> </u>	1	<u> </u>		<u> </u>	1												[L						
ZZZZZZ	1.00	2206	<u> </u>	[[]	1	1			1																·	
ZZZZZZ	1.00	2210					1		-				1						·								-
ZZZZZZ	1.00	2214	<u> </u>	\uparrow	<u> </u>	<u> </u>		}]		1														
CCV	1.00	2218		İx		1	1	1			l			x									x				
CCB	1.00	2222	1	x	 		1	<u> </u>			[x									X				
ZZZZZZ	1.00	2227		1	1	1	<u>.</u>	1	1		L	1					.,										—
ZZZZZZ	1.00	2232		1		1		1	1		 		1							[Γ
ZZZZZZ	1.00	2236	1	1	1	1		1]	!	1															
222222	1.00	2239		Î	1	1	1	1	1				1														
ZZZZZZ	5.00	2243	l.	1	1	l	1	1	1		Í	1								ļ							
ZZZZZZ	1.00	2247		1	1		Ì	<u> </u>	İ		 															\square	
ZZZZZZ	1.00	2251	*****	1	Í	1	ļ		-	Örtrantantor	1	Š	* 														
ZZZZZZ	1.00	2256	ļ	1		Ì		1	[<u></u>		•!]														
ZZZZZZ	1.00	2301		-			hannan		********		l										L						
ZZZZZZ	1.00	2306		ļ		1	Ì	1		ļ			İ														
ccv	1.00	2311	1	X	1	1	1	1	ĺ	 	[Ì		X									X				terrorponen.

Client: <u>Beazer Eas</u>	t, Inc.	073424774725-FF44342-FF44443					Co	ntr	ac	t:	a		OM	1-0	45	0-:	14									<u></u> _	w-
Lab Code: ALJCK		Case	No.:					SA	S	No.	:						S	DG	No	.:		<u>J1</u>	402	202	25		
Instrument ID Number:	PE OI	otima	ICP				Me	ath	od :		P				3	Rur	N	uml	oer	::	()32	11	4A.	i		
Start Date: 3/21/20	14							E	Ind	Da	ite	;	3/	22	/20	014	1		*******	Name				<u></u>		-	
202			1	1			det ni reni e							Ana	lv	tes								<u></u>		<u></u>	
Sample	D/F	Time	8 R	-	10	2	1 25	ъ	6	C	C	C	ام	-	- <u>1</u>	v	M	IJ	N	Tr	6	a	N		37	7	
No.				L	в	s	A	E	D	Ā	R	0	ט	E	в	G	N	G	I	1.1	E	G	A	I.		N	N
CCB		2314	1 T		1	-			<u> </u>			 		v								<u> </u>		<u> </u>			esteritate
7.7.7.7.7.7.7	1 00	2319	1				<u> </u> 			L									l		l [I	
222222	1 00	2323		1	1		1	<u> </u> 	<u> </u> 	1									<u> </u>		I I						
 ZZZZZZ	1 00	2323		+	<u> </u>						L		I						ļ	 	<u>I</u>		┝━╋				
2.7.7.7.7.7.	1 00	2321	<u> </u>		 	<u> </u>	L I			i	l I										 						
7.7.7.7.7.7	1 1 00	2335		+	<u> </u>		I]	ļ		1	L												<u> </u>				
222222	5.00	2338	<u> </u>			<u> </u>	<u> </u>				l I									 	<u> </u>		┢━━╋		 		,
7.7.7.7.7.7	1 00	2343	1	- <u> </u>	<u> </u>	<u> </u>	i	 	<u> </u>	l			L] 						<u> </u>		I		┝━╋				
7.7.7.7.7.7	1 00	2346	1			1	<u> </u> 				L									<u> </u>	I	[\vdash	l		1	
7.7.7.7.7.7.	1 00	2351	1	_	<u> </u>	<u> </u>	 	ļ	1	L]	l		L								L		 				
22222	1 00	2356	<u> </u>	1	<u> </u>	1	1	1	1 	i	l										L 1						
CCV	1 00	2350	1	Tx		I	<u>1</u>	1	<u> </u>		l			**							l	ļi			-+	-+	
ССВ	1 00	0002	1		<u> </u>	1	<u> </u>	1	<u> </u>	I	! 		[]	$\overline{\mathbf{v}}$							l]				 		
ZZZZZZ	1 00	0002		1	1		1	1		1	L			Â						<u> </u>	<u> </u> 					\neg	
222222	1 00	0013	1	<u> </u>	 	1	 		<u>}</u> 				[] 								<u>}</u>						
MB-02130-02	1.00	0017	1		<u> </u>	1		<u> </u>		L	l		1	~~							[
LCS-02130-01	1 00	0027	<u>}</u>		<u> </u>	1	<u> </u>	<u> </u>	1	<u> </u>	L	<u> </u>							<u> </u>		<u> </u>	l	x]			
GATN-M-25A-031814	1.00	0022			<u> </u>		1	1		 	L I		<u> </u>	$\hat{\overline{\mathbf{v}}}$					ļ	<u> </u>	<u> </u>	<u> </u>					
GATN-M-368-031814	1.00	0020	1		1	1	1	<u> </u>				<u> </u>		~					 		Į	[
GATN-M-368-0318145	1 00	0030					1	<u> </u>		[l		I						[<u> </u>						
GATN-M-36B-031814SD	1.00	0033	1		<u> </u>		<u> </u>	1	1	[[l		<u>~</u>					<u> </u>		<u> </u>	<u> </u>					
GATN-M-36B-031814T	5 00	0030	1			<u> </u>	I	<u> </u>	<u> </u>	 	<u> </u>	 								-	I	<u> </u>	x				
GATN-M-36B-031814A	1 00	0041	1		+	1	<u> </u>	1	<u> </u>	 	[]	L	<u> </u>	<u>~</u>							 	<u> </u>					
CCV	1.00	0040		x			L	<u> </u>		1	l		 								<u> </u> 		x				
CCB	1 00	0053	1	Tx		<u> </u>	<u> </u>		1	<u> </u>	[[]						L 	 	[<u> </u>					
GAIN-HG-24S-031814	1 00	0057	1	x		$\frac{1}{1}$	<u> </u>	<u> </u>		<u> </u>	<u> </u>		1	A V				[1	L	<u> </u>	x			\square	
GAIN-M-25B-031814	1.00	0102	<u>}</u>	x	1	1	<u> </u>	 	<u> </u>		l			r Y		 				<u> </u>	L	<u> </u>	X				
GAIN-HG-33S-031914	1 00	0107				[<u> </u> 	1		[]	(A V					 		1 		X				
GAIN-HG-34S-031914	1.00	0112		1x	1	-	 		+		i I	l 	 	 V					Ļ 		<u> </u>	<u> </u>	x	\neg			
GAIN-HG-22D-031914	1 00	0117	1	x	1		1			1	1.	 	[] 	~					l İ	<u> </u>	<u>1</u>	<u> </u>	x				
ICSA	1.00	0121	1	l x		+	L	-	ļ	-	 			~							[<u> </u>	X				
ICSAB	1.00	0129	1	x	1		<u> </u>	+		نب تب ا	 	ļ ļ		r V					<u> </u> 		<u> </u> 	\vdash	x				
CCV	1.00	0137		x		heren	Leanne	1			1			A Y					ļ		<u> </u>	<u> </u>					
L CCB	1 00	0141		1 X			Ļ	+	<u> </u>	<u>1</u> 	l 	ļ							l 	<u> </u>	<u> </u>	<u> </u>	x			\neg	
ССВ	1.00	0141		X			<u> </u>		<u> </u>	<u> </u>	[l []	<u> </u>	A X					 	[[]	1	 	x				

Client: <u>Beazer East</u>	, Inc.			3004-000-01/		m .	Cor	ntr	ac	t:			OM	í-0	45() — :	14							<u> </u>			-
Lab Code: ALJCK	****	Case	mounnan	unara cumun	amaarom		SÆ	s :	No.	:					. <u> </u>	S	DG	No	.:		<u>J1</u>	40:	202	:5			
Instrument ID Number:	Cetad	Hg A	nalyze	r			Me	the	od :		cv				I	Rur	N	uni	er	:	()32	41	4B			
Start Date: 3/24/201	.4				102201			E	Ind	Da	ate	:	3/	24	/20	014	1				_					-	
			£	T																						**********	
EPA	5/5	Mimo	6.0				÷							Ana	ly	tes	; 									······ •	
No.	υ/r	TTWG	0 K	A L	S B	A S	B A	B E	C D	C A	C R	с 0	c บ	F E	P B	M G	M N	H G	N I	ĸ	S E	A G	N A	T L	v	Z N	C N
Calibration Blank	1.00	1643		†	ļ	† –		1		ļ					İ			Х				İ			-		Santisteria I
Standard #1	1.00	1644			1													X									-
Standard #2	1.00	1645	1	1	1	1		1	1									x									
Standard #3	1.00	1647		1	1	1	1											X									
Standard #4	1.00	1648	1	1	İ	1		1	İ	1	([Í			X							İ		-i
Standard #5	1.00	1650		1	1	[[<u> </u>	! 							X									- j
Standard #6	1.00	1652	 	1	<u> </u>	1]		1		 					i		X			L						·
ICV	1.00	1654	1		\square	-								[x									— i
ICB	1.00	1656	I	1	ĺ	ĺ				[x				ł		 			-
MRL 0.1	1.00	1657		1		1		<u> </u>	Ì	ـــــــــــــــــــــــــــــــــــــ			[x									
MB-02113-02	1.00	1659]	1	1	<u> </u>	1		1	1			[x			L,,,, 					$\neg \uparrow$	
LCS-02113-01	1.00	1700		1	1													X									
GAIN-M-25A-031814	1.00	1701		1	1	1		i		<u>د المحمد المحمد المحمد المحمد المحمد المحمد المحم </u>			 					x			L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[]					
GAIN-M-25A-031814S	1.00	1702	<u> </u>				<u> </u> 		<u> </u>		<u> </u>							X			<u></u>	1		_			i
GAIN-M-25A-031814SD	1.00	1704	[i i	İ	1	<u> </u>	<u> </u>	<u> </u>	1	l							x				<u>}</u>					
GAIN-M-25A-031814A	1.00	1706	1	1	1			<u> </u>	<u> </u>	! 	L 		<u> </u>					x			 						
GAIN-M-25A-031814L	5.00	1708		1			I	<u> </u>			[]	L						x									
GAIN-M-36B-031814	1.00	1709	1	1			1	<u> </u>	1	<u> </u>	! 	i						х							\neg		
GAIN-HG-24S-031814	1.00	1710		1	1	 					 							x				<u> </u>					
GAIN-M-25B-031814	1.00	1711		1		1 [<u> </u>		\ 	<u> </u>	<u> </u>							x									¹
CCV-1	1.00	1712	1	1	1	1		<u> </u>	¦									x				[
CCB-1	1.00	1715	1	1		1			1									x									
GAIN-HG-335-031914	1.00	1716	1	1			1											x									
GAIN-HG-34S-031914	1.00	1717		1		[1	1	1				1			7		х			 				_		
GAIN-HG-22D-031914	1.00	1718	[1		1	!		1	1	i 		 					X									
ZZZZZZ	1.00	1719	1	1	[[1	1	<u> </u>	[ŀ														Ì
ZZZZZ	1.00	1720	1	1	1		1				! 																
ZZZZZZ	1.00	1722	1	1	1	1		1	1	1												ŀ					
ZZZZZ	1.00	1723	1	1	ŀ				1		[[[
ZZZZZZ	1.00	1725		1	1		<u> </u>	1	 												 	<u> </u>					
ZZZZZZ	1.00	1727	ļ	-	1			1	İ	<u>.</u>	1]															
ZZZZZZ	5.00	1728	1	1	1	<u>.</u>	l		1	1	<u>.</u>										 						лагниан
CCV-2	1.00	1730	1	1	1	ļ			Ì		<u>.</u>							X				Ì					
CCB-2	1.00	1732	<u></u>			<u>†</u>		<u> </u>	Ì	ŀ	l		-					X		a					{	\$	-
ZZZZZZ	1.00	1733		1	<u> </u>	<u></u>	<u>.</u>	<u>å</u>	1		L														\neg	T	-i
ZZZZZZ	1.00	1734		t	t	<u> </u>	<u>.</u>		1																	T	
the second secon	, I				ž		1	1	٤	J		ŧ	4								s	L				ł-	

Client: Beazer Eas	t, Inc.	Nazon - Pill-Bream - Jan			ini e li il e la mana	****	Co	ntr	ac	t:			OÞ	1 C	45	0-:	14	*****	~~~~~			10-mm-1)-000		****			
Lab Code: ALJCK		Case	No.:				_	SZ	s :	No.	:						S	DG	Nc	».:		<u>J</u> 1	40	202	25		
Instrument ID Number:	Ceta	c Hg A	nalyze	r			Me	eth	od:		cv					Rur	ı N	und	bei	::	(032	241	4B		<u> </u>	
Start Date: 3/24/202	1.4							F	Ind	Da	ite	:	3/	24	/2	01.	4										
EPA														Ana	ily	tes	5										
Sample No.	D/F	Time	* R	A L	S B	A S	B A	B E	С Д	C A	C R	с 0	с v	FE	P B	M G	M N	н G	N I	ĸ	S E	A G	N A	T L	v	Z N	C N
ZZZZZZ	1.00	1735		ļ				Ì					ļ	[-				İ	Ī						<u> </u>
ZZZZZZ	1.00	1736				[Î							1						1	1				Γ	Γ
ZZZZZZ	1.00	1737	ļ												1							Î					
ZZZZZ	1.00	1738		1				1	1												[1			Γ	
ZZZZZZ	1.00	1740		1																1	1				Ī		
ZZZZZZ	1.00	1741		1				ĺ						l						Ī						1	
ZZZZZZ	1.00	1742						Ī	l											1	1	1				Γ	
ZZZZZZ	1.00	1743						1						1	1					Ì	1	Ì					Γ
CCV-3	1.00	1745						ł									ŕ	X			1						
CCB-3	1.00	1747											[l				x		ĺ		Ĩ			Γ	1	-

Client: <u>Beazer Eas</u>	t, Inc.	our service and the second service of the second econd second second second second second second second	DEFENDENCE	04 0	Cor	ntr	ac	t:			OM	1-0	45	0-3	14										*****		
Lab Code: ALJCK	· · · · · · · · · · · · · · · · · · ·	Case	No.:				-	S₽	1S	No.	:						S	DG	No	. :		Jl	40	202	25		
Instrument ID Number:	ICP-N	AS					Me	the	od :		MS				J	Rur	N	umł	per	:	C)32	61	4B			
Start Date: 3/26/203	1.4				NACES OF COMPANY			E	Ind	Da	ate	:	3/	27	/2	014	1			-							
EPA				Ι										Ana	lv	tes								*******		070401611011	
Sample	D/F	Time	& R	-		N	12	120				~		Ter l		M	м	U	'n	R		Л	N	m	37	7	0
No.				L	B	s	A	E	D	A	R	0	σ	E	В	G	N	G	I	к	E	G	A	L	Y	N	N N
Cal Blank	1 00	2243	1			x		x	x	 	x				x	_	x			_	x			x			
Cal 1	1.00	2248	1	1	x	x	 	x	x	1	x			 	x		x				x			x			
Cal 2	1.00	2253			x	x	<u> </u>	x	x		x			 	x		x				x			x	┝─┤	\vdash	
Cal 3	1.00	2258	[x	x	<u>}</u>	x	x	<u> </u>	x				x		x				x			x		 	
Cal 4	1.00	2303	<u> </u>	1	x	x	l	x	x	1	x			[x		x				x			x	H		
ICV	1.00	2308	<u> </u>		x	X	<u>.</u>	X	X		X			<u> </u>	X		x		<u> </u>		x			X		┢╼╼╂	
ICB	1.00	2313	1	1	X	X		X	x]	x				x		x	·		 	X			X			
MRL	1.00	2318	1		x	x	I 	x	x	i 1	x				x		X				X			х			
ICSA	1.00	2323	[]	x	x]	X	x		X				х		X				x			x			
ICSAB	1.00	2328	1	<u> </u>	x	x		X	X	<u>}</u>	X				x		X				X			x			
CCV-1	1.00	2333	}	1	x	x	1	x	x		x				x		X				X			х			
CCB-1	1.00	2338		<u> </u>	x	x		x	x		X				x		X				X			x			
MB-02133-04	1.00	2343			x	x		x	x		x				x		X				x			х			
LCS-02133-03	1.00	2348	***	1	x	X	1	x	X		X				X		X				X			Х		\square	
ZZZZZZ	1.00	2353	1	Ì	ļ	ļ	1	1	İ																		
ZZZZZZ	1.00	2358	-	Î		1	Ì		Ī																		
ZZZZZZ	1.00	0003		1		1]							[
222222	1.00	0008		1	1		1			1																\square	,
GAIN-M-25A-031814	1.00	0013			X	X		X	X	[X				х		X				x			Х			
GAIN-M-36B-031814	1.00	0018		1	X	X	1	X	X		X				X		X				X			X		\square	
GAIN-HG-24S-031814	1.00	0023		1	X	X	1	х	X		x				х		х				х			Х		\square	
GAIN-M-25B-031814	1.00	0028			X	X		X	X		X				х		Х				x			Х			
CCV-2	1.00	0033			x	x		x	X		x				х		x				x			х			
CCB-2	1.00	0038	[X	X		X	X	Ĺ	x				X		X				X			X			
GAIN-HG-33S-031914	1.00	0043			X	X		Х	X		X				Х		Х				х			Х			
GAIN-HG-34S-031914	1.00	0049	1		x	x	L	X	x		X			L	Х		X				X			Х			į
222222	1.00	0054	1				L																				
ZZZZZZ	1.00	0059				Ļ																				\square	
ZZZZZZ	1.00	0104																									
ZZZZZZ	5.00	0109	-	-		ļ	L	ļ	Ļ	ĺ													Ļ				
ŻZZZZZ	1.00	0114			<u> </u>		L	ļ	L						machine											Щ	<u> </u>
ZZZZZZ	1.00	0119	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		ļ	<u> </u>		ļ					Ļ	ļ								Ļ				
ZZZZZZ	1.00	0124	<u> </u>		L	<u> </u>	ļ	ļ	ļ	ļ								,		j						ĻĹ	pr2+#7#***
ZZZZZZ	1.00	0129	<u> </u>	-			Ļ		-												أسي		Ļ		Ļ		
CCV-3	1.00	0134	ļ	<u> </u>	X	X	<u> </u>	X	X		X			<u> </u>	Χ		Х				X			Х	Ш	<u> </u>	;
CCB-3	1.00	0139		1	X	X		X	X		X				х		х				х			Х			

Client: Beazer East	t, Inc.	маритетериманитетири					Co	ntr	act	b:		KAN CHAIL	٥Ņ	10	45	0-	14			~~~~~~							MUTS
Lab Code: ALJCK		Case	No.:				-	SA	s i	No.	:						S	DG	No	.:		J1	40	202	25		
Instrument ID Number:	ICP-1	MS					Me	the	od:		MS		•		:	Rui	n N	um	ber		()32	:61	4B		_	
Start Date: 3/26/201	14							E	ind	Da	te	:	3/	27	/2	01	4										
EPA			[<i></i>									Ana	ly	tes	3							+			
Sample No.	D/F	Time	* R	A L	S B	A S	B A	B E	C D	C A	C R	С 0	C U	F E	P B	M G	M N	H G	N I	ĸ	S E	A G	N A	T L	V	Z N	C N
ZZZZZZ	1.00	0144		j				İ				İ									İ		İ				-
ZZZZZ	1.00	0149																Ì									
CCV-4	1.00	0154			х	x	1	x	X		x	1			Х		X				x		<u> </u>	х			
CCB-4	1.00	0159			x	x		X	X		х				X		X				X			X			

Client: Beazer East	;, Inc.		NUMBER OF COMPANY		*****	***	Cor	ntr	act	t:			OM	[0	45	01	14									LUNINGALISH	-	
Lab Code: ALJCK		Case	ase No.: SAS No.: SDG No.:									25			-													
Instrument ID Number:	ICP-1	MS					Me	th	od:	1	MS					Rur	ı N	umi	oer	::	()32	281	.4A				
Start Date: 3/28/201	.4							E	nd	Da	te	:	3/	28	/2	014	1			_	_							
EPA							P4300043						j	Ana	ly	tes	5	· · ·		<u></u>		worma wee						1
Sample	D/F	Time	& R	A	S	A	в	в	С	c	С	С	С	F	P	М	М	H	N	K	s	A	N	T	v	z	c	1
NO.				L	в	s	A	E	ם	A	R	0	σ	E	в	G	N	G	I		E	G	A	L		N	N	
Cal Blank	1.00	1312			x	x		X	X		Х		-		Х		X		İ	<u> </u>	x	Ì	Ì	X			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*
Cal 1	1.00	1317	1		x	x		x	X		X				X		X				x			X		Î		*
Cal 2	1.00	1322			х	х		х	х		х				х		X			1	x			X	\square		i	*
Cal 3	1.00	1327			x	x	j l	x	X		x				х		X				X	<u> </u>		X	\square			*
Cal 4	1.00	1332			х	x		х	X		x				Х		х		1	1	X	1	1	X		Î		*
ICV	1.00	1337			Х	X		X	X		X				x		х				X			X	\square			*
ICB	1.00	1342			X	х		x	X		X				х	Ì	х				X			X	Π			*
MRL.	1.00	1347			Х	X		X	X		x				х]	X				X			X			_	*
ICSA	1.00	1352			х	х		x	X		x				Х		X			[X	1	Ì	X				*
ICSAB	1.00	1357	1		х	X		X	X		х				x		Х				X			X				*
CCV-1	1.00	1402			х	х		х	x		х				x		Х				X	1	Ī	X			i	*
CCB-1	1.00	1408	1		x	x		x	X		x				х		X			1	X			X	\square			*
MB-02258-02	1.00	1413			x	х		X	X		x				Х		Х			1	x		1	X				*
LCS-02258-01	1.00	1418			х	x		x	X		х				X		X				X			X	Π			*
GAIN-HG-22D-031914	1.00	1423			х	x		x	X		х				X		X		[]	X]	[X				*
GAIN-HG-22D-031914S	1.00	1428	1		X	X		x	X		x				X		X				X	Γ		X				*
GAIN-HG-22D-031914S	1.00	1433	[X	х		х	x		x				X		X				X	ĺ	Į	X		Ī		*
GAIN-HG-22D-031914L	5.00	1438			х	x	}	x	X		X				X		X				X			X	\square			*
GAIN-HG-22D-031914A	1.00	1443	1		х	X		х	Х		Х				Х		Х		Ì		x	1	1	x	\square			*
ZZZZZZ	1.00	1448						Ì														[1	j j			í	İ
ZZZZZZ	1.00	1453	[1	l												Ī	1	-					Ì
ZZZZZZ	1.00	1458					1																1					Ì
CCV-2	1.00	1503	1		х	х		X	X		x				x		X				X	Γ	[x			\square	*
CCB-2	1.00	1508			х	х		X	X		x				Х		X				X			X	\square			*
ZZZZZZ	1.00	1513	1				5														1		1	1	\square			İ
ZZZZZZ	1.00	1518																			1							Ì
222222	5.00	1523	1				1	Ì		Í											1				\square		1	İ
ZZZZZZ	1.00	1528	1																	Π	Ī	[Ì]	\square			Ī
ZZZZZZ	1.00	1533					1	l													1	-						1
CCV-3	1.00	1538	1		х	х		Х	X		x				X		X	osowikato'			X	1		X				*
ССВ~3	1.00	1543			X	X		X	X		X			****	X		X				X			X	\square			4
222222	1.00	1548					1														-	[
ZZZZZZ	1.00	1553	Į						1													1					1	

Inorganic Analysis: <u>Metals</u>

Validation Package

Raw Data

Analytical Run Coversheet

Analyst:	Jordan Pauley	Data File ID:	032414C	LIMŞ Run #:	385022
Analysis:	Mercury	Method References:	245.1, 7470, 7471	Inst ID:	J-CVAA-01

	-/25/11SI	tandard's Trace	Numbers 3	23/14		
STD ID	Trace # 57	Exp Date	< STD ID J	Trace #	Exp Date	
Primary Working STD	Met13 - 668 E	3/21/14	Stannous Chloride	Smet 13-65H	3/27/14	and the second second
Secondary Working STD	I - 65F	3/27/14		·	7-11-	

Standard	Conc (ug/L)	LCL 245.1	UCL 245.1	LCL 7000	UCL 7000	
MRL	0.1	50%	150%	50%	150%	
UQL	10					
LCS / LCSD	1.25	85%	115%	80%	120%	
LCS1(low)	0.5	70%	130%	70%	130%	
MS / MSD	1.25	70%	130%	75%	125%	
Post Spike	5	85%	115%	80%	120%	
ICV	5	95%	105%	90%	110%	
CCV	5	90%	110%	80%	120%	
DUP (RPD)			20%		20%	
SerialDilution			10%		10%	

Comments

Reviewed By / Date:

249

N 3/25/14

MERCURY DATA REPORTED WITH FAILING CRITERIA

Data File ID: 032414C

Sample ID

Failure(s)

Analyst's Comments

ALS Environmental						Analy	/st:	Jordan Pauley			
Mercury Data S	umma	ry She	et			Instrument	:ID:	J-CVAA-01			
		Raw									
Sample ID	RPT	Conc (ug/L)	DF	UNITS	QC	Comment	Samp Type	Date	Time	Method	
Calibration Blank	Y	0.000	1	ug/L			ICAL	03/24/14	19:10:38		
Standard #1	Y	0.100	1	ug/L			ICAL	03/24/14	19:11:45		
Standard #2	Y	0.500	1	ug/L			ICAL	03/24/14	19:12:53		
Standard #3	Y	1.000	1	ug/L			ICAL	03/24/14	19:14:26		
Standard #4	Y	3.000	1	ug/L			ICAL	03/24/14	19:16:06		
Standard #5	Y	5.000	1	ug/L			ICAL	03/24/14	19:17:57		
Standard #6	Y	10.000	1	ug/L	/		ICAL	03/24/14	19:19:58		
ICV	Y	4.965	1	ug/L	99.3%		ICV	03/24/14	19:22:17		
ICB	Y	0.004	1	ug/L	ССВ ОК		ССВ	03/24/14	19:24:23		
MRL 0.1	Y	0.097	1	ug/L	97.0%		MRL	03/24/14	19:25:30		
MB-02159-02	Y	0.001	1	ug/L	мвок		MBLK	03/24/14	19:26:37		
LCS-02159-01	Y	1.220	1	ug/L	97.6%		LCS	03/24/14	19:27:44		
J1401837-002	Y	0.225	1	ug/L			SAMP	03/24/14	19:29:23	245 1 T	
J1401837-003	Y	0.189	1	ug/L			SAMP	03/24/14	19:30:30	245.1 T	
J1401881-001	Y	-0.037	1	ug/L			SAMP	03/24/14	19:31:38	245 1 T	
J1401916-001	Υ,	0.048	1	ug/L			SAMP	03/24/14	19:32:46	7470 T	
J1402025-001	Y	0.005	1	ug/L		·	SAMP	03/24/14	19.33.54	7470 T	
J1402025-002	Y	0.004	1	ug/L			SAMP	03/24/14	10.35.03	7470 T	
J1402025-003	Y	0.005	1	- ug/L			SAMP	03/24/14	19:36:12	7470 T	
J1402025-003MS	Y	1.232	1	ug/L	98.2%		MS	03/24/14	19:37:21	7470 T	
CCV-1	Y	5.021	1	ug/L	100.4%		CCV	03/24/14	19:39:01	11701	
CCB-1	Y	0.001	1	ug/L	ССВ ОК		CCB	03/24/14	19:41:03		
J1402025-003MSD	Y	1.226	1	ug/L	98% /		MSD	03/24/14	19:42:12		
J1402025-003PS	Y	4.933	1	ug/L	98.6%		PS	03/24/14	19:43:54	7470 T	
J1402025-003SD 5x	Y	0.000	5	ug/L	** ***		so	03/24/14	10.40.04	7470 T	
J1402025-004	Y	0.005	1	ua/L			SAMP	03/24/14	19:47:01	7470 T	
J1402025-005	Y	0.008	1	ua/L			SAMP	03/24/14	10:48:08	7470 1	
J1402025-006	Y	0.009	1	ua/L			SAMP	03/24/14	10.40.00	7470 T	
J1402025-007	Y	0.008	1	ug/L			SAMP	03/24/14	19:50:24	7470 T	
J1402037-001	Y	0.006	1	ua/L			SAMP	03/24/14	19.50.24	7470 T	
J1402066-001	Y	0.009	1	ua/L			SAMP	03/24/14	19:52:40	7470 T	
J1402066-002	Y	0.020	1	ua/L			SAMP	03/24/14	10.52.40	7470 T	
CCV-2	Y	5.034	1	ua/L	100.7%		CCV	03/24/14	10.50.40		
CCB-2	Y	-0.001	1	ua/L	CCB OK		000	03/24/14	10.56.55		
J1402066-003	Y	0.002	1	ua/L	•		SAMP	03/24/14	10.58.04	7470 7	
J1402066-004	Y	0.003	1	ua/L			SAMP	03/24/14	19.50.07	7 <i>47</i> 0 T	
J1402066-005	Y	0.005	1	ua/L			SAMP	03/24/14	20.00.23	7470 T	
J1402066-006	Ý	0.009	1	ua/L			SVIMI.	03/24/14	20.00.20	7470 T	
J1402066-007	Ý	0.008	1	 uo/l			CAMD	00/27117 03/04/14	20.01.32	7470 T	
J1402066-008	Y	0.008	1	ua/L			SAMD	03/24/14	20.02.08	7470 1	
CCV-3	Ŷ	5.011	1	 ua/1	100.2%		CCV	03/24/14	20:03:40	194101	
CCB-3	Ŷ	0.001	1	uo/i	CCBOK		007	03/34/44	20-08-55		

** RPD not calculated. Difference < 2 x MRL. ^^ % Rec. not calculated. Analyte concentration > 4 x Spike concentration

Report Generated By CETAC QuickTrace Analyst: JAXMet Worksheet file: J:\Mercury\Data\032414C JP 7470A 245.1.wsz Date Started: 1/26/2010 14:48:08 Comment:

Results

Sample Name	Type Date/Time	Conc µAbs (ppb)	%RSD Flags
Calibration Blank Replicates 23.1 25.9 13.1	STD 03/24/14 07:10:38 pm 10.7 16.2	0.000 18	36.51
Standard #1 Replicates 340.9 347.1 349.6	STD 03/24/14 07:11:45 pm 350.6 342.2	0.100 346	i 1.25
Standard #2 Replicates 1672.9 1692.1 1699.2	STD 03/24/14 07:12:53 pm 1699.5 1684.8	0.500 1690	0.66
Standard #3 Replicates 3354.1 3383.4 3410.7	STD 03/24/14 07:14:26 pm 3409.7 3392.4	1.000 3390	0.68
Standard #4 Replicates 9968.9 10051.3 10108.3	STD 03/24/14 07:16:06 pm 10129.8 10088.7	3.000 10069	0.63
Standard #5 Replicates 16756.7 16892.1 16992.1	STD 03/24/14 07:17:57 pm 17030.9 16935.5	5.000 16921	0.63
Standard #6 Replicates 32892.9 33145.5 33348.3	STD 03/24/14 07:19:58 pm 33450.2 33307.8	10.000 33229	0.65
Calibration Equation: A = 7.560 + 3393.750C + -0.007* R2: 0.99998 SEE: 67.7104 Flags:	35,000 30,000 25,000 25,000 15,000 15,000 0 2 2 Cor	4 6 8 ncentration (ppb)	
ICV Replicates 16514.8 16648.8 16747.3 % Recovery 99.30	ICV 03/24/14 07:22:17 pm 16803.9 16740.2	4.965 16691	0.68
\$/25/2014 11:00:40	032414C JP 7470A 245.1.wsz		252 Page I

Sample Name				Туре	Date/Time	Conc (ppb)	µAbs	%RSD	Flags
ICB Replicates	17.7	26.1	22.4	ССВ 17	03/24/14 07:24:23 pm .2 13.9	0.004	19	24.57	
MRL 0.1 Replicates % Recovery	335.2 96.88	332.3	334.6	CRDL 342	03/24/14 07:25:30 pm . .4 336.9	0.097	336	1.13	
MB-02159-02 Replicates	10.7	14.4	12.4	MB 10	03/24/14 07:26:37 pm .5 10.6	0.001	12	14.44	
LCS-02159-01 Replicates % Recovery	4094.2 97.58	4135.7	4154.5	LCS 4158	03/24/14 07:27:44 pm .3 4142.8	1.220	4137	0.62	
J1401837-002 Replicates	757.5	771.4	776.7	UNK 770	03/24/14 07:29:23 pm .4 770.5	0.225	769	0.92	
J1401837-003 Replicates	635.8	645.9	645.8	UNK 649	03/24/14 07:30:30 pm .5 659.0	0.189	647	1.28	
J1401881-001 Replicates	-115.7	-118.8	-111.2	UNK -118	03/24/14 07:31:38 pm 6 -127.8	-0.037	-118	5.12	
J1401916-001 Replicates	169.1	169.1	170.7	UNK 169	03/24/14 07:32:46 pm 3 166.3	0.048	169	0.95	
J1402025-001 Replicates	24.0	31.6	32.1	UNK 22	03/24/14 07:33:54 pm 6 14.3	0.005	. 25	29.51	
J1402025-002 Replicates	25.3	30.1	21.5	UNK 11.	03/24/14 07:35:03 pm 4 12.6	0.004	20	40.00	40 000000,0000,0000,0000,0000,0000,0000
J1402025-003 Replicates	14.9	24.1	29.3	UNK 25	03/24/14 07:36:12 pm 9 21.1	0.005	23	23.57	
J1402025-003S Replicates % Recovery	4137.7 98.23	4171.6	4198.3	MSK 4204.	03/24/14 07:37:21 pm 8 4186.6	1.232	4180	0.64	

3/25/2014 11:00:40

032414C JP 7470A 245.1.wsz

253 Page 2

Sample Name			T727251074/10010-000-000-000-000-000-000-000-000-0	Туре	Date/Time	Conc (ppb)	μAbs	%RSD	Flags
CCV-1 Replicates % Recovery	16717.3 100.41	16862.6	16953.2	CCV 16981	03/24/14 07:39:01 pm .2 16864.4	5.021	16876	0.61	
CCB-1 Replicates	7.0	10.1	13.4	CCB 16	03/24/14 07:41:03 pm .0 8.0	0.001	11	34.51	
J1402025-003SD Replicates % Recovery	4112.1 97.73	4148.7 RPD 199.68	4181.7	MSDUP 4186	03/24/14 07:42:12 pm 0 4165.4	1.226	4159	0.72	D
J1402025-003A Replicates % Recovery	16406.5 98.56	16540.8	16647.4	SPK 16695.	03/24/14 07:43:54 pm 3 16624.6	4.933	16583	0.68	
J1402025-003L Replicates	13.0	16.1	4.5	UNK 3.	03/24/14 07:45:54 pm 6 -4.0	0.000	7	120.47	
J1402025-004 Replicates	21.9	28.4	23.6	UNK 22.	03/24/14 07:47:01 pm 2 20.9	0.005	23	12.58	
J1402025-005 Replicates	36.0	38.0	40.4	UNK 35.	03/24/14 07:48:08 pm 4 24.8	0.008	35	17.10	
J1402025-006 Replicates	36.2	45.7	39.2	UNK 36.	03/24/14 07:49:16 pm 9 27.6	0.009	37	17.54	
J1402025-007 Replicates	31.7	41.1	43.9	UNK 35.	03/24/14 07:50:24 pm 9 22.7	0.008	35	23.79	
J1402037-001 Replicates	24.6	27.8	30.5	UNK 25.0	03/24/14 07:51:32 pm 6 25.1	0.006	27	9.18	
J1402066-001 Replicates	33.9	44.0	38.3	UNK 36.0	03/24/14 07:52:40 pm D 31.1	0.009	37	13.27	
J1402066-002 Replicates	72.9	74.1	78.5	UNK 79.4	03/24/14 07:53:49 pm 4 72.2	0.020	75	4.37	

3/25/2014 11:00:40

032414C JP 7470A 245.1.wsz

254 Page 3

Sample Name				Type Date/Time	Conc (ppb)	µAbs	%RSD	Flags
CCV-2 Replicates % Recovery	16754.9 100.69	16887.8	16993.4	CCV 03/24/14 07:54: 17042.2 16928.0	57 pm 5.034	16921	0.65	ан түрөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөөн түрөө
CCB-2 Replicates	9.5	3.8	8.9	CCB 03/24/14 07:56: 3.8 -3.2	55 pm -0.001	5	111.59	
J1402066-003 Replicates	10.2	18.1	18.5	UNK 03/24/14 07:58: 15.5 7.0	04 pm 0.002	14	36.61	
J1402066-004 Replicates	18.0	22.5	21.3	UNK 03/24/14 07:59: 16.8 18.3	13 pm 0.003	19	12.22	
J1402066-005 Replicates	24.0	24.7	24.7	UNK 03/24/14 08:00:: 29.8 27.5	23 pm 0.005	26	9.38	
J1402066-006 Replicates	33.9	35.3	39.6	UNK 03/24/14 08:01:3 38.8 39.9	32 pm 0.009	38	7.22	
J1402066-007 Replicates	43.3	39.8	39.6	UNK 03/24/14 08:02:3 31.7 23.8	39 pm 0.008		22.03	
J1402066-008 Replicates	34.6	36.4	38.5	UNK 03/24/14 08:03:4 36.5 32.3	46 pm 0.008	36	6.54	нанина инслитентика (1999) (1999)
CCV-3 Replicates % Recovery	16670.1 100.23	16809.9	16918.8	CCV 03/24/14 08:04:6 16964.1 16862.7	54 pm 5.011	16845	0.68	
CCB-3 Replicates	14.9	12.4	10.8	CCB 03/24/14 08:06:5 9.4 10.8	55 pm 0.001	12	17.98	nn a real an ann ann ann ann ann ann ann ann an

255----

Page 4
Analysis ICP-AES Method References: 200.7/6010 Inst ID: J-ICP-AES- STD 40 Trace # Exp Date STD 40 Trace # Exp Date STD 40 Trace # Exp Date STD 40 Trace # Exp Date STD 40 Trace # Exp Date STD 40 Trace # Exp Date STD 40 Trace # Exp Date STD 40			<u> </u>			WWW.dth-thatmaserrenzewww.www.						<u> </u>
Standard's Trace Numbers STD 10 Trace Numbers ICAL-1 Vict +17-70.6 Standard's Trace Numbers ICAL-1 Vict +17-70.6 Standard's Trace Numbers ICAL-2 Y ICSA TTA Standard Standard's Trace Numbers ICAL-3 CV ICSA TTA Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentrations and Ranges Standard Concentration	Analysis:	ICP-	-AES		Method R	eferences:		200.7 / 601	0	Inst ID:	J-ICP-	AES-01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STI	ai c	Tra	ice#	Sta Exp	indard's Ti Date	race Numl	bers DID	Tra	<u>ce #</u>	Exa	Data
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICA	L-1	Met.17	-80A	11-3	-14	INT	STD	1940+17	.79B	EAP	-1U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICA	\L-2		B			IC	SA .	The sector	-77A	5-9	-14
ICAL-4 D Blank / Diluent N SO(5) 3-6-15 ICV Mill-17-78B 3-721-14 Standard Concentrations and Ranges Ag Oot 5 0.5 0.5 0.5 0.5 0.7 ICSA ICSAB Units Ag 0.01 5 0.5 0.5 0.5 0.05 0.2 mg/L As 0.01 40 1 0.5 0.5 0 0.2 mg/L B 0.06 200 4 2 0.5 0.5 0 0.2 mg/L Be 0.04 8 0.5 0.2 0.0 mg/L Ca 0.1 3500 80 5 750 0.5 0 0.2 mg/L Cd 0.005 15 0.4 0.25 0.5 0 0.2 mg/L Cd 0.01 100 1 0.5 0.5 0 0.2 mg/L Cd 0.01	ICAL-3	3 / CCV		Ċ		144994 11114 141 11114 141 141 141 141 1	IC	SAB		-71B	1	
ICV MRL Linear Range ICV CCV LCS ICSA ICSAB Units Ag 0.01 5 0.5 0.5 0.5 0 0.2 mg/L Al 0.1 1000 50 0.5 0.5 0 0.2 mg/L As 0.01 40 1 0.5 0.5 0 0.2 mg/L B 0.05 200 4 2.5 2.5 0 1 mg/L Ba 0.01 45 2 0.5 0.5 0.2 mg/L Ca 0.1 3500 80 0.5 0.2 0.2 mg/L Cd 0.005 15 0.4 0.25 0.28 0 0.1 mg/L Co 0.01 100 1 0.5 0.5 0 0.2 mg/L Cd 0.01 22.5 1 0.5 0.5 0 0.2 mg/L	ICA	14	V	D	d	/	/ Blank /	[/] Diluent		80G	3-6-1	5 #
Standard Concentrations and Ranges Element MRL Linear Range ICV CCV LCS ICSA ICSA Units Ag 0.01 5 0.5 0.5 0.5 0 0.2 mg/L As 0.01 40 1 0.5 0.5 0 0.2 mg/L B 0.05 200 4 2.6 2.5 0 1 mg/L B 0.05 200 4 2.6 2.5 0 1 mg/L Be 0.04 8 0.5 0.2 0.2 0 0.08 mg/L Ca 0.1 3500 80 5 5 750 752 mg/L Cd 0.005 15 0.4 0.25 0.23 mg/L Cd 0.01 100 1 0.5 0.5 0 0.2 mg/L Cd 0.01 225 1 0.5 0.5	IC	×	Met.17	-78B	3-24	14						
Element MRL Linear Range ICV CCV LCS ICSA ICSAB Units Ag 0.01 5 0.5 0.5 0 0.2 mg/L As 0.01 40 1 0.5 0.5 0 0.2 mg/L B 0.05 200 4 2.5 2.5 0 1 mg/L Ba 0.01 45 2 0.5 0.5 0 0.2 mg/L Ba 0.01 45 2 0.5 0.5 0 0.2 mg/L Ca 0.01 45 2 0.5 0.5 0 0.2 mg/L Ca 0.01 15 0.4 0.25 0.2 0 0.08 mg/L Ca 0.01 100 1 0.5 0.5 0 0.2 mg/L Ca 0.01 225 1 0.5 0.5 0 0.2 mg/L <td></td> <td></td> <td></td> <td></td> <td>Standard</td> <td>I Concentr</td> <td>ations an</td> <td>d Ranges</td> <td>3</td> <td></td> <td></td> <td></td>					Standard	I Concentr	ations an	d Ranges	3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Element	MRL	Linear	Range	ICV	CCV	LCS	ICSA	ICSAB	Units	
As 0.01 40 1 0.5 0.5 0.0 0.2 mg/L B 0.05 200 4 2.5 2.5 0 1 mg/L Ba 0.01 45 2 0.5 0.5 0 0.2 mg/L Ba 0.04 8 0.5 0.2 0.2 0 0.08 mg/L Ca 0.1 3500 80 5 5 750 752 mg/L Cd 0.005 15 0.4 0.25 0.2 0 0.0 mg/L Cd 0.01 100 1 0.5 0.5 0 0.2 mg/L Cu 0.01 1225 1 0.5 0.5 0 0.2 mg/L Cu 0.01 1225 1 0.5 0.5 0 0.2 mg/L K 2 1000 20 100 100 0 40 mg/L <		Ag Al	0.01	to		0.5	0.5	0.5	0	0.2	mg/L	
B 0.05 200 4 2.5 2.5 0 1 mg/L Ba 0.01 45 2 0.5 0.5 0 0.2 mg/L Ca 0.11 3500 80 5 5 750 752 mg/L Cd 0.005 15 0.4 0.25 0.25 0 0.1 mg/L Co 0.01 100 1 0.5 0.5 0 0.2 mg/L Cr 0.01 100 1 0.5 0.5 0 0.2 mg/L Cr 0.01 100 1 0.5 0.5 0 0.2 mg/L Cu 0.01 225 1 0.5 0.5 0 0.2 mg/L K 2 1000 20 100 100 40 mg/L K 2 1000 20 5 5 750 752 mg/L <t< td=""><td></td><td>As</td><td>0.01</td><td>4</td><td>0</td><td>1</td><td>0.5</td><td>0.5</td><td></td><td>0.2</td><td>mg/L</td><td>1</td></t<>		As	0.01	4	0	1	0.5	0.5		0.2	mg/L	1
Da 0.01 43 2 0.3 0.5 0 0.2 mg/L Ca 0.1 3500 80 5 5 750 752 mg/L Cd 0.005 15 0.4 0.25 0.25 0 0.1 mg/L Co 0.01 100 1 0.5 0.5 0 0.2 mg/L Co 0.01 100 1 0.5 0.5 0 0.2 mg/L Cr 0.01 100 1 0.5 0.5 0 0.2 mg/L Cu 0.01 225 1 0.5 0.5 0 0.2 mg/L K 2 1000 20 100 100 0 40 mg/L K 2 1000 20 5 5 750 752 mg/L Mg 0.1 1000 2 0.5 0.5 0 2 mg/L		B	0.05	20	0	4	2.5	2.5	0	1	mg/L	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Be	0.004	4	• •	∠ 0.5	0.5	0.5		0.2	mg/L ma/l	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ca	0.1	35	0	80	5	5	750	752	mg/L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cd Co	0.005	1:	<u>.</u> 0	0.4	0.25	0.25		0.1	mg/L	
Cu0.0122510.50.500.2mg/LFe0.112004055750752mg/LK2100020100100040mg/LLi0.1505502mg/LMg0.110002055750752mg/LMn0.012020.50.500.2mg/LMo0.012520.50.500.2mg/LNa0.5500202525010mg/LNi0.0110020.50.500.2mg/LPb0.01200105502mg/LPb0.012000.50.500.2mg/LSb0.012001055002Sh0.012001055002Sh0.0412552200.8mg/LSr0.01820.50.500.2mg/LTi0.056452.52.501mg/LTi0.0210021.50.500.2mg/LV0.0210021.50.500.2mg/LTi0.056452		Cr	0.01	10	0	1	0.5	0.5	0	0.2	mg/L mg/L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cu	0.01	22	5	1	0.5	0.5	0	. 0.2	mg/L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		K	2	120	00		<u> </u>	100	750 0	752 40	mg/L mg/l	
Mg0.110002055750752mg/LMn0.012020.50.500.2mg/LMo0.012520.50.500.2mg/LNa0.5500202625010mg/LNi0.0110020.50.500.2mg/LP0.1500105502mg/LSb0.012000.50.500.2mg/LSb0.0120010.50.500.2mg/LSe0.0120010.50.500.2mg/LSr0.0120010.50.500.2mg/LSr0.01820.50.500.2mg/LTi0.056452.52.501mg/LV0.0210021100.4mg/LZn0.025051100.4mg/LComments		Li	0.1	50)	. 5	5	5	0	2	mg/L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mg	0.1	100	00	20	5	5	750	752	mg/L	
Na0.5500202525010mg/LNi0.0110020.50.500.2mg/LP0.1500105502mg/LPb0.012000.50.50.500.2mg/LSb0.0120010.50.500.2mg/LSe0.0120010.50.500.2mg/LSr0.015020.50.500.2mg/LSr0.0412552200.8mg/LSr0.01820.50.500.2mg/LTi0.056452.52.501mg/LV0.0210021100.4mg/LZn0.025051100.4mg/LComments		Mo	0.01	2	5	2	0.5	0.5	0	0.2	mg/L ma/L	
NI 0.01 100 2 0.5 0.5 0 0.2 mg/L P 0.1 500 10 5 5 0 2 mg/L Pb 0.01 200 0.5 0.5 0.5 0 0.2 mg/L Sb 0.01 200 1 0.5 0.5 0 0.2 mg/L Sb 0.01 200 1 0.5 0.5 0 0.2 mg/L Se 0.01 500 2 0.5 0.5 0 0.2 mg/L Sr 0.04 125 5 2 2 0 0.8 mg/L Ti 0.05 64 5 2.5 0.5 0 0.2 mg/L Ti 0.05 64 5 2.5 0.5 0 0.2 mg/L Ti 0.02 100 2 1 1 0 0.4 mg/L Z		. Na	0.5	50	0	20	25	25	0	10	mg/L	
Pb 0.01 200 0.5 0.5 0.5 0 0.2 mg/L Sb 0.01 200 1 0.5 0.5 0 0.2 mg/L Se 0.01 50 2 0.5 0.5 0 0.2 mg/L Sn 0.04 125 5 2 2 0 0.8 mg/L Sr 0.01 8 2 0.5 0.5 0 0.2 mg/L Ti 0.05 64 5 2.5 0 1 mg/L Ti 0.01 125 0.2 0.5 0.5 0 0.2 mg/L Ti 0.02 100 2 1 1 0 0.4 mg/L Zn 0.02 50 5 1 1 0 0.4 mg/L Zn 0.02 50 5 1 1 0 0.4 mg/L Zn		P	0.01	50	0	· 10	0.5 5	0.5 5	0	0.2	mg/L mg/l	
Sb 0.01 200 1 0.5 0.5 0 0.2 mg/L Se 0.01 50 2 0.5 0.5 0 0.2 mg/L Sn 0.04 125 5 2 2 0 0.8 mg/L Sr 0.01 8 2 0.5 0.5 0 0.2 mg/L Ti 0.05 64 5 2.5 2.5 0 1 mg/L Ti 0.01 125 0.2 0.5 0.5 0 0.2 mg/L Ti 0.01 125 0.2 0.5 0.5 0 0.2 mg/L V 0.02 100 2 1 1 0 0.4 mg/L Zn 0.02 50 5 1 1 0 0.4 mg/L Comments		Pb	0.01	20	0	0.5	0.5	0,5	0	0.2	mg/L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sb Se	0.01	20	0	-1	0.5	0.5	0	0.2	mg/L	
Sr 0.01 8 2 0.5 0.5 0 0.2 mg/L Ti 0.05 64 5 2.5 2.5 0 1 mg/L Ti 0.01 125 0.2 0.5 0.5 0 0.2 mg/L V 0.02 100 2 1 1 0 0.4 mg/L Zn 0.02 50 5 1 1 0 0.4 mg/L Comments Total And TCLP T1400360 Z included in Run		Sn	0.04	12	5	5	2	. 2	0	0.2	mg/L mg/L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sr Sr	0.01	8		2	0.5	0.5	0	0.2	mg/L_	
V 0.02 100 2 1 1 0 0.4 mg/L Zn 0.02 50 5 1 1 0 0.4 mg/L Comments Total and TCLP T1400360 Z included in Run		TI	0.05	12	5	0.2	0.5	2.5	0	02	mg/L	
Zn 0.02 50 5 1 1 0 0.4 mg/L Comments Total and TCLP T1400360 Z included in Run		V	0.02	10	0	2	.1	1	0	0.2	mg/L	
Total and TCLP T1400360Z included in Run	· · · · ·	Zn	0.02	50	<u> </u>	5	1	1	0	0.4	mg/L	
	Total	zn and Ti	0.02 0.02	10 50 740036		2 5 Comn	$\frac{0.5}{1}$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5 1 1	0	0.2 0.4 0.4	mg/L mg/L mg/L	
	1912	<u> </u>	<u>an yokna</u>	<u>n 1140</u>	<u>1002</u>	in the the	<u>u in</u>	<u>kau</u>			**************************************	Marketon and a company
The and any the manages with the a rank on			<u> </u>		~~~~	***********					****	
The The sub- and the sub-	fel	4 - He	ic hides	1402	075	n wyn om oe fallol a radward yn yngwnywr paragogyyra	19979-1019-10-10-10-10-10-10-10-10-10-10-10-10-10-			199 Articlis Devi apressant (199 Japan 200) Protos Print Chillipson	Adverse a provinsi katologi a tili ta deve folista en	******
Fier The includes 31402025									· · · · · · · · · · · · · · · · · · ·	······································		
Fier III includes J1402025												

ICP Run Sequence Date File ID: 032114A1

#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time
1	Calib Blank	3/21/14	17:42	56	J1402037-003	3/21/14	22:02				
2	Calib Std 1	3/21/14	17:47	57	MB-02092-01	3/21/14	22:07				
3	Calib Std 2	3/21/14	17:52	58	LCS-02092-02	3/21/14	22:11				
4	Calib Std 3	3/21/14	17:55	59	J1401847-003	3/21/14	22:15			-	
5	Calib Std 4	3/21/14	17:59	60	CCV	3/21/14	22:19				
6	ICV	3/21/14	18:02	61	CCB	3/21/14	22:23				
7	ICB	3/21/14	18:06	62	J1401935-002	3/21/14	22:28				
8	Blank	3/21/14	18:11	63	J1401935-003	3/21/14	22:33				
9	MRL	3/21/14	18:16	64	J1401935-003S	3/21/14	22:37				
10	ICSA	3/21/14	18:20	65	J1401935-003SD	3/21/14	22:40				
11	ICSAB	3/21/14	18:28	66	J1401935-003L	3/21/14	22:44				
12	CCV	3/21/14	18:36	67	J1401935-003A	3/21/14	22:48				
13	ССВ	3/21/14	18:40	68	J1401935-004	3/21/14	22:53				
14	T1400360-002 2x	3/21/14	18:44	69	J1401935-005	3/21/14	22:58				
15	T1400365-001 5x	3/21/14	18:54	70	J1401935-006	3/21/14	23:03				
16	J1401993-001 2x	3/21/14	18:57	71	T1400360-003	3/21/14	23:08				
17	MB-02131-02	3/21/14	19:07	72	CCV	3/21/14	23:11				
18	I CS-02131-01	3/21/14	19:10	73	CCB	3/21/14	23:16				
19	11402002-001	3/21/14	19:15	74	MB-02088-01	3/21/14	23:20				
20	J1402003-001	3/21/14	19:25	75	LCS-02088-02	3/21/14	23:24				
21	.11402003-002	3/21/14	19:30	76	J1401935-001	3/21/14	23.28				
22	.11402003-003	3/21/14	19:34	77	J1401935-001S	3/21/14	23:32				
23	.11402003-004	3/21/14	19:39	78	J1401935-001SD	3/21/14	23:35				
24	CCV	3/21/14	10:43	79	.11401935-0011	3/21/14	23:40				
4 7 25	CCB	3/21/14	19:47	80	.11401935-001A	3/21/14	23:43				
26	11402005-001	3/21/14	10:47	81	T1400360-002	3/21/14	23:48				
20	11402005-001	3/21/14	19:56	82	MR_02087_01	3/21/14	23.53				
28 28	11402000-004	3/21/14	20-01	83	105-02001-01	3/21/14	23-56				
20	1402022-001	3/21/14	20:06	84	CCV	3/21/14	23.50				
20	11402022-002	3/21/14	20.00	86	CCR	3/22/14	20.09				
24	1402022-003	3/31/14	20.11	00		3/22/14	00.04				
21	1402022-004	3/21/14	20.10	97	T1401090-001	3/22/14	00:09				
32 22	J1402022-000	2/24/44	20.21	00	MP 02420 02	3/22/14	00:14				
22	11402025-001	3/21/14 3/34/4A	20.20	00		2/22/14	00.15				
34	11402025-002	2/21/14	20.31	09	11402025 004	3/22/14	00.22				
30	J1402025-003	3/21/14	20:35	90	J1402025-001	3/22/14	00.27				
30		3/21/14	20.39	91	J1402020-002	3/22/14	00.32				
37	CCB	3/21/14	20:43	92	J1402025-002S	3/22/14	00:35				
38	J1402025-004	3/21/14	20:48	93	J1402025-002SD	3/22/14	00:38				
39	J1402025-005	3/21/14	20:53	94	J1402025-002L	3/22/14	00:43				
40	J1402025-006	3/21/14	20:58	95	J1402025-002A	3/22/14	00:46				
41	J1402025-007	3/21/14	21:03	96	CCV	3/22/14	00:49				
42	J1402025-007S	3/21/14	21:06	97	ССВ	3/22/14	00:54				
43	J1402025-007SD	3/21/14	21:09	98	J1402025-003	3/22/14	00:59				
44	J1402025-007L	3/21/14	21:14	99	J1402025-004	3/22/14	01:04				
45	J1402025-007A	3/21/14	21:17	100	J1402025-005	3/22/14	01:09				
46	J1402037-001	3/21/14	21:22	101	J1402025-006	3/22/14	01:13				
47	MB-02132-02	3/21/14	21:27	102	J1402025-007	3/22/14	01:18				
48	CCV	3/21/14	21:30	103	ICSA	3/22/14	01:22				
49	CCB	3/21/14	21:35	104	ICSAB	3/22/14	01:30				
50	LCS-02132-01	3/21/14	21:38	105	CCV	3/22/14	01:38				
51	J1402037-002	3/21/14	21:43	106	CCB	3/22/14	01:42				
52	J1402037-002S	3/21/14	21:46								
53	J1402037-002SD	3/21/14	21:49								
54	J1402037-002L	3/21/14	21:54								
55	J1402037-002A	3/21/14	21:58							257	<i>(</i> 55),

ICP DATA REPORTED WITH FAILING CRITERIA

Data File ID: 032114A1

Sample ID	Analyte	Failure(s)	Analyst's Comments

1

259

Reprocessing Begun Logged In Analyst: ALJCK.NOUSER Technique: ICP Continuous Results Data Set (original): 032114A Results Library (original): C:\pe\JAXMET01\Results\1403.mdb Results Data Set (reprocessed): 032114A1 Results Library (reprocessed): C:\pe\JAXMET01\Results\1403.mdb Sequence No.: 1 Autosampler Location: 905 Sample ID: Calib Blank Date Collected: 3/21/2014 17:39:58 Analyst: Data Type: Reprocessed on 3/24/2014 09:27:01 Logged In Analyst (Original) : ALJCK.NOUSER Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Nebulizer Parameters: Calib Blank Flow Analyte Back Pressure A11 220.0 kPa 0.68 L/min
 Mean Data: Calib Blank
 Mean Corrected
 Calib

 Analyte
 Intensity
 Std.Dev.
 RSD
 Conc.
 Units

 Y 371.029 Radial
 602006.2
 5560.56
 0.92%
 100.0 %

 Y 371.029 Radial
 12728428.4
 102432.97
 0.80%
 100.0 %

 Ag 328.068t
 2637.2
 64.15
 2.43%
 [0.00] mg/L

 Al 394.401t
 -2386.9
 13.84
 0.58%
 [0.00] mg/L

 As 188.979t
 -22.2
 1.06
 4.78%
 [0.00] mg/L

 B 208.956t
 242.1
 8.31
 3.43%
 [0.00] mg/L

 B 233.527t
 -200.2
 5.35
 2.67%
 [0.00] mg/L
 2637.2 -2386.9 -22.2 242.1 -200.2 -14715.4 $\begin{array}{c} 1.06\\ 8.31\\ 5.35\\ 2.678\\ 186.34\\ 1.278\\ 7.14\\ 2.718\\ 4.30\\ 2.728\\ 7.10\\ 11.558\\ 6.878\\ 28\end{array}$ -14/15.4186.341.27%[0.00]mg/L-263.07.142.71%[0.00]mg/L158.04.302.72%[0.00]mg/L148.017.1011.55%[0.00]mg/L243.016.706.87%[0.00]mg/L794.949.236.19%[0.00]mg/L40.510.8226.70%[0.00]mg/L1969.8123.126.25%[0.00]mg/L578.230.495.27%[0.00]mg/L434.16.541.51%[0.00]mg/L454.47.601.67%[0.00]mg/L-59.96.6711.14%[0.00]mg/L-59.96.6711.14%[0.00]mg/L-48.01.312.72%[0.00]mg/L-48.03.62%[0.00]mg/L-120.317.4414.50%[0.00]mg/L-125.825.013.62%[0.00]mg/L59.826.22156%[0.00]mg/L Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393† Fe 273.955† K 766.490 R† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592 R† Ni 231.604† P 213.617† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Sr 421.552R† Ti 337.279 Tl 190.801† [0.00] mg/L ...2 4.50% 26.22 1.65% 1593.8 [0.00] mg/L V 290.880† 51.24 37.50% 134.21 206.37% Zn 206.200† 136.7 [0.00] mg/L Li 670.784† 65.0 [0.00] mg/L Sequence No.: 2 Autosampler Location: 901 Sample ID: Calib Std 1 Date Collected: 3/21/2014 17:44:52 Data Type: Reprocessed on 3/24/2014 09:27:06 Analyst: Logged In Analyst (Original) : ALJCK.NOUSER Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Nebulizer Parameters: Calib Std 1 **Flow** 0.68 L/min Analvte Back Pressure A]] 220.0 kPa

Mean Data: Calib S	std 1					
	Mean Corrected				Calib	
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units	
Y 371.029 Radial	587224.8	3155,36	0.54%	97.54	*	
Y 371.029 Axial	12591560.7	128385.18	1.02%	98.92	* /_	
Ag 328.068†	2682.9	114.69	4.27%	[0.01]	mg/L	
Al 394.401†	99.6	14.74	14.81%	[0.1]	mg/L	
As 188.979†	40.4	2.53	6.26*	[0.01]	mg/L	
B 208,956†	864.0	3.96	0.46%	[0.05]	mg/L	
Ba 233,527†	3036.4	12.36	0.41%	[0.01]	mg/L	
Be 313.107†	13845.7	82.95	0.60%	[0.004]	mg/L	
Ca 315.887f	842.9	10.96	1.30%	[0.1]	mg/L	
Cd 228.8021	606.4	11.97	1.97%	[0.005]	mg/L	
CO 228.616†	1159.1	29.94	2,58%	[0,01]	mg/L	
Cr 267.716†	1367.2	7.34	0.54%	[0.01]	mg/L	
Cu 327.3931	1843.1	46.10	2.50%	[0.01]	mg/L	
Fe 273.955†	237.8	2.80	1.18%	[0.1]	mg/L	
K 766.490 RT	14057.5	363.94	2.59%	[2]	mg/L	
Mg 279.0771	127.5	8.70	6.82%	[0.1]	mg/L	
Mn 257.6107	13079.1	108.58	0.83%	[0.01]	mg/L	
MO 202.0311	398.7	8.27	2.08%	[0.01]	mg/L	
Na 589.592 RT	10422.2	33.34	0.32%	[0.5]	mg/L	
N1 231.604T	544.9	19.25	3.53%	[0.01]	mg/L	
P 213.617†	588.4	13.79	2.34%	[0,1]	mg/L	
PD 220.353†	99.2	10.02	10.10%	[0.01]	mg/L	
SD 206.8361	36.2	3.61	9.96%	[0.01]	mg/L	
Se 196.026†	27,1	5.98	22.04%	[0.01]	mg/L	
Sn 189.927f	614.7	4.74	0.77%	[0.04]	mg/L	
Sr 421.552Rt	7937.9	56.37	0.71%	[0.01]	mg/L	
11 337.2797	28696.6	210.55	0.73%	[0.05]	mg/L	
TI 190.8011	80.5	11.64	14.46%	[0.01]	mg/L	
V 290.880f	3105.1	20.96	0.67%	[0.02]	mg/L	
211 206.2001	1610.9	27.50	1.718	[0.02]	mg/L	
LL 670.7841	20657.6	89.42	0.438	[0.1]	mg/L	
						==
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution:	td 2 (Original) : ALC	ick. Nouser	Autos Date Data Init: Samp]	sampler Loo Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	20 200
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution:	td 2 (Original) : ALC	TCK . NOUSER	Autor Date Data Init: Samp]	sampler Loc Collected Type: Rep ial Sample le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution:	(Original) : ALC	ICK . NOUSER	Auto: Date Data Init: Samp]	sampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte	(Original) : ALC ers: Calib Std 2	UCK.NOUSER	Autor Date Data Init: Samp]	sampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	***
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All	(Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa	UCK.NOUSER	Autor Date Data Init: Samp	ampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All	(Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa	UCK.NOUSER Oure Flow 0.68	Autor Date Data Initi Sampl	ampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All	(Original) : ALC (original) : ALC ers: Calib Std 2 Back Press 220.0 kPa	UCK.NOUSER Sure Flow 0.68	Autos Date Data Init: Sampl L/min	ampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S	(Original) : ALC (original) : ALC ers: Calib Std 2 Back Press 220.0 kPa	UCK.NOUSER Sure Flow 0.68	Autos Date Data Init: Sampl L/min	ampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: L:	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S	(Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa	UCK.NOUSER Sure Flow 0.68	Autos Date Data Init: Sampl	ampler Loc Collected Type: Rep Lal Sample Le Prep Vol	Calib	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte	(Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa td 2 Mean Corrected Intensity	CK.NOUSER Sure Flow 0.68 Std.Dev.	Autos Date Data Init: Sampl L/min	Conc.	Calib Units	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6</pre>	VCK.NOUSER Nure Flow 0.68 Std.Dev. 5620.73	Autos Date Data Init: Samp] L/min RSD 0.96%	Conc. 97.64	Calib Units	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5</pre>	CK.NOUSER Sure Flow 0.68 Std.Dev. 5620.73 153166.65	Autos Date Data Initi Sampl L/min RSD 0.96% 1.22%	Conc. 97.64 98.79	Calib Units	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5</pre>	CK.NOUSER Sure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01	Autos Date Data Initi Sampl L/min RSD 0.96% 1.22% 0.84%	Conc. 97.64 98.79 [0.1]	Calib Units % % mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0</pre>	VCK.NOUSER Oure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44	Auto: Date Data Init: Samp] L/min 	Conc. 97.64 98.79 [0.1] [1]	Calib Units	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979†	<pre>std 2 (Original) : ALC ors: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 58777.6 12574271.5 27136.5 1787.0 406.5</pre>	CK.NOUSER oure Flow 0.68 5620.73 153166.65 228.01 8.44 2.95	Auto: Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73%	Conc. 97.64 98.79 [0.1] [0.1] [0.1]	Calib Units % % mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956†	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7</pre>	CK.NOUSER oure Flow 0.68 5620.73 153166.65 228.01 8.44 2.95 100.59	Auto: Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18%	Conc. 97.64 98.79 [0.1] [0.1] [0.5]	Calib Units % % mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527†	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 58777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4</pre>	CK.NOUSER Oure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92	Auto: Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66%	Conc. 97.64 98.79 [0.1] [1] [0.1] [0.1] [0.1] [0.1]	Calib Units % % mg/L mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107†	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 58777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3</pre>	CK.NOUSER OUTE Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05	Auto: Date Data Init: Samp] 	Sampler Loc Collected Type: Repr ial Sample le Prep Vol 	Calib Units % % mg/L mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7</pre>	CK.NOUSER Sure Flow 0.68 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19	Auto: Date Data Init: Samp] 	Sampler Loc Collected Type: Repr ial Sample le Prep Vol 	Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802†	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0</pre>	VCK.NOUSER Sure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46	Auto: Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13%	Sampler Loc Collected Type: Repr Lal Sample Le Prep Vol 	Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616†	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3</pre>	CK.NOUSER Fure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76	Auto: Date Data Init: Samp) L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.18% 1.13% 0.97%	Sampler Loc Collected Type: Repr Lal Sample Le Prep Vol 	Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716†	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9</pre>	VCK.NOUSER Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39	Autos Date Data Init: Samp] L/min KSD 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.18% 1.13% 0.97% 1.14%	Sampler Loc Collected Type: Repr Lal Sample Le Prep Vol 	Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393†	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9 19761.1</pre>	CK.NOUSER Pure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59	Autos Date Data Init: Samp] L/min KSD 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.18% 1.18% 1.13% 0.97% 1.14% 1.06%	Conc. 97.64 98.79 [0.1] [0.1] [0.05] [0.1] [0.04] [1] [0.05] [0.1] [0.1] [0.05] [0.1] [0.1] [0.1] [0.05] [0.1]	Calib Units % % mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t Co 228.616t Cr 267.716t Cu 327.393t Fe 273.955t	<pre>std 2 (Original) : ALC ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9 19761.1 2243.3</pre>	CK.NOUSER Fure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24	Autos Date Data Init: Samp] L/min 	Conc. 97.64 98.79 [0.1] [0.1] [0.5] [0.1] [0.64] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [1] [0.05] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [1] [1] [1] [1] [1] [1] [Calib Units % % % mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t Co 228.616t Cr 267.716t Cu 327.393t Fe 273.955t K 766.490 Rt	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9 19761.1 2243.3 142042.5</pre>	CK.NOUSER Fure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71	Autos Date Data Init: Samp] L/min 	Conc. 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1] [0.5] [0.1] [0.05] [0.1] [0.05] [0.1] [1] [0.05] [0.1] [1] [0.05] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [20]	Calib Units % % % Mg/L mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t Co 228.616t Cr 267.716t Cu 327.393t Fe 273.955t K 766.490 Rt Mg 279.077t	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9 19761.1 2243.3 142042.5 1334.1</pre>	CK.NOUSER Sure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71 31.47	Autos Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.18% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14% 2.36%	Conc. 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1] [0.5] [0.1] [0.05] [0.1] [0.05] [0.1] [1] [0.05] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [0.1] [1] [1] [1] [1] [1] [1] [1] [Calib Units % % % mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t Co 228.616t Cr 267.716t Cu 327.393t Fe 273.955t K 766.490 Rt Mg 279.077t Mn 257.610t	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa</pre>	VCK.NOUSER Sure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71 31.47 1059.21	Autos Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.18% 1.18% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14% 2.36% 0.80%	Conc. 97.64 98.79 [0.1] [0.1] [0.5] [0.1] [0.5] [0.1] [0.05] [0.1] [0.1] [0.05] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1]	Calib Units % % mg/L	
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t Co 228.616t Cr 267.716t Cu 327.393t Fe 273.955t K 766.490 Rt Mg 279.077t Mn 257.610t Mo 202.031t	<pre>std 2 (Original) : ALC srs: Calib Std 2 Back Press 220.0 kPa 2td 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9 19761.1 2243.3 142042.5 1334.1 131758.8 3873.6</pre>	Std. Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71 31.47 1059.21 33.30	Autos Date Data Init: Samp] L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.18% 1.18% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14% 2.36% 0.80% 0.86%	Conc. 97.64 98.79 [0.1] [0.1] [0.5] [0.1] [0.04] [1] [0.05] [0.1]	Calib Units % % % % mg/L	

Method: 120313			Page	3		Date: 3/24/2014 09):27:09
Ni 231.604†	5324.1	54.43	1.02%	[0.1]	mcr/L		
P 213.617t	5870.4	41.89	0.71%	(1) (1)	$m_{\rm T}/T_{\rm c}$		
Ph 220 3531	1101.4	11 76	1 07%	[0 1]	mg/L		
gh 206 836+	477 5	2 30	0.48%	[0,1]	mg/L		
SD 200.0301	266.9	2.50	1 068	[0.1]	mg/L		
Se 190,020	200.9	4.70	1.003	[0.1]	mg/L		
SH 189.9271	6146.5	57.79	0.948	[0.4]	mg/ц		
Sr 421.552RT	77618.8	151.24	0.19%	[0.1]	mg/L		
Ti 337.279†	285387.2	2494.39	0.87%	[0.5]	mg/L	,	
TI 190.801†	888.1	14.91	1.68%	[0.1]	mg/L		
V 290.880†	32220.3	219.53	0.68%	[0.2]	mg/L		
Zn 206.200†	17698.1	188.98	1.07%	[0.2]	mg/L		
Li 670.784†	201584.1	112.46	0.06%	[1]	mg/L		
Sequence No.: 4			Auto	sampler Lo	cation: 9	04	
Sample ID: Calib St	:d 3		Date	Collected	: 3/21/20	14 17:54:34	
Analyst:			Data	Type: Rep	rocessed	on 3/24/2014 09:27:0	8
Logged In Analyst ((Original) : ALC	CK.NOUSER	*				
Initial Sample Wt:			Init	ial Sample	Vol:		
Dilution:			Samp	le Prep Vo	1:		
Nebulizer Parameter Analyte	s: Calib Std 3 Back Press	ure Flow					
All	220.0 kPa	0.68	L/min				
		0.00	***				
Mean Data: Calib St							
	Mean Corrected		e e		Calib		
Analyte	Intensity	Std Dev	RGD	Conc	Unite		
V 371 020 Dadial	EUDICO O	SCUIDEV.	NSD 0 94%	100.1	ource «		
Y 271 029 Autol	102300.3	161/36 00	1 03%	100.1	а. •.		
1 3/1.027 WYTGT	1222000 0	1055.90	1.435	90.95	б 		
Ag 328.0681	137709.6	1255.29	0.918	[0.5]	mg/L		
AL 394.4011	9168.2	44.56	0.49%	[5]	mg/L		
As 188,979†	2085.5	57.10	2.74%	[0.5]	mg/L		
B 208.956†	42655.8	792.93	1.86%	[2.5]	mg/L		
Ba 233.527†	152987.5	1252.67	0.82%	[0.5]	mg/L		
Be 313.107†	713309.4	5644.53	0.79%	[0.2]	mg∕L		
Ca 315.887†	40688.0	346.13	0.85%	[5]	mg/L		
Cd 228.802†	30485.8	543.84	1.78%	[0.25]	mg/L		
Co 228.616†	56784.6	944.61	1.66%	[0.5]	mg/L		
Cr 267,716†	66227.6	1134.01	1.71%	[0.5]	mg/L		
Cu 327.393†	99189.4	1074.85	1.08%	[0.5]	mg/L		
Fe 273.955†	10821.4	112.80	1.04%	[5]	$m\alpha/T$		
K 766 490 Rt	701997 9	2094 28	0 308	[100]	mg/L		
Ma 279 077+	6490 0	AE 24	0.00%	[±00]	mg/D		
Mp 257 610+	667694 0	10,04 E000 77	0.70%	[0]	11(g/1) mar/1		
Mn 200 021+	10250 2	2090.//	0.905	[0.5]	mg/1		
MO 202.0311	19358.3	318.57	1.65%	[0.5]	mg/ւ		
Na 589.592 RT	476547.7	892.47	0.19%	[25]	mg/L		
Ni 231.604†	26529,6	537.96	2.03%	[0.5]	mg/L		
P 213.617†	29883.1	451.00	1.51%	[5]	mg/L		
Pb 220.353†	5486.0	85.16	1.55%	[0.5]	mg/L		
Sb 206.836†	2437.8	31.29	1.28%	[0.5]	mg/L		
Se 196.026†	1335.1	16.59	1.24%	[0.5]	mg/L		
Sn 189.927†	30689.9	503.98	1.64%	[2]	mg/L		
Sr 421.552R†	378553.9	1030.55	0.27%	[0.5]	mg/L		
Ti 337.279†	1436322.3	13189.12	0.92%	[2.5]	ma/L		
Tl 190.801†	4450.8	51.12	1,15%	[0.5]	mg/T		
V 290.880†	163157 3	1424 77	0.87%	[]]	ma / T.		
7n 206 200+	94261 7	702 12	0.070	(-) [-]	mg/1		
Li 670.784†	982363.7	2425.24	0.25%	[1]	mg/L		
					<u>ل</u> ر –		
Sequence No.: 5			Auto	sampler Lo	cation: 9	07	
Sample ID: Calib St	d 4		Date	Collected	: 3/21/20	14 17:57:41	
Analyst:			Data	Type: Rep	rocessed	on 3/24/2014 09:27:01	8
Logged In Analyst (Original) : ALJ	CK.NOUSER					
Initial Sample Wt:			Init	ial Sample	Vol:		
Dilution:			Samp	le Prep Vo	1:		

Analyte	Back	Pressure	Flow
All	220.0	kPa	0.68 L/min

Mean Data: Calib	Std 4				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Y 371.029 Radial	590876.0	6767.67	1.15%	98.15	oto
Y 371.029 Axial	12061030.4	781.52	0.01%	94.76	20
Ag 328.068†	276856.6	1313.73	0.47%	[1]	mg/L
Al 394.401†	18670.1	183.45	0.98%	[10]	mg/L
As 188.979†	4287.6	44.35	1.03%	[1]	mg/L
B 208.956†	89026.7	, 395.68	0.44%	[5]	mg/L
Ba 233.527†	304780.3	1142.87	0.37%	[1]	mg/L
Be 313.107†	1434328.8 🥤	5155.89	0.36%	[0.4]	mg/L
Ca 315.887†	82525.4	756.79	0.92%	[10]	mg/L
Cd 228.802†	61696.7	550.33	0.89%	[0.5]	mg/L
Co 228.616†	117789.6	303.99	0.26%	[1]	mg/L
Cr 267.716†	138057.7	645.14	0.47%	[1]	mg/L
Cu 327.393†	198505.1	827.11	0.42%	• [1]	mg/L
Fe 273.955†	21927.3	184.91	0.84%	[10]	mg/L
K 766.490 R†	1412723.2	1505.48	0.11%	[200]	mg/L
Mg 279.077t	13140.3	87.21	0.66%	[10]	mg/L
Mn 257.610†	1311227.4	4836.20	0.37%	[1]	mg/L
Mo 202.031†	38984.9	238.17	0.61%	[1]	mg/L
Na 589.592 R†	953345.3	2460.31	0.26%	[50]	mg/L
Ni 231.604†	52995.6	268.59	0,51%	[1]	mg/L
P 213,617†	60864.4	466.35	0.77%	[10]	mg/L
Pb 220.353†	11010.0	55.69	0.51%	[1]	mg/L
Sb 206.836†	5003.4	55.29	1.10%	[1]	mg/L
Se 196.026†	2740.2	30.61	1,12%	[1]	mg/L
Sn 189.927†	61376.8	422.85	0.69%	[4]	mg/L
Sr 421.552R†	753387.5	2103.24	0.28%	[1]	mg/L
Ti 337.279†	2871525.5	14225.29	0.50%	[5]	mg/L
Tl 190.801†	8918.6	110.61	1.24%	[1]	mg/L
V 290.880†	326060.8	1201.30	0.37%	[2]	mg/L
Zn 206.200†	188232.1	370.26	0.20%	[2]	mg/L
Li 670.784†	1952344.1	7131.60	0.37%	[10]	mg/L

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	4	Lin Thru 0	0.0	276500	0.00000	0.999996	•
Al 394.401	4	Lin, Calc Int	-73.4	1869	0.00000	0.999963	
As 188.979	4	Wt. Lin	~1.5	4184	0.00000	0.999769	
B 208.956	4	Lin Thru O	0.0	17650	0.00000	0.999854	
Ba 233.527	4	Wt. Lin	-17.1	305300	0.00000	0.999999	
Be 313.107	4	Wt. Lin	-365.4	3547000	0.00000	0.999904	
Ca 315.887	4	Wt. Lin	20.9	8226	0.00000	0.999961	
Cd 228.802	4	Wt. Lin	-5.3	122300	0,00000	0.999972	
Co 228.616	4	Wt. Lin	5.5	115200	0.00000	0.999860	
Cr 267.716	4	Wt. Lin	19.9	134600	0.00000	0,999811	
Cu 327.393	4	Wt. Lin	-144.5	198800	0.00000	1.000000	
Fe 273.955	4	Lin Thru O	0.0	2188	0.00000	0.999984	
K 766.490 R	4	Lin Thru O	0.0	7055	0.00000	0.999997	
Mg 279.077	4	Lin Thru O	0.0	1311	0.00000	0.999987	
Mn 257.610	4	Wt. Lin	-67.1	1315000	0.00000	0.999997	
Mo 202.031	4	Wt. Lin	10.9	38770	0.00000	0.999992	
Na 589,592 R	4	Lin Thru O	0.0	19070	0.00000	0,999996	
Ni 231.604	4	Wt. Lin	14.7	53030	0.00000	1,000000	
P 213.617	4	Wt. Lin	-11,1	5986	0.00000	0.999891	
Pb 220.353	4	Lin Thru O	0.0	11000	0.00000	0.999999	
Sb 206.836	4	Wt. Lin	-13.2	4943	0.00000	0.999937	
Se 196.026	4	Lin, Calc Int	-6.5	2734	0.00000	0.999920	
Sn 189.927	4	Wt. Lin	0.7	15350	0.00000	1.000000	
Sr 421,552R	4	Lin Thru O	0.0	754300	0.00000	0.999995	
Ti 337.279	4	Wt. Lin	23.0	573300	0.00000	0.999995	
Tl 190.801	4	Wt. Lin	-8.9	8938	0.00000	0.999997	
V 290.880	4	Wt. Lin	-152.2	162800	0,00000	0.999991	
Zn 206.200	4	Lin Thru 0	0.0	94100	0.00000	0.999985	
Li 670.784	4	Wt. Lin	962.6	197200	0.00000	0.999921	

/262

SAMPLE ID	RPT	Anal	Conc (ma/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samo Tvoe	Method Comments
Calib Blank	Y	Ag	[0.00]	1	[0.00]	3/21/2014	17:42	ICAL	
Calib Blank	Y	AI	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL	
Calib Blank	Y	As	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	в	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Ba	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	8e	[0.00]	1	[0.00]	3/21/2014	17:42	ICAL	
Calib Blank	Y	Са	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL	
Calib Blank	Y	Cd	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Co	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Cr	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Ŷ	Cu	. [0.00]	1	[0.00]	3/21/2014	17:42	ICAL	
Callo Blank	Y	re 	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL	
Callo Blank	Ŷ	N 13	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL	
Callo Diaria Calin Blank	, , ,	8.4a	[0.00]	1	[0.00] (0.00]	3/21/2014	17.41	ICAL	
Calib Blank	, v	Mn	10.001	4	10.001	3/21/2014	17:43	ICAL	
Calib Blank	Ý	Mo	10.001	1	(0.00)	3/21/2014	17:43	ICAL	
Calib Blank	Ŷ	Na	[00.0]	1	(0.00)	3/21/2014	17:41	ICAL	
Calib Blank	Ŷ	Ni	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Р	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Pb	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Sb	{0.00}	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Se	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y	Sn	[0.00]	1	(0.00)	3/21/2014	17:43	ICAL	
Calib Blank	Y	Sr	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL	
Calib Blank	Y	TI	[0.00]	1	[0.00]	3/21/2014	17:42	ICAL	
Calib Blank	Y	TI	[0.00]	1.	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Y		[00.0]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Blank	Ŷ	Zn	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL	
Calib Std 1	Ŷ	Ag	[0.01]	1	98,92	3/21/2014	17:47	ICAL	
Calib Std 1	Y	AI	[0.1]	1	97.54	3/21/2014	17:46	ICAL	
Callo Std 1	Ŷ	AS	[U.U1] (0.051	1	98.92	3/21/2014	17:48	IGAL	
Calib Std 1	v	0 80	[0.05]	1	90.92	3/21/2014	17:40	ICAL	
Calib Std 1	Ý	Be	[0.01]	, 1	98.92	3/21/2014	17:40	ICAL	
Calib Std 1	Ý	Ca	10.11	1	97.54	3/21/2014	17:46	ICAL	
Calib Std 1	Ý	Cd	(0.005)	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Ŷ	Co	[0.01]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Ŷ	Cr	[0.01]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Y	Cu	[0.01]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Y	Fe	[0.1]	1	97.54	3/21/2014	17:46	ICAL	
Calib Std 1	Y	к	[2]	1	97.54	3/21/2014	17:46	ICAL	
Calib Std 1	Y	Li	[0.1]	1	98.92	3/21/2014	17:46	ICAL	
Calib Std 1	Y	Mg	[0.1]	1	97.54	3/21/2014	17:46	ICAL	
Calib Std 1	Y	Mn	[0.01]	1	98.92	3/21/2014	17:48	ICAL	
Catib Std 1	Y	Mo	[0.01]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Ŷ	Na	[0.5]	• 1	97.54	3/21/2014	17:46	ICAL	
Calib Std 1	Ŷ	Nł	[0.01]	1	98,92	3/21/2014	17:48	ICAL	
Calib Std 1	ř	17 Db	[0.1]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	r Y	Г9 5h	0.01	۶ ۹	90.92 OB 02	3/21/2014	17:40	ICAL	
Calib Std 1	Ŷ	Se Se	[0.01]	1	90,92	3/21/2014	17:48	ICAL	
Calib Std 1	Ý	Sp	10.041	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Ý	Sr	[0.01]	1	97.54	3/21/2014	17:46	ICAL	
Calib Std 1	Y	TI	[0.05]	1	98.92	3/21/2014	17:47	ICAL	
Calib Std 1	Ŷ	Tł	[0.01]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Y	V	[0.02]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 1	Y	Zn	[0.02]	1	98.92	3/21/2014	17:48	ICAL	
Calib Std 2	Y	Ag	[0.1]	1	98,79	3/21/2014	17:52	ICAL	
Calib Std 2	Y	A)	[1]	1	97.64	3/21/2014	17:51	ICAL	
Calib Std 2	Y	As	[0.1]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Y	8	[0.5]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Ŷ	Ba	[0.1]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Ŷ	Be	[0.04]	1	98,79	3/21/2014	17:52	ICAL	
Calib Std 2	Ŷ	Ca	[1]	1	97.64	3/21/2014	17:51	ICAL	
Callo Std 2	Ŷ	Ca	[0.05]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	r V	00	[0.1] (0.1]	1	70./7 08.70	312112014	17:52	ICAL	
Calib Std 2	i Y	Cu	10 11	1	08.70	3/24/9044	17.52	ICAL	
Calib Std 2	Ý	Fe	[11]	1	97.64	3/21/2014	17.52	ICAL	
Calib Std 2	Ý	к.	1201	1	97.64	3/21/2014	17:51	ICAL	
Calib Std 2	Ý	Li	[1]	1	98.79	3/21/2014	17:51	ICAL	
Calib Std 2	Ŷ	Mg	[1]	1	97,64	3/21/2014	17:51	ICAL	
Calib Std 2	Y	Mn	[0.1]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Y	Mo	[0.1]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Y	Na	[5]	1	97.64	3/21/2014	17:51	ICAL	
Calib Std 2	Y	Ni	[0,1]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Y	Р	[1]	1	98.79	3/21/2014	17:52	ICAL	
Calib Std 2	Y	РЬ	[0.1]	1	98.79	3/21/2014	17:52	ICAL	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
Calib Std 2	Y	Sb	(0.1)	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Ŷ	Se	10.11	1	98 79	3/21/2014	17:52	ICAL		
Calib Std 2	v v	Sn	[0.4]	, 1	98 79	3/21/2014	17:52	ICAL		
Callb Std 2	Ý	Sr	10.41	4	Q7 64	3/21/2014	17.51	ICAL		
Calib Std 2	Ŷ	Ti	[0.1] (0.5]	4	07.04	3/21/2014	17.52	ICAL		
Calib Std 2	v	TI	[0.0] [0.1]	4	98 79	3/21/2014	17:59	ICAL		
Callo Std 2	Ý	v	10.21	1	98.79	3/21/2014	17:52			
Callo Stu 2	Ý	V Že	[0.2]	1	08.70	3/21/2014	17.52	ICAL		
		انیم م	[0,6]	4	00.75	2/24/2014	11.94		neterita anno 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 -	
	Ŷ	AG	{0.0}	1 4	400.40	2/21/2014	17.00	ICAL		
Callb Std 3	Ŷ	AI	[0]	1	100.1	3/21/2014	17:55	ICAL		
Callo Sto 3	Ŷ	AS	[0.5]	1	90.95	3/21/2014	17:56	ICAL		
Calib Std 3	Ŷ	В	[2.5]	3	96.95	3/21/2014	17:56	ICAL		
Callb Std 3	Ŷ	Ba	[0.5]	3	96,95	3/21/2014	17:55	IGAL		
Calib Std 3	Ŷ	Be	[0.2]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	Ca	[5]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	Cđ	[0.25]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Co	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Callb Std 3	Y	Cr	[0.5]	1	96.95	3/21/2014	17;56	ICAL		
Calib Std 3	Ŷ	Cu	[0.5]	1	96.95	3/21/2014	17:55	ICAL		•
Calib Std 3	Y	-e	[5]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	ĸ	[100]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	LI	[5]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Mg	[5]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	Mn	[0.5]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Mo	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Na	[25]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Ni	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Р	[5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Pb	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Sb	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Callb Std 3	Y	Se	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Sn	[2]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Sr	[0.5]	1	100,1	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Ti	[2.5]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	TI	[0.5]	1	96,95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	V	[1]	1.	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Zn	[1]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 4	Y	Ag	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Al	[10]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	As	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	8	[5]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Ba	[1]	1	94.76	3/21/2014	17:59	ICAL.		
Calib Std 4	Y	Be	[0.4]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Са	[10]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Cd	[0.5]	1	94.76	3/21/2014	17:59	ICAL		
Callb Std 4	Y	Co	[1]	1	94.76	3/21/2014	17:59	ICAL		
Callb Std 4	Y	Cr	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Cu	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Fe	[10]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	к	[200]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Li	[10]	1	94.76	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Ma	[10]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Mn	111	1	94.76	3/21/2014	17:69	ÍCAL		
Calib Std 4	Y	Mo	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Na	[50]	1	98,15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Ni	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	P	[10]	1	94,76	3/21/2014	17:59	CAL		
Calib Std 4	Y	Pb	111	1	94,76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	Sb	(11	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	Se	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	Sn	[4]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Sr	11	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Ý	TI	151	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ý	TI	(1)	1	94.76	3/21/2014	17:59			
Calib Std 4	Y	V	[2]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ý	Zn	[2]	1	94.76	3/21/2014	17:59	ICAL		
ICV	Y	Ал	0.504		95 89	3/21/2014	18.02	ICV		514004-300 March 2010
ICV	Ý	AI	50 080	1	99.6	3/21/2014	18.01	ICV		
ICV	Ŷ	As	1,001	1	95.89	3/21/2014	18:02	ICV		
ICV	Ŷ	8	3.937	1	95.89	3/21/2014	18:02	ICV		
ICV	Ŷ	Ba	1967	1	95 89	3/21/2014	18.02	iev.		
ICV	Ŷ	Be	0.502	, 1	95 89	3/21/2014	18:02	ICV.		
ICV	Ý	Ca	80.620	1	99.6	3/21/2014	18:01	icv		
CV	Ŷ	Cri	0.399	1	95.89	3/21/2014	18:02	ICV		
CV	Ŷ	Co	1.002	1	95 89	3/21/2014	18:02	ICV		
ICV	Ý	Cr	1,015	1	95 89	3/21/2014	18.02	ICM		
ICV	Ŷ	Cu	1,000	1	95 89	3/21/2014	18:02	ICV		
ICV	Ŷ	Fe	39,160	1	99.6	3/21/2014	18:01	ICV		
ICV	Ŷ	ĸ	20.640	1	99.6	3/21/2014	18:01	ICV		

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
ICV	Y	Li	5.127	1	95.89	3/21/2014	18:01	icv		
ICV	Y	Mg	19.710	1	99.6	3/21/2014	18:01	ICV		
ICV	Y	Mn	1,960	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Mo	1.971	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Na	20.590	1	99.6	3/21/2014	18:01	ICV		
ICV	Y	Ni	2.014	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Р	9.872	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Pb	0.492	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Sb	0.991	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Se	1.988	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Sn	4.863	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Sr	2.017	1	99.6	3/21/2014	18:01	ICV		
ICV	Y	TI	4.920	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	TI	0.203	1	95.89	3/21/2014	18:02	ICV		
ICV	Ŷ	V	1.994	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Zn	4.823	1	95.89	3/21/2014	18:02	ICV		
ICB	Y	Ag	0.000	1	. 99.41	3/21/2014	18:06	CCB		
ICB	Y	Ai	-0.034	1	97.16	3/21/2014	18:05	CCB		
ICB	Y	As	-0.001	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	в	0.023	1	99.41	3/21/2014	18:07	CCB		
1CB	Y	Ba	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Ŷ	Be	0,000	1	99.41	3/21/2014	18:06	CCB		
ICB	Ý	Ca	-0.006	1	97.16	3/21/2014	18:05	CCB		
ICB	Ŷ	Cd	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Ŷ	Co	0.000	1	99.41	3/21/2014	18:07	CCB		
108	Ŷ	Cr	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Ŷ	Cu	0.001	1	99.43	3/21/2014	18:06	CCB		
ICB	r V	re	0.001	¥. 4	97.16	3/21/2014	18:05	000		
108	r V	n i i	0.055	1	97.10	3/21/2014	18.05	CCB		
	, v	L) Mar	-0.000	1	99.41	3/21/2014	10.00	CCB		
	Ý	Mas	-0.010	4	97.10	3/21/2014	18.00	CCB		
100	v v	1983 M.O.	0.000	4	99.41 00.41	3/21/2014	18:07	000		
100	Ý	Na	0.000	1	97 16	3/21/2014	18:05	000		
100	v'	Ni	0.000	4	99,10	3/21/2014	18:07	000		
ICB	Ý	p	-0.005	1	99.41	3/21/2014	18:07	CCB		
10B 10B	Ý	Ph	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Ý	Sb	0.001	1	99.41	3/21/2014	18:07	CCB		
ICB	Ý	Se	0.002	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Sn	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Ŷ	Sr	0.000	1	97.16	3/21/2014	18:05	CCB		
ICB	Y	Tł	0.000	1	99.41	3/21/2014	18:06	CCB		
ICB	Y	Π	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	v	0.001	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Zn	-0.003	1	99.41	3/21/2014	18:07	CCB		· · · · ·
Blank	N	Ag	0.000	1	99.31	3/21/2014	18:11	MISC		
Blank	N	AÏ	-0.044	1	96.87	3/21/2014	18:10	MISC		
Blank	N	As	0,000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	в	0.015	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Ba	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Be	0.000	1	99.31	3/21/2014	18:11	MISC		
Blank	N	Ca	-0.006	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Cđ	0.000	î	99.31	3/21/2014	18:12	MISC		
Blank	N	Ço	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Cr	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Сu	0.001	1	99.31	3/21/2014	18:11	MISC		
Blank	N	Fe	0,000	1	96.87	3/21/2014	18;10	MISC		
Blank	N	к	-0.001	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Li	-0.005	1	99.31	3/21/2014	18:10	MISC		
Blank	N	Mg	-0.013	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Mn	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Mo	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Na	0.023	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Ni	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	P	-0.002	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Pb	0.000	1	99.31	3/21/2014	18:12	MISC		
tilank Silank	N	Sb	0.001	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Se	0.003	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Sn	-0.001	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Sr	0.000	1	96.87	3/21/2014	18:10	MISC		
Diank	N	11	0.000	ĩ	99.31	3/21/2014	18:11	MISC		
Black	N		-0.001	Ţ	99.31	3/21/2014	18:12	MISC		
Diank Rinak	N	۷ ۳۰	0.001	1	99.31	3/21/2014	18:12	MISC		
AHBIC	N	<u>۲</u> Π	-0.003	1 Andrease	99.31	312112014	18:12	MISC		
INIL'	Ý	Ag	0.010	1	99.46	3/21/2014	18:16	MRL		
NIKL	Ŷ	A) A -	0.008	4	97,54	3/21/2014	10:15	MRL		MRSI. FL.
	Ŷ	AS	0.009	1	99.40 00.40	016 1/2014 2/21/0014	10:17	WITCL.		
MRI	Ť	P Ra	0.002	1	99.40 90 Ar	3/21/2014	18.17	MR)		

										•
SAMPLE ID	RPT	Anai	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
MRL	Y	Be	0.004	1	99.46	3/21/2014	18:16	MRL		
MRL	Υ.	Са	0.099	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Cd	0.005	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Co	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Cr	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Cu	0.011	1	99.46	3/21/2014	18:16	MRL.		
MRL	Y	Fe	0.106	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	к	2.028	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Li	0.099	1	99.46	3/21/2014	18:15	MRL		
MRL	Y	Mg	0.096	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Mn	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Mo	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Ŷ	Na	0.546	1	97.54	3/21/2014	18:15	MRL		
MRL	Ý	Ni	0,010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	P	0.095	1	99,46	3/21/2014	18:17	MRL		
MRL '	Y	Pb	0.010	1	99.46	3/21/2014	18:17	MRL.		
MRL	Y	Sb	0.011	1	99.46	3/21/2014	18:17	MRL		
MRL	Ŷ	Se	0.012	1	99.46	3/21/2014	18:17	MRL.		
MRI.	Ŷ	Sn	0.040	1	99.46	3/21/2014	18:17	MRL		
MRL	Ŷ	Sr	0.011	1	97.54	3/21/2014	18:15	MRL		
MRL	¥ V	11	0.050		99.40	3/21/2014	10:10	MRCL.		
MRL	r	11	0.010	1	99.46	3/21/2014	10:17	IVIEL		
MRL .	Ť	V 7	0.019	1	99.40	3/21/2014	10:17	IVIPCE.		
MRL	Y	Zn	0.017	1	99.46	3/21/2014	18:17	IVIRL	*****	
ICSA	Υ. 	Ag	-0.005	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ŷ	A!	753,100	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Ť	AS	-0.001	1	00.49	3/21/2014	18:20	105-A		
ICSA	ř V	5	0.003	1	86.49	3/21/2014	18:20	105-A		
ICBA	v v	Da	-0.001	1	00.45 RE 40	3/21/2014	10.20	100-A		
ICSA	v.	00	703.600	1	00.49	3/21/2014	10.20	105-A		
1034	ý.	Cđ	0.000	1	86 49	3/21/2014	18:20	103-A		
ICSA	Ý	Co	0.016	1	86.49	3/21/2014	18.20	100-A		
ICSA	Ý	Cr	-0.003	,	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ŷ	Cu	0.002	1	86.49	3/21/2014	18:20	ICS-A	i	
ICSA	Ý	Fe	668.200	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Ý	ĸ	0.192	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Ý	L	-0.006	1	86.49	3/21/2014	18:19	ICS-A		
ICSA	Ŷ	Ma	697.800	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Y	Mn	-0.012	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ý	Mo	0.013	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Na	0.034	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Y	Ni	0.016	1	86.49	3/21/2014	18:20	ICS-A		
IČSA	Y	Р	-0.014	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Pb	-0.006	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Sb	-0.017	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Se	0.000	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Sn	0.034	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Sr	-0.002	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Y	TI	0.003	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ý	TI	-0.001	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	v	-0.010	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Zn	0.026	1	86.49	3/21/2014	18:20	ICS-A		
ICSAB	Y	Ag	0.209	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Ŷ	Al	766.500	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB ICEAB	Y	AS	0.216	i M	86.05	3/21/2014	18:28	ICS-AB		
ICEAR	r V	0 22	1.033	+	00.00 86.0E	012112014 9/94/9044	10:20	ICE AP		
ICEAD	i V	Da	0.190	1	86.05	3/2//2014	10.20			
ICSAB	v	00 (*)	0.002	1	00.00	3/24/2014	10.20			
ICSAB	v.	Cd	0.114	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	v v	Co	0.203	1	86.05	3/21/2014	18.28	ICS-AB		
ICSAB	Ý	Сr	0 192	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Ý	Cu	0.213	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Ý	Fe	677.100	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Ŷ	ĸ	46.010	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	LI	2,246	1	86.05	3/21/2014	18:27	ICS-AB		
ICSAB	Y	Mg	703,700	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	Mn	0.186	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	¥	Mo	0.209	1	86,05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Na	11.210	î	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	Ni	0.202	1	86.05	3/21/2014	18:28	ICS-AB		:
ICSAB	¥	P	2.057	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Pb	0.177	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Υ	Sb	0.197	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Se	0.207	1	86.05	3/21/2014	18:28	ICS-AB		
IGSAB	Y	Sn	0.797	1	86.05	3/21/2014	18:28	ICS-AB		
IGSAB	Y	Sr	0.205	1	93.11	3/21/2014	18:27	ICS-AB		
IC SAB	Y	11	1.029	1	86.05	3/21/2014	18:28	IUS-AB		A C C

SAMPLE ID	RPT	Anai	Conc (mg/L)	DF	IS Rec {%}	AnalDate	AnaiTime	Samp Type	Method	Comments
ICSAB	Y	TI	0.190	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	V	0.393	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	۲	Zn	0.387	1	86,05	3/21/2014	18:28	ICS-AB		
CCV	Ŷ	Ag	0.496	1	96.15	3/21/2014	18:36	CCV		
COV	v V	Ai	4,960	1	96.20	3/21/2014	18:36	CCV		
CCV	Ý	B	2.434	1	96,15	3/21/2014	18:36	ccv		
CCV	Ý	Ва	0.499	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Be	0.201	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Ca	5.053	1	98.25	3/21/2014	18:35	CCV		
CCV	Y	Cd	0.248	1	96.15	3/21/2014	18:36	CCV		
CCV	Ý	Co	0.494	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	Cr Ov	0.496	1	96.15	3/21/2014	18:30	CCV		
CCV	۱ ۲	του Fe	5.081	1	98.25	3/21/2014	18:35	CCV		
CCV	Ý	ĸ	99.770	1	98.25	3/21/2014	18:35	ccv		
CCV	Y	Li	4.969	1	96.15	3/21/2014	18:35	CCV		
CCV	Y	Mg	5.082	.1	98.25	3/21/2014	18:35	CCV		
CCV	Y	Mn	0.501	1	96,15	3/21/2014	18:36	CCV		
CCV	Y	Mo	0.502	1	96.15 00.05	3/21/2014	18:36	CCV		
CCV	Ý	Na Ni	25.120	7	98.20	3/21/2014	18:30	CCV		
CCV	Ý	p	4 992	1	96.15	3/21/2014	18:36	CCV		
CCV	Ý	Pb	0.498	1	96.15	3/21/2014	18:36	ccv		
CCV	Y	Sb	0.498	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Se	0.502	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Sn	2.024	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	Sr	0.501	1.	98.25	3/21/2014	18:35	CCV		
CCV .	· Y	11	2.519	3	96.15	3/21/2014	18:36	CCV		
COV	· ·	13° V	0.499	1	96.15	3/21/2014	18:36	CCV		
CCV	Ý	Zn	1.007	.1	96.15	3/21/2014	18:36	ccv		
ССВ	Y	Ag	0.001	1	98.34 -	3/21/2014	18:40	ССВ		\$
CCB	Y	A	-0.054	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	As	-0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	в	0.014	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Ba De	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Ý	De	0.000	1	98.34	3/21/2014	18:40	CCB		
CCB	Ý	Cd	0.000	1	98.34	3/21/2014	18:41	CCB		
ССВ	Ŷ	Co	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Cr	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Cu	0.000	1	98.34	3/21/2014	18:40	CCB		
CCB	Y	Fe	0.002	1	96.45	3/21/2014	18:39	CCB		
CCB	Ŷ	K	0.006	1	96,45	3/21/2014	18:39	CCB		
CCB	v v	Mo	-0.005	1	90.34 96.45	3/21/2014	18:39	CCB		
CCB	Ý	Mo	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Ŷ	Мо	0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Na	0.021	1	96.45	3/21/2014	18:39	ССВ		
CCB	Y	Ni	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	P	-0.007	1	98.34	3/21/2014	18:41	CCB		
CCB	Ŷ	PD	-0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	' Y	Se	0.001	י 1	95.34	3/21/2014	10.41	CCB		
CCB	· Y	Sn	-0.002	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Sr	0.000	1	96.45	3/21/2014	18:39	CCB		
ССВ	Y	Ti	0.000	1	98.34	3/21/2014	18:40	CCB		
CCB	Y	TI	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Ŷ	V	0.001	1	98.34	3/21/2014	18:41	CCB		
CUB	Y V	<u> </u>	-0,003		95.34	3/23/2014	18:41	008	2040.0	M Caraba Caraba and an an an an an an an an an an an an an
11400360-002 2X	T V	AU	70.930	2	01.00	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Ý	As	0.069	2	87.06	3/21/2014	18:44	SAMP	6010 G	
T1400360-002 2x	Ý	8	0.151	2	87,06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	82	0.084	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	¥.	8e	0.005	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Ca	3041.000	2	91.67	3/21/2014	18:43	SAMP	6010 S	
11400360-002 2x	Y	Cđ	0.004	2	87.06	3/21/2014	18:44	SAMP	6010 S	
1 1400300-002 ZX	Y V	00 Cr	0.029	2	07.00 87.06	3/21/2014 3/94/9047	18:44 19:44	CAMP CAMP	0010 S 6010 S	
T1400360-002 2x	Ý	CH CH	0.302	2	87.00	3/21/2014	10,44	SAMP	6010 S	
T1400360-002 2x	Ý	Fe	128.900	2	91.67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	к	24.600	2	91.67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Li	0.156	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Mg	24.270	2	91,67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Mn	1.875	2	87.06	3/21/2014	18:44	SAMP	6010 S	
1400360-002 2x	Ý	Mo	0.017	2	87.06	3/21/2014	18:44	SAMP	6010 S	
1 1400300-002 ZX	r	ina.	0.070	~	91.07	312112014	10.44	SHIVIP	00103	$\gamma c \sigma$

										. .
SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	Method	Comments
J1402003-003	Ŷ	Sn	-0.003	1	101.1	3/21/2014	19:35	SAMP	200.7 99	
J1402003-003	Y	Sr	0.005	1	98.78	3/21/2014	19:33	SAMP	200.7 W	
J1402003-003	Ŷ	TI	0.272	1	101.1	3/21/2014	19:34	SAMP	200.7 W	
J1402003-003	Y	ΤĮ	-0.001	1	101.1	3/21/2014	19:35	SAMP	200.7 W	
J1402003-003	Ŷ	v	0.005	1	101.1	3/21/2014	19:35	SAMP	200.7 W	
J1402003-003	From the second se	<u>ZN</u>	0.007	1	101.1	3/21/2014	19:35	SAMP	200.7 W	eintersionen andersigen statut an an an an an an an an an an an an an
J1402003-004	Ŷ	Ag	0.000	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Ŷ	A	0.198	1	99.98	3/21/2014	19:38	SAMP	200.7 99	
J1402003-004	Ŷ	As	0.000	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	8	0.017	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Ba	0.009	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Be	0.000	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Y	Ca	0.326	1	99,98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Cd	0,000	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Co	0.001	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Çr	0.006	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	¥	Сu	0.001	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Y	Fe	0.071	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	к	0.045	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Li	-0.005	1	101.9	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Mg	0.346	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Mn	0.009	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Mo	0.000	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Na	1.709	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Ni	0.000	1	101,9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	ρ	0.005	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Pb	-0.001	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Sb	0.001	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Se	0.004	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Sn	-0.002	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Sr	0.005	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Ti	0.001	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Y	Tł	0.000	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	V	0,001	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Zn	0.002	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
CCV .	Ŷ	Ag	0.488	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Al	4.897	1	98.06	3/21/2014	19:42	CCV		
CCV	Y	As	0.500	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	8	2.418	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Ba	0.490	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Be	0.196	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Ca	4.947	1	98.06	3/21/2014	19:42	CCV		
CCV	Y	Cd	0.247	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Co	0.490	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Cr	0.493	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Cu	0.485	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Fe	4,975	1	98,06	3/21/2014	19:42	CCV		
CCV	Y	к	100.200	1	98,06	3/21/2014	19:42	CCV		
CCV	Y	Li	4.975	1	96,64	3/21/2014	19:42	CCV		
CCV	Y	Mg	4.980	t	98.06	3/21/2014	19:42	CCV		
CCV	Y	Mn	0.489	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Mo	0.499	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Na	25.220	1	98.06	3/21/2014	19:42	CCV		
CCV	Y	Ni	0.502	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	ρ	4 955	1	96,64	3/21/2014	19:43	CCV		
CCV	Y	Pb	0.498	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Sb	0.501	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Se	0.498	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Sn	2.014	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Sr	0.501	1	98.06	3/21/2014	19:42	CCV		
CCV	Ŷ	Ti	2.446	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	TI	0.494	1	96.64	3/21/2014	19:43	CCV		
CCV	Ý	V	0.974	1	96.64	3/21/2014	19:43	CCV		
CCV	Ŷ	Zn	0.988	1	96.64	3/21/2014	19:43	ccv		
CCB	Y	Ao	0.000	1	98.34	3/21/2014	19:47	ССВ		
CCB	Ý	Al	-0.062	1	95.45	3/21/2014	19:46	CCB		
CCB	Ŷ	As	0.000	1	98.34	3/21/2014	19:48	CCB		
ССВ	Ý	8	0.011	1	98.34	3/21/2014	19:48	CCB		
ССВ	Ý	Ba	0.000	1	98.34	3/21/2014	19:48	CCB		
ССВ	Ý	Be	0.000	1	98.34	3/21/2014	19:47	CCB		
ССВ	Ý	Са	-0,004	1	95.45	3/21/2014	19:46	CCB		
CCB	Ý	Cd	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Ŷ	Co	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Ý	Сг	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Ý	Cu	0.000	1	98.34	3/21/2014	19.47	CCB		
CCB	Ý	Fe	0.001	1	95.45	3/21/2014	19:46	CCB		
CCB	Ŷ	ĸ	0.043	1	95.45	3/21/2014	19:46	CCB		
CCB	Ŷ	L	-0.005	1	98.34	3/21/2014	19:46	CCB		
CCB	Ŷ	Ma	-0.027	1	95.45	3/21/2014	19:46	CCB		~ ~ ^ ~
·	•	····a		·						(% Z \$ 1

	00T	ånaf	Conc (moil)	ne	15 Rec (%)	ānailītato	AnaiTime	Samn Tyne	Method	Comments
COR	v	hân	0.000	1	08.34	3/21/2014	10.48	CCB	1141104	a officiation of the second seco
000	, v	Mo	0.000	1	08.74	3/21/2014	10.40	CCB		
CCB	v	No	0,000	، ۱	06.45	3/21/2014	10:46	000 000		
000	1	INC NC	0.030	۱ م	00.40	0/21/2014	19.40	000		
CCB	¥	INC	0.000	1	90.34	3/21/2014	19.40	CCB		
CCB	Y	۲ ۱۳۱۰	-0.007	1	96.34	3/21/2014	(9):40 10:40	CCB OCD		
CCB	Ŷ	Pb	-0.001	1	98.34	3/21/2014	19:48	CCB		
CCB	Ŷ	50	0.000	1	98,34	3/21/2014	19:48	CCB		
CCB	Y	Se	0.002	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	Sn	-0.003	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	Sr	0.000	1	95.45	3/21/2014	19:46	CC8 -		
CCB	Y	Ti	0.000	1	98.34	3/21/2014	19:47	CCB		
CCB	Y	TI	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	V	0.001	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	Ζņ	-0.003	1	98.34	3/21/2014	19:48	CCB		
J1402005-001	Y	Ag	0.001	1	98.12	3/21/2014	19:52	SAMP	200.7 W	
J1402005-001	Y	Al	0.129	1	100.6	3/21/2014	19:51	SAMP	200.7 W	
J1402005-001	Y	As	0.004	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	B	0.169	1	98,12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Ba	0.011	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Be	0.000	1	98.12	3/21/2014	19:52	SAMP	200.7 W	
J1402005-001	Y	Са	65.910	1	100.6	3/21/2014	19:51	SAMP	200.7 W	
J1402005-001	Ý	Cd	0.000	1	98,12	3/21/2014	19:53	SAMP	200.7 W	
11402005-001	Ŷ	Co	0.000	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
11402005-001	Ý	Cr	0.000	1	98 12	3/21/2014	19:53	SAMP	200 7 W	
11402005-001	, v	Cu	0.000	1	98.12	3/21/2014	19:52	SAMP	200.7 11	
11402005-001	, v	Fe	0.000	, 1	100.6	3/21/2014	10.04	SAMP	200.7 10/	
1402000-001	v v	re 1/	0.002	4	100.0	3/21/2044	10.01	SVINIC	200.7 99	
14402000-001	v v	n 11	0.000	1	100.0	3/34/0/14	10.01	CAMP	200.7 W	
J 1402005-001	¥	년.) 1. 1	-0.002	† *	80.1Z	3/21/2014	19:01	SAM	200.7 99	
J1402000-001	Ŷ	ivig	21.920	1	100.0	3/21/2014	19:51	SAMP	200,7 99	
J1402005-001	Ŷ	Mn	0.017	1	98.12	3/21/2014	19:53	SAMP	200.7 99	
J1402005-001	Ŷ	Mo	0.002	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Ŷ	Na	72.370	1	100.6	3/21/2014	19:51	SAMP	200.7 W	
J1402005-001	Y	Ni	0.001	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Р	0.834	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Ŷ	Pb	-0.005	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Sb	0.001	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Se	0.001	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Sn	0.013	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Sr	1.313	1	100.6	3/21/2014	19:51	SAMP	200.7 W	
J1402005-001	Ý	Ti	0.001	1	98.12	3/21/2014	19:52	SAMP	200.7 W	
J1402005-001	γ	TÌ	0.001	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	v	0.006	1	98.12	3/21/2014	19:52	SAMP	200.7 W	
J1402005-001	Y	Zn	0.040	1	98.12	3/21/2014	19:53	SAMP	200,7 W	,
,11402005-004	Y	Aa	0.001	1	100.3	3/21/2014	19:56	SAMP	200.7 W	######################################
11402005-004	Ý	AJ	0.648	t	101.3	3/21/2014	19:55	SAMP	200 7 W	
J1402005-004	Ý	As	0.006	1	100.3	3/21/2014	19:57	SAMP	200 7 W	
11402005-004	Ý	B	0.141	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
11402005-004	Ý	Ba	0.039	î	100.3	3/21/2014	10.57	SAMP	200.7 14/	
11402005 004	v	90 80	0.000	1	100.3	3/21/2014	10:56	SAMO	200.7 W	
14402005-004	, v	Co.	66 420	4	101.2	3/31/2014	10:55	CALLO	200.7 14	
1402005-004	, V	Cd Cd	00.420	4	101.0	3/21/2014	10.50	CALICO	200.7 14	
11402000-004	1 V	Cu Co	0.000	4	100.5	0/04/0014	19.57	CAMP	200,7 VV	
J1402005-004	, V	00	0.001	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J 1402005-004	¥.	Cr	0.003	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J 1402005-004	Y	CU E	0.034	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J (402005-004	Ŷ	re	1.100	1	101.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Ŷ	ĸ	8,958	1	101.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Ŷ	Li	-0.002	1	100.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Y	Mg	19.230	1	101.3	3/21/2014	19.55	SAMP	200.7 W	
J1402005-004	Y	Min	0.020	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J1402005-004	Y	Mo	0.003	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Na	59.050	1	101.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Y	Ni	0.003	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Р	4.181	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Pb	-0.001	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Sb	0.000	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Se	0.002	1	100.3	3/21/2014	19:57	SAMP	200,7 W	
J1402005-004	Y	Sn	0.016	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	γ	Sr	1.094	1	101.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Y	Ti	0.014	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J1402005-004	Y	Π	0.000	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	V	0,007	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J1402005-004	Y	Zn	0.124	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402022-001	Y	Åα	0.001	1	99 42	3/21/2014	20.01	SAMP	6010 W	anna preastraineachadhacha ann an ann an ann an ann an ann an ann an a
.11402022-001	Ý	 Д	0.305	1	98.09	3/21/2014	20/60	SAMP	6010 W	
11402022-001	v .	Ae	0.015	1	99.00 99.40	3/21/2014	20/01	SAMP	6010 W	
11402022-001	Ý	R	0.039	3	99.42	3/21/2014	20.01	SAMP	6010 \/	
11402022 001	~	ц. Ro	0.000	1 5	00.42	3/24/2644	20.01	STAND	6010 10	
11402022-001	i V	5CF	0,00%	1	00.42	3/24/2014	20.01	CRAAQ	6010 14	
U1402022-001	1	04	0.000	1	33.42 08.00	012112014	20.01	GANN	0010 VV	
J140Z0ZZ~001	Y	0a	00.010	1	90.09	312112014	20:00	OVVIVIE'	OUTO VV	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402022-003	Y	Zn	0.053	1	100.2	3/21/2014	20:11	SAMP	6010 W	
J1402022-004	Y	Ag	0.001	1 Internet and the second	98.62	3/21/2014	20:16	SAMP	6010 W	mmentele Kollensen werden volgen werden einen stehen in hier in bieden die bestehen werden werden werden werden Mennen werden werden werden werden werden werden werden werden werden werden werden werden werden werden werden
J1402022-004	Y	A	1.052	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Y	As	0.006	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	в	0.340	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Ва	0.052	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Be	0.000	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Ca	54.020	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Y	Cd	0.000	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Ŷ	Co	0.001	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Ŷ	Cr	0.001	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Ŷ	Cu En	0.003	1	96,0Z	3/21/2014	20:16	SAMP	6010 W	
11402022-004	Y V	re V	12 100	1	101.0	3/21/2014	20:15	SAWP	6010 W	
1402022-004	Ý	11	-0.005	1	98.62	3/21/2014	20:15	SAMP	6010 W	
11402022-004	Ý	Ma	12 670	1	101.8	3/21/2014	20:15	SAMP	6010 W	
.11402022-004	Ŷ	Mn	0.031	1	98.62	3/21/2014	20:16	SAMP	6010 W	
1402022-004	Ŷ	Mo	0.005	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Na	71.960	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Y	Ni	0.006	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Р	0.160	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Pb	-0.002	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Sb	-0.001	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Se	0.000	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Sn	0.012	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Sr	0.914	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Y	Ti Ti	0.011	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	ľ v	41 17	0.002	1 *	98.62	3/21/2014	20:16	SAMP	6010 W	
1402022-004	v v	V Zn	0.002	1	96.62	3/21/2014	20:10	SAMP	6010 W	
H 402022-004	~~~	<u>د اند</u>	0.020	+ 	401.4	3/21/2014	20.10	DAIAD	5010 VY	49567867867898978989878987878787878786624444424749467878787878787878451644444444444444444444444444444444444
11402022-005	Ý	Ω9 Δi	0.000	1	100.1	3/21/2014	20:20	SAMP	6010 W	
11402022-005	Ý	As	0.021	, 1	101.1	3/21/2014	20.20	SAMP	6010 W	
.11402022-005	Ý	в	0.007	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Ý	Ba	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Вe	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Са	-0.001	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-005	Y	Cd	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Co	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Cr	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Cu	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Fe	0.000	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-005	Y	ĸ	-0.001	1	100.4	3/21/2014	20:19	SAMP	6010 W	
J1402022-005	Ŷ	Li	-0.005	1	101.1	3/21/2014	20:19	SAMP	6010 W	
J1402022-005	Ŷ	Mg	0.001	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-005	ř	N/n	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-000	r V	NIO Ma	-0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
1402022-005	, V	Ni	0.020	1	100.4	3/21/2014	20.18	SAMP	6010 W	
11402022-005	Ý	p	-0.001	1	101.1	3/21/2014	20.21	SAMP	6010 W	
J1402022-005	Ý	Ph	-0.001	1	101.1	3/21/2014	20.21	SAMP	6010 W	
J1402022-005	Ý	Sb	-0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Ý	Se	0.003	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Sn	-0.002	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Sr	0.000	1	100.4	3/21/2014	20:19	SAMP	6010 W	
J1402022-005	Y	Tì	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	TI	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	V	0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Zn	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	einnerisinimininininininere lääännen mininimme euronen ninininin maanaan aan aanaa aanaa aanaa aanaa aanaa aana
J1402025-001	Y	Ag	0.001	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ŷ	AI	0.192	1	98.96	3/21/2014	20:25	SAMP	6010 W	
J1402025-001	Ŷ	AS	0.002	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ý	5 Pr	0.021	1	99.75 00.75	3/23/2014	20,26	SAMP	OUTU W	
J1402020-001	, V	Bo	0.013	1	99,75	3/21/2014	20.20	CAMP	6010 W	
11402020-001	ı V	Ce	51 710	4	00.70 AD RD	3/21/2014	20:20	SAMP	8010 W	
11402025-001	Ý	Crl	0.000	•	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ý	Co	0.001	1	99.75	3/21/2014	20:28	SAMP	6010 W	
J1402025-001	Ŷ	Ċī	0.004	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ý	Cu	0.002	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Fe	0.265	î	98.96	3/21/2014	20:25	SAMP	6010 W	
J1402025-001	Y	к	1.388	1	98.96	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Y	Lŧ	-0.004	1	99.75	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Y	Mg	1.571	1	98.96	3/21/2014	20:25	SAMP	6010 W	
J1402025-001	Y	i∕in	0.001	î	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Mo	0.005	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Na	1.613	1	98.96	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Y	Ni	0.000	1	99,75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	P	0.011	1	99.75	3/21/2014	20:26	SAMP	5010 W	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402025-001	Y	Pb	-0.005	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Sb	0.001	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Se	0.002	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Sn	0.012	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Sr	0.142	1	98.96	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Y	Ti	0.006	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ŷ	TI	0.001	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	ř V	V Zn	0.005	1	99,75	3/21/2014	20:20	SAMP	6010 W	
J1402025-001	Y	20	0.000	l malamatalanyi A	99.10	3/21/2014	20.20	SAMO	6010 W	
J1402025-002	Ŷ	Ag	0.000	1	99.33	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	r V	A.C.	0.090	4	00.1	3/21/2014	20:30	SAMP	6010 W	
11402025-002	Ý	B	0.026	1	99.53	3/21/2014	20:31	SAMP	6010 W	
11402025-002	Ý	Ba	0.009	1	99.53	3/21/2014	20:31	SAMP	6010 W	
.11402025-002	Ŷ	Be	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
.11402025-002	Ý	Ca	31,290	1	98,1	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Y	Cd	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Co	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Çr	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Cu	0.001	1	99.53	3/21/2014	20:31	SAMP	6010 W	•
J1402025-002	Y	Fe	0.909	1	98.1	3/21/2014	20:30	SAMP	6010 W	
J1402025-002	Y	к	0.952	1	98.1	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Y	Li	-0.003	1	99.53	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Y	Mg	15.340	1	98.1	3/21/2014	20:30	SAMP	6010 W	
J1402025-002	Y	Mn	0.027	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Ŷ	Mo	0.004	1	99.53	3/21/2014	20:31	SAMP	BUTO W	
J1402025-002	Y	Na	6.739	1	98.1	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Ŷ	NI D	0.000	1	99.53	3/21/2014	20:31	SAME	6010 W	
J1402020-002	¥.	۳ Dh	0.000	4	99.00	3/21/2014	20.31	SAMO	6010 W	
11402023-002	v	SP	-0.003	1	99.00	3/21/2014	20.31	SOME	6010 W	
11402025-002	Ý	Se	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
.11402025-002	Ŷ	Sn	0.008	1	99.53	3/21/2014	20:31	SAMP	6010 W	
.11402025-002	Ý	Sr	0.051	1	98.1	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Ý	Ti	0.001	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	τı	0.001	1	99.53	3/21/2014	20:31	SAMP	6010 W	· · · · · · · · · · · · · · · · · · ·
J1402025-002	Y	V	0.003	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Zn	0.000	1	99,53	3/21/2014	20:31	SAMP	6010 W	
J1402025-003	Y	Ag	0.001	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Y	AI	0.068	1	98,56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y.	As	0.003	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	·Υ	в	0.018	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	8a	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Ŷ	Be	0.000	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Ŷ	Ca	23,420	1	98.56	3/21/2014	20:34	SAMP	DUTU W	
J1402025-003	Ŷ		0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
1402020-003	v	00	0,000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
11402025-000	Ý	Co	0,000	1	99.22	3/21/2014	20:35	SAMP	6010 W	
.11402025-003	Ý	Fe	0.830	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Ý	ĸ	1.024	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Ŷ	Li	-0.004	1	99,22	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	Mg	10.290	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	Mn	0.025	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Y	Mo	0.007	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Na	5.416	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Ϋ́	Ni	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Р	0.213	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Pb	-0.004	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Sb	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Ŷ	Se C-	0.001	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Ŷ	Sn	0.005	3	99.2Z	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	, T	ও। সং	0.034	1	90.30	3/21/2014	20,34	CAMP	0010 W	
11402020-003	ý	m	0.001	1	99.22	3/21/2014	20:36	SAMP	6010 W	
11402025-003		V	0.000	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Ý	Zn	0.002	1	99.22	3/21/2014	20:36	SAMP	6010 W	
CCV	Ý	Aa	0,490	1	95.82	3/21/2014	20:39	CCV		2001;
CCV	Ý	AI	4.887	1.	97.55	3/21/2014	20:38	CCV		
CCV	Y	As	0.509	1	95,82	3/21/2014	20:39	CCV		
CCV	Y	8	2.440	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	8a	0.493	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Be	0.197	1 '	95.82	3/21/2014	20:39	CCV		
CCV	Y	Са	4.972	1	97.55	3/21/2014	20:38	CCV		
CCV	Y	Cd	0.250	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Co	0.496	1	95.82	3/21/2014	20:39	CCV	•	
CCV	Ý	Cr	0.499	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Cu	0.488	1	95.82	3/21/2014	20:39	CCV		
UUV	Y	t.e	4.982	T	97.55	312112014	20:38	CCV		

SAMPLE ID	RPT	Anai	Conc (ma/L)	DF	(S Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
CCV	Y	к	100.400	1	97.55	3/21/2014	20:38	ccv		
CCV	Ý	Ц	4.982	1	95.82	3/21/2014	20:38	ccv		
CCV	Ŷ	Ma	4,987	1	97.55	3/21/2014	20:38	CCV		
CCV	Y	Mn	0.493	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Мо	0.505	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Na	25.250	1	97.55	3/21/2014	20:38	CCV		
CCV	Y	Ni	0.508	1	95,82	3/21/2014	20:39	CCV		
CCV	Y	P	5.017	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Pb	0.498	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Sb	0.508	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Se	0.503	1	95.82	3/21/2014	20:39	CCV		
CCV	Ŷ	Sn	2.035	1	95.82	3/21/2014	20:39	CCV		
CCV	Ŷ	Sr	0.501	1	97.00	3/21/2014	20:38	CCV		
CCV	Ŷ	14	2,400	1	90.02	3/21/2014	20:39	CCV		
CCV	ĭ V	и 	0.499	4	90.02	3/21/2014	20.39	CCV		
CCV	v	7n	0.900	1	95.82	3/21/2014	20:39	CCV		
000	v	Δ <u>η</u>	0.001	1	98.39	3/21/2014	20:43	CCB		
	v	ΛQ Δ1	-0.072	1	95.46	3/21/2014	20:40	CCB		
CCB	, v	Δs	-0.072	, 1	98.39	3/21/2014	20.44	CCB		
CCB	Ý	8	0.005	1	98.39	3/21/2014	20:44	CCB		
CCB	Ŷ	Ba	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Ŷ	Be	0.000	1	98.39	3/21/2014	20:43	CCB		
CCB	Y	Са	-0.002	1	95.46	3/21/2014	20:42	ССВ		
CCB	Y	Cd	0,000	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Co	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Cr	0.000	1	98.39	3/21/2014	20:44	CCB		
CC8	Y	Cu	0.001	1	98.39	3/21/2014	20:43	CCB		
CCB	Y	Fe	0.001	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	K	0.065	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	Li	-0.005	1	98.39	3/21/2014	20:42	CCB		
CCB	Ŷ	Mg	-0.013	1	95.46	3/21/2014	20:42	CCB		
CCB	Ŷ	Mn	0,000	1	98.39	3/21/2014	20:44	000		
CCB CCB	ř	NO	0.000	1	90.39	3/21/2014	20:44	CCB		
000	v	Ni	0.020	4	08.30	3/21/2014	20:42	CCB		
008	÷	p	-0.007	1	98.39	3/21/2014	20.44	CCB		
CC8	Ŷ	Ph	-0.001	1	98.39	3/21/2014	20:44	CCB		
CCB	Ŷ	Sb	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Ý	Se	0.003	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Sn	-0.002	1	98.39	3/21/2014	20:44	CCB		
CCB	Ý	Sr	0.000	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	ŤĬ	0.000	1	98.39	3/21/2014	20:43	CCB		
CCB	Y	TI	-0.001	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	V	0.001	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Zn	-0,003	1 *********	98.39	3/21/2014	20:44	CCB		
J1402025-004	Y	Ag	0.001	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Ŷ	Al	0.039	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Ŷ	As	0.005	1	99.45	3/21/2014	20:49	SAMP	8010 W	
J1402025-004	Ŷ	10 10 -	0.134	4	99.40	3/21/2014	20.49	SAMP	6010 W	
31402025-004	v.	Bo	0,005	1	00.45	3/21/2014	20:48	SAMP	6010 W	
11402025-004	Ý	Ca	23 590	1	98.56	3/21/2014	20:47	SAMP	6010 W	
.11402025-004	Ý	Cd	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Ý	Co	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Cr	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Cu	0.002	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	Fe	0.287	1	98,56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	к	25.350	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Li	-0.005	1	99.45	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Ŷ	Mg	7.927	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Mn	0.059	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	Mo	0.001	1	99,45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	IN BI	17.140	1	90.00	3/21/2014	20.47	SAM	6010 W	
J1402023-004	r V	111	0.000	+	99.45	3/21/2014	20.45	SAMP	6010 W	
1402025-004	, Y	Ph	-0.003	1	99.45	3/21/2014	20.49	SAMP	6010 W	
1402025-004	Ŷ	Sb	-0.001	1	99.46	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Ý	Se	0.004	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Ý	Sn	0.008	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Ý	Sr	0.194	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Τi	0.000	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	TI	0.000	1	99,45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	V	0.004	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	Zn	0.001	i	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-005	Y	Ag	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ý	AI	0.304	1	99.55	3/21/2014	20:52	SAMP		
J1402025-005	Y	As	0.002	1	100	3/21/2014	20:03	SAMP	6010 W	
J1402025-005	Ý	В	0.026	7	100	3/21/2014	20:03	OAME	OO LO AA	All from the

SAMPLE ID	RPT	Anal	Conc (ma/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	Method	Comments
.11402025-005	Y	Ba	0,009	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Be	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Са	31.600	1	99,55	3/21/2014	20:52	SAMP	6010 W	
11402025-005	Y	Cd	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ý	Co	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ŷ	Cr	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ý	Cu	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
1402025-005	ý	Ee	0.999	, 1	99.55	3/21/2014	20:52	SAMP	6010 W	
J1402025-005	v	10	0.000	4	00.55	3/21/2014	20.52	SVAND	6010 W	
J1402025-005	T	N I I	0.940		39.00	3/2//2014	20.52	CAND	6010 W	
J1402025-005	Y	L) 84-	-0.003	1	100	3/21/2014	20:02	CAMP	6010 W	
J1402025-005	Ŷ	rvig	15.330	1	99.00	3/21/2014	20.52	SAW	0010 W	
J1402025-005	Ŷ	Min	0.027	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ŷ	Mo	0.003	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Na	6.639	1	99.55	3/21/2014	20:52	SAMP	6010 W	
J1402025-005	Y	Nì	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Ρ	0.103	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ý	Pb	-0.004	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Şb	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Se	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Sn	0.008	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Sr	0.052	1	99.55	3/21/2014	20:52	SAMP	6010 W	
.11402025-005	Y	TI	0.003	1	100	3/21/2014	20;53	SAMP	6010 W	
11402025-005	Ŷ	ΤI	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ŷ	v	0.004	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ý	Zn	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025 000	÷.	-0 An	0.000	asaraningaran 1	20. AA 00	3/21/2014	20.58	SAMP	6010 \//	adariken kerken kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan
31402023-000	T V	Ag .	0.000	4	99.00	3/21/2014	20.00	CAND	6040 W	
31402023-006	Ť	A4	0.476		99.14	0/21/2014	20.07	CAMP	6010 W	
J1402025-006	Y	AS	0.002	1	99.66	3/21/2014	20:58	SAMP	6010 VV	
J1402025-006	Ŷ	в	0.014	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Ba	0.052	1	99.66	3/21/2014	20:58	SAMP	6010 VV	
J1402025-006	Y	8e	0.000	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Ca	14.940	1	99.14	3/21/2014	20:57	SAMP	6010 W	
J1402025-006	Ý	Cd	0.000	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Co	0.000	1	99.66	3/21/2014	20;58	SAMP	6010 W	
J1402025-006	Y	Cr	0,000	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Cu	0.002	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Fe	0.018	1	99.14	3/21/2014	20:57	SAMP	6010 W	
J1402025-006	Y	к	3.932	1	99,14	3/21/2014	20:57	SAMP	6010 W	
J1402025-006	Ŷ	ü	0.002	1	99.66	3/21/2014	20:57	SAMP	6010 W	
11402025-006	Ý	Ma	2.883	1	99.14	3/21/2014	20:57	SAMP	6010 W	
11402025-006	Ý	Mo	0.001	1	99.66	3/21/2014	20:58	SAMP	6010 W	
11402025-006	, v	Mo	0.001	4	99,66	3/21/2014	20:58	SAMP	6010 W	
1402025-006	, v	No	10.950	1	99.14	3/21/2014	20:57	SAMP	6010 W	
1402020-000	ý	NI	0.000	,	00.66	9/21/2014	20.07	SAMD	6010 14/	
J 1402025-000	1	191	0.000	4	99.00	0/21/2014	20.00	CAME	6010 W	
J1402025-005	Y V	۳ ۵۰	0.004	1	99.00	3/21/2014	20.00	O AND	0010 VV	
J1402025-006	Ŷ	PD	-0.004	1	99.00	3/21/2014	20:58	SAMP	0010 W	
J1402025-006	Ŷ	Sb	0.001	1	99.66	3/21/2014	20:58	SAMP	6010 VV	
J1402025-006	¥	Se	0.003	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Sn	0.005	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Sr	0.322	1	99.14	3/21/2014	20:57	SAMP	6010 W	
J1402025-006	Y	Ti	0.000	i	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	TT	0.001	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	V	0.002	1	99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-006	Y	Zn	0.000	1	99.66	3/21/2014	20;58	SAMP	6010 W	
J1402025-007	Y	Aq	0.001	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	AI	0,165	1	99.74	3/21/2014	21:02	SAMP	6010 W	
J1402025-007	Ŷ	As	0.003	1	99.41	3/21/2014	21:03	SAMP	6010 W	
1402025-007	Ŷ	в	0.021	1	99.41	3/21/2014	21:03	SAMP	6010 W	
11402025-007	ÿ	Ba	0.026	1	99.41	3/21/2014	21:03	SAMP	6010 W	
11402025-007	Ý	Be	0.000	1	99.41	3/21/2014	21.03	SAMP	6010 \/	
11402025-007	, ,	Ca	43 700	4	00.74	3/21/2014	21:02	SAMP	6010 \/	
J1402020-007	Y	Ga	43.780	1	55.74 00.44	3/21/2014	21.02	SAMP	6010 W	
J1402025-007	r	Ca	0.015	1	99.41	3/21/2014	21:03	SAMP	0010 W	
J1402025-007	Ŷ	U0	0.001	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	Cr	0.095	1	99.41	3/21/2014	21:03	SAMP	W UTUO	
J1402025-007	Y	Çu	0.005	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	Fe	0.927	1	99.74	3/21/2014	21:02	SAMP	6010 W	
J1402025-007	Y	к	5.433	1	99,74	3/21/2014	21:02	SAMP	6010 W	
J1402025-007	Y	Li	0.006	1	99.41	3/21/2014	21:02	SAMP	6010 W	
J1402025-007	Y	Mg	2.137	1	99.74	3/21/2014	21:02	SAMP	6010 W	
J1402025-007	Y	Mn	0.020	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	Мо	0.005	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	Na	2.809	1	99.74	3/21/2014	21:02	SAMP	6010 W	
J1402025-007	Y	Ni	0.088	٩	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Ŷ	P	0.176	1	99.41	3/21/2014	21:03	SAMP	6010 W	
11402025-007	Ŷ	ph	-0.005	•	99.21	3/21/2014	21 03	SAMP	6010 W	
11/02025.007	v	s o Sh	0.001	1	00 /1	3/21/2014	21.03	SAMP	6010 W	
U 1902020-007	' v	00 00	0.001	, 1	00,41	3/21/2014	21:03	SAMP	6010 \/	
U1402023-007	*	00 0'-	0.002	। न	00.41	3/01/0014	21.00	Q A LAD	8010 W	
J1402020-007	Ý	5fi C-	0.012	1	55,41	3/21/2014	2 E03	CAMP	6010 W	
J1402023-007	¥.	হা	0.200	i	59./4	JIG 1/2014	21.UZ	0/NIVII"	ONIN AA	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	Ana:Date	AnalTime	Samp Type	Method	Comments
.11402025-007	Y	Ti	0.010	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Ý	TI	-0.001	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	v	0.002	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Y	Zn	0.013	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007S	Y	Ag	0.515	1	96.56	3/21/2014	21:06	MS	6010 W	ana mananan kanan ya mananan kanya kanya kanya kanya na manana kanya kanya manana kanya kanya kanya kanya mana Manana kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya kanya ka
J1402025-007S	Y	AI	5.381	1	99,19	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	As	0.519	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	в	2.537	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Ва	0.532	1 .	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Be	0.205	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Ca	49.560	1	99.19	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Cď	0.271	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Co	0.499	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Cr	0.601	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Y	Cu	0.514	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ŷ	h-e	6 095	1	99.19	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ŷ	ĸ	108.700	1	99.19	3/21/2014	21:06	NIS	6010 W	
J1402025-007S	Ý	LI	5.129	1	90.00	3/21/2014	21:00	NIS MC	6010 W	
J1402025-007S	Ŷ	Mg	7.249	1	99.19	3/21/2014	21:00	IVIO	6010 VV	
J1402025-0075	r V		0.524	1	90.00	3/21/2014	21:00	IVIO MAS	6010 W	
J1402025-0075	1 V	Ne	28.600	1	90.00	3/21/2014	21.00	MS	6010 W	
1402025-0075	Ý	Ni	0.600	1	96.56	3/21/2014	21:06	MS	6010 W	
1402025-0075	Ý	.p	5 368		96.56	3/21/2014	21:06	MS	6010 W	
11402025-0075	Ý	, Ph	0.501	1	96.56	3/21/2014	21:06	MS	6010 W	
.11402025-0075	Ý	Sb	0.518	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	, Y	Se	0.520	;	96.56	3/21/2014	21:06	MS	6010 W	
.11402025-0078	Ý	Sn	2.051	í	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ŷ	Sr	0.785	1	99.19	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ŷ	Ti	2.548	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ý	TI	0.509	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ý	v	1.013	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007S	Ŷ	Zn	1.028	1	96.56	3/21/2014	21:06	MS	6010 W	
J1402025-007SD	Y	Aq	0.515	1	96.82	3/21/2014	21:09	MSD	6010 W	******
J1402025-007SD	Y	AÌ	5.269	1	100.2	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	As	0.530	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	8	2.572	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Ba	0.531	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Be	0.205	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Ca	49.150	1	100.2	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Cd	0.273	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Co	0.505	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Cr	0.613	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Cu	0.513	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Fe	6.087	1	100.2	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	к	108.700	1	100.2	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Lł	5.140	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Mg	7.179	1	100.2	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Mn	0.523	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Mo	0.525	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Y	Na	28.750	1	100.2	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Ŷ	Ni	0.606	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Ŷ	P	5 44 1	1	98.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Ŷ	P6	0.507	1	96.82	3/21/2014	21:09	MSD	6010 VV	
J1402025-007SD	Ŷ	OD Co	0.920	1	90,02 06.00	3/21/2014	21:09	MOD	6010 W	
31402020-0073D	T V	00 Cr	2 079	1	30.02 QR 97	3/21/2014	21.09	Men	6040 W	
3 1402023-00730 15402025-00750	T V	011 Qr	0.784	1	90.02 100 2	3/21/2014	21.09	MSD	6010 W	
11402025-00730	Ý	Ti	2 540	4	96.82	3/21/2014	21.00	MSD	6010 W	
11402025-0073D	Ý	τi	0.513	1	96.82	3/21/2014	21:09	MSD	6010 W	
11402025-00750	Ý	v	1 011	1	96.82	3/21/2014	21:09	MSD	6010 W	
J1402025-007SD	Ŷ	Zo	1.026	1	96.82	3/21/2014	21:09	MSD	6010 W	
.11402025-0071	Ý	Aa	0.000		99.3	3/21/2014	21:14	SD	6010 W	\$
.11402025-007L	Ý	Al	0.020	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Ŷ	As	0.001	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	в	0.011	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Ва	0.005	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Be	0.000	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Ca	9.138	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	Cd	0.003	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Co	0.000	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Cr	0.023	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	γ	Cu	0.002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Fe	0.229	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	К	1.180	5	98.47	3/21/2014	21:13	SÐ	6010 W	
J1402025-007L	Y	Li	-0.002	5	99.3	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	Mg	0.436	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	Mn	0.004	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Ý	Mo	0.002	5	99.3	3/21/2014	21:14	SD	6010 W	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec {%}	AnalDate	AnalTime	Samp Type	Method	Comments
J1402025-007L	Y	Na	0.592	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	Ni	0.018	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	р	0.034	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Pb	-0.002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Sb	0.001	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Se	0.002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Sn	0.003	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Sr	0.056	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	П	0.002	5	99.3	3/21/2014	21:14	SD	6010 VV	
J1402025-007L	Ŷ	n	0.000	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Ŷ	V 75	0.001	о Б	99.3	3/21/2014	21:14	50	6010 W	
J1402022-0071	1 	21) •••••••••••••••	0.002	0 100000000000000000000000000000000000	07.05	3/21/2014	21,14 01/17	DC	6010 W	
J1402025-007A	ř	Ag	0.010	1	97.65	3/21/2014	21.17	ro PS	6010 W	
J1402025-007A	, v	Δe	0.517	1	97.85	3/21/2014	21.18	PS	6010 W	:
14/02025-007A	Ý	R	2 543	1	97.85	3/21/2014	21.18	PS	6010 W	
.11402025-007A	Ý	Ba	0.528	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Be	0.205	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Са	47.600	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Cd	0.269	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Co	0.499	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Ŷ	Cr	0.598	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Cu	0.514	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Fe	5.944	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	К	109.400	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Li	5.208	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Mg	7.021	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Mn	0.522	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Ŷ	MO	0.513	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	i V	1942 N 5	20.000	1	101.2	3/21/2014	21.17	ro pe	6010 W	
J1402025-007A	, v	D D	6 324	1	97.00	3/21/2014	21.10	F3 PS	6010 W	
J1402025-007A	· · · · · · · · · · · · · · · · · · ·	Ph	0.498	1	97.85	3/21/2014	21:10	PS	6010 W	
J1402025-007A	Ý	Sb	0.515	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Ŷ	Se	0.506	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Sn	2.032	1	97.85	3/21/2014	21:18	PS	6010 W	<i>(</i>
J1402025-007A	Y	Sr	0.784	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Ti	2,543	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	TI	0.507	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	V	1.011	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Zn	1.021	1	97.85	3/21/2014	21:17	PS	6010 W	00-10-10-10-10-10-10-10-10-10-10-10-10-1
J1402037-001	Y	Ag	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Al	0.298	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	As	0.001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Ŷ	8	0.028	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	¥ V	58	0.006	1	99.5	3/21/2014	21:22	SAMP	6010 W	
11402037-001	· ·	Ce	7 859	1	99.5	3/21/2014	21.22	SAMP	6010 W	
11402037-001	Ý	Cd	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
.11402037-001	· Y	Co	0.001	1	99.5	3/21/2014	21.22	SAMP	6010 W	
11402037-001	Ý	Cr	0.001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Ý	Cu	0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Fe	0,026	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	к	6.617	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Li	-0.004	1	99.5	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Mg	2.596	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Mn	0.090	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Mo	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Na	2.016	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Ŷ	Ni	0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	۲ ۳۲	0.010	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	r V	PD Sh	-0.002	1	99.0 00.6	3/21/2014	21.22	SAMP	6010 W	
1402037-001	1 V	50	0.000	1	99.J 00 5	3/21/2014	21.22	SAMO	6010 W	
11402037-001	Ý	Sn	0,000	4	99.5	3/21/2014	21.22	SAMP	6010 W	
J1402037-001	Ý	Sr	0.010	4	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Ŷ	Ti	0,002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	TI	0.001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	V	0,001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Zn	0.058	1	99.5	3/21/2014	21:22	SAMP	6010 W	
MB-02132-02	Y	Ag	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	norman en en en en en en en en en en en en en
MB-02132-02	Y	Al	0.035	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	As	-0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	В	0.008	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Ba	0,000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Ŷ	Be	0.000	1.	99,54	3/21/2014	21:27	MBLK	5010 W	
WB-02132-02	Y	Ca A	0.000	1	100.1	3/21/2014	21:26	MBLK	OUTU VV	
ME-02132-02	r V	Ca Ca	0.000	1	99.94 00.54	3/21/2014	21.27		6010 W 6010 M	
1410-UZ 102-UZ	Ŧ	00	0.000	1	89,04	JIZ 112014	21.21	NDEN	OO TO VV	JT16 14/05 WP

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
MB-02132-02	Y	Cr	0.002	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Cu	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Fe	0.017	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	к	-0.005	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Ý	E1	-0.005	i	99.54	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Ý	Ma	0.005	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Ý	Mn	0.000	1	99.54	3/21/2014	21.27	MBLK	6010 W	
MB-02132-02	Ý	Mo	0.000	1	99.54	3/21/2014	21.27	MBLK	6010 W	
MD-02132-02	Ý	Ma	0.000	1	100.1	3/21/2014	21/26	MRIK	6010 W	
ND-02132-02	v	NG	0.002	4	00.1	3/21/2014	21.20		6010 W	
MD-02132-02	I V		0.000	4	99.04	3/21/2014	21.27		6010 W	
MB-02132-02	Y	۲ 	0.003	1	99.54	3/21/2014	21:27	WIBLK	0010 W	
MB-02132-02	Ŷ	PD	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 VV	
MB-02132-02	Ŷ	Sb	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 VV	
MB-02132-02	Y	Se	0.003	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Sn	-0.002	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Sr	0.000	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	Ti	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	TI	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	V	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Zn	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
CCV	Y	Ag	0.495	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	AI	5.014	1	98.06	3/21/2014	21:30	CCV		
CCV	Y	As	0.493	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	в	2.415	1	96.34	3/21/2014	21:30	CCV		
CCV	Ŷ	Ba	0.496	1	96.34	3/21/2014	21:30	CCV		
CCV	Ŷ	Be	0.198		96.34	3/21/2014	21:30	CCV		
ccv	Ý	Ca	5 027	1	98.06	3/21/2014	21:30	CCV '		
COV	, V	Ca	0.027		06.00	3/34/3044	21.00	COV		
cov	v	00	0.241	4	00.04	3/2//2014	21.30	000		
000	i V	00	0.404	*	00.04	0/04/0014	21.30	000		
000			0.494		90.34	3/21/2014	21:30			
	¥	Cu	0.494	1	96.34	3/21/2014	21:30	CCV		
CCV	Ŷ	Fe	5.064	1	98.06	3/21/2014	21:30	CCV		
CCV	Y	ĸ	100.400	1	98,06	3/21/2014	21:30	CCV		
CCV	Y	Li	5.021	1	96,34	3/21/2014	21:30	CCV		
CCV	Y	Mg	5.018	1	98.06	3/21/2014	21:30	CCV		
CCV	Y	Mn	0.496	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Mo	0.501	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Na	25.320	1	98.06	3/21/2014	21:30	CCV		
CCV	Y	Nł	0.502	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Р	4,939	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Pb	0.493	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Sb	0.500	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Se	0.493	1	96.34	3/21/2014	21:30	CCV		
CCV	Ý	So	2 007	1	96.34	3/21/2014	21:30	COV		
COV	Ý	Sr	0.505	4	98.06	3/21/2014	21.30	COV		
COV	Ý	17	2 485	1	06.34	3/21/2014	21:30	000		
COV	, v	71	0.497	1	06.34	3/21/2014	21.30	000		
COV	v v	17	0.407	4	90.34	3/21/2014	21.00	000		
001	1 V	V 7	0.991	; 	90.34	3/21/2014	21:30			
	1 Recentions	211	0,994	00000000000000000000000000000000000000	90.34	3/21/2014	21:30	υυν		
CCB	Ŷ	Ag	0.000	1	99.1	3/21/2014	21:35	CCB		
ССВ	Y	Aſ	-0.028	1	96.56	3/21/2014	21:34	CCB		
ССВ	Y	As	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	В	800.0	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Ba	0.000	1	99.1	3/21/2014	21:35	CCB		
ССВ	Y	Be	0,000	1	99.1	3/21/2014	21:35	CCB		
ССВ	Y	Са	-0.003	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	Cđ	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Ço	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Cr	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Cu	0.001	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Fe	0.001	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	к	0.037	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	11 -	-0.005	1	99.1	3/21/2014	21.34	CCB		
CCB	Y	Ma	-0.012	4	96.56	3/21/2014	21:34	CCB		
CCB	Ŷ	Mn	0.000	1	99.1	3/21/2014	21:35	008		
CCB	· v	Mo	0.000	•	99.1	3/21/2014	21:35	CCB		
CCB	v	Ma	0.000		D6 56	3/94/2014	21.33	CCB		
CCB	v	Ni	0,010	1	00.00	2/24/2014	21.04	000		
000	i V	INI (D	0.000	1	99.1 00.4	012 (12014 2124/0044	21.00	000		
000	T V		-0.002	1	99.1	312112014	21:35			
008	Ŷ	РD	-0.001	1	99.1	3/21/2014	21:35	CCB		
	Y	30	0.001	1	98.1	3/21/2014	21:35	CCB		
CCR	Y	Se	0.004	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Sn	-0.002	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Sr	0.000	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	Ti	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	TI	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	V	0.001	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Zn	-0.003	1	99.1	3/21/2014	21:35	CCB		
LCS-02132-01	Y	Ag	0.507		97.37	3/21/2014	21:38	LCS	6010 W	

SAMPLE ID	RPT	Anal	Conc (ma/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
MR_02087_01	Y	Sb	0.000	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	<i></i>
MB-02007-01	Ý	Se	0.003	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02007-01	Ŷ	Sn	-0.001	1	97.32	3/21/2014	23.53	MBLK	6010 TCLP	
MB-02007-01	Ý	Sc	0.000	1	98.45	3/21/2014	23.51	MBLK	6010 TCLP	
MB-02087-01	Ý	Ti	0.000	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	v	т	0.003	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Ý	v	0.002	i	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MR_02087-01	Ŷ	Zn	0.000	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
LCS-02087-02		Αa	0.508	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	<u>namediana kan kan kan kan kan kan kan kan kan </u>
1.05-02007-02	Ý	AI	5.071	1	100.5	3/21/2014	23:56	LCS	6010 TCLP	
105 02087 02	Ý	Δe	0.516	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCC-02007-02	v	Ř	2 510	1	95.76	3/21/2014	23:56	105	6010 TCLP	
105-02007-02	v	Ba	0 499	1	95.76	3/21/2014	23:56	LCS	6010 TOL	
105-02007-02	Ý	Re	0.201	1	95.76	3/21/2014	23:56	105	6010 TOLP	
105-02007-02	Ý	Ca	4 983	, 1	100.5	3/21/2014	23:56	LCS	6010 TCLP	
105 02087 02	v v	Cd	0.255	1	95 78	3/21/2014	23.56	LCS	6010 TCLP	
105-02007-02	Ý	Co	0.200	1	95.76	3/21/2014	23.56	108	6010 TCLP	
1 CS 02087-02	Ŷ	Cr	0.502	4	95 76	3/21/2014	23:56	105	6010 TCLP	
105-02001-02	Ý	Cu	0.503		95.76	3/21/2014	23:56	105	6010 TCLP	
1 CS 02087-02	Ý	Fe	5.059	4	100.5	3/21/2014	23:56	105	6010 TCLP	
105-02087-02	Ý	ĸ	101 900	1	100.5	3/21/2014	23:56	108	6010 TCLP	
105-02087-02	Ý	Li	5.075		95 76	3/21/2014	23:56	105	6010 TCLP	
105-02087-02	Ý	Ma	4 947	1	100.5	3/21/2014	23.56	LCS	6010 TCL P	
LCS-02007-02	Ý	Mo	0.498	1	95 76	3/21/2014	23,56	100	6010 TCLP	
103-02007-02	Ý	Mo	0.507	1	95.76	3/21/2014	23:56	105	6010 TCLP	
1 05 02007-02		Ma	164,000	i	100.5	3/21/2014	23:56	105	6010 TOLP	LCS FH 200.7 LCS FH 6010 W LCS FH 6010 S .
103-02007-02	v	Ni	0.507	1	95.76	3/21/2014	23:56	LCS	6010 TOLP	
100 02007-02	v'	ואי D	5 128	1	95.70	3/21/2014	23.56	105	6010 TCLP	
100-02007-02	v	г 05	0.504	4	95.76	3/21/2014	23.56	105	6010 TOLI 9	
LOS-02007-02	v	ГV Сh	0.504	4	95.76	3/21/2014	23.56	100	6010 TOLI	
LCG-02007-02	v v	00 60	0.520	-	95,76	3/21/2014	23.56	100	6010 TCLP	
100-02007-02	T V	38 Qo	2.024	1	05.70 05.76	3/2//2014	23.56	103	6010 TOLE	
100-02007-02	i V	Q11 Qr	2.024	,	100.5	3/21/2014	23.50	105	6010 TCLP	
100-02007-02	v v	- Эн - Т	3 607	4	05.76	3/21/2014	23.56	103	6010 TOLI	
105-02007-02	v v	11 Ti	2.001	4	95.70	3/21/2014	20.00	100	6010 TOL	
108 02007 02	, ,	- +) - V	1.001	1	95.70	3/21/2014	23.56	105	6010 TOL	
LCS-02007-02	, v	ง 7ภ	1.003	-	95.76	3/21/2014	23.56	105	6010 TOL	
CCV		Δ <u>η</u>	0.495		95.10	3/21/2014	20,00		00101021	
COV	Ý	ΔI	4 932	4	97.86	3/21/2014	23.59	COV		
COV	· v	Δe	0.504	1	95.31	3/21/2014	23.59	CCV		
COV	Ý	8	2 447	1	95.31	3/21/2014	23.50	COV		
COV	, Y	Ba	0.495	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Re	0 198	4	95.31	3/21/2014	23.59	COV		
COV	÷	Ca	4 937	4	97.86	3/21/2014	23.59	COV		
COV	Ý	Cd	0.249		95.31	3/21/2014	23:59	CCV		
COV	, v	Co	0.493	1	95.31	3/21/2014	23:59	COV		
COV	ý	Cr	0.496	1	95.31	3/21/2014	23.59	CCV		
CCV	Ŷ	Cu	0.495	1	95.31	3/21/2014	23:59	CCV		
COV	Ý	Fe	4 954	1	97.86	3/21/2014	23.59	CCV		
COV	Ý	ĸ	100 600	1	97.86	3/21/2014	23.59	CCV		
CCV	Ý	ti	5 053	1	95.31	3/21/2014	23:59	CCV		
COV	Ý	Ma	4 903	1	97.86	3/21/2014	23.59	CCV		
CCV	Ý	Min	0.495	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Mo	0.505	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Na	25 380	1	97.86	3/21/2014	23.59	CCV		
CCV	Ý	Ni	0.504	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	p	4.974	1	96.31	3/21/2014	23:59	CCV		
CCV	Ŷ	Pb	0.495	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Sb	0.504	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Se	0.490	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Sn	2.017	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Sr	0.507	1	97.86	3/21/2014	23:59	CCV		
CCV	Ý	Ti	2.484	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	TI	0.497	1	95.31	3/21/2014	23:59	CCV		
CCV	Ŷ	v	0.992	1	95.31	3/21/2014	23:59	CCV		
CCV	¥	Zn	0,986	1	95.31	3/21/2014	23:59	CCV		
CCB	X	Aq	0.000	1	98.22	3/22/2014	00:04	CCB		ŊŗġĊĊĸĊĸĊĸĊŶĊĊĊġĊĊĊĸĊĊĊĊĊĊġĊĊġĊĊġĊĊġĊĊġĊĊġĊĊŎĊŎĊŎĊŎŎŎŎĊŎŎŎŎŎŎ
CCB	Ý	Ă	-0.012	1	96.87	3/22/2014	00:03	CCB		
CCB	Y	As	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	в	0.014	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Ba	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Be	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Ŷ	Са	-0.003	1	96.87	3/22/2014	00:03	CCB		
CCB	Y	Cd	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Co	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Cr	0.000	1	98.22	3/22/2014	00:04	CCB		
ССВ	Ŷ	Cu	0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Fe	-0.004	1	96.87	3/22/2014	00:03	CCB		
CCB	Y	к	0.081	1	96.87	3/22/2014	00:02	CCB		
										277

SAMPLE ID	RPT	Anai	Conc (ma/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	Method	Comments
CCR	Y	E	-0.005	1	98.22	3/22/2014	00.02	CCB	aletabe	• • • • • • • • • • • • • • • • • • •
CCR ·	Ý	Ma	-0.009	1	96.87	3/22/2014	00:03	CCB		
CCB	Ý	Mn	0.000	1	98.22	3/22/2014	00:04	ССВ		
ССВ	Ý	Мо	0.000	1	98.22	3/22/2014	00:04	ССВ		
CCB	Ý	Na	0.030	1	96.87	3/22/2014	00:02	CCB		
CCB	Y	Ni	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Ρ	0.003	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Pb	-0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Sb	0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Se	0.003	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Sn	-0.002	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Sr	0.000	1	96.87	3/22/2014	00:02	CCB		
CCB	Y	Tì	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	TI	0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	V	0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Zn	-0.003	1	98.22	3/22/2014	00:04	CCB		
J1401898-001	Ŷ	Ag	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ŷ	Al	0.089	1	99.43	3/22/2014	00:08	SAMP	6010 TCLP	
J1401898-001	Ŷ	A\$	0.001	1	97.51	3/22/2014	00:09	SAMP	6010 TOLP	
J1401898-001	Y	В р.,	0.025	1	97.51	3/22/2014	00:09	SAMP	BOTO TOLP	
J1401898-001	ř	Ba	0.008	4	97.51	3/22/2014	00:09	SAMP	ADIO TOLP	
J1401090-001	r V	De Ca	5.095	1	97.03	3/22/2014	00.05	SAMP	6010 TCLP	
11401808 001	v	Cd	0.000	1	97.51	3/22/2014	00.07	SAMP	6010 TOLP	
11401898-001	Ý	Co	0.004	1	97.51	3/22/2014	00.00	SAMP	6010 TOLP	
11401898-001	Ý	Cr	0.002	1	97.51	3/22/2014	00.09	SAMP	6010 TCI P	
J1401898-001	Ý	Cu	0.010	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
.1401898-001	Ŷ	Fe	1.100	1	99.43	3/22/2014	00:08	SAMP	6010 TCLP	
J1401898-001	Ý	ĸ	1.276	i	99.43	3/22/2014	00:07	SAMP	6010 TCLP	
.11401898-001	Ŷ	ŧ.	-0.004	1	97.51	3/22/2014	00:07	SAMP	6010 TCLP	
J1401898-001	Ŷ	Ma	1,795	1	99,43	3/22/2014	00:08	SAMP	6010 TCLP	
J1401898-001	Y	Mn	0.026	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Мо	0.001	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	N	Na	143.100	1	99.43	3/22/2014	00:07	SAMP	6010 TCLP	MB FH, LCS FH,
J1401898-001	Y	Ni	0.006	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Р	0.479	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Pb	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Sb	0.005	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Se	0.005	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Sn	0.003	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Sr	0.009	1	99.43	3/22/2014	00:07	SAMP	6010 TCLP	
J1401898-001	Y	Ti	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	TÌ	0.001	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ŷ	<u>v</u>	0.002	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ŷ	Zn	0.373]	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
T1400360-001	Ŷ	Ag	0.000	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
11400360-001	Y	Al A -	0.208	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
11400360-001	Y	AS	0.001	1	90,01	3/22/2014	00:14	SAN	BOTO TOLP	
T1400300-001	r	10	0.013	4	90.01	3/22/2014	00.14	SAMP	6010 TOLP	
T1400300-001	Ý	Ba	0.010	1	90,51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ý	Ca	17 390	1	99.51	3/22/2014	00:13	SAMP	6010 TOLP	
T1400360-001	Ý	Cd	0.000	, 1	96.51	3/22/2014	00.10	SAMP	6010 TOLP	
T1400360-001	Ý	Co	0.008	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ý	Cr	0.000	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ý	Cu	0.010	1	96,51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Fe	0.021	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Y	к	0.379	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Y	Li	0.001	1	96.51	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Ŷ	Mg	1.034	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Ý	Mn	0.149	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Mo	0.001	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ν	Na	136.400	1	99.79	3/22/2014	00:12	SAMP	6010 TCLP	MB FH, LCS FH,
T1400360-001	Y	Ni	0.013	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Ρ	-0.001	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	¥	Pb	-0.003	1	98.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Sb	0.000	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
11400360-001	Ŷ	Se	0.004	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
1400360-001	¥.	50 0-	0.007	1	95.51	3/22/2014	00:14	SAMP	BOTO TOLP	
11400360-001 T1400360-001	Y	Sr m	0.057	1	99./9 99.22	3/22/2014	00:13	SAMP	BOTO TOLP	
1 1400300-001	Ŷ	11	0.000	1	90.01	3/22/2014	00:14	S A & A CO	6010 IGLP	
1 1400300-001	ĭ V	11	0,001	1	08.51 08.51	3/22/2014 3/22/2014	00:14	OVIAI	BOTO TOLM	
13400300-001 11400360-001	¥	V Zn	0.002	r 1	90.01	3/22/2014	00.14	SAMP	6010 TOLP	
MR.02120.02	ı V	<u>κη</u> Δυ	0,010	; 1 1	101 0	3/22/2014	00.14	MRLK	6010 0	
MB-02130-02	, V	AI	0.080	4	101.0	3/22/2014	00.18	MRIK	6010 D	
MB-02130-02	v	Ae	0.000	1	101.9	3/22/2014	00.19	MBI K	6010 D	
MB-02130-02	Ŷ	8	0.009	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Ba	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	

	PPT	Anal	Conc (moli)	DE	IS Rec (%)	Analiata	ânalTime	Samo Tune	Method	Comments
	V	Bo	0.000	1	10100 (74)	3/22/2014	00.10	MRI K	6010 D	Contraction
ND-02130-02	, v	00	0.000	4	101.0	2/22/2014	00:18	MRLK	6010 D	
MB-02130-02	i V	Ca Ca	0.010	4	101.9	3/22/2014	00.10	MOLK	6010 D	
WB-02130-02	i V	Cu Ca	0.000	1	101.9	2/22/20:4	00.19	MDLK	6010 D	
MB-02130-02	r V	00	0.000	1	101.9	3/22/2014	00.19		6010 0	
MB-02130-02	1 V	0	0.001	1	101.9	3/22/2014	00.19		6010 D	
MB-02130-02	ĭ V	Cu 5 -	0.000	1	101.9	3/22/2014	00.18		8010 0	
MB-02130-02	Ť	re	0.010	1	101.9	0/22/2014	00.10	MOLK	8010 D	
MB-02130-02	1	N	0.002	1	101.9	3/22/2014	00.17	MOLK	0010 D	
IVIB-02130-02	r V	E.F	-0.003	1	101.9	3/22/2014	00.17	MBLK	6010 0	
MB-02130-02	Ŷ	ivig	0.004	1	101.9	3/22/2014	00:18	MDLK	0010 D	
MB-02130-02	Ŷ	Min	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Mo	-0.001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Na	0.019	1	101.9	3/22/2014	00:17	MBLK	6010 D	
MB-02130-02	Ŷ	Ni	-0,001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Р	0.012	1	101,9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Pb	0.000	1	101,9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Sb	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Se	0.006	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Sn	-0.001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Sr	0.000	1	101.9	3/22/2014	00:17	MBLK	6010 D	
MB-02130-02	Y	Ti	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	TI	0.001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	v	0.001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Zn	0.002	1	101.9	3/22/2014	00:19	MBLK	6010 D	
LCS-02130-01	Y	Ag	0.501	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	AI	5.208	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	As	0.509	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	в	2.489	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Ba	0.494	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Be	0.199	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Ca	5.045	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Cđ	0.253	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Co	0.498	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Cr	0.501	1	97.51	3/22/2014	00:22	LCS	6010 D	54 (L)
LCS-02130-01	Y	Cu	0.498	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Fe	5.048	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	к	101.500	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	LI	5.129	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Mg	5.008	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Mn	0,494	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Mo	0.506	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ŷ	Na	25,590	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Ni	0,509	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ŷ	Р	5.067	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Pb	0.501	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Sb	0.508	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Se	0.511	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Sn	2 024	1	97.51	3/22/2014	00.22	LCS	6010 D	
108-02130-01	Ý	Sr	0.517	1	101.2	3/22/2014	00.22	LCS	6010 D	
LCS-02130-01	v	ті	2 484	1	97.51	3/22/2014	00.22	LCS	6010 D	
105-02130-01	Ý	TI	0.505	1	97.51	3/22/2014	00.22	LCS	6010 D	
105-02130-01	Ý	v	0.988	4	97.51	3/22/2014	00.22	105	6010 D	
LCS-02130-01	Ý	Žn	0.986	1	97.51	3/22/2014	00.22	105	6010 D	
11402025 001		Δα	0.001		09.87	3/22/2014	00.27	SAMP	6010 D	inal mit is der UMXXXXXVM RECULTIONED NED STELLER zu warzell sind wiel die Einstelle Berlander der annen under seiner zu warzum aus gezeiner warzum ander seiner zu warzum aus gezeiner
.11402025-001	Ý	As	0.002	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	Ý	8	0.028	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	, v	u Ba	0.013	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	, v	Bo	0,000	1	90.97	3/22/2014	00.27	SAMP	6010 D	
.11402025-001	Ŷ	Ca	49.960	1	101.5	3/22/2014	00.25	SAMP	6010 Đ	
11402025-001	, v	Cd	0.000	1	99.87	3/22/2014	00:27	SAMP	6010 D	
11402025-001	, v	Co	0.000	1	99.87	3/22/2014	00.27	SAMP	6010 D	
14402025-001	ý	00	0.000	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	, v	C	0.000	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	, ,	Ee Ee	0.000	1	101 5	3/22/2014	00.26	SAMP	6010 D	
1402025-001	v v	i e	1 395	1	101.5	3/22/2014	00:25	SAMP	6010 D	
11402020-001	, ~	13	-000 -006	1	99.87	3/22/2014	00.25	SAMP	6010 D	
11402025-001	· ·	e. Bár	1 51 1	י 1	101 5	3/22/2014	00.20	SAMP	6010 0	
1402020-001	· ·	Ma	0.000	1	01.0	3/22/2014	00.20	SAMP	6010 D	
01402020-001	T V	1441	0.000	1	00.0/ 00.27	3/22/2014	00.27	SALAD	6040 D	
J1402025-001	Y V	NHO Nho	0.004	1	59.0/ 101 F	312212014	00:27	GVINI,	6040 D	
J1402020-001	Ϋ́.	NS.	1,393	Ì	0.101.5	312212074	00.20	OMMI"	0010 D 6040 P	
J1402025-001	Ŷ	NI	0.000	1	99.07 00.07	3/22/2014	00.27	SAMP	0010 D	
J1402025-001	Ŷ	¥ ~	0.012	1	99.87	3/22/2014	00:27	SAMP	00100	
J1402025-001	Y	PD	-0.005	1	99.87	3/22/2014	00:27	SAMP		
J1402025-001	Y	Sb	0.002	1	99.87	3/22/2014	00:27	SAMP	00100	
J1402025-001	Y	Se	0.004	ĩ	99.87	3/22/2014	00:27	SAMP	6010 D	
J1402025-001	Y	Sn	0.012	1	99.87	3/22/2014	00:27	SAMP	6010 D	
J1402025-001	Y	Sr	0.140	1	101.5	3/22/2014	00:25	SAMP	0010 D	
J1402025-001	Y	TI	0.000	1	99,87	3/22/2014	00:27	SAMP	6010 D	~ <i>m</i> ^

SAMPLE ID	RPT	Anal	Conc (ma/l.)	DF	IS Rec (%)	AnalDate	AnaiTime	Samp Type	Method	Comments
11402025-001	v	TI	0.001	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402020-001	, v	N.	0.004	1	00.07	3/22/2014	00:27	SAMP	6010 D	
11402025-001	Ý	Zn	0.004	1	00.07	3/22/2014	00:27	SAMP	6010 D	
J1402023-001		۲۱۱ الاستخدادی مرتب	0.002	ן אינייייייייייייייייייייייייייייייייייי	100.01	3/22/2014	00.27 00.27	CAMP	8010 D	
J1402025-002	Ŷ	AG	0.000	1	100.5	3/22/2014	00.32	CAMP	6010 D	
J1402025-002	ř	A	0.110	1	101.0	0/22/2014	00.31	CAMP	6010 D	
J1402025-002	Ť	AS	0.002	1	100.3	3/22/2014	00.32	CAMP	8010 D	
J1402025-002	Ŷ	B	0.030	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	ва	0.009	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Ŷ	Be	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Сa	30.860	1	101.5	3/22/2014	00:30	SAMP	6010 D	
J1402025-002	Ŷ	Cd	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Co	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Cr	-0.001	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Cu	0.001	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Fe	0.753	1	101.5	3/22/2014	00:31	SAMP	6010 D	
J1402025-002	Y	к	0.943	1	101.5	3/22/2014	00:30	SAMP	6010 D	
J1402025-002	Y	LI	-0.004	1	100,3	3/22/2014	00:30	SAMP	6010 D	
J1402025-002	Y	Mg	14.720	1	101.5	3/22/2014	00:31	SAMP	6010 D	
J1402025-002	Y	Mn	0.026	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Mo	0.003	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Na	6.772	1	101.5	3/22/2014	00:30	SAMP	6010 D	
J1402025-002	Y	Ni	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Р	0.051	1	100,3	3/22/2014	00:32	SAMP	6010 D	
.11402025-002	Ý	Pb	-0.004	1	100.3	3/22/2014	00:32	SAMP	6010 D	
11402025-002	Ý	Sb	-0.001	1	100.3	3/22/2014	00:32	SAMP	6010 D	
11402025-002	Ý	Se	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
1402025-002	, v	Sn	0.000	, 1	100.3	3/22/2014	00:32	SAMP	6010 D	
1402020-002	, v	Sr.	0.000	1	101.5	3/22/2014 3/22/2014	00:30	SAMP	6010 D	
J1402020-002	ı V	ਹ। ਜ:	0.002	1	107.0	3/22/2014	00.30	CAMO	6010 0	
J 1402020-002	1	11	0.000	I A	100.3	5/22/2014	00.32	CAMP.	8010 0	
J1402025-002	¥.		0.002	1	100.3	3/22/2014	00.32	SAMO	6010 D	
J1402025-002	Y V	V 7-	0.003	i 4	100.3	3/22/2014	00.32	SAMO	6010 D	
J1402025-002	Y	८ .೧	0.002	+	100,3	3/22/2014	00:32	SAIVIP	00100	
J1402025-002S	Y	Ag	0.510	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	AI	5.226	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Ý	As	0.514	1	96,75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	в	2.534	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Ba	0.507	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Be	0.202	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Ca	35.360	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Cd	0.255	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Co	0.497	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Cr	0.502	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Çu	0.504	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Fe	5,802	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	к	103.200	1	101.5	3/22/2014	00:35	MS	6010 D	
11402025-0025	Ŷ	Li	5.131	1	96.75	3/22/2014	00:35	MS	6010 D	
11402025-002S	Ý	Ma	19,720	1	101.5	3/22/2014	00:35	MS	6010 D	
11402025-0025	Ŷ	Mn	0.523	1	96.75	3/22/2014	00:35	MS	6010 D	
11402025-0025	Ý	Mo	0.512	1	96.75	3/22/2014	00:35	MS	6010 0	
1402025-0025	Ý	ð la	32 160	4	101.5	3/22/2014	00:35	MC	6010 D	
4402020-0020	v	Nii	0.506	4	06.75	3/33/2014	00.35	MO	8010 0	
31402023-0023	v	191	5 120	4	50.75 D6 75	3/22/2014	00.35	IVIO BAC	8010 D	
J1402020-0025	r V	г рь	0.129		90.70	3/22/2014	00.35	IVIO	8010 0	
J1402025-0025	ř	~U CL	0.490	1	90.73	3/22/2014	00.30	NO NC	0010 0	
J1402025-002S	Ŷ	30	0.512	1	96.75	3/22/2014	00:35	IVIS	6010 D	
J 1402020-0025	۲ ۲	50 0-	0.010	1	90,75 06 75	ai2212014	00:00	NO	0010 D	
J 1402025-0025	Y	ର ଚ	2.029	1	90.75	3/26/2014	00:35	NO NO	0010 D	
J1402025-0025	Y 	১r 	0.569	1	101.5	SIZZIZU14	00:05	NIS NIS	0010 D	
J1402025-0025	Ý)) ,	2.014	1	90.75	0/22/2014	00:35	MD NO	0010 D	
J1402025-002S	Y	11	0.504	1	96.75	3/22/2014	00:35	MS	0010 D	
J1402025-0025	Y		1.004	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Zn	0.987) Isounamunaassaa	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002SD	Ý	Ag	0.513	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Al	5.103	1	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	As	0.518	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	8	2.568	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Ba	0.510	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Be	0.204	1	95,95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ý	Са	35.270	1	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Cd	0.256	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-0028D	Y	Co	0.499	1	95,95	3/22/2014	00:38	MSD	6010 D	
J1402025-0025D	Ŷ	Cr	0.506	4	95.95	3/22/2014	00:38	MSD	6010 D	
11402025-00250	Ý	Co	0.509	1	95.95	3/22/2014	00:38	MSD	6010 D	
11402025-00250	Ý	Fe	5 718	4	101 5	3/22/2014	00.38	MSD	6010 D	
11402025-00250	v	K	103 200	1	101.5	3/22/2014	00.00	MSD	6010 0	
1402020-0020L	ı V	N	6 150	4	01.0	3/00/0044	00.00	MOD	6010 0	
14409025-0025D	r V	ы М	0.102	। न	30.80 404 E	3/33/0044	00.30	NIGU MART	6010 0	
J 1402025-00250	¥	wig	19.320	ł	101.5	312212014	00.00	NOU		
J1402025-002SD	Y	Min	0.527	1	95,95	3/22/2014	00:38	WSD		
J1402025-002SD	Ŷ	Mo	0.514	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Na	32.220	1	101.5	3/22/2014	00:38	MSD	6010 D	

SAMPLE ID	RPT	Anai	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
11402025-002SD	Y	Ni	0.508	1	95.95	3/22/2014	00:38	MSD	6010 D	
11402025-00250	Ý	p	5 198	1	95.95	3/22/2014	00:38	MSD	6010 D	
11402025-00250	Ý	Ph	0.501	1	95.95	3/22/2014	00:38	MSD	6010 0	
11402025-00250	Ý	Sh	0.519	1	95.00	3/22/2014	00:38	MSD	6010 D	
1402023-0023D	Ý	Sin	0.513	4	05.05	3/22/2014	00:38	MSD	8010 D	
31402023-00230	Ý	Če.	0.014	1	05.00	3/22/2014	00:39	MSD	8010 D	
31402025-00250	Ŷ	00 6-	2.000	1	101 5	3/22/2014	00.00	MED	6010 D	
J1402025-0025D		31	0.007	1	101.0	3/22/2014	00.30	NOD	0010 D	
J1402025-002SD	Ŷ	11	2.530	1	95.95	3/22/2014	00:38	MSD	00100	
J1402025-002SD	Ŷ	н	0.498	1	95,95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	V	1.013	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Zn	0.994	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002L	Y	Ag	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Al	0.027	5	98.86	3/22/2014	00:42	SD	6010 D	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
J1402025-002L	¥	As	-0.001	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	в	0.017	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Ba	0.002	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Be	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
11402025-002L	Y	Са	6.320	5	98.86	3/22/2014	00:41	SD	6010 D	
11402025-0021	Y	Cđ	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
1402025-0021	v v	Co	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
1402025-0021	v	Сг	0.001	5	89.05	3/22/2014	00:43	sn	6010 0	
1402025-002L	, v	Co	0.001	5	99.05	3/22/2014	00:43	SD SD	6010 D	
J1402023-002L	ż	Cu Co	0.001	- U	00.00	3/22/2014	00.43	50	4010 D	
J1402025-002L	T V	re	0.103	5	90.00	3/22/2014	00.42	30	8010 D	
J1402025-002L	Ŷ	ĸ	0.280	5	98.86	3/22/2014	00:41	50	00100	
J1402025-002L	Ŷ	L	-0.004	5	99.05	3/22/2014	00(41	SD	6010 D	
J1402025-002L	Y	Mg	3.067	5	98.86	3/22/2014	00:42	SD	6010 D	
J1402025-002L	Y	Mn	0.005	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Mo	0.001	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Na	1.385	5	98.86	3/22/2014	00:41	SD	6010 D	
J1402025-002L	Y	Ni	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Р	0.012	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Pb	-0.002	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Sb	0.001	5	99.05	3/22/2014	00:43	SD	6010 D	
.11402025-002L	Y	Se	0.003	5	99.05	3/22/2014	00:43	SD	6010 D	
11402025-0021	Ŷ	Sn	0.002	5	99.05	3/22/2014	00:43	SD	6010 D	
11402025-0021	Ý	Sr	0.011	5	98.86	3/22/2014	00/41	SD	6010 D	
11402025-0021	Ý	ті	0.000	5	99.05	3/22/2014	00:43	SD ·	6010 D	
11402025-0021	v	TI	0.000	5	00.05	3/22/2014	00:40	50	6010 D	
31402025-002L	*	11	0.000	5	- 00.05	3/22/2014	00.43	50	6010 D	
J1402025-002L	, ,	70	0,001	5	99,03	3/22/2014	00.43	50	6010 D	
J1402025-002L		<u>2</u> 13	0.000		95.00	0/00/0014	00.45		0010 0	
J1402025-002A	Ŷ	Ag	0.510	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	A	5.267	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	As	0.510	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	в	2.576	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Ba	0.513	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Be	0.205	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Ca	35.020	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Cd	0.258	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Co	0.500	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Çr	0.506	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Cu	0.511	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Fe	5.800	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	ĸ	104.400	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	Ш	5.195	1	96.73	3/22/2014	00:46	PS	6010 D	
11402025-0024	v.	Ma	19 520	•	101.8	3/22/2014	00:46	PS	6010 0	
1402025-0024	Ŷ	Man	0.530	, 1	96 73	3/22/2014	00:46	PS	6010 D	
11402025-0024	, v	Mo	0.516	, 1	96 73	3/22/2014	00:48	PS	6010 0	
11402020-002M	v	No.	33 300	1	104 9	3/33/2014	00.40	pe	6010 D	
	r V	ind N ^{it}	02.090	1	101.0	012212014	00,40	гə pe	6010 D	
J 1402020-002A	f V	198	0.011	1	90.73	3/22/2014	00:40	F3	6010 D	
J1402025-002A	Ŷ	2	5.225	1	90.73	3/22/2014	00:40	r8		
J1402025-002A	Y	PD	0.504	1	96,73	3/22/2014	00:48	PS	8010 D	
J1402025-002A	Ŷ	Sb	0.520	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Se	0.512	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Sn	2.031	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Sr	0.570	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Ti	2.541	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	T1	0.507	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	V	1.017	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Zn	1.008	1	96.73	3/22/2014	00:46	PS	6010 D	
CCV	Y	Aa	0.494	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Ă	4.961	1	98.53	3/22/2014	00:49	CCV		
CCV	Ŷ	As	0.500	1	95.26	3/22/2014	00:49	CCV		
CCV	Ý	B	2.440	1	95.26	3/22/2014	00:49	CCV		
CCV	Ý	Ra	0 495	1	95 26	3/22/2014	00.49	ccv		
CCV	, v	Re	0.108	1	95.20 95 76	3/22/2014	00.40	COV		
COV	, V	00 Co	4 069	1 4	08 69	3/22/2014	00.40	COV		
	i v	~a	7.500	1	30.JJ	2/22/2014	00.40	007		
	¥ N	04	0.404	1	90,20 DE 90	312212014	00:49	000		
	Ŷ	00	0.494	1	90.20	3/22/2014	00:49			
UUV	Y	Or	U.497	1	90.Z6	312212014	UU:49	ULV.		

SAMPLE ID	RPT	Anal	Conc (ma/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
CCV	Ŷ	Cu	0.494	1	95.26	3/22/2014	00:49	CCV		
CCV	Ý	Fe	4.989	1	98.53	3/22/2014	00:49	CCV		
CCV	Ý	к	100.800	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	Li	5.079	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Mg	4.943	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	Mn	0.495	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Mo	0.504	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Na	25.380	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	Ni	0.504	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Р	4,965	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	₽b	0,495	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Sb	0.502	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Se	0.494	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Sn	2.014	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Sr	0.510	1	98.53	3/22/2014	00:49	CCV		
CCV	Ŷ	TI Ti	2.481	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	н	0.496	1	95.26	3/22/2014	00:49	CCV		
CCV	Ŷ	V	0.993	1	95.26	3/22/2014	00:49	CCV		
CGV	T Sector	<u>حميمي</u>	0.966	 	95.26	3/22/2014	00:49	000		
CCB	Ŷ	Ag	0.000	1	97,94	3/22/2014	00:54	CCB		
008	× V	A:	0.004	1	97.99	3/22/2014	00.55	CCB		
	T V	45	0.001	4	07 04	3/22/2014	00.54	CCB		
CCB	v	D Ra	0.014	1	97.94	3/22/2014	00.54	CCB		
CCB	, v	Be	0.000	4	07.04	3/22/2014	00:54	000		
CC8	Ý	Ca	-0.000	,	97.94	3/22/2014	00:53	CCB		
CCB	Ý	Cd	0,000	1	97 94	3/22/2014	00:54	CCB		
CCB	Ý	Co	0.000	, 1	97.94	3/22/2014	00:54	CCB		
CCB	Ý	Cr	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ý	Cu	0.001	1	97.94	3/22/2014	00:54	CCB		
ССВ	Ŷ	Fe	0.001	1	97,99	3/22/2014	00:53	CCB		
CCB	Ý	ĸ	0.080	1	97,99	3/22/2014	00:53	CCB		
CCB	Ŷ	LI	-0.005	1	97.94	3/22/2014	00:53	CCB		
CCB	Y	Mg	-0.008	1	97.99	3/22/2014	00:53	CCB		
CCB	Y	Mn	0.000	1	97.94	3/22/2014	00:54	CCB		
ССВ	Y	Mo	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	Na	0.023	1	97.99	3/22/2014	00:53	CCB		
ССВ	Y	Ni	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	Р	0.003	1	97.94	3/22/2014	00:54	ССВ		
CCB	Y	Pb	-0.001	1	97.94	3/22/2014	00:54	CĆB		
CCB	Y	Sb	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ŷ	Se	0.002	1	97.94	3/22/2014	00:54	CCB		
ССВ	Y	Sn	-0.001	1	97.94	3/22/2014	00:54	CCB		
CC8	Y	Sr	0.000	1	97.99	3/22/2014	00:53	CCB		
CCB	Y	TÍ	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	Tł	-0.001	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	V	0.001	1	97.94	3/22/2014	00:54	CCB		
CCB	Ŷ	Zn	-0.003	1	97.94	3/22/2014	00:54	CCB		
J1402025-003	Y	Ag	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Ał	0.096	1	101	3/22/2014	00:58	SAMP	6010 D	
J1402025-003	Y	As	0.004	1	100	3/22/2014	00;59	SAMP	6010 D	
J1402025-003	Y	В	0.028	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Ba	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Be	000.0	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Ca	23.240	<u> </u>	101	3/22/2014	00:57	SAMP	6010 D	
J 1402020-003	r V	çu Co	0.000	1	100	3/22/2014	00,58	SAMP	6010 0	
1402020-003	T V	C0	0.001	1	100	3/22/2014	00.59	SAM	6010 D	
1402025-005	, v	Cu.	0.000	4	100	3/22/2014	00.59	SAMO	6010 D	
11402025-003	Y	Ee	0.745	1	100	3/22/2014	00:58	SAMP	6010 0	
11402025-003	Ŷ	ĸ	1 020	4	101	3/22/2014	00:57	SAMP	6010 D	
1402025-003	Ý		-0.004	1	100	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Ý	Mo	9,959	1	101	3/22/2014	00:58	SAMP	6010 D	
J1402025-003	Ŷ	Mn	0.026	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Mo	0.006	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Na	5.487	1	101	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Y	Ni	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Р	0.195	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Pb	-0.004	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Sb	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Se	0.001	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Sn	0.007	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Sr	0.034	1	101	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Y	TI	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	TI	0.001	î	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	V	0.003	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ý	Zn	0,002	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-004	Y	Ag	0.000	1	99.07	3/22/2014	01.04	SAMP	6010 D	
J1402025-004	Y	Al	0.095	1	100.4	3/22/2014	01:03	SAMP	6010 D	

SAMPLE ID	RPT	Anal	Conc (mg/L)	OF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	Method	Comments
J1402025-004	Y	As	0.005	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	в	0.141	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ŷ	Ba	0.009	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Be	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ý	Ca	23.740	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Cd	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Co	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ý	Cr	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Cu	0.001	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ý	Fe	0.245	1	100.4	3/22/2014	01:03	SAMP	6010 D	
J1402025-004	Y	к	25.610	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	ŁI	-0.004	1	99.07	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Mg	7.860	1	100.4	3/22/2014	01:03	SAMP	6010 D	
J1402025-004	Ý	Mn	0,060	1	99.07	3/22/2014	01:04	SAMP	6010 D	
11402025-004	Y	Мо	0.001	1	99.07	3/22/2014	01:04	SAMP	6010 D	
11402025-004	Ŷ	Na	17 460	1	100.4	3/22/2014	01:02	SAMP	6010 D	
11402025-004	Ŷ	Ni	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
11402025-004	Ý	p	0.016	1	99.07	3/22/2014	01:04	SAMP	6010 D	
11402025-004	Ý	Ph	-0.004	1	99.07	3/22/2014	01:04	SAMP	6010 D	
11402025-004	, v	6 D	0.004	1	99.07	3/22/2014	01:04	SAMO	6010 D	
31402025-004	T V	30 80	0.000	4	99.07	3/22/2014	01:04	C ALLO	6040 D	
J1402025-004	r V	00	0.003	1	99.07	3/22/2014	01.04	O AND	6010 D	
J1402025-004	Ŷ	Sn	0.008	1	99,07	3/22/2014	01:04	SAMP	0010 D	
J1402025-004	Ŷ	Sr	0.199	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Ti	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	ΤI	0.001	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	V	0.003	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Zn	0.002	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-005	Ŷ	Ag	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	· ·
J1402025-005	Ŷ	Al	0.099	1	100.6	3/22/2014	01:08	SAMP	6010 D	
J1402025-005	Y	As	0.003	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	B	0.031	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ý	Ba	0.009	1	100.1	3/22/2014	01:09	SAMP	6010 D	
11402025-005	Ŷ	Be	0.000	f	100.1	3/22/2014	01:09	SAMP	6010 D	
11402025-005	Ý	Ca	30,740	1	100.6	3/22/2014	01:07	SAMP	6010 D	
11402025-005	Ý	b.C.d	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
11402025-005	, v	Co	0.000	1	100 1	3/22/2014	01:09	SAMP	6010 D	
5402025-005 15402025-005	, v	00 Cr	0.000	1	100.1	3/22/2014	01:00	SAMP	6010 D	
11402023-005	, v	0	0.000		100,1	3/22/2014	01:00	SAMO	6010 0	
31402023-003	F V	Cu En	0.001	1	100.1	3/22/2014	01.09	CAMP.	6010 0	
J1402023-003	r V	F U M	0.007	-	100.6	3/22/2014	01:07	SAMP	6010 D	
J1402025-005	r		0.960	1	100.0	3/22/2014	01:07	SAM	0010 D	
J1402025-005	Ŷ	L1	-0.004	1	100.1	3/22/2014	01:07	SAMP	0010 0	
J1402025-005	Ŷ	Mg	14.790	1	100.6	3/22/2014	01:08	SAMP	6010 D	
J1402025-005	Y	Mn	0.026	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Mo	0.003	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Na	6.717	1	100.6	3/22/2014	01:07	SAMP	6010 D	
J1402025-005	Y	NI	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	P	0.050	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ý	Pb	-0.003	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Sb	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Se	0.001	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Sn	0.008	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Sr	0.051	1	100.6	3/22/2014	01:07	SAMP	6010 D	
J1402025-005	Y	TI	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	ΤI	0.002	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ŷ	v	0.003	t	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ý	Zn	0.002	1	100.1	3/22/2014	01:09	SAMP	6010 D	
11402025-006	v. V	An	0.000	1	99.97	3/22/2014	01.13	SAMP	6010 D	
11402025-000	v v	Q A}	0.000	,	100.6	3/22/2014	01:10	SAMP	6010 D	
1402025-006	v v	Δe	0.002	1	99.07	3/22/2014	01-14	SAMP	6010 D	·
11402025 000	v	 0	0.002	1	00.07	3/22/2014	01/14	SAMP	6010 0	
J 1402020-000	1 V	0 De	0.020	। न	99,91 DD 07	9/99:904 4	01.14	C ALAD	6010 D	
J1402025-006	r	54	0.001	1	99.97	0/22/2014	01.14	CAMP	2010 D	
J1402025-006	ř	Be	0.000	+	99.97	3/22/2014	01,13	SAW	00100	
J1402025-006	Y	Ca	14.370	1	100.6	3/22/2014	01:12	SAMP	6010.0	
J1402025-006	Y	Gd	0.000	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ŷ	Co	0,000	1	99.97	3/22/2014	U1:14	SAMP	6010 D	
J1402025-006	¥	Cr	0.000	1	99,97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Cu	0.001	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Fe	0.005	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-008	Y	ĸ	3.925	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Y	Li	0.002	1	99.97	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Y	Mg	2.699	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Y	Mn	000.0	1	99,97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Mo	0.008	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Na	11.050	1	100,6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Y	Ni	0.000	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ý	р	0.013	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ý	Ρh	-0.003	4	99.97	3/22/2014	01.14	SAMP	6010 D	
11402025-006	Ý	Sh	0.000	1	99.97	3/22/2014	01.14	SAMP	6010 D	
1402025-008	v	Sa.	0.000	,	00.07	3/22/2014	01.1.4	SAMP	6010 D	
0 1902020-000	1	00	0.00-9	,	00.01	St 1. 6. 1 4. V 1 1 Y	NF 1 + 4 * 7	AL 23.0	water hat	_

	BOT	ð er er f	0	n r	10 10 (8/)	d			N - 41	8
SAMPLE ID	871 V	Anai	Conc (mg/L)	1	15 Kec (%)	Anaipate	Anathme	Samp Type	Method	Comments
11402025-000	Ý	Sr	0.000	1	100.6	3/22/2014	01.14	SAMP	8010 D	
11402025-006	Ý	Ti	0.017	1	99.97	3/22/2014	01:12	SAMP	6010 D	
11402025-006	Ý	TI	0.000	1	99.07	3/22/2014	01.14	SAMP	6010 D	
.11402025-006	Ŷ	v	0.002	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ý	Zn	0.002	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-007	Y	Ag	0.000	1	99.97	3/22/2014	01:18	SAMP	6010 D	
J1402025-007	Ý	AI	0.121	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	As	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	В	0.024	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Ва	0.024	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Be	0.000	1	99.97	3/22/2014	01:18	SAMP	6010 D	
J1402025-007	Y	Ca	43.060	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	Cđ	0.001	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	¥	00	0.000	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402023-007	Ŷ	OF Cui	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	
11402025-007	1 V	Eo.	0.001	*	100.8	3/22/2014	01.19	CAMP	6010 D	
1402025-007	Ý	ĸ	5 289	1	100.8	3/22/2014	01.17	SAMP	6010 D	
11402025-007	Ý	П	0.005	1	99.97	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Ŷ	Ma	1,973	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Ŷ	Mn	0.011	1	99,97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Mo	0.003	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ŷ	Na	2.742	· 1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	Ni	0.032	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	P	0.156	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Pb	-0.005	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Sb	0.001	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Se	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ŷ	Sn	0.012	1	99,97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Sf T	0.265	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402020-007	Ý	11 TI	0.000	1	99.97	3/22/2014	01:18	SAMP	6010 D	
11402025-007	v v	- 4) - V	0.000	1	99.97 00 07	3/22/2014	01.19	SAMP	6010 D	
J1402025-007	Ý	Zn	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	
ICSA	Ý	Ασ	-0.006		85 27	3/22/2014	01.22	ICS-A		
ICSA	Ŷ	Ai	756.800	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Ý	As	0.011	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	В	0.048	1	85,27	3/22/2014	01:22	ICS-A		
ICSA	Y	Ва	-0.001	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Be	0.002	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Са	699.600	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Y	Cđ	0.008	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Co	0.016	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Ŷ	Cr	-0.003	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Cu	0.002	1	85.27	3/22/2014	01:22	ICS-A		
IGSA	Ŷ	re v	667.400	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Ŷ	r.	0.102	1	91.01	3/22/2014	01:21	ICS-A		
ICSA	· ·	Mo	-0.005	1	00.27	3/22/2014	01.23	105-A		
ICSA	Ý	Mo	-0.012	1	85.27	3/22/2014	01:22	105-A		
ICSA	Ŷ	Mo	0.013	, 1	85.27	3/22/2014	01.22	ICS-A		
ICSA	Ŷ	Na	0.028	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Y	Ni	0.015	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Р	-0.002	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Pb	-0.013	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Sb	-0.010	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Se	0.004	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Sn	0.036	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Sr	-0.002	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Y	11	0,003	1	85.27	3/22/2014	01:22	ICS-A		
ICSA ICSA	Y	TE V	0.005	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	T V	V Zo	-0.008	+	85.27	3/22/2014	01:22	105-A		
ICSA9	* ************************************	411 Монконализии А.с.	0.020	1	96.26	2/22.2014	01.22			
ICSAB	Ý	ny At	789.900	1	92.53	3/22/2014	01.30	ICS-AB		
ICSAB	Ý	As	0.210	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Ŷ	в	1.006	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Ва	0.187	i	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	86	0.082	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Ca	692.800	1	92,53	3/22/2014	01:29	ICS-AB		
ICSAB	Y	Cd	0.112	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Co	0.199	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Ŷ	Cr	0.189	1	85.26	3/22/2014	01:30	ICS-AB		
IUSAB	Ŷ	Cu m.	0.211	1	85.26	3/22/2014	01:30	ICS-AB		
ICOAB	۲ ۲	F0 1/	611.800	1	92.53	3/22/2014	01:29	ICS-AB		
ICSAB	τ V	л Н	90.40U 2 20R	{ 1	92.00 85.96	3/22/2014	01:29	ICS-AB		
ICSAB	Ý	ы. Мо	700 500	1	92.53	3/22/2014	01.29	ICS_AR		
				1	- <u>-</u>		-1.20	100-00		

SAMPLE ID	RPT	Anai	Conc (mall)	DE	(S Rec (%)	AnalDate	AnalTime	Samn Tyne	Method	Comments
ICSAB	Y	Mn	0 185	1	85 26	3/22/2014	01.30	ICS-AB	, notifou	oonnaanta
ICSAR	Ý	Mo	0.208	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Ý	Na	11 370	1	92.53	3/22/2014	01.29	ICS-AB		
ICSAB	Ý	Ni	0 199	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Ý	P	2.024	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Ý	Pb	0.162	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Sb	0.200	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Se	0.202	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Sn	0.785	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Sr	0.209	1	92.53	3/22/2014	01:29	ICS-AB		
ICSAB	Y	Ti	1.027	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	TI	0.187	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	V	0.395	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Zn	0.379	1	85.26	3/22/2014	01:30	ICS-AB		
CCV	Y	Ag	0.500	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Al	4.984	1	97.93	3/22/2014	01:37	CCV		
CCV	Y	As	0.501	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	В	2.452	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Ba	0.500	1	94.76	3/22/2014	01:38	CCV		
CCV	Ŷ	ве	0.200	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Ua G	4.952	1	97.93	3/22/2014	01:37	CCV		
CCV	Ŷ	Ca	0.251	1	94.76	3/22/2014	01:38	CCV		
CCV	Ŷ	00	0.498	1	94.76	3/22/2014	01:38	CCV		
	Ť	Cr Cu	0.501	3	94.76	3/22/2014	01:38	COV		
CCV	· ·	50	0.499	1	94.70	3/22/2014	01:30	COV		
COV	, V	re K	4.550	4	97.93	3/22/2014	01:37	COV		
COV	, v	11	5 107	1	91.93	3/22/2014	01:37	CCV		
COV	Ý	Ma	4 969	1	97.93	3/22/2014	01:37	CCV		
CCV	Ý	Ma	0.501	í	94 76	3/22/2014	01:38	CCV		
CCV	Ý	Mo	0.508	1	94.76	3/22/2014	01:38	CCV		
CCV	Ŷ	Na	25.590	1	97.93	3/22/2014	01:37	CCV		
CCV	Y	Ni	0.508	1	94,76	3/22/2014	01:38	CCV		
CCV	Y	Р	5.022	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Pb	0.503	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Sb	0.505	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Se	0.500	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Sn	2.037	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Sr	0.512	1	97.93	3/22/2014	01:37	CCV		
CCV	Y	Ti	2.507	1	9 4.76	3/22/2014	01:38	CCV		
CCV	Ŷ	TI	0.502	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	V	1.004	1	94.76	3/22/2014	01:38	CCV		
CCV	Y	Zn	1.002	1	94.76	3/22/2014	01:38	CCV		
CCB	Y	Ag	0.000	1	98.32	3/22/2014	01:42	CC8		
CCB	Y	Al	-0,018	1	97.16	3/22/2014	01:41	CCB		
CCB	Ŷ	As	0.000	1	98.32	3/22/2014	01:43	CCB		
008	ř	Be	0.005	1	98.32	3/22/2014	U1:43	CCB		
000	i V	Da	0.000	1	90.32	3/22/2014	01:43	CCB		
CCB	, V	00	0.000	1	90.32	3/22/2014	01.42	000		
CCB	Ý	Cd	0.000	1	98.32	3/22/2014	01.43	CCB		
CCB	Ŷ	Co	0.000	1	98.32	3/22/2014	01:43	CCB		
CCB	Ŷ	Cr	0.000	1	98.32	3/22/2014	01:43	CCB		
CCB	Ŷ	Cu	0.001	1	98.32	3/22/2014	01:42	CCB		
CCB	Y	Fe	0.001	1	97.16	3/22/2014	01:41	CCB		
CCB	Y	к	0.038	1	97.16	3/22/2014	01:41	CCB		
CCB	Y	Li	-0.005	1	98.32	3/22/2014	01:41	CCB		
CC8	Y	Mg	-0.001	1	97.16	3/22/2014	01:41	CCB		
CCB	Y	Mn	0.000	1	98.32	3/22/2014	01:43	CCB		
CCB	Y	Mo	0.000	1	98.32	3/22/2014	01:43	CCB		
CCB	Y	Na	0.020	1	97.16	3/22/2014	01:41	CCB		
CCB	Y	Ni	0.000	1	98.32	3/22/2014	01:43	CCB		
CCB	Y	P	0.001	1	98.32	3/22/2014	01:43	CCB		
CCB	Y	Pb	-0.002	1	98.32	3/22/2014	01:43	CCB		
008	Ŷ	SD	0,001	1	98.32	3/22/2014	01.43	CCB		
	۲ V	30 6-	0.003	î 4	98.32 og on	3/22/2014	01:43	CCR		
000	T V	30 97	-0.001	1	90.3Z	2/22/2014	01:43	COD		
CCR	۲ V	ହା 15	0.000	1	97.10 08.90	JIZZIZU14 3/22/2014	U[.4] Ω4·4≏			
CCB	۲ ۲	т	-0.001	4	00.0Z 08 30	312212014	01:42	008		
CCB	Ý	V	0.001	1	98 32	3(22/2014	61:43	CCB		
CCB	Ŷ	Zn	-0.003	1	98.32	3/22/2014	01:43	CCB		

Analysis:	V3/31-0	> D	ata File ID:		032414A		_ LI	MS Run #	: 3899	<u> </u>
	ICP	-MS	Method R	eferences:		200.8 / 602	0	Inst ID	:	-MS-01
- 2 Q - 3 M.	0.000.00		Sta	ndard's Tr	ace Numl	ers	in e e e en			
STD	ID	Trace #	Ехр	Date	ST	DID	Tra	ce#	Exp	Date
ICAI	1	MET-17-8/C	4-1	-14 -	INT	STD	MET-17	<u>-83C</u>	4-19-	14
ICAI	2	7 8/D			IC	SA	7	<u>83A</u>	3-26	-14
ICAI	3	81E			ICS	SAB		83B	3-26	-14
ICAI	4	81F			Blank /	Diluent		81C	3-5-	15
IC	V	1 816	N N	′						-0.00
	9.200		Standard	l Concentr	ations an	d Ranges	P 2019			
lement	MRL	Linear Range	ICV	CCV	LCS	ICSA	ICSAB	Units	ICV RSD	Stabilit
.9Be	0.5	3000	20	25	25	0	10	ug/L	3.766	Report
27AI 47Ti	50	50000	250	2500	2500	1000	51000	ug/L	1.264	< 5%
48Ti	5	5000	250	250	250	1000	1100	ug/L	0.531	
51V	2	10000	100	100	100	0	40	ug/L	0.767	1 6
52Cr	1	5000	50	50	50	0	20	ug/L	0.158	
55Mn	2	5000	50	100	100	0	40	ug/L	0.485	
59Co	1	5000	50	50	50	0	20	ug/L	0.503	Cal
62NI		5000	50	100	100	0 0	40 40	ug/L	2.886	Curve
63Cu	1	5000	50	50	50	0	20	ug/L ug/L	0.932	> 0.995
65Cu	1	5000	50	50	50	0	20	ug/L	2.429	
66Zn	5	10000	100	250	250	0	100	ug/L	0.786	
68Zn	5	10000	100	250	250	0	100	ug/L	0.585	
75As	1	5000	50	50	50	0	20	ug/L	0.864	
82Se	2	5000	50	100	100	0 0	40	ug/L	2.221	Mass
86Sr	2	5000	50	100	100	0	40	ug/L	2,997	Call Rp
88Sr	2	5000	50	100	100	0	40	ug/L	0.608	Incl.
97Mo	2	5000	50	100	100	1000	1040	ug/L	0.931	
98Mo	2	5000	50	100	100	1000	1040	ug/L.	1.332	den -
107Ag	0.5	100	50	25	25	0	10	ug/L	0,734	
111Cd	0.3	2500	25	20	20	0	8	ug/L ug/L	0.51	
114Cd	0.4	2500	25	20	20	Ō	8	ug/L	1.198	
118Sn	5	20000	200	250	250	0	100	ug/L	1.152	
120Sn	5	20000	200	250	250	0	100	ug/L	0.396	
121Sb	1	5000	50	50	<u>50</u>	0	20	ug/L	1.631	
135Ba	2	5000	50	100	100	0	40	ug/L ug/l	1.142	
137Ba	2	5000	50	100	100	0	40	ug/L	1.16	
203TI	0.2	5000	50	10	10	0	4	ug/L	0.953	
205TI	0.2	5000	50	10	10	0	4	ug/L	0.51	
208Pb	0.5	5000	50	25	25	0	10	ug/Ĺ	1.092	

	ICP-MS Run S	equence	Date F	ile ID:	03	2414A					
#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time
1	Cal Blank	3/24/14	16:37								
2	Cal 1	3/24/14	16:43								
3	Cal 2	3/24/14	16:48								
4	Cal 3	3/24/14	16:53								
5	Cal 4	3/24/14	16:58								
6	ICV	3/24/14	17:03								
7	ICB	3/24/14	17:08								
8	MRL	3/24/14	17:13								
9	ICSA	3/24/14	17:18								
10	ICSAB	3/24/14	17:23								
11	CCV-1	3/24/14	17:28								
12	CCB-1	3/24/14	17:33								
13	MB-02134-04	3/24/14	17:38								
14	LCS-02134-03	3/24/14	17:43								
15	J1402003-001	3/24/14	17:48								
16	J1402003-002	3/24/14	17:53								
17	J1402003-003	3/24/14	17:58								
18	J1402003-004	3/24/14	18:03								
19	J1402025-001	3/24/14	18:08								
20	11402025-002	3/24/14	18.13								
21	J1402025-003	3/24/14	18:18		,						
22	J1402025-004	3/24/14	18:23								
23	CCV-2	3/24/14	18:28							ų.	
24	CCB-2	3/24/14	18:33								
25	.11402025-005	3/24/14	18:38								
26	J1402025-006	3/24/14	18:43								
27	11402025-007	3/24/14	18:48								
28	.11402026-001	3/24/14	18:53								
29	J1402026-001S	3/24/14	18:58								
30	J1402026-001SD	3/24/14	19:03					د			
31	J1402026-001L	3/24/14	19:08								
32	J1402026-001A	3/24/14	19:13								
33	.11402026-002	3/24/14	19:19								
34	J1402026-003	3/24/14	19:24								
35	CCV-3	3/24/14	19:29								
36	CCB-3	3/24/14	19:34								
37	J1402026-004	3/24/14	19:39								
38	.11402026-005	3/24/14	19:44								
39	J1402026-006	3/24/14	19:49								
40	J1402037-001	3/24/14	19:54								
41	J1402037-002	3/24/14	19:59								
42	J1402037-003	3/24/14	20:04								
43	J1401932-001 2x	3/24/14	20:09								
44	J1401932-002	3/24/14	20:14								
45	J1401932-003 2x	3/24/14	20:19								
46	J1401933-001 2x	3/24/14	20:24								
47	CCV-4	3/24/14	20:29								
48	CCB-4	3/24/14	20:34								

Page 1 of 1

ICP-MS DATA REPORTED WITH FAILING CRITERIA

Data File ID: 032414A

Sample ID	Analyte	Failure(s)	Analyst's Comments	

,

Sample ID	Isotope-1	Isotope-1 Conc (ug/L)	Isotope-2	lsotope-2 Conc (ug/L)	RPD	ANAL DATE / TIME
J1402025-001	47Ti	1.867	48Ti	35	179.7	3/24/2014 18:08
J1402025-002	47Ti	0.917	48Ti	20.39	182.8	3/24/2014 18:13
J1402025-003	47Ti	1.102	48Ti	15.61	173.6	3/24/2014 18:18
J1402025-004	47Ti	0.178	48Ti	15.82	195.5	3/24/2014 18:23
J1402025-005	47Ti	2.293	48Ti	21.55	161.5	3/24/2014 18:38
J1402025-007	47Ti	3.136	48Ti	29.74	161.8	3/24/2014 18:48
J1402026-001	47Ti	1.332	48Ti	40.25	187.2	3/24/2014 18:53
J1402026-001	66Zn √	10.91	68Zn	16.9	43.1	3/24/2014 18:53
J1402026-002	47Ti	, 12.39	48Ti	32.25	89	3/24/2014 19:19
J1402026-002	66Zn V	10.32	68Zn	14.6	34.3	3/24/2014 19:19
J1402026-003	47 T i	14.78	48Ti	31.12	71.2	3/24/2014 19:24
J1402026-003	66Zn 🖌	12.02	68Zn	17.06	34.7	3/24/2014 19:24
J1402026-004	47Ti	5.861	48Ti	78.39	172.2	3/24/2014 19:39
J1402026-005	47Ti	6.278	48Ti	154.9	184.4	3/24/2014 19:44
J1402026-005	66Zn 🗸	69.93	68Zn	108.4	43.1	3/24/2014 19:44
J1402026-006	47Ti	2.958	48Ti	57.53	180.4	3/24/2014 19:49
J1402026-006	66Zn 🗸	16.36	68Zn	43.03	89.8	3/24/2014 19:49
J1402037-002	47Ti	0.538	48Ti	14.69	185.9	3/24/2014 19:59
J1402037-003	47Ti	0.805	48Ti	11.23	173.2	3/24/2014 20:04
J1401932-001 2x	47Ti	0.507	48Ti	80.66	197.5	3/24/2014 20:09
J1401932-002	47Ti	4.36	48Ti	22.18	134.3	3/24/2014 20:14

ICP-MS Isotope Discrepancy Summary Sheet

Isotopes Reported Other Than Defaults When Defaults Pass QC Checks

Data File ID: 032414A

<u></u>	Reported	Reported	Default	Default	
Sample ID	Isotope	Conc	Isotope	Conc	Analyst's Comments

15:15:09 3/24/14 Stability March2014.vge

Exc	luded In Calib Exclu	ded In Results	s Rengi Sorel norsa	Multi Elem	ent Semi Qu	ant Internal !	Standard Sta	ndard Addition	551CS
Incorrected ICPS Per Mass		S-Calibration Has E F-Interference Corre	dited Standard E ection Failed T	-Calibration Edited	I-Invalid Calibra P-Pulse Counting	tion V-Valley I g M-Result (ntegration Failed Over Max		
Run	Label	TimeStamp	Statistics	7Li	9Be	24Mg	25Mg	26Mg	
1	Stability_0321_3	3/24/2014 3:11:56 P	(P)0.000	(P)43750.052	(P)39125.732	(P)94660.606	(P)13566.444	(P)16357.145	
2	Stability_0321_3	3/24/2014 3:12:25 P	(P)0.000	(P)35058.170	(P)42722.686	(P)95742.375	(P)13682.106	(P)16605.206	
3	Stability_0321_3	3/24/2014 3:12:53 P	(P)0.000	(P)34381.047	(P)43268.769	(P)97117.071	(P)13618.711	(P)16926.692	
4	Stability_0321_3	3/24/2014 3:13:22 P	(P)0.000	(P)38168.019	(P)40760.294	(P)95999.393	(P)13496.375	(P)16480.613	
5	Stability_0321_3	3/24/2014 3:13:50 P	(P)0.000	(P)35467.864	(P)41976.031	(P)96600.173	(P)13598.698	(P)16556.255	
	Mean of Stability_032	3/24/2014 3:11:56 P	(P)0.000	(P)37365.031	(P)41570.702	(P)96023.924	(P)13592.467	(P)16585.182	
	SD of Stability_0321_3	ng ngangan kanan sang dari sa pang papitan di mang papitan di mang papitan di mang papitan di mang papitan di m Mang	(P)0.000	(P)3848.321	(P)1659.023	(P)930.798	(P)68.326	(P)212.605	ł
	%RSD of Stability_		(P)0.000	(P)10.299) (P)3.991	(P)0.969	(P)0.503	(P)1.282	62
		s en la provincia de la comparação de la comparação ond second se	1	/					

Run	Label	TimeStamp	59Co	188Bacter	113In	115In	138Ba	140Ce
1	Stability_0321_3	3/24/2014 3:11:56 P	(P)235730.540	(P)14554.078	(P)12279.721	(P)290913.760	(P)191477.140	(P)289962.070
2	Stability_0321_3	3/24/2014 3:12:25 P	(P)239761.970	(P)14559.641	(P)12579.981	(P)291989.930	(P)193901.820	(P)291786.850
3	Stability_0321_3	3/24/2014 3:12:53 P	(P)238351.250	(P)14609.689	(P)12513.256	(P)290568.760	(P)193416.150	(P)291582.980
4	Stability_0321_3	3/24/2014 3:13:22 P	(P)238806.430	(P)14596.342	(P)12741.235	(P)291942.070	(P)191848.680	(P)291145.000
5	Stability_0321_3	3/24/2014 3:13:50 P	(P)237663.380	(P)14382.793	(P)12730.114	(P)290401.100	(P)190392.610	(P)288092.740
	Mean of Stability_032	3/24/2014 3:11:56 P	(P)238062.710	(P)14540.509	(P)12568.861	(P)291163.120	(P)192207.280	(P)290513.930
· ·	SD of Stability_0321_3	3	(P)1510.162	(P)91.280	(P)188.768	(P)756.057	(P)1439.405	(P)1527.103
	%RSD of Stability_		(P)0.634	(P)0.628	(P)1.502	(P)0.260	(P)0.749	(P)0.526
		 Definition of the state of the spectra sp provide spectra						

Run	Label	TimeStamp	20164934999	156®=(®	175	206Pb	207Pb	208Pb
1	Stability_0321_3	3/24/2014 3:11:56 P	(P)165.557	(P)7120.664	(P)41.111	(P)88714.611	(P)74879.068	(P)188284.900
2	Stability_0321_3	3/24/2014 3:12:25 P	(P)173.334	(P)7321.877	(P)25.556	(P)89699.641	(P)75255.487	(P)188657.670
3	Stability_0321_3	3/24/2014 3:12:53 P	(P)157.779	(P)7506.416	(P)33.333	(P)89252.390	(P)75147.135	(P)187317.890
4	Stability_0321_3	3/24/2014 3:13:22 P	(P)177.779	(P)7157.349	(P)23.333	(P)89609.061	(P)74795.302	(P)186787.670
5	Stability_0321_3	3/24/2014 3:13:50 P	(P)151.112	(P)7185.140	(P)18.889	(P)89154.039	(P)75481.118	(P)188201.610
	Mean of Stability_032	3/24/2014 3:11:56 P	(P)165.112	(P)7258.289	(P)28.444	(P)89285.948	(P)75111.622	(P)187849.950
	SD of Stability_0321_3		(P)10.932	(P)158.186	(P)8.805	(P)393.858	(P)279.565	(P)770.844
	%RSD of Stability_		(P)6.621	(P)2.179	(P)30.956	(P)0.441	(P)0.372	(P)0.410
							e e se sie	

Run	Label	TimeStamp	209Bi	2205kg	238U
1	Stability_0321_3	3/24/2014 3:11:56 P	(P)286577.110	(P)0.000	(P)395995.720
2	Stability_0321_3	3/24/2014 3:12:25 P	(P)290849.970	(P)0.000	401670.130
3	Stability_0321_3	3/24/2014 3:12:53 P	(P)287950.900	(P)0.000	400162.880
4	Stability_0321_3	3/24/2014 3:13:22 P	(P)289573.210	(P)0.000	397054.740
5	Stability_0321_3	3/24/2014 3:13:50 P	(P)284713.870	(P)0.000	398607.100
	Mean of Stability_032	3/24/2014 3:11:56 P	(P)287933.010	(P)0.000	398698.110
	SD of Stability_0321_3	ga ana na na na analysi. T	(P)2418.705	(P)0.000	2290.758
	%RSD of Stability_	n na serie ava	(P)0.840	(P)0:000	0.575
ICP-MS MASS CALIBRATION SUMMARY SHEET Data File ID: 032414A

Element	Mass	Mass DAC	Peak Width (AMU)	Error (AMU)	Include	Resolution PASS / FAIL (< 0.9 AMU)	Accuracy PASS / FAIL (+/- 0.1 AMU)
Be	9.012	2012	0.715	0.03	TRUE	PASS	PASS
Mg	23.985	5825	0.664	0.043	TRUE	PASS	PASS
Mg	24.986	6079	0.715	0.04	TRUE	PASS	PASS
Mg	25.983	6326	0.715	0.014	TRUE	PASS	PASS
Al	26.982	6586	0.715	0.037	TRUE	PASS	PASS
Ti	46.952	11663	0.715	0.014	TRUE	PASS	PASS
V	50.944	12677	0.715	0.006	TRUE	PASS	PASS
Cr	51.94	12930	0.766	0.003	TRUE	PASS	PASS
Mn	54.938	13691	0.715	-0.005	TRUE	PASS	PASS
Co	58.933	14705	0.715	-0.018	TRUE	PASS	PASS
Ni	59.931	14958	0.766	-0.022	TRUE	PASS	PASS
Cu	64.928	16232	0.766	-0.015	TRUE	PASS	PASS
Zn	65.926	16479	0.766	-0.043	TRUE	PASS	PASS
As	74.922	18767	0.766	-0.053	TRUE	PASS	PASS
Se	77.919	19534	0.766	-0.039	TRUE	PASS	PASS
Sr	85.91	21577	0.766	-0.008	TRUE	PASS	PASS
Мо	97.905	24632	0.765	-0.01	TRUE	PASS	PASS
Ag	108.905	27434	0.714	-0.011	TRUE	PASS	PASS
Cd	113.903	28714	0.663	0.014	TRUE	PASS	PASS
Sn	117.902	29735	0.714	0.022	TRUE	PASS	PASS
Sb	122.904	31015	0.663	0.043	TRUE	PASS	PASS
Ba	136.906	34577	0.663	0.017	TRUE	PASS	PASS
TI	204.972	51932	0.662	0.005	TRUE	PASS	PASS
Pb	205.974	52186	0.713	-0.002	TRUE	PASS	PASS
Pb	206.976	52439	0.662	-0.012	TRUE	PASS	PASS
Pb	207.977	52699	0.662	0.006	TRUE	PASS	PASS

Error Mean CPS

297 _{%Error}

Fully Quant Calibration

77Se FQ Block 1

LabelDefinedMeasuredErrorMean CPS302Cal Blank0.000.000.00-6.67302

Intercept CPS=1243.440780 Intercept Conc=1.843482 Sensitivity=674.506430 Correlation Coeff=0.999858

Label	Defined	Measured	Error	Mean CPS	%Error
Cal Blank	0.00	0.35	0.35	1,482.53	
Cal 1	5.00	4.39	-0.61	4,201.69	-0.61
Cal 2	50.00	50.03	0.03	34,989.98	0.03
Cal 3	250.00	249.45	-0.55	169,502.00	-0.55
Cal 4	1,000.00	1,002.01	2.01	677,103.55	2.01

Fully Quant Calibration

FQ Block 1 120Sn

Label	Defined	Measured	Error	Mean CPS	%Error
Cal Blank	0.00	0.36	0.36	2,146.33	
Cal 1	5.00	4.29	-0.71	5,764.58	-0.71
Cal 2	50.00	49.82	-0.18	47,672.84	-0.18
Cal 3	250.00	249.88	-0.12	231,822.23	-0.12
Cal 4	1,000.00	1,006.30	6.30	928,065.82	6.30

Fully Quant Calibration

FQ Block 1 121Sb

Page 13 of 15

			Page 15 of 15		
Cal 3	10.00	10.07	0.07	24,790.04	0.07
Cal 4	40.00	39.47	-0.53	96,852.59	-0.53

ICP-MS INTERNAL STANDARD SUMMARY SHEET Data File ID: 032414A

					Dala	i File ID. 032	24 14A					
Analyte:	9Be	27AI	47Ti	48Ti	51V	52Cr	55Mn	59Co	60Ni	62Ni	63Cu	65Cu
I.S. Used:	45Sc	45Sc	45Sc	45Sc	45Sc	45Sc	71Ga	71Ga	71Ga	71Ga	71Ga	71Ga
								<u>.</u>				
Analyte:	66Zn	68Zn	75As	78Se	82Se	86Sr	88Sr	97Mo	98Mo	107Ag	109Ag	111Cd
I.S. Used:	71Ga	71Ga	71Ga	71Ga	71Ga	71Ga	71Ga	115in	115ln	115ln	115ln	115In
[Analuta:]	414Ca	1 11000	1 42050	10465	10005		1 4070-0		L OOFTI	0000		
Analyte:	4456	11050	12051	12150	12350	13568	1378a	20311	20511	208Pb		
[1.5. Useo:]	I I OIII	1 10910	1 12810	1 15910	1 15910	15910	1 15910	<u> 1/5Lu</u>	1/5Lu	<u>175Lu</u>		
		, a a a a a a a a a a a a a a a a a a a		T T		initiation in the second second second second second second second second second second second second second s In t	ernal Standa	ards			provident and the second second second second second second second second second second second second second s	
			Deserves	611	4550	7169	115ln	150Th	1751.0	20081		
Comm		Mothod	Limite	Bee	Rec	Dee	Dee	Dee	Dee	20301		,
Samp		INIEUTOO	Limits	Rec	Rec	Rec	Rec	I Rec	Kec	Kec	Anal Dat	e / Lime
Cal Blank		<u> N/A</u>	80-120%	99.3%	100.1%	100.1%	99.3%	100.8%	99.3%	100.1%	3/24/201	4 16:37
Cal 1		N/A	80-120%	97.9%	97.4%	97.8%	97.1%	96.9%	96.5%	96.3%	3/24/201	4 16:43
Cal 2		N/A	80-120%	101.5%	97.7%	100.9%	98.0%	96.4%	96.7%	95.7%	3/24/201	4 16:48
Cal 3		N/A	80-120%	104.7%	98.5%	101.2%	99.8%	97.3%	98.6%	96.0%	3/24/201	4 16:53
Cal 4		N/A	80-120%	96.2%	94.7%	98.1%	99.2%	94.4%	96.3%	91.7%	3/24/201	4 16:58
ICV		N/A	80-120%	102.9%	96.2%	97.8%	95.9%	94.6%	95.5%	92.3%	3/24/201	4 17:03
ICB		N/A	80-120%	94.3%	94.5%	92.7%	93.0%	92.0%	91.7%	89.8%	3/24/201	4 17:08
MRL		N/A	80-120%	97.6%	95.3%	95.4%	94.4%	92.3%	94.3%	91.6%	3/24/201	4 17:13
ICSA		N/A	80-120%	87.0%	86.2%	81.4%	85.0%	83.5%	84.9%	75 7%	3/24/201	4 17:18
ICSAB		N/A	80-120%	89.5%	85.8%	84.6%	86.0%	86.9%	85.3%	76.4%	3/24/201	4 17:23
CCV-1		N/A	80-120%	100.3%	96.0%	97.0%	97.7%	96.3%	95.3%	93.8%	3/24/201	4 17:28
CCB-1		N/A	80-120%	95.6%	94.1%	93.5%	94.0%	92.7%	94.3%	92.0%	3/24/201	4 17:33
MB-02134-04	1	200.8	60-125%	99.4%	95.3%	92.8%	94.7%	93.2%	94.7%	93.1%	3/24/201	4 17.38
LCS-02134-0	13	200.8	60-125%	107.1%	97.5%	99.0%	97.7%	96.7%	97.1%	05.178	3/24/201	A 17-12
11402003-00	1	200.8	60-125%	105.2%	94.8%	95.6%	94.4%	03.7%	0/ 5%	02.0%	3/24/201	A 17.40
11402003-00	12	200.0	60-125%	100.276	95.2%	07.6%	06.2%	03.0%	05 4 9/	02.370	3/24/201	4 17.40
11402003-00	2	200.0	60-125%	101.1%	07 /9/	09.7%	07.6%	06.3%	07 40/	92.270	3/24/201	4 17.00
14402003-00	4	200.0	60 125%	107.7%	04 09/	02 69/	97.0%	90.276	97.470	93.7%	3/24/201	4 17:56
11402005-00		200.0	20 120%	102.7 /0	02.20/	03.0%	92.5%	92.0%	94.376	92.9%	3/24/201	4 10:03
1402025-00	າ 	6020	30-120%	104.370	93.2%	93.270	92.5%	91.7%	90.4%	07.0%	3/24/201	4 18:08
14402025-00	2	6020	20 120%	401.170	92.9%	91.770	92.4%	92.4%	90.2%	88.0%	3/24/201	4 18:13
J 1402025-00	4	6020	30-120%	101.1%	93.3%	93.3%	91.8%	92.7%	94.6%	89.0%	3/24/201	4 18:18
J 1402025-00	4	0020	30-120%	103.7%	93.2%	91.7%	92.0%	92.2%	93.8%	86.3%	3/24/201	4 18:23
000-2		N/A	80-120%	102.2%	95,4%	97.3%	96.9%	94.9%	95.3%	93.9%	3/24/201	4 18:28
CCB-2		N/A	80-120%	96.5%	92.5%	91.6%	92.9%	92.1%	94.4%	91.7%	3/24/201	4 18:33
J1402025-00	5	6020	30-120%	101.2%	93.6%	91.0%	90.8%	91.4%	93.0%	86.7%	3/24/201	4 18:38
J1402025-00	6	6020	30-120%	99.4%	93.7%	94.5%	93,6%	93.7%	95.1%	89.7%	3/24/201	4 18:43
J1402025-00	7	6020	30-120%	100.9%	94.0%	93.7%	93.0%	93.7%	95.3%	90.3%	3/24/201	4 18:48
J1402026-00	1	6020	30-120%	95.3%	93.0%	90.7%	90.3%	90.8%	92.6%	84.2%	3/24/201	4 1 8:53
J1402026-00	1S	6020	30-120%	99.7%	95.7%	93.9%	93.2%	93.4%	93.4%	85.5%	3/24/201	4 18:58
J1402026-00	1SD	6020	30-120%	100.6%	94.1%	92.3%	91.7%	90.8%	92.8%	84.7%	3/24/201	4 19:03
J1402026-00	1L	6020	30-120%	98.1%	91.6%	91.9%	89.9%	90.7%	91.7%	87.2%	3/24/201	4 19:08
J1402026-00	1A	6020	30-120%	102.7%	92.2%	88.9%	90.1%	89.6%	91.4%	83.4%	3/24/201	4 19:13
J1402026-00	2	6020	30-120%	90.1%	90.6%	83.4%	83.4%	85.7%	88.1%	73.8%	3/24/201	4 19:19
J1402026-00	3	6020	30-120%	92.6%	91.8%	83.3%	81.3%	84.9%	87.4%	71.9%	3/24/201	4 19:24
CCV-3		N/A	80-120%	105.0%	93.5%	94.1%	93.5%	92.4%	93.0%	90.8%	3/24/201	4 19:29
CCB-3		N/A	80-120%	96.2%	89.8%	91.0%	90.1%	88.7%	89.3%	89.1%	3/24/201	4 19:34
J1402026-00	4	6020	30-120%	93.4%	88.0%	85.6%	83.1%	85.0%	86.4%	75.9%	3/24/201	4 19:39
J1402026-00	5	6020	30-120%	92.1%	88.7%	79.5%	79.5%	81.5%	82,5%	69.1%	3/24/201	4 19:44
J1402026-00	6	6020	30-120%	89.6%	85.1%	77.3%	77.3%	81.0%	82.8%	69.3%	3/24/201	4 19:49
J1402037-00	1	6020	30-120%	97.0%	88.7%	88.8%	87.0%	86.5%	88.1%	84.7%	3/24/201	4 19:54
J1402037-00	2	6020	30-120%	97.8%	91.0%	88.9%	87.1%	87.4%	90.9%	85.3%	3/24/201	4 19:59
J1402037-00	3	6020	30-120%	100 6%	88.3%	88.2%	86.7%	88.3%	80.8%	85.8%	3/24/2014	4 20.04
J1401932-00	- 1 2x	6020	30_120%	93 50%	86.7%	82.2%	81.1%	83.6%	86.4%	72 60/	2/2/1201	4 20:00
11401032-00	2	6020	30-120%	G1 6%	83.0%	71 004	75 102	81.00/	23 00/	12.370 67 ED/	012412014 21741204	4 20.00
11401032-00	- 2.2v	6020	30-12076	01.076 04.76/	85 70/	76 / 0/	1 J.4 70 7 g 0 0/	01.070 94.00/	00.070 85 00/	02,470 cc.na/	012412U3 21041004	+ 20.14
14/04022 00	4 2v	6020	30-12076	01.2.70 Q7 C01	00.170 00.50/	70.00/	73 101	01.370 76.70/	0J.070 70.00/		312412010 0/04/00-4	4 20.18
CCV 4	ι <i>4</i> .Λ	0020 N/A	00-120%	02.0% 404 00/	04.99/	10.0%	(1.4%)	10.1%	10.0%	39.1%	3/24/2U7:	4 ∠U:Z4
000-4		INIA	00-120%	101.2%	51.0%	92.3%	90.2%	88.8%	90.8%	68.9%	3/24/201	4 20:29
UUB-4		N/A	00-120%	93.1%	87.0%	86.9%	85.8%	86.7%	89.2%	86.4%	3/24/201	4 20:34

308

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnaiTime	Samp Type	LIMS ID	Method	Comments
Cal Blank	Y	9Be	0.01	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	27AI	0.01	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ŷ	47Ti	0.36	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank Cal Blank	r	4811 51V	0.27	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ŷ	52Cr	0.00	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A N/A	
Cal Blank	Y	55Mn	0.00	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	59Co	0.00	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	60Ni	0.00	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	62Ni	-0.44	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ŷ	63Cu	0.00	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ý	667n	-0.01	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ý	68Zn	-0.05	1	100.1	3/24/2014	16:37	ICAL		N/A N/A	
Cal Blank	Ŷ	75As	-0.11	1	100.1	3/24/2014	16:37	IGAL	ICAL	N/A	
Cal Blank	Y	78Se	-0.01	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	82Se	-0.40	1	100.1	3/24/2014	16:37	ICAL	ICAL.	N/A	
Cal Blank	Ŷ	86Sr	-0.01	1	100.1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y V	885r 97Mo	0.00	1 ∢	100,1	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ý	98Mo	0.00	1	99.3	3/24/2014	16:37			N/A N/A	
Cal Blank	Ý	107Ag	0.00	1	99.3	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	109Ag	0.00	1	99.3	3/24/2014	16:37	ICAL	ICAL.	N/A	
Cal Blank	Y	111Cd	0.00	1	99.3	3/24/2014	16:37	ICAL	ICAL.	N/A	
Cal Blank	Y	114Cd	0.00	1	99.3	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ŷ	11850	0.36	7 4	100.8	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Ý	12030 121Sh	0.36	1	100.8	3/24/2014	10:37	ICAL.	ICAL	N/A	
Cal Blank	Ŷ	123Sb	0.00	1	100.8	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	135Ba	-0.03	1	100.8	3/24/2014	16:37	ICAL	ICAL -	N/A	
Cal Blank	Y	137Ba	0.01	1	100.8	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	203TI	-0.01	1	99.3	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	Y	205TI	0.01	1	99.3	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal Blank	- V	208Pb	-0.12	1	99.3 07.4	3/24/2014	16:37	ICAL	ICAL	N/A	
Cal 1	v v	900 2741	48 20	1	97.4 97.4	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Ý	47Ti	4.86	1	97.4	3/24/2014	16:43	ICAL	ICAL	N/A . N/A	
Cal 1	Y	48Ti	4,79	1	97.4	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	51V	1,76	1	97.4	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	52Cr	0.99	1	97.4	3/24/2014	16:43	ICAL	ICAL.	N/A	
Cal 1	Y	55Mn	2.06	1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Call (Ŷ	59C0 60Ni	0.97	7	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cai 1	Ý	62Ni	2.51	1	97.8	3/24/2014	16:43	ICAL		N/A N/A	
Cal 1	Y	63Cu	0.97	1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	65Cu	0.94	1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	66Zn	5.16	1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	68Zn	5.17	1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Ŷ	7980	1.04	7	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Ý	82Se	2.06	1	97.8	3/24/2014	16:43	ICAL		N/A N/A	
Cal 1	Ŷ	86Sr	2.15	1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Ŷ	88Sr	2.05	.1	97.8	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	97Mo	1.96	1	97.1	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	98Mo	1.92	1	97.1	3/24/2014	16:43	ICAL	ICAL	N/A	
Call1	Ý	107Ag 1894a	0.47	1	97.1	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Ŷ	111Cd	0.46	1	97.1	3/24/2014	16:43	ICAL	ICAL	N/A N/A	
Cal 1	Y	114Cd	0.42	1	97.1	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	118Sn	4.39	1	96.9	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	120Sn	4.29	1	96.9	3/24/2014	16:43	ICAL	ICAL.	N/A	
Cal 1	Y	121Sb	0.98	1	96.9	3/24/2014	16:43	ICAL	ICAL	N/A	
Call	Ŷ	12580	0.93	1. 1	96.9	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Ŷ	137Ba	1.94	1	90,9 96,9	3/24/2014	16:43			N/A N/A	
Cal 1	Ŷ	203TI	0.14	1	96.5	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	205TI	0.17	1	96.5	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 1	Y	208Pb	0.41	1	96.5	3/24/2014	16:43	ICAL	ICAL	N/A	
Cal 2	Y	9Be	4.37	1	97,7	3/24/2014	16:48	ICAL	ICAL	N/A	
U24 2 Cal 2	Ŷ	27AI 4777	500.20	1	97.7	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	r V	4711 4877	50.00	1	91.1 977	3/24/2014	16:48	ICAL ICAL	ICAL	N/A	
Cal 2	Ŷ	51V	20.06	1	97.7	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	γ	52Cr	9.99	1	97.7	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	55Mn	20,49	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	59Co	10.23	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ŷ	60Ni	20,60	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	T V	o∡i\i 63Cu	21.01	1 1	100.9	3/24/2014 3/24/2014	10:48	ICAL ICAL	ICAL	N/A N/A	
	•			•	100.0	0. L L. O (10.40	i va min	ICAL 1	DOM: NO	* ^ ^

309 Page 1 of 21 Data File ID: 032414A

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS (D	Method	Comments
Cal 2	Y	65Cu	10.01	1	100.9	3/24/2014	16:48	ICAL	íCAL	N/A	
Cal 2	Y	66Zn	52.00	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ŷ	68Zn	51.25	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ŷ	7850	9.86	1	100.9	3/24/2014	16:48	ICAL		N/A N/A	
Cai 2	Ý	82Se	19.79	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ŷ	86Sr	19.85	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	88Sr	20.45	1	100.9	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	97Mo	20.61	1	98	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	98Mo	20.60	1	98	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	107Ag	5.07	1	98	3/24/2014	16:48	ICAL.	ICAL.	N/A	
Cal 2	r V	109Ag	a.04 4.02	1	98	3/24/2014	10:48			N/A N/A	
Cal 2	Ý	114Cd	4.07	1	98	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ŷ	118Sn	50.03	1	96.4	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	120Sn	49.82	1	96.4	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	121Sb	9.96	1	96.4	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	123Sb	10.03	1	96.4	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ŷ	13588	20.06	3	96.4	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	203TI	2.00	1	96.7	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Ý	205TI	2.01	1	96.7	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 2	Y	208Pb	5.00	1	96.7	3/24/2014	16:48	ICAL	ICAL	N/A	
Cal 3	Y	9Be	25.17	1	98.5	3/24/2014	16:53	ICAL.	ICAL.	N/A	anni anni anna anna anna anna anna anna
Cal 3	Y	27AI	2504.00	1	98.5	3/24/2014	16:53	ICAL	ICAL	N/A	<i>*</i>
Cal 3	Y	47Ti	249.40	1	98,5	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	48 fi 6417	250,30	1	98.5	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	v	52C+	100.20 50.37	1	90.0 08 5	3/24/2014	10:03			N/A N/A	
Cal 3	Ý	55Mn	101.00	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Ý	59Co	50.34	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	60Ni	101.00	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	62Ni	101.70	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	63Cu	50.43	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Ŷ	65Cu	50.42	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Ŷ	687n	251.80	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Ý	75As	50.72	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	78Se	100.20	1	101,2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	82Se	102.80	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	86Sr	100.20	1	101.2	3/24/2014	16:53	ICAL	ICAL.	N/A	
Cal 3	Ŷ	885r	100.40	1	101.2	3/24/2014	16:53	ICAL	ICAL	N/A	
Callo	Y V	971VIO 98160	901.20	1	99.6	3/24/2014	10:53			N/A N/A	
Cal 3	Y	107Ag	25.26	1	99.8	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Ý	109Ag	24.67	1	99.8	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	111Cd	20.53	1	99.8	3/24/2014	16:53	ICAL	ICAL	N/A	
Cat 3	Y	114Cd	20.40	1	99,8	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	118Sn	249.50	1	97.3	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Ŷ	120Sn	249.90	1.	97.3	3/24/2014	16:53	ICAL	ICAL	N/A	
Call3	v v	12100 1238h	50.13	1	97.5	3/24/2014	10.00			N/A N/A	
Cal 3	Ŷ	135Ba	99.79	1	97,3	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	137Ba	100.80	1	97.3	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	203TI	9.91	1	98.6	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	205TI	10.07	1	98.6	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 3	Y	208Pb	25.28	1	98.6	3/24/2014	16:53	ICAL	ICAL	N/A	
Cal 4	Ŷ	9Be	100.40	1	94.7	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4 Cal 4	ř V	27AI 4731	1011 00	1	94.1 94.7	3/24/2014 3/24/2014	10:00			N/A N/A	
Cal 4	Ý	48Ti	996,50	1	94.7	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	51V	395.60	1	94.7	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y	52Cr	199.40	1	94.7	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	¥	55Mn	398.60	1	98.1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y	59Co	199.60	1	98.1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	60NJ CONT	397,90	1	98.1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y V	0∡NI 63€∺	394.10 198.80	1	90.1 QR 1	3/24/2014	10.50		ICAL	NIA	
Cal 4	Ý	65Cu	199.10	ï	98.1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	66Zn	995.20	1	98,1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y	68Zn	981.80	1	98.1	3/24/2014	16:58	ICAL.	ICAL	N/A	
Cal 4	Y	75As	199.70	1	98.1	3/24/2014	16:58	ICAL	ICAL.	N/A	
Cal 4	Y	78Se	397.40	1	98.1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y	82Se	399.90	1	98.1	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	8651	400.00 208 80	1 4	98.1	3/24/2014	16:58	ICAL ICAL	ICAL	N/A	
Cal 4	1 V	97Mo	399.90	1	90.1 99.2	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ý	98Mo	396.50	1	99.2	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	107Ag	99.02	1	99.2	3/24/2014	16:58	ICAL	ICAL	N/A	

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
Cal 4	Ŷ	109Ag	96.52	1	99.2	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	111Cd	79.84	1	99.2	3/24/2014	16:58	ICAL.	ICAL	N/A	
Cal 4	Y	114Cd	79.96	1	99.2	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	11850	1002,00	1	94.4 04.4	3/24/2014	16:55	ICAL		N/A N/A	
Çdi 4 Cal 4	Ý	121Sb	199 70	1	94.4	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Ŷ	123Sb	199.60	1	94.4	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y	135Ba	397.50	1	94.4	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Υ	137Ba	400.00	1	94.4	3/24/2014	16:58	ICAL	ICAL.	N/A	
Cal 4	Y	203TI	39.35	1	96.3	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	Y	205TI	39.47	1	96.3	3/24/2014	16:58	ICAL	ICAL	N/A	
Cal 4	¥ V	20820	99.93	1	90.3	3/24/2014	17:00		ICAL	NUA	
	r V	9De 27∆I	526.40	1	96.2	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ŷ	47Ti	255.30	1	96.2	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Υ	48Ti	253.00	1	96.2	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	51V	100.10	1	96.2	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	52Cr	50.83	1	96.2	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ŷ	55Mn	50.86	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
	ř	5900 60Nii	50.87	1	97.0	3/24/2014	17:03	ICV	ICV	Ν/Α Ν/Δ	
ICV	Ý	62Ni	51.63	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ŷ	63Cu	50,90	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	65Cu	50.91	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	66Zn	103.30	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	68Zn	103.30	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV .	Y V	(5AS	48.12 60.79	1 4	97.8 07 9	3/24/2014	17:03			N/A N/A	
	Ý	703e 82Se	51 14	1	97.0 97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ý	86Sr	49.61	1	97.8	3/24/2014	17:03	icv	ICV	N/A	
ICV	Ŷ	88Sr	50.94	1	97.8	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	97Mo	51.14	1	95.9	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	98Mo	51.39	1	95.9	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ŷ	107Ag	50.25	1	. 95.9	3/24/2014	17:03	ICV	ICV	N/A N/A	
	Ŷ	109Ag	48.71	1	90.9 QR Q	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ý	114Cd	25.70	1	95.9	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ŷ	118Sn	206.80	1	94.6	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	120Sn	205.60	1	94.6	3/24/2014	17:03	iCV	ICV	N/A	
ICV	Y	121Sb	50.84	1	94.6	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	123Sb	50.53	1	94.6	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Ŷ	1358a	49.34	1	94.6	3/24/2014	17:03	ICV	ICV	N/A N/A	
	Y	203TI	48.65	1	95.5	3/24/2014	17:03	icv	ICV	N/A	-
ICV	Ŷ	205TI	49.17	1	95.5	3/24/2014	17:03	ICV	ICV	N/A	
ICV	Y	208Pb	50.37	1	95.5	3/24/2014	17:03	ICV	ICV	N/A	
ICB	Y	9Be	-0.09	1	94.5	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	27AI	-1.12	1	94.5	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	4711 4971	-0.01	1	94.5	3/24/2014	17:08	CCB	CCB	N/A N/A	
ICB	Ý	51V	0.16	1	94.5	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Ý	52Cr	0.05	1	94.5	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	55Mn	-0.01	1	92.7	3/24/2014	17:08	CCB 、	CCB	N/A	
ICB	Y	59Co	0.00	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Ŷ	60Ni	0.01	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB ICB	Y V	62Ni	2.03	1	92.7	3/24/2014 3/2//2014	17:08	CCB	CCB CCB	N/A N/A	UUB FR,
ICB	r V	65C0	-0.09	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Ŷ	66Zn	-0.01	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	68Zn	-0,07	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Υ	75As	0.11	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	78Se	0.27	1	92.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	82Se	-0.65	1	92.7	3/24/2014	17:08	CC8	CCB	N/A	
ICB	Ŷ	8651	-0.10	1	92.7	3/24/2014	17:08	CCB	CC8	N/A N/A	
ICB	Ý	97Ma	0.23	1	93	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Ŷ	98Mo	0.26	1	93	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	107Ag	-0.01	1	93	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	109Ag	0.00	1	93	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	111Cd	-0.02	1	93	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	114Cd	0.00	1	93	3/24/2014	17:08	CCB	CCB	N/A N/A	
	Y V	12055	0.29	1	92 92	3/24/2014	17:08	CCR	CCB	N/A	
ICB	Ŷ	121Sh	0.43	1	92	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Ŷ	123Sb	0.30	1	92	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	135Ba	-0.04	1	92	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Υ	137Ba	0.02	1	92	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Y	203TI	-0.05	1	91.7	3/24/2014	17:08	CCB	CCB	N/A	
ICB	Ý	20511	-0,02	1	91.7	3/24/2014	17:08	CCB	CCB	N/A	

311 Page 3 of 21

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
ICB	Y	208Pb	-0.13	1	91.7	3/24/2014	17:08	CCB	ССВ	N/A	
MRL	Y	9Be	0.44	1	95.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Ŷ	27AI	47.08	1	95.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	47Ti	4,99	1	95.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	4811	4.82	1	95.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL.	Ŷ	31V 52Cr	2.11	1	90.3 05 3	3/24/2014	17:13	MRL		N/A N/A	
MRI	Ŷ	55Mn	2.02	1	95.4	3/24/2014	17:13	MRL	MRI	N/A N/A	
MRL	Ŷ	59Co	0.98	1	95.4	3/24/2014	17:13	MRL	MRL.	N/A	
MRL	Y	60Ni	1.98	1	95.4	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Ν	62Ni	3,41	1	95.4	3/24/2014	17:13	MRL	MRL	N/A	MRL FH, CCB FH,
MRL.	Y	63Cu	0,98	1	95.4	3/24/2014	17:13	MRL	MRL	N/A	CCB FH,
MRL	۰Y	65Cu	0.89	1	95,4	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	66Zn	5.28	1	95.4	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	68Zn	5.08	1	95.4	3/24/2014	17:13	MRL	MRL	N/A	
MRL MR	Y Al	75A5	0.66	1	95.4	3/24/2014	17:13	MRL	MRL	N/A	
MRI	Y	82Se	1.73	1	90.4 95.4	3/24/2014	17.13	MPL	AAD	N/A N/A	CC8 FH.
MRL	Ý	86Sr	2.06	1	95.4	3/24/2014	17:13	MRI	MRI	N/A	
MRL	Ŷ	88Sr	2.05	1	95,4	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	97Mo	2.14	i	94.4	3/24/2014	17:13	MRL.	MRL	N/A	
MRL	Y	98Mo	1.93	1	94.4	3/24/2014	17:13	MRL	MRL	N/A	
MRL.	Y	107Ag	0.47	1	94.4	3/24/2014	17:13	MRL	MRL	N/A	
MRL	γ	109Ag	0.46	1	94.4	3/24/2014	17:13	MRL	MRL	N/A	×
MRL	Y	111Cd	0.40	1	94.4	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	114Cd	0.39	1	94.4	3/24/2014	17:13	MRL	MRL.	N/A	
	Y V	17850	4.24	1	92.3	3/24/2014	17,13		MRL	N/A N/A	
MRI	Ŷ	1215h	4.30	1	92.3	3/24/2014	17:13	MRI	MRL	Ν/Α . N/Δ	
MRL	Ý	123Sb	1.07	1	92.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Ŷ	135Ba	2.00	1	92.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	137Ba	1,95	1	92.3	3/24/2014	17:13	MRL.	MRL	N/A	
MRL	Y	20371	0.12	1	94.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	205TI	0.17	1	94.3	3/24/2014	17:13	MRL	MRL	N/A	
MRL	Y	208Pb	0.37	1	94.3	3/24/2014	17:13	MRL	MRL	N/A	
ICSA	Y	9Be	-0.07	1	86.2	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	27A(54790,00	1	86.2	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA ICSA	r V	4711	1139.00	1	80.Z	3/24/2014	17:18	ICS-A	ICS-A	N/A N/A	
ICSA	Ý	51V	-0.17	4	86.2	3/24/2014	17:10	103-A	103-A	N/A	
ICSA	Ŷ	52Cr	0.95	1	86.2	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	55Mn	0.33	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Υ	59Co	0.06	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	60Nì	0.57	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	N	62Ni	12.36	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	ICS-A FH, CCB FH,
ICSA	N	63Cu	1,25	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	CCB FH,
ICSA	r V	6300 667n	0.01	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA /	Ŷ	68Zn	0.81	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A N/A	
ICSA	Ŷ	75As	0.74	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	78Se	0.95	1	81,4	3/24/2014	17:18	ICS-A	ICS-A	N/A	CCB FH,
ICSA	Y	82Se	-1.70	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	. 4.
ICSA	Y	86Sr	0.21	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	-
ICSA	Y.	88Sr	0,44	1	81.4	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	97Mo	1090.00	1	85	3/24/2014	17:18	ICS-A	ICS-A	N/A	
IUSA ICSA	Ŷ	98M0	1111.00	1 4	85	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	r V	107Ag	0.02	1 1	60 28	3/24/2014	17:78	ICS-A	105-A	N/A N/A	
ICSA	Ŷ	111Cd	-0.09	1	85 85	3/24/2014	17.10	ICS-A	105-A 105-A	N/A	
ICSA	Ŷ	114Cd	0.14	1	85	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Ŷ	118Sn	-0.84	1	83,5	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	120Sn	-1.01	1	83.5	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	121Sb	80.0	1	83.5	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	123Sb	0.05	1	83.5	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Y	135Ba	0.00	1	83,5	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Ŷ	137Ba	0.04	1	83.5	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICOA ICOA	Y V	20311	-0.06	ן ז	84.9	3/24/2014	17:18	ICS-A	ICS-A	N/A	
ICSA	Ŷ	20201	-0.04	1	04.9 81 0	3/24/2014	17:18	105-A 109 A	ICS-A	N/A N/A	
ICSAB	· v	40000 6Re	-0.04	1 1	04.3 85.8	3/24/2014	17.10 17.09	100-M 109 AP	ICG VB	INA N/A	
ICSAB	Ý	27A1	53980.00	, 1	85.8	3/24/2014	17:23	ICS-AR	ICS-AR	N/A	
ICSAB	Ŷ	47Ti	1219.00	1	85.8	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	48Ti	1186.00	1	85.8	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	51V	40.74	1	85.8	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	52Cr	21.79	1	85.8	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	55Mn	41.58	1	84,6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	59Co	20.52	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	60Ni	41.11	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICOAB	N.	02INI 🖁	b2.39	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	ICS-AB FH, CCB FH,

312 Page 4 of 21

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS (D	Method	Comments
ICSAB	N	63Cu	20.86	. 1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	CCB FH,
ICSAB	Y	65Cu	20.14	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	66Zn	99.77	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	68Zn	98.06	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y N	/5AS	20.89	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	669 EV
ICSAB	Y	82Se	39.25	1	84.6	3/24/2014	17.23	ICS-AB	ICS-AB	N/A N/A	COB FR,
ICSAB	Ý	86Sr	43,50	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	88Sr	44.42	1	84.6	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	97Mo	1119.00	1	86	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	98Mo	1109.00	1	86	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	107Ag	9.66	1	86	3/24/2014	17:23	CS-AB	ICS-AB	N/A	
ICSAB	v v	109Ag	9.45	1	00 86	3/24/2014 3/24/2014	17:23	ICS-AB	ICS-AB	N/A N/A	
ICSAB	Ý	114Cd	8.16	1	86	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	118Sn	103,90	1	86.9	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	120Sn	104.90	1	86.9	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	121Sb	20.57	1	86.9	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	12350	20,70	1	86.9	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	T V	13008	41.79	1	86 Q	3/24/2014 3/24/2014	17:23	ICS-AB	ICS-AB	N/A N/A	
ICSAB	Ŷ	203TI	4.13	1	85.3	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	205TI	4.01	1	85.3	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
ICSAB	Y	208Pb	10.12	1	85.3	3/24/2014	17:23	ICS-AB	ICS-AB	N/A	
CCV-1	Y	9Be	24.04	1	96	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	27AI	2499.00	1	96	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Ŷ	4711	251.80	1	96	3/24/2014	17:28	CCV	CCV	N/A	
001/41	v v	4011 51V	246.60	1	90	3/24/2014	17:28	CCV	CCV	N/A N/A	
CCV-1	Ŷ	52Cr	50.07	1	96	3/24/2014	17:28	ccv	ccv	N/A	
CCV-1	Y	55Mn	100.60	1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	59Co	50.08	1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	60Ni	101.10	1	97	3/24/2014	17:28	CCV	CCV	N/A	ICS-A FH, ICS-AB FH, COV FH 200.8 , COV FH 6020 W ,
CCV-1	N	62Ni	124,30	1	97	3/24/2014	17:28	CCV	CCV	N/A	CCV FH 6020 S ,
CCV-1	Y	63Cu	51.47	1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	r V	667n	256.40	1	97	3/24/2014 3/24/2014	17:28	CCV	CCV	N/A N/A	
CCV-1	Ý	68Zn	250.90	1	97	3/24/2014	17:28	CCV	ccv	N/A	
CCV-1	Υ	75As	50.68	1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	78Se	104.30	1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	82Se	101.00	1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Ŷ	86Sr	101.00	· 1	97	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	0001 97Mo	101.40	1	977	3/24/2014 3/24/2014	17:28	CCV	CCV	N/A	· ·
CCV-1	Ŷ	98Mo	101.20	1	97.7	3/24/2014	17:28	CCV	ccv	N/A	
CCV-1	γ	107Ag	25.37	1	97.7	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	109Ag	24.68	1	97.7	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	111Cd	20.76	1	97.7	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Ŷ	114C0	20.59	1	97.7	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Y	120Sn	249.00	1	96.3	3/24/2014	17:28	COV	CCV	N/A	
CCV-1	Ŷ	121Sb	50.17	1	96.3	3/24/2014	17:28	ccv	ccv	N/A	
CCV-1	Y	123Sb	50.10	1	96:3	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Ŷ	135Ba	98.85	1	96.3	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1	Ŷ	137Ba	100.70	1	96.3	3/24/2014	17:28	CCV	CCV	N/A	
CCV-1 CCV-1	Ŷ	20311	10.03	7	95.3	3/24/2014	17:28	CCV	CCV	N/A N/A	
CCV-1	Ŷ	208Pb	25.40	1	95.3	3/24/2014	17:28	ccv	CCV	N/A	
CCB-1	Ŷ	9Be	-0,09	1	94.1	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	27AI	-1.07	1	94.1	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	47Ti	0.03	1	94.1	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Ŷ	48Ti	-0.31	1	94.1	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Ŷ	51V 52Cr	-0.10	1	94.1 07.1	3/24/2014	17:33	CCB	CCB	N/A N/A	
CCB-1	Ý	55Mn	-0.04	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Ŷ	59Co	-0.01	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	60Ni	0.00	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	N	62NI	39.75	1	93,5	3/24/2014	17:33	CCB	CCB	N/A	ICS-A FH, ICS-AB FH, CCB FH,
CCB-1	Ŷ	63Cu	2.35	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	CCB FH,
	Ŷ	65Cu	-0.10	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	r V	687n	-0.07	1	93.5 93.5	3/24/2014	17:33	CCB	008	N/A N/A	
CCB-1	Ý	75As	0.07	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	78Se	2.16	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	CCB FH,
CCB-1	Y	82Se	-0.73	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	86Sr	-0.05	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	885r	0,00	1	93.5	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	97 MO 98 Mo	0.57	۱ ۱	94 94	3/24/2014	17:33	CCB	CCB	N/A	~ 1 ~

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCB-1	Y	107Ag	-0,03	1	94	3/24/2014	17:33	CCB `	CCB	N/A	
CCB-1	Y	109Ag	-0.02	1	94	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	111Cd	-0.01	1	94	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Ŷ	114Cd	0.03	1	94	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	118Sn	-0.58	1	92.7	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	120Sn	-0.67	1	92.7	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	121Sb	0.11	1	92.7	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	123Sb	0.04	1	92.7	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	135Ba	-0.02	1	92.7	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	137Ba	-0.01	1	92.7	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Y	203TI	-0.05	1	94.3	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Ŷ	205TI	-0.02	1	94.3	3/24/2014	17:33	CCB	CCB	N/A	
CCB-1	Ŷ	208Pb	-0.14	1	94.3	3/24/2014	17:33	CCB	CCB	N/A	
MR-02134-04	v	980	-0.09	1	95.3	3/24/20144	17:38	MBLK	JO1402134-04	200.8 W	
MB-02134-04	ÿ	2741	0.00	1	96.3	3/24/2014	17:38	MRIK	101402134-04	200.8 W	
MD-02134-04	v	4711	0.72	1	95.3	3/24/2014	17:38	MRIK	101402134-04	200,0 W	
MB-02134-04	5 5.1	4075	0.01	4	05.0	2/24/2014	17:39	MBLK	101402134-04	200.8 M	
MB-02134-04	N V	-4011 E4V	-0.27	4	05.0	2/24/2014	17:30		101402134-04	200.8 W	
MB-02134-04	T V	500-	0.21	4	90.0	0/24/2014	47:00		101402134-04	200.0 W	
MB-02134-04	r V	52.01	0.00	۱ ۲	90.3	3/24/2014	17.30	MIDLIC	101402134-04	200.0 14	
MB-02134-04	Ŷ	55IVIN	0.03	1	92.8	3/24/2014	17:38	MOLK	JQ1402134-04	200.6 W	
MB-02134-04	Ŷ	5900	-0.01	1	92.8	3/24/2014	17.36	WBLK	JQ1402134-04	200.8 W	
MB-02134-04	Ŷ	60NI	-0.01	1	92.8	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Ν	62Ni	40.33	1	92.8	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	ICS-A FH, ICS-AB FH, MRL FH, MB FH, CCB FH, CCV FH,
MB-02134-04	N	63Cu	2.51	1	92.8	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	MB FH, CCB FH.
MB-02134-04	Y	65Cu	-0.12	1	92.8	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Ŷ	66Zn	2.85	1	92.8	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02104-04	N	687n	2.67	•	92.8	3/24/2014	17:38	MBLK	JO1402134-04	200.8 W	
MD-02134-04	~	75020	0.36	4	02.8	3/24/2014	17:38	MBLK	101402134-04	200.8 W	
MB-02134-04	1 N	7000	1.94	1	02.0	3/24/2014	17:28	MBLK	101402134-04	200.8 \//	CCB FH
MD-02134-04	N V	1000	0.03		92.0 00.9	3/24/2014	17-30	MOLK	101403434 04	200.0 W	000111,
MB-02134-04	· r	0238	-0.93	1	92.0	3/24/2014	17.00		101402104-04	200.0 W	
MB-02134-04	Ŷ	86Sr	-0.07	1	92.8	3/24/2014	17:38	MBLK	3Q1402134-04	200.8 W	
MB-02134-04	N	88SF	0.01	3	92.8	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	N	97Mo	0.21	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Ŷ	98Mo	0.21	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	N	107Ag	-0.04	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Y	109Ag	-0.03	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	N	111Cd	-0.01	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Y	114Cd	0.01	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200,8 W	
MB-02134-04	Y.	118Sn	-1.04	1	93.2	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	N	120Sn	-1.21	1	93.2	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	N	121Sb	0.00	1	93.2	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Y	123Sb	-0.03	1	93.2	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	N	135Ba	-0.04	1	93.2	3/24/2014	17:38	MBLK	JQ1402134-04	200,8 W	
MB-02134-04	Y	137Ba	-0.02	1	93.2	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Ν	203TI	-0.07	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Y	205TI	-0.04	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
MB-02134-04	Y	208Pb	-0.14	1	94.7	3/24/2014	17:38	MBLK	JQ1402134-04	200.8 W	
LCS-02134-03	Y	9Be	26.48	1	97.5	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Ŷ	27AI	2642.00	1	97.5	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Ŷ	47Ti	262.40	1	97.5	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
105-02134-03	N	4811	260.20	1	97.5	3/24/2014	17:43	LCS	101402134-03	200.8 W	
LCS 02134-03	v	51V	103.40	1	97.5	3/24/2014	17:43	LCS	101402134-03	200.8 W	
105 02424 02	ÿ	520-	52.04	1	97.5	3/24/2014	17:43	105	101402134-03	200.8 \//	
200-02104-00	, v	55100	104 00	1	00	3/24/2014	17:43	100	01402134-03	200.8 W	
LC3-02 134-03	v	5000	50 20	4	55	3/24/2014	17:43	100	101402134.03	200.0 W	
LCS-02134-03	1	SONG	105 50	4	89 00	3/24/2014	17:43	100	101402134-03	200.0 11	
LUD-02 134-03	T	UDINI	100.00	,	55	JIZ4/2014	G++, 1 ,	-00	541702104-00	2.00.0 VV	ICS-A FH, ICS-AB FH, LCS FH 200.8 , LCS FH 6020 W .
LCS-02134-03	N	62Ní	144.80	1	99	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	LCS FH 6020 S , CCB FH, CCV FH,
LCS-02134-03	N	63Cu	55.12	1	99	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	CCB FH.
LCS-02134-03	Y	65Cu	52.67	1	99	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Y	66Zn	264.90	1	99	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	N	68Zn	258.80	1	99	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Ŷ	75 4 s	52.04	1	99	3/24/2014	17:43	LCS	JQ1402134-03	200 8 W	
108-02134-03	N	78Se	105 10	1	99	3/24/2014	17:43	LCS	101402134-03	200 8 W	CCB FH.
105 02124 03	v	8756	103 30		99	3/24/2014	17:43	105	101402134-03	200 8 W/	
105 02124 02	ý	869-	105.50	4	00	3/24/2014	17:43	105	101402134-03	200.8 W	
105-02134-03	, N	880-	105.60	•	90	3/24/2014	17.49	105	JO1402134-03	200.8 W	
100-02104-00	EN N.C	0764~	105.00	1	00 7 70	3/24/2014	17.49	109	101402134-02	200.0 W	
LCC 02424 02	NI V	OWITE	100.40	1	31.1 07.7	3/3//2014	17.40	ice	101/02134-03	200.0 W	
LUD-UZ (34-U3	T	201410	104.00	-	01,1 077	3/24/2014	17:40	100	101403434 03	200.0 11	
LUS-02134-03	N	TU/Ag	20.23	1	97.7 07 7	3/24/2014	11:43	105	JQ1402134-03	200.0 44	
LC5-02134-03	Y	TUYAG	25.45	1	37.7	3/24/2014	17:43	100	JQ 1402134-03	200.8 W	
LCS-02134-03	N	111Cd	21.18	1	97.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Y	114Cd	21.20	1	97.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Y	118Sn	262.50	1	96.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	N	120Sn	262.80	1	96.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	N	121Sb	52.63	1	96.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Y	123Sb	51.66	1	96.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	N	135Ba	104.40	1	96.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
LCS-02134-03	Y	137Ba	104.40	1	96.7	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	· · · · · · · · · · · · · · · ·
											314

Liss 2014 6.00 N Bit M For A Liss 2014 6.00 Dist 300 4 Percent Section 200 4 Liss 2014 6.00 V Bit A Dist 200 4 Liss 2014 14.000 400 400 400 400 400 400 400 400 40	SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
Lise definition V 2007	LCS-02134-03	N	203TI	10.20	1	97.1	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	***************************************
(16) - 211.43 Y (16) - 211.43 Y (16) - 211.43 (16) - 211.43 (16) - 211.43 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) - 211.4 (16) -211.4	LCS-02134-03	Y	20511	10.34	1	97.1	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
Display Display <t< td=""><td>LCS-02134-03</td><td>Y</td><td>208Pb</td><td>26.55</td><td>1</td><td>97.1</td><td>3/24/2014</td><td>17:43</td><td>LCS</td><td>JQ1402134-03</td><td>200.8 W</td><td></td></t<>	LCS-02134-03	Y	208Pb	26.55	1	97.1	3/24/2014	17:43	LCS	JQ1402134-03	200.8 W	
Instructure Y Z.M. T.S. 20 F PL Stand Instructure Stand <thstand< th=""> Stand <thstand< td="" th<=""><td>J1402003-001</td><td>Y</td><td>9Be</td><td>-0.06</td><td>1</td><td>94.8</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></thstand<></thstand<>	J1402003-001	Y	9Be	-0.06	1	94.8	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
AL20203-01 V V VI 10.20 1 84.0 31.02/2014 11.743 SAMP 14.02/2001 00.0 MV AL20203-02 V 84.0 1 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 MV AL20203-02 V SAMP 14.02/2001 00.0 MV 00.0 M	J1402003-001	.Y	27AI	138,70	1	94.8	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
JACCONTINUE B B D Z <thz< th=""> Z <thz< th=""> Z <thz< th=""> <thz< <="" td=""><td>J1402003-001</td><td>Y</td><td>47Ti</td><td>1.60</td><td>1</td><td>94.8</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></thz<></thz<></thz<></thz<>	J1402003-001	Y	47Ti	1.60	1	94.8	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
Integendent v <th< td=""><td>J1402003-001</td><td>N</td><td>48Ti</td><td>2.43</td><td>1</td><td>94.8</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></th<>	J1402003-001	N	48Ti	2.43	1	94.8	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
International V <	J1402003-001	Ŷ	51V	0.49	1	94.8	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
Jacobso y Biol Solution y Solution Solution Solution Solution Solution Solution 246003<001	J1402003-001	Y	52Cr	0.53	1	94.8	3/24/2014	17:48	SAMP	J1402003-001	200,8 W	
J. Honologi Y Ref S.	J1402003-001	Ŷ	55101	52.37	1 ∡	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
JACUBDON I BOX JACUBDON JACUBDON LODE N <thlode n<="" th=""> LODE N <thlode n<="" th=""></thlode></thlode>	J1402003-001	ř	0066	0.03	4	90.0	3/24/2014	17.40	SAMP	1402003-001	200.8 W	
Ide2005.01 N RD SAU Laboration SAU	31402003-001	I	DOINI	0.37	,	55.0	3/24/2014	17.40	OAW	J 1402003-003	200.0 11	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
Judgebook N BSD2 State I BSD3 BSD3 State Judgebook<	J1402003-001	N	62Ni	37,73	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	CCV FH,
Ide200.01 Y FT ID <	J1402003-001	N	63Cu	2,61	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	MB FH, CCB FH,
Incomos Y MEZD 5.56 Y 05.53 S24/2014 T/4 SAMP Infection-10 COD N Incomos Y 62.50 Y Y S24 Y S24 Y S24 Y Y S24 Y Y S24 Y Y S24 S24	J1402003-001	Y	65Cu	0.17	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
14202030-01 N 82.0 8.36 1 86.6 32/2014 17.48 SAMP 14/2020-01 20.0 W 14202030-01 N 85.6 -0.66 1 86.6 32/2014 17.48 SAMP 14/2020-01 20.0 M CD R N 14202030-01 N 85.6 -0.66 32/2014 17.48 SAMP 14/2020-01 20.0 M CD R N 1420200-010 N 85.6 11.50 1 66.6 32/2014 17.48 SAMP 14/2020-01 20.0 M CD R N 1420200-010 N 95.6 32/2014 17.48 SAMP 14/2020-01 20.0 M V 1420200-010 N 95.6 32/2014 17.48 SAMP 14/2020-01 20.0 M V 14/2014-01 20.0 M V 14/2014-01 20.0 M V 14/2014-01 20.0 M V 14/2014-01 20.0 M V V 14/2014-01 20.0 M V 1/2014-01 20.0 M V 1/2014-01 20.0 M V 1/2014-01 20.0 M V 20.0 M <td< td=""><td>J1402003-001</td><td>Y</td><td>66Zn</td><td>5,96</td><td>1</td><td>95.6</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></td<>	J1402003-001	Y	66Zn	5,96	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
Haddbook Y PEA DUB Default 11/1 SAMP Haddbook DE Default Top Haddbook N Ref 11/2 SA N Ref SA N Ref SA N Ref SA	J1402003-001	N	68Zn	6.64	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
14000000000000000000000000000000000000	J1402003-001	Y	75As	0.59	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
1 1 0 482 1 0	J1402003-001	N	7850	2,29	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	CCB FH,
Inscretzent N PROV PROV PROV <	J1402003-001	N N	0∠5e	-0.09	1	95.6	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
	J1402003-001	¥ NI	0001	11.00	4	90.0	3/24/2014	17.40	SAMP	1402003-001	200.8 W	
1440005-001 Y 9400 0.03 9.44 3242014 17.42 SAMP 1420205-001 20.03 W 1420205-001 Y 1984 0.04 1 84.4 3242014 17.48 SAMP 1420205-001 20.03 W 1420205-001 Y 1984 0.00 1 84.4 3242014 17.48 SAMP 1420205-001 20.03 W 1420205-001 Y 1984 0.00 1 84.4 3242014 17.48 SAMP 1420203-001 20.03 W 1440000-011 Y 1985 0.03 1 37.47 324014 17.48 SAMP 1420204-001 20.03 W 1440000-011 Y 1285 1.003 1 44.5 3242014 17.48 SAMP 1442020-001 20.04 W 1422005-001 N 97.73 3242014 17.48 SAMP 1420203-002 20.08 W 1422005-001 N 97.7	1402003-001	N N	07140	0.29	1	90.0	3/24/2014	17:48	SAMP	11402003-001	200.0 14	
Jacobson N OTAG OLD OLD SAMP Jacobson OLD W Jacobson N 10760 0.04 1 64.4 324201-01 17.48 SAMP Jacobson-01 20.8 W Jacobson-01 N 11160 0.00 1 64.4 3242014 17.48 SAMP Jacobson-01 20.8 W Jacobson-01 N 11660 0.01 1 64.4 3242014 17.48 SAMP Jacobson-01 20.8 W Jacobson-01 N 1255 0.7 13.7 3242014 17.48 SAMP Jacobson-01 20.8 W Jacobson-01 N 1357 0.00 1 63.7 3242014 17.48 SAMP Jacobson-01 20.8 W Jacobson-01 Y 387 0.00 1 64.5 3242014 17.48 SAMP Jacobson-01 20.8 W Jacobson-01 Y 387 0.00	11402003-001	Ŷ	98Mo	0.29	1	94.4	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
Jaccossion Y 199Ag -0.04 1 44 3242001 1748 SAMP J-Jaccossion 20.8 W Jaccossion Y 1456 0.00 1 64.4 3242014 17.48 SAMP J-Jaccossion 20.8 W Jaccossion Y 1456 0.00 1 64.4 3242014 17.48 SAMP J-Jaccossion 20.8 W Jaccossion N 12356 0.01 1 64.7 3242014 17.48 SAMP J-Jaccossion 20.8 W Jaccossion N 12356 0.03 1 63.7 3242014 17.48 SAMP J-Jaccossion 20.8 W Jaccossion N 13356 0.03 1 64.5 3242014 17.48 SAMP J-Jaccossion 20.8 W J-Jaccossion Y 3849 0.4000-001 20.0 K W J-Jaccossion 20.0 K W J-Jaccossion Y 3849 J-Jaccossion 20.0 K W	1402003-001	, N	107An	-0.04	1	94.4	3/24/2014	17:48	SAMP	.11402003-001	200.8 W	
stadescend N 111CL 0.00 1 0.4.4 3242014 17.48 SAMP J-J402005-001 20.8 W J-J402005-001 Y 1158 -0.76 1 93.7 32242014 17.48 SAMP J-J402005-001 20.8 W J-J402005-001 N 1258 0.01 1 93.7 32242014 17.48 SAMP J-J402005-001 20.8 W J-J402005-001 N 1258 0.03 1 93.7 32242014 17.48 SAMP J-J402005-001 20.6 W J-J402005-001 N 1383 169.2 1 93.7 32242014 17.48 SAMP J-J402005-001 20.6 W J-J402005-001 N 205.7 93.7 92.42014 17.48 SAMP J-J402005-001 20.6 W J-J402005-002 V 97.4 96.8 302.42014 17.85 SAMP J-J402005-001 20.6 W J-J402005-002 V 97.6 -0.61 1 95.2 3244201	11402003-001	Ŷ	109Aa	-0.04	1	94.4	3/24/2014	17:48	SAMP	11402003-001	200.8 W	
Judagosoci Y H14Cd 0.00 I 94.4 2242014 17.48 SAMP Judggggsbor D20.8 W Judgggsbord N 1258 -0.00 1 83.7 3242014 17.48 SAMP Judggggsbord 202.8 W Judggggsbord N 1258 -0.00 1 83.7 3242014 17.48 SAMP Judggggsbord 202.8 W Judggggsbord N 1358 -0.00 1 83.7 3242014 17.48 SAMP Judggggsbord 202.8 W Judgggsbord N 1378 16.8 17.42 SAMP Judggggsbord 202.6 W Judgggsbord N 1378 10.00 1 84.5 3242014 17.48 SAMP Judgggsbord 202.6 W Judgggsbord V 217.7 10.6 1 85.4 2140200-002 20.8 W Judgggsbord V 217.7 10.6 10.2<	J1402003-001	N	111Cd	0.00	1	94.4	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
1440003-001 Y 1198 -0.50 1 0.37 92/42/014 17.48 SAMP J440203-001 20.6 W 14402003-001 N 12/58 0.01 1 93.7 32/42/014 17.44 SAMP J4402003-001 20.6 W 14402003-001 N 12/58 0.01 1 93.7 32/42/014 17.44 SAMP J4402003-001 20.6 W 14402003-001 N 13588 10.02 1 63.7 32/42/014 17.44 SAMP J4402003-001 20.6 W 1402003-001 N 3281 10.02 1 63.7 32/42/014 17.48 SAMP J4402003-001 20.6 W 1402003-001 V 23.6 32/42/014 17.53 SAMP J4402003-002 20.0 W	.11402003-001	Ŷ	114Cd	0.01	1	94.4	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
Index Index <t< td=""><td>J1402003-001</td><td>Ŷ</td><td>118Sn</td><td>-0.50</td><td>1</td><td>93.7</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></t<>	J1402003-001	Ŷ	118Sn	-0.50	1	93.7	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
j.H.d2000-001 N 1258 0.01 1 6.37 S/24/2014 17.48 SAMP J.H.d2000-001 20.8 W J.H.d2000-001 N 13588 16.92 1 63.7 S/24/2014 17.48 SAMP J.H.d2000-001 20.8 W J.H.d2000-001 N 13588 16.92 1 63.7 S/24/2014 17.48 SAMP J.H.d2000-001 20.8 W J.H.d2000-001 N 203.8 1 64.8 S/24/2014 17.48 SAMP J.H.d2000-001 20.8 W J.H.d2000-002 Y 284P -0.10 1 9.45 3/24/2014 17.73 SAMP J.H.d2000-002 20.8 W J.H.d2000-002 Y 27.4 36.00 1 9.5 3/24/2014 17.53 SAMP J.H.d2000-002 20.8 W J.H.d2000-002 Y 27.4 36.0 1 9.5 3/24/2014 17.53 SAMP J.H.d2000-002 20.8 W J.H.d2000-002 Y 56.0 1	J1402003-001	N	120Sn	-0.74	1	93.7	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
j.H42020.001 N 1285b -0.03 1 92,7 92/42014 17.48 SAMP J.H42020.3001 200.8 W j.H42020.3001 N 1375a 17.14 1 98,7 32/42014 17.48 SAMP J.H42020.3001 200.8 W j.H42020.3001 N 205T 0.03 1 94,5 32/42014 17.48 SAMP J.H42020.3001 200.8 W j.H42020.3001 Y 205T 0.03 1 94,5 32/42014 17.48 SAMP J.H42020.3001 200.8 W j.H42020.3002 Y 271,7 350,0 1 95,2 32/42014 17.78 SAMP J.H42020.002 200.8 W j.H42020.3002 Y 471,7 3,472 1 95,2 32/42014 17.78 SAMP J.H42020.002 200.8 W J.H42020.002 200.8 W J.H42020.002 Y 810,6 7.50 1 97,6 32/42014 17.63 SAMP J.H42020.002 200.8 W J.H42020.002 200.8 W J.H42020.002 200.8 W J.H42020.002 200.8 W J.H42020.002 200	J1402003-001	N	121Sb	0.01	1	93.7	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
JH422020-001 N 1957 32/42/04 17.48 SAMP JH42203-001 20.5 W JH422020-3001 N 2015 N 2015 N 2015 N JH422020-3001 N 2015 0.00 1 44.5 32/42/014 17.48 SAMP JH42203-001 200.8 W JH422005-001 Y 2007 Y 2007 N 200.8 W JH42203-001 200.8 W JH422005-002 Y 2007 Y 200 N JH422003-002 200.8 W JH422003-002 200.8 W JH422005-002 Y 217.4 360.0 1 85.2 32/42/014 17.78 SAMP JH42203-02 200.8 W JH422003-002 Y 817.1 3.62 32/42/014 17.78 SAMP JH42203-02 200.8 W JH422003-002 Y 80.0 67.7 32/42/014 17.78 SAMP JH42203-02 200.8 W JH422003-002 Y 80.0 67.6 32/42/014 17.78 SAMP JH42203-02 200.8 W M <td< td=""><td>J1402003-001</td><td>Y</td><td>123Sb</td><td>-0.03</td><td>1</td><td>93.7</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></td<>	J1402003-001	Y	123Sb	-0.03	1	93.7	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
j.4d2020.3001 Y 1978a 17.14 1 98.7 3/24/2014 17.48 SAMP j.4d2003.001 200.8 W j.4d2020.3001 Y 205T1 0.03 1 94.5 3/24/2014 17.48 SAMP j.4d2003.001 200.8 W j.4d2003.001 Y 205T1 0.03 1 94.5 3/24/2014 17.48 SAMP j.4d2003.002 200.8 W j.4d2003.002 Y 274.4 1 95.2 3/24/2014 17.53 SAMP j.4d2003.002 200.8 W j.4d2003.002 Y 4711 3.4.2 1 95.2 3/24/2014 17.53 SAMP j.4d2003.002 200.8 W j.4d2003.002 Y 510 6.75 1 67.8 3/24/2014 17.53 SAMP j.4d2003.002 200.8 W j.4d2003.002 Y 5000 7.5 6.75 6.75 6.75 3.24/2014 17.53 SAMP j.4d2003.002 200.8 W j.4d2003.002 Y 5000 7.6 7.75	J1402003-001	N	135Ba	16.92	1	93.7	3/24/2014	17:48	SAMP	J1402003-001	200,8 W	
JH420203-001 N 2021T 0.00 1 94.5 32/42014 17.48 SAMP JH420203-011 20.6 W JH420203-011 Y 268Ph 0.10 1 94.5 32/42014 17.48 SAMP JH420203-001 20.6 W JH420203-002 Y 2740 80.00 1 95.2 32/42014 17.33 SAMP JH4202003-002 20.6 W JH420203-002 Y 2711 3.42 155.2 32/42014 17.53 SAMP JH4202003-002 20.6 W JH420203-002 Y 4541 55.2 32/42014 17.53 SAMP JH420203-002 20.6 W JH420203-002 Y 550r 0.44 1 95.2 32/42014 17.53 SAMP JH420203-002 20.6 W JH420203-002 Y 560r 0.75 1 97.6 32/42014 17.53 SAMP JH420203-002 20.8 W EA PH, MB-H, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6 PH, L5 PH, C6	J1402003-001	Y	137Ba	17.14	1	93.7	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
jH420203-001 Y 205Ti 0.03 1 94.5 32/4/2014 17/48 SAMP jH420203-010 20.6 W jH420203-002 Y 956 -0.06 1 95.2 32/4/2014 17.33 SAMP JH420203-002 20.6 W jH420203-002 Y 4711 34.2 1 95.2 32/4/2014 17.63 SAMP JH420203-002 20.6 W jH420203-002 Y 4711 34.2 1 95.2 32/4/2014 17.63 SAMP JH420203-002 20.6 W jH420003-002 Y 9500 0.54 1 97.6 32/4/2014 17.63 SAMP JH420003-002 20.8 W jH420003-002 Y 9500 0.54 1 97.6 32/4/2014 17.63 SAMP JH42003-002 20.8 W EA P H42003-002 20.8 W EA P H42003-002 20.8 W EA P H420003-00	J1402003-001	Ν	203TI	0.00	1	94.5	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
I 402003-061 Y 208Pb 0.10 1 64.5 374/2014 1748 SAMP I 402003-002 20.08 W I 402003-002 Y 27A 380.00 1 65.2 3724/214 175.3 SAMP I 4402003-002 200.8 W I 402003-002 Y 27A 380.00 1 65.2 3724/214 175.3 SAMP I 4402003-002 200.8 W I 402003-002 Y 874 1 65.2 3724/214 175.3 SAMP I 4402003-002 200.8 W I 402003-002 Y 550.6 0.75 1 97.6 3724/214 175.3 SAMP I 4402003-002 200.8 W I 402003-002 Y 550.6 0.75 97.6 3724/214 175.3 SAMP I 4402003-002 200.8 W I 402003-002 Y 650.6 0.76 3724/214 175.3 SAMP I 4402003-002 200.8 W I 402003-002 Y 650.6 97.6 324/2014 175.3 <t< td=""><td>J1402003-001</td><td>Y</td><td>205TI</td><td>0.03</td><td>1</td><td>94.5</td><td>3/24/2014</td><td>17:48</td><td>SAMP</td><td>J1402003-001</td><td>200.8 W</td><td></td></t<>	J1402003-001	Y	205TI	0.03	1	94.5	3/24/2014	17:48	SAMP	J1402003-001	200.8 W	
ji Ho2003-0/2 Y 96/B 0.06 1 65.2 374/2014 17.53 SAMP ji Ha20003-0/2 200.8 W 1402003-0/2 Y 4771 34.2 1 65.2 374/2014 17.53 SAMP ji Ha20003-0/2 200.8 W 1402003-0/2 Y 4771 34.2 1 65.2 374/2014 17.53 SAMP ji Ha20003-0/2 200.8 W ji Ho2003-0/2 Y 55Cr 0.44 1 55.2 374/2014 17.53 SAMP ji Ha20003-0/2 200.8 W ji Ho2003-0/2 Y 55Cr 0.7.6 374/2014 17.53 SAMP ji Ha20003-0/2 200.8 W ji Ho2003-0/2 Y 65Co 0.7.5 1 97.6 374/2014 17.53 SAMP ji Ha2003-0/2 200.8 W COV Ph. ji Ho2003-0/2 N 85C1 97.6 374/2014 17.53 SAMP ji Ha2003-0/2 200.8 W COV Ph. ji Ho2003-0/2 Y 65Cu 97.6	J1402003-001	Y	208Pb	-0.10	1	94.5	3/24/2014	17:48	SAMP	J1402003-001	200,8 W	
jH420203-002 Y 27A 380 000 1 65.2 3724/2014 17.53 SAMP JH420200-202 200.8 W JH420203-002 N 45T1 3.47 1 65.2 3724/2014 17.53 SAMP JH420003-002 200.8 W JH420203-002 Y 55Cr 0.44 1 65.2 3724/2014 17.53 SAMP JH420003-002 200.8 W JH420203-002 Y 55Cr 0.44 1 75.3 SAMP JH420003-002 200.8 W JH420203-002 Y 56Co 0.75 1 97.6 3/24/2014 17.53 SAMP JH420003-002 200.8 W JH42003-002 N 6SCu 0.44 1 07.6 3/24/2014 17.53 SAMP JH420003-002 200.8 W MBPH_LCEP_H_L	J1402003-002	. Y	9Be	-0.06	1	95.2	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
j.H02003-002 N 4711 3.42 1 95.2 32/4/2014 17.73 SAMP j.H402003-002 200.8 W j.H02003-002 Y 51V 0.54 1 95.2 32/4/2014 17.73 SAMP j.H402003-002 200.8 W j.H02003-002 Y 55V 0.54 1 95.2 32/4/2014 17.73 SAMP j.H402003-002 200.8 W j.H02003-002 Y 55Mn 67.50 1 97.6 32/4/2014 17.53 SAMP j.H402003-002 200.8 W j.H02003-002 Y 65C0 0.75 1 97.6 32/4/2014 17.53 SAMP j.H402003-002 200.8 W LC0A PH, LSABPH, MBL PH, MB PH, LC3 PH, LC	J1402003-002	Y	27AI	390.00	1	95.2	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
j.40203-002 Y 4511 3.47 1 99.2 324/2014 17.53 SAMP j.440203-002 200.8 W j.402030-002 Y 52Cr 0.44 165.2 32/2/2014 17.53 SAMP j.440203-002 200.8 W j.402030-002 Y 55Cn 1 97.6 32/2/2014 17.53 SAMP j.440203-002 200.8 W j.402003-002 Y 69Co 0.75 1 97.6 32/2/2014 17.53 SAMP j.440203-002 200.8 W j.402003-002 Y 69Co 0.75 1 97.6 32/2/2014 17.53 SAMP j.4402003-002 200.8 W CCVPH, CSAB FH, MC, FH, CSAP FL,	J1402003-002	Ŷ	47Ti	3.42	1	95.2	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J42203-002 Y 9 TV 0.04 1 95.2 3/24/2014 17.53 SAMP J4/2003-002 20.0 A J442003-002 Y 5504 67.50 1 97.6 3/24/2014 17.53 SAMP J4/2003-002 20.0 A J442003-002 Y 5504 67.5 1 97.6 3/24/2014 17.53 SAMP J4/2003-002 20.0 A W J442003-002 Y 5601 0.3.4 1 67.6 3/24/2014 17.53 SAMP J4/2003-002 20.0 A W EAA FH, CSAB FH, MR, FH, MB FH, LOS FH, CCS	J1402003-002	N	48TI	3.47	1	95.2	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J420203-002 Y 52/F 0.44 19.2 3/24/2014 17.83 SAMP J4/2003-002 20.0 MV J402003-002 Y 56/C 0.75 1 67.6 3/24/2014 17.83 SAMP J4/2003-002 20.0 MV J402003-002 Y 66/N 5.75 1 67.6 3/24/2014 17.75 SAMP J4/2003-002 20.0 MV ESA FH, CSAB FH, MR, FH, MS FH, LCS FH, CCA FH, CSAB FH, MR, FH, MS FH, LCS FH, CCA FH, CSAB FL, MR, FH, MS FH, LCS FH, CCA FH, CSAB FL, MR, FH, MS FH, LCS FH, CCA FH, CSAB FL, MR, FH, MS FH, LCS FH, CCA FH, CSAB FL, MR, FH, MS FH, LCS FH, CCA FH, CSAB FL, MR, FH, MS FL, CSAB FL, MR, FH, MS FL, CSAB FL, MR, FH, MS FL, CSAB FL, MR, FH, MS FL, CCS FH, CSAB FL, MR, FH, MS FL, CSAB FL, MR, FH, MS FL, CCS FH, CCA FH, CSAB FL, MR, FH, MS FL, CSAB FL, MR, FH, MS FL, CCS FH, CCA FH, CSAB FL, MR, FH, MS FL, CSAB FL, MR, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CSAB FL, MAL, FH, MS FL, CCS FH, CSAB FL, MAL, FH, MS FL, CCS FL, CCA FL, CCS FH, MAL, COLORADOL J1402003-002 Y 6627 5.08 1 67.6 3/24/2014 17.53 SAMP J1402003-002 20.08 W MCCB FH, CCA FH, CC	J1402003-002	Ŷ	51V	0.54	1	95.2	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
14/20203-002 Y BSMT 0.7.50 I 97.8 3/24/2014 17.53 SAMP 14422030-002 200.8 W 14/20203-002 Y 60N 0.34 97.8 3/24/2014 17.53 SAMP 14422003-002 200.8 W 14/20203-002 N 62/N 93.73 1 97.6 3/24/2014 17.53 SAMP 14422003-002 200.8 W CC3A FH, ICSAB FI	J1402003-002	Ŷ	52Cr	0.44	.1	95.2	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
JH42203-002 Y BCU 0.73 1 97.8 324/2014 17.83 SAMP JH422003-002 200.8 W ICBA PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH, ICS PH, ICSAB PH, IMB, PH,	J1402003-002	Y	niviec.	07,50	4	97.6	3/24/2014	17.00	SAMP	J1402003-002	200.6 W	
J H42003-002 N GAN J H42003-002 DOB AN J H42003-002 DOB AN J H42003-002 DOB AN J H42003-002 DOB AN J H42003-002 ZOA AN DOB AN J H42003-002 ZOA AN DOB AN J H42003-002 ZOA AN DOB AN J H42003-002 ZOA AN MB PH, COB PH, COP FH, MB PH, COB PH, <td>J1402003-002</td> <td>v</td> <td>SONI:</td> <td>0.75</td> <td>1</td> <td>97.0</td> <td>3/24/2014</td> <td>17:53</td> <td>SAMP</td> <td>11402003-002</td> <td>200.0 W</td> <td></td>	J1402003-002	v	SONI:	0.75	1	97.0	3/24/2014	17:53	SAMP	11402003-002	200.0 W	
j1420203-002 N 62Ni 97.8 3/24/2014 17.93 SAMP J1402003-002 200.8 W MP PH, CCB PH, j1402003-002 Y 65Cu 0.44 1 97.6 3/24/2014 17.93 SAMP J1402003-002 200.8 W MP PH, CCB PH, j1402003-002 Y 65Cu 0.44 1 97.6 3/24/2014 17.93 SAMP J1402003-002 200.8 W MP PH, CCB PH, j1402003-002 N 65Cn 5.06 1 97.6 3/24/2014 17.93 SAMP J1402003-002 200.8 W CCB PH, j1402003-002 N 65Sr 1 97.6 3/24/2014 17.93 SAMP J1402003-002 200.8 W CCB PH, j1402003-002 N 85Sr 10.24 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CCB PH, j1402003-002 N 876M 0.12 1 97.8 3/24/2014 17.53 SAMP J1402003-002 200.8 W j1402003-002 N 97M6 0.12 1 <td>31402003-002</td> <td>1</td> <td>00111</td> <td>0.04</td> <td>,</td> <td>01.0</td> <td>0,24,20,14</td> <td>11,00</td> <td>Q2 (19)</td> <td>31402000 002</td> <td>200.0 11</td> <td>ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,</td>	31402003-002	1	00111	0.04	,	01.0	0,24,20,14	11,00	Q2 (19)	31402000 002	200.0 11	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
j.402003-002 N 85Cu 0.44 1 97.6 3724/2014 177.53 SAMP j.1402003-002 200.8 W MB PH, CCB PH, j.1402003-002 Y 65Cu 5.08 1 97.8 3724/2014 17.53 SAMP j.1402003-002 200.8 W j.1402003-002 N 68Zn 5.08 1 97.8 3724/2014 17.53 SAMP j.1402003-002 200.8 W CCB PH, j.1402003-002 N 75As 0.55 1 97.8 3724/2014 17.53 SAMP j.1402003-002 200.8 W CCB PH, j.1402003-002 N 75As 0.57 1 97.6 3724/2014 17.53 SAMP j.1402003-002 200.8 W CCB PH, j.1402003-002 N 85Sr 10.24 1 97.6 3724/2014 17.53 SAMP j.1402003-002 200.8 W CCB PH, j.1402003-002 N 85Sr 10.24 1 97.6 3724/2014 17.53 SAMP j.1402003-002 200.8 W GCB PH, j.1402003-002 N 9	J1402003-002	N	62Ni	35.73	1	97.6	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	CCV FH,
J1402003-002 Y 652u 0.44 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 662n 5.68 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 662n 5.68 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 FH. J1402003-002 N 855r 0.56 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 FH. J1402003-002 N 855r 10.20 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 FH. J1402003-002 N 9585r 10.20 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402	J1402003-002	N	63Cu	2,68	1	97.6	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	MB FH, CCB FH,
J1402003-002 Y 662n 5.08 1 97.6 3/24/2014 17.63 SAMP J1402003-002 200.8 W J1402003-002 Y 75As 0.66 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 PH, J1402003-002 N 725e 200.8 V CC8 PH, 11402003-002 200.8 W CC8 PH, J1402003-002 N 825e -0.07 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 PH, J1402003-002 N 855r 10.24 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 200.8 W	J1402003-002	Y	65Cu	0.44	1	97.6	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 N B82.0 5.99 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 756As 0.56 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 PH, J1402003-002 N 825e -0.07 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 PH, J1402003-002 N 855r 10.24 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 855r 10.24 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 97Mo 0.12 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 1177.02 -0.04 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 1116d 0.01 1 96.3 3/24/2014 17.53 S	J1402003-002	Ŷ	66Zn	5.08	1	97.6	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y Y YAS 0.55 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 PH, J1402003-002 N 85Se 0.07 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W CC8 PH, J1402003-002 N 85Sr 10.24 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 200.8 W J1402003-002 N 88Sr 10.20 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 98Mo 0.12 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 1107dg -0.04 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 1146d 0.01 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 1146d 0.02 1 </td <td>J1402003-002</td> <td>N</td> <td>68Zn</td> <td>5.69</td> <td>1</td> <td>97.6</td> <td>3/24/2014</td> <td>17:53</td> <td>SAMP</td> <td>J1402003-002</td> <td>200.8 W</td> <td></td>	J1402003-002	N	68Zn	5.69	1	97.6	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J142203-002 N 758 3742014 17:33 SAMP J140203-002 20.8 W J140203-002 N 8252 0.07 1 97.6 3724/2014 17:53 SAMP J1402003-002 20.8 W J1402003-002 N 865r 10.20 1 97.6 3724/2014 17:53 SAMP J1402003-002 20.8 W J1402003-002 N 97Mo 0.12 1 96.3 3724/2014 17:53 SAMP J1402003-002 20.8 W J1402003-002 N 97Mo 0.12 1 96.3 3724/2014 17:53 SAMP J1402003-002 20.8 W J1402003-002 N 107Ag -0.04 1 96.3 3724/2014 17:53 SAMP J1402003-002 20.8 W J1402003-002 N 111Cd 0.01 1 96.3 3724/2014 17:53 SAMP J1402003-002 20.8 W J1402003-002 Y 1146Cd 0.02 1 96.3 3724/2014 17:53 SAMP J1402003-002 20.0 8 W J1402003-002 </td <td>J1402003-002</td> <td>Y</td> <td>75AS</td> <td>0.55</td> <td>1</td> <td>97.6</td> <td>3/24/2014</td> <td>17:53</td> <td>SAMP</td> <td>31402003-002</td> <td>200.8 W</td> <td>CCP EH</td>	J1402003-002	Y	75AS	0.55	1	97.6	3/24/2014	17:53	SAMP	31402003-002	200.8 W	CCP EH
J142203-002 N 5258 -1.07 1 91.3 3/44/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 86Sr 10.20 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 97Mo 0.12 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 98Mo 0.12 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 107Ag -0.04 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 111Cd 0.01 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 118Sn -1.15 1 93.9 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 12Sn -1.15 1 93.9 3/24/2014 17.53 SAMP J1402003-002 </td <td>J1402003-002</td> <td>IN N</td> <td>1000</td> <td>2,14</td> <td>1</td> <td>97.0</td> <td>3/24/2014</td> <td>17.53</td> <td>CAMP</td> <td>1402003-002</td> <td>200.6 W</td> <td>008 FR,</td>	J1402003-002	IN N	1000	2,14	1	97.0	3/24/2014	17.53	CAMP	1402003-002	200.6 W	008 FR,
J142203-002 N 8857 10.24 1 97.6 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 97Mo 0.12 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 98Mo 0.12 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 1185n -1.15 1 93.9 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 Y 1185n -1.17 93.9 3/24/2014 17.53 SAMP J1402003-002 200.8 W J1402003-002 N 1215b -0.06 1 93.9 3/24/2014 17.53 SAMP J1402003-002	31402003-002	N V	0206	10.24	-	97.0	3/24/2014	17:53	SAMP	11402003-002	200.8 W	
1/402003-002 N 97M0 0.12 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 98M0 0.12 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.04 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 111Cd 0.01 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 1185n -1.15 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002	.11402003-002	N	88Sr	10.20	1	97 R	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 98Mo 0.12 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 114Cd 0.01 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 1146Cd 0.02 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 1185n -1.15 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb 0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-0	11402003-002	N	97Mo	0.12	1	96.3	3/24/2014	17:53	SAMP	.11402003-002	200.8 W	
J1402003-002 N 107Ag -0.04 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 114Cd 0.01 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 114Cd 0.02 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 114Sn -1.15 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 120Sn -1.27 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 135Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J140200	J1402003-002	Ŷ	98Mo	0.12	1	96.3	3/24/2014	17:53	SAMP	J1402003-002	200,8 W	
J1402003-002 Y 109Ag -0.03 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 111Cd 0.01 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 114Cd 0.02 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 1148sn -1.15 1 98.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 120Sn -1.27 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 135Ba 17.33 1 93.9 3/24/2014 17:53 SAMP J140200	J1402003-002	N	107Aa	-0.04	1	96.3	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 N 111Cd 0.01 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 114Cd 0.02 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 118Sn -1.15 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 120Sn -1.27 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 135Ba 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 95.1 3/24/2014 17:53 SAMP J1402003	J1402003-002	·γ	109Ag	-0.03	1	96,3	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 114Cd 0.02 1 96.3 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 118Sn -1.15 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 120Sn -1.27 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205TI -0.02 1 95.1 3/24/2014 17:53 SAMP J140200	J1402003-002	Ν	111Cd	0.01	1	96.3	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 118Sn -1.15 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 120Sn -1.27 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 135Ba 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 135Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205TI -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 20ETI -0.02 1 95.1 3/24/2014 17:53 SAMP J14020	J1402003-002	Y	114Cd	0.02	1	96.3	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 N 120Sn -1.27 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 135Ba 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 135Ba 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 203Ti -0.05 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205Ti -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 205Pb -0.04 1 95.1 3/24/2014 17:58 SAMP J14020	J1402003-002	Y	118Sn	-1.15	1	93.9	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 N 121Sb 0.00 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 13SBa 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205TI -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 206Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-003 200.8 W J1402003-003 Y 27AI 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402	J1402003-002	Ν	120Sn	-1.27	1	93.9	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 123Sb -0.06 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 13SBa 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205TI -0.05 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205TI -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205Fb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003	J1402003-002	N	121Sb	0.00	1	93.9	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 N 135Ba 17.33 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 203Ti -0.05 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 206Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 206Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 206Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 27Ai 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402	J1402003-002	Y	123Sb	-0.06	1	93.9	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 137Ba 18.50 1 93.9 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 N 203Ti -0.05 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205Fi -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 205Pb -0.04 1 95.1 3/24/2014 17:58 SAMP J1402003-002 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-	J1402003-002	Ν	135Ba	17.33	1	93.9	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 N 203Ti -0.05 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 205Ti -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 208Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 208Pb -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 27Ai 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-0	J1402003-002	Y	137Ba	18.50	1 ′	93.9	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 205Tl -0.02 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-002 Y 208Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 27AI 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 <td>J1402003-002</td> <td>N</td> <td>203TI</td> <td>-0.05</td> <td>1</td> <td>95.1</td> <td>3/24/2014</td> <td>17:53</td> <td>SAMP</td> <td>J1402003-002</td> <td>200.8 W</td> <td></td>	J1402003-002	N	203TI	-0.05	1	95.1	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-002 Y 208Pb -0.04 1 95.1 3/24/2014 17:53 SAMP J1402003-002 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:53 SAMP J1402003-003 200.8 W J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 27Ai 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 N 48Ti 23.39 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr <td>J1402003-002</td> <td>Y</td> <td>20511</td> <td>-0.02</td> <td>1</td> <td>95.1</td> <td>3/24/2014</td> <td>17:53</td> <td>SAMP</td> <td>J1402003-002</td> <td>200.8 W</td> <td></td>	J1402003-002	Y	20511	-0.02	1	95.1	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-003 Y 9Be -0.06 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 27Ai 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 N 48Ti 23.39 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003	J1402003-002	Y	208Pb	-0.04	1	95,1	3/24/2014	17:53	SAMP	J1402003-002	200.8 W	
J1402003-003 Y 27AI 2255.00 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 47Ti 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 N 48Ti 23.39 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W	J1402003-003	Y	9Be	-0.06	1	97.4	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003 Y 4711 27.13 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 N 48Ti 23.39 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 55Mp 10.40 1 98.7 3/24/2014 17:58 SAMP J1402003-003 200.8 W	J1402003-003	Y	27AI	2255.00	1	97.4	3/24/2014	17:68	SAMP	J1402003-003	200.8 W	
J1402003-003 N 4811 23.39 1 97.4 3/24/2014 17/58 SAMP J1402003-003 200.8 W J1402003-003 Y \$1V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 55Mp 10.40 1 98.7 3/24/2014 17:58 SAMP J1402003-003 200.8 W	J1402003-003	Y	4711	27.13	1	97.4	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003 r 51V 3.31 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 Y 52Cr 2.05 1 97.4 3/24/2014 17:58 SAMP J1402003-003 200.8 W J1402003-003 V 55Mn 10.40 1 98.7 3/24/2014 17:58 SAMP I1402003-003 200.8 W	J1402003-003	N	48Ti	23.39	1	97.4	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
31402003-003 t 32Gt 2.03 i 37.4 372472014 i7.30 SAMP J1402003-003 200.0 W 1402003-003 V 55Mn 10.40 1 98.7 372472014 17:58 SAMP 11402003-003 200.8 W	J1402003-003	Y	57V	3,31	1	91.4	3/24/2014	17:58	SAMP	31402003-003	200.8 W	
	J 1402003-003 J1402003-003	r V	55Mn	2.00 10.40	1	97.4	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnaiTime	Samp Type	LIMS ID	Method	Comments
J1402003-003	Y	59Co	1.25	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	na na na na na na na na na na na na na n
J1402003-003	Y	60Ni	0.77	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	62Ni	33.32	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	CCV FH,
J1402003-003	N	63Cu	3.13	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	MB FH, CCB FH,
J1402003-003	Y	65Cu	0.98	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	Y N	66Zn	9.36	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	08∠⊓ 75∆ e	9.36	7	98.7	3/24/2034	37:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	78Se	1.95	1	98.7	3/24/2014	17:58	SAMP	.11402003-003	200.6 W 200.8 W	CCB FH
J1402003-003	N	82Se	-0.48	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	Y	86Sr	4.20	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	88Sr	4.15	1	98.7	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	97Mo	0.20	1	97.6	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	Y	98Mo	0.15	1	97.6	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N V	107Ag	-0.05	1	97.0	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	111Cd	-0.02	1	97.6	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	Ŷ	114Cd	0.01	1	97.6	3/24/2014	17;58	SAMP	J1402003-003	200.8 W	
J1402003-003	Y	118Sn	-1.24	1	96.2	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	120Sn	-1.39	1	96.2	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	121Sb	-0.03	1	96.2	3/24/2014	17:58	SAMP	J1402003-003	200,8 W	
J1402003-003	Ŷ	123Sb	-0.06	1	96.2	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-003	N	135Ba	9.67	1	96.2	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
11402003-003	T N	20211	-0.04	1	90.2 07 /	3/24/2014	17.50	SAMP	J1402003-003	200,8 W	
J1402003-003	Y	205Ti	-0.04	1	97.4	3/24/2014	17:58	SAMP	J1402003-003	200.6 W	
J1402003-003	Ŷ	208Pb	0.90	1	97.4	3/24/2014	17:58	SAMP	J1402003-003	200.8 W	
J1402003-004	Y	9Be	-0.06	1	94.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	27AJ	167.30	1	94.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	47Ti	0.26	1	94,9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	N	48Ti	0.21	1	94.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	51V	0.24	1	94.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
31402003-004	r	520F	8.40	3	94.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Ý	59Co	0.73	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Ŷ	60Ni	0.30	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
14 400000 004	A.	6014	22.24		00.0	010410044	40.00	CAMO	11100000 001	000 0 144	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402003-004	IN M	0∠Ni 63Cu	24,21	1	93.0	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
.11402003-004	Ŷ	65Cu	0.22	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.0 W	1815 H, 000 H,
J1402003-004	Ŷ	66Zn	5.42	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Ν	68Zn	5.49	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	75As	0.34	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	N	78Se	2,12	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	CCB FH,
J1402003-004	N	82Se	-0.40	1	93.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y N	8851	4,43	1	93.5	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
11402003-004	N	97Mo	0.05	1	92.9	3/24/2014	18:03	SAMP	.1402003-004	200.8 W	
J1402003-004	Ŷ	98Mo	0.00	1	92.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	·
J1402003-004	Ν	107Ag	-0.05	1	92.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	109Ag	-0.04	1	92.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Ν	111Cd	-0.01	1	92.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Ŷ	114Cd	0.01	1	92.9	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Ŷ	118Sn	-1.42	1	92.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	N	120Sh	-1.56	1	92.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
1402003-004	Y	123Sb	-0.03	1	92.0	3/24/2014	18:03	SAMP	1402003-004	200.8 W	
J1402003-004	N	135Ba	8.06	1	92.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	137Ba	9.20	1	92.6	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	N	203TI	-0.06	1	94.3	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	205TI	-0.04	1	94.3	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402003-004	Y	208Pb	-0.11	1	94.3	3/24/2014	18:03	SAMP	J1402003-004	200.8 W	
J1402025-001	Ŷ	98e	-0.09	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
1402025-001	I V	27A) 47Ti	1 87	1	53.Z 63.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
.i1402025-001	N	48Ti	35.00	1	93.2	3/24/2014	18:08	SAMP	.1402025-001	6020 W	
J1402025-001	Ŷ	51V	3.90	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Υ	52Cr	-0.05	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	55Mn	0.49	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	59Co	0.08	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	60Ni	0.73	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	IFS A EN IFS AR EN MOI EN MREN IFS EN COREN
J1402025-001	Ν	62Ni	31,38	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	COV FH,
J1402025-001	N	63Ċu	2.29	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	MB FH, CCB FH,
J1402025-001	Y	65Cu	0.29	1	93.2	3/24/2014	18;08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	66Zn	3.04	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	68Zn 764-	3.66	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402020-001	T N	7850	3.44	1 1	93.2 93.2	3/24/2014	10:00	SAMD	J 1402020-001	00∠0 W 6020 W	CCR FH
J1402025-001	Y	82Se	1.02	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
							, 2, 34	G , 170	\$1,92020 001		316

Page 8 of 21

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-001	Y	86Sr	140.90	1.	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	88Sr	141.20	1	93.2	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	97Mo	2.74	1	92.5	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	98Mo	2.75	1	92.5	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	107Ag	-0.05	1	92.5	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	109Ag	-0.05	1	92.5	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	111Cd	0.04	1	92.5	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	114Cd	0.07	1	92.5	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	118Sn	-1.44	1	91.7	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	120Sn	-1.61	1	91.7	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	121Sb	1.41	1	91.7	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	123Sb	1.21	1	91.7	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	135Ba	18.09	1	91.7	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	137Ba	18.13	1	91.7	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	N	203TI	-0.07	1	95.4	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	205TI	-0.03	1	95.4	3/24/2014	18:08	SAMP	J1402025-001	6020 W	
J1402025-001	Y	208Pb	-0.06	1	95.4	3/24/2014	18:08	SAMP	J1402025-001	6020 W	· .
J1402025-002	Y	9Be	-0.09	1	92.9	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
11402025-002	Ŷ	27AI	46.38	1	92.9	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
.11402025-002	Ý	47Ti	0.92	1	92.9	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
.11402025-002	N	48Ti	20.39	1	92.9	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
.11402025-002	Ŷ	51V	0.00	1	92.9	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
11402025-002	Ŷ	52Cr	0.07	1	92.9	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Ŷ	55Mn	27.09	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Ŷ	59Co	0.04	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Ŷ	60NI	0.40	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
											ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402025-002	N	62Ni	28.91	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	CCV FH,
J1402025-002	N	63Cu	1,94	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	MB FH, CCB FH,
J1402025-002	Y	65Cu	0.08	1	91,7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	66Zn	3.28	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	68Zn	3.37	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Ŷ	75As	0.78	1	91,7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	78Se	2.64	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	CCB FH,
J1402025-002	YY	82Se	-0.32	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	86Sr	51.25	1	91,7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	88Sr	51.62	1	91.7	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	97Mo	2.28	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	98Mo	2.26	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	107Ag	-0.05	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	109Ag	-0.05	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	111Cd	-0.01	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	114Cd	0.03	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	118\$n	-1.47	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	120Sn	-1.60	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	121Sb	-0.03	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	123Sb	-0.05	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	135Ba	11.32	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	137Ba	11.65	1	92.4	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	N	203TI	-0.07	1	95.2	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	205TI	-0.04	1	95.2	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-002	Y	208Pb	-0.09	1	95.2	3/24/2014	18:13	SAMP	J1402025-002	6020 W	
J1402025-003	Ý	9Be	-0.09	1	93,3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	27AI	33.97	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	47Ti	1.10	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	N	48Ti	15,61	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	51V	0.25	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	52Cr	0.05	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	55Mn	25.70	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	59Co	0.03	1	93.3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	60Ni	0.38	1	93,3	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
14403035-003	N	62Ni	25.00	1	93.3	3/24/2014	18-18	SAMP	1402025-003	6020 W/	CCV FH
1402020-000	1 N A I	6200	162	1	03.3	3/24/2014	18-18	SAMO	11402025-000	6020 14/	MB FH. CCB FH
14402020-003	N N	6500	0.12	4	03.3	3/24/2014	18:18	SAMD	11402025-003	6020 W	
1402020-003	v	6500	4.62	4	03.3	3/24/2014	18.18	SAMP	11402025-003	6020 W	
J1402020-003	í N	6970	4.52		00.0	3/24/2014	18:19	SAMP	11402025-003	6020 W	
0 1402020-000 14402025-000	NI V	0020 754e	7.72	1	033 033	3/24/2014	18:18	SAMO	11402025-003	6020 W	
31402020-003	T Ki	7900	∠.00 1) ∩ ∆	1	03.3 Q2.2	3/24/2014	18.19	SAMO	1402025-003	6020 \/	COR FH
J 1402020-003	N V	9000	-0 - 0	1	83.3 02.2	3/24/2014	10,10 10,10	SAMP	11402020-003	6020 W	000111,
J1402025-003	Ý	0238	-0.56	4	83.3 03.5	012412014	10.10	SAND	11402020-003	6020 W	
J1402025-003	Y N	000r	33.38 22.55	1	83,3 02.2	3/24/2014	10:10	SAMP	0 1402020-003	6020 W	
J 1402025-003	17	0714-	33.8D E 42	3	20.3 01 0	312412014	10,10	CAMP.	0 (402020-000 14460005 000	6020 W	
J (402025-003	N N	S/IVIO	3.43	•	91.0	3/24/2014 9/3/0044	10,10	CAMP	01402020-003	6020 W	
J 1402025-003	Ý	901ViO	0.00	1	81.0	012412U14	10.10	SAMP	0 1402020-000 (1400005 000	6000 W	
J1402025-003	N	TU/Ag	-0.06	1	91,8	3/24/2014	10:10	SAN	J 1402025-003	0020 W	
J1402025-003	Ŷ	USAG	-0.05	1	91.8	3/24/2014	10,10	OAMP'	J 1402020-003	0020 W	
J1402025-003	N	TITCO	0.10	1	81,6	3/24/2014	10:10	SAMP	J 1402020-003	0020 W	
J1402025-003	Ý	114Cd	0.09	1	91.8	0/24/2014	15,18	SAMP	J1402025-003	CODO M	
J1402025-003	Ŷ	11850	-1.41	T A	92.7	3/24/2014	10:38	SAME	J 1402020-003	0020 W	
J1402025-003	N	120Sn	-1.61	7	92.1	3/24/2014	18:18	SAMP	J 1402025-003	0020 W	ومستر زه رياند

317 Page 9 of 21

Method 200.8 / 6020

4

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-003	N	121Sb	-0.06	1	92.7	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	123Sb	-0.06	1	92.7	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	N	135Ba	2.45	1	92.7	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	137Ba	2.48	1	92.7	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	N	203TI	-0.07	1	94.6	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	Y	20511	-0.03	1	94.6	3/24/2014	18:18	SAMP	J1402025-003	6020 W	
J1402025-003	T Second	20650	-0.05	 	34.0 03.0	3/24/2014	10.10	CAND	11402025-003	6020 W	anna ai de mar ain ann an a ann an air ann an ann an ann an ann an ann an air an ann an ann an ann ann ann ann a
J1402025-004	Ŷ	956	-0.09	1	53.2 03.2	3/24/2014	18:23	SAMP	1402025-004	6020 W	
11402023-004	v v	27A) 47Ti	0.00 0.18	1	93.2	3/24/2014	18:23	SAMP	11402025-004	6020 W	
11402025-004	Ň	48Ti	15.82	1	93.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	· · · · · · · · · · · · · · · · · · ·
.11402025-004	Ŷ	51V	1.62	1	93.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	52Cr	0.30	1	93.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	55Mn	63.39	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	59Co	0.08	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	60Ni	0.41	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
1402025-004	N	62Ni	18.64	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	CCV FH,
.11402025-004	N	63Cu	1.64	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	MB FH, CCB FH,
J1402025-004	Y	65Cu	0,50	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	66Zn	4.90	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	68Zn	5.37	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	75As	4.00	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	78Se	2.00	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	CCB FH,
J1402025-004	Y	82Se	0.59	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	86Sr	202.30	1	91.7	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N N	07140	203.40	1	51.7 02	3/24/2014	10:23	SAMP	.11402020-004	6020 W	
31402025-004	N V	981/10	0.08	1	92	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
.11402025-004	Ň	107Ac	-0.06	1	92	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
11402025-004	Ŷ	109Aa	-0.05	1	92	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	111Cd	0.02	1	92	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	114Cd	0.05	1	92	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	118Sn	-1.52	1	92.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	120Sn	-1.61	1	92.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	121Sb	-0.02	1	92.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	123Sb	-0.06	1	92.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	135Ba	11.64	1	92.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	Y	137Ba	11.72	1	92.2	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
J1402025-004	N	20311	-0.07	1	93.8	3/24/2014	10:23	SAMP	31402025-004 J1402025-004	6020 W	
1402025-004	Ý	208Pb	-0.09	1	93.8	3/24/2014	18:23	SAMP	J1402025-004	6020 W	
CCV-2	Y	9Be	23.62	1	95.4	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Ŷ	27AI	2540.00	1	96.4	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	47Ti	253.10	1	95.4	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	48Ti	250.00	1	95.4	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	51V	100.30	1	95.4	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	52Cr	49,98	1	95.4	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	55Mn	101.60	1	97.3	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Ŷ	59C0	50.49	1	97.3	3/24/2014	18:28	CCV	CCV	N/A N/A	*
CCV-2	Ŷ	60NI	101.60	3	97.3	3/24/2014	10:20	CCV		IW/A	ICS-A FH, ICS-AB FH, CCV FH 200.8, CCV FH 6020 W,
CCV-2	Ν	62N	126.20	1	97.3	3/24/2014	18:28	CCV	CCV	N/A	CCV FH 6020 S ,
CCV-2	Y	63Cu	52.20	1	97.3	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	65Cu	51,05	1	97.3	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	66Zn	259.30	1	97.3	3/24/2014	18:28			IN/A	
CCV-2	Y	6820 764 -	200.00	ी न	87,3 ດ7 ຈ	3/24/2014	10:20	COV	COV	N/A N/A	
CCV-2	T V	78945	104 90	1	973	3/24/2014	18-28	CCV	ccv	N/A	
CCV-2	Ý	82Se	102.10	1	97.3	3/24/2014	18:28	CCV	ccv	N/A	
CCV-2	Ý	86Sr	103,00	1	97.3	3/24/2014	18:28	CCV	ccv	N/A	
CCV-2	Ý	88Sr	102.30	1	97.3	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	97Mo	100,90	1	96.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	98Mo	100.20	1	96.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	107Ag	24.76	1	96.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	109Ag	24.47	1	96.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	111Cd	20.57	1	96.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	114Cd	20.99	1	96.9	3/24/2014	18:28	CUV	CCV	N/A	
007-2	Ý	11650	200.90	4	94.9 64 0	3/24/2014	10.40 18-29	COV	COV	N/A	
00V-2 CCV-2	r V	120011 1210h	50.01	1	94.9 94.9	3/24/2014	18-28	CCV	ccv	N/A	
CCV-2	Ý	123Sh	49 49	1	94.9	3/24/2014	18:28	CCV	ccv	N/A	
CCV-2	Ý	135Ba	98.96	1	94.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Ŷ	137Ba	100.60	1	94.9	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	203TI	10.05	1	96.3	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	205TI	10.03	1	96.3	3/24/2014	18:28	CCV	CCV	N/A	
CCV-2	Y	208Pb	25.61	1	96.3	3/24/2014	18:28	CCV	CCV	N/A	•
CCB-2	Y	9Be	-0.08	1	92.5	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	27AI	-1.09	1	92.5	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	47Ti	-0.04	1	92.5	3/24/2014	18:33	CCB	CCB	N/A	·

Data File ID: 032414A

VG PQ ExCell ICP-MS

Method 200.8 / 6020

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCB-2	Y	4871	-0.05	1	92.5	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	51V	-0.13	1	92.5	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	52Cr	-0,15	1	92.5	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	55Mn	0.00	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	59Co	0.00	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	60Ni	-0.02	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	N	62Ni	18.85	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	ICS-A FH, ICS-AB FH, CCB FH,
CCB-2	Y	63Cu	0.99	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	65Cu	-0.07	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	66Zn	-0.01	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	68Zn	-0.08	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	75As	0.28	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	78Se	1.91	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	82Se	-0,43	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	86Sr	-0.07	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	88Sr	0.02	1	91.6	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	97Mo	0.20	1	92.9	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	98Mo	0.20	1	92.9	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	107Ag	-0.04	1	92.9	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	109Ag	-0.05	1	92.9	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	111Cd	0.01	1	92.9	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Y	114Cd	0.01	1	92.9	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	11850	I -0.67	1	92.1	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	120Sn	-0.75	1	92.1	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	121Sb	0.05	1	92.1	3/24/2014	18:33	CCB	CCB	IV/A	
CCB-2	Ŷ	12356	0.04	1	92.1	3/24/2014	18:33		008	IN/A	
CCB-2	Y	135Ba	i -0.01	1	92.1	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	13788	1 0.00	1	92.1	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	20311	-0.06	1	94.4	3/24/2014	18:33	CCB	CCB	N/A	
CCB-2	Ŷ	20511	-0.04	1	94.4	3/24/2014	10:33	CCB		N/A	
CCB-2	<u> </u>	208PD	0.00	4	94.4	3/24/2014	49-39	SAMP	11402025-005	6020 W/	
J1402025-005	r V	300	-0.09	1	93.0	3/24/2014	10.30	SAMP	11402025-005	6020 W	
1402020-000	, v	471	2 29	, 1	93.6	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
1402025-005	N	4811	21.55	1	93.6	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
1402025-005	~	511	0.16	+	93.6	3/24/2014	18:38	SAMP	.11402025-005	6020 W	
11402025-005	Ý	52Cr	0.32	1	93.6	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
1402025-005	, '	55Mn	28.24	1	91	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
1402025-005	Ý	5900	0.07	1	91	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
11402025-005	Ý	60Ni	0.45	1	91	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
01402020 000	•									0000.11/	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402025-005	N	62Ni	27,74	1	91	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	N	63Cu	1.81	1	91	3/24/2014	18:38	SAMP	J1402025-005	6020 W	Mb FH, CCB FH,
J1402025-005	Y	65Cu	0.16	1	91	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	Ŷ	66Zn	3.82	1	91	3/24/2014	~ 16:38	SAMP	11402025-005	6020 W	
J1402025-005	N	68Zn	4.13	1	91	3/24/2014	30:00	SAMP	J1402025-005	6020 W	
J1402025-005	Ŷ	/5AS	0.76	1	91	3/24/2014	10.30	SAMP	1402025-005	6020 W	CCB FH
J1402025-005	IN V	1626	0.00	1	91	3/24/2014	10.30	SAMP	11402025-005	6020 W	
J1402025-005	r V	0200	-0,28	1	01	3/24/2014	18:38	SAMP	11402025-005	6020 W	
J1402025-005	т 	803r	52.76	1	01 01	3/24/2014	18-38	SAMP	1402025-005	6020 W	
J1402025-005	11	07.40	1 73	1	90.8	3/24/2014	18:38	SAMP	11402025-005	6020 W	
J 1402025-005	11	STWO SQMo	1.75	4	90.0	3/24/2014	18:38	SAMP	11402025-005	6020 W	
J 1402025-005	r Ni	10740	-0.05	, +	00.0 00.8	3/24/2014	18:38	SAMP	11402025-005	6020 W	
1402025-005	v N	100 / 40	-0.06	1	90.8	3/24/2014	18:38	SAMP	.11402025-005	6020 W	
1402020-000	N	11100	0.02	1	90.8	3/24/2014	18:38	SAMP	1402025-005	6020 W	
11402025-005	v	114Cd	0.04	1	90.8	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
11402025-005	Ŷ	11850	-1.17	1	91.4	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
11402025-005	Ň	120Sn	-1.29	1	91.4	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	N	121Sh	0.06	1	91.4	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
.11402025-005	Ŷ	123Sb	0.02	1	91.4	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	N	135Ba	12.22	1	91.4	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	Y	137Ba	ı 11,97	1	91.4	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	N	203TI	-0.07	1	93	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	Y	205TI	-0.03	1	93	3/24/2014	18:38	SAMP	J1402025-005	6020 W	
J1402025-005	Y	208Pb	-0.01	1	93	3/24/2014	18:38	SAMP	J1402025-005	6020 W	anna a chuir a chuir a chuir a chuir a cura cura cura cura cura cura cura c
J1402025-006	Y	9Be	-0.09	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Ý	27AI	443.80	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	47Ti	0.21	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Ν	48Ti	8.03	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
j1402025-006	Y	51V	0.36	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	52Cr	-0.06	1	93,7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	55Mn	0.65	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Ŷ	59Co	0.02	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	60Ni	0.52	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	ICS-A FH, ICS-AB FH, MRI, FH, MB FH, LCS FH, CCB FH.
J1402025-006	Ν	62Ni	35.98	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	CCV FH,
J1402025-006	N	63Cu	2.25	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	MB FH, CCB FH.
J1402025-006	Y	65Cu	0.05	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	66Zn	3.60	1	94,5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	

319 Page 11 of 21

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-006	N	68Zn	6.43	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	75As	0.69	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	N	78Se	2.16	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	CC8 FH,
J1402025-006	Y	82Se	-0.32	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	86Sr	318.40	1	94,5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	N	88Sr	319.20	1	94.5	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	N	97Mo	7.89	1	93,6	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
11402025-006	Ý	98Mo	7 48	1	93.6	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
11402025-006	N	10740	-0.05	1	93.6	3/24/2014	18.43	SAMP	11402025-006	6020 W	
11402025-006	v N	10000	-0.06	1	93.6	3/24/2014	18:43	SAMP	11402025-006	6020 W	
1402025-000	1 Kİ	11104	-0.00	4	03.6	3/24/2014	18:40	SAMD	11402025-000	6020 W	
J 1402025-005	N V	asaCd	0.01	4	93.0	3/24/2014	18:43	CAMP	1402025-000	6020 W	
31402025-006	r V	44000	0.02	+	03.0	3/24/2014	10.40	SAMO	J1402025-000	6020 W	
J1402025-006	т • л	11000	-1.11	1	93.7	3/24/2014	10.40	SAMP	31402025-006	6020 W	
J1402025-006	N .	12050	-1.26	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	₽ N	12150	0,14	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Ŷ	12356	0.09	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	N	135Ba	53.72	1	93.7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Ŷ	137Ba	53.22	1	93:7	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	N	203TI	-0.06	1	95.1	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	20571	-0.03	1	95.1	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-006	Y	208Pb	-0.12	1	95.1	3/24/2014	18:43	SAMP	J1402025-006	6020 W	
J1402025-007	Y	9Be	-0.09	1	94	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	27Al	74.81	1	94	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	47Ti	3.14	1	94	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	48Ti	29.74	1	94	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Ŷ	51V	0.55	1	94	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	52Cr	10.51	1	94	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
.11402025-007	Y	55Mn	15.58	i	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
11402025-007	Ý	59Co	0.23	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
11402025-007	Ŷ	GONI	49.69	1	93.7	3/24/2014	18:48	SAMP	.11402025-007	6020 W	
	•			,	0011		10.10	0	01,040,000		ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402025-007	N	62Ni	87.45	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	CCV FH.
J1402025-007	N	63Cu	4.97	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	MB FH, CCB FH,
J1402025-007	Y	65Cu	2.68	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	66Zn	17.70	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	68Zn	19.04	1	93,7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	75As	0.88	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	78Se	2.05	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	CCB FH,
11402025-007	Ŷ	82Se	-0.21	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Ŷ	86Sr	273.80	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
H402025-007	N	88Sr	273.20	1	93.7	3/24/2014	18:48	SAMP	.11402025-007	6020 W	
1402025-007	N	07Mo	2 32	1	93	3/24/2014	18-48	SAMP	11402025-007	6020 W	
1402020-007	v.	985/0	2.06	1	03	3/24/2014	18:48	SAMP	11402025-007	6020 W	
1402025-007	, N	10740	2.00	4	02	2/24/2014	18:48	CAMO	1402020-007	6020 W	
1402020-007	N V	107A9	-0.05	*	80	3/24/2014	10.48	CAMP	1402025-007	6020 W	
J1402025-007	T	109AG	-0,05	1	93	3/24/20/14	10.40	SAM	J1402023-007	6020 W	
J1402025-007	N .	111Cu	10.00	1	93	3/24/2014	10.40	SAM	J 1402025-007	6020 W	
J1402025-007	Ŷ	11400	15.32	3	93	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Ŷ	11850	-0.86	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	120Sn	-0.96	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	121Sb	0.47	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	123Sb	0.47	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	135Ba	31.02	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Υ.	137Ba	30.93	1	93.7	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	N	203TI	-0.05	1	95.3	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	¥	205TI	-0.03	1	95.3	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402025-007	Y	208Pb	0.07	1	95.3	3/24/2014	18:48	SAMP	J1402025-007	6020 W	
J1402026-001	Y	9Be	-0.08	1	93	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	27AI	56.74	1	93	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	47Ti	1.33	1	93	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
1402026-001	N	48Ti	40,25	1	93	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
11402026-001	Y	51V	1.15	1	93	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
1402026-001	v	52Cr	0.47	1	93	3/24/2014	18:53	SAMP	11402026-001	6020 W	
11402026-001	Ŷ	55Mn	258 50	1	90.7	3/24/2014	18:53	SAMP	11402026-001	6020 W	
1402020-001	, v	59Co	1 25	1	90.7	3/24/2014	18-53	SAMP	11402026-001	6020 W	
1402020-001	v	CONI	4.05	4	00.7	3/34/2014	10.00	CA84D	14402020-004	6020 W	
51402028-001	Ť	OUN	4.00	ſ	50.7	3/24/20 14	10.00	SAW	51402020-001	0020 W	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402026-001	N	62Ni	66.39	1	90.7	3/24/2014	18:53	SAMP	J1402026-001	6020 W	CCV FH,
J1402026-001	Ν	63Cu	4.23	1	90.7	3/24/2014	18:53	SAMP	J1402026-001	6020 W	MB FH, CCB FH,
J1402026-001	Y	65Cu	0.50	1	90.7	3/24/2014	18:53	SAMP	J1402026-001	6020 W	•
.11402026-001	Ŷ	66Zn	10.91	1	90.7	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
11402028-001	N	687 0	16 90	1	90.7	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
11402026-001	v	75Åe	8.64	•	90.7	3/24/2014	18.63	SAMP	.11402028-001	6020 W	
11402020-001	N N	7884	0.04 0 00	, 1	00.7	3/24/2014	18.53	SAMP	11202020-001	6020 \\	CCR FH
3 1402020-901 14402028 004	N V	8264	0.00	1	00.7	9/94/9044	10.00	SVIN	11402020-001	5020 W	505 m.
1402020*001	v	960-	402.00	4	00.7	3/24/2014	18.53	SAMO	11402020-001	6020 W	
31402020-001	1 6.1	1600	104.40	*	3U./	012412014 0101104	10.00	CANO.	J1402020-001	6020 W	
J1402026-001	£N	1600	194.40	3	90.7	5/24/2014	16:53	SAMP	J 1402026-001		
J1402026-001	N	97M0	0.28	1	90.3	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	98Mo	0.26	1	90.3	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Ν	107Ag	-0.05	1	90.3	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	109Ag	~0.06	1	90.3	3/24/2014	18:53	SAMP	J1402026-001	6020 W	* * ^

320 Page 12 of 21 Data File ID: 032414A

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402026-001	Ν	111Cd	0.01	1	90.3	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	114Cd	0.02	1	90.3	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	118Sn	-1.55	1	90.8	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	N	12030 1215h	-1.00	1	90.6	3/24/2014	18.53	SAMP	J 1402026-001	6020 W	
11402026-001	Y	123Sb	-0.03	1	90.8	3/24/2014	18:53	SAMP	1402026-001	6020 W	
J1402026-001	N	135Ba	125.80	1	90.8	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	137Ba	128.70	1	90.8	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	N	203TI	-0.07	1	92.6	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	205TI	-0,05	1	92.6	3/24/2014	18:53	SAMP	J1402026-001	6020 W	
J1402026-001	Y	208Pb	-0.02	1	92.6	3/24/2014	18:53	SAMP	J1402026-001	6020 W	10.0460411422-1-1-1-1-2-1-1-1-1-1-1-1-1-1-1-1-1
J1402026-001S	Y	9Be	25.60	1	95.7	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	27AI	2617.00	1	95.7	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y N	4/11	207,60	1	95.7	3/24/2014	10:50	MS	JQ1402134-01	6020 W	
11402026-0015	Y	51V	98.93	1	95.7	3/24/2014	18:58	MS	.IQ1402134-01	6020 W	
J1402026-001S	Ŷ	52Cr	52.27	1	95.7	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	55Min	356,00	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Ý	59Co	52.65	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	60Ni	105.20	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	62Ni	156.80	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	ICS-A FH, ICS-AB FH, CCB FH, CCV FH,
J1402026-001S	N	63Cu	53,76	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	CCB FH,
J1402026-001S	Ŷ	650U 667n	01,14 050.40	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
1402026-0015	N	687n	261 10	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	75As	57.55	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	78Se	101.90	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	CCB FH,
J1402026-001S	N	82Se	100.10	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001\$	Y	86Sr	293.30	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	88Sr	294.30	1	93.9	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	97Mo	106.90	1	93.2	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	98Mo	105.20	1	93.2	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N V	107Ag	24.74	1 1	93.2	3/24/2014	18:58	MS MS	JQ1402134-01	6020 W	
1402026-0013	N	105Ag	29.72	1	93.2	3/24/2014	18:58	MS	.101402134-01	6020 W	
J1402026-001S	Ŷ	114Cd	19.87	1	93.2	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	118Sn	255.00	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	120Sn	254.10	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	121Sb	51.28	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Y	123Sb	50,39	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	N	135Ba	226.10	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-0015	Y N	1378a	231.10	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-0015	N	20371	9.87	} 1	93.4	3/24/2014 3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001S	Ý	208Pb	25.10	1	93.4	3/24/2014	18:58	MS	JQ1402134-01	6020 W	
J1402026-001SD	Y	9Be	25.74	1	94.1	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	27Ai	2611.00	1	94.1	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	47Ti	254.70	1	94.1	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	N	48Ti	290.30	1	94.1	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	51V	99,33	1	94,1	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	52Cr	52.51	1	94.1	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Ŷ	55Mn	353.50	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-0015D	Y V	9900 80Ni	52.96 105.40	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
.11402026-001SD	Ň	62Ni	147.60	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	ICS-A FH. ICS-AB FH. CCB FH. CCV FH.
J1402026-001SD	N	63Cu	52,79	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	CCB FH,
J1402026-001SD	Y	65Cu	50.35	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	66Zn	256.40	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	N	68Zn	260.80	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	75As	56.51	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	N	78Se	101.40	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	CCB FH,
J1402026-001SD	N	8256	99.69	1	92.3	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402020-00150	۲ N	690r	291.00	1	94.3	3/24/2014	19:03	NSD MSD	JQ1402134-02	6020 W	
11402026-0015D	N	97840	105.50	1	92.3	3/24/2014	19:03	MSD	101402134-02	6020 W	
J1402026-001SD	Ŷ	98Mo	104.80	1	91.7	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	N	107Ag	24.82	1	91.7	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	109Ag	24.24	1	91.7	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Ν	111Cd	20.80	1	91.7	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	114Cd	20.12	1	91.7	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	1185n	255,10	1	90.8	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	N	120Sn	257.20	1	90.8	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402020-00150	14	12100 12395	01.04 50.98	1	90.0 90.8	3/24/2014	19:03	MSD	JQ1402134-02	6020 VV 6020 VV	
J1402026-001SD	N	135Ba	225.50	ı 1	90.8	3/24/2014	19:03	MSD	JO1402134-02	6020 W	
J1402026-001SD	Ŷ	137Ba	230.40	1	90.8	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	N	203TI	9.54	1	92.8	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	Y	20511	9.94	1	92,8	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	
J1402026-001SD	γ	208Pb	24.84	1	92.8	3/24/2014	19:03	MSD	JQ1402134-02	6020 W	

Data File ID: 032414A

VG PQ ExCell ICP-MS

Method 200.8 / 6020

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402026-001L	Ŷ	9Be	-0,09	5	91.6	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	27AI	11.21	5	91.6	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	47Ti	0.40	5	91.6	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	48Ti	8.11	5	91.6	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	51V	0.35	5	91.6	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	¥	52Cr	-0.19	5	91.6	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	55Mn	51.84	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	59Co	0.22	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	60Ni	0.93	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	62Ni	30,58	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	ICS-A FH, ICS-AB FH, CCB FH, CCV FH,
J1402026-001L	N	63Cu	1.77	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	CCB FH.
J1402026-001L	Y	65Cu	0.12	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	66Zn	4.74	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	68Zn	5.87	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	75As	1.17	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	78Se	1,41	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	CCB FH,
J1402026-001L	N	82Se	-0.45	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	86Sr	37.80	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	88Sr	38.44	5	91.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	97Mo	0.33	5	89.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	98Mo	0.26	5	89.9	3/24/2014	19:08	\$D	Serial Dilution	6020 W	
J1402026-001L	N	107Ag	-0.04	5	89.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	109Ag	-0.04	5	89.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	111Cd	-0.01	5	89.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	114Cd	0.03	5	89.9	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	118Sn	-0.85	5	90.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Ν	120Sn	-0.92	5	90.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	121Sb	-0.02	5	90.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	123Sb	-0.05	5	90.7	3/24/2014	19:08	SD	Serial Dilution	6020 W .	
J1402026-001L	N	135Ba	25.00	5	90.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	. Y	137Ba	25.84	5	90.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	N	203TI	-0.04	5	91.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	205Ti	-0.02	5	91.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001L	Y	208Pb	-0.11	5	91.7	3/24/2014	19:08	SD	Serial Dilution	6020 W	
J1402026-001A	Y	9Be	25.40	1	92.2	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	27Al	2544.00	1	92.2	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	47Ti	248.60	1	92.2	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	- N	48Ti	285.40	1	92.2	3/24/2014 -	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	51V	96.52	1	92.2	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	52Cr	51.11	1	92.2	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	55Mn	355.20	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	59Co	51.84	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	60Ni	104.30	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	62Ni	139,90	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	ICS-A FH, ICS-AB FH, CCB FH, CCV FH,
J1402026-001A	N	63Cu	51.57	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	CCB FH.
J1402026-001A	Y	65Cu	49.37	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	66Zn	255.90	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	68Zn	258.40	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	75As	56.38	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	78Se	100.00	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	CCB FH,
J1402026-001A	N	82Se	100.30	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	86Sr	292.10	1	88.9	3/24/2014	19;13	PS	Post Spike	6020 W	
J1402026-001A	Ν	88Sr	291,80	1	88.9	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	97Mo	102.50	1	90.1	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	98Mo	102.90	1	90.1	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	107Ag	23.82	1	90.1	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	109Ag	23.14	1	90.1	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	111Cd	19.45	1	90,1	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	114Cd	19.55	1	90.1	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	118Sn	248.60	1	89.6	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Ν	120Sn	250.60	1	89.6	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	121Sb	49.14	1	89.6	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	123Sb	49.09	1	89.6	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	135Ba	222.60	1	89.6	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	137Ba	227.00	1	89.6	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	N	203TI	9.38	1	91.4	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	205TI	9.87	1	91.4	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-001A	Y	208Pb	24.31	1	91.4	3/24/2014	19:13	PS	Post Spike	6020 W	
J1402026-002	Ŷ	9Be	-0.04	1	90.6	3/24/2014	19;19	SAMP	J1402026-002	6020 W	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
J1402026-002	Y	27AI	2683.00	1	90.6	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	4771	12,39	1	90.6	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	N	48Ti	32.25	1	90.6	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Ŷ	51V	23,43	1	90.6	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	52Cr	4.81	1	90.6	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	55Mn	165.50	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	59Co	1,70	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	60Ni	7,28	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
14400000 000		0010	10.00	4	00.4	010410044	10.40	CAMP	14400000 000	6000 11/	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402026-002	N	02INI ROC	10,00	1	03,4	3/24/2014	19:18	OAMP	J 1402020-002	6020 W	
31402020-002	N	ດວບປ	294	1	65.4	0/24/2014	19.18	OAMP	J 1402020-002	OUZU VV	Mp An - CB rn,

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402026-002	Y	65Cu	1.38	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	zmientei lääten väänten keitä kuuraan kuuraan kuuraan ja päänä kuuraan kuuraan kuuraan kuuraan kuuraan kuuraan
J1402026-002	Y	66Zn	10.32	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	N	68Zn	14.60	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	75As	8.36	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	-4
J1402026-002	N	78Se	4.06	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	CCB FH,
J1402026-002	N	82Se	-0.30	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Ŷ	86Sr	126.10	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	N	88Sr	127.80	1	83,4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	N	97Mo	2.67	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Ŷ	98Mo	2.51	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	N	107Ag	-0.06	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Ŷ	109Ag	-0.05	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	N	11100	0.01	1	83,4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
31402026-002	Ť	11400	-0.04	1	83.4	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
1402020-002	s N	12050	-0.71	4	85.7	3/24/2014	19.19	SAMO	1402020-002	6020 W	
11402020-002	N	121Sh	0.43	1	85.7	3/24/2014	19:19	SAMP	11402026-002	6020 W	
11402026-002	Ŷ	12356	0.51	1	85.7	3/24/2014	19:19	SAMP	1402026-002	6020 W	
.11402026-002	N	135Ba	86.87	1	85.7	3/24/2014	19:19	SAMP	1402026-002	6020 W	
J1402026-002	Ŷ	137Ba	88.37	1	85.7	3/24/2014	19:19	SAMP	1402026-002	6020 W	
J1402026-002	N	203TI	-0.05	1	88.1	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Ŷ	205TI	-0.03	1	88.1	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
J1402026-002	Y	208Pb	2.70	1	88.1	3/24/2014	19:19	SAMP	J1402026-002	6020 W	
.11402026-003	Y	9Be	-0.02	1	91.8	3/24/2014	19:24	SAMP	J1402026-003	6020 W	an an an an an an an an an an an an an a
J1402026-003	Ŷ	27AI	4369.00	1	91.8	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Ŷ	47Ti	14.78	1	91.8	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	N	48Ti	31.12	1	91.8	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	51V	26.65	1	91.8	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	52Cr	6.48	1	91.8	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	55Mn	160.20	1	83.3	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	59Co	1.73	1	83.3	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	60Ni	7.20	1	83.3	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
14402026 002	м	CONT	74.40	1	80.0	2/04/0044	40.04	CAMO	14 40 20 20 00 2	6000 W	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J 1402020-003	N	62CH	7.44	1	83.3	3/24/2014	10.24	SAMP	J 1402020-003	6020 W	
1402020-003	N V	85Cu	1 49		83.3	3/24/2014	19.24	SAMP	1402020-003	6020 W	Marn, Coarn,
1402020-003	, v	667n	12.40	4	83.3	3/24/2014	19.24	SAMP	31402020-003	6020 W	
11402020-003	. I . N	6970	12.02	4	03.3	3/24/2014	19.24	CAMP	J1402020-003	6020 W	
1402020-003	v	7540	9 59	: 1	63.3	3/24/2014	19.24	SAMP	J1402020-003	6020 W	
J 1402020-003	T N	7985	0,00	4	03.3	3/24/2014	19.24	SAMP	J 1402026-003	6020 W	000 51
J1402026-003	IN N	1030	0.55	4	00.0	3/24/2014	19:24	SAMP	J1402026-003	6020 W	COB FR,
J1402020-003	N V	0235	122 70	4	63.3	3/24/2014	10.24	SAMP	J 1402020-003	6020 W	
11402020-003	т N	0001	123.60	1	00.0	3/24/2014	19.24	CAMP	J 1402020-003	6020 W	
11402020-003	N	07Mo	2 29	1	81.3	3/24/2014	19.24	SAMD	1402020-003	6020 VV	
1402026-003	- Y	98Mo	2.23	1	81.3	3/24/2014	19-24	SAMP	11402026-003	6020 W	
.11402026-003	N	107Ag	-0.04	1	81.3	3/24/2014	19:24	SAMP	1402026-003	6020 W	
J1402026-003	Y	109Aa	-0.06	1	81.3	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	N	111Cd	0.06	1	81.3	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	114Cd	-0.01	1	81.3	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	118Sn	-1.16	1	84.9	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	N	120Sn	-1.25	1	84.9	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Ν	121Sb	0.40	1	84.9	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	123Sb	0.34	1	84.9	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	N	135Ba	88.95	1	84.9	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Ŷ	137Ba	89.96	1	84,9	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	N	203TI	-0.06	1	87,4	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Ŷ	205TI	-0.03	1	87.4	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
J1402026-003	Y	208Pb	4,13	1	87.4	3/24/2014	19:24	SAMP	J1402026-003	6020 W	
CCV-3	Y	9Be	25.11	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	27A	2590.00	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	47Ti	254.10	1	93,5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	48Ti	251.90	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	51V	100.20	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	52Cr	50.91	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	55Mn	102.40	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	59Co	50,75	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	60Ni	103.10	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
001/ 2	6.2	001			04.4	2104100-11	40.00	~~··	<u></u>	K 174	ICS-A FH, ICS-AB FH, CCV FH 200.8, CCV FH 6020 W
001/3	N	62INI	N2Date	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	CCV FH 6020 S .
	Ŷ	03CU	54,36	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
007-3	Y	65CU	51.38	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Ŷ	oo∠n ററ⊐	261.60	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Ŷ	682n	258.50	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
000/-3	Ŷ	75As	51.55	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
000-3	Y	785e	105,30	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
007-3	Y	82Se	102.10	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
001/3	Ŷ	665r	101.10	1	94.1	3/24/2014	19:29	CCV	CCV	N/A	
007-3	Ŷ	665f	102.50	4	94.1	3/24/2014	19:29	CCV	CCV	N/A	
001/3	Ŷ	9/MO	100.20	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
UCV-3	Y	98MO	101,00	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	

,

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCV-3	Y	107Ag	25.44	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	109Ag	24.74	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	111Cd	20.67	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Ŷ	114Cd	21.17	1	93.5	3/24/2014	19:29	CCV	CCV	N/A	
	v	12050	255.30	1	92.4	3/24/2014	10.29	COV	CCV CCV	N/A N/A	
CCV-3	Ý	121Sh	50.10	1	92.4	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Ý	123Sb	50.34	1	92.4	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Ŷ	135Ba	100.20	1	92.4	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	137Ba	102.20	1	92.4	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	203TI	10.02	1	93	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	205TI	10.13	1	93	3/24/2014	19:29	CCV	CCV	N/A	
CCV-3	Y	208Pb	25.54	1	. 93	3/24/2014	19:29	CCV	CCV	N/A	
CCB-3	Y	9Be	-0.08	1	89.8	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	27AI	-1.04	1	89.8	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	4711	-0.14	1	89.8	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	rv	4011	-0.44	1	09.0 90.9	3/24/2014	19.34	CCB	CCB	N/A N/A	
CCB-3	v	52Cr	-0.17	1	89.8	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	55Mn	0.01	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	59Co	0.01	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	60Ni	0.01	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	N	62Ni	47.79	1	91	3/24/2014	19:34	CCB	CCB	N/A	ICS-A FH, ICS-AB FH, CCB FH,
CCB-3	Y	63Cu	2.64	1	91	3/24/2014	19:34	CCB	CCB	N/A	CCB FH,
CCB-3	Y	65Cu	-0.10	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	66Zn	-0.05	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	68Zn	-0.07	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	75As	0.30	1	91	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	7856	21/	1	91	3/24/2014	19:34	CCB	CCB	N/A	CCH FH,
CCB-3	. Y	8258	-0.63	1	91	3/24/2014	19:34	CCB	CCB	. N/A	
CCB-3	v v	88Sr	-0.01	1	91	3/24/2014	19:34	CCB	CC8	N/A	
CCB-3	Ý	97Mo	0.23	1	90.1	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	98Mo	0.20	1	90.1	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	107Ag	~0.05	1	90.1	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	109Ag	-0.06	1	90.1	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	111Cd	-0.02	1	90.1	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	114Cd	0.01	1	90.1	3/24/2014	19:34	CCB	CCB	N/A	· · · · ·
CCB-3	Y	118Sn	-0.65	1	88.7	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	120Sn	-0.76	1	88.7	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Y	121Sb	0.06	1	88.7	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	12356	0.03	1	88.7	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	r	13088 1378a	0.00	4	887	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	20371	-0.07	1	89.3.	3/24/2014	19:34	CCB	CCB	N/A	
CCB-3	Ŷ	20511	-0.04	, †	89.3	3/24/2014	19:34	CCB	CCB	N/A	
CCB~3	Y	208Pb	-0,14	1	89.3	3/24/2014	19:34	CCB	CCB	N/A	
J1402026-004	Y	9Be	0.03	1	88	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	27AI	1196.00	1	88	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	47Ti	5.86	1	88	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	N	48Ti	78.39	1	88	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	51V	20.53	1	88	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Ŷ	52Cr	3.93	1	88	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Ŷ	55MN	439.90	1	85.6	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
11402028-004	v	SONI	12.80	1	85.6	3/24/2014	19.39	SAMO	J 1402020-004	6020 W	
91702020-00 4	'	VVIU	12.00	'	00.0	012712017	10.00	Gr 1033	5 170EVEV-VV7	~~~~ ¥¥	ICS-A FH, ICS-AB FH, MRL FH, MB FH, LCS FH, CCB FH,
J1402026-004	N	62Ni	64.51	1	85.6	3/24/2014	19:39	SAMP	J1402026-004	6020 W	CCV FH.
J1402026-004	N	63Cu	6.38	1	85.6	3/24/2014	19:39	SAMP	J1402026-004	6020 W	MB FH, CCB FH,
J1402026-004	Y	65CU	2.88	1	65.6 85.0	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J 1402026-004	T NI	697n	220.30	1	85.6	3/24/2014	19.39	SAMP	1402026-004	6020 W	
11402020-004	V V	754s	20.60	1	85.6	3/24/2014	19:39	SAMP	11402026-004	6020 W	
.11402026-004	Ň	78Se	2.96	1	85.6	3/24/2014	19:39	SAMP	1402026-004	6020 W	CCB FH.
J1402026-004	N	82Se	-0.24	1	85.6	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	86Sr	380.00	1	85.6	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	N	88Sr	383.30	1	85.6	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	N	97Mo	1.59	1	83.1	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	98Mo	1.51	1	83.1	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	N	107Ag	-0.05	1	83.1	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	109Ag	-0.05	1	83.1	3/24/2014	19:39	SAMP	J1402025-004	6020 W	
J1402026-004	N	111Cd	80.0	1	83.1	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J 1402020-004	ĭ	1129-	0.03 _0.89	1	03. i 85	3/24/2014	19:38	SAMO	3 1402020-004 11402028-004	0020 VV 6000 W	
11402020-004	I N	120Sn	-0.00	1	00 85	3/24/2014	10.30	SAMP	J1402020-004	6020 W	
J1402026-004	N	121Sb	0.59	1	85	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	123Sb	0.56	1	85	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	N	135Ba	214,70	1	85	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Y	137Ba	216.10	1	85	3/24/2014	19:39	SAMP	J1402026-004	6020 W	
J1402026-004	Ν	203TI	-0.07	1	86.4	3/24/2014	19:39	SAMP	J1402026-004	6020 W	374

ALS Environmental

Analytical Run Coversheet

Analyst:	Jordan Pauley	Data File ID:	032414B	LIMS Run #: 385020
Analysis:	Mercury	Method References:	245.1, 7470, 7471	Inst ID: J-CVAA-01

	IP.	Standard's Trace	Numbers 3/	24/24	international and a second	
STD ID 3	HAY Trace #	Exp Date	STD ID J	Trace #	Exp Date	
Primary Working STD	ENHI3-65E	3/27/14	Stannous Chloride	F. 14-43-656	3/27/14 1	-
Secondary Working STD	一千-6元				/ //	

Standard	Conc (ug/L)	LCL 245.1	UCL 245.1	LCL 7000	UCL 7000	
MRL	0.1	50%	150%	50%	150%	
UQL	10					
LCS / LCSD	1.25	85%	115%	80%	120%	**************************************
LCS1(low)	0.5	70%	130%	70%	130%	
MS / MSD	1.25	70%	130%	75%	125%	· · ·
Post Spike	5	85%	115%	80%	120%	
ICV	5	95%	105%	90%	110%	
CCV	5	90%	110%	80%	120%	-
DUP (RPD)			20%		20%	· · · · · · · · · · · · · · · · · · ·
SerialDilution			10%		10%	

Comments

Reviewed By / Date:

Nr 3/24/14

MERCURY DATA REPORTED WITH FAILING CRITERIA

Data File ID: 032414B

Sample ID

Failure(s)

Analyst's Comments

ALS Environmental

Methods: 245.1 / 7470 / 7471

Analyst: Jordan Pauley

Mercury Data Summary Sheet

Instrument ID: J-CVAA-01

		Raw								
Sample ID	RPT	Conc (ug/L)	DF	UNITS	QC	Comment	Samp Type	Date	Time	Method
Calibration Blank	Y	0.000	1	ug/L			ICAL	03/24/14	16:43:25	
Standard #1	Y	0.100	1	ug/L			ICAL	03/24/14	16:44:32	
Standard #2	Y	0.500	1	ug/L			ICAL	03/24/14	16:45:39	
Standard #3	Y	1.000	1	ug/L			ICAL	03/24/14	16:47:11	
Standard #4	Y	3.000	1	ug/L			ICAL	03/24/14	16:48:47	
Standard #5	Y	5.000	1	ug/L			ICAL	03/24/14	16:50:36	
Standard #6	Y	10.000	1	ug/L			ICAL	03/24/14	16:52:36	
ICV	Y	4.957	1	ug/L	99.1%		ICV	03/24/14	16:54:53	
ICB	Y	-0.002	1	ug/L	CCB OK		ССВ	03/24/14	16:56:51	
MRL 0.1	Y	0.097	1	ug/L	97.0%		MRL	03/24/14	16:57:58	
MB-02113-02	Y	0.001	1	ug/L	мвок 🖊		MBLK	03/24/14	16:59:05	
LCS-02113-01	Y	1.254	1	ug/L	100.3%		LCS	03/24/14	17:00:12	
J1402025-001	Y	0.005	1	ug/L			SAMP	03/24/14	17:01:52	7470 D
J1402025-001MS	Y	1.229	1	ug/L	97.9%		MS	03/24/14	17:02:59	7470 D
J1402025-001MSD	Y	1.243	1	ug/L	99.0%		MSD	03/24/14	17:04:39	7470 D
J1402025-001PS	Y	4.940	1	ug/L	98.7%		PS	03/24/14	17:06:19	7470 D
J1402025-001SD 5x	Y	0.002	5	ug/L			SD	03/24/14	17:08:24	7470 D
J1402025-002	Y	0.008	1	ug/L			SAMP	03/24/14	17:09:33	7470 D
J1402025-003	Y	0.004	1	ug/L			SAMP	03/24/14	17:10:42	7470 D
J1402025-004	Y	0.006	1	ug/L			SAMP	03/24/14	17:11:51	7470 D
CCV-1	Y	5.001	1	ug/L	100.0%		ccv	03/24/14	17:12:59	
CCB-1	Y	0.004	1	ug/L	ССВ ОК		ССВ	03/24/14	17:15:03	
J1402025-005	Y	0.008	1	ug/L			SAMP	03/24/14	17:16:12	7470 D
J1402025-006	Y	0.008	1	ug/L		· · ·	SAMP	03/24/14	17:17:22	7470 D
J1402025-007	Y	0.003	1	ug/L			SAMP	03/24/14	17:18:29	7470 D
MB-01914-01	Y	0.009	1	ug/L	MB OK		MBLK	03/24/14	17:19:36	
LCS-01914-02	Y	1.230	1	ug/L	98.4%		LCS	03/24/14	17:20:44	
J1401630-001	Y	0.005	1	ug/L			SAMP	03/24/14	17:22:27	7470 TCLP
J1401630-001MS	Y	1.237	1	ug/L	98.6%		MS	03/24/14	17:23:34	7470 TCLP
J1401630-001MSD	Y	1.234	1	ug/L	98.3%		MSD	03/24/14	17:25:18	7470 TCLP
J1401630-001PS	Y	4.910	1	ug/L	98.1%		PS	03/24/14	17:27:00	7470 TCLP
J1401630-001SD 5x	Y	-0.001	5	ug/L	/		SD	03/24/14	17:28:57	7470 TCLP
CCV-2	Y	5.004	1	ug/L	100.1%		ccv	03/24/14	17:30:05	
CCB-2	Y	0.002	1	ug/L	ССВ ОК		CCB	03/24/14	17:32:02	
J1401630-003	Y	0.005	1	ug/L			SAMP	03/24/14	17:33:11	7470 TCLP
J1401630-004	Y	0.007	1	ug/L			SAMP	03/24/14	17:34:20	7470 TCLP
J1401630-005	Y	0.008	1	ug/L			SAMP	03/24/14	17:35:29	7470 TCLP
J1401630-006	Y	0.004	1	ug/L			SAMP	03/24/14	17:36:39	7470 TCLP
J1401630-007	Y	0.004	1	ug/L			SAMP	03/24/14	17:37:46	7470 TCLP
J1401630-009	Y	0.007	1	ug/L			SAMP	03/24/14	17:38:53	7470 TCLP
MB-01915-01	Y	0.008	1	ug/L	мвок 🖌		MBLK	03/24/14	17:40:00	
LCS-01915-02	Y	1.250	1	ug/L	100.0%	·	LCS	03/24/14	17:41:08	
J1401630-002	Y	0.004	1	ug/L			SAMP	03/24/14	17:42:48	7470 TCLP
J1401630-008	Y	800.0	1	ug/L	/		SAMP	03/24/14	17:43:56	7470 TCLP
CCV-3	Y	4.990	1	ug/L	99.8%		ccv	03/24/14	17343:04	

** RPD not calculated. Difference < 2 x MRL.
		Raw			Me	ethods: 245.1 / 7470 / 7471				
Sample ID	RPT	Conc (ug/L)	DF	UNITS	QC	Comment	Samp Type	Date	Time	Method
CCB-3	Y	0.001	1	ug/L	CCB OK		ССВ	03/24/14	17:47:01	<u></u>

** RPD not calculated. Difference < 2 x MRL. ^^ % Rec. not calculated, Analyte concentration > 4 x Spike concentraton.

.

Report Generated By CETAC QuickTrace Analyst: JAXMet Worksheet file: J:\Mercury\Data\032414B JP 7470A.wsz Date Started: 1/26/2010 14:48:08 Comment:

.

Results

Sample Name				Туре	Date/Time	Conc (ppb)	µAbs	%RSD	Flags
Calibration Blank Replicates	12.7	19.3	19.9	STD 8.	03/24/14 04:43:25 pm 1 8.6	0.000	14	41.33	nn mar an an an
Standard #1 Replicates	302.3	307.6	306.0	STD 301	03/24/14 04:44:32 pm 4 294.7	0.100	302	1.65	аниманталынын кончендерен төрөлөр калан калан калан калан калан калан калан калан калан калан калан калан калан
Standard #2 Replicates	1566.2	1581.8	1582.3	STD 1572.	03/24/14 04:45:39 pm 1 1558.9	0.500	1572	0.64	
Standard #3 Replicates	3064.0	3093.8	3106.4	STD 3110.6	03/24/14 04:47:11 pm 6 3072.0	1.000	3089	0.67	
Standard #4 Replicates	9056.5	9112.3	9148.1	STD 9148.2	03/24/14 04:48:47 pm 2 9061.5	3.000	9105	0.49	
Standard #5 Replicates	15213.0	15318.7	15391.8	STD 15370.3	03/24/14 04:50:36 pm 3 15180.4	5.000	15295	0.62	
Standard #6 Replicates	29864.0	30042.6	30178.3	STD 30186.8	03/24/14 04:52:36 pm 3 29886.5	10.000	30032	0.51	
Calibration Equation: A = R2: 0.9 SEE: 56. Flags:	= 9.123 + 3078 9998 4350	3.996C + -0.0	08*	µАbsorbance	30,000 25,000 20,000 15,000 10,000 5,000 0 2 Cor	4 6 ncentration (ppb)) 8 8	10	
ICV Replicates % Recovery	15003.5 99.13	15098.3	15161.5	ICV 15158,2	03/24/14 04:54:53 pm 15001.8	4.957	15085	0.52	*
3/24/2014 18:56:53	n Adria Status Smith Asso Smith Asso Smith and an Smith Association	1999-1990 1997 1997 1997 1997 1997 1997 1997	1919 1 4 6 9 1 6 1 9 1 9 1 9 1 9 1 1 1 1 1 1 1 1	0324	14B JP 7470A.wsz	25/25/2019/00/00/2010/2010/2010/2010/2010/201	na na na na na na na na na na na na na n		370 Page 1

Samp	ble Name	********			Туре	Date/Time	Conc (ppb)	μAbs	%RSD	Flags
ICB	Replicates	2.2	3.7	3.1	ССВ	03/24/14 04:56:51 pm 7.0 4.4	-0.002	4	44.41	nin kalen an en an en an en an en an en
MRL (0.1 Replicates % Recovery	311.9 97.05	312.7	312.8	CRDL 304	03/24/14 04:57:58 pm 4.7 297.2	n 0.097	308	2.23	
MB-02	2113-02 Replicates	10.1	12.3	17.0	MB 10	03/24/14 04:59:05 pm 0.7 5.3	0.001	11	37.81	
LCS-C	02113-01 Replicates % Recovery	3839.4 100.32	3862.0	3878.4	LCS 3875	03/24/14 05:00:12 pm 5.2 3835.9	1.254	3858	0.51	,
J1402	025-001 Replicates	27.1	28.7	28.0	UNK 22	03/24/14 05:01:52 pm 2.1 16.0	0.005	24	21.90	
J1402	025-001S Replicates % Recovery	3760.0 97.90	3791.4	3812.7	MSK 3794	03/24/14 05:02:59 pm 4.2 3746.9	1.229	3781	0.71	
J1402	025-001SD Replicates % Recovery	3803.0 99.02	3826.8 RPD 1.13	3846.9	MSDUF 3842	P 03/24/14 05:04:39 pm 2.5 3800.2	1.243	3824	0.57	
J1402	025-001A Replicates % Recovery	14953.9 98.70	15048.6	15112.7	SPK 15108	03/24/14 05:06:19 pm 3.2 14948.0	4.940	15034	0.53	
J14020	025-001L Replicates	13.5	18.6	26.1	UNK 12	03/24/14 05:08:24 pm 2.5 10.5	0.002	16	38.51	
J1402(025-002 Replicates	32.6	37.8	40.5	UNK 32	03/24/14 05:09:33 pm 2.8 22.9	0.008	33	20.18	
J1402(025-003 Replicates	16.2	28.8	23.1	UNK 20.	03/24/14 05:10:42 pm 9.7 20.9	0.004	22	21.01	
J14020)25-004 Replicates	31.8	22.6	25.4	UNK 32.	03/24/14 05:11:51 pm .1 24.1	0.006	27	16.42	
*****		danadara, ana amadara da matana ana anara	********			an y a a shekara a ya baha da fa fan da sa san san sa sa san san da san san a sa san sa sa san sa sa san sa sa	******		Y*====================================	ويستعمل مستعمل ومستعمل والمستعمل والمستعمل والمنافق والمستعمل والمستعمل والمستعمل والمستعمل والمستعم والمستعم

3/24/2014 18:57:10

032414B JP 7470A.wsz

Page 2

330

Sample Name		Type Date/Time	Conc (ppb)	µAbs	%RSD Flags
CCV-1 Replicates 15132.2 15237.1 % Recovery 100.01	15308.5	CCV 03/24/14 05:12:59 pm 15295.5 15111.7	5.001	15217	0.60
CCB-1 Replicates 13.7 20.3	22.3	CCB 03/24/14 05:15:03 pm 25.2 19.5	0.004	20	21.02
J1402025-005 Replicates 39.6 38.2	36.9	UNK 03/24/14 05:16:12 pm 30.4 27.5	0.008	34	15.31
J1402025-006 Replicates 31.0 31.6	41.1	UNK 03/24/14 05:17:22 pm 32.6 38.7	0.008	35	13.12
J1402025-007 Replicates 19.2 28.4	30.6	UNK 03/24/14 05:18:29 pm 13.4 4.5	0.003	19	56.21
MB-01914-01 Replicates 40.1 40.2	35.9	MB 03/24/14 05:19:36 pm 32.4 32.7	0.009		10.46 .
LCS-01914-02 Replicates 3758.5 3788.4 % Recovery 98.37	3816.1	LCS 03/24/14 05:20:44 pm 3800.4 3755.1	1.230	3784	0.70
J1401630-001 Replicates 24.5 26.9	28.9	UNK 03/24/14 05:22:27 pm 26.5 20.1	0.005	25	13.09
J1401630-001S Replicates 3784.3 3812.2 % Recovery 98.55	3827.4	MSK 03/24/14 05:23:34 pm 3826.8 3783.9	1.237	3807	0.57
J1401630-001SD Replicates 3775.6 3803.0 % Recovery 98.30 RPD 0.26	3822.5	MSDUP 03/24/14 05:25:18 pm 3812.9 3771.1	1.234	3797	0.60
J1401630-001A Replicates 14855.1 14962.4 % Recovery 98.09	15028.0	SPK 03/24/14 05:27:00 pm 15021.1 14855.2	4.910	14944	0.57
J1401630-001L Replicates 0.3 12.6	9.8	UNK 03/24/14 05:28:57 pm 7.6 2.5	-0.001	7	77.52

Sample Name				Туре	Date/Time	Conc (ppb)	µAbs	%RSD	Flags
CCV-2 Replicates % Recovery	15149.3 100.07	15249.5	15322.7	CCV 15303	03/24/14 05:30:05 pm .2 15106.9	5.004	15226	0.62	
CCB-2 Replicates	10.7	16.9	18.3	CCB 18	03/24/14 05:32:02 pm .9 7.7	0.002	14	34.66	
J1401630-003 Replicates	20.6	29.7	29.9	UNK 30	03/24/14 05:33:11 pm .2 15.2	0.005	25	27.39	
J1401630-004 Replicates	. 19.9	31.3	34.6	UNK 37	03/24/14 05:34:20 pm .8 35.3	0.007	32	22.17	
J1401630-005 Replicates	30.9	~ 37.3	33.9	UNK 29.	03/24/14 05:35:29 pm .4 30.5	0.008	32	9.95	nan mangan (Maran Maran Mandalan (Mandalan Maran (Mandalan Maran) (Mandalan Mandalan Mandalan Mandalan Mandalan
J1401630-006 Replicates	16.0	27.4	30.1	UNK 23.	03/24/14 05:36:39 pm 3 13.8	0.004	22	31.95	Ale Handraran managar gala ya gala da kan kan s
J1401630-007 Replicates	25.0	26.9	21.6	UNK 20.	03/24/14 05:37:46 pm 1 13.7	0.004	21	23.68	
J1401630-009 Replicates	34.0	33.8	27.4	UNK 25.	03/24/14 05:38:53 pm 6 27.4	0.007	30	13.29	
MB-01915-01 Replicates	31.6	. 37.2	38.5	MB 31.	03/24/14 05:40:00 pm 5 23.2	0.008	32	18.58	
LCS-01915-02 Replicates % Recovery	3818.6 99.98	3853.1	3873.7	LCS 3862.	03/24/14 05:41:08 pm 2 3819.6	1.250	3845	0.65	Mit (Mit Mit Mit Mit Mit Mit Mit Mit Mit Mit
J1401630-002 Replicates	21.0	25.8	27.1	UNK 19.	03/24/14 05:42:48 pm 4 13.4	0.004	21	25.74	
J1401630-008 Replicates	27.9	35.6	35.4	UNK 32.	03/24/14 05:43:56 pm 2 30.9	0.008	32	10.04	

Sampl	e Name	adduardanta for y barraine for barraine er an an	10701 1141 (1141)	2000-001 Y 4010 10 400 10 10 10 10 10 10 10 10 10 10 10 10 1	Туре	Date/Time	Conc (ppb)	µAbs	%RSD	Flags
CCV-3	Replicates % Recovery	15108.7 99.80	15220.6	15287.7	CCV 15258.9	03/24/14 05:45:04 pm 9 15046.9	4.990	15185	0.68	
CCB-3	Replicates	14.0	15.9	21.4	CCB 13.6	03/24/14 05:47:01 pm 5 0.4	0.001	13	59.14	

:

333

Fuldsyst.	-4/3	CICK		ata i ne ib.	**************************************	002114		_ L.]	IVIO RUIT #.		<u> </u>
Analysis:	ICP-	-AES		Method R	eferences:		200.7 / 601	0	Inst ID:	J-ICP-	AES-0
ST	DID	Tra	ce#	Sta Exp	indard's T Date	race Num ST	bers D ID	Tra	ce #	Exo	Date
ICA	\L-1	Met.17	-304	4-3	14	INT	STD	Mot 17	-79B	59	-14
ICA	\L-2		successing 13			IC	SA .		-77A	5-19	-14
ICAL-3	3 / CCV		Ċ			ICS	SAB		-77B	J	
ICA	\L-4		D	Q	/	/ Blank /	' Diluent	\square	<u>80G</u>	3-6-1	5
<u> </u>		[net.1]	-78 <u>B</u>	<u>3-24</u>	-14	L	~~			IN THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE	
		8801		Standard	Concent	rations an	d Ranges				
	Ag	0.01	Linear	Kange	0.5	0.5				Units ma/l	
	AI	0.1	10	00	50	5	5	750	752	mg/L	
	As B	0.01	4	0	1	0.5	0.5	0	0.2	mg/L	
	Ва	0.01	4	5	2	0.5	0.5	0	0.2	mg/L mg/L	
	Be	0.004	25	3	0.5	0.2	0.2	0	0.08	mg/L	
· ·	Cd	0.005	1	5	0.4	0.25	0.25	0 0	0.1	mg/L ma/L	
	Co	0.01	10	0	1	0.5	0.5	0	0.2	mg/L	
	Cu	0.01	1(25	1	0.5	0.5		0.2	mg/L mg/l	
	Fe	0.1	12	00	40	5	5	750	752	mg/L	
	Li	2	<u> </u>	00	20	100	100	0	40	mg/L	
	Mg	0.1	10	00	20	5	5	750	752	mg/L mg/L	
	Mn Mo	0.01	2	5	2	0.5	0.5	0	0.2	mg/L	
	Na	0.5	50	9 10	20	25	25	0	10	mg/L mg/L	
	Ni	0.01	10	0	2	0.5	0.5	0	0.2	mg/L	
	Pb	0.01	20	0	0.5	0.5	0.5	0	0.2	mg/L mg/L	
	Sb -	0.01	20	0	1	0.5	0.5	0	0.2	mg/L	
	Sn	0.01	2 12	5	2 5	0.5	0.5	0	0.2	mg/L mg/l	
	Sr J	0.01	8		2	0.5	0.5	0	0.2	mg/L	
		0.05	04 12	4 5	5 	2.5	2.5	0	1	mg/L mg/l	
-	V	0.02	10	0	2	1	1	Ő	0.4	mg/L	
· · · ·	Zn	0.02	5() ··· ···]	5.	1	1	0	0.4	mg/L	
Total total	and Tl	<u>UP</u> 7	7140036 d J140	07) 2025	Comm ncluded include	nents In Ri d in 1	n Run			-	
Tier	IL in	ichides	J1407	.07.5							

ICP Run Sequence Date File ID: 032114A1

#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time
1	Calib Blank	3/21/14	17:42	56	J1402037-003	3/21/14	22:02				
2	Calib Std 1	3/21/14	17:47	57	MB-02092-01	3/21/14	22:07				
3	Calib Std 2	3/21/14	17:52	58	LCS-02092-02	3/21/14	22:11				
å	Calib Std 3	3/21/14	17:55	59	.11401847-003	3/21/14	22:15				
-7 5	Calib Std 4	3/21/14	17:59	60	CCV	3/21/14	22.19				
à		3/21/14	18:02	61	CCB	3/21/14	22.10				
7	ICB	3/21/14	18:06	62	11401935-002	3/21/14	22.20				
2	Blank	3/21/14	18:11	63	11401935-002	3/21/14	22.20				
0	MRI	3/21/14	18.16	64	11401935-003	3/21/14	22.00				
10		3/21/14	18:20	65	11401935-00350	3/21/14	22.37				
11	ICSAB	3/21/14	18:28	66	11401935-0031	3/21/14	22.40				
12	CCV	3/21/14	18:36	67	11401935-003A	3/21/14	22.44				
12	CCB	3/21/14	18:40	68	11401935-003	3/21/14	22.70				
13	T1400260 002 2v	3/21/14	18-11	60	11401935-004	3/21/14	22.00				
14	T400300-002 2X	3/21/14	10.44	70	1401935-005	3/21/41	22.00				
10	1400305-001 5x	3/21/14	10.04	70	J1401933-000	3/21/14	23.03				
10	J1401993-001 ZX	3/21/14	10:07	/ I "70	11400360-003	3/21/14	20:00				
11	MID-02131-02	3/21/14	19.07	72	CCP	3/21/14	23.11			÷	
18	11402002 001	3/21/14	19.10	73		3/21/14	23:10				
19	J1402002-001	0/04/44	19:10	74 76	NID-02066-01	3/21/14	23:20				
20	J1402003-001	3/21/14	19:20	70	14 404 035 004	3/21/14	23:24				
21	11402003-002	3/21/14	19:30	70	1401935-001	3/21/14	23:20				
22	J1402003-003	0/21/14	19.34	11	J1401935-0015	3/21/14	23:32				
23	J1402003-004	3/21/14	19:39	70	J1401935-0015D	3/21/14	23:30				
24		3/21/14	19:43	/9	J1401935-001L	3/21/14	23:40				
20		3/21/14	19:47	00	J1401930-001A	J/21/14	∠3:43 00:40				
20	J1402005-001	3/21/14	19:52	81	11400360-002	3/21/14	23:48				
27	J1402005-004	3/21/14	19:56	82	MB-02087-01	3/21/14	23:53				
28	J1402022-001	3/21/14	20:01	83	LCS-02087-02	3/21/14	23:56				
29	J1402022-002	3/21/14	20:06	84		3/21/14	23:59				
30	J1402022-003	3/21/14	20:11	85	ССВ	3/22/14	00:04				
31	J1402022-004	3/21/14	20:16	86	J1401898-001	3/22/14	00:09				
32	J1402022-005	3/21/14	20:21	87	11400360-001	3/22/14	00:14				
33	J1402025-001	3/21/14	20:26	88	MB-02130-02	3/22/14	00:19				
34	J1402025-002	3/21/14	20:31	89	LCS-02130-01	3/22/14	00:22				
35	J1402025-003	3/21/14	20:35	90	J1402025-001	3/22/14	00:27				
36	CCV	3/21/14	20:39	91	J1402025-002	3/22/14	00:32				
37	CCB	3/21/14	20:43	92	J1402025-002S	3/22/14	00:35				
38	J1402025-004	3/21/14	20:48	93	J1402025-002SD	3/22/14	00:38				
39	J1402025-005	3/21/14	20:53	94	J1402025-002L	3/22/14	00:43				
40	J1402025-006	3/21/14	20:58	95	J1402025-002A	3/22/14	00:46				
41	J1402025-007	3/21/14	21:03	96	CCV	3/22/14	00:49				
42	J1402025-007S	3/21/14	21:06	97	CCB	3/22/14	00:54				
43	J1402025-007SD	3/21/14	21:09	98	J1402025-003	3/22/14	00:59				
44	J1402025-007L	3/21/14	21:14	99	J1402025-004	3/22/14	01:04				
45	J1402025-007A	3/21/14	21:17	100	J1402025-005	3/22/14	01:09				
46	J1402037-001	3/21/14	21:22	101	J1402025-006	3/22/14	01:13				
47	MB-02132-02	3/21/14	21:27	102	J1402025-007	3/22/14	01:18				
48	CCV	3/21/14	21:30	103	ICSA	3/22/14	01:22				
49	CCB	3/21/14	21:35	104	ICSAB	3/22/14	01:30				
50	LCS-02132-01	3/21/14	21:38	105	CCV	3/22/14	01:38				
51	J1402037-002	3/21/14	21:43	106	ССВ	3/22/14	01:42				
52	J1402037-002S	3/21/14	21:46								
53	J1402037-002SD	3/21/14	21:49								
54	J1402037-002L	3/21/14	21:54								
55	J1402037-002A	3/21/14	21:58							0 A 2	

ICP DATA REPORTED WITH FAILING CRITERIA

Data File ID: 032114A1

Sample ID	Analyte	Failure(s)	Analyst's Comments	
			1	

337

Reprocessing Begun Logged In Analyst: ALJCK.NOUSER Technique: ICP Continuous Results Data Set (original): 032114A Results Library (original): C:\pe\JAXMET01\Results\1403.mdb Results Data Set (reprocessed): 032114A1 Results Library (reprocessed): C:\pe\JAXMET01\Results\1403.mdb Sequence No.: 1 Autosampler Location: 905 Sample ID: Calib Blank Date Collected: 3/21/2014 17:39:58 Analyst: Data Type: Reprocessed on 3/24/2014 09:27:01 Logged In Analyst (Original) : ALJCK.NOUSER Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Nebulizer Parameters: Calib Blank Back Pressure Flow Analyte 220.0 kPa 0.68 L/min A11
 Mean Data: Calib Blank
 Mean Corrected
 Calib

 Yarilozy Radial
 Go2006.2
 5560.56
 0.92%
 Conc. Units

 Yarilozy Radial
 12728428.4
 102432.97
 0.80%
 100.0 %

 Ag 328.068t
 2637.2
 64.15
 2.43%
 [0.00] mg/L

 Al 394.401t
 -2386.9
 13.84
 0.58%
 [0.00] mg/L

 As 188.979pt
 -22.2
 1.06
 4.78%
 [0.00] mg/L

 Ba 238.527t
 -200.2
 5.55
 2.67%
 [0.00] mg/L

 Be 313.107t
 -14715.4
 186.34
 1.27%
 [0.00] mg/L

 Cd 228.802t
 158.0
 4.30
 2.72%
 [0.00] mg/L

 Cd 228.616t
 148.0
 17.10
 11.55%
 [0.00] mg/L

 Cd 228.616t
 148.0
 17.10
 11.55%
 [0.00] mg/L

 Cd 228.616t
 148.0
 17.10
 11.55%
 [0.00] mg/L

 Cd 228.616t
 148.0
 17.10
 11.55%
 [0.00] mg/L

 Cd 228.616t
 146.7
 1.053
 [0.00] mg/L

 Mo 207 Sequence No.: 2 Autosampler Location: 901 Date Collected: 3/21/2014 17:44:52 Sample ID: Calib Std 1 Analyst: Data Type: Reprocessed on 3/24/2014 09:27:06 Logged In Analyst (Original) : ALJCK.NOUSER Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Nebulizer Parameters: Calib Std 1 Analyte **Flow** 0.68 L/min Back Pressure 220.0 kPa All

ø

Mean Data: Calib :	std 1				
3	Mean Corrected	de 4 5		A a a a	Calib
ADALYCE V 371 029 Dadial	LINCENSICY	Sta.Dev.	RSD 0 542	Conc.	vnits 2
Y 371 029 Axial	12591560 7	128385 18	1 02%	98 92	5 9
Ag 328.068†	2682.9	114.69	4.27%	[0.01]	mg/L
Al 394.401†	99.6	14.74	14.81%	[0.1]	mg/L
As 188.979†	40.4	2.53	6.26%	[0.01]	mg/L
B 208.956†	864.0	3,96	0.46%	[0.05]	mg/L
Ba 233.527†	3036.4	12.36	0.41%	[0.01]	mg/L
Be 313.107†	13845.7	82.95	0.60%	[0.004]	mg/L
Ca 315.887†	842.9	10.96	1.30%	[0.1]	mg/L
Cd 228.8021	606.4	11.97	1.97%	[0.005]	mg/L
Co 228,616†	1159.1	29.94	2.58%	[0.01]	mg/L
Cr 267.7161	1367.2	7.34	0.54%	· [0.01]	mg/L
$E_{0} = 273 = 955 \pm 100$	1040.1 237 B	2 80	2.30%		
K 766,490 R†	14057.5	363 94	2 59%	[2]	mg/L
Mg 279.077†	127.5	8.70	6.82%	[0.1]	mg/L
Mn 257.610†	13079.1	108.58	0.83%	[0.01]	mg/L
Mo 202.031†	398.7	8.27	2.08%	[0.01]	mg/L
Na 589.592 R†	10422.2	33.34	0.32%	[0.5]	mg/L
Ni 231.604†	544.9	19.25	3.53%	[0.01]	mg/L
P 213.617†	588.4	13.79	2.34%	[0.1]	mg/L
Pb 220.353†	99.2	10.02	10.10%	[0.01]	mg/L
Sb 206.836†	36.2	3.61	9.96%	[0.01]	mg/L
Se 196.026†	27.1	5,98	22.04%	[0.01]	mg/L
Sn 189,9271 Gr 401 550P+	014./ 7027 0	4.74	0.778	[0.04]	mg/L mg/T
DL 421.002R TT 337 279+	7937.9 28696 6	210 55	0.715	[0.01]	mg/L mg/I
T1 190.801t	20050.0	11 64	14 46%	[0,05]	mg/1
V 290.880†	3105.1	20.96	0.67%	[0.02]	mg/L
Zn 206.200†	1610.9	27.50	1.71%	[0.02]	mg/L
Li 670,784†	20657.6	89.42	0.43%	[0.1]	mg/L

Sequence No.: 3 Sample ID: Calib & Analyst: Logged In Analyst Initial Sample Wt: Dilution:	Std 2 (Original) : ALJ	CK.NOUSER	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Voi	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: l:
Sequence No.: 3 Sample ID: Calib & Analyst: Logged In Analyst Initial Sample Wt: Dilution:	Std 2 (Original) : ALJ	CK.NOUSER	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1:
Sequence No.: 3 Sample ID: Calib & Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete	std 2 (Original) : ALJ ers: Calib Std 2	CK.NOUSER	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1:
Sequence No.: 3 Sample ID: Calib & Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte	(Original) : ALJ ers: Calib Std 2 Back Press	CK.NOUSER	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1:
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All	(Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa	CK.NOUSER ure Flow 0.68	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1:
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All	(Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa	CK.NOUSER ure Flow 0.68	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1:
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S	(Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa	CK.NOUSER ure Flow 0.68	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1:
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S	(Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa etd 2 Mean Corrected	CK.NOUSER ure Flow 0.68	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte	(Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Htd 2 Mean Corrected Intensity	CK.NOUSER ure Flow 0.68 Std.Dev.	Auto Date Data Init Samp	sampler Loo Collected Type: Rep ial Sample le Prep Vo	<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: l: Calib Units</pre>
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial	std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73	Auto Date Data Init Samp L/min RSD 0.96%	sampler Loo Collected Type: Rep ial Sample le Prep Vo Conc. 97.64	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial	std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65	Auto Date Data Init Samp L/min RSD 0.96% 1.22%	sampler Loo Collected Type: Rep ial Sample le Prep Vo Conc. 97.64 98.79	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % %
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t	<pre>std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5</pre>	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01	Auto Date Data Init Samp L/min RSD 0.96% 1.22% 0.84%	sampler Loo Collected Type: Rep ial Sample le Prep Vo Conc. 97.64 98.79 [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t	<pre>std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0</pre>	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44	Auto Date Data Init Samp L/min 0.96% 1.22% 0.84% 0.47%	sampler Loo Collected Type: Rep ial Sample le Prep Vo Conc. 97.64 98.79 [0.1] [1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95	Auto Date Data Init Samp L/min 0.96% 1.22% 0.84% 0.47% 0.73%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 0.1 [1] [0.1] [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.62	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 0.1 [1] [0.1] [0.5]	<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L</pre>
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 312 107t	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 128910 2	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315 887t	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319 7	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.19%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1] [0.04]	<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</pre>
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 0.1] [1] [0.1] [0.1] [0.04] [1] [0.05] [0.05]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Axial Ag 328.068t Al 394.401t As 188.979t B 208.956t Ba 233.527t Be 313.107t Ca 315.887t Cd 228.802t Co 228.616t	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 0.1] [1] [0.1] [0.1] [0.1] [0.05] [0.1] [1] [0.05] [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716†	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa Std 2 Mean Corrected Intensity 587777.6 12574271.5 27136.5 1787.0 406.5 8510.7 30505.4 138819.3 8319.7 6061.0 11435.3 13333.9	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 0.1] [1] [0.1] [0.1] [0.04] [1] [0.05] [0.1] [0.05] [0.1] [0.05] [0.1] [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393†	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa 220.0 kPa 320.0	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14% 1.06%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1] [0.04] [1] [0.05] [0.1] [0.05] [0.1] [0.1] [0.1] [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393† Fe 273.955†	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa 220.0 kPa 320.0	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99%	sampler Loo Collected Type: Rep ial Sample le Prep Vo 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1] [0.04] [1] [0.05] [0.1] [0.05] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1]	cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393† Fe 273.955† K 766.490 R†	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa 220.0 kPa 320.0	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14%	Sampler Loo Collected Type: Rep ial Sample le Prep Vo 97.64 98.79 [0.1] [1] [0.1] [0.5] [0.1] [0.04] [1] [0.05] [0.1] [0.05] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2] [0.1] [0.2][<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</pre>
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393† Fe 273.955† K 766.490 R† Mg 279.077†	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa 220.0 kPa 220.0 kPa 320.0	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71 31.47	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14% 2.36%	Sampler Loo Collected Type: Rep ial Sample le Prep Vo 97.64 98.79 [0.1] [1] [0.1] [0.1] [0.5] [0.1] [0.05] [0.1] [0.05] [0.1] [0.1] [0.1] [1] [0.1] [1] [20] [1]	<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</pre>
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393† Fe 273.955† K 766.490 R† Mg 279.077† Mn 257.610†	Std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa 220.0 kPa 320.0	CK.NOUSER ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71 31.47 1059.21	Auto Date Data Init Samp L/min L/min 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14% 2.36% 0.80%	Sampler Loo Collected Type: Repu ial Sample le Prep Vo 0.1] [1] [0.1] [0.04] [1] [0.05] [0.1] [0.05] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [1] [0.1]	<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</pre>
Sequence No.: 3 Sample ID: Calib S Analyst: Logged In Analyst Initial Sample Wt: Dilution: Nebulizer Paramete Analyte All Mean Data: Calib S Analyte Y 371.029 Radial Y 371.029 Radial Y 371.029 Axial Ag 328.068† Al 394.401† As 188.979† B 208.956† Ba 233.527† Be 313.107† Ca 315.887† Cd 228.802† Co 228.616† Cr 267.716† Cu 327.393† Fe 273.955† K 766.490 R† Mg 279.077† Mn 257.610† Mo 202.031†	<pre>std 2 (Original) : ALJ ers: Calib Std 2 Back Press 220.0 kPa</pre>	CK.NOUSER Ure Flow 0.68 Std.Dev. 5620.73 153166.65 228.01 8.44 2.95 100.59 200.92 1166.05 98.19 68.46 110.76 152.39 209.59 22.24 194.71 31.47 1059.21 33.30 127.72	Auto Date Data Init Samp L/min KSD 0.96% 1.22% 0.84% 0.47% 0.73% 1.18% 0.66% 0.84% 1.18% 0.66% 0.84% 1.18% 1.13% 0.97% 1.14% 1.06% 0.99% 0.14% 2.36% 0.80% 0.80% 0.86% 0.86%	Sampler Loo Collected Type: Repu ial Sample le Prep Vo: 0.1] [1] [0.1] [0.1] [0.05] [0.1] [0.05] [0.1] [0.05] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1] [0.1]	<pre>cation: 906 : 3/21/2014 17:49:43 rocessed on 3/24/2014 09:27:07 Vol: 1: Calib Units % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</pre>

338

Method: 120313			Page	3		Date:	3/24/20)14 09:27:09
· · · · · · · · · · · · · · · · · · ·								
Ni 231.604†	5324.1	54.43	1.02%	[0.1]	mg/L			
P 213.617†	5870.4	41.89	0.71%	[1]	mg/L			
Pb 220.353†	1101,4	11.76	1.07%	[0.1]	mg/L			
Sb 206.836†	477.5	2.30	0.488	[0.1]	mg/L			
Se 196.026†	266.9	4.96	1.86%	[0.1]	mg/L			
Sn 189.927†	6146.5	57.79	0.94%	[0.4]	mg/L			
Sr 421.552R†	77618.8	151,24	0.19%	[0.1]	mg/L			
Ti 337.279†	285387.2	2494.39	0.87%	[0.5]	mg/L			
Tl 190.801†	888.1	14.91	1.68%	[0.1]	mg/L			
V 290.880†	32220.3	219.53	0.68%	[0.2]	mg/L			
Zn 206.200†	17698.1	188.98	1.07%	[0.2]	mg/L			
Li 670.784†	201584.1	112.46	0.06%	[1]	mg/L			
					-			
***************	=======================================							
Sequence No.: 4			Auto	sampler Lo	cation: 904	1		
Sample ID: Calib S Analyst:	td 3		Date Data	Collected	: 3/21/2014	17:54	:34 2014 09)•27• 0 8
Logged In Analyst	(Original) : ALJ	CK.NOUSER				~ ~ / ~ + /		.27.00
Initial Sample Wt:			Init	ial Sample	Volt			
Dilution:			Samo	le Pren Vo	1.			
			Damp	το ετάρ νό				
Nebulizer Paramete	rs: Calib Std 3							
Analyte	Back Press	ure Flow						
All	220.0 kPa	0,68	L/min					
			-,					

Mean Data: Calib S	td 3							
	Mean Corrected		4		Calib			
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units			
Y 371.029 Radial	602360.9	5046,44	0.84%	100.1	alo			
Y 371.029 Axial	12339877.2	151435.98	1.23%	96.95	2			
Ag 328.068t	137709.6	1255.29	0.91%	[0.5]	mar/I.			
Al 394.401t	9168.2	44.56	0.49%	[5]	$m_{\rm T}/{\rm L}$			
As 188.979†	2085.5	57.10	2 74%	[0 5]	mg/I			
B 208 956t	42655 8	707 03	1 965	[0.0]	mg/1			
D 200.0007	162007 6	192.33	7,002		mg/L			
DG 233.3271	TJ22007.J	1202.07 EC44 E0	0.023	[0.5]	mg/11			
Ca 215 007+	10509.4	346 13	0.796	[0.2]	mg/L			
Cd 323.0071	30495 9	340.13	0.00%	: [D]	ing/u			
$C_{220,002}$	50465.8	044 61	1.706	[0.25]	mg/L			
CO 228.0101	56764.6	944.01	1,005	[0,5]	mg/L			
	66227.6	1134.01	1./18	[0.5]	mg/ц			
Cu 327.3931	99189.4	1074.85	1.08%	[0.5]	mg/L			
Fe 273.9551	10821.4	112.80	1.04%	[5]	mg/L			
K 766.490 RT	701997.9	2094.28	0.30%	[100]	mg/L			
Mg 279.077†	6490.0	45.34	0.70%	[5]	mg/L			
Mn 257.610†	657694.2	5898.77	0.90%	[0.5]	mg/L			
Mo 202.031†	19358.3	318.57	1.65%	[0.5]	mg/L			
Na 589.592 R†	476547.7	892.47	0.19%	[25]	mg/L			
Ni 231.604†	26529.6	537.96	2.03%	[0.5]	mg/L			
P 213.617†	29883.1	451.00	1.51%	[5]	mg/L			
Pb 220.353†	5486.0	85.16	1.55%	[0.5]	mg/L			
Sb 206.836†	2437.8	31.29	1.28%	[0.5]	mg/L			
Se 196,026†	1335.1	16.59	1.24%	[0.5]	mg/L			
Sn 189.927†	30689.9	503.98	1.64%	[2]	mg/L			
Sr 421.552R†	378553.9	1030.55	0.27%	10.51	mg/L			
Ti 337.279†	1436322.3	13189.12	0.92%	[2.5]	mg/L		•	
Tl 190.801t	4450.8	51.12	1.15%	[0.5]	mg/L			
V 290.880†	163157.3	1424.77	0.87%	[1]	mg/L			
Zn 206.200†	94261.7	792 13	0 84%	(1) (1)	mg/			
Li 670 784t	982363 7	2425 24	0,040	[5]	mg/L			
	1.606202.1	272J.27	0.400	[5]				
				****		: ::: ::: ::: -: -: -:		
Sequence No.: 5			እክታ ጥ	sampler In	cation. GAT	1		
Sample TD: Calib St	td 4		Tota Tota	Fortant Long	· 1/01/0014	17.27	• 41	
Analyst:	*		Nata Nata	Tyne, Per	, v/al/avii Torogeoð ~~		•34 2014 00	
Logged In Analyst	(Original) · »	CK NONGER	~~~~~	-lho: wah	receed of	1 31 62/	77.7.7 AA	. 61 i VO
Tnitial Samnia Wr.	/~~~~~~~. • • • • • • • • • • • • • • • •		Tritte	ial Camala	Volt			
Dilution.			Liiti Camm	Je prev ne. Tet nembte	* 			
ලංකා ගැන මෙන මෙන මෙන කොම කොම කියා මෙන මෙන මෙන මෙන මෙන මෙන මෙන මෙන මෙන මෙන			13 CETTE	~~ «	ika a			
******							*****	NS 100 VIII 100 LIL 100 201 V
Nebulizer Parameter	rs: Calib Std 4							······································

Analyte	Back	Drecoure	FLOW	
Analyce	Dack	IIC3DUIC	TOW	
All	220.0	kPa	0.68	L/min

Mean Data: Calib	Std 4				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Y 371.029 Radial	590876.0	6767.67	1.15%	98.15	oto
Y 371.029 Axial	12061030.4	781.52	0.01%	94.76	010
Ag 328.068†	276856.6	1313.73	0.47%	[1]	mg/L
Al 394.401†	18670.1	183.45	0.98%	[10]	mg/L
As 188.979†	4287.6	44.35	1.03%	[1]	mg/L
B 208.956†	89026.7	395.68	0.44%	[5]	mg/L
Ba 233.527†	304780.3	1142.87	0.37%	[1]	mg/L
Be 313.107†	1434328.8	5155.89	0.36%	[0.4]	mg/L
Ca 315.887†	82525.4	756.79	0.92%	[10]	mg/L
Cd 228.802†	61696.7	550.33	0.89%	[0.5]	mg/L
Co 228.616†	117789.6	303.99	0.26%	[1]	mg/L
Cr 267.716†	138057.7	645.14	0.47%	[1]	mg/L
Cu 327.393†	198505.1	827,11	0.42%	. [1]	mg/L
Fe 273.955†	21927.3	184.91	0.84%	[10]	mg/L
K 766.490 R†	1412723.2	1505.48	0.11%	[200]	mg/L
Mg 279.077†	13140.3	87.21	0.66%	[10]	mg/L
Mn 257.610†	1311227.4	4836.20	0.37%	[1]	mg/L
Mo 202.031†	38984.9	238.17	0.61%	[1]	mg/L
Na 589.592 R†	953345.3	2460.31	0.26%	[50]	mg/L
Ni 231.604†	52995.6	268.59	0.51%	[1]	mg/L
P 213.617†	60864.4	466,35	0.77%	[10]	mg/L
Pb 220.353†	11010.0	55.69	0.51%	[1]	mg/L
Sb 206.836†	5003.4	55.29	1.10%	[1]	mg/L
Se 196.026†	2740.2	30.61	1.12%	[1]	mg/L
Sn 189.927†	61376.8	422.85	0.69%	[4]	mg/L
Sr 421.552R†	753387.5	2103.24	0.28%	[1]	mg/L
Ti 337.279†	2871525.5	14225.29	0.50%	[5]	mg/L
Tl 190.801†	8918.6	110.61	1.24%	[1]	mg/L
V 290.880†	326060.8	1201.30	0.37%	[2]	mg/L
Zn 206.200†	188232.1	370.26	0.20%	[2]	mg/L
Li 670.784†	1952344.1	7131.60	0.37%	[10]	mg/L

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	4	Lin Thru 0	0.0	276500	0.00000	0.999996	
Al 394.401	4	Lin, Calc Int	-73.4	1869	0.00000	0.999963	
As 188.979	4	Wt. Lin	-1,5	4184	0.00000	0.999769	
B 208.956	4	Lin Thru O	0.0	17650	0.00000	0.999854	
Ba 233,527	4	Wt. Lin	-17.1	305300	0.0000	0.999999	
Be 313.107	4	Wt. Lin	-365.4	3547000	0.00000	0.999904	
Ca 315.887	4	Wt. Lin	20.9	8226	0.00000	0.999961	
Cd 228.802	4	Wt. Lin	-5.3	122300	0.00000	0.999972	
Co 228.616	4	Wt. Lin	5.5	115200	0.00000	0.999860	
Cr 267.716	4	Wt. Lin	19.9	134600	0.00000	0.999811	
Cu 327.393	4	Wt. Lin	-144.5	198800	0.00000	1.000000	
Fe 273.955	4	Lin Thru O	0.0	2188	0.00000	0.999984	
K 766.490 R	4	Lin Thru O	0.0	7055	0.00000	0.999997	
Mg 279.077	4	Lin Thru O	0.0	1311	0.00000	0.999987	
Mn 257.610	4	Wt. Lin	-67.1	1315000	0.00000	0.999997	6.200
Mo 202.031	4	Wt. Lin	10.9	38770	0.00000	0.999992	
Na 589,592 R	4	Lin Thru O	0.0	19070	0.00000	0.999996	
Ni 231,604	4	Wt. Lin	14.7	53030	0.00000	1.000000	
P 213.617	4	Wt. Lin	-11,1	5986	0.00000	0.999891	
Pb 220.353	4	Lin Thru O	0.0	11000	0.0000	0.999999	
Sb 206.836	4	Wt. Lin	-13.2	4943	0.00000	0.999937	
Se 196.026	4	Lin, Calc Int	-6,5	2734	0.0000	0.999920	
Sn 189,927	4	Wt. Lin	0.7	15350	0.00000	1.000000	
Sr 421.552R	4	Lin Thru O	0.0	754300	0.00000	0.999995	
Ti 337.279	4	Wt. Lin	23.0	573300	0.00000	0.999995	
Tl 190.801	4	Wt. Lin	-8.9	8938	0.00000	0.999997	
V 290.880	4	Wt. Lin	-152.2	162800	0.00000	0.999991	
Zn 206.200	4	Lin Thru O	0.0	94100	0.00000	0.999985	
Li 670.784	4	Wt. Lin	962.6	197200	0.0000	0.999921	

Ħ

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Wethod	Comments
Calib Blank	Y	Ag	[0.00]	i	[0.00]	3/21/2014	17:42	ICAL		
Calib Blank	Y	Al	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL		
Calib Blank	Y	As	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Y	В	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Ŷ	Ba	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Y	Be	[0.00]	1	[0.00]	3/21/2014	17:42	ICAL		
Calib Blank	Ŷ	Ca	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL		
Callo Blank	¥ V	Co	[0.00]	4	[0.00] (0.00]	3/21/2014	17.40			
Calib Blank	r V	Cr	10.003	4	10.001	3/21/2014	17:43	ICAL		
Calib Blank	Ý	Cu	[0:00]	1	[0.00]	3/21/2014	17:42	ICAL		
Calib Blank	Ý	Fe	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL		
Calib Blank	Y	к	[0.00]	1	[00.0]	3/21/2014	17:41	ICAL		
Calib Blank	Y	Li	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL		
Calib Blank	Y	Mg	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL		
Calib Blank	Y	Mn	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Y	Mo	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Y	Na	[0.00]	1	[0.00]	3/21/2014	17:41	ICAL		
Calib Blank	Ŷ	Ni	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Ŷ	P	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Ŷ	60 60	{0.00}	1 4	[0.00]	3/21/2014	17:43	ICAL		
Callo Dialik Calib Blank	v	So	[0.00] [0.00]	। न	[0.00]	3/21/2014	17.43	ICAL		
Calib Blank	Ý	Sn	0.001	1	10.001	3/21/2014	17:43	ICAL		
Calib Blank	Ý	Sr	10.001	1	[00.00]	3/21/2014	17:41	ICAL		
Calib Blank	Ŷ	Ti	10.001	1	10.001	3/21/2014	17:42	ICAL		
Calib Blank	Ý	Tİ	[0.00]	f	10.001	3/21/2014	17:43	ICAL		
Calib Blank	Y	v	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Blank	Y	Zn	[0.00]	1	[0.00]	3/21/2014	17:43	ICAL		
Calib Std 1	Y	Ag	[0.01]	1	98.92	3/21/2014	17:47	ICAL		n lanan mananan mananan mangapan kalangan kakan perinterakan kanan lanan kara kara kara karanan karanan karanap
Calib Std 1	Y	AI	[0.1]	1	97.54	3/21/2014	17:46	ICAL		
Calib Std 1	Y	As	[0.01]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	В	[0.05]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	Ba	[0.01]	i	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	Be	[0.004]	1	98.92	3/21/2014	17:47	ICAL		
Callb Std 1	Y	Ca	0.1	1	97.54	3/21/2014	17:40	ICAL		
Callo Std 1	T V	Co	[0.005]	1	90.92	3/21/2014	17:40	ICAL		
Calib Std 1	v v	Cr	[0.01]	1	90.92	3/21/2014	17:48	ICAL		
Calib Std 1	Ý	Cu	10.01]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Ŷ	Fe	[0,1]	1	97.54	3/21/2014	17:46	ICAL		
Calib Std 1	Y	к	[2]	1	97.54	3/21/2014	17:46	ICAL		
Calib Std 1	Y	Li	[0.1]	1	98.92	3/21/2014	17:46	ICAL		
Calib Std 1	Y	Mg	[0.1]	1	97.54	3/21/2014	17:46	ICAL		
Calib Std 1	Ŷ	Mn	[0.01]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	Mo	-[0.01]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	Na	[0.5]	1	97.54	3/21/2014	17:46	ICAL		
Calib Std 1	Ŷ	Ni	[0.01]	. 1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Ŷ	۲ ۵۲	[U.1] (0.04)	1	98,92	3/21/2014	17:48	ICAL		
Calib Stori	ř	60 65	0.01	1	90.92	3/21/2014	17:48	IGAL		
Calib Std 1	Ý	Se	[0.01]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Ý	Sn	[0.04]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Ý	Sr	(0.01)	1	97.54	3/21/2014	17:46	ICAL		
Calib Std 1	Ŷ	Ti	[0.05]	1	98.92	3/21/2014	17:47	ICAL		
Calib Std 1	Y	TI	[0.01]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	V	[0.02]	1	98.92	3/21/2014	17:48	ICAL		
Calib Std 1	Y	Zn	[0.02]	1	98.92	3/21/2014	17:48	ICAL	a for farmer in the second second second second second second second second second second second second second	****
Calib Std 2	Y	Ag	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	Ai	[1]	1	97.64	3/21/2014	17:51	ICAL		
Calib Std 2	Ý	As	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Callo Std 2	Ŷ	H De	[0.5]	1	98.79	3/21/2014	17:52	ICAL		
Callo Sto 2	r V	Ba	[U.1] [0.04]	4	96.79	3/21/2014	17:52	ICAL		
Calib Std 2	* 	Ca	[0.04]	1	90.79	3/21/2014	17.52			
Callb Std 2	' V	Cd	[0 05]	4	97,04	3/21/2014	17:52	ICAL		
Calib Std 2	Ŷ	Co	{0.11	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	Cr	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	Cu	(0.1)	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Ŷ	Fe	[1]	1	97.64	3/21/2014	17:51	ICAL		
Calib Std 2	Ý	к	[20]	1	97.64	3/21/2014	17:51	ICAL		
Callb Std 2	Y	Li	[1]	1	98,79	3/21/2014	17:51	ICAL		
Callb Std 2	Y	Mg	[1]	1	97.64	3/21/2014	17:51	ICAL		
Callb Std 2	Ŷ	Mn	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Callo Sto 2	Ý	MO Mo	[0.1]	ן ג	98.79	3/21/2014	17:52	IGAL		
Calib Stor 2	¥ V	Na Ni	[0] (0.11	1	97,04 08.70	3/21/2014	17:51	ICAL ICAL		
Calib Std 2	, V	P	[0.1] [1]	1	90,79 98 70	3/21/2014	17.52	ICAL ICAL		
Callb Std 2	Ý	Рb	10.11	1	98.79	3/21/2014	17:52	ICAL.		
		. –								2 / 1
										ンサ1

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
Calib Std 2	Y	Sb	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	Se	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	Sn	[0.4]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	Sr	[0.1]	1	97.64	3/21/2014	17:51	ICAL		
Calib Std 2	Y	Ti	[0.5]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Y	TI	[0.1]	1	98.79	3/21/2014	17:52	ICAL		
Calib Std 2	Ŷ		[0.2]	1	98.79	3/21/2014	17:52	ICAL		
	۲ ************************************	(} محمد محمد الم	[0.2]	1	90.79	3/21/2014	17.52			
Callb Stors	v	AU	[0.5]	1	100.1	3/21/2014 3/21/2014	17.00	ICAL		
Calib Std 3	v	As	10.51	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Ý	B	(2.5)	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Ŷ	Ba	[0.5]	1	96,95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	8e	[0.2]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Ca	[5]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Cd	[0.25]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Co	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Ŷ	Cr	[0.5]	1	96,95	3/21/2014	17:56	ICAL		
Callo Std 3	Ŷ	CU	[0.5]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	r V	ге и	[0]	1	100.1	3/21/2014	17.00	ICAL		
Calib Std 3	Ý	11	[100]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	Ma	[5]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	Mn	[0.5]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Mo	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Na	[25]	1	100.1	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Ni	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	P	[6]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Y	Pb	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Calib Std 3	Ŷ	Sb	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Callo Std 3	r V	5e Sa	[0.5]	1	90.95	3/21/2014	17:56	ICAL		
Calib Std 3	Ý	Sr	141	1	100 1	3/21/2014	17:55	ICAL		
Calib Std 3	Ŷ	Ti	[2.5]	1	96.95	3/21/2014	17:55	ICAL		
Callb Std 3	Y	ΤI	[0.5]	1	96.95	3/21/2014	17:56	ICAL		
Callb Std 3	Y	V	[1]	1.	96.95	3/21/2014	17:55	ICAL		
Calib Std 3	Y	Zn	[1]	1	96.95	3/21/2014	17:55	ICAL		
Calib Std 4	Y	Ag	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	Al	[10]	1	98.15	3/21/2014	17:58	ICAL		
Callo Std 4	r V	AS B	[1]	1	94.76	3/21/2014	17:59			
Calib Std 4	Ý	Ba	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ý	Be	[0.4]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Са	[10]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Çd	[0.5]	1	94.76	3/21/2014	17:59	(CAL		
Calib Std 4	Y	Co	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Cr	[1]	1	94.76	3/21/2014	17:59	ICAL		
Callo Std 4	Y	CU E	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	v	K.	(2003	1	96.10	3/21/2014	17:58			
Calib Std 4	Ý	Li	(10)	1	94.76	3/21/2014	17:58	ICAL		
Callb Std 4	Ý	Mq	[10]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	¥	Mn	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Mo	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	Na	[50]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	Ni	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	P	[10]	1	94.76	3/21/2014	17:59	ICAL		
Callb Std 4	Ŷ	20 82	[1]	1 4	94.76 04 76	3/21/2014	17:59	ICAL ICAL		
Calib Std 4	Ý	Se	L*/ [1]	1	94 76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	Sn	[4]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ŷ	Sr	[1]	1	98.15	3/21/2014	17:58	ICAL		
Calib Std 4	Y	TI	[5]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Ý	ΤĮ	[1]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	Y	V	[2]	1	94.76	3/21/2014	17:59	ICAL		
Calib Std 4	<u>Y</u>	Zn	[2]	1	94.76	3/21/2014	17:59	ICAL		
ICV	ř V	Ag	0.004	1	95.89	3/21/2014	18:02	ICV		
ICV	Ý	Ae	1 001	1	97.0 95 89	3/21/2014	18:02	ICM		
ICV	Ý	. ,З В	3,937	1	95.89	3/21/2014	18:02	ICV		
ICV	Ý	Ba	1.967	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Be	0.502	1	95.89	3/21/2014	18:02	ICV		
ICV	Ϋ́	Са	80.620	1	99.6	3/21/2014	18:01	ICV		
ICV	Y	Cđ	0.399	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Co	1.002	1	95.89	3/21/2014	18:02	ICV		
	Y	Cr C···	1.015	1 ₄	95.89	3/21/2014	18:02	ICV		
icv ICV	T V	çц Ге	1.000	1 1	90.09 A 00	3/21/2014 3/21/2014	10:02	icv Icv		
ICV	Ý	к	20.640	1	99.6	3/21/2014	18:01	ICV		
										~ * ~

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
ICV	Y	Li	5.127	1	95.89	3/21/2014	18:01	ICV		
ICV	Y	Mg	19.710	1	99.6	3/21/2014	18:01	ICV		
ICV	Y	Mn	1.960	1	95.89	3/21/2014	18:02	ICV		
ićv	Y	Mo	1.971	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Na	20.590	1	99.6	3/21/2014	18:01	ICV		
ICV	Y	Ni	2.014	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Р	9.872	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Pb	0.492	1	95.89	3/21/2014	18:02	ICV		
ICV	Y	Sb	0.991	1	95.89	3/21/2014	18:02	ICV		
ICV	Ŷ	Se	1.988	1	95.89	3/21/2014	18:02	ICV		
ICV ICV	Ŷ	5n Cr	4.803	1	95.89	3/21/2014	18:02			
	r V	or Ti	2.017	1	99.0	3/21/2014	10.01			
ICV	Ý	71	0.203	1	95.05	3/21/2014	18:02	ICV		
ICV	Ý	v	1 994	1	95.89	3/21/2014	18:02	ICV		
ICV	Ý	Žn	4 823	1	95.89	3/21/2014	18:02	ICV		
ICB	Ý	Aα	0.000	1	99.41	3/21/2014	18.06	CCB	anna ann ann ann ann ann ann ann ann an	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
ICB	Ŷ	Al	-0.034	1	97.16	3/21/2014	18:05	CCB		
ICB	Ý	As	-0.001	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	в	0.023	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Ва	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Be	0.000	1	99.41	3/21/2014	18:06	CCB		
ICB	Y	Са	-0.006	1	97.16	3/21/2014	18:05	CCB		
ICB	Y	Cd	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Co	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Cr	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Cu	0.001	1	99.41	3/21/2014	18:06	CCB		
ICB	Y	Fe	0.001	1	97.16	3/21/2014	18:05	CCB		
ICB	Y	ĸ	0.055	1	97.16	3/21/2014	18:05	CCB		
ICB	Ŷ	Li	-0.005	1	99.41	3/21/2014	18:05	CCB		
ICB	Y V	Mg	-0.018	1	97,16	3/21/2014	18:05	CCB		
ICB	T V	11111	0.000	} 1	99.41	3/21/2014	19:07			
	v.	No	0.000	1	07 16	3/21/2014	18:05	008		
ICB	Ŷ	Ni	0.010	4	99.41	3/21/2014	18:07	CCB		
ICB	Ý	p	-0.005	1	99.41	3/21/2014	18:07	CCB		
ICB	Ý	Pb	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Ŷ	Sb	0.001	1	99.41	3/21/2014	18:07	CCB		
ICB	Ŷ	Se	0.002	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Sn	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Sr	0.000	1	97.16	3/21/2014	18:05	ССВ		
ICB	Y	Ti	0.000	1	99.41	3/21/2014	18:06	CCB		
ICB	Y	П	0.000	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	V	0.001	1	99.41	3/21/2014	18:07	CCB		
ICB	Y	Zn	-0.003	1	99.41	3/21/2014	18:07	CCB	······	
Blank	N	Ag	0.000	1	99.31	3/21/2014	18:11	MISC		
Blank	N	AI	-0.044	1	96.87	3/21/2014	18:10	MISC		
Blank	N	As	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	8	0.010	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Be	0.000	1	99.31	3/21/2014	10.12	MISC		
Blank	N	Ca	-0.006	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Cd	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Co	0.000	1	99.31	3/21/2014	18:12	MISC		<i>i</i>
Blank	N	Cr	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Cu	0.001	1	99.31	3/21/2014	18:11	MISC		
Blank	N	Fe	0.000	1	96.87	3/21/2014	18:10	MISC		
Blank	N	к	-0.001	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Li	-0.005	1	99.31	3/21/2014	18:10	MISC		
Blank	Ν	Mg	-0.013	1	96.87	3/21/2014	18:10	MISC		
Blank	Ν	Mn	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Мо	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Na	0.023	1	96.87	3/21/2014	18:10	MISC		
Blank	N	Ni	0.000	1	99.31	3/21/2014	18:12	MISC		
Blank	N	P	-0.002	1	99.31	3/21/2014	18:12	MISC		
Blank	N	PD	0.000	1	99.31	3/21/2014	18:12	MISC		
und IA Blank	N N	00	0.001	1	98.31 00.34	312112014	10:12	MISC		
eneur. Riank	EN M	ur Sn	0.003 _0.001	4	59,31 00,34	372 172014 R/91/9014	10:12	MIGC		
Blank	N.	Sr.	0.000	1	96.87	3/21/2014	10.12	MISC		
Blank	N	TT TT	0.000	1	99.31	3/21/2014	18:11	MISC		
Blank	N	m	-0,001	1	99.31	3/21/2014	18:12	MISC		
Blank	N	V	0.001	1	99.31	3/21/2014	18:12	MISC		
Blank	N	Zŋ	-0.003	1	99.31	3/21/2014	18:12	MISC	•	
MRL	Y	Ag	0.010	osennossenos 1	99.46	3/21/2014	18:16	MRL		zerze z zazado za konstruktiva na konstrukcio na konstrukcio na konstrukcio na konstrukcio na konstrukcio na ko
MRI.	Y	A	0.069	1	97.54	3/21/2014	18:15	MRL		MRL FL,
MRL	Y	As	0.009	1	99.46	3/21/2014	18:17	MRL.		
MRI.	Y	в	0.062	1	99.46	3/21/2014	18:17	MRI.		
MRL	Y	Ba	0.010	1	99.46	3/21/2014	18:17	MRL		~ 1~
										343

.

	DDT	امعا	Come (menth)	nr	10 0 (8/)	A10	6	P	B. Ala a d	Commente
SAMPLE ID	KP I	Anai	Conc (mg/c)		15 Rec (%)	AnaiDate	Analime	Samp Type	Methoa	Comments
MRL	r V	0.0	0.004	1	07.54	3/21/2014	10.10	IVITAL.		
ivirsi,	r V		0.099	1	97,04	3/21/2014	10,10	IVHIL.		
MRL	r V	C0	0.005		99.40	3/21/2014	18:17	MRL.		
MIRL	Y	00	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	¥ V	UF O	0.010	1	99.40	3/21/2014	18:17	MRL		
MRL	Ŷ	Cu	0.011	1	99.46	3/21/2014	18:16	MRL		
MRL	Ŷ	Fe	0,106	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	ĸ	2.028	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Li	0.099	1	99.46	3/21/2014	18:15	MRL		
MRL	Y	Mg	0.096	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Мп	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Mo	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Na	0.546	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Ni	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	P	0.095	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Pb	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Sb	0.011	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Se	0.012	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Sn	0.040	1	99.46	3/21/2014	18:17	MRL		
MRL	¥	Sr	0.011	1	97.54	3/21/2014	18:15	MRL		
MRL	Y	Τi	0.050	1	99.46	3/21/2014	18:16	MRL.		
MRL.	Y	τı	0.010	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	v	0.019	1	99.46	3/21/2014	18:17	MRL		
MRL	Y	Zn	0.017	1	99,46	3/21/2014	18:17	MRL		
ICSA	Y	Aα	-0.005	1	86.49	3/21/2014	18.20	ICS-A		<u></u>
ICSA	Ý	AI	753 100	1	92 14	3/21/2014	18:19	ICS-A		
ICSA	v v	Δe	-0.001	1	86.49	3/21/2014	18:20	105-4		
100A	, V	a a	0.053	4	86.49	3/21/2014	18:20	100-A		
ICCA	 	 Ra	0.000	4	86.40	2/21/2014	18:20	108 4		
ICOA	r V	Pa	-0.003	1	96.40	3/21/2014	10.20	100-A		
ICOA	T V	De	702 600	1	00.49	3/21/2014	10.20	ICS-A		
ICSA	v v		703.000	1	92.14	3/21/2014	10,19	ICS-A		
ICSA	1 V	Ca	0.000	4	00.49 PC 40	3/21/2014	10:20	103-A		
IUSA	Y V	00	0.016	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ŷ	Çr Q	-0.003	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ŷ	Cu	0.002	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ŷ	Fe	668.200	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Ŷ	ĸ	0.192	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Ŷ	Li	-0,006	1	86.49	3/21/2014	18:19	ICS-A		
ICSA	Y	Mg	697.800	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Y	Mn	-0.012	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Mo	0.013	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Na	0.034	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Y	Ni	0.016	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Р	-0.014	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Pb	-0.006	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Şb	-0.017	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ý	Se	0.000	1	86.49	3/21/2014	18:20	ICS-A		· · · · · · · · · · · · · · · · · · ·
ICSA	Y	Sn	0.034	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	Sr	-0.002	1	92.14	3/21/2014	18:19	ICS-A		
ICSA	Y	Tì	0.003	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Y	TI	-0.001	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ŷ	V	-0.010	1	86.49	3/21/2014	18:20	ICS-A		
ICSA	Ý	Zn	0.026	1	86 49	3/21/2014	18:20	ICS-A		
ICSAR	v v	Δ <i>α</i>	0.209	1	86.05	3/21/2014	18-28	ICS-AB	****	
ICSAB	Ý	AL	786 500	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Ý	As	0.216	1	86.05	3/21/2014	18.29	ICS-AB		
ICSAB	, v	A A	1 033		86.05	3/21/2014	18.29	1CS-AB		
ICSAB	Ý	Ba	0 198	1	86.05	3/21/2014	10.20	105-49		
ICSAB	v	He He	0.100	' 1	88.05	3/21/2014	19.20	ICS-AB		
ICSAB	, v	00	694 100	4	03.11	3/21/2014	18:27			
ICSAB	, ,	Cd	0.414	4	95.11	3/21/2014	18-29			
10000	v v	Co	0.314	4	86.05	3/23/2014	10.20	103-70		
ICEND	· ·	~	0.203	1	80.00 86.05	3/21/2014	10.20	ICO-AD		
10940	r	φr 201	0.192	 4	00,00 00.00	3/24/2014	10.20	103-85		
10348	Ť	Cu E-	0.213		80.05	3/21/2014	18:28	105-45		
	۲ ب	r0 	077,100	-	93.13	arz 1/2014 a/ar//ace	18:27	ICS-AB		
IUSAB	Y	ĸ	45.010	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	LI	2,246	1	86.05	3/21/2014	18:27	ICS-AB		
ICSAB	Y	₩g	703,700	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	Mn	0.186	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Ϋ́	Mo	0.209	1	86,05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Na	11.210	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	N	0.202	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Р	2.057	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Ý	Pb	0.177	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Sb	0.197	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Se	0.207	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Sn	0.797	1	86.05	3/21/2014	18:28	ICS-AB		
ICSAB	Y	Sr	0.205	1	93.11	3/21/2014	18:27	ICS-AB		
ICSAB	Y	Ti	1.029	3	86.05	3/21/2014	18:28	ICS-AB		" . · ·

SAMPLE ID	RPT	Anal	Conc (ma/L)	DF	IS Rec (%)	AnaiDate	AnaiTime	Samo Type	Method	Comments
ICSAR	Y	71	0 190	1	86.05	3/21/2014	18.28	ICS-AB		
ICSAR	Ý	v	0.393	1	86.05	3/21/2014	18:28	ICS-AB		\sim
ICSAB	Ý	70	0.387	1	86.05	3/21/2014	18:28	ICS-AB		1
	÷.	40	0.007		06.05	3/21/2014	19-26	CCV		
COV	, v	AU	4.90	4 +	90.10	3/21/2014	10.00	COV		
COV	T V	/% A.c.	4.900	; 4	90.20	2/21/2014	10.00	000		
007	, ,	~S	0.000	1	90.15 De 15	3/21/2014	10.30	COV		
	Y	р.,	2.434	1	90.15	3/21/2014	10:30			
	v v	pa Pa	0.499	1	90.10	3/21/2014	10.00	000		
	r V	Co	0.201	1	90,15	3/21/2014	10:00	000		
	Ŷ	Ca Od	5.053	1	98.25	3/21/2014	18:30			
CUV	Ŷ	Ca	0.248	1	96.15	3/21/2014	18:30			
CCV	Ŷ	0	0.494	1	90.15	3/21/2014	18:36	GUV		
CCV	Ŷ	Cr	0.496	1	96.15	3/21/2014	18:30	CCV		
CCV	Ŷ	Cu	0.494	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	Fe	5.081	1	98.25	3/21/2014	18:35	CCV		
CCV	Ý	ĸ	99.770	1	98.25	3/21/2014	18:35	CCV		
CCV	Ŷ	LI	4.969	1	96.15	3/21/2014	18:35	CCV		· · · · ·
CCV	Ŷ	Mg	5.082	1	98.25	3/21/2014	18:35	CCV		
CCV	Y	M₽n	0.501	1	96,15	3/21/2014	18:36	CCV		
CCV	Y	Mo	0.502	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	Na	25.120	1	98.25	3/21/2014	18:35	CCV		
CCV	Y	Ni	0.505	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	р 	4.992	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	Pb	0.498	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Sb	0.498	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Se	0,502	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	Sn	2.024	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Sr	0.501	1	98.25	3/21/2014	18:35	CCV		
CCV	Ŷ	Ti	2.519	1	96.15	3/21/2014	18:36	CCV		1
CCV	Ŷ	TI	0.499	1	96.15	3/21/2014	18:36	CCV		
CCV	Ŷ	V	0.997	1	96.15	3/21/2014	18:36	CCV		
CCV	Y	Zn	1.007	;†	96.15	3/21/2014	18:36	CCV		
CCB	Y	Ag	0.001	1	98.34	3/21/2014	18:40	CCB		
CCB	Y	AI	-0.054	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	As	-0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	в	0.014	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Ba	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Be	0.000	1	98.34	3/21/2014	18:40	CCB		
CCB	Y	Са	-0.005	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	Çd	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Co	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Çr	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Cu	0.000	1	98.34	3/21/2014	18:40	CCB .		
CCB	Y	Fe	0.002	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	к	0.006	1	96.45	3/21/2014	18:39	CCB		
CC8	Ŷ	Li	-0.005	1	98.34	3/21/2014	18:39	CCB		
CCB	Y	Mg	-0.017	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	Mn	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Mo	0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Na	0.021	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	Ni	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Р	-0.007	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Pb	-0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Ŷ	SÞ	0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Se	0.003	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Sn	-0.002	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Sr	0.000	1	96.45	3/21/2014	18:39	CCB		
CCB	Y	TI	0.000	1	98.34	3/21/2014	18:40	CCB		
CCB	Y	TI	0.000	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	V	0.001	1	98.34	3/21/2014	18:41	CCB		
CCB	Y	Zn	-0.003	1	98.34	3/21/2014	18:41	CCB		
T1400360-002 2x	Ý	Ag	0.023	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	¥	Al	70.930	2	91.67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	As	0.069	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	в	0.151	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	8a	0.084	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Be	0.005	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Ca	3041.000	2	91.67	3/21/2014	18:43	SAMP	6010 S	
T1400360-002 2x	Y	Cđ	0.004	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Co	0.029	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Çr	0.302	Z	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Cu	0.145	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Fe	128.900	2	91.67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	к	24.600	2	91.67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Li	0.156	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Mg	24.270	2	91.67	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Mn	1.875	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2x	Y	Мо	0.017	2	87.06	3/21/2014	18:44	SAMP	6010 S	
T1400360-002 2v	Y	Na	5 076	2	91.67	3/21/2014	18 44	SAMP	6010 5	

..

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402003-003	Y	Sn	-0.003	1	101.1	3/21/2014	19:35	SAMP	200.7 W	
J1402003-003	Y	Sr	0.005	1	98.78	3/21/2014	19:33	SAMP	200.7 W	
J1402003-003	Y	TI	0.272	1	101.1	3/21/2014	19:34	SAMP	200.7 W	
J1402003-003	Y	TI	-0.001	1	101.1	3/21/2014	19:35	SAMP	200.7 W	
J1402003-003	Y	V	0.005	1	101.1	3/21/2014	19:35	SAMP	200.7 W	
J1402003-003	Y	Zn	0.007	1	101.1	3/21/2014	19:35	SAMP	200.7 W	
J1402003-004	Ŷ	Ag	0.000	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Ŷ	Ai	0.198	1	401.0	3/21/2014	19:38	SAMP	200.7 VV	
J1402003-004	i V	A\$ P	0,000	1	101.9	3/21/2014	19:40	SAMP	200.7 99	
11402003-004	Ý	D Ra	0.017	1	101.9	3/21/2014	19.40	SAMP	200.7 99	
11402003-004	v	Be	0.000	4	101.9	3/21/2014	19:39	SAMP	200.7 W	
11402003-004	Ý	Ca	0.326	1	99.98	3/21/2014	19:38	SAMP	200.1 W	
11402003-004	Ý	Cd	0.020	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
.1402003-004	Ý	Co	0.001	1	101.9	3/21/2014	19:40	SAMP	200.7 W	· · ·
J1402003-004	Ŷ	Cr	0.006	1	101,9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Cu	0.001	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Y	Fe	0.071	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	к	0.045	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Li	-0.005	1	101,9	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Mg	0.346	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Y	Mn	0.009	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Мо	0.000	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Na	1.709	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
J1402003-004	Ŷ	NI	0.000	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	۲ 05	0.005	1	101.9	3/21/2014	19:40	SAMP	200.7 VV	•
J1402003-004	r V	PD 06	-0.001	1	101.9	3/21/2014	19:40	SAMP	200.7 VV	
J1402003-004 H402003-004	, r	30 Co	0.001	4	101.9	3/21/2014	19:40	SAMO	200.7 99	
1402003-004	v v	Sn	-0.007	1	101.0	3/21/2014	10:40	SAMP	200.7 W	
11402003-004	Ý	Sr	0.005	1	99.98	3/21/2014	19:38	SAMP	200.7 W	
.11402003-004	Ý	Ti	0.001	1	101.9	3/21/2014	19:39	SAMP	200.7 W	
J1402003-004	Ý	Т	0.000	1	101,9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	v	0.001	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
J1402003-004	Y	Zn	0.002	1	101.9	3/21/2014	19:40	SAMP	200.7 W	
CCV	Y	Ag	0.488	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Ał	4.897	1	98.06	3/21/2014	19:42	CCV		
CCV	Ŷ	As	0.500	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	в	2.418	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Ва	0.490	1	96.64	3/21/2014	19:43	CCV		
CCV	Ŷ	Be	0.196	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Ca	4.947	1	98.06	3/21/2014	19:42	CCV		
CCV	Ŷ	Ca	0.247	1	90.04	3/21/2014	19:43	COV		
COV	v v	00	0.490	1	90.04	3/21/2014	10:40	COV		
COV	v.	Cu	0,495	+	96.64	3/21/2014	10.40	CCV		
CCV	Ý	Fe	4 975	1	98.06	3/21/2014	19:42	CCV		
CCV	Ý	ĸ	100.200	1	98.06	3/21/2014	19:42	CCV		
CCV	Ý	L	4.975	1	96.64	3/21/2014	19:42	CCV		
CCV	Y	Mg	4,980	1	98.06	3/21/2014	19:42	CCV		
CCV	Y	Mn	0,489	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Mo	0.499	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Na	25.220	1	98.06	3/21/2014	19:42	CCV		
CCV	Y	Ni	0.502	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Ρ	4.955	1	96.64	3/21/2014	19:43	CCV		
CCV	Y	Pb	0.498	1	96.64	3/21/2014	19:43	CCV		
CCV	Ŷ	SD	0.501	7	96.64	3/21/2014	19:43	CCV		
	Ŷ	5e 6c	0.490	1	90.04	3/21/2014	19(43	CCV		
COV	÷	QH 57	2.014	*	90.04	3/21/2014	19.43	COV		
CCV	v v	ої Ti	2 446	1	96.64	3/21/2014	19.42	CCV		
CCV	Ý	T	0.494	1	96.64	3/21/2014	19:43	CCV		
CCV	Ŷ	v	0.974	1	96.64	3/21/2014	19:43	ČCV		
CCV	Y	Zn	0.988	1	96.64	3/21/2014	19:43	CCV		
CCB	Ý	Ag	0.000	1	98.34	3/21/2014	19;47	CCB		ݺݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݕݷݕݷݷݷݷݷݷݷݷېزىكىتىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكى
ССВ	Y	AÌ	-0.062	1	95.45	3/21/2014	19:46	CCB		
CCB	Ŷ	As	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	8	0.011	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	Ba	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Y	Be	0.000	1	98.34	3/21/2014	19:47	CCB		
CCB	Y	Са	-0,004	1	95.45	3/21/2014	19:46	CCB		
CCB	Ŷ	Cd	0.000	1	98.34	3/21/2014	19:48	CCB		
	¥	00	0.000	1) 4	98.34 00 34	3/21/2014	19:48	CCB		
CCB CCB	r V	QF Chi	0.000	1	50.54 09.74	3/21/2014	19:48	CCB		
000	۲ V	U4 Ee	0.000	1	90.04 05.45	0121/2014 3/91/2014	10:44 10:49	000 CCP		
CCB	Ý	ĸ	0.043	+ 1	95.46	3/21/2014	19:40	CCB		
CCB	Ý	L	-0.005	1	98.34	3/21/2014	19:46	CCB		
CCB	Ŷ	Ma	-0.027	1	95.45	3/21/2014	19:46	CCB		~ ^ <i>*</i> *
	-	្មា	•							346

SAMPLE ID	RPT	Anai	Cone (mo/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	Method	Comments
CCR	Y	Mn	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Ý	Mo	0.000	1	98.34	3/21/2014	19:48	CCB		
000	Ý	Na	0.036	1	95.45	3/21/2014	19:46	CCB		
CCB	v	Ni	0.000	1	08.34	3/21/2014	10:48	CCB		
CCB	, v	0	0.000	1	08.34	3/21/2014	10:48	000		
000	, v	Dh.	0.001	1	08.34	3/21/2014	10:40	CCB		
CCB	, v	Sh	0.003	4	08.34	3/21/2014	19:48	CCB		
	v v	Sa	0.000	1	90.94	3/21/2014	10.40	CCB		
000	, v	Se	0.002	1	08.34	3/21/2014	10:48	000		
CCB	v	Sr	0,000	1	95.45	3/21/2014	19:46	CCB		
CCB	, v	10	0,000	1	08.34	3/21/2014	10-47	CCB		
008	, v	TI	0.000	1	08.34	3/21/2014	19:48	CCB		
CCB	Ý	v	0.000	1	98.34	3/21/2014	19:48	CCB		
CCB	Ŷ	Zn	-0.003	1	98.34	3/21/2014	19:48	600		
11402005 001	- v	Δα	0.001		08.12	3/21/2014	10.52	SAMP	200 7 14/	
11402005-001	, v	ΔI	0.129	4	100.6	3/21/2014	19:51	SAMP	200.7 14	
11402005-001	Ý	Δe	0.004	1	98 12	3/21/2014	19:53	SAMP	200.7 \\	
11402005-001	, v	R	0.169	1	08.12	3/21/2014	19:53	SAMP	200.7 W	
31402000-001	, v	Ra	0.011	1	98.12	3/21/2014	19:53	SAMP	200.7 W/	
11402005-001	÷	8e	0.000	1	98.12	3/21/2014	19:52	SAMP	200.7 W/	
11402005-001	v	Ca	65 910	1	100.6	3/21/2014	19:51	SAMP	200.7 \/	
11402005-001	, v	Cd	0.000	1	08 12	3/21/2014	19/53	SAMP	200.7 10	
1402005-001	v	Co	0.000	1	00.12 08.12	3/21/2014	10.50	SAMP	200.7 W	
11402000-001	v	00	0.000	1	00.12	3/21/2014	10.00	SAMP	200.7 10	
11402000-001	v'		0.000	1	00.12 08.12	3/21/2014	10.00	SAMP	200.1 11	
14402000-001	v	Cu En	0.000	1	100.12	3/21/2014	10.02	SVIN	200.7 11	
11402000-001	r V	re V	0.002	1 4	100.0	3/21/2014	10.01	SAMO	200.7 99	
11402000-001	r V	т. 11	a,arz _0.002	1 1	00.0 Qa 49	3/24/9044	10,01	SALAD	200.7 99	
U 1402000-001	v	L.I 3.10	-0.002	-	100.14	3/24/2014	10.01 10.51	SAMP	200.7 147	
J14V2000-001	ז v	wig Min	21.72V 0.017	1	0.001 01 90	VIA (16014 3/21/2014	10.69	CAND	200.7 187	
31402000-001	, v	IVe;	0.017	4	90.12	3/21/2014	19.00	CAMP	200.7 W	
31402003-001	÷	No	72 370	4	90.12 100.6	3/21/2014	19.00	SAMO	200.7 W	
J1402005-001	v	IN A	0.004	1	100.0	3/21/2014	19.01	SAMP	200.7 99	
J1402003-001	T V	INI D	0.001	1	90.12	3/21/2014	19,00	SAMP	200.7 99	
J1402005-001	· ·	Г 1016	0.034	-	00.12	3/21/2014	19.00	CAMP	200.7 99	
J1402000-001	r V	PD	-0.005	1	96.12	3/21/2014	19:03	SAMP	200.7 44	
J1402005-001	T	3D 0-	0.001	1	98.12	3/21/2014	19:53	SAMP	200.7 VV	
J1402005-001	ř	ର ଜ-	0.001	1	98,12	3/21/2014	19:53	SAMP	200.7 VV	
J1402005-001	Ŷ	Sn C-	0.013	1	98.12	3/21/2014	19:53	SAMP	200.7 W	
J1402005-001	Y	Sr Tr	3,313	1	100.6	3/21/2014	19:51	SAMP	200.7 W	
J1402005-001	Ŷ	11	0.001	1	98.12	3/21/2014	19:52	SAMP	200.7 VV	
J1402005-001	Ŷ	11	0.001	1	98.12	3/21/2014	19:53	SAMP	200.7 VV	
J1402005-001	, v	V To	0.000	4	98.12	3/21/2014	19:52	SAMP	200.7 W	
J1402005-001		<u>211</u>	0.040	* ************************************	90, FZ	3/21/2014	19.55	SAIVIP CAMP	200.7 W	
31402005-004	v	ΔI	0.001	+ 1	100.3	3/21/2014	19.00	SAMO	200,7 99	
11402005-004	Ý	Ac	0.006	4	100.3	3/21/2014	19:57	SAMP	200.7 14	
1402005-004	v	8	0.000	, 1	100.0	3/21/2014	10:57	SAMP	200.7 W	
1402005-004	v	Ba	0.039	1	100.3	3/21/2014	10.57	CAMP	200.7 W	
14402005-004	v	Bo	0.000	1	100.0	3/21/2014	19:56	SAMD	200.7 W	
11402005-004	Ý	Ca	66.420	1	101.3	3/21/2014	19:55	SAMP	200.7 W	
11402005-004	Ý	Cd	0.000	4	100.3	3/21/2014	19:57	SAMP	200.7 W	
11402005-004	Ý	Co	0.000	4	100.0	3/21/2014	19:57	SAMP	200.7 \\	
11402005-004	v v	Cr	0.003	1	100.0	3/21/2014	10.57	SAMP	200.7 14/	
.11402005-004	Ŷ	CH	0.034	1	100.3	3/21/2014	19.56	SAMP	200 7 14/	
.11402005-004	Ŷ	۶a	1 100	1	101.3	3/21/2014	10.00	SAMP	200.7 14/	
J1402005-004	y Y	ĸ	8 958	1	101.3	3/21/2014	10.55	SAMP	200.7 \\	
J1402005-004	Ý	E E	-0.002	1	100.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Ŷ	Ma	19.230	. 1	101.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Ý	Mn	0,020	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J1402005-004	Ŷ	Mo	0,003	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Ŷ	Na	59.050	1	101.3	3/21/2014	19:55	SAMP	200.7 W	
J1402005-004	Y	Ni	0.003	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
.11402005-004	Y	P	4,181	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Ŷ	Pb	-0.001	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Sb	0.000	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Ŷ	Se	0.002	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Sn	0.016	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	Sr	1.094	1	101.3	3/21/2014	19:55	SAMP	200,7 W	
J1402005-004	Y	Ti	0.014	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J1402005-004	Ŷ	TI	0.000	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402005-004	Y	V	0.007	1	100.3	3/21/2014	19:56	SAMP	200.7 W	
J1402005-004	Y	Zn	0.124	1	100.3	3/21/2014	19:57	SAMP	200.7 W	
J1402022-001	Y	Aq	0.001	1	99.42	3/21/2014	20:01	SAMP	6010 W	
J1402022-001	Ŷ	Al	0.305	1	98.09	3/21/2014	20:00	SAMP	6010 W	
J1402022-001	Y	As	0.015	1	99.42	3/21/2014	20:01	SAMP	6010 W	
J1402022-001	Ŷ	в	0.039	1	99.42	3/21/2014	20:01	SAMP	6010 W	
J1402022-001	Ý	Ba	0.094	î	99.42	3/21/2014	20:01	SAMP	6010 W	
J1402022-001	Y	Be	0.000	1	99.42	3/21/2014	20:01	SAMP	6010 W	
J1402022-001	Ŷ	Ca	66,010	1	98.09	3/21/2014	20:00	SAMP	6010 W	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402022-003	Y	Zn	0.053		100.2	3/21/2014	20:11	SAMP	6010 W	NUKOS 2020KT KYTYTEKA RODANNE KANYKONSKE KANYKONSKE KANYKONSKE KUMPANIKA PARAMINA PARAMINA PARAMINA PARAMINA P
J1402022-004	Ŷ	Ag	0.001	1	98,62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Ŷ	Al	1.052	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Y	AS	0.006	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J 1402022-004	r V	D Ra	0.340	1	90.02	3/21/2014	20.10	SAMD	6010 W	
1402022-004	Ý	Be	0.002	1	98.62	3/21/2014	20:10	SAMP	6010 W	
.11402022-004	Ý	Ca	54.020	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Ý	Cđ	0.000	1	98,62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Co	0.001	1	98.62	3/21/2014	20:16	SAMP	8010 W	
J1402022-004	Y	Cr	0.001	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Cu	0.003	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Fe	0.793	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Ŷ	K	12.100	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Ŷ	LI Ma	-0.005	1	98.62	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Ŷ	Mo	12,070	1	101.5	3/21/2014	20:15	SAMP	6010 W	
1402022-004	v.	Mo	0.001	1	98.62	3/21/2014	20:16	SAMP	6010 W	
.11402022-004	Ý	Na	71 960	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Ŷ	Ni	0.006	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Р	0.160	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Pb	-0.002	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Sb	-0.001	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Se	0.000	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Y	Sn	0.012	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-004	Ŷ	Sr	0.914	1	101.8	3/21/2014	20:15	SAMP	6010 W	
J1402022-004	Ý	H TI	0.031	1	98.62 58.62	3/21/2014 3/24/2044	20:16	SAMP	8010 W	
11402022-004	r Y	V V	0.002	+ 1	90.02 98.62	3/21/2014	20.10	SAMP	6010 W	
J1402022-004	Ý	Zn	0.028	1	98.62	3/21/2014	20:16	SAMP	6010 W	
J1402022-005	Y	Ag	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	***************************************
J1402022-005	Y	AĬ	0.021	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-005	Y	As	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	В	0.007	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Ba	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	8e	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Ca	-0.001	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-000	ř V	Ca	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
.11402022-005	Ý	Cr	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Ŷ	Cu	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Fe	0.000	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-005	Y	к	-0.001	1	100.4	3/21/2014	20:19	SAMP	6010 W	
J1402022-005	Y	Li	-0.005	1	101.1	3/21/2014	20:19	SAMP	6010 W	
J1402022-005	Y	Mg	0.001	1	100.4	3/21/2014	20:20	SAMP	6010 W	
J1402022-005	Ŷ	Mn	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	r V	ŧ¥IQ Miα	-0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
11402022-000	Ý	Mi	0,020	1	101.4	3/21/2014	20.15	SAMP	6010 W	
.11402022-005	Ý	p	-0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Ý	Pb	-0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Sb	-0.001	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Ŷ	Se	0.003	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Sn	-0.002	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-005	Y	Sr	0.000	1	100.4	3/21/2014	20:19	SAMP	6010 W	
J1402022-005	Ŷ	Ti	0.000	1	101.1	3/21/2014	20:21	SAMP	6010 W	
J1402022-000 H402022-006	Y V	H V	0.000	1	101.1	3/21/2014 3/21/2014	20:21	SAMO	6010 W	
11402022-005	v v	7n	0.001	1	101.1	3/21/2014	20.21	SAMP	6010 W	
.11402025-001	Y	Aa	0.001		99.75	3/21/2014	20.26	SAMP	6010 W	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
J1402025-001	Ŷ	Al	0.192	1	98.96	3/21/2014	20:25	SAMP	6010 W	
J1402025-001	Y	As	0.002	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ý	8	0.021	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Ba	0.013	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Be	0.000	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y.	Ca	51.710	1	98.96	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Ŷ	Çđ Ca	0.000	1	99.75	3/21/2014	20:26	SAMP	6010 W	
1402020-001	ĭ V	Ca Cr	0.001	1	99.75 QG 75	3/21/2014	20:20	SAMP	0010 VV 6010 W	
J1402025-001	Y	Cu	0.002	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ý	Fe	0.265	4	98.96	3/21/2014	20:25	SAMP	6010 W	
J1402025-001	Y	K	1.388	1	98.96	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Ý	Li	-0.004	1	99.75	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Y	Mg	1.571	1	98.96	3/21/2014	20:25	SAMP	6010 W	
J1402025-001	Y	Mn	0.001	1	99,75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ŷ	Mo	0.005	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Ŷ	17(2) 8.65	1.613	ן 1	98,96	3/21/2014	20:24	SAMP	6010 W	
.11402025-001	v	191 P	0.011	1	99.75	3/21/2014	20.20	SAMP	6010 W	
	,	•	9.911	•	vu., v	WORK DIRECTLY		G1 8811		* / 0

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402025-001	Y	Pb	-0.005	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Sb	0.001	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Se	0,002	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Sn	0.012	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Sr	0.142	1	98.96	3/21/2014	20:24	SAMP	6010 W	
J1402025-001	Y	Ti	0.006	1	99,75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	TI	0.001	1	99,75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	V	0.005	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-001	Y	Zn	0.000	1	99.75	3/21/2014	20:26	SAMP	6010 W	
J1402025-002	Ý	Ag	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	AI	0.096	1	98.1	3/21/2014	20:30	SAMP	6010 W	
J1402025-002	Y	As	0.003	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	В	0.026	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Ba	0.009	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Be	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Ŷ	Ca	31.290	1	98.1	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Y	Cd	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Ŷ	Co	0.000	1	99.03	3/21/2014	20:31	SAM	6010 W	
J1402025-002	Ŷ	Cr Cw	0.000	1	99.03	3/21/2014	20.31	SAMO	6010 W	
J1402025-002	Y V	Ea	0.001	4	99.03	3/21/2014	20.31	SAMO	6010 W	
J1402020-002	v v	F.4	0.909	4	90.7	3/21/2014	20.00	SAMP	6010 W	
J1402025-002	v v		0.902	1	90.1	3/21/2014	20.29	SAMP	6010 W	
J 1402025-002	v v	1.1 840	-0.003	4	09.00	3/21/2014	20.25	SAMP	6010 W	
J1402025-002	, v	Mo	0.027	1	00.7	3/21/2014	20:30	SAMP	6010 W	
J1402020-002	v	Mo	0.027	1	99.00	3/21/2014	20:31	SAMP	6010 W	
31402020-002	v	Ma	6 730	1	99.00 Q8 1	3/21/2014	20.31	SAMP	6010 W	
1402025-002	v.	Ni	0,100	1	99.53	3/21/2014	20:31	SAMP	6010 W	
11402025-002	, v	p	0.068	1	99.53	3/21/2014	20:31	SAMP	6010 W	
11402025-002	v.	Ph	-0.003	, 1	99.53	3/21/2014	20:31	SAMP	6010 W	
11402025-002	Ŷ	Sb	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
.11402025-002	Ý	Se	0.003	1	99.53	3/21/2014	20:31	SAMP	6010 W	
.11402025-002	Ý	Sn	0.008	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Ý	Sr	0.051	1	96.1	3/21/2014	20:29	SAMP	6010 W	
J1402025-002	Y	TI	0.001	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	ΤI	0.001	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	v	0.003	1	99,53	3/21/2014	20:31	SAMP	6010 W	
J1402025-002	Y	Zn	0.000	1	99.53	3/21/2014	20:31	SAMP	6010 W	
J1402025-003	Y	Ag	0.001	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Y	AĬ	0.068	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	As	0.003	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	в	0.018	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Ва	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Be	0.000	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Y	Ca	23.420	1.	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	Cd	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Co	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Cr	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Cu	0.001	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Y	Fe	0.830	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	К	1.024	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	Li	-0,004	1	99.22	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	Mg	10.290	1	98.56	3/21/2014	20:34	SAMP	6010 W	
J1402025-003	Y	Mn	0.025	1	99.22	3/21/2014	20:35	SAMP	6010 W	
J1402025-003	Ŷ	Mo	0.007	1	99.22	3/21/2014	20:36	SAMP	6010 W	
J1402025-003	Y	Na	5.416	1	98.56	3/21/2014	20:34	SAMP	W 0100	
J1402025-003	Y	NI	0.000	1	99.22	3/23/2014	20:36	SAMP	OUTO W	
J1402025-003	Ŷ	P	0.213	1	99.22	3/23/2014	20:36	SAMP	0010 W	
J1402025-003	Y V	70 Ch	-0.004	1	99.22	3/21/2014	20,30	SMAR	6010 W	
J1402020-000	T V	30 6a	0.000	1	99.22	3/21/2014	20.30	SAMP	6010 W	
11402023-003	T V	30 60	0.001	1	00.22	3/21/2014	20:30	SAMP	6010 W	
11402023-003	,	Cr.	0.000	ः न	08.56	3/21/2014	20:34	SAMP	6010 W	
11402025-003	v	- 01 174	0,034		90.00	3/21/2014	20:35	SAMP	6010 W	
11402025-003	, v	71	0.000	1	99.22	3/21/2014	20:36	SAMP	6010 W	
1402025-003	Ý	V	0.003	1	99 22	3/21/2014	20:35	SAMP	6010 W	
.11402025-003	Ý	- Zn	0.002	1	99.22	3/21/2014	20:36	SAMP	6010 W	
CCV	Ý	Aa	0.490	1	95.82	3/21/2014	20:39	CCV		
CCV	Ŷ	Al	4.887	1	97.55	3/21/2014	20:38	CCV		
CCV	Ŷ	As	0.509	1	95.82	3/21/2014	20:39	ccv		
CCV	Ý	8	2.440	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	8a	0,493	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Be	0.197	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Са	4.972	1	97.55	3/21/2014	20:38	CCV		
CCV	Y	Cd	0.250	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Ço	0.496	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Cr	0.499	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	Cu	0.488	1	95.82	3/21/2014	20:39	CCV		
CCV	Υ	Fe	4.982	1	97.55	3/21/2014	20:38	CCV		

										- ·
SAMPLE ID	RPT	Anai	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
CCV	Y	к	100.400	1	97.55	3/21/2014	20:38	CCV		
CCV	Y	Li	4.982	1	95.82	3/21/2014	20:38	CCV		
CCV	Y	Ma	4,987	1	97.55	3/21/2014	20:38	CCV		
COV	Y	Mn	0.493	1	95.82	3/21/2014	20:39	CCV		
COV	Ý	Мо	0.505	1	95.82	3/21/2014	20:39	CCV		
COV	Ŷ	Na	25 250	1	97.55	3/21/2014	20:38	CCV		
COV	ÿ	Ni	0 508	1	95.82	3/21/2014	20:39	CCV		
000	ý	0	5.017		95,82	3/21/2014	20/39	COV		
000	, V	05	0.409	4	05.92	3/21/2014	20:30	CCV		
	, V	F U Ch	0.450	4	05.02	3/21/2014	20.00	CCV		
CCV	Ŷ	30	0.506	1	90.02	3/21/2014	20.35	000		
CCV	Ŷ	Se	0.503	1	95.82	3/21/2014	20.39	CCV		
CCV	¥	Sn	2.035	1	95.82	3/21/2014	20.39	000		
ccv	Ŷ	Sr	0.501	1	97.55	3/21/2014	20,36	001		
CCV	Y	11	2.460	1	95.82	3/21/2014	20:39	CCV		
CCV	Y	TI	0.499	3	95.82	3/21/2014	20:39	CCV		
CCV	Y	V	0.980	1	95.82	3/21/2014	20:39	CUV		
CCV	Y	Zņ	0.994	1	95.82	3/21/2014	20:39	CCV		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CCB	Y	Ag	0.001	1	98.39	3/21/2014	20:43	CCB		
CCB	Y	Al	-0.072	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	As	-0.001	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	в	0.005	1	98,39	3/21/2014	20:44	CCB		
CCB	Y	ва	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Be	0.000	1	98.39	3/21/2014	20:43	CCB		
CCB	Y	Са	-0.002	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	Cd	0,000	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Co	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Cr	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Y	Cu	0.001	1	98.39	3/21/2014	20:43	CCB		
CCB	Y	Fe	0.001	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	к	0.065	1	95.46	3/21/2014	20:42	CCB		
CCB	Y	Li	-0.005	1	98.39	3/21/2014	20:42	CCB		
CCB	Y	Ma	-0.013	1	95.46	3/21/2014	20;42	CCB		
CCB	Ŷ	Mn	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	Ŷ	Mo	0.000	1	98.39	3/21/2014	20:44	CCB		·
CCB	Ý	Na	0.028	1	95 46	3/21/2014	20:42	CCB		
CCB	Ý	Ni	0.000	1	98.39	3/21/2014	20:44	CCB		
CCB	÷	p	-0.007	1	98.39	3/21/2014	20.44	CCB		
000	÷	рь	-0.001	1	98.39	3/21/2014	20.44	CCB		
008	,	Sh	0.001		98.39	3/21/2014	20:44	CCB		
000	, v	50	0.000	,	08.30	3/21/2014	20.44	CCB		
COB	, v	50	0.000	4	08.30	3/21/2014	20:44	CCB		
COB	, v	011 6	-0.002	1 4	05.46	3/21/2014	20:49	000		
CUB	r V	31 Ti	0.000	1	50.40	3/21/2014	20.42	000		
CCB	Ŷ	11	0.000		98.39	3/21/2014	20.43	CCB		
CCB	Y	11	-0.001	1	98.39	3/21/2014	20:44	000		
CCB	Ŷ	v	0.001	1	98.39	3/21/2014	20:44	008		
CCB	Y	Zn	-0.003	1	98.39	3/21/2014	20:44	0.05	001010	
J1402025-004	Y	Ag	0.001	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Ý	AI	0.039	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	As	0.005	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	B	0.134	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Ba	0.009	1	99,45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Be	0.000	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	Ca	23.590	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Cd	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Co	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Cr	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Cu	0.002	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	Fe	0.287	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	ĸ	25.350	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Li	-0.005	1	99.45	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	γ	Mg	7.927	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Mn	0.059	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Y	Mo	0.001	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Na	17.140	1	98.56	3/21/2014	20:47	SAMP	6010 W	
J1402025-004	Y	Ni	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	P	0.015	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Pb	-0.003	1	99.45	3/21/2014	20:49	SAMP	6010 W	
11402025-004	Y	Sb	-0.001	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Y	Se	0.004	1	99.45	3/21/2014	20:49	SAMP	6010 W	
11402025-004	Ý	Sn	0,008	1	99.45	3/21/2014	20:49	SAMP	6010 W	
11402025-004	Ý	Sr	0.194	1	98.56	3/21/2014	20:47	SAMP	6010 W	
11402025-004	Ý	TÌ	0.000	1	99.45	3/21/2014	20:48	SAMP	6010 W	
11402025-004	Ý	τi	0.000	1	99.45	3/21/2014	20:49	SAMP	6010 W	
J1402025-004	Ý	v	0.004	1	99.45	3/21/2014	20:48	SAMP	6010 W	
J1402025-004	Ŷ	Zn	0.001	, 1	99.45	3/21/2014	20:49	SAMP	6010 W	
11402025-005	v. V	 A.^	0.000	, 1	100	3/21/2014	20:53	SAMP	6010 W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11402025-005	' V	719 Al	0.304	1	00 65	3/21/2014	20.52	SAMP	6010 W	
J 1902020-000	í V	A ~	0.00%	1	100	3/21/2014	20.02	SAMP	6010 W	
J 1402020-000	ľ	AS O	0.002	ا بر	100	3/31/2014	20.00	COMP.	8010 14	
J 14UZUZD-UUD	۲	В	0.020	1	100	JIZ 112014	20.00	OLANIL.	0010 14	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	iS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402025-005	Y	Ba	0.009	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Be	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Ca	31.600	1	99.55	3/21/2014	20:52	SAMP	6010 W	
J1402025-005	Y	Cd	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Co	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Cr	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Y	Cu	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Y	Fe	0.999	1	99,55	3/21/2014	20:52	SAMP	6010 W	
J1402025-005	Y	к	0.946	1	99.55	3/21/2014	20:52	SAMP	6010 W	
.11402025-005	Ŷ	L	-0.003	1	100	3/21/2014	20:52	SAMP	6010 W	
11402025-005	Ŷ	Ma	15.330	1	99,55	3/21/2014	20:52	SAMP	6010 W	
.11402025-005	Ŷ	Mn	0.027	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ý	Ma	0.003	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ŷ	Na	6.639	1	99.55	3/21/2014	20:52	SAMP	6010 W	
11402025-005	Ý	Ni	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
.11402025-005	Ŷ	Р	0.103	1	100	3/21/2014	20:53	SAMP	6010 W	
.11402025-005	Ý	Pb	-0.004	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ŷ	Sb	0.000	1	100	3/21/2014	20:53	SAMP	6010 W	
.11402025-005	Ý	Se	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
.11402025-005	Ŷ	Sn	0.008	1	100	3/21/2014	20.53	SAMP	6010 W	
11402025-005	Ý	Sr	0.052	1	99.55	3/21/2014	20:52	SAMP	6010 W	
.11402025-005	Ŷ	Ti	0.003	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ŷ	TI	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
J1402025-005	Ý	v	0.004	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-005	Ý	Źņ	0.001	1	100	3/21/2014	20:53	SAMP	6010 W	
11402025-008	v V	<u>Α</u> η	0.000	····· 1	99.66	3/21/2014	20.58	SAMP	6010 W	มีสังหว่ายมีการหนึ่งข้านกับให้แห่งการหนึ่งมีการหนึ่งการหนึ่งการหนึ่งหนึ่งหนึ่งหนึ่งหนึ่งหนึ่งหนึ่งหนึ่ง
11402020-000	v.	Δ1 Δ1	0.478	1	00.00	3/21/2014	20.57	SAMP	6010 \/	
11402020-000	, v		0.002	1	99.68	3/21/2014	20:58	SAMP	6010 W	
J1402025-000	, v	- CO	0.002	4	99.66	3/21/2014	20:58	SAMP	6010 W	
1402025-006	, v	Ва	0.052	1	99.66	3/21/2014	20:58	SAMP	6010 W	
1402025-000	ý	Da Da	0.002		99.66	3/21/2014	20:58	SAMP	6010 W	
31402025-000	v v	00 Ca	14 940	4	99.00 99.14	3/21/2014	20:57	SAMP	6010 W	
31402025-000	, ,	Cd	0.000		99.66	3/21/2014	20:58	SAMP	6010 W	
J1402025-000	, v	Co	0.000	1	99.00	3/21/2014	20:58	SAMP	6010 W	
3 402020-000	, v	00	0.000	1	99.00	3/21/2014	20.58	SAMP	6010 W	
J1402025-006	v v		0.000	1	99.00 00.66	3/21/2014	20.50	SAMP	6010 W	
J1402025-008	, r	Cu Ea	0.002	4	99.00	3/21/2014	20.50	SAME	6010 W	
J1402023-006	T V	re	0.010	1	99.14	3/21/2014	20.07	SAMO	6010 W	
J1402025-006	Ŷ	n Li	3.932	1	99.14	3/21/2014	20.57	CAMP -	6010 W	
J1402025-006	r V	L) 1 1 m	0.002	1	99.00	3/21/2014	20.57	CAND	6010 W	
J1402025-006	Ŷ	wig	2.883	1	99.14	3/21/2014	20:57	SAMP	0010 VV	
J1402025-006	Y	ivin Mo	0.00	। न	99.00	3/21/2014	20.00	SAMP	6010 W	
J1402025-006	Ŷ	IVIO	0.008	1	99.00	3/21/2014	20.00	CAMP .	8010 W	
J1402025-008	Ŷ	Na	10.950	1	99.14	3/2/1/2014	20.57	SAMP	6010 W	
J1402025-008	Y V	INI D	0.000	1	99.00	3/21/2014	20.00	CAND	6010 W	
J1402025-006	Ŷ	۲ ۵۲	0.004	1	99.00	3/21/2014	20;58	SAM	BOTO M	
J1402025-006	¥ V	P0 05	-0.004	i A	99.00	3/21/2014	20.00	CAMP	6010 W	
J1402025-006	Y.	50	0.001	1	99.00	3/21/2014	20.00	SAMP	6010 W	
J1402025-006	Ť	0e 0-	0.003	4	99.00	3/21/2014	20.50	CAMP	6010 W	
J1402025-006	Y	<u>о</u> п	0.005	1	99.00	3/2 1/2014	20.00	SAME.	6010 W	
J1402025-006	Y	Sr	0.322	1	99,14	3/21/2014	20:57	SAMP	6040 W	
J1402025-006	1	11	0.000	1	99.00	3/21/2014	20.00	CAMP	6010 W	
J1402025-006	Y	11	0.001	1	99.00	3/21/2014	20,56	SAMP	6010 W	
J1402025-006	ř	V	0.002	1	99.00	3/21/2014	20,56	OMMIT CAMID	6010 W	
J1402025-006	Y		0.000	 	99.00	3/21/2014	20.00	GANNE	0010 W	
J1402025-007	Y	Ag	0.001	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Ý	Al	0.100	1	99./4 00./4	3/24/0044	21:02	SAM	AD 10 M	
J1402025-007	Ŷ	AS	0.003	1	99.41	3/21/2014	21:03	OAM	6040 W	
J1402025-007	Ŷ	ช ก-	0.021	1	99.41	3/21/2014	21:03	SAMO	CO10 W	
J1402025-007	Ŷ	Ba D-	0,026	1	99.41	3/21/2014	21:03	SAMP	6010 W	
J1402025-007	Ŷ	ise Co	0.000	1	99.41	3/21/2014	21.03	BAMB	6010 W	
J1402025-007	ř	Ça Ori	43.790		99.74	3/21/2014	21.02	SAMP	6010 W	
J1402025-007	Y	Ca	0.015	7	99.41	3/21/2014	21:03	SAMP	BORD W	
31402025-007	Ŷ	00	0.001	1	99.41	3/21/2014	21:03	CANNE	0010 W	
J1402025-007	Ŷ	Gr	0.095	4	89.41	3/2/1/2014	21.03	CANOP	6010 W	
J1402025-007	Ŷ	Cu E-	0.005	1	99.41	3/21/2014	21.03	CAMP	6010 W	
J1402025-007	¥.	re	0.927	1	99.74	3/21/2014	21.02	DAW	ento W	
J 1402025-007	Ý	ň	U.433 0.000	1	88.74 00.44	3/21/2014 2/21/2017	21.02	OMMP SAND	6010 W	
J 1402025-007	Ý	LI	0.000	۱ م	99.41	3121/2014	21:02	CALLO	6040 W	
J1402025-007	Ý	ivig	2.137	۲ ۲	57.74	310410044	21:02	OPHRIF'	0010 W	
J1402025-007	Y .,	ivin	0.020	1	99.41	3/21/2014	21:03	OAND	SD4014	
J1402025-007	Y	Mo	0.005	1	99.41	3/21/2014	21:03	SAMP	OUTO VV	
J1402025-007	Ý	Na	2.808	1	99.74	3/21/2014	21:02	SAMP	0010 VV	
J1402025-007	Y	Nİ	0.088	1	99.41 00.41	3/21/2014	21:03	SAMP	OUTU VV	
J1402025-007	Y 	۲ 	U.176	1	99.41	3/21/2014	21:03	SAMP	OUTU VV	
J1402025-007	Y.	PD	-0.005	1	99.41	3/21/2014	21:03	SAMP	CO10 W	
J1402025-007	Y 	Sb	0.001	1	99.41	3/21/2014	21:03	SAMP	OUTU W	
J1402025-007	Y	Se	0.002	1	99.41	3/21/2014	Z1:03	DAMP	VV UTUO	
J1402025-007	Ŷ	Sn	0.012	1	99.41	3/21/2014	Z1:03	SAMP	OUTU VV	
.)1402025-007	Y	Sr	0.268	1	99.74	3/21/2014	21:02	OMM	VV ULVO	

CAMPIE ID	PPT	Anal	Conc (mail.)	DE	IS Rec (%)	AnalBate	AnalTime	Same Type	Method	Comments								
11402025-007	Y	Ti	0.010	1	99.41	3/21/2014	21.03	SAMP	6010 W									
.11402025-007	Ý	TI	-0.001	1	99.41	3/21/2014	21:03	SAMP	6010 W									
.11402025-007	Ý	V	0.002	1	99.41	3/21/2014	21:03	SAMP	6010 W									
J1402025-007	Y	Zn	0.013	1	99.41	3/21/2014	21:03	SAMP	6010 W									
J1402025-007S	Y	Ag	0.515	1	96.56	3/21/2014	21:06	MS	6010 W	lei ei maan an an an an an an an an an an an an								
J1402025-007S	Y	A	5.381	1	99,19	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	As	0.519	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	ß	2.537	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Ва	0.532	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Be	0.205	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Ca	49.560	1	99.19	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Ŷ	Cd	0.271	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-0075	Ŷ	00	0.499	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-0075	ř.		0.601	1	90.00	3/21/2014	21.00	MAS	6010 W									
1402023-0075	v	ូប គេ	6.095	1	90.50 00.10	3/21/2014	21:06	MS	6010 W									
11402025-0075	Ý	ĸ	108 700	, 1	99 19	3/21/2014	21:06	MS	6010 W									
11402025-0075	· Y	li	5.129	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Ŷ	Ma	7.249	1	99.19	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Ŷ	Mn	0.524	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Mo	0.517	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Na	28.690	1	99.19	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Ni	0.600	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Р	5,368	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Pb	0.501	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Sb	0.518	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-007S	Y	Se	0,520	1	96.56	3/21/2014	21:06	MS	6010 W									
J1402025-0075	Ý	Sn	2,051	1	95.55	3/21/2014	21:06	MO	0010 W									
J1402025-0075	Y V	57 T	0.785	1	08 FC	3/21/2014	21:00	NIS MAC	6010 W									
J1402025-0075	, r	11	2.046 0.500	f 1	90.00	3/21/2014	21:06	MS	6010 VV									
J1402020-0075	, v	N N	1.013	1	96.56	3/21/2014	21.00	MS	6010 W									
11402025-0075	Ý	ง 7ก	1.013	1	96.56	3/21/2014	21:06	MS	6010 W									
1402025-007SD	v V	Ac	0.515	1	96.82	3/21/2014	21:09	MSD	6010 W	<u></u>								
J1402025-007SD	Ŷ	Al	5.269	1	100.2	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	As	0,530	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	в	2,572	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Ba	0.531	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Be	0.205	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Ca	49,150	1	100.2	3/21/2014	21.09	MSD	6010 W									
J1402025-007SD	Y	Cd	0.273	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Co	0.505	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Ŷ	Cr	0.613	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Ŷ	Cu	0.513	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Ŷ	re V	5.087	1	100.2	3/21/2014	21:09	MSD	6010 W									
J1402025-00750	r V	n. Li	5 140	1	96.82	3/21/2014	21:00	MSD	6010 W									
1402025-00730	v	Mo	7 179	1	100.2	3/21/2014	21:09	MSD	6010 W									
11402025-0075D	Ý	hin	0.523	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Ý	Mo	0.525	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Ý	Na	28.750	1	100.2	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Ni	0.606	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Ρ	5.441	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Pb	0.507	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-007SD	Y	Sb	0.526	1	96.82	3/21/2014	21,09	MSD	6010 W									
J1402025-007SD	Y	Se	0.525	1	96.82	3/21/2014	21:09	MSD	5010 W									
J1402025-007SD	Ý	Sn	2.078	1	96.82	3/21/2014	21:09	MSD	6010 W									
J1402025-00/SD	Ý	51	0.784	1	100.2	3/21/2014	21,09	MOD	6010 W									
J1402023-0076D	ĭ V	11 Ti	2,044	1	90.02 06 93	3/21/2014	21.09	MSD	6010 W									
01402020-0073D	f V	1‡ \/	0.010	+ 1	90.02 96.82	3/21/2014	21.09	MSD	6010 W									
J1402025-0075D	Ý	Zo	1.026	1	96.82	3/21/2014	21:09	MSD	6010 W									
11402025-0071	Ý	An	000 0	5	99.3	3/21/2014	21.14	SD	6010 W	un seinen seinen konten keinen konten keinen seinen heter keinen	0.020	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Ŷ	As	0.001	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Y	8	0.011	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Y	Ва	0.005	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Y	Be	0.000	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Y	Са	9.138	5	98.47	3/21/2014	21:13	SD	6010 W									
J1402025-007L	Y	Cd	0.003	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Y	Co	0.000	5	99,3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Ŷ	Cr	0.023	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Ŷ	Çu E-	0.002	5 #	59.3	3/21/2014	21:14	SU	BO10 W									
J1402020-007L	Y V	re v	1 120	с г	90.47 09.77	3/21/2014	21:13	90 60	6040 W									
01402020-007L 11402025-007L	ĭ V	n Ei	1,100	U K	00.41 00.7	3/21/2014	21.10	SD	6010 W									
.14402025-007L	i V	u Ma	0.436	5	98 47	3/21/2014	21:13	SD	6010 W									
J1402025-0071	Ý	Mn	0.004	5	99.3	3/21/2014	21:14	SD	6010 W									
J1402025-007L	Ý	Mo	0.002	5	99.3	3/21/2014	21:14	SD	6010 W									
	,									12 PM PM								

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalOate	AnalTime	Samp Type	Method	Comments
J1402025-007L	Y	Na	0.592	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	Ni	0.018	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Ρ	0.034	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Pb	-0.002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Sb	0.001	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Se	0.002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Sn	0.003	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Sr	0.056	5	98.47	3/21/2014	21:13	SD	6010 W	
J1402025-007L	Y	Ti	0.002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	TI	0.000	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	V	0.001	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007L	Y	Zn	0,002	5	99.3	3/21/2014	21:14	SD	6010 W	
J1402025-007A	Y	Ag	0.510	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	AI	5.242	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	As	0.517	1	97.85	3/21/2014	21:18	PS	6010 W	:
J1402025-007A	Y	в	2,543	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Ba	0.528	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Be	0.205	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Са	47.600	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Cd	0.269	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Co	0.499	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Cr	0.598	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Çu	0.514	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Fe	5.944	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	к	109.400	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Li	5.208	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Mg	7.021	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Mn	0.522	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Mo	0.513	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Ŷ	Na	28.800	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Ni	0.593	1	97,85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	P	5.324	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Pb	0.498	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Sb	0.515	1	97.85	3/21/2014	21:18	PS	6010 W	'
J1402025-007A	Y	Se	0.506	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	Sn	2.032	1	97.85	3/21/2014	21:18	PS	6010 W	<i>(</i>
J1402025-007A	Ý	Sr	0.784	1	101.2	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Τĩ	2.543	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	TI	0.507	1	97.85	3/21/2014	21:18	PS	6010 W	
J1402025-007A	Y	V	1.011	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402025-007A	Y	Zn	1.021	1	97.85	3/21/2014	21:17	PS	6010 W	
J1402037-001	Y	Ag	0.000	1	99,5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Ý	AI	0.298	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	As	0.001	1	99,5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	в	0.028	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Ba	0.006	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Be	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Ŷ	Ca	7.859	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Cd	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Co	0.001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Cr	0.001	4	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Cu	0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Fe	0.026	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	К	6.617	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Lŧ	-0.004	1	99.5	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Mg	2.596	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Mn	0.090	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Mo	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	. <u>Y</u>	Na	2.016	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Ý	Ni	0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	P	0.010	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Pb	-0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Sb	0.000	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Se	0.003	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Sn	0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Sr	0.010	1	99.9	3/21/2014	21:21	SAMP	6010 W	
J1402037-001	Y	Ti	0.002	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	TI	0.001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	V	0.001	1	99.5	3/21/2014	21:22	SAMP	6010 W	
J1402037-001	Y	Zn	0.058	1	99.5	3/21/2014	21:22	SAMP	6010 W	
MB-02132-02	Y	Ag	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Al	0.035	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	As	-0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	в	0,008	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Ŷ	Ba	0.000	î	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Ý	Be	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Са	0.000	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	Cđ	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Co	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
MB-02132-02	Y	Cr	0.002	1	99,54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Ý	Cu	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Ŷ	Fe	0.017	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Ý	ĸ	-0.005	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Ŷ	Li	-0.005	1	99.54	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	Ma	0.005	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	Mn	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	ivîo	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Na	0.002	1	100.1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	NI	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Р	0.003	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Pb	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Sb	0.000	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Se	0.003	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	¥	Sn	-0.002	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Sr	0.000	1	100,1	3/21/2014	21:26	MBLK	6010 W	
MB-02132-02	Y	Τł	0.000	1	99,54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	TI	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	V	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
MB-02132-02	Y	Zn	0.001	1	99.54	3/21/2014	21:27	MBLK	6010 W	
CCV	Y	Ag	0.495	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	AI	5.014	1	98.06	3/21/2014	21:30	CCV		
CCV	Ŷ	As	0.493	1	96.34	3/21/2014	21:30	CCV		
CCV	Ŷ	8	2.415	1	96.34	3/21/2014	21:30	CCV		
CCV	Ŷ	ыа	0.496	3	96.34	3/21/2014	21:30	CCV		
	Ŷ	Be O-	0.198	1	96.34	3/21/2014	21:30	CCV		
	r V	Ca Ca	5.027	1	98.06	3/21/2014	21:30	CCV		
	T V	Ca	0.247	1	90.34	3/21/2014	21.00			
COV	T V	C-	0.490	1	90.34	3/21/2014	21.30	CCV		
CCV	v		0.494	4	90.34	3/21/2014	21.00	CCV		
009	v	En	6.064	4	90.34	3/21/2014	21.00	CCV		
CCV	Ý	ĸ	100 400	1	98.00	3/21/2014	21:30	COV		
CCV	Ý	11	5 021	, 1	96.34	3/21/2014	21:00	COV		
CCV	Ŷ	Ma	5.018	1	98.06	3/21/2014	21:30	CCV		
CCV	Ý	Mn	0.496	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Мо	0.501	1	96.34	3/21/2014	21:30	CCV		
CCV	¥	Na	25.320	1	98.06	3/21/2014	21:30	CCV		
CCV	Y	Ni	0.502	1	96.34	3/21/2014	21:30	CCV		
CCV	Y	Р	4,939	1	96.34	3/21/2014	21:30	cċv		
CCV	Y	Pb	0.493	1	96,34	3/21/2014	21:30	CCV		
CCV	Y	Sb	0.500	1	. 96.34	3/21/2014	21:30	CCV		
CCV	Y	Se	0.493	ĩ	96.34	3/21/2014	21:30	CCV		
CCV	Y	Sn	2.007	1	96.34	3/21/2014	21:30	CCV		•
CCV	Y	Sr	0.505	1	98.06	3/21/2014	21:30	CCV		
CCV	Y	71	2.485	1	96.34	3/21/2014	21:30	CCV		
CCV	Y		0.487	1	96.34	3/21/2014	21:30	CCV		
COV	v	V 70	0.991	1	96.34	3/21/2014	21:30	CCV		
CCP		2.11	0.000	1	90.34	3/21/2014	21:30	000		\$
CCB	v	AU	0.000	। न	99.1	3/21/2014	27:35	CCB		
CCB	v	Ae	0.020	1	90.00	3/21/2014	21.34	CCB		
CC8	Ý	8	0.000	1	00.1 00.1	3/21/2014	21.35	CCB		
CCB	Ý	Ba	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Ý	Be	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Са	-0.003	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	Cd	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Co	0.000	1	99,1	3/21/2014	21:35	CCB		
CCB	Y	Çr	0.000	Ť	99.1	3/21/2014	21:35	CCB		
CCB	Y	Cu	0.001	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Fe	0.001	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	К	0.037	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	Li	-0.005	1	99.1	3/21/2014	21:34	CCB		
CCB	Y	Mg	-0.012	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	Mn	0.000	1	99.1	3/21/2014	21:35	CCB		
000	ĭ	NO No	0,000	1	99.1	3/21/2014	21:35	CCB		
008	r V	IN CE	0,010	4	90.00	3/21/2014 9/91/904 4	21:34	CCB		
CCB	i Y	P	-0.000	1	୪୪. (ୠୠ. 1	3/21/2014	21.00 91-96	CCB		
CCB	Ŷ	Ph	-0.001	1	99.1	3/21/2014	21:30	CCB		
CCB	Ý	Sb	0,001	4	99.1	3/21/2014	21.35	800		
CCB	Y	Se	0.004	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Sn	-0.002	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Sr	0.000	1	96.56	3/21/2014	21:34	CCB		
CCB	Y	Ti	0.000	î	99.1	3/21/2014	21:35	CCB		
ССВ	Y	τı	0.000	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	V	0.001	1	99.1	3/21/2014	21:35	CCB		
CCB	Y	Zn	-0.003	1	99.1	3/21/2014	21:35	CCB		
LCS-02132-01	Ý	Ag	0.507	1	97.37	3/21/2014	21:38	LCS	6010 W	

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
MB-02087-01	Y	Sb	0.000	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Y	Se	0.003	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Y	Sn	-0.001	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Y	Sr	0.000	1	98.45	3/21/2014	23:51	MBLK	6010 TCLP	
MB-02087-01	Y	Ti	0.000	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Ý	ΤI	0.003	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Y	V	0.002	1	97.32	3/21/2014	23:53	MBLK	6010 TCLP	
MB-02087-01	Y	Zn	0.000	1 seeses	97.32	3/21/2014	23:53	MBLK	6010 TCLP	าวีสร้างในสารสถานสาวารสถานสาวีสรร้างใหญ่สร้างสรรมสารสารสารสารสารสารสารสารสารสารสารสารสารส
LCS-02087-02	Y	Ag	0.508	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Ŷ	Al	5.071	1	100.5	3/21/2014	23:56	LCS	BOTO TOLP	
LCS-02087-02	Y	AS	0.516	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LGS-02007-02	T V	0	2.010	4	95.70	3/21/2014	23.56	100	8010 TCLP	
108 02087-02	, v	Da Ba	0.455	1	95.76	3/21/2014	23.56	103	6010 TCLP	
LCS-02087-02	Ý	Ca	4 983	;	100.5	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Ý	Čď	0.255	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Ý	Co	0.496	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Cr	0.502	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Сш	0.503	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Fe	5.059	1	100.5	3/21/2014	23:56	LCS	6010 TCLP	•
LCS-02087-02	Y	к	101.900	1	100.5	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Li	5.075	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Mg	4.947	1	100.5	3/21/2014	23:56	LCS	6010 TCLP	
LC/S-02087-02	Ŷ	Mn	0.498	1	95.76	3/21/2014	23:56	LCS	6010 ICLP	
LCS-02087-02	Ŷ	MO	0.507	1	95.76	3/21/2014	23:56	LUS	6010 TCLP	100 EU 200 7 100 EU 6010 WI 100 EU 6010 9
LCS-02087-02	Ť	Na	0.607	•	100.5	3/2 1/2014	23.00	108	6010 TOLP	
1 CE 02007-02	~	99(2	5.128	1	95.70	3/21/2014	23.50	1.05	6010 TCLP	
LCS-02007-02	Ŷ	, Ph	0.504	1	95.76	3/21/2014	23.56	108	6010 TOL	·
L00-02007-02	Ý	Sb	0.521	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
1 CS-02087-02	Ŷ	Se	0.520	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Ý	Sn	2.024	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Sr	0.512	1	100.5	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Ti	2.507	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Ţ	0.500	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	V	1.001	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	
LCS-02087-02	Y	Zn	1.003	1	95.76	3/21/2014	23:56	LCS	6010 TCLP	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CCV	Ŷ	Ag	0.495	1	95.31	3/21/2014	23;59	CCV		
CCV	Y	A!	4,932	1	97.86	3/21/2014	23:59	CCV		
CCV	Ŷ	As	0.504	1	95.31	3/21/2014	23:59	CCV		
CCV	Ŷ	ដ ២	2.447	1	95,31	3/21/2014	23:59	CCV		
CCV .	1 V	Ba	0.495	1	95.31	3/21/2014	23.55	CCV		
CCV	Ý	Ca	4 937	;	97.86	3/21/2014	23:59	CCV		
CCV	Ý	Cd	0 249	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	Co	0.493	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Cr	0.496	1	95.31	3/21/2014	23.59	CCV		
CCV	Y	Cu	0.495	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Fe	4.954	1	97.86	3/21/2014	23:59	CCV		
CCV	Y	К	100.600	1	97.86	3/21/2014	23:59	CCV		·
CCV	Y	Li	5.053	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Mg	4.903	1	97.86	3/21/2014	23:59	CCV		
CCV	Y	Mn	0.495	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Mo N-	0.505	1	95.31	3/21/2014	23:59			
	ı V	‡Nidi NB	20.000 0.504	1	97.00 Q5 31	3/21/2014	23.09 23.50	COV		
CCV	v v	р р	4,974	1	95.31	3/21/2014	23:59	CCV		
CCV	Ŷ	Pb	0.495	1	95.31	3/21/2014	23:59	CCV		
ccv	Ý	Sb	0.504	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Se	0.490	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Sn	2.017	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Sr	0.507	1	97.86	3/21/2014	23:59	CCV		
CCV	Y	Ti	2.484	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	Tł	0.497	1	95.31	3/21/2014	23:59	CCV		
CCV	Y	V	0.992	1	95.31	3/21/2014	23:59	CCV		
CCV	Ý	<u></u>	0,986	1	95.31	3/21/2014	23:59	CCV		акманданаа какала какала какала какала какала какала какала какала какала какала какала какала какала какала ка
CCB CCB	Y	Ag	0.000	1	98.22 ne ov	3/22/2014	00:04	CCB		
CCB	r V	MI Δe	0.012	1	30.07 DR 22	3/22/2014	00,03	CCR		
008	v	B	0.000	4	98.22	3/22/2014	00:04	CCB		
CCR	Ý	Ba	0.000	1	98 22	3/22/2014	00:04	CCB		
CCB	Ŷ	Be	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Ý	Ca	-0.003	1	96.87	3/22/2014	00:03	CCB		
CCB	Y	Cd	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Co	0.000	1	98.22	3/22/2014	00:04	CCB		
ССВ	Y	Сг	0.000	1	98.22	3/22/2014	00:04	CCB		
CC8	Y	Cu	0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Fe	-0.004	1	96.87	3/22/2014	00:03	CCB		
CCB	Y	к	0.081	1	96.87	3/22/2014	00:02	CCS		

										- /
SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	Method	Comments
CCB	Y	Li	-0.005	1	98.22	3/22/2014	00:02	CCB		
CCB	Y	Mg	-0.009	1	96.87	3/22/2014	00:03	CCB		
CCB	Y	Mn	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Mo	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	Na	0.030	1	96.87	3/22/2014	00:02	CCB		
CCB	Y	Ni	0.000	1	98.22	3/22/2014	00:04	CCB		
CCB	Y	р	0.003	1	98.22	3/22/2014	00:04	CCB		
CCB	Ý	Ph	-0.001	1	98.22	3/22/2014	00.04	CCB		
CCB	, v	Sh	0.001		98.22	3/22/2014	00:04	CCB		
000	,	60	0.002	4	09.22	3/00/2014	00:04	000		
008	÷	00	0.000	4	00.22	3/22/2014	00.04	000		
		011	-0.002	4	90.22	3/22/2014	00.04	008		
008	¥	21	0.000	2	90.07	3/22/2014	00:02	CCB		
CCB	Ŷ	11	0.000	1	98.22	3/22/2014	00:04	CCB		
ССВ	Ŷ	11	0.001	1	98.22	3/22/2014	00:04	CCB		
CCB	Ŷ	v	0.001	1	98.22	3/22/2014	00:04	CCB	\$	
ССВ	Ŷ	Zn	-0.003	[محمد من	98.22	3/22/2014	00:04	CCB		
J1401898-001	Y	Ag	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ŷ	Al	0.089	1	99.43	3/22/2014	80:00	SAMP	6010 TCLP	
J1401898-001	Y	As	0.001	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	в	0.025	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ý	Ba	0.008	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Be	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Ca	5.085	1	99.43	3/22/2014	00:07	SAMP	6010 TCLP	
J1401898-001	γ	Cđ	0.004	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Co	0.002	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ý	Cr	0.002	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Ý	CH	0.010	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
.11401898-001	Ý	ĔΑ	1 100	, 1	99.43	3/22/2014	00:08	SAMP	6010 TCLP	
11401898-001	Ý	ĸ	1 278	1	99.43	3/22/2014	00:07	SAMP	6010 TOLP	
1401908-001	ý	11	-D 004	1	07.51	3/22/2014	00:07	SAMP	BOID TOL	
14018909 001	v	s	4 705	4	00.42	3/22/2014	00:09	SAMO	6010 TOLI	
1401898-001	۴ ۷	Ng Ma	0.000	4	07 54	3/22/2014	00.00	S AMP	BOID TOLP	
J1401090-001	Ť	17171 1.4m	0.020	1	97,01	3/22/2014	00.09	CAND	0010 10EF	
J1401898-001	T LI	IV:U	0.001	1	97.01	3/22/2014	00.09	SAMP		20.011.00.011
J1401898-001	N	Na	143 100	1	99.43	3/22/2014	00:07	SAMP	BUTU TOLP	Morn, Lus Fri,
J1401898-001	Y	NI	0.006	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	p	0.479	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	PЬ	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Sb	0.005	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Se	0.005	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Sn	0.003	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Sr	0.009	1	99.43	3/22/2014	00:07	SAMP	6010 TCLP	
J1401898-001	Y	Ti	0.000	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	TI	0.001	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	V	0.002	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
J1401898-001	Y	Zn	0.373	1	97.51	3/22/2014	00:09	SAMP	6010 TCLP	
T1400360-001	Y	Aα	0.000	1	96.51	3/22/2014	00.14	SAMP	6010 TCLP	
T1400360-001	Ý	AI	0.208	1	99.79	3/22/2014	00.13	SAMP	6010 TCLP	
T1400360-001	, v	Δe	0.001		96.51	3/22/2014	00:14	SAMP	6010 TCLP	· ·
T1400360-001	v	да Б	0.013	4	06.51	3/22/2014	00:14	SAMO	6010 TOLP	
T 400300-001	r V	De	0.013	4	90.01	3/22/2014	00.14	CAMP	BOTO TOLP	
11400360-001	Ŷ	Da	0.010	1	90.51	3/22/2014	00.14	SAMP	0010 TOLP	
1400360-001	ĩ	Be	0.000	1	90.51	3/22/2014	00:14	SAMP	COTO TOLP	
11400360-001	Ŷ	Ca	17.390	1	99.79	3/22/2014	00:13	SAMP	BUIU TOLP	
11400360-001	Y	Ca	0.000	3	90.51	3/22/2014	00:14	SAMP	BUTU TOLP	
11400360-001	Y 	Co	0.008	1	96.51	3/22/2014	00:14	SAMP	BUTU TCLP	
T1400360-001	Ŷ	Cr	0.000	1	96.51	3/22/2014	00:14	SAMP	6010 ICLP	
11400360-001	Y	Cu	0.010	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Fe	0.021	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Y	к	0.379	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Y	U	0.001	1	96.51	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Y	Mg	1.034	1	99.79	3/22/2014	00:13	SAMP	6010 TCLP	
T1400360-001	Y	Mn	0.149	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ŷ	Mo	0.001	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ν	Na	136 400	1	99.79	3/22/2014	00:12	SAMP	6010 TCLP	MB FH, LCS FH,
T1400360-001	¥	Ni	0.013	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Р	-0.001	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Pb	-0.003	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Y	Sb	0.000	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ý	Se	0.004	1	96.51	3/22/2014	00:14	SAMP	6010 TCLP	
T1400360-001	Ý	Sn	0.007	1	96.51	3/22/2014	00:14	SAMP	6010 TOLP	
T1400360-001	Ý	Sr.	0.067	1	99.79	3/22/2014	00.13	SAMP	6010 TOLP	
T1408360-001	v V	оч Yi	0.000 0.000	4	OR ES	3/22/2014	00.14	SAMO	BO10 TOUR	
T1400300-001	i V	11	0,000	4	06.51	3/20/0041	00.14	SAMO	SOLO TOLE	
T1400360-001	ı V	13 17	0.001	1	00.01	9/99/9044	00.14	SVINE	BOID TOLF	
1 1400300-001 T1400360 001	i V	۷ ۲۰	0.002	1	00.01 04 51	012212014 212212041	00:14	CANNO C	6040 TOLF	
11400300-001	T Notes and the second second second second second second second second second second second second second second	11.2	0.010	1 2000000000	10.06	3/20/2014	VV.14	ONWIP"	OUTO TOLF	251111129001111120111120111120111201120111201112011120111201112011120111201112011120111201120120
MB-02130-02	Ý	Ag	0.000	1	101,9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ý	AI	0.080	1	101.9	3/22/2014	00:18	MBLK	6010 D	
MB-02130-02	¥	As	0.001	}	101.9	3/22/2014	00:19	MBLK	8010 D	
MB-02130-02	Ý	8	0.009	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	8a	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	

SAMPLE ID	RPT	Anai	Conc (mail.)	DE	IS Rec (%)	AnalDate	AnalTime	Samo Type	Method	Comments
MB.02130.02	v	Re	0.000	1	101 9	3/22/2014	00.19	MBLK	6010 D	
MB-02130-02	Ý	Ĉa	0.015	1	101.9	3/22/2014	00:18	MBLK	6010 D	
MB-02130-02	Ý	D.	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ý	Co	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB 02130.02	Ý	Cr	0.000	1	101.9	3/22/2014	00:19	MRLK	6010 D	
MB-02130-02	ý	C in	0.000	4	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Fa	0.000	1	101.9	3/22/2014	00:18	MBLK	6010 D	
MD-02100-02	v'	2	0.010	1	101.9	3/22/2014	00:17	MARIK	6010 D	
MB-02130-02	ý	11	-0.005	1	101.9	3/22/2014	00:17	MBLK	6010 0	
MD-02100-02	v v	Ma	0.004	4	101.0	3/22/2014	00:12	MELK	6010 0	
140.02100-02	, V	Ma	0.004	4	101.0	3/22/2014	00/10	MOLK	8010 D	
ND-02130-02	, V	Mo	0.000	4	101.0	3/22/2014	00.15	MDUK	6010 0	
WB-02130-02	v v	NO No	-0.001	*	101.9	3/22/2014	00.15		6010 0	
NIB-02130-02	ř	INCI NI	0.019	1	101.9	3/22/2014	00.17		6010 D	
MB-02130-02	T V		-0.001	4	101.9	3/22/2014	00.19		6010 D	
MB-02130-02	Ŷ	۲ ⁴	0.012	1	101.9	3/22/2014	00:19	MOLK	6010 D	
MB-02130-02	Ŷ	PD Ch	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	SD	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Se	0.006	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Sn	-0.001	3	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Ŷ	Sr	0.000	1	101.9	3/22/2014	00:17	MBLK	6010 D	
MB-02130-02	Ŷ	11	0.000	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Tł	0.001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	V	0.001	1	101.9	3/22/2014	00:19	MBLK	6010 D	
MB-02130-02	Y	Zn	0.002	} 	101.9	3/22/2014	00:19	MBLK	6010 D	
LCS-02130-01	Y	Ag	0.501	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Al	5.208	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	As	0.509	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	в	2.489	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Ba	0.494	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Be	0.199	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Ca	5.045	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Cd	0.253	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Co	0.498	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Cr	0.501	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Cu	0.498	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Fe	5.048	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	¥	к	101.500	1	101.2	3/22/2014	00;22	LCS	6010 D	
LCS-02130-01	Y	Li	5,129	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Mg	5.008	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Mn	0.494	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Мо	0,506	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Na	25.590	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Ni	0.509	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Р	5.067	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Y	Pb	0.501	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ŷ	Sb	0.508	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ŷ	Se	0.511	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	So	2.024	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Sr	0.517	1	101.2	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Ti	2,484	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	71	0.505	1	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	v	0.988	4	97.51	3/22/2014	00:22	LCS	6010 D	
LCS-02130-01	Ý	Zn	0.986	1	97.51	3/22/2014	00:22	LCS	6010 D	
11402025-001	v v	Δα	0.001	1	99.87	3/22/2014	00.27	SAMP	6010 D	baarna daa xaa ahaa ahaa ahaa ahaa ahaa ahaa
11402025-001	Ý	AL	0.112	1	101.5	3/22/2014	00:26	SAMP	6010 D	
.11402025-001	Ý	As	0.002	1	99.87	3/22/2014	00.27	SAMP	6010 D	
J1402025-001	Ŷ	B	0.028	1	99.87	3/22/2014	00:27	SAMP	6010 D	
.11402025-001	Ý	Ra	0.013	1	99.87	3/22/2014	00:27	SAMP	6010 D	
11402025-001	Ý	Be	0.010	, 1	99.87	3/22/2014	00.27	SAMP	6010 D	
J1402025-001	Ŷ	Ca	49.960	1	101.5	3/22/2014	00:25	SAMP	6010 D	
11402025-001	Ý	C d	0.000	1	99.87	3/22/2014	00.20	SAMP	6010 D	
11402025-001	÷	Co	0,000	1	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	v	Cr	0.000	1	99.87	3/22/2014	00.27	SAMP	6010 0	
11402025-001	, v	Cu.	0.000	4	99.87	3/22/2014	00.27	SAMP	6010 D	
11402025-001	Ŷ	۳۵ ۴۵	0.001	1	101.5	3/22/2014	00.26	SAMP	6010 0	
11402025-001	v ·	re K	1 305	1	101.5	3/22/2014	00.25	SAMP	6010 D	
.11402025-001	Ý	11	-0.005	1	99 87	3/22/2014	00.25	SAMP	6010 0	
11402025-001	Ý	ት ለት	1 511	1	101 5	3/22/2014	00.26	SAMP	6010 0	
11402020-001	v	ivig Mei	0.000	1	001.0	3/22/2014	00.20	SAMO	6010 0	
H402028-001	v	14111 8.4.0	0.000	1	00.07	3/22/2014	00.27	SAMP	6010 D	
11402020-001	v	svio Kles	1.600	1	101 E	3/22/2014	00.27	SAMP	0010 D	
0 1902020-001 14403035 004	1	i Vici Kili	1,000	1 4	ינייטו לפיםס	JIZZIZU 14 2/22/2014	00.20	SVINI	6010 D	
J 1902020-001	v	ivi D	0.000	4	00.00 00.00	3/33:3044	00.27	CANNI"	0010 D	
J1402020-001	r V	۲ مال	0.012	1	38.01 00 07	312212014	00.27	OVINIL.	6040 D	
J 1402020-001	Ϋ́.	17D	-0,000	1	99.07	012232014	00.27	OMMIP CARED	8040 D	
J 1402020-001	Y	50	0.002	1	99.0/ 00.07	012212014	00:27	SAMP'	6010 D	
31402025-001	Ŷ	80	0.004	1	99.87 00.07	3/22/2014	00:27	SAME	6040 D	
J1402025-001	¥ 	SR C-	0.012	1	99.01	3/22/2014	00:27	SAMP	6010 D	
J1402025-001	Ŷ	Sr	0.140	1	101.5	3/22/2014	00:25	SAMP	0010 D	
J1402025-001	Ý	11	0.000	1	99.87	<i>312212</i> 014	00:27	SAMP	0010 D	واستنز بنابر روائار

SAMPLE ID	RPT	Anal	Conc (ma/L)	DF	IS Rec (%)	Ana!Date	AnalTime	Samp Type	Method	Comments
J1402025-001	Y	TI	0.001	1	99.87	3/22/2014	00:27	SAMP	6010 D	
J1402025-001	Y	V	0.004	1	99.87	3/22/2014	00:27	SAMP	6010 D	
J1402025-001	Y	Zn	0.002	1	99.87	3/22/2014	00:27	SAMP	6010 D	
J1402025-002	Y	Ag	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	AI	0.110	1	101.5	3/22/2014	00:31	SAMP	6010 D	
J1402025-002	Y	As	0.002	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	В	0.030	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Ba	0.009	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Be	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Са	30.860	1	101.5	3/22/2014	00:30	SAMP	6010 D	
J1402025-002	Y	Cd	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Co	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Cr	-0.001	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Cu	0.001	1	100.3	3/22/2014	00:32	SAMP	6010 U	
J1402025-002	Ŷ	Fe	0.753	1	101.5	3/22/2014	00:31	SAMP	6010 D	
J1402025-002	Ŷ	ĸ	0.943	1	101.5	3/22/2014	00:30	SAMP	8010 D	
J1402025-002	r	Lí Mo	44 720	(100.5	3/22/2014	00.30	SAMO	6010 D	
J1402025-002	r V	N/m	0.026	1	101.5	3/22/2014	00.31	SAMP	6010 0	
1402023-002	1 V	NAT NO.	0.020	1	100.3	3/22/2014	00.32	SAMO	6010 D	
11402025-002	v	Na	6 772	1	101.5	3/22/2014	00.02	SAMP	6010 D	
14402025-002	Ý	Nii	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
11402025-002	Ý	p	0.051	1	100.3	3/22/2014	00:32	SAMP	6010 D	
1402025-002	Ý	Ph	-0.004	1	100.3	3/22/2014	00:32	SAMP	6010 D	
11402025-002	Ý	Sb	-0.001	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Ý	Se	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Ŷ	Sn	0.009	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Ý	Sr	0.052	i	101.5	3/22/2014	00:30	SAMP	6010 D	
J1402025-002	Ý	Ti	0.000	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	· Y	TI	0.002	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	v	0.003	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002	Y	Zn	0.002	1	100.3	3/22/2014	00:32	SAMP	6010 D	
J1402025-002S	Ŷ	Ag	0.510	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	A	5.226	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	As	0.514	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	в	2.534	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Ba	0.507	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Be	0.202	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Ça	35.360	1	101,5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Cd	0.255	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Co	0,497	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Cr	0.502	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Cu	0.504	î	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Fe	5.802	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	к	103.200	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Li	5.131	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	Mg	19.720	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Ŷ	Mn	0.523	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Ŷ	Mo	0.512	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Ŷ	Na	32.150	1	101.5	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Y	NI	0.506	1	96.75	3/22/2014	00:35	MS	6010 D	
J1402025-0028	Y	P	0.129	1	90.75	3/22/2014	00:35	MS	5010 U	· · · · · · · · · · · · · · · · · · ·
J1402020-0025	i V	170 Ch	0,490	1	90.75	3/22/2014	00:35	1/10	6010 D	
J1402020-0025	ř	00 92	0.012	•	90.75	3/22/2014	00:30	GIVI	0010 D	
J1402025-0025	Ŷ	00 02	0.013	1	90.70	3/22/2014	00:30	Wið Me	6010 D	
1402020-0020	T V	Oil Cr	2.020 0.589	1	101.5	3/22/2014	00.35	MS	6010 D	
11402020-0020	v	Ti	2.503	1	96 75	3/22/2014	00,00	244	6010 D	
11402025-0023	Ý	TI I	0.504	4	96.75	3/22/2014	00.00	MS	6010 D	
11402025-0025	Ý	v	1 004	, 1	96 75	3/22/2014	00:35	MS	6010 D	
J1402025-002S	Ŷ	Zn	0.987	1	96.75	3/22/2014	00:35	MS	6010 D	
11402025-00250	÷	An An	0.513	1	95.05	3/22/2014	00-38	MSD	6010 0	
11402025-00250	Ý	AI	5 103	1	101.5	3/22/2014	00/38	MSD	6010 D	
1402025-0025D	Y	As	0.518	1	95.95	3/22/2014	00:38	MSD	6010 D	
1402025-00250	Ý	8	2 568	1	95.95	3/22/2014	00:38	MSD	60100 6010 D	
11402025-002SD	Ý	Ba	0.510		95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ý	Be	0.204	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ŷ	Ca	35.270	1	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ŷ	Cď	0.256	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ý	Co	0.499	1	95,95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ý	Cr	0,606	i	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ý	Cu	0,509	1	95,95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Fe	5 716	1	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	ĸ	103.200	i	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Li	5.152	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	γ	Mg	19.320	1	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Mn	0.527	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Mo	0.514	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Na	32.220	1	101.5	3/22/2014	00:38	MSD	6010 D	_
										~ ~ ~

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402025-002SD	Y	Ni	0.508	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Р	5.198	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Pb	0.501	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Sb	0.519	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Ý	Se	0.514	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Sn	2.038	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Sr	0.567	1	101.5	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Ti	2.530	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	TI	0.498	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	V	1.013	1	95.95	3/22/2014	00:38	MSD	6010 D	
J1402025-002SD	Y	Zn	0.994	ر مست <u>و</u> حصہ	95.95	3/22/2014	00:38	MSD	6010 D	การกระบบการการการการการการการการการการการการการก
J1402025-002L	Ŷ	Ag	0.000	5	99.05	3/22/2014	00:43	SD ·	6010 D	
J1402025-002L	Ŷ	AI	0.027	5 F	98.80	3/22/2014	00:42	5D 8D	6010 D	
J1402025-002L	Ŷ	AS O	-0.001	о Б	99.05	3/22/2014	00:43	5D 5D	6010 D	
J1402025-002L	1 V	Ba	0.017	5	99.05	3/22/2014	00:43	SD SD	6010 D	
11402025-0021	Ý	Be	0.002	5	99.05	3/22/2014	00:43	SD	6010 D	
.11402025-0021	Ý	Ca	6.320	5	98.86	3/22/2014	00:41	SD	6010 D	
J1402025-002L	Ý	Čd	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Co	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Cr	0.001	5	99,05	3/22/2014	00;43	SD	6010 D	
J1402025-002L	Y	Cu	0.001	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Fe	0.165	5	98.86	3/22/2014	00:42	SD	6010 D	
J1402025-002L	Ý	к	0.280	5	98.86	3/22/2014	00:41	SD	6010 D	
J1402025-002L	Y	Łì	-0.004	5	99.05	3/22/2014	00:41	SD	6010 D	
J1402025-002L	Y	Mg	3.067	5	98.86	3/22/2014	00:42	SD	6010 D	
J1402025-002L	Y	Mn	0.005	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Mo	0.001	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Ŷ	Na	1.385	5	98.86	3/22/2014	00:41	SD	6010 D	
J1402025-002L	Ŷ	Ni	0.000	5	99.05	3/22/2014	00:43	SU	6010 D	
J1402025-002L	Y	P	0.012	ວ 	99.05	3/22/2014	00:43	5D SD	6010 D	
J1402025-002L	T V	ru Sh	-0.002	บ ผ	99.05	3/22/2014	00:43	sD sn	6010 D	
31402023-002L	, ,	പ	0.001	5	99.05	3/22/2014	00:43	50	6010 0	
J1402025-002L	Ŷ	Sn	0.002	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Ý	Sr	0.011	5	98.86	3/22/2014	00:41	SD	6010 D	
J1402025-002L	Ŷ	TI	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Ŷ	TI	0.000	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	v	0.001	5	99.05	3/22/2014	00:43	SD	6010 D	
J1402025-002L	Y	Zn	0.000	5	99.05	3/22/2014	00;43	SD	6010 D	
J1402025-002A	Ŷ	Ag	0.510	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	Al	5.267	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	As	0.510	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	В	2.576	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Ba	0.513	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	Be	0.205	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	ça	35.020	7	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	Ca Ca	0.258	1	90.73	3/22/2014	00:46	<i>P</i> S	8010 D	
11402025-002A	Ý	Cr	0.506	4	96.73	3/22/2014	00.46	PS	6010 D	
11402025-002A	Ŷ	Cu	0.511	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	Fe	5.800	1	101.8	3/22/2014	- 00:46	PS	6010 D	
J1402025-002A	Ý	ĸ	104,400	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Li	5.195	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Mg	19,520	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Mn	0.530	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Мо	0.516	1	96,73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Na	32.390	1	101.8	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	Ni	0.511	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Y	P	5.225	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	Pb	0.504	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ŷ	SD C-	0.520	1	96.73	3/22/2014	00:46	25	6010 D	
J1402025-002A	Ŷ	56	0.512	1	96.73	3/22/2014	00:46	PS	6010 D	
J 1402020-002A	r V	SII Sr	2.001	₹ 1	50.73 101 P	3/22/2014	00:40	ro pe	6010 D	
11402025-0024	Ý	Ti	2.541	, 1	96 73	3/22/2014	00.40	PS	6010 0	
J1402025-002A	Ŷ	τi	0 507	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ý	v	1.017	1	96.73	3/22/2014	00:46	PS	6010 D	
J1402025-002A	Ý	Zn	1.008	1	96.73	3/22/2014	00:46	PS	6010 D	
ÇCV	Y	Ag	0.494	1	95.26	3/22/2014	00:49	CCV		99 <u>-99-99-99-99-99-99-99-99-99-99-99-99-</u>
CCV	Ŷ	. AĬ	4.961	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	As	0.500	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	8	2.440	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Ba	0.495	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Be	0.198	1	95.26	3/22/2014	00:49	CCV		
CCV	Ý	Ca	4.968	1	98.53	3/22/2014	00:49	CCV		
CCV	Ý	Cd	0.249	1	95.26	3/22/2014	00:49	CCV		
	Ŷ	00	0.494 0.407	1	95.26	3/22/2014	00:49 00:49	COV		
008	Y	- UE	0.907	1	JU. 20	JI & CL & V 14	UU.48	UU V		

SAMPLE ID	RPT	Anal	Conc (mail.)	DF	iS Rec (%)	AnalDate	AnaiTime	Samo Type	Method	Comments
CCV	Y	Cu	0.494	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Fe	4.989	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	K	100.800	1	98.53	3/22/2014	- 00:49	CCV		
CCV	Y	Li	5.079	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Mg	4.943	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	Min	0.495	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Mo	0.504	1	95.26	3/22/2014	00:49	CCV		
CCV	Ŷ	Na	25.380	1	98.53	3/22/2014	00:49	CCV		
CCV	Y	Ni	0.504	1	95,26	3/22/2014	00:49	CCV		
CCV	Y	P	4.965	1	95.26	3/22/2014	00:49	CCV		
CCV	Ŷ	PD Ch	0.495	1 4	95.26	3/22/2014	00:49	COV		
CCV	Ŷ	50 50	0.302	4	90.20	3/22/2014	00.49	CCV		
CCV	r V	So	2 014	1	95.20	3/22/2014	00:49	COV		
CCV	Ŷ	Sr	0.510	1	98.53	3/22/2014	00:49	CCV		
COV	Ŷ	Ti	2.481	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	TI	0.496	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	V	0.993	1	95.26	3/22/2014	00:49	CCV		
CCV	Y	Zn	0.988	1	95.26	3/22/2014	00:49	CCV		
ССВ	Y	Ag	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	Al	0.004	1	97.99	3/22/2014	00:53	CCB		
CCB	Y	As	-0.001	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	. В	0.014	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	Ва	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ŷ	Be	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ŷ	Ca	-0.004	1	97.99	3/22/2014	00:53	CCB		
CCB	Ŷ	Ca	0.000	1 4	97.94	3/22/2014	00:54	CCB		
CCB	v	Cr	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ý	CH	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ý	Fe	0.001	1	97.99	3/22/2014	00:53	CCB		
CCB	Ŷ	ĸ	0.080	1	97,99	3/22/2014	00:53	CCB		
CCB	Ŷ	Li	-0.005	1	97.94	3/22/2014	00:53	CCB		
ССВ	Y	Mg	-0,008	1	97.99	3/22/2014	00:53	ССВ		
CCB	Y	Mn	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	٠¥	Mo	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	Na	0.023	1	97.99	3/22/2014	00:53	CCB		
CCB	Y	Ni	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Y	P	0.003	1	97.94	3/22/2014	00:54	CCB		
CCB	Ŷ	PD	-0.001	1	97.94	3/22/2014	00:54	CCB		
008	Y	50	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	v	Se Sn	-0.002	1	97.94	3/22/2014	00.54	CCB		
CCB	Ŷ	Sr	0.001	1	97.94	3/22/2014	00:53	CCB		
CCB	Ý	7i	0.000	1	97.94	3/22/2014	00:54	CCB		
CCB	Ŷ	TI	-0.001	1	97.94	3/22/2014	00:54	CCB		•
CCB	Ŷ	v	0.001	1	97.94	3/22/2014	00:54	CCB		
ССВ	Y	Zn	-0,003	1	97.94	3/22/2014	00:54	CCB		
J1402025-003	Y	Ag	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Al	0.096	1	101	3/22/2014	00:58	SAMP	6010 D	
J1402025-003	Y	As	0.004	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	8	0.028	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Ba	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	· · · · · · · · · · · · · · · · · · ·
J1402025-003	Ŷ	Be	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Ca	23,240	1	101	3/22/2014	00:57	SAMP	6010 D	
11402025-003	Ý	Co	0.000	י 1	100	3/22/2014	00,09	SAMP	6010 D	
11402025-003	Ý	Cr	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Cu	0.001	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Fe	0.745	1	101	3/22/2014	00:58	SAMP	6010 D	
J1402025-003	Y	к	1.020	1	101	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Y	Li	-0.004	1	100	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Y	Mg	9.959	1	101	3/22/2014	00:58	SAMP	6010 D	
J1402025-003	Y	Mn	0.026	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Мо	0.006	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	Na	5.487	1	101	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Ŷ	î vi	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	۲ n-	0.195	1	100	3/22/2014	00:59	SAMP		
J (402023-003	ř	ro er	-U.UU4 0.000	1 4	100	3/22/2014	00:59	GVML, BVMD	8010 D	
01402020-000 11402025-003	T V	30 50	0.000	1	100	3/22/2014	00:09	STRUC	6010 D	
11402025-003	Ŷ	Sn	0.007	1	100	3/22/2014	00.59	SAMP	6010 0	
J1402025-003	Ŷ	Sr	0.034	1	101	3/22/2014	00:57	SAMP	6010 D	
J1402025-003	Ý	n	0.000	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Ŷ	TI	0.001	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	V	0.003	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-003	Y	Zn	0.002	1	100	3/22/2014	00:59	SAMP	6010 D	
J1402025-004	Y	Ag	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	an tan an an an an an an an an an an an an a
J1402025-004	Y	Al	0.095	1	100.4	3/22/2014	01:03	SAMP	6010 D	

	BOT	a nat	Canalmail	DE	(S Sec /9/)	AnalData	AnalTima	Sama Tuno	Mathad	Commanie
5AMPLE ID 11402025-004	νΥ	Anai	0.005	1	99.07	3/22/2014	01.04	SAMP	6010 D	oonnierka
J1402025-004	Ý	8	0.141	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ŷ	Ba	0.009	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	8e	0,000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Ca	23.740	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Cd	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Co	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004 .	Y	Cr	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Cu	0.001	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Fe	0.245	1	100.4	3/22/2014	01:03	SAMP	6010 D	
J1402025-004	Y	К	25.610	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Li	-0.004	1	99.07	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Mg	7.860	1	100.4	3/22/2014	01:03	SAMP	6010 D	
J1402025-004	Y	Mn	0.060	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Мо	0.001	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Na	17.460	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Y	Ni	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	P	0.016	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Pb	-0.004	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ŷ	Sb	0.000	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Se	0.003	1	99.07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Ŷ	Sn	0.008	1	99,07	3/22/2014	01:04	SAMP	6010 D	
J1402025-004	Y	Sr	0.199	1	100.4	3/22/2014	01:02	SAMP	6010 D	
J1402025-004	Ŷ		0.000	1	99.07	3/22/2014	01:04	CAMP	6010 D	
J1402025-004	Ŷ		0.001	1	99.07	3/22/2014	01:04	SAMP	6040 D	
J1402025-004	Ŷ	V 720	0.003	1	99.07	3/22/2014,	01:04	SAMP	6010 D	
J1402025-004		2.11	0.002		100 1	3/22/2014	01.04	SAMD	6040 D	
J1402025-005	, V	Ag	0.000	1	100.1	3/22/2014	01.09	SAME	6010 D	
J1402020-005	r V	Ai	0,099	1	100.0	3/22/2014	01:00	SAMP	8010 D	
J1402020-005	v	R	0.000	4	100.1	3/22/2014	01:09	SOMP	6010 D	
H402025-005	, v	Ra	0.001	1	100.1	3/22/2014	01:09	SAMP	6010 D	
1402025-005	Ý	8e	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
11402025-005	Ý	Ca	30.740	1	100.6	3/22/2014	01:07	SAMP	6010 D	
11402025-005	Ŷ	Cd	0.000	•	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ŷ	Co	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ŷ	Cr	0.005	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ŷ	Ċu	0.001	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Fe	0.887	1	100.6	3/22/2014	01:08	SAMP	6010 D	
J1402025-005	Y	к	0,980	1	100.6	3/22/2014	01:07	SAMP	6010 D	
J1402025-005	Y	Li	-0.004	1	100.1	3/22/2014	01:07	SAMP	6010 D	
J1402025-005	Y	Mg	14.790	1	100.6	3/22/2014	01:08	SAMP	6010 D	
J1402025-005	Y	Mn	0.026	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Mo	0.003	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Na	6.717	1	100,6	3/22/2014	01:07	SAMP	6010 D	
J1402025-005	Y	Ni	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ý	P	0.050	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Рb	-0.003	1	100.1	3/22/2014	01:09	SAMP	6010 D	5. C
J1402025-005	Y	Sb	0.000	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Se	0.001	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Sn	0.008	î	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ý	Sr	0.051	1	100,6	3/22/2014	01:07	SAMP	6010 D	· .
J1402025-005	Y	Ti	0.000	1	100,1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ý	ŤΪ	0.002	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Ŷ	V 	0.003	1	100.1	3/22/2014	01:09	SAMP	6010 D	
J1402025-005	Y	Zn	0.002	- I	100.1	3/22/2014	01:09	SAMP	5010 D	ander and a second second second second second second second second second second second second second second s
J1402025-006	Ŷ	Ag	0.000	1	99.97	3/22/2014	01:13	SAMP	6010 D	·
J1402025-006	Ŷ	Al	0.471	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Ŷ	As	0.002	1	99.97	3/22/2014	01:14	SAMP		
J1402025-006	Ŷ	8	0.020	1	99.97	3/22/2014	U1:14	SAMP	0010 D	
J1402025-006	Ŷ	ba n-	0.051	1	99.97	3/22/2014	V1:14	DAIVIP DAIVIP	6010 D	
J1402025-006	Y	56	0.000	1	99.97	3/22/2014	01:13	SAN	6010 D	
J1402025-006	Y	va na	14.370	1	100.0	3/22/2014	01:12	CANAD	6010 D	
J 1402020-000	T V	Co	0.000	1	99.97	3/22/2014	01.14	SAMD	6010 D	
11402020-000	· v	Cr.	0.000	י 1	99.97	3/22/2014	01.14	SAMP	6010 0	
11402025-006	Ý	Cu Cu	0.000	1	99.97	3/22/2014	01-14	SAMP	8010 0	
11402020-000	v	۲۵ ۲۵	0.005	1	100.6	3/22/2014	01.12	SAMP	6010 D	
11402025-006	Ý	К	3 925	1	100.6	3/22/2014	01 12	SAMP	6010 D	
J1402025-006	Ý	L i	0.002	1	99 97	3/22/2014	01:12	SAMP	6010 D	
11402025-006	Ý	Ма	2.699	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Ŷ	Mn	0.000	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ý	Mo	800.0	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ŷ	Na	11.050	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Y	Ni	0.000	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Ŷ	P	0.013	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	РЬ	-0.003	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Sb	0.000	ŧ	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Se	0.004	1	99.97	3/22/2014	01:14	SAMP	6010 D	

.

SAMPLE ID	RPT	Anal	Conc (mg/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	Method	Comments
J1402025-006	Y	Sn	0.005	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Sr	0.317	1	100.6	3/22/2014	01:12	SAMP	6010 D	
J1402025-006	Y	Ti	0.000	1	99.97	3/22/2014	01:13	SAMP	6010 D	
J1402025-006	Y	TI	0.001	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	۷	0.002	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-006	Y	Zn	0.002	1	99.97	3/22/2014	01:14	SAMP	6010 D	
J1402025-007	Y	Ag	0.000	1	99.97	3/22/2014	01:18	SAMP	6010 D	
J1402025-007	Y	Al	0.121	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	As	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ŷ	8	0.024	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ý	Ba	0.024	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ŷ	Be	0.000	1	99.97	3/22/2014	01:18	SAMP	6010 D	
31402025-007	v v	Cd	43.000	1	00.07	3/22/2014	01:17	SAMP	6010 D	
11402025-007	v	Co	0.001	1	99.97	3/22/2014	01.19	SAMP	6010 D	
11402025-007	Ý	Cr	0.000	1	99.97	3/22/2014	01:19	SAMP	6010 D	
.11402025-007	Ý	Cu	0.001	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ŷ	Fe	0.341	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Ŷ	ĸ	5.289	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	LI	0.005	1	99.97	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y.	Mg	1.973	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	Mn	0.011	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Mo	0.003	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Na	2.742	1	100.8	3/22/2014	01:17	SAMP	6010 D	
J1402025-007	Y	Ni	0.032	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	P	0.156	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	РЬ	-0.005	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Ŷ	Sb	0.001	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402025-007	Y	Se C-	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	·
J1402025-007	Ŷ	୪୩ ଜୀ	0.012	1	99.97	3/22/2014	01:19	SAMP	6010 D	
J1402023-007	¥ V	51	0.200	1	100,6	3/22/2014	01:17	SAMP	6010 D	
11402023-007	Ý	11	0.000	1	00.07	3/22/2014	01.10	SAMP	6010 D	
1402025-007	Ý	V	0.000	1	99.97	3/22/2014	01.19	SAMP	6040 D	
J1402025-007	Ŷ	Zn	0.002	1	99.97	3/22/2014	01:19	SAMP	6010 D	
ICSA	Ý	Aa	-0.006	1	85.27	3/22/2014	01.22	ICS-A		
ICSA	Ŷ	Al	756.800	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Y	As	0.011	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	₿	0.048	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Ba	-0.001	1	85.27	3/22/2014	01:22	ICS-A		
ICSA:	Y	Be	0.002	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Ca	699.600	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Y	Cd	0.008	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Co	0.016	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Cr	-0.003	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Ŷ	Cu	0.002	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Ŷ	10 12	667.400	7	91.61	3/22/2014	01:21	ICS-A		
ICSA	r V	N 11	0.162	1	91.01	3/22/2014	01:21	ICS-A		
ICSA	v	LI Μα	-0,000	1	01.61	3/22/2014	01.21	108-A		
ICSA	v	ñAn	-0.012	1	85.27	3/22/2014	01.21	ICS-A		
ICSA	Ý	Ma	0.013	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Ý	Na	0.028	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Ý	Ni	0.015	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Р	-0.002	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Pþ	-0.013	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Sb	-0.010	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Se	0.004	1	85.27	3/22/2014	01;22	ICS-A		
ICSA	Y	Sn	0.036	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	Sr	-0.002	1	91.61	3/22/2014	01:21	ICS-A		
ICSA	Y	Ti	0.003	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Y	11	0.005	1	85.27	3/22/2014	01:22	ICS-A		
ICSA	Ŷ	V 7-	-0.008	1	85.27	3/22/2014	01:22	ICS-A		
10040	T.	<u>د ۱</u>	0.020	1	05.21	3/22/2014	01:22	ICS-A		
ICOAD	ı V	Ag	760.000	1	02.20	3/22/2014	01:30	ICS-AB		
ICSAB	Ý	Δe	0210	1	85.26	3/22/2014	01.29	ICS AB		
ICSAB	Ŷ	B	1.006	: ;	85.26	3/22/2014	01.30	ICS-AR		
ICSAB	Ŷ	ва	0.187	i	85 26	3/22/2014	01:30	ICS-AR		
ICSAB	Ŷ	Be	0.082	1	85.26	3/22/2014	01:30	ICS-AR		
ICSAB	Ŷ	Ca	692.800	1	92.53	3/22/2014	01:29	ICS-AB		
ICSAB	Y	Cd	0.112	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Co	0.199	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Cr	0.189	1	85.26	3/22/2014	01:30	ICS-AB		
ICSAB	Y	Cu	0.211	1	85.26	3/22/2014	01;30	ICS-AB		
ICSAB	Y	Fe	677.800	1	92.53	3/22/2014	01:29	ICS-AB		
ICSAB	Y	к	46.480	î	92.53	3/22/2014	01:29	ICS-AB		
ICSAB	Y	Li	2.298	1	85.26	3/22/2014	01:29	ICS-AB		
ICSAB	Y	Mg	700.600	1	92.53	3/22/2014	01:29	ICS-AB		A / A

SAMPLE ID	RPT	Anai	Conc (mail.)	DF	IS Rec (%)	AnalDate	AnalTime	Samn Type	Method		Comments
ICSAR	~	Mo	0.185	1	85.26	3/22/2014	01.30	BA-201	menyoe		O ministro
ICSAR	Ý	Mo	0.208	, 1	85.26	3/22/2014	01:30	ICS.AB			
ICSAB	Ý	Na	11 370	1	92.53	3/22/2014	01:29	ICS-AB			
ICSAB	Ý	Ni	0.199	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Ý	P	2.024	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Ý	Pb	0.162	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	Sb	0.200	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	Se	0.202	1	85,26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	Sn	0.785	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	Sr	0.209	1	92.53	3/22/2014	01:29	ICS-AB			
ICSAB	Y	TI	1.027	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	Tł	0.187	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	v	0.395	1	85.26	3/22/2014	01:30	ICS-AB			
ICSAB	Y	Zn	0.379	1	85.26	3/22/2014	01:30	ICS-AB			
CCV	Y	Ag	0.500	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	A	4.984	1	97.93	3/22/2014	01:37	CCV			
CCV	Y	As	0.501	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	в	2.452	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Ba	0.500	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Be	0.200	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Са	4.952	1	97.93	3/22/2014	01:37	CCV			
CCV	Y	Cd	0.251	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Co	0.498	1	94.76	3/22/2014	01:38	CCV		•	
CCV	Y	Сг	0.501	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Cu	0.499	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Fe	4.990	Ŧ	97.93	3/22/2014	01:37	CCV			
CCV	Ý	к	101.000	1	97.93	3/22/2014	01:37	CCV			
CCV	Y	Li	5.107	1	94.76	3/22/2014	01:37	CCV			
CCV	Y	Mg	4.969	1	97.93	3/22/2014	01:37	CCV			
CCV	Y	Min	0.501	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Мо	0.508	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Na	25.590	1	97.93	3/22/2014	01:37	CCV			
CCV	Y	Ni	0.508	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	P	5.022	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Pb	0.503	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Sb	0.505	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Se	0.500	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Sn	2.037	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Sr	0.512	1	97.93	3/22/2014	01:37	CCV			
CCV	Y	Ti	2.507	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	TI	0.502	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	V	1.004	1	94.76	3/22/2014	01:38	CCV			
CCV	Y	Zn	1.002	1	94.76	3/22/2014	01:38	CCV			
CCB	Ý	Ag	0.000	1	98.32	3/22/2014	01:42	CCB			
CCB	Y	AI	-0.018	1	97,16	3/22/2014	01:41	CCB			
ССВ	Y,	As	0.000	1	98.32	3/22/2014	01:43	CCB			
CCB	Y	в	0,005	1	98.32	3/22/2014	01:43	CCB			
CCB	Y	Ba	0.000	1	98.32	3/22/2014	01:43	CCB			
CCB	Y	Be	0.000	1	98.32	3/22/2014	01:42	CCB			
CCB	Y	Ca	-0.005	4	97.16	3/22/2014	01:41	CCB			
CCB	Y	Cd	0.000	1	98.32	3/22/2014	01.43	CCB			
CCB	Ŷ	Co	0.000	1	98.32	3/22/2014	01:43	CCB			
00B	Ŷ	Cr	0.000	1	98.32	3/22/2014	U1:43	CCB			
CCB	Ŷ	Cu	0.001	1	98.32	3/22/2014	01:42	CCB			
CCB	Y	Fe	0.001	1	97.16	3/22/2014	01:41	ССВ			
CCB	Ý	ĸ	0.038	1	97.16	3/22/2014	01:41	CCB			
CCB	Ŷ	LI	-0.005	1	98.32	3/22/2014	01:41	CCB			
CCB	Ŷ	Mg	-0.001	1	97.16	3/22/2014	01:41	CCB			
CCB 000	Ŷ	MN	0.000	1	98.32	3/22/2014	01:43	CCB			
CCB CCD	Y	MO N-	0,000	1	98.32	3/22/2014	01:43	CCB			
008	T V	192) NO	0.020	4	97.10 09.20	3/22/2014	01:41	CCB			
008	i V	D D	0.000	ו 1	90.JZ	3/20/0041	01:43	CCB			
008	r V	ר 25	0.001	1	00.32 00.01	3/22/2014	01:43	008			
000	T V	г U С h	-0.002	1 4	80.32 00 34	3/22/2014	01:43				
000	v v	30 S -	0,001	1	90.32 08.33	3/22/2014	01.43	CCP			
CCB	v	Sn	-0.001	, 1	08.02	3/22/2014	01.40	CCB			
CCB	v	Sr.	-0.001	1	90.92 97 16	3/22/2014	01.40	CCP			
CCB	Ý	TT T	0.000	4	98.39	3/22/2014	01-42	CCP			
CCB	, v	++ 11	-0.001	, 1	98.32	3/22/2014	01.42	CCR			
CCB	Ý	v	0.001	1	00.02 08 32	3/22/2014	01:43	CCP			
CCB	Ý	v Z⊓	-0.003	1	98 32	3/22/2014	01.49	CCB			
30D	,	-11	-0.000	•	00.02	wet for first for VI 194	Q1.90	000			
Analyst:	SPO	, 	_ Da	ita File ID:		032614B		- LI	MS Run #	<u> 385c</u>	$\infty_{\mathcal{C}}$
---------------	---------------	---	---------	--------------	-------------	------------	-------------	-----------	---------------------	----------------	------------------------
Analysis:	ICP	-MS		Method R	eferences:		200.8 / 602	0	Inst ID:	J-ICP	-MS-01
				Sta	indard's Tr	ace Numl	oers				
STE	DID	Tra	ace#	Exp	Date	ST	DID	Tra	ce#	Exp	Date
ICA	L-1	MET-	17-81C	4-1-	14	INT	STD	MET-17	1-83F	4-26	-14
ICA	L-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 81D		****	IC	SA		84 A	4-2	-14
ICA	1_3	· .	RIF			ICS	SAR	84	BOUR-	Mu Hal	.14
							Diluont		and a		10
	<u>↓</u> _~4÷	<u> </u>	-XIF				Diluent	<u>↓↓</u>	O.SE	كم حد ا	<u>e=1></u>
IC	V	<u>v</u>	816-1	V	I			L			
				Standard	d Concentra	ations an	d Ranges				
Element	MRL	Linea	r Range	ICV	CCV	LCS	ICSA	ICSAB	Units	ICV RSD	Stahilit
9Be	0.5	3	000	20	25	25	0	10	ug/L	1.265	Denort
27AI	50	50	0000	500	2500	2500	50000	51000	ug/L	1.032	
47Ti	5	5	000	250	250	250	1000	1100	ug/L	0.865	\$ 3%
4811 541/	5	0	000	250	250	250	1000	1100	ug/L	0.893	-
51V 52Cr		5	000	50	50	50	0	40 20	ug/t_ ug/l	0.037	
55Mp	2	5	000	50	100	100	0	40	ug/L	0.729	
59Co	i	5	000	50	50	50	0	20	ug/L	1.182	
60Ni	2	5	000	50	100	100	0	40	ug/L	1.168	Cal
62Ni	2	5	000	50	100	100	0	40	ug/L	4.264	Curves
63Cú	. 1	5	000	50	50	50	0	20	ug/L	0.479	> 0.995
65Cu	1	5	000	50	50	50	0	20	ug/L	0.123	
66Zn	5	1(0000	100	250	250	0	100	ug/L	0.596	
002/1 75As	<u> </u>	5	000	50	250	<u>250</u>	0	20	ug/L	0.696	
78Se	2	5	000	50	100	100	0	40	<u>ug/с</u> на/і	0.652	
82Se	2	5	000	50	100	100	0	40	ug/L	1.835	Mass
86Sr	2	5	000	50	100	100	0	40	ug/L	1.517	Call Rpt
88Sr	2	5	000	50	100	100	0	40	ug/L	0.777	Incl.
97Mo	2	. 5	000	50	100	100	1000	1040	ug/L	2.108	
98Mo	2	5	000	50	100	100	1000	1040	ug/L	0.623	
107Ag	0.5			50	25	25		10	ug/L	1.305	
111Cd	0.0	2	500	25	20	20	0	10	Ug/L Ug/L	1 148	
114Cd	0.4	2	500	25	20	20	0	8	ug/L	1.819	
118Sn	5	- 20	0000	200	250	250	0	100	ug/L	1.285	
120Sn	5	20	0000	200	250	250	0	100	ug/L	1.194	
121Sb	1	5	000	50	50	50	0	20	ug/L	3.228	
123Sb	1	5	000	50	50	50	0	20	ug/L	1.425	
135Ba	2	5	000	50		100	0	40	ug/L	1.416	
137Ba	2	5		UC 50		100	0	40	ug/L	2.834	
20511	0.2	5 5		50	10	10	υ 		ug/L	2316	
208Ph	0.5	5	000	50	25	25	0	10	<u>ug/L</u>	1 077	-

2025 Samples and T4).

Isotopes in BOLD are the default isotopes used for reporting.

364

WR 3/31/14

	ICP-MS Run S	equence	Dat	e File ID	: 032	2614B	······································				
#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time
1	Cal Blank	3/26/14	22:43								
2	Cal 1	3/26/14	22:48								
3	Cal 2	3/26/14	22:53								
4	Cal 3	3/26/14	22:58								
5	Cal 4	3/26/14	23:03								
6	ICV	3/26/14	23:08								
7	ICB	3/26/14	23:13								
8	MRL	3/26/14	23:18								
9	ICSA	3/26/14	23:23								
1) ICSAB	3/26/14	23:28								
1	1 CCV-1	3/26/14	23:33								
1	2 CCB-1	3/26/14	23:38								
1	3 MB-02133-04	3/26/14	23:43								
1	4 LCS-02133-03	3/26/14	23:48								
1	5 J1402003-001	3/26/14	23:53								
1	5 J1402003-002	3/26/14	23:58								
1	7 J1402003-003	3/27/14	0:03								
1	3 J1402003-004	3/27/14	0:08								
1	9 J1402025-001	3/27/14	0:13								
2) J1402025-002	3/27/14	0:18								
2	J1402025-003	3/27/14	0:23								
2	2 J1402025-004	3/27/14	0:28								
2	3 CCV-2	3/27/14	0:33								
2	4 CCB-2	3/27/14	0:38								
2	5 J1402025-005	3/27/14	0:43								
2	5 J1402025-006	3/27/14	0:49								
2	7 J1402026-001	3/27/14	0:54								
2	3 J1402026-001S	3/27/14	0:59								
2	9 J1402026-001SD	3/27/14	1:04								
3) J1402026-001L	3/27/14	1:09								
3	I J1402026-001A	3/27/14	1:14								
3	2 J1402026-002	3/27/14	1:19								
. 3	3 J1402026-003	3/27/14	1:24								
3	4 J1402026-004	3/27/14	1:29								
3:	5 CCV-3	3/27/14	1:34								
3	5 CCB-3	3/27/14	1:39								
3	7 J1402026-005	3/27/14	1:44								
3	3 J1402026-006	3/27/14	1:49								
3	9 CCV-4	3/27/14	1:54								
4) CCB-4	3/27/14	1:59								

Page 1 of 1

365

ICP-MS DATA REPORTED WITH FAILING CRITERIA

Data File ID: 032614B

Sample ID	Analyte	Failure(s)	Analyst's Comments

.

366

Sample ID	Isotope-1	Isotope-1 Conc (ug/L)	Isotope-2	lsotope-2 Conc (ug/L)	RPD	ANAL DATE / TIME
J1402025-001	47Ti	0.154	48Ti	35.91	198.3	3/27/2014 0:13
J1402025-002	47Ti	0.592	48Tï	22.81	189.9	3/27/2014 0:18
J1402025-003	47Ti	0.946	48Ti	16.57	178.4	3/27/2014 0:23
J1402025-004	47Ti	0.154	48Ti	16.3	196.3	3/27/2014 0:28
J1402025-005	47Ti	0.541	48Ti	22.01	190.4	3/27/2014 0:43
J1402026-001	47Ti	0.486	48Ti	35.99	194.7	3/27/2014 0:54
J1402026-001	66Zn	3.695	68Zn	10.43	95.4	3/27/2014 0:54
J1402026-002	47Ti	1.215	48Ti	24.82	181.3	3/27/2014 1:19
J1402026-003	47Ti	0.922	48Ti	24.66	185.6	3/27/2014 1:24
J1402026-004	47Ti	0.952	48Ti	61.58	193.9	3/27/2014 1:29
J1402026-005	47Ti	2.366	48Ti	169	194.5	3/27/2014 1:44
J1402026-005	66Zn	9.553	68Zn	34.72	113.7	3/27/2014 1:44
J1402026-006	47Ti	1.719	48Ti	62.32	189.3	3/27/2014 1:49
J1402026-006	66Zn	7.737	68Zn	29.7	117.3	3/27/2014 1:49

ICP-MS Isotope Discrepancy Summary Sheet

Isotopes Reported Other Than Defaults When Defaults Pass QC Checks

Data File ID: 032614B

	Reported	Reported	Default	Default	
Sample ID	Isotope	Conc	Isotope	Conc	Analyst's Comments

368

19:24:48 3/26/14 Stability March2014.vge

Exc	luded In Calib Exclu	ded In Results 🛛 Peal	armolevel inded	Multi Eleme	ent 🛛 Semi Qu	ant Internal	Standard Sta	ndard Addition
Jncor	rected ICPS Per Mass		S-Calibration Has E F-Interference Corr	dited Standard E ection Failed T	-Calibration Edited -Tripped	I-Invalid Calibra P-Pulse Countin	tion V-Valley I g M-Result (ntegration Failed Over Max
Run	Label	TimeStemp	5Bkg	7Li	9Be	24Mg	25Mg	26Mg
1	Stability_0326_5	3/26/2014 7:11:10 P	(P)0.000	(P)113540.740	(P)67684.481	(P)163250.590	(P)22990.719	(P)28175.548
2	Stability_0326_5	3/26/2014 7:11:38 P	(P)0.000	(P)117212.430	(P)66253.380	(P)164280.350	(P)23355.744	(P)28379.288
3	Stability_0326_5	3/26/2014 7:12:07 P	(P)0.000	(P)140941.020	(P)60092.842	(P)163083.300	(P)23455.932	(P)28102.080
4	Stability_0326_5	3/26/2014 7:12:35 P	(P)0.000	(P)129084.160	(P)65452.980	(P)164268.070	(P)23330.160	(P)28414.924
5	Stability_0326_5	3/26/2014 7:13:04 P	(P)0.000	(P)126361.290	(P)63756.424	(P)165336.700	(P)23449.246	(P)28316.936
	Mean of Stability_032	3/26/2014 7:11:10 P	(P)0.000	(P)125427.930	(P)64648.022	(P)164043.800	(P)23316.360	(P)28277.755
	SD of Stability_0326_5		(P)0.000	(P)10766.790	(P)2915.040	(P)912.355	(P)190.344	(P)134.134
	%RSD of Stability_		(P)0.000	(P)8.584	(P)4.509	(P)0.556	(P)0.816	(P)0.474

Run	Label	TimeStamp	59Co	138Ba++	113In	115ln	138Ba	140Ce
1	Stability_0326_5	3/26/2014 7:11:10 P	(P)378640.690	(P)22664.635	(P)16869.956	(P)390876.370	(P)268214.720	(P)332305.520
2	Stability_0326_5	3/26/2014 7:11:38 P	(P)380181.600	(P)22730.296	(P)16912.227	(P)390038.640	(P)273327.860	(P)336524.260
3	Stability_0326_5	3/26/2014 7:12:07 P	(P)378997.120	(P)23078.630	(P)16865.507	(P)385813.010	(P)263182.250	(P)341083.450
4	Stability_0326_5	3/26/2014 7:12:35 P	(P)376565.750	(P)22852.716	(P)16946.713	(P)387641.510	(P)266506.260	(P)344206.330
5	Stability_0326_5	3/26/2014 7:13:04 P	(P)378257.170	(P)22819.323	(P)16935.589	(P)386499.780	(P)265286.520	(P)337754.030
	Mean of Stability_032	3/26/2014 7:11:10 P	(P)378528.470	(P)22829.120	(P)16905.998	(P)388173.860	(P)267303.520	(P)338374.720
	SD of Stability_0326_5	() - en esterit - en el esterit i en el parte de de de de de de de de de de de de de	(P)1312.531	(P)157.900	(P)37.117	(P)2204.570	(P)3834.442	(P)4527.404
	%RSD of Stability_		(P)0.347	(P)0.692	(P)0.220	(P)0.568	(P)1.434	(P)1.338
		n ya kunangata						

Run	Label	👬 TimeStamp	154Ba O.S.	04156Ce.O.5	175	206Pb	207Pb	208Pb
1	Stability_0326_5	3/26/2014 7:11:10 P	(P)574.456	(P)52822.026	(P)38.889	(P)98121.412	(P)82232.716	(P)204320.810
2	Stability_0326_5	3/26/2014 7:11:38 P	(P)538.899	(P)55845.658	(P)31.111	(P)97451.272	(P)83197.138	(P)206172.730
3	Stability_0326_5	3/26/2014 7:12:07 P	(P)535.566	(P)54675.565	(P)38.889	(P)97367.354	(P)82617.103	(P)205269.960
4	Stability_0326_5	3/26/2014 7:12:35 P	(P)498.898	(P)51193.840	(P)34.444	(P)96469.084	(P)81220.245	(P)205181.890
5	Stability_0326_5	3/26/2014 7:13:04 P	(P)486.675	(P)52722.824	(P)43.333	(P)96140.198	(P)81882.907	(P)204262.220
	Mean of Stability_032	3/26/2014 7:11:10 P	(P)526.899	(P)53451.982	(P)37.333	(P)97109.864	(P)82230.022	(P)205041.520
	SD of Stability_0326_	5	(P)34.939	(P)1820.341	(P)4.688	(P)799.522	(P)745.871	(P)787.123
	%RSD of Stability_		(P)6.631	(P)3.406	(P)12.557	(P)0.823	(P)0.907	(P)0.384

Run	Label	TimeStamp	209Bi	🛶 220Bkg 👘	238U	
1	Stability_0326_5	3/26/2014 7:11:10 P	(P)324100.290	(P)0.000	(P)396815.810	
2	Stability_0326_5	3/26/2014 7:11:38 P	(P)323779.310	(P)0.556	397706.880	
3	Stability_0326_5	3/26/2014 7:12:07 P	(P)320345.300	(P)0.000	392780.060	
4	Stability_0326_5	3/26/2014 7:12:35 P	(P)322800.760	(P)0.000	387488.270	
5	Stability_0326_5	3/26/2014 7:13:04 P	(P)325225.390	(P)0.000	395288.200	
	Mean of Stability_032	3/26/2014 7:11:10 P	(P)323250.210	(P)0.111	394015.840	
	SD of Stability_0326_5		(P)1840.138	(P)0.248	4099.352	1
	%RSD of Stability_		(P)0.569	(P)223.607	1.040	
					landa an an an an an an an an an an an an an	

ICP-MS MASS CALIBRATION SUMMARY SHEET Data File ID: 032614B

Element	Mass	Mass DAC	Peak Width (AMU)	Error (AMU)	Include	Resolution PASS / FAIL (< 0.9 AMU)	Accuracy PASS / FAIL (+/- 0.1 AMU)
Be	9.012	2006	0.715	0.028	TRUE	PASS	PASS
Mg	23.985	5820	0.664	0.044	TRUE	PASS	PASS
Mg	24.986	6074	0.715	0.042	TRUE	PASS	PASS
Mg	25.983	6321	0.715	0.016	TRUE	PASS	PASS
Al	26.982	6581	0.715	0.038	TRUE	PASS	PASS
Ti	46.952	11651	0.766	-0.011	TRUE	PASS	PASS
V	50.944	12665	0.766	-0.02	TRUE	PASS	PASS
Cr	51.94	12925	0.766	0.005	TRUE	PASS	PASS
Mn	54.938	13679	0.766	-0.031	TRUE	PASS	PASS
Co	58.933	14700	0.817	-0.016	TRUE	PASS	PASS
Ni	59.931	14953	0.766	-0.02	TRUE	PASS	PASS
Cu	64.928	16221	0.817	-0.036	TRUE	PASS	PASS
Zn	65.926	16474	0.766	-0.041	TRUE	PASS	PASS
As	74.922	18769	0.817	-0.023	TRUE	PASS	PASS
Se	77.919	19529	0.766	-0.036	TRUE	PASS	PASS
Sr	85.91	21568	0.817	-0.02	TRUE	PASS	PASS
Mo	97.905	24629	0.766	0.002	TRUE	PASS	PASS
Äg	108.905	27431	0.714	0.002	TRUE	PASS	PASS
Cd	113.903	28711	0.765	0.028	TRUE	PASS	PASS
Sn	117.902	29732	0.714	0.037	TRUE	PASS	PASS
Sb	122.904	31006	0.714	0.035	TRUE	PASS	PASS
Ba	136.906	34574	0.663	0.035	TRUE	PASS	PASS
TI	204.972	51923	0.713	0.012	TRUE	PASS	PASS
Pb	205.974	52170	0.713	-0.022	TRUE	PASS	PASS
Pb	206.976	52430	0.713	-0.005	TRUE	PASS	PASS
Pb	207.977	52690	0.713	0.014	TRUE	PASS	PASS

Label

Defined

Measured

Mean CPS Error

	12: 03:	43:11 3/27/14 2614B.vge	ţ		Page 6 of 15
Cal Blank	0.00	0.01	0.01	125.75	
Cal 1	5.00	4.99	-0.01	1,583.10	-0.01
Cal 2	50.00	51.03	1.03	15,061.08	1.03
Cal 3	250.00	257.52	7.52	75,513.65	7.52
Cal 4	1,000.00	971.55	-28.45	284,550.83	-28.45

75As

Fully Quant Calibration

FQ Block 1

77Se FQ Block 1

FQ Block 1

88Sr

97Mo

Fully Quant Calibration

FQ Block 1

137Ba FQ Block 1

Page 14 of 15

		12:43:11 3/27/14 032614B.vge	4		Page 15 of 15
Cal 3	10.00	10.11	0.11	27,554.98	0.11
Cal 4	40.00	39.26	-0.74	106,999.76	-0.74

ICP-MS INTERNAL STANDARD SUMMARY SHEET

					Data	a File ID: 032	2614B					
Analyte:	9Be	27AI	47Ti	48Ti	51V	52Cr	55Mn	59Co	60Ni	62Ni	63Cu	65Cu
I.S. Used:	45Sc	45Sc	45Sc	45Sc	45Sc	45Sc	71Ga	71Ga	71Ga	71Ga	71Ga	71Ga
	667n	687n	7540	7980	0260	1 965	l oocr	071/0	09360	1074~	1004	44404
Analyte.	710-2	7100	7100	71000	7100	7100	7100	97 IVIO 11510	901VIQ	115m	109Ag	1150
1.3. Useu.			<u> 710a</u>			1 /10a	l riga					
Analyte:	114Cd	118Sn	120Sn	121Sb	123Sb	135Ba	137Ba	203TI	205TI	208Pb		
I.S. Used:	115ln	159Tb	159Tb	159Tb	159Tb	159Tb	159Tb	175Lu	175Lu	175Lu		
				1					nimilari unitari ani ani ani ani ani ani		<u>і</u> Г	
				C1 3	1500		emai Standa	aros L acorte	4761	1 2000;		
			Recovery		4550	/ IGa		15915		209BI		
Samp		Method		Rec	Rec	Kec	Kec	Kec	Кес	Rec	Anal Da	te / Lime
Cal Blank		<u>N/A</u>	80-120%	100.3%	99.7%	99.2%	100.3%	98.8%	98.1%	99.0%	3/26/20	14 22:43
Cal 1		N/A	80-120%	98.2%	100.5%	100.8%	99.5%	97.0%	100,6%	100.2%	3/26/201	14 22:48
Cal 2		N/A	80-120%	100.4%	98.4%	102.4%	98.4%	98.6%	98.5%	99.3%	3/26/201	14 22:53
Cal 3		N/A	80-120%	98.5%	97.3%	100.8%	100.4%	98.6%	102.0%	100.4%	3/26/201	14 22:58
Cai 4		N/A	80-120%	98.4%	92.3%	96.2%	97.0%	93.5%	97.0%	90.7%	3/26/201	14 23:03
ICV		N/A	80-120%	97.7%	95.3%	97.9%	98.3%	97.2%	98.2%	94.6%	3/26/201	14 23:08
ICB		N/A	80-120%	98.7%	95.6%	95.1%	96.0%	93.5%	96.9%	96.4%	3/26/201	14 23:13
MRL		N/A	80-120%	95.8%	95.3%	96.9%	98.9%	93.9%	99.8%	97.4%	3/26/201	14 23:18
ICSA		N/A	80-120%	80.3%	83.2%	75.5%	81.5%	84.0%	85.7%	74.5%	3/26/201	14 23:23
ICSAB		N/A	80-120%	85.6%	82.9%	80.3%	83.5%	86.4%	85.3%	75.0%	3/26/201	14 23:28
CCV-1		N/A	80-120%	103.0%	99.5%	101.9%	102.4%	99.5%	103.2%	104.5%	3/26/201	14 23:33
CCB-1		N/A	80-120%	98.4%	100.1%	100.9%	100.8%	100.8%	103.2%	101.2%	3/26/201	14 23:38
MB-02133-0	4	200.8	60-125%	103.7%	103.4%	101.8%	103.8%	103.0%	102.6%	101.8%	3/26/201	14 23:43
LCS-02133-	03	200.8	60-125%	107.3%	100.6%	103.4%	104.9%	102.5%	103.1%	102.1%	3/26/201	14 23:48
J1402003-00	01	200.8	60-125%	97.5%	99.7%	100.7%	100.0%	99.8%	98.7%	99.9%	3/26/201	14 23:53
J1402003-00	02	200.8	60-125%	98.0%	99.5%	100.9%	102.9%	99.3%	103.2%	103.6%	3/26/201	14 23:58
J1402003-00	03	200.8	60-125%	101.6%	98.5%	99.4%	98.3%	99.5%	101.4%	102.5%	3/27/20	14 0:03
J1402003-00	04	200.8	60-125%	102.9%	99.7%	101.4%	102.4%	103.1%	105.2%	103.3%	3/27/20	14 0:08
J1402025-00	01	6020	30-120%	100.1%	100.1%	97.8%	97.2%	99.2%	105.4%	97.7%	3/27/20	14 0:13
J1402025-00	02	6020	30-120%	100.9%	96.3%	94.4%	94.8%	96.6%	101.5%	96.3%	3/27/20	14 0:18
J1402025-00	03	6020	30-120%	100.9%	97.7%	96.4%	98.3%	96.8%	104.0%	98.3%	3/27/20	14 0:23
J1402025-00)4	6020	30-120%	102.4%	96.4%	93.4%	92.0%	96.7%	101.4%	96.9%	3/27/20	14 0:28
CCV-2		N/A	80-120%	101.2%	95.1%	99.6%	98.1%	101.5%	105.8%	107.4%	3/27/20	14 0:33
CCB-2		N/A	80-120%	97.8%	94.2%	95.7%	96.2%	99.5%	100.9%	100.2%	3/27/20	14 0:38
J1402025-00	35	6020	30-120%	100.9%	95.8%	95.7%	93.8%	97.9%	103.0%	97.3%	3/27/20	14 0:43
J1402025-00	06	6020	30-120%	100.8%	97.3%	98.3%	98.9%	103.0%	104.6%	100.4%	3/27/20	14 0:49
J1402026-00	D1	6020	30-120%	92.7%	89.4%	87.2%	89.5%	94.2%	95.9%	92.3%	3/27/20	14 0:54
J1402026-00	D1S	6020	30-120%	96.3%	90.7%	88.0%	90.3%	94.0%	95.4%	88.3%	3/27/20	14 0:59
J1402026-00	D1SD	6020	30-120%	96.9%	92.6%	88.4%	90.7%	92.3%	97.2%	92.1%	3/27/20	14 1:04
J1402026-00	01L	6020	30-120%	101.8%	93.1%	92.7%	91.7%	95.1%	98.3%	97.3%	3/27/20	14 1:09
J1402026-00	01A	6020	30-120%	95.3%	93.1%	90.3%	89.5%	94.7%	98.5%	88.8%	3/27/20	14 1:14
J1402026-00)2	6020	30-120%	88.9%	86.8%	77.2%	77.8%	86.4%	89.0%	73.0%	3/27/20	14 1:19
J1402026-00	03	6020	30-120%	86.1%	87.6%	77.0%	79.5%	86.7%	89.9%	71.1%	3/27/20	14 1:24
J1402026-00)4	6020	30-120%	85.4%	89.1%	82.0%	84.6%	90.9%	90.6%	80.3%	3/27/20	14 1:29
CCV-3		N/A	80-120%	100.6%	99.4%	99.7%	101.3%	102.4%	102.7%	103.4%	3/27/20	14 1:34
CCB-3		N/A	80-120%	97.8%	98.1%	98.4%	100.1%	99.5%	99.7%	100.4%	3/27/20	14 1:39
J1402026-00)5	6020	30-120%	85.4%	90.3%	76.6%	78.8%	84.6%	87.3%	69.7%	3/27/20	14 1:44
J1402026-00	06	6020	30-120%	81.6%	85.7%	74.9%	76.1%	79.8%	84.7%	68.7%	3/27/20	14 1:49
CCV-4		N/A	80-120%	95.4%	98.2%	103.6%	102.2%	100.9%	104.2%	103.4%	3/27/20	14 1:54
CCB-4		N/A	80-120%	97.0%	99.1%	98.6%	99.5%	98.3%	100.5%	101.8%	3/27/20	14 1:59

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	D۴	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
Cal Blank	Y	9Be	0.00	1	99.7	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	27AI	0.00	1	99.7	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	47Ti	0.01	1	99,7	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	4811	0.01	1	99.7 00. 7	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank Col Blank	v v	52Cr	-0.34	1	99.7 99.7	3/26/2014	22.43			N/A	
Cal Blank	Ŷ	55Mn	0.00	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	59Co	0.00	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	60Ni	0.01	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	62Ni	-0.02	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	63Cu	-0.01	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank Cal Blank	v v	667n	-0.01	1	99,2	3/26/2014	22:43		ICAL	N/A	
Cal Blank	Ŷ	68Zn	0.01	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Ŷ	75As	-0.35	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	78Se	0.04	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	82Se	-0.01	1	99.2	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Ŷ	86Sr	0.00	1	99.2	3/26/2014	22;43	ICAL	ICAL	N/A	
Cal Blank	r V	97Mo	0.00	1	99.2 100.3	3/26/2014	22.43	ICAL	ICAL	N/A	
Cal Blank	Ý	98Mo	0.01	1	100.3	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Ŷ	107Ag	-0.01	1	100.3	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	109Ag	0.00	1	100.3	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	111Cd	0.00	1	100.3	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	114Cd	0.00	1	100.3	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank Cal Blank	r Y	120Sn	0.00	1	98.8 98.8	3/26/2014	∠∠:43 22:43			N/A	
Cal Blank	Ý	121Sb	0.00	1	98.8	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	123Sb	-0.01	1	98.8	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	135Ba	-0,01	1	98.8	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y	137Ba	0.00	1	98.8	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank	Y.	203Ti	0.00	1	98.1	3/26/2014	22:43	ICAL	ICAL	N/A	
Cal Blank Cal Blank	Y	20311 208Ph	-0.26	1	98.1	3/26/2014	22:43	ICAL	ICAL	N/A N/A	
Cal 1	Ý	9Be	0.48	1	100,5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	27AI	47.62	1	100.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	47Ti	4,70	1	100.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ŷ	48Ti	4.90	1	100.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ý	52Cr	0.99	1	100.5	3/26/2014	22:40	ICAL	ICAL	N/A	
Cal 1	Ŷ	55Mn	1.97	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	59Co	0.95	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	60Ni	1.96	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ŷ	62Ni	2.08	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ý	65Cu	1.00	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ŷ	66Zn	4.73	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	68Zn	4.99	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	75As	0.40	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	78Se	1.87	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Call1	Ŷ	0250 865r	1.04	1	100,0	3/26/2014	22.40	ICAL	ICAL	N/A	
Cal 1	Ý	88Sr	2.01	1	100.8	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	97Mo	1.89	1	99.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	98Mo	1.96	1	99.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	107Ag	0.51	1	99.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ŷ	109Ag	0.49	1	99.5 90 F	3/26/2014	22:48	ICAL		N/A N/A	
Cal 1	Ý	114Cd	0.37	1	99.5	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ŷ	118Sn	5.21	1	97	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ϋ́	120Sn	5.06	1	97	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	121Sb	0.98	1	97	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ŷ	123Sb	1.12	1	97	3/26/2014	22:48	ICAL	ICAL	N/A	
Call	۲ ۷	13088 137Ro	∠.14 2.05	1 1	97 97	3/26/2014	22.40 22:48		ICAL ICAL	N/A N/A	
Cal 1	Ŷ	203TI	0.21	1	100.6	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Ý	205TI	0.22	1	100.6	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 1	Y	208Pb	0.25	1	100.6	3/26/2014	22:48	ICAL	ICAL	N/A	
Cal 2	Y V	9Be	5.16	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A	
Cal 2 Cal 2	Y V	27AI 47TI	510.70 50.28	1	98,4 98.4	3/26/2014 3/26/2014	ZZ:53 22-53		ICAL	Ν/Α	
Cal 2	Ŷ	48Ti	50.22	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A	
Cal 2	¥	51V	19,95	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A	
Cal 2	Y	52Cr	9.77	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A	
Cal 2	Y	55Mn	20.12	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A	
Cal 2	Y V	59C0 8050	9.92	1	102.4	3/26/2014	22:53			N/A N/A	
Cal 2	Y	62NI	20.44	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A	
Cal 2	Ŷ	63Cu	10,05	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A	± • • =

.

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments								
Cal 2	Y	65Cu	9.84	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A	***************************************								
Cal 2	Y	66Zn	49.99	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Y	68Zn	51.03	1	102.4	3/26/2014	22;53	ICAL	ICAL	N/A									
Cal 2	Y	75As	9.38	1	102.4	3/26/2014	22:53	ICAL	ICAL.	N/A									
Cal 2	Y	78Se	19.82	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Y	82Se	20.52	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Ŷ	865r	20.05	1	102.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	ř V	885F	19.83	7	102.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	1 V	97100	20.40	1	90.4	3/26/2014	22:53			N/A N/A									
Cal 2	Ŷ	107Ag	5.04	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Ŷ	109Ag	5.12	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Y	111Cd	4.19	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Y	114Cd	4.09	1	98.4	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Y	118Sn	50.70	1	98.6	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Y	120Sn	50.09	1	98.6	3/26/2014	22:53	ICAL	ICAL.	N/A									
Cal 2	Ŷ	121Sb	10,05	1	98.6	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Ŷ	12350	10.22	1	98.6	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	r V	13008	19.95	*	90.0	3/26/2014	22:03			N/A N/A									
Cal 2	v	20371	20.20	i	98.5	3/26/2014	22.53	ICAL		N/A									
Cal 2	Ý	205TI	2.01	1	98.5	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 2	Ý	208Pb	4.88	1	98,5	3/26/2014	22:53	ICAL	ICAL	N/A									
Cal 3	Y	9Be	25.48	1	97.3	3/26/2014	22:58	ICAL	ICAL	N/A	n han dan manakat kala dan dan dan kala dan kanakat kala da 2507.00	1	97.3	3/26/2014	22:58	ICAL	ICAL	N/A	
Cal 3	Y	47Ti	251.30	1	97.3	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	48Ti	256.90	1	97.3	3/26/2014	22:58	ICAL	ICAL.	N/A									
Cal 3	Y	51V	101.20	1	97.3	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ŷ	SEMA	50.31	1	97.3	3/26/2014	22:58	ICAL	ICAL	N/A									
Col 3	Ý	59Co	50 54	1	100.8	3/26/2014	22.00	ICAL	ICAL	N/A									
Cal 3	Ý	60NI	102.80	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	62Ni	102.10	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	63Cu	51.10	1	100.8	3/26/2014	22:58	ICAL.	ICAL	N/A									
Cal 3	Y	65Cu	50.30	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	66Zn	251.10	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	68Zn	257.50	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ŷ	75As	52.04	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Call3	Ŷ	783e 825e	102.30	1	100.8	3/26/2014	22:55		ICAL	N/A N/A									
Cal 3	Ý	86Sr	100.80	1	100.8	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ý	88Sr	102.00	1	100.8	3/26/2014	22:58	ICAL	ICAL.	N/A									
Cal 3	Y	97Mo	101.50	1	100.4	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	98Mo	101.80	1	100.4	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	107Ag	25.25	1	100.4	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	109Ag	25.25	1	100.4	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ŷ	11100	20.04	7 4	100.4	3/26/2014	22:58	ICAL	ICAL	N/A N/A									
Cal 3	Ý	118Sn	252.80	1	98.6	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ý	120Sn	249.40	1	98.6	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ŷ	121Sb	49.68	1	98.6	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	123Sb	50.60	1	98.6	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ý	135Ba	100.60	1	98.6	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	137Ba	97.85	1	98.6	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Y	203TI	10.17	1	102	3/26/2014	22:58	ICAL	ICAL	N/A									
Cal 3	Ŷ	20511	10,11	1	102	3/26/2014	22:58	ICAL	ICAL (CAL	N/A N/A									
Cal 4	V	9RA	20.04 98.01	1	، vz 92.3	3/26/2014	22.00			N/A	1. COUNTRACTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF T								
Cal 4	, Y	27AI	9820.00	1	92.3	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	47Ti	988.80	1	92.3	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	48Ti	992.00	1	92.3	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	51V	393.10	1	92.3	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	52Cr	192.60	1	92.3	3/26/2014	23:03	ICAL.	ICAL	N/A									
Cal 4	Y	55Mn	389.90	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Ŷ	03C0	194.60	1 ₄	96,2	3/26/2014	23:03	ICAL	ICAL	IN/A N/A									
Cal 4	r V	60Ni 62Ni	397.60	4.	90.2	3/20/2014	23.03	ICAL	ICAL	N/A									
Cal 4	, Y	63Cu	193.40	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Ŷ	65Cu	189.90	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	66Zn	952.40	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	68Zn	971.50	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cai 4	Y	75As	199.50	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Y	78Se	388.80	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Ŷ	82Se	399.10	1	96.2	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4 Cal 4	Y V	0037 889-	392.10 389.00	1	90.2 96.2	3/26/2014	∠3:03 23:03	ICAL ICAI	ICAL	N/A N/A									
Cal 4	Ý	97Mo	395,20	1	97	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Ŷ	98Mo	395,40	1	97	3/26/2014	23:03	ICAL	ICAL	N/A									
Cal 4	Ŷ	107Ag	95.26	1	97	3/26/2014	23:03	ICAL	ICAL	N/A									

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
Cal 4	Y	109Ag	96.02	1	97	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Y	111Cd	75.79	1	97	3/26/2014	23:03	ICAL.	ICAL.	N/A	
Cal 4	Y	114Cd	76.43	1	97	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Y	118Sn	980,30	1	93.5	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Y	120Sn	951.00	1	93,5	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Y	121Sb	191.50	1	93.5	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Ŷ	12350	194.30	1	93.5	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Y	13588	381.60	ी न	93.5	3/20/2014	23:03		ICAL	N/A N/A	
Cal 4	ż	20371	39.20	1	93.0	3/26/2014	23.03			N/A	
Cal 4	Ŷ	205TI	39.26	, 1	97	3/26/2014	23:03	ICAL	ICAL	N/A	
Cal 4	Ŷ	208Pb	99.80	1	97	3/26/2014	23:03	ICAL	ICAL	N/A	
ICV	Y	9Be	19.95	1	95.3	3/26/2014	23:08	iCV	ICV	N/A	nanai mada kinai kanai kanan tahuki di kida kini di kida da kana kanan kana kana kana kana kan
ICV	Y	27AI	514.50	1	95.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	47Ti	245.60	1	95,3	3/26/2014	23:08	ICV	iCV	N/A	
ICV	Y	48Ti	245.20	1	95.3	3/26/2014	23:08	icv	ICV	N/A	
ICV	Y	51V	97.31	1	95.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Ŷ	52Cr	48.81	1	95.3	3/26/2014	23:08			N/A	
	Ŷ	59Co	49,43	1	97.9	3/26/2014	23:08			N/A N/A	
	v	60NI	40.58	1	97.9	3/26/2014	23:00	ICV	ICV	N/A	
ICV	Ŷ	62Ni	51.13	1	97.9	3/26/2014	23:08	ICV	icv	N/A	
ICV	Ŷ	63Cu	49.43	1	97.9	3/26/2014	23:08	ICV	icv	N/A	
ICV	Y	65Cu	49.09	1	97.9	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	66Zn	97.43	1	97.9	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	68Zn	99.55	1	97.9	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	75As	51.22	1	97.9	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	78Se	49.13	1	97.9	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Ŷ	8256	50.44	1	97.9	3/26/2014	23:08			N/A	
	v	8851	40.07	1	97.9	3/26/2014	23:08	ICV.	ICV	N/A	
ICV	Ŷ	97Mo	49.96	1	98.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Ŷ	98Mo	49.63	1	98.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	107Ag	47.60	1	98.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	109Ag	48.88	1	98.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	111Cd	24.00	1	98.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	114Cd	23.77	1	98.3	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Ŷ	118Sn	199.40	1	97.2	3/26/2014	23:08	ICV	ICV	N/A	
	Ŷ	12050	195,00	1	97.2	3/26/2014	23:08			N/A N/A	
	Ý	12130 1235h	40.02	1 1	97.2	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Ŷ	135Ba	48.70	1	97.2	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Ŷ	137Ba	47.70	1	97.2	3/26/2014	23:08	iCV	icv	N/A	
ICV	Y	203TI	47.63	1	98.2	3/26/2014	23:08	ICV	ICV	N/A	
ICV .	Y	205TI	48.89	1	98.2	3/26/2014	23:08	ICV	ICV	N/A	
ICV	Y	208Pb	49.70	1	98.2	3/26/2014	23:08	ICV	ICV	N/A	
ICB	Y	9Be	0.01	1	95.6	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Ŷ	27AI 47Ti	0,05	1	90.0	3/26/2014	23:13	CCB	CCB	N/A N/A	
ICR ·	ý.	48Ti	01.0	1	95.6	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Ý	51V	0.75	1	95.6	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	52Cr	0.17	1	95.6	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	55Mn	0.01	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	59Co	0.00	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	60Ni	-0.02	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	62Ni	0.02	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y V	65CH	-0.02	1 4	95.1 05.1	3/26/2014	23:13	CCB	CCB	N/A N/A	
ICB	Ý	667n	0.05	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Ŷ	68Zn	-0.05	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Ŷ	75As	-0.51	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	78Se	-0.33	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	82Se	-0.27	1	95.1	3/26/2014	23;13	CCB	CCB	N/A	
ICB	γ	86Sr	-0.06	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	88Sr	0.01	1	95.1	3/26/2014	23:13	CCB	CCB	N/A	•
ICB	Y	97Mo	0.34	1	96	3/26/2014	23:13	CCB	CCB	N/A	
	ĭ	95MO 10780	0.30 -0.00	। न	06 90	3/20/2014	20:10	CCB	CCB CCB	N/A N/A	
ICB	r V	107Ag 109A#	-0.02 -0.01	+ 1	90	3/26/2014	23.13	CCR	CCB	N/A	
ICB	Ý	111Cd	0.00	1	96	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Ŷ	114Cd	0.01	1	96	3/26/2014	23:13	CCB	CCB	N/A	
ICB	γ	118Sn	1.67	1	93.5	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	120Sn	1.62	1	93.5	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	121Sb	0,49	1	93.5	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Y	123Sb	0.54	1	93,5	3/26/2014	23:13	CCB	CCB	N/A	
ICB	Ý	13582	-0.02	1	93.5	3/26/2014	23:13	CCP	UUB CCP	N/A	
ICB	T V	19108 20313	0.00	1	93.3 96.9	3/26/2014	23:13 23:13	CCB	CCB	N/A	
ICB	Ŷ	205TI	0.02	1	96.9	3/26/2014	23:13	CCB	CCB	N/A	

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIM\$ ID	Method	Comments
ICB	Y	208Pb	-0.26	1	96.9	3/26/2014	23:13	CCB	ССВ	N/A	
MRL	Ŷ	9Be	0.48	1	95.3	3/26/2014	23:18	MRL	MRL	N/A	a (1994) III MAR AND Selected and Selected and Selected and Antoine And And Antoine And III (1995) Antoine Andr An an Anna an Anna Anna Anna Anna Anna
MRL	Y	27AI	47.60	1	95.3	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Ŷ	4711	4.89	1	95.3	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Ý	51V	1.55	1	95.3	3/26/2014	23:18	MRL	MRL	N/A N/A	
MRL	Ŷ	52Cr	1.12	1	95.3	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	55Mn	2.05	1	96.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL.	Y	59Co	0.97	1	96.9	3/26/2014	23:18	MRL	MRL.	N/A	
MRL.	Ŷ	60Ni GONI	2.02	1	96.9	3/26/2014	23:18	MRL.	MRL	N/A	
MRI	Ŷ	63Cu	1.05	1	96.9	3/26/2014	23:18	MRL	MRL	N/A N/A	
MRL	Y	65Cu	1.03	1	96.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	66Zn	4.83	1	96.9	3/26/2014	23:18	MRL.	MRL	N/A	
MRL	Y	68Zn	5.02	1	96.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL MRI	Y	75As	1.07	1	96.9	3/26/2014	23:18	MRL	MRL.	N/A	
MRL	Ý	82Se	1.73	1	96.9	3/26/2014	23.16	MRI	MRI	N/A N/A	
MRL	Ŷ	86Sr	1.97	1	96.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	88Sr	2.02	1	96.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	97Mo	1.94	1	98.9	3/26/2014	23:18	MRL	MRL.	N/A	
MRL	Y	98Mo	1.98	1	98.9	3/26/2014	23:18	MRL	MRL	N/A	
MKL	Ŷ	107Ag	0.46	1	98.9	3/26/2014	23:18	MRL	MRL	N/A N/A	
MRL	Ŷ	111Cd	0.34	1	98.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Ý	114Cd	0.38	1	98.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	118Sn	5,59	1	93.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	120Sn	5.71	1	93.9	3/26/2014	23:18	MRL	MRL.	N/A	
MRL	Ŷ	12150 12255	1.16	1	93.9	3/26/2014	23:18	MRL	MRL	N/A	
MRI	Y	12550 135Ba	2.07	1	93.9	3/26/2014	23.10	MRI	MRI	N/A	
MRL	Ŷ	137Ba	1.85	1	93.9	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	203TI	0.23	1	99.8	3/26/2014	23:18	MRL	MRL.	N/A	
MRL	Y	205TI	0.20	1	99.8	3/26/2014	23:18	MRL	MRL	N/A	
MRL	Y	208Pb	0.27	1	99.8	3/26/2014	23:18	MRL.	MRL	N/A	
ICSA	Ŷ	96e 274i	50690.00	1	83.2 83.2	3/26/2014	23:23	ICS-A	ICS-A	N/A N/A	
ICSA	Ý	47Ti	1140.00	1	83.2	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y	48Ti	1080.00	1	83.2	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y	51V	-0,53	1	.83.2	3/26/2014	23:23	iCS-A	ICS-A	N/A	
ICSA	Ŷ	52Cr	1.07	1	83.2	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	N N	59Co	0.41	1		3/26/2014	23:23	ICS-A	ICS-A	N/A N/A	IS FL, 15 61
ICSA	N	60Ni	1.02	1		3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL.
ICSA	N	62Ni	4.54	1	76.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL, ICS-A FH,
ICSA	Ň	63Cu	0.80	1		3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL.
ICSA	N	65Cu	0.76	1		3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL,
ICSA	N	66Zn	1.62	1		3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL,
ICSA	N M	68∠n 75∆c	0.70	3 1		3/26/2014	23:23	ICS-A	ICS-A	N/A N/A	15 FL, 15 Fl
ICSA	N	78Se	0.05	1	75.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL,
ICSA	N	82Se	-2.07	1	36.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL.
ICSA	Ν	86Sr	0.07	1	75.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	IS FL,
ICSA	N	88Sr	0.40	1	75.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	is fl,
ICSA	Y	97M0	1067,00	1	81.5 81 F	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Ŷ	10740	-0.01	1	81.5	3/26/2014	23.23	ICS-A	ICS-A	N/A	
ICSA	Ŷ	109Ag	-0.01	1	81.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y	111Cd	0.08	1	81.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y	114Cd	0.08	1	81.5	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y	118Sn	0.40	1	84	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Ŷ	12050	0.40	1	84	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Ŷ	123Sb	0.12	1	84	3/28/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Ŷ	135Ba	0.06	1	84	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Υ.	137Ba	0.07	1	84	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y	20311	0.01	1	85.7	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSA	Y V	205TI	0.01	1	85.7	3/26/2014	23:23	ICS-A	ICS-A	N/A	
ICSAB	r Y	2007D	~0.10 9.63	1	00.7 82.9	3/26/2014	23-28	ICS-AR	ICS-AR	N/A	
ICSAB	Ŷ	274	52100.00	1	82.9	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Ý	4711	1248.00	1	82.9	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	48Ti	1199.00	1	82.9	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	51V	40.09	1	82.9	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	52Cr	22.05	1	82.9	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y V	00MN 59Co	41.18 20.72	1	80.3 80 3	3/26/2014	23:28 23:28	ICS-AB	ICS-AB	N/A N/A	
ICSAB	Ý	60Ni	40.97	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	62Ni	45.25	1	80,3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
											200

VG PO ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
ICSAB	Y	63Cu	19.99	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	65Cu	19.95	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	66Zn	97.54	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	682n	99.36	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAR	Ŷ	78Se	41.10	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	82Se	41.51	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	86Sr	43.99	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	88Sr	44.99	1	80.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	97Mo	1147.00	1	83.5	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	98Mo	1150.00	1	83.5	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	i V	107 40	9.00	1	63.D 83.5	3/26/2014	23,20	ICS-AB	ICS-AB	N/A N/A	
ICSAB	Ý	111C	, 3.40 1 7.65	1	83.5	3/26/2014	23:20	ICS-AB	ICS-AB	N/A	
ICSAB	Ý	114Cc	1 7.57	1	83.5	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	118Sr	104.50	1	86.4	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	120Sr	101.80	1	86.4	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	121Sb	20.40	1	86.4	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	12350	21.04	1	86.4	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	137Ba	40.87	1	86.4	3/26/2014	23.20	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	203TI	3.99	1	85.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	205Ti	4.04	1	85.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
ICSAB	Y	208Pt	10.02	1	85.3	3/26/2014	23:28	ICS-AB	ICS-AB	N/A	
CCV-1	Ŷ	9Be	24.56	1	99.5	3/26/2014	23:33	CCV	CĊV	N/A	
CCV-1	Y	27AI	2512.00	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ŷ	4711	246.90	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	r V	40() 54V	203.30	1	99.5	3/20/2014	23.33	CCV	CCV	N/A N/A	
CCV-1	Ý	52Cr	49.53	1	99.5	3/26/2014	23:33	CCV	ccv	N/A	
CCV-1	Ŷ	55Mn	101.10	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	59Co	49.95	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	60NI	101.70	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	N	62Ni	103.60	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	ICS-A FH.
CCV-1	Y	63Cu	50.93	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	667n	248.90	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ý	68Zn	257.00	1	101.9	3/26/2014	23:33	CCV	ccv	N/A	
CCV-1	Ŷ	75As	51.20	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	78Se	100.90	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y,	82Se	104.10	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	•
CCV-1	Y	86Sr	100.20	1	101.9	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ý	07Mo	100.50	1	101.9 102.4	3/26/2014	23:33	CCV	COV	N/A N/A	
CCV-1	, Y	98Mo	103.20	1	102.4	3/26/2014	23:33	COV	CCV	N/A	
CCV-1	Ý	107Ag	25.07	1	102.4	3/26/2014	23:33	CCV	CCV	N/A	· · · · · · · · · · · · · · · · · · ·
CCV-1	Y	109Ag	25.63	1	102.4	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	111Cd	19,47	1	102,4	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	114Cd	19.53	1	102.4	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ŷ	11850	251.80	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ý	121Sb	49.94	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ŷ	123Sb	50.16	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	135Ba	100.20	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	137Ba	97,78	1	99.5	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Y	203TI	10.38	1	103.2	3/26/2014	23:33	CCV	CCV	N/A	
CCV-1	Ŷ	20511	10.30	1	103.2	3/26/2014	23:33	CCV	CCV	N/A N/A	
CCB-1	- v	980	0.01	1	103.2	3/26/2014	23.33	CCR	CCB	NI/A	
CCB-1	Ŷ	27AI	0.41	1	100.1	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ŷ	47Tî	0.15	1	100.1	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	48Ti	0.13	1	100.1	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	51V	0.39	i	100,1	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	52Cr	0.16	1	100.1	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ŷ	55Mn	0.01	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ý	59C0 60Mi	0.00	1	100.9	3/26/2014	23:38	CCB	CCB	N/A N/A	
CCB-1	Ň	62Ni	0.10	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	ICS-A FH,
CCB-1	Ŷ	63Cu	0.00	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	,
CCB-1	Y	65Cu	-0.02	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	66Zn	0.08	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	68Zn	-0.02	1	100.9	3/28/2014	23:38	CCB	CCB	N/A	
CCB-1	Ŷ	75As	-0.60	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	
008-1 008-1	Y V	1000	-0.10	3	100.9	3/20/2014 3/26/2014	23:30 23:30	CCB	008	IN/A N/A	
CCB-1	Ŷ	86Sr	-0.01	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ŷ	88Sr	0.03	1	100.9	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	97Mo	0.59	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	98Mo	0.59	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	~ ~ ~

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCB-1	Y	107Ag	-0.03	1	100.8	3/26/2014	23:38	CCB	ССВ	N/A	
CCB-1	Y	109Ag	-0.04	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	111Cd	0.00	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	114Cd	0.02	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ŷ	118Sn 120Co	0.86	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	ř	12050	0.83	1	100.8	3/20/2014	23:35	CCB	CCB	IN/A	
CCB-1	v V	12386	0.17	1	100.8	3/26/2014	23.30	CC8	008	N/A	
CCB-1	Ý	135Ba	0.02	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ŷ	137Ba	0.00	1	100.8	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Ý	203TI	0.02	1	103.2	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	205TI	0.02	1	103.2	3/26/2014	23:38	CCB	CCB	N/A	
CCB-1	Y	208Pb	-0.26	1	103.2	3/26/2014	23:38	CCB	CCB	N/A	
MB-02133-04	Y	9Be	0.00	1	103.4	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	etty) nie mie na mana na socio mie i kolosowa na more za osna sa na mana na socia na socia na socia na socia na
MB-02133-04	Y	27AI	9.70	1	103.4	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	47Ti	0.25	1	103.4	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ν	48Ti	0.22	1	103.4	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	51V	0.53	1	103.4	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	52Cr	0.20	1	103.4	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ŷ	55Mn	0.08	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ŷ	59CO	0.00	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	¥ N	CONI	0.00	4	101.8	3/26/2014	23:43		JQ1402133-04	200.8 D	10 S. A. FH
MB-02133-04	N N	62Cu	0.10	1	101.0	3/20/2014	23.43		JQ1402333-04	200.8 D	NOTATIN,
MB-02133-04	v	65Cu	-0.01	1	101.0	3/26/2014	23:43	MBLK	JO1402133-04	200.8 D	
MB-02133-04	Ý	66Zn	3.21	, 1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200-8 D	
MB-02133-04	N	68Zn	2.97	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ŷ	75As	-0.52	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ý	78Se	0.12	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ń	82Se	-0.27	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	86Sr	0.29	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	N	88Sr	0.24	1	101.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	N	97Mo	0.35	1	103.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	98Mo	0.39	1	103.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ν	107Ag	-0.04	1	103.8	3/26/2014	23:43	MBLK	JQ1402133-04	200,8 D	
MB-02133-04	Y	109Ag	-0.03	1	103.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	N	111Cd	-0,01	1	103.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ŷ	114Cd	0.02	1	103.8	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	т NI.	12050	0.42	4	103	3/26/2014	23.43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	N	120011 121Sh	0.21	1	103	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ŷ	123Sh	0.25	, 1	103	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	N	135Ba	0.04	1	103	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	137Ba	0.06	1	103	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Ν	203TI	0.01	1	102.6	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	205TI	0.01	1	102.6	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
MB-02133-04	Y	208Pb	-0,25	1	102.6	3/26/2014	23:43	MBLK	JQ1402133-04	200.8 D	
LCS-02133-03	Ŷ	9Be	25.09	1	100.6	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	· · · · · · · · · · · · · · · · · · ·
LCS-02133-03	Y	27AI	2578.00	1	100.6	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Y	47Ti	257.70	1	100.6	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	N	48Ti	260,50	1	100.6	3/26/2014	23:48	LCS	JQ1402133-03	200,8 D	
LCS-02133-03	Y	51V	102,90	1	100.6	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Y	52Cr	50.93	1	100.6	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LUS-02133-03	Y	55MN	103.70	1 4	103.4	3/20/2014	23:48	100	JU1402133-03	200.8 D	
102.02122.02	r v	004C0	104 20	1 1	103.4	3/26/2014	23.40	103	101402133-03	200.0 D	
105-02133-03	4 Ni	BONI	104.30	י ז	103.4	3/26/2014	20.40 23.48	1 CS	101402133-03	200.0 0	ICS-A FH.
1 CS-02133-03	N	63Č#	52 01	, 1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Ŷ	65Cu	51.18	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Ŷ	66Zn	251.30	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	N	68Zn	258.60	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Y	75As	52.08	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Y	78Se	100,40	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Ν	82Se	103.10	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Y	86Sr	103.00	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	N	88Sr	104.40	1	103.4	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	N	97Mo	103.90	1	104.9	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Ŷ	98Mo	102.90	1	104.9	3/26/2014	23:48	LCS	JQ1402133-03	200.8 0	
LUS-02133-03	N	107Ag	25.71	3	304.9	3/20/2014	∡3:48 22-48	LCS	JU1402133-03	200.8 0	
LCS-02133-03	¥ NJ	108Ag	20.07	7	104.9	3/20/2014	23:40	100	101402733-03	200.8 D 200.8 D	
105-02133-03	N V	41404	10.70	। न	104.0	3/26/2014	20.40	100	101402133-03	200.0 U 200.8 Pi	
105-02133-03	v	118900 1189n	258 50	י 1	102 5	3/26/2014	23:40	103	301402133-03	200.0 0	
105-02133-03	N	120Sn	254 10	1	102.5	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	N	121Sh	50.98	1	102.5	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Ŷ	123Sb	52.36	1	102.5	3/26/2014	23:48	LCS	JQ1402133-03	200,8 D	
LCS-02133-03	Ν	135Ba	102.00	1	102.5	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	Y	137Ba	100.60	1	102,5	3/26/2014	23;48	LCS	JQ1402133-03	200.8 D	
LCS-02133-03	N	203TI	10.62	1	103.1	3/26/2014	23:48	LCS	JQ1402133-03	200.8 D	200

392 Page 6 of 18

VG PQ ExCell ICP-MS

Method 200.8 / 6020

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
LCS-02133-03	Y	205TI	10,49 27 12	1	103.1	3/26/2014	23:48 23:48	LCS	JQ1402133-03	200.8 D	
.1402003-001	Ý	2001 D 98e	0.03	,	99.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Ŷ	27AI	67.35	1	99.7	3/26/2014	23:53	SAMP	J1402003-001	200,8 D	
J1402003-001	Y	47Ťi	0.30	1	99.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	N	48Ti	1.59	1	99.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Ŷ	51V	0.76	1	99.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Ŷ	52Cr	0.48	1	99.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	r V	59Co	04.23	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 0	
1402003-001	Ý	60Ni	0.28	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Ň	62Ni	0.26	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	ICS-A FH.
J1402003-001	Ν	63Cu	0.46	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Y	65Cu	0.44	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Y	66Zn	5.82	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	N	68Zn	6.90	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	ř V	7850	-0.30	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 0	
.11402003-001	N	82Se	-0.10	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Ŷ	86Sr	11.02	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	N	88Sr	11.23	1	100.7	3/26/2014	23:53	SAMP	J1402003-001	200,8 D	
J1402003-001	N	97Mo	0.50	1	100	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Y	98Mo	0.45	1	100	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	N	107Ag	-0.03	1	100	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Y	109Ag	-0.01	1	100	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J 1402003-001 11402003-001	N V	11100	0.00 0.00	1 1	100	3/28/2014	∠3:03 22-52	SAMP	J1402003-001	200.8 D 200.8 D	
11402003-001	Ý	11850	0.02	1	99.8	3/26/2014	23:53	SAMP	.11402003-001	200.8 D	
J1402003-001	Ň	120Sn	0.88	1	99.8	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	N	121Sb	0,08	1	99.8	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Y	123Sb	0.10	1	99.8	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	N	135Ba	17.95	1	99.8	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	Y	137Ba	17.82	1	99.8	3/26/2014	23:53	SAMP	J1402003-001	200,8 D	
J1402003-001	N	203TI	0.07	1	98.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
J1402003-001	r V	20511 208Ph	-0.24	1	98.7	3/26/2014	23:53	SAMP	J1402003-001	200.8 D	
11402003-001	v v	98a	0.02	1	99.5	3/26/2014	23:58	SAMP	1402003-002	200.8 D	
J1402003-002	Ý	27A	146.30	1	99.5	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	47Ti	0.51	1	99.5	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	48Ti	1.68	1	99.5	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	51V	0.73	1	99.5	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	52Cr	0.35	1	99.5	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Ŷ	55Mn	49.34	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 0	
J1402003-002	Ŷ	59C0	1.10	1	100,9	3/26/2014	20.00 23-58	SAMP	J 1402003-002	200.8 D	
J1402003-002	Ň	62Ni	0.40	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	ICS-A FH,
J1402003-002	N	63Cu	0.62	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	65Cu	0.55	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	66Zn	8.11	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	68Zn	9.27	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Ŷ	75As	0.05	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	T Ni	703e 82Sa	0.30	1	100.9	3/26/2014	23.58	SAMP	11402003-002	200.8 0	
.11402003-002	Ŷ	86Sr	11.44	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Ň	88Sr	11.30	1	100.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	97Mo	0.21	1	102.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	98Mo	0.18	1	102.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	107Ag	-0.05	1	102.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	109Ag	-0.04	1	102,9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	111C0	0.01	1	102.9	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
1402003-002	Y	114G0	0.02	1	99.3	3/26/2014	23:58	SAMP	J1402003-002	200.8 D 200.8 D	
J1402003-002	Ň	120Sn	0.34	1	99.3	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	121Sb	0.04	1	99.3	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Y	123Sb	0.03	1	99.3	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	135Ba	16.76	1	99.3	3/26/2014	23:58	SAMP	J1402003-002	200,8 D	
J1402003-002	Y	137Ba	17.26	1	99.3	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	N	203TI	0.02	1	103.2	3/26/2014	23:58	SAMP	J1402003-002	200.8 D	
J1402003-002	Ý	20911 20911	0.02	1	103.2	3/26/2014	23:58	SAMP	31402003-002	200.6 U 200.8 D	
11402003-002	r V	200FU GRA	0.03	, 1	98.5	3/27/2014	0.03	SAMP	.11402003-003	200.8 0	
J1402003-003	Ý	27AI	148.40	1	98.5	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Ŷ	47Ti	0.27	1	98,5	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	N	48Ti	0.41	1	98.5	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Y	51V	0.40	1	98.5	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Y	52Cr	0.19	1	98.5	3/27/2014	0:03	SAMP	J1402003-003	200.8 0	
J1402003-003	Ŷ	55Mn 50C-	0.00	1	99.4 on 4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	r V	SUNI 60Mi	0.00	1	99.4 99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
	•					and one of the of \$100	2 d				393

SAMPLE ID	RPT	Апаі	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402003-003	N	62Ni	0,11	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	ICS-A FH.
J1402003-003	N	63Cu	0.43	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Y	65Cu	0.41	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Y	66Zn	5.07	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	N	68Zn	5.59	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200,8 D	
J1402003-003	Y	75As	-0.19	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Y	78Se	-0.15	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	N	82Se	-0.22	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Ŷ	86Sr	4.18	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	N	885r	4.35	1	99.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	N	97Mo	0.14	1	98.3	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Y	98MO	0.10	1	98.3	3/2//2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	N N	107Ag	-0.05	1	98.3	3/2//2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Ŷ	109A0	J -0.02] .⊿	98.3	3/27/2014	0:03	SAMP	31402003-003	200.8 D	
J1402003-003	N V	66400	1 0.02	1	80.3	3/2//2014	0:03	SAMP	1402003-003	200.8 0	
1402003-003	, V	14900	0.02	1	90.3	3/27/2014	0.03	SAMD	31402003-003	200.8 D	
1402003-003	I N	12050	0.10	1	99.0	3/27/2014	0.03	SAMP	11402003-003	200.8 D	
1402003-003	N	121Sh	0.02	1	99.0 99.5	3/27/2014	0:03	SAMP	1402003-003	200.8 D	
11402003-003	v v	12356	0.02	1	99.5	3/27/2014	0:03	SAMP	11402003-003	200.8 D	
1402003-003	N	135Ba	7.68	1	99.5	3/27/2014	0:03	SAMP	.11402003-003	200.8 D	
11402003-003	v	137Ba	7 78	1	99.5	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
.11402003-003	N	203TI	0.01	1	101.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
.11402003-003	Ŷ	20511	0.01	1	101.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
J1402003-003	Ý	208Pb	-0.25	1	101.4	3/27/2014	0:03	SAMP	J1402003-003	200.8 D	
11402003-004	Y	98e	0.03		99.7	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
.11402003-004	Ŷ	27AI	142.10	1	99.7	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Ŷ	47Ti	0.21	1	99.7	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	48Ti	0.34	1	99.7	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	51V	0.41	1	99.7	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	52Cr	0.15	1	99.7	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	55Mn	8.18	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	59Co	0.88	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	60NI	0.26	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Ν	62Ni	0,23	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	iCS-A FH,
J1402003-004	Ν	63Cu	0.42	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	65Cu	0.40	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	66Zn	5.06	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	68Zn	5.97	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	75As	-0.03	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	78Se	-0.15	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	82Se	-0.41	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	86Sr	4.31	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	88Sr	4.30	1	101.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	97Mo	0.05	1	102,4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	98Mo	0.06	1	102.4	3/27/2014	0:08	SAMP	J1402003-004	200,8 D	
J1402003-004	N	107Ag	-0.05	1	102.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Ŷ	109Ag	-0,05	1	102.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	111Cd	0.09	1	102.4	3/27/2014	0;08	SAMP	J1402003-004	200.8 D	
J1402003-004	Ŷ	114Cd	-0.03	1	102.4	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Y	118Sn	0.11	1	103.1	3/27/2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	120Sn	0.11	1	103.1	3/2//2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N	12150	0.01	1	103.1	3/2//2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	Ŷ	12350	0.03	1	103.1	3/2//2014	0:08	SAMP	J1402003-004	200.8 D	
J1402003-004	N N	13558	8.60	1	103.1	3/2//2014	0,08	SAMP	J 1402003-004	200.6 D	
31402003-004	I N	197.04 202TI	0.71	1	105.1	3/27/2014	0:08	SAMP	1402003-004	200.0 0	
11402003-004	ÍN V	20511	0.01	1	105.2	3/27/2014	0:00	SAMP	11402003-004	200,00	
11402003-004	Ý	208Ph	-0.25	1	105.2	3/27/2014	0:08	SAMP	11402003-004	200.8 D	
11402025-001	v	QRo	0.00	, -1	100.1	3/27/2014	0:00	SAMP	11402025-001	6020 D	an an an an an an an an an an an an an a
11402025-001	Ŷ	2761	3.37	, 1	100.1	3/27/2014	0:13	SAMP	.11402025-001	6020 D	
11402025-001	Ý	47Ti	0.15	1	100.1	3/27/2014	0:13	SAMP	1402025-001	6020 D	
.11402025-001	N	4871	35.10	1	100.1	3/27/2014	0.13	SAMP	J1402025-001	6020 D	
1402025-001	v	4011 64V	3 15	1	100.1	3/27/2014	0:13	SAMP	11402025-001	6020 D	
J1402025-001	Ŷ	52Cr	-0.13	1	100.1	3/27/2014	0:13	SAMP	J1402025-001	6020 D	`
.11402025-001	Ý	55Mn	0.39	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Ŷ	59Co	0.10	1	97.8	3/27/2014	0:13	SAMP	11402025-001	6020 D	
J1402025-001	Ŷ	60Ni	1.51	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	62Ni	0.48	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	юs-а fh,
J1402025-001	N	63Cu	0.48	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	·
J1402025-001	Y	65Cu	0.49	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Ŷ	66Zn	4.94	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	68Zn	6.38	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	75As	0.51	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	78Se	1.03	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	82Se	0.94	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	86Sr	140.30	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	88Sr	140.80	1	97.8	3/27/2014	0:13	SAMP	J1402025-001	6020 D	•
J1402025-001	N	97Mo	2.95	1	97.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	

394 Page 8 of 18 VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-001	Y	98Mo	2.72	1	97.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Ν	107Ag	-0.07	1	97.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	109Ag	-0.03	1	97.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	111Cd	0.03	1	97.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	114Cd	0.03	1	97.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	118Sn	0.09	1	99.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	120Sn	0.06	1	99.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	121Sb	1.40	1	99.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y	123Sb	1.58	1	99,2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	N	135Ba	18.46	1	99.2	3/27/2014	0:13	SAMP	J1402025-001	6020 D	
J1402025-001	Y NI	137Ba	17.58	1	99.Z	3/27/2014	0:13	SAMP	J 1402025-001	6020 D	
J1402025-001	N V	20311	0.02	1	105.4	3/27/2014	0.13	SAMP	1402025-001	6020 D	
1402025-001	v	20371 208Ph	-0.22	1	105.4	3/27/2014	0:13	SAMP	.11402025-001	6020 D	
11402025-007	v.	980	0.22	1	96.3	3/27/2014	0:10	SAMP	1402025-002	6020 D	
11402025-002	v	2741	11.39	. 1	96.3	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
11402025-002	Ŷ	471	0.59	1	96.3	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
11402025-002	N	48Ti	22.81	1	96.3	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Ŷ	51V	0.69	1	96.3	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Ŷ	52Cr	0.01	1	96.3	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	55Mn	27,37	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	59Co	0.06	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	60Ni	1.11	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	N	62Ni	0,55	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	ICS-A FH,
J1402025-002	N	63Cu	0.17	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	65Cu	0.18	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	66Zn	4.91	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	N	68Zn	5.51	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	75As	~0.03	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Ŷ	78Se	-0.21	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	N	82Se	-0.30	1	94.4	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	BEST	52.55	1	94.4	3/27/2014	0:18	SAIVIP	J 1402023-002	6020 D	
J1402025-002	N	885r	52.45	1	94.4	3/27/2014	0:10	CAMP	1402025-002	6020 0	
J1402025-002	N V	97WO	2.20	1	94.0	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	T N	10740	2.10	1	94,0	3/27/2014	0:18	SAMP	.11402025-002	6020 D	
J1402025-002	N V	109Ag	-0.03	1	94.8	3/27/2014	0.18	SAMP	11402025-002	6020 D	
1402025-002	Ň	111Cd	0.02	, 1	94.8	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Ŷ	114Cd	0.00	1	94.8	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Ŷ	118Sn	0.05	1	96.6	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	N	120Sn	0.05	1	96.6	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	N	121Sb	0.05	1	96.6	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	123Sb	0.07	1	96.6	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	N	135Ba	12.22	1	96.6	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	137Ba	11.61	1	96.6	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Ν	203TI	0.01	1	101.5	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	205TI	0.00	1	101.5	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-002	Y	208Pb	-0.25	1	101.5	3/27/2014	0:18	SAMP	J1402025-002	6020 D	
J1402025-003	Y	9Be	0.01	1	97.7	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	27AI	2.90	1	97.7	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	47Ti	0.95	1	97.7	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	N	48Ti	16.57	1	97.7	3/2//2014	0:23	SAMP	J 1402025-003	6020 D	
J1402025-003	Ŷ	51V	-0.11	1	97.7	3/2//2014	0:23	SAMP	J3402025-003	6020 D	
J1402025-003	r v	5265	-0.04 07 < 7	1	97.7 08.4	3/27/2014	0.23	SAMP	11402020-003	6020 D	
J 1402020-003	v	59Co	∠r.#/ D.05	1	90.4 96 /	3/27/2014	0.23	SAMP	.11402025-003	6020 D	
11402020-003	ý	60Ni	0.85	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
.11402025-003	Ň	62Ni	0.45	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	ICS-A FH,
J1402025-003	N	63Cu	0.20	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	65Cu	0.20	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Ŷ	66Zn	4.83	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Ν	68Zn	5.12	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	75As	2.36	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	78Se	0.04	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Ν	82Se	-0.43	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Ý	86Sr	34.11	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	N	88Sr	34,48	1	96.4	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Ν	97Mo	6.03	1	98.3	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	98Mo	5.77	1	98.3	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	N	107Ag	-0.09	1	98.3	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	109Ag	-0,08	1	98.3	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	N	111Cd	0.02	1	98.3	3/2//2014	0:23	SAMP	J1402025-003	6020 (J	
J1402025-003	Ý	11400	0.07	1	95.3 CC P	3/2//2014	0:23	SAMP	J 1402020-003	0020 D 8020 D	
J1402025-003	¥ k1	1000-	0.02	1	50.0 06.2	312(12014	U.∠3 A-22	SAMO	J1402020-003	0020 U 8020 D	
J1402025-003	fN 54	12020	0.04	1 4	0.0° 08.9	3/27/2014	0.23	SAMP	11402020-003	6020 D	
J1402020-003	N V	12100 42205	0,00	1	00.0 QA A	3/27/2014	0.23	SAMP	11402025-003	6020 D	
.11402025-003	Ň	135Ra	2.45	1	96.8	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Ŷ	137Ba	2.52	1	96.8	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
	-		-								200

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-003	N	203TI	0.00	1	104	3/27/2014	0:23	SAMP	J1402025-003	6020 D	den sek et die een een de een de een de een die een die een die die die die die die die die die die
J1402025-003	Y	205TI	0.00	1	104	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-003	Y	208Pb	-0,26	1	104	3/27/2014	0:23	SAMP	J1402025-003	6020 D	
J1402025-004	Y	9Be	0.01	1	96.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	27A)	8.53	1	96.4	3/27/2014	0:28	SAMP	31402025-004	6020 D	
J1402025-004	T NI	4871	16 30	1	96.4	3/27/2014	0.28	SAMP	.11402025-004	6020 D	
J1402025-004	Ŷ	51V	1.62	1	96,4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	52Cr	0.45	1	96.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	55Mn	62.57	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Ŷ	59Co	0.10	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	60Ni	0.99	1	93,4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	N	62Ni	0.56	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	ICS-A FH,
J1402025-004	N	63Cu	0.17	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Ý	65Cu 667n	5.31	1	93.4	3/27/2014	0.28	SAMP	11402025-004	6020 D	
J1402025-004	, N	68Zn	5.67	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	75As	3,24	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	78Se	0.12	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	N	82Se	-0.14	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	86Sr	201.50	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	N	88Sr	203.20	1	93.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	N.	97MO	0.11	1 1	92	3/27/2014	0.20	SAMP	11402025-004	6020 D	
11402025-004	N	107Ag	-0.06	1	92	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Ŷ	109Ag	-0.07	1	92	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Ν	111Cd	0.01	1	92	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	114Cd	0,01	1	92	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	118Sn	0.04	1	96.7	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	N	120Sn	0.03	1	96.7	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	N	12150	0.03	1	96.7	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y N	12350	11 73	1	90.7	3/27/2014	0:20	SAMP	J1402025-004	6020 D	
.11402025-004	Ŷ	137Ba	11.54	1	96.7	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Ň	203TI	0.00	1	101.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	205TI	0.00	1	101.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
J1402025-004	Y	208Pb	~0.24	1	101.4	3/27/2014	0:28	SAMP	J1402025-004	6020 D	
CCV-2	Y	9Be	25.89	1	95,1	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	27AI	2535.00	1	95.1	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	4/11	249.20	1	95.1	3/27/2014	0:33	CCV	CCV	N/A N/A	
CCV-2	r V	4011 51V	252.60	1	95.1	3/27/2014	0.33	CCV	CCV	N/A	
CCV-2	Ý	52Cr	48.77	1	95.1	3/27/2014	0:33	CCV	ccv	N/A	
CCV-2	Ŷ	55Mn	101.00	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	59Co	49.20	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	60Ni	101.00	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	N	62Ni	101,10	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	ICS-A FH,
CCV-2	Ŷ	63Cu	50,46	1	99.6	3/27/2014	0:33	CCV		N/A N/A	
CCV-2	Ý	66Zn	249.40	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	68Zn	258.30	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	75As	51.17	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	78Se	100,70	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	82Se	104.30	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	86Sr	99.57	1	99.6	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	885r	101.80	1	99.6	3/2//2014	0:33	CCV	CCV	N/A N/A	
CCV-2	r V	98Mo	99.79 99.88	1	98.1	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	107Aa	24.09	1	98.1	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	109Ag	24,44	1	98,1	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	111Cd	19.53	1	98.1	3/27/2014	0;33	CCV	CĊV	N/A	
CCV-2	Y	114Cd	19.11	1	98.1	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	118Sn	248.00	1	101.5	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Ŷ	120Sn	239.10	1	101.5	3/2//2014	0:33	CCV	CCV	N/A	
CCV-2	r V	12150 1235h	40.32 49.19	1	101.5	3/27/2014	0.33	CCV	CCV	N/A	
CCV-2	Ý	135Ba	98.50	1	101.5	3/27/2014	0:33	ccv	CCV	N/A	
CCV-2	Ŷ	137Ba	97.58	1	101.5	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	203T)	10.07	î	105.8	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	205TI	10.14	1	105.8	3/27/2014	0:33	CCV	CCV	N/A	
CCV-2	Y	208Pb	26.03	1	105.8	3/27/2014	0:33	CCV	CCV	N/A	
CCB-2	Y	9Be	0.01	1	94.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	, V	2/AI 8771	0.77	1 -i	94.2 64.2	3/27/2014	0:38 0-39	CCP	COR	IN/A NI/A	
CCB-2 CCB-2	⁄r V	4/11 481	0.02 0.06	1	94.2 94.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ý	51V	0.69	1	94.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ŷ	52Cr	-0.04	1	94.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	55Mn	0.01	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	59Co	0.00	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	30C

,

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCB-2	Y	60Ni	0.01	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ň	62Ni	0.09	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	ICS-A FH.
008-2	Ŷ	63Cu	-0.01	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ŷ	65Cu	-0.03	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ý	6670	0.03	4	95.7	3/27/2014	0:38	008	CCB	N/A	
CCB-2	v	687n	-0.01	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCD-2	, v	7540	-0.01	1	95.7	3/27/2014	0.38	000	CCB	N/A	
	, V	790.0	-0.42	•	05.7	3/27/2014	0.38	000	CCB	N/A	
CCB-2	T	1030	0.00	1	90.7	3/2/12014	0.30	CCB	000	11/25	
CCB-2	¥	8256	-0.45	1	95.7	3/2//2014	0:38	CCB	008	N/A	
CCB-2	Ŷ	8651	-0.03	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ŷ	88Sr	0.03	1	95.7	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ŷ	97Mo	0.28	1	96.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	98Mo	0.27	1	96.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	107Ag	-0.07	1	96.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	109Ag	-0.05	1	96.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y.	111Cd	0.00	1	96.2	3/27/2014	0;38	CCB	CCB	N/A	
CCB+2	Y	114Cd	0.02	1	96.2	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	118Sn	0.87	1	99.5	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	120Sn	0.79	1	99.5	3/27/2014	0:38	CCB	CCB	N/A	•
CCB-2	Y	121Sb	0.12	1	99.5	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Y	123Sb	0.15	1	99.5	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ŷ	135Ba	0.00	1	99.5	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	Ŷ	137Ba	0.01	1	99.5	3/27/2014	0:38	CCB	CCB	N/A	
CCB-2	v v	203Ti	0.01	1	100.9	3/27/2014	0:38	CCB	CCB	N/A	
000-2	ý	2051	0.01		100.0	3/27/2014	0.38	CCB	200 800	N/A	
	v	20011	0.01	1	100.5	3/27/2014	0.38	008	CCB	N/A	
UCB-Z	- I	2001			05.8	3/27/2014	0.35	000	14402025-005	6000 D	
J1402025-005	Ŷ	9B6	0.02	1	95.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Ŷ	27AI	15.09	1	95.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	47Ti	0.54	1	95.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	48Ti	22.01	1	95.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	-
J1402025-005	Y	51V	0.89	1	95.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	52Cr	-0.04	1	95.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025~005	Y	55Mn	27.07	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Ý	59Co	0.06	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	60Ni	1.04	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	62Ni	0.36	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	ICS-A FH,
.11402025-005	N	63Cu	0.21	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	65Cu	0,23	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
11402025-005	Ŷ	66Zn	4.83	1	95.7	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
11402025-005	N	68Zn	5.67	1	95.7	3/27/2014	0:43	SAMP	11402025-005	6020 D	
11402025-005	v	7546	-0.19	1	95.7	3/27/2014	0:43	SAMP	11402025-005	6020 D	
J 1402025-005	, ,	7980	-0.11	1	05.7	3/27/2014	0:43	SAMP	11402025-005	6020 D	
J 1402025-005	1 N	8280	-0.11	4	95.7	3/27/2014	0:43	SAMO	11402025-005	6020 D	
J1402025-005	11	0200	-0.49	4	95.7	3/2//2014	0.43	CAMP	14402020-000	6020 D	
J1402025-005	I	0005	51,05		95.7 OF 7	0/07/2014	0.43	CAMP	14402020-000	8020 D	
J1402025-005	NI NI	0001	51.95	1	90.7	3/27/2014	0.43	SAMP	J1402025-005	6020 D	
J1402025-005	N	97MO	1.68	1	93.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Ŷ	98M0	1.88	1	93.8	3/27/2014	0;43	SAMP	J1402025-005	6020 D	
J1402025-005	N	107Ag	-0.05	1	93.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	109Ag	-0.06	1	93.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	111Co	í 0.01	1	93,8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	114Cd	0.00	1	93.8	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	118Sn	0.25	1	97.9	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	120Sn	0.29	1	97.9	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	121Sb	0,11	1	97.9	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Y	123Sb	0.11	1	97.9	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	135Ba	12.28	1	97.9	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	Ŷ	137Ba	12.13	1	97.9	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
J1402025-005	N	20371	0.01	1	103	3/27/2014	0:43	SAMP	J1402025-005	6020 D	
11402025-005	v	20571	0.01	4	103	3/27/2014	0:43	SAMP	11402025-005	6020 D	
1402025-005	v	208Ph		, 4	103	3/27/2014	0:43	SAMP	11402025-005	6020 D	
1402020-000	······	2001 b	0.20	4	07.0	2/27/2044	0:40	E A MO	14402025 006	2020 D	*****
J 1402020-000	, f	304	443.00	4	07.0	312712014	0.40	CAMP	11/02020-000	5020 D	
J1402025-005	۲ ب	21A	413.00	1	91.3	a/2//2014	0.49	OAWP	4 1402020-000	0020 D	
J1402025-006	Ŷ	4/11	0,15	Ŧ	97.3	3/27/2014	0:49	SAMP	J1402020-006	6020 D	
J1402025-006	N	48Ti	9.43	1	97.3	3/27/2014	0:49	SAMP	51402025-005	6020 D	
J1402025-006	Y	51V	0.87	1	97.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	52Cr	-0,08	1	97.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	55Mn	0.26	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	59Co	0.03	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	60NI	0.83	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	62Ni	0,45	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	ICS-A FH,
J1402025-006	N	63Cu	0.29	í	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Ý	65C1	0.23	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
.11402025-006	Ŷ	687n	4.75	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	-
.11402025-006	N	6870	7 91	1	98.3	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
11402025-008	~	7540	0.53	1	98.3	3/27/2014	0.49	SAMP	11402025-006	6020 D	
11/02020-000	' V	790-	0.00 0.18	1	08.2	3/27/2014	0.40	SAMO	11402025-006	6020 0	
14402020-000	1 63	8000	0.10	*	08.3	3/27/2014	0.40	SAMO	11402025-006	6020 D	
J 1402025-000	12	0208	0,00	1	90.0 00 0	3/27/2014	0.40	GU1140	14402025-000	6020 0	
31402023-000	r. 1	0031	321.00	1	90.0	3/37/2014	0.40	SALE	14400000 000	6020 0	
J1402025-006	N	0051	J20.5U	1	98.3	312112034	0:49	SAINP	J 1402020-000	0020 D	

VG PQ ExCell ICP-MS

Method 200.8 / 6020

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-006	N	97Mo	8.17	1	98.9	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	98Mo	8.05	1	98.9	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	107Ag	-0.05	1	98.9	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	109Ag	-0.05	1	98.9	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	111Cd	0.01	1	98.9	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	114Cd	0.01	1	98.9	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	118Sn	0.24	1	103	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	120Sn	0.29	1	103	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	121Sb	0.21	1	103	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Y	123Sb	0.25	1	103	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	135Ba	55.04	1	103	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Ŷ	137Ba	55.11	1	103	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	N	203TI	0.02	1	104.6	3/27/2014	0:49	SAMP	J1402025-006	6020 D	
J1402025-006	Ŷ	20511	0.02	1	104.6	3/27/2014	0:49	SAMP	J1402025-000	6020 D	
J1402025-006	¥	20820	-0.25		104.6	3/2/12014	0.49	SAMP	31402020-006	0020 D	<u>21-01-05-010-02-011-02-011-02-01-02-01-02-01-02-02-02-02-02-02-02-02-02-02-02-02-02-</u>
J1402026-001	Ŷ	aRe	0.01	1	89.4	3/27/2014	0:54	SAMP	1402026-001	6020 D	
J1402026-001	Ŷ	27AI	2.98	1	89.4	3/27/2014	0:54	SAMP	J1402026-001	6020 D	
J1402026-001	Y	4/11	0.49	1	89.4	3/27/2014	0:54	SAMP	J1402020-001	6020 D	
J1402026-001	N	4811	35.99	1	89,4	3/27/2014	0:54	SAMP	J1402026-001	6020 D	
J1402026-001	Ŷ	510	1.14	1	89.4	3/2//2014	0:54	SAMP	J1402020-001	6020 D	
J1402026-001	Ŷ	52Cr	0.00	1	89.4	3/27/2014	0:54	SAMP	J1402026-001	6020 D	
J1402026-001	Y	22MN	209.90	1	01.2	3/27/2014	0.54	SAMD	3 1402020-001	0020 D 6020 D	
J 1402026-001	Ŷ	0000	1,00	1	01.Z	312112014	0:04	CAMP	11402020-003	6020 D	
J1402026-001	Ŷ	CONT	4.10	۲ م	01.Z	3/2//2034	0:04	CAN'	1402020-003	6020 D	ICS-A EH
J1402026-001	N	02NI	3.(5	1	07.Z	arz (rzu14 a /az/azzz z	0:54	SAMP	J 1402020-001	6020 D	NACTOR FTL
31402026-001	N	63CU	0.20	1	01.2 e7 0	3/27/2014	0.54	SAMD	0 1402020-001	6020 D	
J1402026-001	Ý	6070	0,20	1	01.2	3/27/2014	0,54	CAND	11/02020-001	6020 D 6020 D	
J1402026-001	Y N	002N	3,70 10.42	3	07.2 p7 0	3/27/2014	0:04	SAMO	J 1402020-003	6020 D	
J1402026-001	N	68∠n %‴‴ 5 -	10.43	1	87.2	3/27/2014	0:54	SAMP	31402020-001	6020 D	
J1402026-001	Ŷ	70Co	2.52	1	07.Z	3/27/2014	0.54	CAND	14402026-001	6020 D	
J1402026-001	Y N	785e	0.68	1	87.2	3/27/2014	0.54	SAMP	11402026-001	6020 D	
J1402026-001	N	0250	0.02	1	07.2	3/21/2014	0.54	SAWP SAMP	1402020-001	6020 D	
J1402026-001	T NI	800r	182.60	1	07.Z	3/2//2014	0.54	SAMO	11402028-001	6020 D	
J1402026-001	Ni Ni	1688	184.00	1	07.Z	3/27/2014	0.54	SAMO	11402026-001	6020 D	
J1402026-001	N	97100	0.29	1	69.5	3/2//2014	0.54	SAMD	1402020-001	6020 D	
J1402026-001	Ŷ	98100	0.26	1	89.5	3/27/2014	0:54	SAMP	J1402026-001	6020 D	
J1402026-001	N	107Ag	-0.10	1	89.5	3/27/2014	0:54	SAMP	1402026-001	6020 D	
J1402026-001	Ŷ	109Ag	-0.09	1	89.5	3/27/2014	0:54	SAMP	J1402026-001	6020 D	
J1402026-001	N	11100	0.00	1	89.5	3/27/2014	0:54	SAMP	J 1402026-001	6020 D	4
J1402026-001	Ŷ	11400	0.01	1	89.5	3/27/2014	0:04	SAMP	J1402020-001	6020 D	
J1402026-001	Ŷ	11850	-0.03	1	94.2	3/27/2014	0.54	CAMP	11402020-001	6020 D	
J1402026-001	IN N	12050	0.05	1	94.2	3/27/2014	0.04	SAMP	1402020-001	6020 D	
J1402026-001	N	12150	0.08	1	94.2	3/21/20:4	0.54	CAMO	11402020-001	6020 D	
J1402026-003	Y Ni	12330	0.08	1	94.2	3/27/2014	0.54	SAMO	1402028-001	6020 D	
J1402020-001	iNi V	100000	111.40	1	94.Z	3/21/2014	0.34	SAMP	11/02028-001	6020 D	
31402026-001	T N	1970a	110.60	1	94.2	3/27/2014	0.54	SAMP	11402026-001	6020 D	
J1402020-001	N V	20311	0.00	4	90.9	3/21/2014	0.54	SAMD	31402026-001	6020 D	
31402020-001	v	20311	-0.25	1	99.9	3/27/2014	0:54	SAMP	11402026-001	6020 D	
14400000 0042		07-	-0.20	t unononoomoono t	00.0	3/27/2014	0.54	MS	101402133-01	6020 D	
1402020-0013	v	30e 37Ai	2507.00	: 1	90.7	3/27/2014	0:59	MS	JO1402133-01	6020 D	
J 1402020-0013	v	21 Pu 47 Ti	2507.00	1	90.7	3/27/2014	0.59	MS	101402133-01	6020 D	
31402020-0015	T N	4711	200.20	1	90.7	3/27/2014	0.59	MS	101402133-01	6020 D	<i>a</i> .
J1402020-0015	N V	4011	294.00	4	90.7	3/27/2014	0.59	MS	IO1402133-01	6020 D	
31402020-0013 14/02028 0019	v	520-	53.45	1	90.7	3/27/2014	0.59	MS	JQ1402133-01	6020 D	
11402020-0013	v	55Mn	378 10	1	88	3/27/2014	0.59	MS	JQ1402133-01	6020 D	
11402028-0015	Ý	5900	54 11	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
.11402028-0015	Ŷ	60Ni	109.50	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
.11402026-0015	N	62Ni	109.40	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	ICS-A FH.
11402026-0015	N	6300	53 60	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001S	Ŷ	65Cu	52.24	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402026-0015	Ŷ	667n	257.00	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402026-0015	N	687n	273.00	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001S	Ŷ	75As	57.52	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001S	Ŷ	78Se	106.70	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402026-0015	N	82Se	109.50	1	88	3/27/2014	0:69	MS	JQ1402133-01	6020 D	
11402028-0015	Ŷ	8651	301 30	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402026-0015	M	BRSE	304 60	1	88	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402028-0018	A.	9714-	108 BD	, f	90 3	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402026-0018	~	988/10	107 70	1	90.3	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402020-0010	N	10740	23.91	1	90.3	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
31402020-0010	V V	10940	24 13	1	90.3	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402020-0013	Ń	11107	19.85	, 1	90.3	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402020-0010	V	11404	19.54	1	90.3	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402020-0010	Ý	11250	253 20	4	94	3/27/2014	0.59	MS	JO1402133-01	6020 D	
11402020-0013	r N	12050	248 80	•	94	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
11402020-0010	14 11	121Sh	50.40	, 1	94	3/27/2014	0.59	MS	JQ1402133-01	6020 D	
11402020-0010	IN V	473Ch	50.10	, 1	94	3/27/2014	0.59	MS	JQ1402133-01	6020 D	
11402026-0018	N	135Ra	216.30	1	94	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
······································	. *			,							

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402026-001S	Y	137Ba	218.00	1	94	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001S	N	203TI	10.38	1	95.4	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001S	Ŷ	20511	10.47	1	95.4	3/27/2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001S	Y V	208Pb	25.91	1	95.4	3/2//2014	0:59	MS	JQ1402133-01	6020 D	
J1402026-001SD	v	900 27 A I	24.03	ן 1	92.0	3/27/2014	1:04	MSD	JQ1402133-02	6020 D 6020 D	
J1402026-0013D	Ŷ	47Ti	256.20	' 1	92.6	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	κ.
J1402026-001SD	Ň	48Ti	292.40	1	92.6	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	51V	99.10	1	92.6	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	52Cr	52.16	1	92.6	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	55Mn	365.20	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	59Co	53.30	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	60Ni COMI	107.20	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	105.4 FH
J1402026-0015D	N	63Cu	51.31	1	60.4 88.4	3/27/2014	1.04	MSD	JO1402133-02	6020 D	100 7 C C II,
.11402026-001SD	Ŷ	65Cu	50.01	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	66Zn	249,80	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	N	68Zn	265.30	1	88.4	3/27/2014	1:04	MSÐ	JQ1402133-02	6020 D	
J1402026-001SD	Y	75As	57.06	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	78Se	104.30	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	N	82Se	106.70	1	88.4	3/27/2014	1:04	MSD	JQ1402133-02	6020 D 6020 D	
J1402026-001SD	Y NI	865r 885r	288.00	1	88.4	3/27/2014	1:04	MSD	101402133-02	6020 D	
J1402026-001SD	N	97Mo	107.40	1	90.7	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	98Mo	108.80	1	90.7	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	N	107Ag	23.21	1	90.7	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	109Ag	23.76	1	90.7	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	N	111Cd	18.47	1	90.7	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	114Cd	19,08	1	90.7	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	118Sn	252.20	1	92.3	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	NI N	120Sn	247.40	1 ⊀	92.3	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-0015D	NI V	12100	48.04	; 4	92.3	3/27/2014	1:04	MSD	101402133-02	6020 D	
.11402026-001SD	N	135Ba	211.70	1	92.3	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Ŷ	137Ba	213.30	1	92.3	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Ν	203TI	9.99	1	97.2	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	205Tł	10.03	1	97.2	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001SD	Y	208Pb	24,71	1	97.2	3/27/2014	1:04	MSD	JQ1402133-02	6020 D	
J1402026-001L	Ŷ	9Be	0.02	5	93,1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Ŷ	2/AI	2.89	5	93,1	3/27/2014	1:09	50	Serial Dilution	6020 D 6020 D	
J1402026-001L	Ň	48Ti	7.44	5	93.1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	51V	0,74	5	93.1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	52Cr	-0.24	5	93.1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	55Mn	54.05	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	59Co	0,24	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	60Ni	0.95	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	N	62Ni	0.83	6 6	92.7	3/2//2014	1:09	50 SD	Serial Dilution	6020 D 6020 D	103-A FR.
J1402028-001L	V	65Cu	0.14	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Ŷ	66Zn	2.74	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	N	68Zn	4.13	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	75As	0.56	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	78Se	0.16	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	N	82Se	-0.11	5	92.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	86Sr	36.94	5	92.7	3/27/2014	1:09	50 en	Serial Dilution	6020 D	
J1402020-001L	N N	000F 97Mo	07.00 045	5 5	92.7 91.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
31402020-001L	Y	98Mo	0.40	5	91.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	N	107Ag	-0.05	5	91.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	109Ag	-0.04	5	91.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Ν	111Cd	0.01	5	91.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	114Cd	0.02	5	91.7	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	118Sn	0.84	5	95.1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	N N	12050	0.82	5	95.1	3/2//2014	1:09	50	Serial Dilution	6020 D	
J1402026-001L	N V	12150 1235h	0.00 0.08	5 5	90.1	3/27/2014	1:09	30 SD	Serial Dilution	6020 D	
J1402026-001L	N	135Ba	23.41	5	95,1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Ŷ	137Ba	23.05	5	95.1	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Ν	203TI	0.04	5	98.3	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	205Ti	0.04	5	98.3	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001L	Y	208Pb	-0.23	5 	98.3	3/27/2014	1:09	SD	Serial Dilution	6020 D	
J1402026-001A	Y	9Be	23,69	1	93.1	3/27/2014	1:14	PS De	Post Spike	6020 D	
J1402020-001A	Y V	21A 8771	2420.UU 240.60	1	93.1	3/27/2014	1.14	F3 PS	Post Snike	6020 D	
J1402026-001A	, N	48Ti	284.10	, 1	93.1	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Ŷ	51V	96.52	1	93.1	3/27/2014	1;14	PS	Post Spike	6020 D	
J1402026-001A	Y	52Cr	51.07	1	93.1	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Y	55Mn	358.50	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	200
VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	iS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402026-001A	Y	59Co	51.72	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Y	60Ni	104.40	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	N	62Ni	104.70	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	ICS-A FH,
J1402026-001A	N	63Cu	49,44	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	•
J1402026-001A	Y	65Cu	48.54	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Y	66Zn	247.40	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	N	68Zn	261.70	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Y	75As	54,99	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Y	78Se	101.50	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	N	82Se	104.30	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Y	86Sr	288.20	1	90.3	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	N	88Sr	289.20	1	90.3	3/27/2014	1:14	PS BO	Post Spike	6020 0	
J1402026-001A	N	97Mo	107.50	1	89.5	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	Ŷ	98MO	105.80	1	89.5	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	N	107Ag	22.75	1	89.5	3/27/2014	1:14	P3	Post Spike	6020 D	
J1402026-001A	Y	109Ag	23.20	1	89.5	3/27/2014	1:14	PS	Post Spike	6020 D	
J1402026-001A	N	11100	I 10.00 I ⊀¤.05	1	09.5 80.5	3/27/2014	1.14	F0 D0	Post Spike	6020 D	
J1402026-001A	Ť	11400	10.00	1	09.0	3/27/2014	1,14	F0 D0	Post Spike	6020 D	
J1402026-001A	Y N	11000	241,00	1	94.7	3/27/2014	1.14	г. . рс	Post Spike	6020 D	
J1402026-001A	IN NI	12030	48.07	1	94.7	3/27/2014	1.14	F0 D6	Poet Snike	6020 D	
J 1402026-001A	N V	12100	40.07	1	94.7	3/27/2014	1.14	PS PS	Post Spike	6020 D	
J1402020-001A	1 N	12500	207 70	1	54.7 64.7	3/27/2014	1.14	PS	Post Snike	6020 D	
J1402026-001A	N V	127000	207.70	1	94.7 Q4 7	3/27/2014	1.14	PS	Post Spike	6020 0	
J1402020-001A	T NJ	20276	209.30	4	54.7 08.5	3/27/2014	1.14	F0 PS	Post Spike	6020 D	
J1402026-001A	iN V	20311	9.77	•	90.0 09.6	3/27/2014	1,14		Post Spike	8020 D	
J1402026-001A	r v	20311	9.00	1	98.5	3/27/2014	1.14	PS	Post Spike	6020 D	
J1402026-001A	T	20000	24.30	1	90.0	3/27/2014	1.14	FU RAMO	14402026 002	6020 0	
J1402026-002	Ŷ	986	0.02	1	80.8	3/27/2014	1:19	SAMP	31402020-002	6020 D	
J1402026-002	Ŷ	2/AI	74.31	1	86.8	3/27/2014	1:19	SAMP	J1402020-002	6020 D	
J1402026-002	Ŷ	4/11	1.22	1	5,65	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	4811	24.82	1	86.8	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	51V	13.80	1	86.8	3/27/2014	3:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	52Cr	2.50	1	86.8	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	55Mn	163.20	1	77.2	3/2//2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	59Co	1.60	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	60Ni	6.62	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	ICC & EU
J1402026-002	N	62Ni	8.43	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	ics-a fh,
J1402026-002	N	63Cu	1.70	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	65Cu	0.20	1	11.2	3/27/2014	1:19	SAMP	J1402025-002	6020 D	
J1402026-002	Y	66Zn	4.56	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	68Zn	9.09	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	75AS	6.74	1	77.2	3/27/2014	1:19	SAMP	31402026-002	6020 D	
J1402026-002	Y	78Se	1.30	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	82Se	1.33	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Y	86Sr	132.20	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	88Sr	133.50	1	77.2	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	97Mo	2.71	1	77.8	3/27/2014	1:19	SAMP	31402026-002	6020 D	
J1402026-002	Ŷ	98Mo	2.78	1	77.8	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	107Ag	-0.08	1	77.8	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	109Ag	-0.08	1	77.8	3/27/2014	3:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	111Cd	0.07	1	77.8	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	114Cd	-0.04	1	77.8	3/27/2014	1:19	SAMP	J1402026-002	6020 D	,
J1402026-002	Ŷ	118Sn	3.45	1	86.4	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	120Sn	3,36	1	86.4	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	N	121Sb	0.61	1	86.4	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	12386	0.65	1	80.4	3/27/2014	1:19	SAMP	J1402020-002	6020 D	
J1402026-002	N	13588	75.15	1	86.4	3/27/2014	1:19	SAMP	J1402026-002	6020 D	
J1402026-002	Ŷ	137Ba	/0.45	1	88.4	3/27/2014	1.19	SAMP	J1402020-002	6020 D	
J1402026-002	N	20311	0.03	1	89	3/2//2014	1;19	SAMP	J1402026-002	6000 D	
J1402026-002	Y	205T1	0.02	1	89	3/2//2014	1:19	SAMP	J1402026-002	0020 U 8000 P	
J1402026-002	Ŷ	208PD	0,18	مستجمعه	89	3/27/2014	1:18	SAMP	J 1402020-002	6020 0	
J1402026-003	Ŷ	9Be	0.02	1	87.6	3/27/2014	1:24	SAMP	J1402026-003	6020 0	
J1402026-003	Ŷ	27A1	76.59	1	87.6	3/2//2014	1:24	SAMP	J1402028-003	6020 D	
J1402026-003	Ŷ	4711	0.92	1	87.6	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	48Ti	24.66	1	87.6	3/2//2014	1:24	SAMP	J1402026-003	6000 D	
J1402026-003	Ŷ	51V	13.53	1	87.6	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	52Cr	2.62	1	87.6	3/2//2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	55Mn	168.90	1	//	3/2//2014	1:24	SAMP	J1402026-003	0020 D	
J1402026-003	Y	59Co	1.67	1	77	3/2//2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	60Ni	6.92	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	1056 2 507
J1402026-003	N	62Ni	7.89	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	us-afri,
J1402026-003	N	63Cu	1.78	1	77	3/27/2014	1:24	SAMP	01402026-003	6020 D	
J1402026-003	Y	65Cu	0.26	î	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402028-003	Y	66Zn	3.95	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	88Zn	8,90	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	75As	7,08	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Ŷ	78Se	1.32	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	82Se	1.68	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	86Sr	135.60	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	100

Data File ID: 032614B

VG PQ ExCell ICP-MS

Method 200.8 / 6020

SAMPLE ID	RPT	Anal	Conc (ug/L)	D۴	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402026-003	N	88Sr	137.90	1	77	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	97Mo	2.74	1	79.5	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	98Mo	2.67	1	79.5	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	107Ag	-0.08	1	79.5	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Ŷ	109Ag	-0.09	1	79.5	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	111C0	0.06	1	79.5	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Ŷ	11400	I -0.04	1	/9.5 96.7	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402020-003	ş N	11630	0.23	1	86.7	3/27/2014	1.24	SAMP	31402020-003	6020 D	
J 1402020-003	59 M	1200H	0.51	1	86.7	3/27/2014	1.24	SAMO	J1402026-003	6020 D	
1402020-003	3N V	12355	0.64	1	86.7	3/27/2014	1:24	SAMP	11402026-003	6020 D	
1402026-003	Ņ	1358a	77 12	1	86 7	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
.11402026-003	Ŷ	137Ba	78.46	1	86.7	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	N	203TI	0.01	1	89.9	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	205TI	0.01	1	89.9	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-003	Y	208Pb	0.22	1	89.9	3/27/2014	1:24	SAMP	J1402026-003	6020 D	
J1402026-004	Y	9Be	0.09	1	89.1	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	27AI	12.79	1	89.1	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	47Ti	0.95	1	89.1	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	N	48Ti	61.58	1	89.1	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	51V	1.65	1	89.1	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	52Cr	0.62	1	89.1	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Ŷ	55Mn	355.10	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Ŷ	59Co	5.50	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y N	GUNI	10,86	1	82	3/27/2014	1:29	SAMP	J 1402026-004	6020 D	
J1402026-004	N N	62INI 62Cu	1 60	1	62	3/27/2014	1:29	SAMP	J1402026-004	6020 D	103-A FR,
J 1402020-004	N V	65Cu	1.00	1	82	3/27/2014	1.20	SAMP	11402025-004	6020 D	
1402020-004	Ý	867n	47.85	1	82	3/27/2014	1:29	SAMP	.11402026-004	6020 D	
11402026-004	, N	68Zn	58.24	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
.11402026-004	Ŷ	75As	12.29	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Ý	78Se	0.78	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Ν	82Se	0.47	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	86Sr	328.40	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	N	88Sr	331,50	1	82	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Ν	97Mo	1.30	1	84.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	98Mo	1.38	1	84.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	N	107Ag	-0.02	1	84.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	· · · ·
J1402026-004	Y	109Ag	-0.01	1	84,6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	N	111Cd	0.10	1	84.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	11400-	0.07	1	84.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y N	11030	0.27	1	90.9	3/2//2014	1:29	SAMP	31402020-004	6020 D	
J1402028-004	N	12030 1215h	0.24	1	90,9	3/27/2014	1-29	SAMP	1402026-004	6020 D	
1402026-004	Ŷ	12130	0.50	1	90.9	3/27/2014	1:29	SAMP	1402026-004	6020 D	
31402026-004	N	135Ba	165.50	1	90.9	3/27/2014	1:29	SAMP	J1402026-004	6020 D	<i>'</i>
J1402026-004	Ŷ	137Ba	164.30	1	90.9	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Ň	203TI	0.24	1	90.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	205TI	0.23	1	90.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
J1402026-004	Y	208Pb	-0.10	1	90.6	3/27/2014	1:29	SAMP	J1402026-004	6020 D	
CCV-3	Y	9Be	24.27	1	99.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	27AI	2482.00	1	99.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	47Ti	245.10	1	99.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	γ	48Ti	252.40	1	99.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Ŷ	51V	99.22	1	99.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	52Cr	49.70	1	99.4	3/2//2014	1:34		COV	N/A	
007-3	r v	208/IN	101.40	3 ⊀	99.7 00.7	312112014	1:34	00V 00V	000	14/A N/A	
004-3	r V	CONIC CONIC	102.20	1	99.7 90.7	3/27/2014	1:34	COV	COV	N/A N/Δ	
CCV-3	N	62Mi	103 20	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	ICS-A FH.
CCV-3	Ŷ	63Cu	51 72	; 1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Ý	65Cu	50.30	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	66Zn	252.20	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	68Zn	259.50	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	γ	75As	52.28	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	78Se	103,40	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	82Se	106.40	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	86Sr	102.80	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	88Sr	104.20	1	99.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	97Mo	102.20	1	101.3	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	98Mo	100.40	1	101.3	3/27/2014	1:34	CCV	ccv	N/A	
CCV-3	Y	107Ag	24.58	1	101.3	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	109Ag	24.50	1	101.3	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	111Cd	19.02	1	101.3	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	114Cd	19.30	1	101.3	3/2//2014	1:34	CCV	CCV	N/A	
CCV-3	Y V	11850	202,10	1 4	102,4	3/27/2014	1:34		CCV	N/A N/A	
CCV-3	v	12001	48.99	1	102.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Ŷ	123Sh	48.70	1	102.4	3/27/2014	1:34	ccv	ccv	N/A	
	•			•							

Data File ID: 032614B

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCV-3	Y	135Ba	99.14	1	102.4	3/27/2014	1;34	CCV	CCV	N/A	
CCV-3	Y	137Ba	97.48	1	102.4	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	203TI	10.69	1	102.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Y	205TI	10.34	1	102.7	3/27/2014	1:34	CCV	CCV	N/A	
CCV-3	Ŷ	208Pb	26.07	1	102.7	3/27/2014	1:34	CCV	CCV	N/A	
CCB-3	Ŷ	9Be	0.01	1	98.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ŷ	27A)	0.73	1	98.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ý	-4771 4811	-0.01	1	98.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ŷ	51V	-0.04	1	98.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ŷ	52Cr	-0.12	1	98.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	55Mn	0.02	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	59Co	0.01	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	60Ni	0.01	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	N	62Ni	0.28	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	ICS-A FH,
CCB-3	Y	63Cu	0.00	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	\$
CCB-3	Y	65Cu	-0.02	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	66Zn	0.04 .	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	r V	00Z11 75Åe	0.01	1	90.4	3/27/2014	1.09	CCB	CCB	N/A N/A	
CCB-3	v	7850	-0.21	4	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ŷ	82Se	-0.19	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ý	86Sr	0.06	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	88Sr	0.03	1	98.4	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	97Mo	0.30	1	100.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	98Mo	0.30	1	100.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	107Ag	-0.06	1	100.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	109Ag	-0.07	1	100.1	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ŷ	111Cd	0.00	1	100.1	3/27/2014	1:39	CC8	CCB	N/A	
CCB-3	r V	11400	0.01	4	100.1	3/27/2014	1,39	CCB	CCB	N/A N/A	
CCB-3	Y	120Sn	0.76	1	99.0 99.5	3/27/2014	1.38	CCB	CCB	N/A	
CCB-3	Ý	121Sb	0.16	1	99.5	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Ŷ	123Sb	0.19	1	99.5	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	135Ba	0.00	1	99.5	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	137Ba	0.00	1	99,5	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	203TI	0.01	1	99.7	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	205TI	0.01	1	99.7	3/27/2014	1:39	CCB	CCB	N/A	
CCB-3	Y	208Pb	-0.25	1	99.7	3/27/2014	1:39	ССВ	CCB	N/A	
J1402026-005	Ŷ	98e	0.08	1	90.3	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	r V	27A) 47Ti	0.77	1	90.3 00.3	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
11402026-005	N	48Ti	169.00	1	90.3	3/27/2014	1:44	SAMP	.11402026-005	6020 D	
J1402026-005	Ŷ	51V	0.72	1	90.3	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Ý	52Cr	1.17	1	90.3	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Y	55Mn	449.50	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Y	59Co	12.45	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Y	60Ni	35.90	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	N	62Ni	32,04	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	ics-a fh,
J1402026-005	N	63Cu	4.22	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	ř	65CU 667n	4.04	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402020-000	T Ni	687n	9.00	1	76.6	3/27/2014	1.44	SAMP	11402020-005	6020 D	
11402026-005	Y	75∆s	9.36	, 1	76.6	3/27/2014	1-44	SAMP	.11402026-005	6020 D	
J1402026-005	Ŷ	78Se	0.56	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	N
J1402026-005	N	82Se	0,30	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Y	86Sr	1159.00	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Ν	88Sr	1133.00	1	76.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	1 · · · · · · · · · · · · · · · · · · ·
J1402026-005	N	97Mo	2.20	1	78.8	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Ŷ	98Mo	2.11	1	78.8	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	N	107Ag	-0.02	1	78.8	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	т N	109Ag	-0.03	1	78.9	3/27/2014	1:44	SAMP	11402026-005	6020 D	
11402026-005	v	114Cd	0.03	1	78.8	3/27/2014	1:44	SAMP	11402026-005	6020 D	
.11402026-005	Ý	118Sn	0.37	1	84.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Ň	120Sn	0.43	1	84,6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	N	121Sb	1.06	1	84.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Y	123Sb	1.18	1	84.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	N	135Ba	456.00	î	84.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Y	137Ba	456.90	1	84.6	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	N	203TI	0.27	1	87.3	3/27/2014	1:44	SAMP	J1402026-005	6020 D	
J1402026-005	Ŷ	20571	0.25	1	87.3	3/2//2014	1:44	SAMP	J1402026-005	6020 D	
J 1402026-000	γ 	20020	0.09	1	07.J 96.7	3/2/12014	1.44	CAND	1402020-000	6020 D	
J 1402020-000	r V	300 778:	U.U1 & 11	1	00.1 85.7	3/27/2014	1.49 1-40	SAMP	3 1402020-000 11402028-006	6020 D 6020 D	
J1402026-006	Ý	47Ti	1,72	1	85.7	3/27/2014	1:49	SAMP	J1402026-006	6020 D	
J1402026-006	N	48Ti	62.32	1	85.7	3/27/2014	1:49	SAMP	J1402026-006	6020 D	
J1402026-006	Y	51V	1.03	1	85.7	3/27/2014	1:49	SAMP	J1402026-006	6020 D	
J1402026-006	Y	52Cr	0.85	1	85.7	3/27/2014	1;49	SAMP	J1402026-006	6020 D	

Analyst: <u>JOLO</u>			ata File ID:		032814A		_ LI	MS Run #	: <u> </u>	672
nalysis:	ICP	P-MS	Method R	eferences:		200.8 / 602	20	Inst ID	:J-ICP-	-MS-01
			Sta	andard's Tr	ace Numl	oers		-		
STD	ID	Trace #	Exp	Date	ST	D ID	Tra	ce#	Exp	Date
ICAI	1	MET-17-81C	4-1	-14	INT	STD	MET-1	7-83F	4-26-	14 7
ICAI	2	T 81D		7	IC	SA		QYA	4-2-	14 /
ICAI	3	81E			ICS	SAB		843	4-1-	14 /
ICAI	4	81F	1		Blank /	Diluent	l di	QZE	5-26	15
IC	V	N 816		Į – I			<u> </u>			
			Standar	1 Concentr	ations an	d Rannes	1		1	
ement	MRL	Linear Range		CCV	LCS	ICSA	ICSAB	Units	LICV RSD	
9Be	0.5	3000	20	25	25	0	10	ug/L	3.144	Stabilit
27AI	50	50000	500	2500	2500	50000	51000	ug/L	0.911	Repor
47Ti	5	5000	250	250	250	1000	1100	ug/L	0.57	< 5%
4011 51V	2	10000	250	100	250	1000	1100 40	ug/L	0.238	
52Cr	1	5000	50	50	50	0	20	ug/L ua/L	0,581	
55Mn	2	5000	50	100	100	0	40	ug/L	0.416	
59Co	1	5000	50	50	50	0	20	ug/L	0.665	Cal
60NI	2	5000	50	100	100	0	40	ug/L	0.893	Curve
63Cu	<u>د</u> 1	5000	50	50	50	0	40	ug/L	2.789	5 A 994
65Cu	1	5000	50	50	50	0	20	ug/L	1.481	- 0.000
66Zn	5	10000	100	250	250	0 -	100	ug/L	0.652	
58Zn	5	10000	100	250	250	0	100	ug/L	1.232	
78Se	2	5000	50	50	50	0	20	ug/L	2.08	
B2Se	2	5000	50	100	100	0	40	ug/L ug/l	1.033	Mass
86Sr	2	5000	50	100	100	0	40	ug/L	0.976	Call Rp
88Sr	2	5000	50	100	100	0	40	ug/L	0.34	Incl.
BYMO	2	5000	50		100	1000	1040	ug/L	0.771	- 60
07Ag	0.5	100	50	25	25	0	1040	ug/L ug/l	1.251	
09Ag	0.5	100	50	25	25	0	10	ug/L	0.534	
11Cd	0.4	2500	25	20	20	0	. 8	ug/L	1.492	
14Cd	0.4	2500	25	20	20	0	8	ug/L	1.261	
20Sn	ວ 5	20000	200	250 250	250	0	100	ug/L	1.131	
21Sb	1	5000	50	50	50	0	20	ug/L	1.052	
23Sb	1	5000	50	50	50	0	20	ug/L	1.889	
35Ba	2	5000	50	100	100	0	40	ug/L	2.404	
203TI	<u>∠</u> 0.2	5000	50	100	100	0 0	40	ug/L	1.053	
05TI	0.2	5000	50	10	10	0	4	ug/L	0.838	
08Pb	0.5	5000	50	25	25	0	10	1/nu	0.934	

ICP-MS Run Sequence	Date File ID:	032814A	

#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time	#	Samp / Std ID	Date	Time
1	Cal Blank	3/28/14	13:12								
2	Cal 1	3/28/14	13:17								
3	Cal 2	3/28/14	13:22								
4	Cal 3	3/28/14	13:27								
5	Cal 4	3/28/14	13:32								
6	ICV	3/28/14	13:37								
7	ICB	3/28/14	13:42								
8	MRL	3/28/14	13:47								
9	ICSA	3/28/14	13:52								
10	ICSAB	3/28/14	13:57								
11	CCV-1	3/28/14	14:02								
12	CCB-1	3/28/14	14:08								
13	MB-02258-02	3/28/14	14:13								
14	LCS-02258-01	3/28/14	14:18								
15	J1402025-007	3/28/14	14:23								
16	J1402025-007S	3/28/14	14:28								
17	J1402025-007SD	3/28/14	14:33								
18	J1402025-007L	3/28/14	14:38								
19	J1402025-007A	3/28/14	14:43								
20	J1402076-001	3/28/14	14:48		•						
21	J1402076-002	3/28/14	14:53								
22	MB-02293-02 10x	3/28/14	14:58								
23	CCV-2	3/28/14	15:03								
24	CCB-2	3/28/14	15:08								
25	LCS-02293-01 10x	3/28/14	15:13								
26	J1402083-001 10x	3/28/14	15:18								
27	J1402083-001L 10x	3/28/14	15:23								
28	J1402083-001A 10x	3/28/14	15:28								
29	J1402197-001 10x	3/28/14	15:33								
30	CCV-3	3/28/14	15:38								
31	CCB-3	3/28/14	15:43								
32	Acid Rinse	3/28/14	15:48								
33	DI Rinse	3/28/14	15:53								

.

Page 1 of 1

ICP-MS DATA REPORTED WITH FAILING CRITERIA

			Data File	Data File ID: 032814A							
Sample ID	Analyte	Failure(s)		Analyst's Comments							
				,							
			."								
						÷					
. *											

Sample ID	Isotope-1	lsotope-1 Conc (ug/L)	Isotope-2	Isotope-2 Conc (ug/L)	RPD	ANAL DATE / TIME
J1402025-007	47Ti	0.747	48Ti	31.77	190.8	3/28/2014 14:23
J1402076-001	47Ti	0.827	48Ti	29.39	189.1	3/28/2014 14:48
J1402076-002	47Ti	0.563	48TI	41.27	194.6	3/28/2014 14:53

ICP-MS Isotope Discrepancy Summary Sheet

Isotopes Reported Other Than Defaults When Defaults Pass QC Checks

Data File ID: 032814A

	Reported	Reported	Default	Default	
Sample ID	Isotope	Conc	Isotope	Conc	Analyst's Comments

12:41:00 3/28/14 Stability March2014.vge

Exc	Excluded In Calib Excluded In Results Prast to Diversing and Multi Element Semi-Quantary Internal Standard Addition												
Jncor	rected ICPS Per Mass		S-Calibration Has E F-Interference Corre	dited Standard F ection Failed 7	-Calibration Edited -Tripped	I-Invalid Calibra P-Pulse Counting	I-Invalid Calibration V-Valley Integration Failed P-Pulse Counting M-Result Over Max						
Run	tabel 👘	TimeStamp	Baard SBK (SBK)	7Li	9Be	24Mg	25Mg	26Mg					
1	Stability_0328_1	3/28/2014 #2:33:05 F	(P)0.000	(P)60567.777	(P)31024.784	(P)92965.065	(P)13400.732	(P)16893.321					
2	Stability_0328_1	3/28/2014 12:33:33 F	(P)0.000	(P)60085.102	(P)30260.912	(P)93401.113	(P)13526.405	(P)16856.610					
3	Stability_0328_1	3/28/2014 12:34:02 F	(P)0.000	(P)52951.635	(P)31886.660	(P)94759.989	(P)13677.656	(P)17553.007					
4	Stability_0328_1	3/28/2014 12:34:30 F	(P)0.000	(P)52023.096	(P)32385.564	(P)94766.764	(P)13725.484	(P)17035.715					
5	Stability_0328_1	3/28/2014 12:34:59 F	(P)0.000	(P)62957.030	(P)29845.598	(P)93265.848	(P)13428.536	(P)16694.196					
	Mean of Stability_032	3/28/2014 12:33:05 F	(P)0.000	(P)57716.928	(P)31080.704	(P)93831.756	(P)13551.763	(P)17006.570					
	SD of Stability_0328_1		(P)0.000	(P)4907.189	(P)1066.876	(P)864.973	(P)145.488	(P)328.760					
	%RSD of Stability_		(P)0.000	(P)8.502	(P)3.433	(P)0.922	(P)1.074	(P)1.933					

Run	Label	TimeStamp	59Co -		113in	115In	138Ba	140Ce
1	Stability_0328_1	3/28/2014 12:33:05 F	(P)287706.360	(P)17087.992	(P)17982.422	(P)405479.600	(P)275030.920	(P)409683.230
2	Stability_0328_1	3/28/2014 12:33:33 F	(P)289817.030	(P)17113.579	(P)17921.239	(P)410882.140	(P)276636.540	(P)415457.700
3	Stability_0328_1	3/28/2014 12:34:02 F	(P)287981.530	(P)17242.623	(P)17929.022	(P)411505.630	(P)278579.760	(P)412160.120
4	Stability_0328_1	3/28/2014 12:34:30 F	(P)289041.810	(P)16936.702	(P)18196.026	(P)409911.480	(P)275275.130	(P)412946.650
5	Stability_0328_1	3/28/2014 12:34:59 F	(P)289931.640	(P)16946.717	(P)17866.722	(P)406616.780	(P)274630.510	(P)413520.550
	Mean of Stability_032	3/28/2014 12:33:05 F	(P)288895.670	(P)17065.523	(P)17979.086	(P)408879.130	(P)276030.570	(P)412753.650
	SD of Stability_0328_1		(P)1023.914	(P)127.366	(P)128.016	(P)2676.348	(P)1612.122	(P)2104.582
	%RSD of Stability_	e yn mennen i nyw y gaargin manne, ddreidd gyfeling bla llaydag falleg y 2	(P)0.354	(P)0.746	(P)0.712	(P)0.655	(P)0.584	(P)0.510
		An owner of the strength of our second strength of the strengt					MARK AND AND AND AND AND AND AND AND AND AND	CONTRACTOR DE LA CONTRACTÓRIA DE LA CONTRACTÓRIA DE LA CONTRACTÓRIA DE LA CONTRACTÓRIA DE LA CONTRACTÓRIA DE LA

Run	Label	TimeStamp	164,688,0	1566660	175	206Pb	207Pb	208Pb
1	Stability_0328_1	3/28/2014 12:33:05 F	(P)203.335	(P)6901.668	(P)31.111	(P)125199.600	(P)105292.170	(P)258879.280
2	Stability_0328_1	3/28/2014 12:33:33 F	(P)201.113	(P)7072.865	(P)43.333	(P)125267.950	(P)106182.060	(P)262199.950
3	Stability_0328_1	3/28/2014 12:34:02 F	(P)194.446	(P)7021.726	(P)48.889	(P)123864.740	(P)105610.090	(P)260541.210
4	Stability_0328_1	3/28/2014 12:34:30 F	(P)158.890	(P)6975.037	(P)28.889	(P)125626.660	(P)106723.840	(P)259291.260
5	Stability_0328_1	3/28/2014 12:34:59 F	(P)204.446	(P)7066.198	(P)28.889	(P)124523.800	(P)105615.660	(P)258851.980
	Mean of Stability_032	3/28/2014 12:33:05 F	(P)192.446	(P)7007.499	(P)36.222	(P)124896.550	(P)105884.760	(P)259952.740
	SD of Stability_0328_1		(P)19.155	(P)71.019	(P)9.283	(P)701.144	(P)568.214	(P)1431.588
	%RSD of Stability_		(P)9.954	(P)1.013	(P)25.628	(P)0.561	(P)0.537	(P)0.551

Run	Label	TimeStamp	209Bi	2205.82	238U
1	Stability_0328_1	3/28/2014 12:33:05 F	(P)400204.260	(P)0.000	(P)528227.730
2	Stability_0328_1	3/28/2014 12:33:33 F	(P)399885.200	(P)0.000	531663.880
3	Stability_0328_1	3/28/2014 12:34:02 F	(P)402834.040	(P)0.000	529202.340
4	Stability_0328_1	3/28/2014 12:34:30 F	(P)402433.210	(P)0.000	528925.560
5	Stability_0328_1	3/28/2014 12:34:59 F	(P)402324.850	(P)0.000	527228.590
	Mean of Stability_032	3/28/2014 12:33:05 F	(P)401536.310	(P)0.000	529049.620
	SD of Stability_0328_1	1. v . v . v . v . v . v . v . v . v . v	(P)1379.389	(P)0.000	1648.084
	%RSD of Stability_	and the second second	(P)0.344	(P)0.000	0.312
		ni saja			

ICP-MS MASS CALIBRATION SUMMARY SHEET Data File ID: 032814A

Element	Mass	Mass DAC	Peak Width (AMU)	Error (AMU)	Include	Resolution PASS / FAIL (< 0.9 AMU)	Accuracy PASS / FAIL (+/- 0.1 AMU)
Be	9.012	2007	0.715	0.006	TRUE	PASS	PASS
Mg	23.985	5828	0.715	0.047	TRUE	PASS	PASS
Mg	24.986	6081	0.664	0.041	TRUE	PASS	PASS
Mg	25.983	6335	0.715	0.042	TRUE	PASS	PASS
AI	26.982	6582	0.715	0.013	TRUE	PASS	PASS
Ti	46.952	11660	0.715	-0.009	TRUE	PASS	PASS
V	50.944	12680	0.766	0.005	TRUE	PASS	PASS
Cr	51.94	12934	0.715	0.006	TRUE	PASS	PASS
Mn	54.938	13694	0.766	-0.006	TRUE	PASS	PASS
Со	58.933	14708	0.766	-0.019	TRUE	PASS	PASS
Ni	59.931	14962	0.715	-0.02	TRUE	PASS	PASS
Cu	64.928	16229	0.766	-0.041	TRUE	PASS	PASS
Zn	65.926	16489	0.766	-0.019	TRUE	PASS	PASS
As	74.922	18777	0.766	-0.03	TRUE	PASS	PASS
Se	77.919	19538	0.715	-0.04	TRUE	PASS	PASS
Sr	85.91	21583	0.714	-0.003	TRUE	PASS	PASS
Мо	97.905	24638	0.714	-0.007	TRUE	PASS	PASS
Ag	108.905	27446	0.714	0.014	TRUE	PASS	PASS
Cd	113.903	28720	0.714	0.015	TRUE	PASS	PASS
Sn	117.902	29740	0.663	0.019	TRUE	PASS	PASS
Sb	122.904	31014	0.663	0.015	TRUE	PASS	PASS
Ba	136.906	34589	0.663	0.038	TRUE	PASS	PASS
TI	204.972	51931	0.662	-0.036	TRUE	PASS	PASS
Pb	205.974	52191	0.662	-0.019	TRUE	PASS	PASS
Pb	206.976	52451	0.662	-0.002	TRUE	PASS	PASS
Pb	207.977	52711	0.662	0.016	TRUE	PASS	PASS

9	Mean CPS	Error	measured	Defined
	3,444.01	0.04	0.04	0.00
411	5,389.51	-0.03	0.97	1.00
** 1 i	24,320.02	-0.05	9.95	10.00

-0.03

-0.05

Cal 1

Cal 2

0.00 0.00 0.00 11.11 1.00 0.00 2,623.18 1.00

Cal 1

412 0.00

Sensitivity=276.935334 Correlation Coeff=0.999262

Mean CPS

15:25:36 3/31/14 032814A.vge

Page 6 of 15

Cal Blank	0.00	-0.01	-0.01	63.27	
Cal 1	5.00	5.02	0.02	1,455.14	0.02
Cal 2	50.00	49.83	-0.17	13,865.08	-0.17
Cal 3	250.00	253.11	3.11	70,160.34	3.11
Cal 4	1,000.00	976.97	-23.03	270,624.79	-23.03

75As

Fully Quant Calibration

FQ Block 1

Page 8 of 15

Intercept CPS=-2.720931 Intercept Conc=-0.081506 Sensitivity=33.383341 Correlation Coeff=0.999983

Label	Defined	Measured	Error	Mean CPS	%Error
Cal Blank	0.00	0.13	0.13	1.72	
Cal 1	0.40	0.49	0.09	13.59	0.09
Cal 2	4.00	3.77	-0.23	123.07	-0.23
Cal 3	20.00	20.00	0.00	664.91	0.00
Cal 4	80.00	80.01	0.01	2,668.33	0.01

Fully Quant Calibration

on 111Cd FQ Block 1

114Cd

Fully Quant Calibration

FQ Block 1

Intercept CPS=197.811237 Intercept Conc=0.217268 Sensitivity=910.446149 Correlation Coeff=0.999602

Label	Defined	Measured	Error	Mean CPS	%Error
Cal Blank	0.00	0.00	0.00	195.69	
Cal 1	5.00	5.11	0.11	4,851.41	0.11
Cal 2	50.00	50.52	0.52	46,195.07	0.52
Cal 3	250.00	253.50	3.50	230,997.45	3.50
Cal 4	1,000.00	986.25	-13.75	898,122.78	-13.75

Fully Quant Calibration

120Sn FQ Block 1

Label	Defined	Measured	Error	Mean CPS	%Error
Cal Blank	0.00	0.00	0.00	313.68	
Cal 1	5.00	4.99	-0.01	6,552.93	-0.01
Cal 2	50.00	50.47	0.47	63,392.09	0.47
Cal 3	250.00	251.96	1.96	315,221.20	1.96
Cal 4	1,000.00	974.13	-25.87	1,217,834.00	-25.87

Fully Quant Calibration

121Sb FQ Block 1

Mean CPS

25.00

5.00

5.03

25.78

0.03

0.78

5,374.80

27,508.94

0.03

0.78

422

Cal 2

Cal 3

15:: 032		Page 15 of 15		
10.00	10.20	0.20	32,949.92	0.20
40.00	39.80	-0.20	128,298.47	-0.20
	15:: 032 10.00 40.00	15:25:36 3/31/14 032814A.vge 10.00 10.20 40.00 39.80	15:25:36 3/31/14 032814A.vge 10.00 10.20 0.20 40.00 39.80 -0.20	15:25:36 3/31/14 032814A.vge 10.00 10.20 0.20 32,949.92 40.00 39.80 -0.20 128,298.47

ICP-MS INTERNAL STANDARD SUMMARY SHEET

					Udid	File 10, 032						
Analyte:	9Be	27AI	47Ti	48Ti	51V	52Cr	55Mn	59Co	60Ni	62Ni	63Cu	65Cu
I.S. Used:	45Sc	45Sc	45Sc	45Sc	45Sc	45Sc	71Ga	71Ga	71Ga	71Ga	71Ga	71Ga
							000	0714	0004-		1004 -	10000000000000000000000000000000000000
Analyte:	66Zn	68Zn	75As	78Se	82Se	8651	1606 740	97,100	901010	107Ag	109Ag	4451
I.S. Used:	71Ga	71Ga	71Ga	71Ga	/1Ga	/1Ga	/1Ga	115in	115in	11510	nicri	115in
Analyte:	114Cd	118Sn	120Sn	121Sb	123Sb	135Ba	137Ba	203TI	205TI	208Pb		
IS Used:	115in	159Tb	159Tb	159Tb	159Tb	159Tb	159Tb	175Lu	175Lu	175Lu		
						Inte	ernal Standa	rds				
			Recovery	6Li	45Sc	71Ga	115ln	159Tb	175Lu	209Bi		
Samp	ie ID	Method	Limits	Rec	Rec	Rec	Rec	Rec	Rec	Rec	Anal Dat	e / Time
Cal Blank		N/A	80-120%	98.2%	99.1%	99.6%	98.7%	99.2%	99.6%	98.2%	3/28/201	4 13:12
Cal 1		N/A	80-120%	98.7%	101.1%	100.4%	100.2%	98.5%	100.5%	98.1%	3/28/201	14 13:17
Cal 2		N/A	80-120%	101.2%	100.1%	102.6%	99.9%	99.5%	100.5%	100.9%	3/28/201	4 13:22
Cal 3		N/A	80-120%	101.2%	101.2%	103.6%	102.4%	100.7%	101.6%	101.6%	3/28/201	4 13:27
Cal 4		N/A	80-120%	94.2%	95.8%	98.2%	101.0%	98.5%	98.6%	97.0%	3/28/201	4 13:32
ICV		N/A	80-120%	99.0%	98.4%	100.9%	99.2%	97.7%	97.8%	97.8%	3/28/201	4 13:37
ICB		N/A	80-120%	98.7%	100.8%	100.4%	99.6%	97.6%	97.0%	98.9%	3/28/201	4 13:42
MRL		N/A	80-120%	96.0%	101.7%	102.9%	100.2%	98.7%	98.5%	100.3%	3/28/201	4 13:47
ICSA		N/A	80-120%	87.9%	92.0%	87.3%	91.4%	91.7%	92.7%	85.1%	3/28/201	4 13:52
ICSAB		N/A	80-120%	91.0%	93.5%	92.4%	93.4%	93.6%	95.5%	87.1%	3/28/201	4 13:57
CCV-1		N/A	80-120%	101.4%	106.5%	109.3%	105.6%	105.0%	105.6%	105.2%	3/28/201	4 14:02
CCB-1		N/A	80-120%	106.2%	109.2%	107.6%	107.5%	104.0%	104.2%	104.2%	3/28/201	4 14:08
MB-02258-0	2	200.8	60-125%	109.2%	113.1%	110.7%	109.2%	107.3%	106.2%	107.1%	3/28/201	4 14:13
LCS-02258-	01	200.8	60-125%	109.3%	110.4%	111.2%	108.1%	105.8%	107.8%	107.3%	3/28/201	4 14:18
J1402025-0	07	6020	30-120%	108.2%	112.5%	110.1%	106.8%	105.4%	106.0%	102.4%	3/28/201	4 14:23
J1402025-0	07S	6020	30-120%	106.5%	107.2%	106.8%	105.2%	103.2%	105.2%	102.4%	3/28/201	4 14:28
J1402025-0	07SD	6020	30-120%	105.6%	106.0%	104.2%	104.1%	102.1%	103.5%	99.7%	3/28/201	4 14:33
J1402025-0	07L	6020	30-120%	102.6%	107.1%	105.6%	102.9%	102.5%	104.0%	102.6%	3/28/201	4 14:38
J1402025-0	07A	6020	30-120%	103.3%	105.7%	104.8%	101.9%	100.8%	102.7%	100.3%	3/28/201	4 14:43
J1402076-0	01	200.8	60-125%	96.6%	103.7%	. 99.4%	98.5%	98.3%	101.3%	94.3%	3/28/201	4 14:48
J1402076-0	02	200.8	60-125%	98.0%	103.8%	100.7%	98.8%	100.9%	104.1%	97.1%	3/28/201	4 14:53
MB-02293-0)2 10x	6020	30-120%	105.7%	106.5%	103.4%	101.9%	100.4%	104.0%	101.0%	3/28/201	4 14:58
CCV-2		N/A	80-120%	105.4%	102.9%	105.4%	102.4%	101.5%	104.3%	104.0%	3/28/20	4 15:03
CCB-2		N/A	80-120%	98.4%	101.1%	101.4%	98.8%	98.3%	100.4%	101.9%	3/28/201	4 15:08
LCS-02293-	01 10x	6020	30-120%	107.4%	103.2%	104.6%	100.7%	100.4%	102.0%	100.0%	3/28/201	14 15:13
J1402083-0	01 10x	6020	30-120%	101.1%	102.4%	103.4%	100.3%	99.2%	100.5%	99.3%	3/28/201	4 15:18
J1402083-0	01L 10x	6020	30-120%	105.3%	102.4%	103.3%	100.5%	99.1%	101.2%	104.1%	3/28/201	4 15:23
J1402083-0	01A 10x	6020	30-120%	107.1%	104.9%	104.3%	101.3%	100.6%	103.4%	100.9%	3/28/201	14 15:28
J1402197-0	01 10x	6020	30-120%	95.7%	100.7%	100.9%	98.9%	98.3%	100.9%	101.9%	3/28/201	14 15:33
CCV-3		N/A	80-120%	101.3%	102.6%	104.2%	102.2%	102.5%	103.5%	104.7%	3/28/201	4 15:38
ССВ-3		N/A	80-120%	103.0%	101.3%	100.8%	98.9%	100.4%	101.4%	102.5%	3/28/201	14 15:43
Acid Rinse		N/A	80-120%	98.4%	104.6%	104.0%	102.9%	101.9%	103.6%	106.6%	3/28/201	14 15:48
DI Rinse		N/A	80-120%	97.2%	104.2%	102.7%	101.7%	100.9%	102.2%	104.7%	3/28/201	14 15:53

SAMPLE ID	RPT	Anaí	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnaiTime	Samp Type	LIMS ID	Method	Comments
Cal Blank	Y	9Be	0.04	1	99.1	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	27AI	0.00	1	99.1	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ŷ	47Ti	0.00	1	99.1	3/28/2014	13:12			N/A N/A	
Cal Blank	Y	4011 51V	0.03	1	99.1	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ý	52Cr	0.04	1	99.1	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	55Mn	0.00	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	59Co	0.00	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	60Ni	0.00	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	62Ni	-0.20	1	99.6	3/28/2014	13:12		ICAL	N/A N/A	
Cal Blank	Y	63C0	-0.01	1.	99.0 99.0	3/28/2014	13.12	ICAL	ICAL	N/A	
Cal Blank	Y	66Zn	0.00	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ŷ	68Zn	-0,01	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	75As	-0.25	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	78Se	-0.19	1	99,6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ŷ	82Se	-0.01	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A N/A	
Cal Blank	Ŷ	865r	0.00	1	99.0	3/28/2014	13.12	ICAL	ICAL	N/A	
Cal Blank	Y	97Mo	0.00	1	98.7	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ŷ	98Mo	0.00	1	98.7	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	107Ag	-0.01	1	98.7	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	109Ag	0.02	1	98.7	3/28/2014	13:12	ICAL	ICAL.	N/A	
Cal Blank	Y	111Cd	0.00	1	98.7	3/28/2014	13:12	ICAL	ICAL	N/A N/A	
Cal Blank	Ŷ	114Cd	0.00	1	98.7 66.2	3/28/2014	13:12	ICAL		N/A	
Cal Blank	Ŷ	12050	0.00	1	99.2	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ŷ	121Sb	-0.01	1	99.2	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	123Sb	0.00	1	99.2	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Y	135Ba	0.04	1	99.2	3/28/2014	13:12	ICAL.	ICAL	N/A	
Cal Blank	Y	137Ba	0,00	1	99.2	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal Blank	Ŷ	20311	0.00	1	99.6	3/28/2014	13:12		ICAL	N/A N/A	
Cal Blank	r Y	20911 208Ph	0.00	1	99.6	3/28/2014	13:12	ICAL	ICAL	N/A	
Cal 1	Ý	9Be	0.46	1	101.1	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	27AI	48,20	1	101.1	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	47Ti	5.06	1	101.1	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	48Ti	4.93	1	101.1	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	· ¥	51V	2,00	1	101.1	3/28/2014	13:17	ICAL	ICAL	N/A N/A	
Cal 1	Y	520r	2.01	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Ý	59Co	1.00	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	60Ni	1.95	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	62Ni	1.43	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Ŷ	63Cu	1.01	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A N/A	
Cal 1 Col 1	Ý	65GU 667n	1.05	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Ŷ	68Zn	5,02	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	75As	1.04	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	78Se	2.01	4	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	82Se	1.99	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Ŷ	86Sr	2.00	1	100.4	3/28/2014	13:37		ICAL ICAL	N/A N/A	
Cal 1	Ý	0001 07Mo	1.90	1	100.4	3/28/2014	13:17	ICAL	ICAL	N/A	
Cat 1	Ŷ	98Mo	1,96	1	100.2	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	107Ag	0.51	1	100.2	3/28/2014	13:17	ÍCAL	ICAL	N/A	
Cal 1	Y	109Ag	0.47	1	100.2	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	111Cd	0.36	1	100.2	3/28/2014	13:17	ICAL	ICAL ICAL	N/A N/A	
Cal 1	Ŷ	114Cd	0.40	1	100.2	3/28/2014	13:17			N/A	
Call	Y	12050	4.99	' 1	98.5	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Ŷ	121Sb	1.08	1	98.5	3/28/2014	13:17	ICAL	ICAL.	N/A	
Cal 1	Y	123Sb	1.04	1	98.5	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	135Ba	1.81	1	98.5	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Y	137Ba	2.03	1	98.5	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 1	Ŷ	20311	0.19	1	100.5	3/28/2014	13:17			N/A	
Call 1	Y Y	208Ph	0.50	1	100.5	3/28/2014	13:17	ICAL	ICAL	N/A	
Cal 2	Ý	9Be	5.13		100,1	3/28/2014	13:22	ICAL	ICAL	N/A	nn an an an an an an an an an an an an a
Cal-2	Ŷ	27AI	504.70	1	100.1	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	47Ti	51.07	1	100.1	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	48Ti	50.21	1	100.1	3/28/2014	13:22	ICAL	ICAL	N/A N/A	
Cal 2	Y	57V 520-	19.72	1	100.1	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	۲ ۲	55Mn	20.01	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Ŷ	59Co	9.95	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	60Ni	19.86	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	62Ni	19.85	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	63Cu	10.08	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	100

.

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
Cal 2	Y	65Cu	10.04	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	66Zn	51.00	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	68Zn	49.83	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	75As	10.10	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	78Se	20.47	1	102.6	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Ŷ	82Se	20,48	1	102.6	3/28/2014	13:22	ICAL.	ICAL	N/A	
Cal 2	Ŷ	8651	20.23	1 -	102.6	3/20/2014	13:22	ICAL		N/A N/A	
	r V	07540	18.00	1	102.0	3/20/2014	13:22		ICAL	N/A N/A	
Cal 2	Ý	98%/0	20.05	1	99.9	3/28/2014	13.22	ICAL	ICAL	N/A	
Cal 2	Ý	107Ag	5 22	1	99.9	3/28/2014	13:22	ICAL	ICAL	N/A	
Gal 2	Ý	109Aa	5,16	1	99.9	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	111Cd	3.92	1	99.9	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	114Cd	4.22	1	99.9	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	118Sn	50.52	1	99.5	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	120Sn	50.47	1	99.5	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Y	121Sb	9.97	1	99.5	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Ŷ	123Sb	10.07	1	99.5	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Ŷ	135Ba	20.26	1	99.5	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 2	Ŷ	13/Ba	19,99	1	99.5	3/28/2014	13:22	ICAL	ICAL	N/A N/A	
	v	20311	2.02		100.5	3/28/2014	13.22			N/A	
Cal 2	y,	208Pb	4.96	1	100.5	3/28/2014	13:22	ICAL	ICAL	N/A	
Cal 3	Ý	98e	25 12	1	101.2	3/28/2014	13:27	ICAL	ICAL	N/A	979 800000000000000000000000000000000000
Cal 3	Ŷ	27AI	2489.00	1	101.2	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ŷ	47Ti	249.20	1	101.2	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	48Ti	251.60	1	101.2	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	51V	101.90	1	101.2	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	52Cr	50.72	1	101,2	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	55Mn	100.80	1	103,6	3/28/2014	13:27	ICAL	ICAL.	N/A	
Cal 3	Y	59Co	50.68	1	103.6	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ŷ	60Ni	100.10	1	103.6	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ý	62NI	101.20	1	103.0	3/28/2014	13:27			N/A N/A	
Cal 3	v	65CH	50.33	i i	103.0	3/28/2014	13:27		ICAL	N/A	
Cal 3	ÿ	667n	255.00	1	103.6	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ý	68Zn	253.10	1	103.6	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ŷ	75As	50.24	1	103.6	3/28/2014	13:27	ICAL	ICAL.	N/A	
Cal 3	Y	78Se	100.90	1	103.6	3/28/2014	13:27	ICAL	IĊAL	N/A	
Cal 3	Y	82Se	100.20	1	103.6	3/28/2014	13:27	ICAL.	ICAL	N/A	
Cal 3	Y	86Sr	100.10	1	103.6	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	88Sr	100.00	1	103.6	3/28/2014	13:27	ICAL	ICAL.	N/A	
Cal 3	Y	97Mo	101.80	1	102.4	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	98Mo	100.00	1	102.4	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	ĭ	307Ag	26.06	1	102.4	3/28/2014	13.27			N/A N/A	
Call3	Ý	103Ag	20.35	1	102.4	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ŷ	114Cd	20.70	1	102.4	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ŷ	118Sn	253.50	1	100.7	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	120Sn	252.00	1	100.7	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	121Sb	50.29	1	100.7	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	123Sb	50.02	1	100.7	3/28/2014	13:27	ICAL	ICAL.	N/A	
Cal 3	Y	135Ba	103.10	1	100.7	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Y	137Ba	101.20	1	100.7	3/28/2014	13:27	ICAL	ICAL	N/A	
Cal 3	Ŷ	20311	10.14	1	101.6	3/28/2014	13:27	ICAL	ICAL	N/A	
Call3	v	20311	25.18	1	101.6	3/28/2014	13.27	ICAL		N/A	
Cal 4		9Ra	92.66	1	95.8	3/28/2014	13:32	ICAL	ICAL	N/A	and an all tables
Cal 4	Ŷ	27AI	10030.00	1	95.8	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Ŷ	47Ti	1001.00	1	95.8	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	γ	48Ti	1000.00	1	95.8	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	51V	396.70	1	95.8	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	52Cr	199.70	1	95.8	3/28/2014	13:32	ICAL.	ICAL.	N/A	
Cal 4	Y	55Mn	395.10	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cai 4	Y	59Co	199.90	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	60Ni	388.60	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	ř	62Ni	399.70	1	96.2	3/26/2014	10:02		ICAL	N/A N/A	
Cal 4	ī V	0300 6500	197.00	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Ý	667n	989 30	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Ý	68Zn	977.00	1	98.2	3/28/2014	13;32	ICAL	ICAL	N/A	
Cal 4	Ý	75As	198.30	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	78Se	396.90	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	82Se	395.50	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	86Sr	399.30	1	98.2	3/28/2014	13;32	ICAL	ICAL	N/A	
Cal 4	Y	88Sr	392.80	1	98.2	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Ŷ	97Mo	395.30	1	101	3/28/2014	13:32	ICAL	ICAL	N/A	
	Ŷ	301/10 1074-	391.50	1.	101	3/20/2014	13:32	ICAL	ICAL	N/A	
Udi 4	1	ion Ag	00.2U		101	0/20/2014	10.02	10AL	NUME.	1975	100

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
Cal 4	Y	109Ag	98.72	1	101	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	111Cd	77.86	1	101	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	114Cd	79.93	1	101	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	٠Y	118Sn	986.20	1	98.5	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	120Sn	974.10	1	98.5	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	121Sb	195,90	1	98.5	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	123Sb	196.70	1	98.5	3/28/2014	13:32	ICAL	ICAL	N/A	
	T V	137Ba	394.20	1	96.0	3/28/2014	13:32		ICAL	N/A	
Cal 4	Ý	203TI	39.65	1	98.6	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Ý	205TI	39.80	1	98.6	3/28/2014	13:32	ICAL	ICAL	N/A	
Cal 4	Y	208Pb	96.95	1	98.6	3/28/2014	13:32	ICAL.	ICAL	N/A	
ICV	Y	9Be	18.70	1	98.4	3/28/2014	13:37	ICV	ICV	N/A	an yana mana kata kata kata kata kata kata kata k
iCV	Y	27AI	508.70	1	98.4	3/28/2014	13:37	ICV	ICV	N/A	
ICV	· Y	47Ti	249.70	1	98.4	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	48Ti	248.30	1	98.4	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ŷ	51V	98.26	1	98.4	3/28/2014	13:37	ICV		N/A	
	r	3201 55Mn	49.72	1	90.4 100 Q	3/28/2014	13-37	ICV	ICV	N/A	
ICV	Ý	59Co	49.56	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ý	60Ni	49,49	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	62Ni	50.03	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	63Cu	50.12	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	65Cu	49.72	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	66Zn	101.50	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	68Zn	99.70	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV ICV	Ŷ	7985	50.48	1	100.9	3/28/2014	13:37			N/A N/A	
	Ÿ	825e	50.41	1	100.9	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ý	86Sr	50.49	1	100.9	3/28/2014	13:37	ICV ·	icv	N/A	
ICV	Ŷ	88Sr	49.16	1	100.9	3/28/2014	13:37	ICV	icv	N/A	
ICV	. Y	97Mo	51.07	1	99.2	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	98Mo	50.94	1	99.2	3/28/2014	13:37	ICV	íCV	N/A	
ICV	Y	107Ag	51,14	1	99.2	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	109Ag	50.99	1	99.2	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ŷ	111Cd	24.83	1	99.2	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ŷ	114Cd	25,35	1	99.2	3/28/2014	13:37			N/A N/A	
	Ŷ	12056	205.20	1	97.7	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ý	121Sb	49.68	1	97.7	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Ŷ	123Sb	50.36	i	97.7	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	135Ba	50.60	1	97.7	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	137Ba	50.47	1	97.7	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	203TI	48.23	1	97.8	3/28/2014	13:37	ICV	ICV	N/A	
ICV	Y	205TI	48.69	1	97.8	3/28/2014	13:37	ICV	ICV	N/A	· · · ·
ICV	Y	208Pb	48.32		97.8	3/28/2014	13:37			N/A	
ICB	Y	986 27 A I	0.03	1	100.8	3/28/2014	13:42	CCB	CCB	N/A N/A	
ICB	r V	27Ai 47Ti	-0.08	1	100.8	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ŷ	48Ti	0.03	1	100.8	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ŷ	51V	0.42	1	100.8	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	52Cr	-0.10	1	100.8	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	55Mn	0.00	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	59Co	0.00	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	60Ni	0.00	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ŷ	62Ni	-0.42	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ND ICB	ř V	65Cu	-0.02 "0.03	1 1	100.4	3/28/2014	13:42	CCB	008	N/A	
ICB	Ŷ	667n	0,00	, 1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ý	68Zn	0.03	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ý	75As	-0.20	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Υ	78Se	-0.19	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	82Se	0.31	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB .	Y	86Sr	0.02	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	88Sr	0.00	1	100.4	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	97Mo	0.37	1	99.6	3/28/2014	13:42	CCB	CCB	N/A	
108	Ý	¥8₩0 1070~	0.35	1 5	98.6 98.6	3/28/2014	13:42	CCB	ссв ССв	N/A N/A	
ICB	r V	101A9 109An	-0.01	, 1	33.0 99 R	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ŷ	i1iCd	0.00	ţ	99.6	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Ŷ	114Cd	0.01	1	99.6	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	118Sn	1,92	1	97.6	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	120Sn	1.79	1	97.6	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	121Sb	0.51	1	97.6	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	123Sb	0.56	1	97.6	3/28/2014	13:42	CCB	CCB	N/A	
ICB	Y	13588	0.02	1	97.6	3/28/2014	13:42	CCB	CCB	(N/A N/A	
ICB	ĭ V	137158 20311	-0.01	1	97.0 97	3/28/2014	13.42	CCB	CCB	N/A	
ICB	Ŷ	205TI	0.00	1	97	3/28/2014	13:42	CCB	CCB	N/A	

430

Page 4 of 15

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
ICB	Y	208Pb	0.00	1	97	3/28/2014	13:42	ССВ	ССВ	N/A	
MRL	Y	9Be	0.50	1	101.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	27AI	47.97	1	101.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	47Ti	5.36	1	101.7	3/28/2014	13:47	MRL	MRL.	N/A	
MRL	Y	48Ti	5.00	1	101.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Ŷ	51V	2.24	1	101.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL MBI	ř V	520r	2.04	1	101.7	3/28/2014	13:47	MRL	MRL	N/A	
MRI	Ý	59Co	1.02	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Ý	60Ni	1,98	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	62Ni	1.96	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	63Cu	1.01	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL.	Y	65Cu	0.97	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	66Zn	5.28	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL.	Ŷ	68ZN	5.20	1	102.9	3/28/2014	13:47	MRL	MRI	N/A.	
MRL	Y	78Se	1.88	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL.	Ŷ	82Se	2.27	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL.	Y	86Sr	2.02	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	88Sr	1.98	1	102.9	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	97Mo	1.96	1	100.2	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	98Mo	2.04	1	100.2	3/28/2014	13:47	MRL	MRL	N/A	
MRL MRL	Ŷ	10/Ag	0.51	1	100.2	3/28/2014	13:47	MRL	MPI	N/A N/A	
	Y.	111C/	0.33	י 1	100.2	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Ý	114Cd	0.44	1	100.2	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Ŷ	118Sn	5.79	1	98.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL.	Y	120Sn	5.91	1	98.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	121Sb	1.23	1	98.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Y	123Sb	1.22	1	98.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL.	Y	135Ba	2.22	1	98.7	3/28/2014	13:47	MRL	MRL	N/A	
MRL NO	Y	13/88	2.02	1	98.7	3/26/2014	13:47	WIRKL MCP1	MRL	N/A N/A	
MRL	Ý	20511	0.20	1	98.5	3/28/2014	13:47	MRL	MRL	N/A	
MRL	Ý	208Pb	0.52	1	98.5	3/28/2014	13:47	MRL	MRL	N/A	
ICSA	Y	9Be	0.03	1	92	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	27AI	52520.00	1	92	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	47Ti	1087.00	1	92	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	48Ti	1078.00	1	92	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	51V	0.17	1	92	3/28/2014	13:52	ICS-A	ICS-A	N/A N/A	
ICSA	Ý	55Mn	0.32	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	2
ICSA	Ý	59Co	0.07	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	60Ni	0.52	1	87,3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	62Ni	4,31	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	ICS-A FH,
ICSA	Y	63Cu	0.80	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	65Cu	0.63	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	66Zn	1.70	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A N/A	
ICSA	Ý	75As	0.51	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	78Se	0.96	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	82Se	-0,51	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	86Sr	0.33	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	88Sr	0.39	1	87.3	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	97Mo	1051.00	1	91.4	3/28/2014	13:52	ICS-A	ICS-A	N/A N/A	
iuda Iosa	Ŷ	90M0	1047.00	1	91.4 01 /	3/28/2014	13:52	10-5-A 10:5-A	103-A	N/A	
ICSA	Ý	109Aa	0.02	1	91.4	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ý	111Cd	0.18	1	91.4	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ý	114Cd	0.27	1	91.4	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	118Sn	0.54	1	91.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	120Sn	0.54	1	91.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	121Sb	0.13	1	91.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	
IUSA ICSA	Y V	123Sb	0.12	1	91./ Q4.7	3/28/2014	13:52	ICS-A	103-A 108-A	N/A	
ICSA	Ý	130Dd 137Ra	0.08	1	91.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	203TI	-0.01	1	92.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Ŷ	205TI	-0.02	1	92.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	
ICSA	Y	208Pb	0.10	1	92.7	3/28/2014	13:52	ICS-A	ICS-A	N/A	75-77-0 77-97-78-794-794-78-77-97-84-994-994-994-994-994-994-994-994-994-
ICSAB	Y	9Be	9.24	1	93.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	27Ai	53680.00	1	93.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	47Ti	1210.00	1	93.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A N/A	
	Ŷ	40 1 54V	41 15	1	93.5 93.5	3/20/2074 3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ý	52Cr	21.68	1	93.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ý	55Mn	40.75	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	59Co	20.49	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	60Ni	39.15	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	62Ni	44.66	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnaiTime	Samp Type	LIMS ID	Method	Comments
ICSAB	Y	63Cu	20.01	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	65Cu	20.16	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	66Zn	98.77	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	68Zn	98,34	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
CSAB	Ŷ	75AS	20.70	1	92.4	3/28/2014	13:57		ICS-AB	N/A N/A	
ICSAB	Y V	8250	39.35	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAD	Ý	86Sr	44 36	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	88Sr	43.59	1	92.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	97Mo	1118.00	1	93.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	98Mo	1099.00	1	93.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	107Ag	10.01	1	93.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	109Ag	9.82	1	93.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	111Cd	7.81	1	93.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	114Cd	8,13	1	93.4	3/28/2014	13:57	ICS-AB	ICS-AB	N/A N/A	
ICSA8	Ŷ	12055	105.00	1	93.0 93.6	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	1203n	20.64	1	93.6	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ŷ	123Sb	20.89	1	93.6	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Ý	135Ba	43.04	1	93.6	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	137Ba	42.54	1	93.6	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	203TI	3.99	1	95.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	205TI	3.97	1	95.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
ICSAB	Y	208Pb	9.91	1	95.5	3/28/2014	13:57	ICS-AB	ICS-AB	N/A	
CCV-1	Y	9Be	24.11	1	106.5	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	27AI	2528.00	1	106.5	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	47 11	252,30	3	106.5	3/28/2014	14:02		CCV	N/A	
CCV-1	Ý	4811	257.30	1	106.5	3/20/2014	14.02	CCV -	CCV	Ν/A Ν/Δ	
CCV-1	ş V	52Cr	50 60	1	106.5	3/28/2014	14:02	CCV	CCV	N/A	
CCV+1	Ý	55Mn	101.20	1	109.3	3/28/2014	14:02	CCV	ccv	N/A	
CCV-1	Ŷ	59Co	51,28	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	60Ni	100,20	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	N	62Ni	104.30	1	109.3	3/28/2014	14;02	CCV	CCV	N/A	ICS-A FH,
CCV-1	Y	63Cu	51.03	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	65Cu	50.75	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	66Zn	258.10	1	109.3	3/28/2014	14:02	CCV		N/A	
CCV-1	Ŷ	68 <u>7</u> 0	251.40	7	109.3	3/28/2014	14:02	CCV	CCV	N/A N/A	
	v	7950	101 30	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ý	82Se	101.00	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ý	86Sr	102.30	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	88Sr	100.20	1	109.3	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	97Mo	104.40	1	105.6	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	98Mo	103.60	1	105.6	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	107Ag	25.79	1	105.6	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	109Ag	25,67	1	105.6	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	111Cd	19.91	1	105.6	3/28/2014	14:02	CCV	CCV	N/A N/A	
CCV-1	ř	11400 1189n	21.05	1	105.0	3/26/20 14	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	120Sn	254 30	1	105	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	121Sb	50.77	1	105	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	123Sb	50.54	1	105	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	135Ba	104.50	1	105	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	137Ba	102.50	1	105	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	203TI	10.03	1	105.6	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Y	205TI	10,30	1	105.6	3/28/2014	14:02	CCV	CCV	N/A	
CCV-1	Ŷ	208Pb	24.83	1	105.5	3/20/2014	14:02	007	<u> </u>	N/A N/A	1001/17/11/00111-0-11/1/1/1/11/11/11/11/11/11/11/11/11/11/
UCB-1	Ŷ	3150 27 A 1	0.01	7	109.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ϋ́ V	∠1 AI 1711	-0.02	1	109.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ý	4811i	0.16	1	109.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ý	51V	-0.01	1	109.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	52Cr	-0.17	1	109.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	55Mn	0.01	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	59Co	0.00	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	60Ni	0.01	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	N	62Ni	9.18	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	ics-a FH,
CCB-1	Y	63Cu	0.01	1	107.6	3/28/2014	14:08	CCB	CCB	N/A N/A	
CCB-1	Y U	65Cu	-0.03	1	107.6	3/28/2014	14:08			13/25 51/6	
	í v	00∠n 6975	-0.02	1	107.0	3/28/2014	14.00 14:09	CCB	CCB	N/A	
CCB-1	v	75Ac	-0.32	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ý	78Se	-0.12	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ý	82Se	0.17	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	86Sr	0.00	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	88Sr	0.00	1	107.6	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	97Mo	0,75	1	107.5	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	98Mo	0.65	1	107.5	3/28/2014	14:08	CCB	CCB	N/A	101

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
CCB-1	Y	107Ag	-0.04	1	107.5	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	109Ag	-0.01	1	107.5	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	111Cd	-0.01	1	107.5	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	114Cd	0.01	1	107.5	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ŷ	118Sn	1.11	1	104	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ŷ	120Sn	1.07	1	104	3/28/2014	14:08	CCB	000	N/A N/A	
CC8-1	v	12100	0.18	1	104	3/28/2014	14:08	CCB	CCB	N/A	
008-1	v	1358a	0.21	1	104	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ý	137Ba	-0.01	1	104	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Ý	203TI	0.01	1	104.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	205TI	0.01	1	104.2	3/28/2014	14:08	CCB	CCB	N/A	
CCB-1	Y	208Pb	0.00	1	104.2	3/28/2014	14:08	CCB	CCB	N/A	x1 лата x1 лата и и и и и и и и и и и и и и и и и и
MB-02258-02	Ŷ	9Be	0.01	1	113.1	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	27AI	2.04	1	113.1	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	4711	0.05	1	113.1	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	N	4811 641	0.13	ן א	113.1	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	, ,	52Cr	-0.15	1	113.1	3/28/2014	14:13	MBLK	JO1402258-02	200.8 D	
MB-02258-02	Ý	55Mn	0.38	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Ý	59Co	0.00	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	60Ni	0.15	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	N	62Ni	-0.02	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200,8 D	ICS-A FH,
MB-02258-02	N	63Cu	0.00	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	65Cu	-0.01	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	66Zn	3.19	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	N	68Zn	2.94	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 0	
MB-02258-02	Ý	/5AS	-0.08	1	110.7	3/20/2014	14:13		JQ1402200-02	200.8 D 200.8 D	
MB-02258-02	T N	1036	-0.03	1	110.7	3/28/2014	14.13	MBLK	JO1402258-02	- 200.8 D	
MB-02258-02 MR-02258-02	Y	86Sr	0.15	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Ň	88Sr	0.12	1	110.7	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	N	97Mo	0.28	1	109.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	98Mo	0,31	1	109.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	N	107Ag	-0.03	1	109.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	109Ag	-0.03	1	109.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	N	111Cd	-0.01	1	109.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	114Cd	0.01	1	109.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Ŷ	118Sn	0.47	1	107.3	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	NI NI	12050 42466	0.41	1	107.3	3/26/2014	14.13	MRIK	101402258-02	200.0 D	
MB-02206-02 MB-02258-02	Ŷ	123Sh	0.09	1	107.3	3/28/2014	14:13	MBLK	JQ1402258-02	200,8 D	
MB-02258-02	N	135Ba	0.08	4	107.3	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Ŷ	137Ba	0.02	1	107.3	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Ν	203TI	-0.01	1	106.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	205TI	-0.02	1	106.2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
MB-02258-02	Y	208Pb	0.00	1	106,2	3/28/2014	14:13	MBLK	JQ1402258-02	200.8 D	
LCS-02258-01	Ŷ	9Be	24.22	1	110.4	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ŷ	27AI 47Ti	2594.00	7	110.4	3/28/2014	14,30	LCS	JQ1402258-01	200.8 0	
LCS-02258-01	T N	4711	259.00	1	110.4	3/28/2014	14.10	LCS	JO1402258-01	200.8 D	
105-02258-01	Y	51V	101 70	1	110.4	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ŷ	52Cr	52.27	1	110.4	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ŷ	55Mn	106.90	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	59Co	52.43	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	60Ni	102.70	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ν	62Ni	104.60	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	ICS-A FH,
LCS-02258-01	N	63Cu	52.19	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	65CU	51.40 250 50	1	111.2	3/28/2014	14:18	LCS	JO1402206-01	200.6 D 200.8 D	
LCS-02258-01	T N	687n	259.50	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ŷ	75As	51.16	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ŷ	78Se	100.80	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	N	82Se	102.30	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	86Sr	103.10	1	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ν	88Sr	102.10	ť	111.2	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	٠
LCS-02258-01	N	97Mo	106.90	1	108.1	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	98Mo	104.90	1	108.1	3/28/2014	14:18	LCS	JQ1402258-01	200,8 D 200 e D	
LCS-02258-01	N	107Ag	26,41	7	108.1 108.1	3/20/2014 3/28/2014	14:30 17/48	LCS	JQ 1402238-01 IO1402258-01	200.0 D	
105-02258-01	Y N	111CA	20.34	1	109.1	3/28/2014	14.10	103	JO1402258-01	200.0 D	
LCS-02200-01 I CS-02258-01	N Y	11400	20.00	1	108.1	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ý	118Sn	259.70	1	105.8	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	N	120Sn	258.60	1	105.8	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ν	121Sb	51.72	1	105.8	3/28/2014	14:18	LCS	JQ1402258-01	200,8 D	
LCS-02258-01	Y	123Sb	52.31	1	105.8	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Ν	135Ba	106.90	1	105.8	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	137Ba	104.70	1	105.8	3/28/2014	14:18	LCS	JU1402258-01	200.8 D	
LUS-02258-01	N	20311	10.20	1	307.8	3/20/2014	14:18	103	JQ 1402200-U1	200.8 D	127

·

. "

.

433

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnaiTime	Samp Type	LIMS ID	Method	Comments
LCS-02258-01	Y	205TI	10.20	1	107.8	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	
LCS-02258-01	Y	208Pb	25.66	1	107.8	3/28/2014	14:18	LCS	JQ1402258-01	200.8 D	ระนากการนี้ไปที่สุริไปที่การแหลงการแหลง และครามหลางการแหลงการและและและและและและและและและและและและและแ
J1402025-007	Ŷ	9Be	0.02	1	112.5	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Ý	27AI 47Ti	0.75	1	112.5	3/26/2014	14.23	SAMP	.11402025-007	6020 D	
J1402025-007	N	48Ti	31.77	1	112.5	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	51V	0.29	1	112.5	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	52Cr	0.55	1	112.5	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	55Mn	11,18	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	59Co	0.11	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	60NI CONI	32.12	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D 6020 D	ICS-A FH
J1402025-007	N.	63Cu	0.62	1	110.1	3/28/2014	14.23	SAMP	.1402025-007	6020 D	
J1402025-007	Y	65Cu	0.61	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Ŷ	66Zn	5.95	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N	68Zn	6.88	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	75As	0.62	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	78Se	0.16	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N V	6230 865r	253.70	+ 4	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Ň	88Sr	252.40	1	110.1	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N	97Mo	1,96	1	106.8	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	98Mo	1.82	1	106.8	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N	107Ag	-0.03	1	106.8	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	109Ag	-0.03	1	106.8	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N	11100	0.66	1	106.8	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
1402025-007	Ý	118Sn	1.27	1	105.4	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N	120Sn	1.31	1	105.4	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N	121Sb	0.37	1	105.4	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Y	123Sb	0.38	1	105.4	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Ν	135Ba	28.93	1	105.4	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	Ŷ	137Ba	29.25	1	105.4	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007	N V	20311	0.04	1	106	3/28/2014	14:23	SAMP	.11402025-007	6020 D	
J1402025-007	Ý	208Pb	0.02	1	106	3/28/2014	14:23	SAMP	J1402025-007	6020 D	
J1402025-007S	Ý	9Be	23.26	1	107.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	27AI	2460.00	1	107.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Ŷ	47Ti	255.10	1	107.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	48Ti	287.20	1	107.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	51V	52.40	1	107.2	3/28/2014	14.28	MS	JQ1402258-03	6020 D 6020 D	
1402025-0075	Ý	55Mn	113.40	, 1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Ý	59Co	51,16	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	60Ni	132.40	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	62Ni	136.00	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	ICS-A FH,
J1402025-007S	N	63Cu	50.84	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	65Cu	50,88) ₁	106.8	3/28/2014	14:28	1410	JQ1402258-03	6020 D 6020 D	
J1402025-0075	T N	68Zn	252.40	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Ý	75As	50.81	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	γ	78Se	92.58	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	82Se	93.78	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	86Sr	357.40	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	885r	350.10	1	106.8	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	971VIO 98Mo	105.00	1	105.2	3/28/2014	14.20	MS	JQ1402258-03	6020 D	
J1402025-007S	N	107Aa	25.38	1	105.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	109Ag	25.23	1	105.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	111Cd	20.51	1	105.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	114Cd	20.57	1	105.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Ŷ	118Sn	256.70	1	103.2	3/28/2014	14:28	MS	JQ1402208-03	6020 D 6020 D	
J1402025-007S	IN N	12000 1215h	257.10	; 1	103.2	3/28/2014	14.20	MS	JQ1402258-03	6020 D	
J1402025-007S	Ŷ	123Sb	51.58	1	103.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	1358a	132.20	1	103.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	137Ba	130,10	1	103.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	N	203TI	9,90	1	105.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D	
J1402025-007S	Y	20511	10.08	1	105.2	3/28/2014	14:28	MS	JQ1402258-03	6020 D 6020 D	
JT402025-0075	Y V	ap-	44.00 02 AF	ן היינקיייייייייייייייייייייייייייייייייי	100.2	3/28/2014	14.20	ONI CPM	101402258-04	6020 D	
J1402025-00750	ř V	27AI	2516.00	1	106	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Ŷ	4711	254.70	1	106	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	N	48Ti	288.70	1	106	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	51V	100,80	1	106	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	52Cr	52.90	1	106	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	55Mn	115,20	1	104.2	3/28/2014	14:33	MOD	JQ1402256-04	6020 D 6020 D	
J1402020-0073D	r V	0000 60Mi	134.40	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
	•	00141	. and the	•	1.0 1.04	-,					434

VG PQ ExCell ICP-MS

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402025-007SD	N	62Ni	137.60	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	ICS-A FH,
J1402025-007SD	Ν	63Cu	51.57	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	65Cu	51.46	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	66Zn	257.20	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	N	68Zn	255.40	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	75As	51.43	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	Y	78Se	94.38	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	N	82Se	94.33	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
11402025-007SD	Y	86Sr	365.40	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
11402025-007SD	Ň	88Sr	357.40	1	104.2	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
11402025-007SD	N	97Mo	108.30	1	104.1	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
11402025-007SD	Y	98Mo	105.60	1	104.1	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
1402025-007SD	N	107Ag	25.71	1	104.1	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
11402025-00750	v i	-409Δn	25.56	1	104 1	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-0075D	N	1111Cd	20.91	1	104.1	3/28/2014	14:33	MSD	JQ1402258-04	6020 D	
J1402025-0078D	~	44404	20.80	1	104.1	3/28/2014	14:33	MSD	101402258-04	6020 D	
J1402023-0073D	v	14950	260.70	4	102.1	3/28/2014	14:33	MSD	.ľO1402258-04	6020 D	
31402025-00730	: N3	12050	200.70	,	102.1	3/28/2014	14:33	MSD	101402258-04	6020 D	
J1402020-0073D	14	12008	52 11	1	102.1	3/28/2014	14:33	MSD	JO1402258-04	6020 D	
J1402025-0075D	N V	12100	52.11	1	102.1	3/28/2014	14:33	MSD	IO1402258-04	6020 D	
J1402025-0075D	1	12500	125.60	1	102.1	3/28/2014	14:33	MSD	101402258-04	5020 D	
J1402025-007SD		10000	133.00	1	102.1	3/20/20 (4	14-33	MSD	101402258-04	6020 D	
J1402023-00730	7	20271	104.00	4	102.1	3/28/2014	14:33	MSD	IO1402258-04	6020 0	
J1402025-007SD	N N	20311	10.00	4	103.5	3/20/2014	14.00	MSD	101402258-04	6020 D	
J1402025-0075D	Y	20011	10,15	+	103.5	3/28/2014	14.33	MSD	JQ1402258-04	6020 D	
J1402025-007SD	¥	200PD	24,84	;	0.001 407 4	3/20/2014	14,00	000 00	Sorial Ollution	6020 D	
J1402025-007L	Y	98e	0.01	5	107.1	3/28/2014	14:38	5D	Serial Dilution	0020 U	
J1402025-007L	Y	27AI	6.13	5	107.1	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	47Ti	0.24	5	107.1	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	N	48Ti	6.47	5	107.1	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	51V	0.23	5	107.1	3/28/2014	14:38	so	Serial Dilution	6020 D	
J1402025-007L	Y	52Cr	-0.29	5	107.1	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	55Mn	2.45	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	59Co	0.03	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	60Ni	6.60	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	N	62Ni	6,11	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	ICS-A FH,
J1402025-007L	N	63Cu	0.34	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	65Cu	0.32	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	66Zn	2.64	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	N	68Zn	2.93	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	75As	0.06	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	78Se	0.14	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	N	82Se	0.20	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	86Sr	50.93	.5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	N	88Sr	50,96	5	105.6	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	N	97Mo	0.71	5	102.9	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Y	98Mo	0.68	5	102.9	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Ν	107Aq	-0.04	5	102.9	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402025-007L	Ŷ	109Aa	-0.03	5	102.9	3/28/2014	14:38	SD	Serial Dilution	6020 D	
11402025-0071	N	111Cd	0.12	5	102.9	3/28/2014	14:38	SD	Serial Dilution	6020 D	
11402025-0071	Ŷ	114Cd	0.15	5	102.9	3/28/2014	14:38	SD	Serial Dilution	6020 D	
11402025-0072	Ý	11850	1.30	5	102.5	3/28/2014	14:38	SD	Serial Dilution	6020 D	
11402025-0071	N	1205n	1 20	5	102.5	3/28/2014	14:38	SD	Serial Dilution	6020 D	
1442025-007	N	1215h	0.12	5	102.5	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402023-007L	v	12100 1225h	0.12	5	102.5	3/28/2014	14:38	SD	Serial Dilution	6020 D	
1402020-007E	I NI	1950~	5.06	5	102.5	3/28/2014	14-38	SD	Serial Dilution	6020 D	
3 1402020-007L	14 V	13724	5,50	5	102.0	3/28/2014	14.38	SD	Serial Dilution	6020 D	
21402020-007L	N	20271	0.00	5	104	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J1402020-007L	ini V	20311	0.03	۵ ۶	104	3/28/2014	14:38	sn	Serial Dilution	6020 D	
J1402020-007L	1 V	20311	0.00	5	104	3/28/2014	14:38	SD	Serial Dilution	6020 D	
J :402020-007L		20070	01.0%	لی محمد المحمد الم	107	3/20/2014	14.00	22	Poet Snike	6020 0	
J1402025-007A	Y V	926	∠4,00	1	100.7	3/20/2014	14.43	F3 56	F Oat Opike	6020 D	
J1402025-007A	Ý	27AI	2510.00	1	105.7	3/20/2014	14,43	r0 00	Post Spike	6020 D	
J1402025-007A	Y	4711	254.60	1	105.7	3/28/2014	14:43	73 55	Post Spike	6020 D	
J1402025-007A	N	48Ti	288.30	1	105.7	3/28/2014	14:43	r0	Post Spike	6020 D	
J1402025-007A	Y	51V	100.70	1 .	105.7	3/28/2014	14:43	25	Post Spike	6020 D	
J1402025-007A	Y	52Cr	52.04	1	105.7	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	55Mn	114.10	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	59Co	51,27	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 Đ	
J1402025-007A	Y	60Ni	131.00	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	62Ni	133.24	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	ics-a fh,
J1402025-007A	N	63Cu	50.92	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	65Cu	50.45	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	66Zn	255.10	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	68Zn	251.70	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	75As	50.66	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	78Se	97.40	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	82Se	98.31	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	86Sr	352.10	1	104.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	88Sr	345.60	1	104.8	3/28/2014	, 14:43	PS	Post Spike	6020 D	
J1402025-007A	N	97Mo	106.10	1	101.9	3/28/2014	14:43	PS	Post Spike	6020 D	6 (D) (T)
		_									435

Page 8 of 15
SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Type	LIMS ID	Method	Comments
.11402025-007A	Y	98Mo	105.40	1	101.9	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	107Ag	25.43	1	101.9	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	109Ag	25.37	1	101.9	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	111Cd	20.44	1	101.9	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Υ	114Cd	21.20	1	101.9	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	118Sn	257.00	1	100.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Ν	120Sn	259.00	1	100.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Ν	121Sb	51.10	1	100.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	Y	123Sb	51.04	1	100.8	3/28/2014	14:43	PS	Post Spike	6020 D	
J1402025-007A	N	135Ba	134.00	1	100.8	3/28/2014	14:43	28	Post Spike	6020 D	
J1402025-007A	Ŷ	137Ba	131.70	1	100.8	3/28/2014	14:43	PS	Post Spike	5020 D	
J1402025-007A	N	20311	10,31	1	102.7	3/28/2014	14:43	#3 DS	Post Spike	6020 D	
J1402025-007A	Ŷ	20511	10.30	1	102.7	3/26/2014	14.43	PS	Post Spike	6020 D	
J1402025-007A	Y	208PD	24.83	 	102.7	3/28/2014	14,43	CAMD	14402076-004	200.8.0	
J1402076-001	Ŷ	986	0.00	1	103.7	3/26/2014	14,40	SAMP	11402076-001	200.0 0	
J1402076-001	v v	27 Al 47 Ti	0.77	<i>।</i> १	103.7	3/28/2014	14:48	SAMP	.11402076-001	200.8 D	
J1402076-001	1 NI	49111 49111	20.03	4	103.7	3/28/2014	14-48	SAMP	.11402076-001	200.8 D	
11402076-001	V	40 TT	2 93	1	103.7	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
11402076-001	Ý	52Cr	-0.26	1	103.7	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
11402076-001	Ŷ	55Mn	0.67	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Ŷ	59Co	0.09	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Ŷ	60Ni	1.20	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Ν	62Ni	0,67	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	ICS-A FH,
J1402076-001	N	63Cu	0.55	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	65Cu	0.35	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	66Z.n	4.04	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	N	68Zn	4.71	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	75As	2.31	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	78Se	0.42	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	N	82Se	0.62	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	86Sr	223.50	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	N	88Sr	222.20	1	99.4	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	N	97M0	22.40	1	98.5	3/28/2014	14:48	SAMP	1402076-001	200.6 D	
J1402076-001	Y	98M0	22.11	1	98.5	3/28/2014	14:46	SAMP	11402076-001	200.8 D	
J1402076-001	N	107Ag	-0.05	4	90.0 09 K	3/20/2014	14.40	SAMP	11402076-001	200.8 D	
J1402076-001	Т 5.1	109AG	-0.04	1	96.5	3/28/2014	14:48	SAMP	.11402076-001	200.8 D	
J1402076-001	in V	114Ca	0.03	4	98.5	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
11402076-001	ý	118Sn	1 12	t	98.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
11402076-001	N	120Sn	1 14	1	98.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
1402076-001	N	121Sb	0.19	1	98.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
11402076-001	Ŷ	123Sb	0.20	1	98.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
11402076-001	N	135Ba	11.07	1	98.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Ŷ	137Ba	11.04	1	98.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	N	203Ti	-0.01	1	101.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	205Ti	-0.01	1	101.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-001	Y	208Pb	0.02	1	101.3	3/28/2014	14:48	SAMP	J1402076-001	200.8 D	
J1402076-002	Y	98e	0.01	1	103.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	27Al	3.44	1	103.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	47Ti	0.56	1	103.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Ν	48Ti	41.27	1	103.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	51V	0.33	1	103.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	52Cr	-0:40	1	103.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	55Mn	0.21	1	100.7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	59Co	0.07	1	100.7	3/28/2014	14:53	SAMP	J 1402070-002	200.6 U 200.8 D	
J1402076-002	Y	60Ni	U.67	1	100.7	3/20/2014	14:03	CAMP	11402070-002	200.0 D	ICS-A FH
J1402076-002	N	0ZINI 62CH	0.72	4	100.7	3/28/2014	(4.00 4/-52	SAMP	11402078-002	200.8 0	
J1402076-002	N V	6500	0.74	1 1	100.7	3/28/2014	14.00	SAMP	J1402076-002	200.8 D	
J1402076-002	r V	030U 667n	0.70	1	400.7	3/28/2014	14:53	SAMP	1402076-002	200.8 D	
J (402070-002	1 N	687n	5.75	1	100.7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
11402076-002	Ŷ	75As	0 44	1	100 7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
1402076-002	Ŷ	78Se	-0.18	1	100.7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
11402076-002	N	82Se	0.20	1	100.7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	86Sr	776.40	1	100.7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	N	88Sr	754.30	1	100.7	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	N	97Mo	2.86	1	98.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	98Mo	2.77	1	98.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	N	107Ag	-0.06	1	98.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	¥	109Ag	-0.05	1	98.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	N	111Cd	0.04	1	98,8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	114Cd	0.04	1	98.8	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	118Sn	0.45	1	100.9	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	N	120Sn	0.38	1	100.9	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	N	121Sb	0.05	1	100.9	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	123Sb	0.08	1	100.9	3/28/2014	14:53	SAMP	J1402076-002	200.8£0 200.8⊡	
J1402076-002	N	135Ba	26.34	1	100.9	3/28/2014	14:03	SAMP	31402070-002	∠000.ōD ງ∩ກຂກ	
J1402076-002	Y	137Ba	26.54	1	100.9	3/20/2014	14:03	SAN	31402070-002	200.0 0	AAC

Data File ID: 032814A

VG PQ ExCell ICP-MS

Method 200.8 / 6020

4

SAMPLE ID	RPT	Anal	Conc (ug/L)	DF	IS Rec (%)	AnaiDate	AnalTime	Samp Type	LIMS ID	Method	Comments
J1402076-002	N	203TI	-0.02	1	104.1	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	205TI	-0.02	1	104.1	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
J1402076-002	Y	208Pb	0.04	1	104.1	3/28/2014	14:53	SAMP	J1402076-002	200.8 D	
MB-02293-02 10x	Ŷ	9Be	0.01	10	106.5	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Ŷ	27AI	1.77	10	106.5	3/28/2014	14:58		JQ1402293-02	6020 S	
MB-02293-02 10X	I N	4811	0.12	10	106.5	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10X	Y	51V	-0.37	10	106.5	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Ŷ	52Cr	-0.02	10	106.5	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	55Mn	0.11	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	59Co	0.00	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	60Ni	0.05	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	N	62Ni	-0.72	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	ICS-A FH,
MB-02293-02 10x	N	63Cu	0.13	10	103.4	3/28/2014	14:58		JQ1402293-02	6020 S	
MB-02293-02 10x	Ý	66Zn	0.05	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Ň	68Zn	1.01	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	75As	0.62	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	78Se	0.14	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Ν	82Se	0.25	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	86Sr	0.07	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	N	88Sr	0.04	10	103.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 5	
MB-02293-02 10X	N V	97140	0.15	10	101.9	3/28/2014	14.00	MBLK	.101402293-02	6020 S	
MB-02293-02 10x	Ň	107Ag	0.01	10	101.9	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	109Ag	0.04	10	101.9	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Ν	111Cd	0.01	10	101.9	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	114Cd	0.01	10	101.9	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	118Sn	3.53	10	100.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	N	120Sn	3.47	10	100.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	N	121Sb	0.07	10	100.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	T N	12580	0.07	10	100.4	3/28/2014	14:58	MRIK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	137Ba	0.07	10	100.4	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Ň	203TI	-0.02	10	104	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	205TI	-0.02	10	104	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
MB-02293-02 10x	Y	208Pb	0.02	10	104	3/28/2014	14:58	MBLK	JQ1402293-02	6020 S	
CCV-2	Y	9Be	25.54	1	102.9	3/28/2014	15:03	CCV	ĆĊV	N/A	
CCV-2	Ŷ	27A	2547.00	1	102.9	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ŷ	47 11 49 Ti	255,00	1	102.9	3/20/2014	15:03	CCV	COV	N/A	
CCV-2	Y	40 H	101 30	1	102.9	3/28/2014	15:03	ccv	ccv	N/A	
CCV-2	Ŷ	52Cr	50.82	1	102.9	3/28/2014	15:03	CCV	ccv	N/A	
CCV-2	Y	55Mn	101.60	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	59Co	50,69	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	60Ni	98.76	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	N	62Ni	102,70	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	US-A FR,
CCV-2	ř V	63Cu	50.61	1	100.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ý	667n	257.90	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ý	68Zn	255.30	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	75As	49.96	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ŷ	78Se	101.20	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	82Se	100.90	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	86Sr	101.40	1	105.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ŷ	885F	99,08	1	100.4	3/20/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	98Mo	100.70	1	102.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ý	107Ag	25.50	1	102.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	109Ag	25.66	1	102.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ý	111Cd	20.11	1	102.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	114Cd	20.80	1	102.4	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	118Sn	253.60	1	101.5	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Ŷ	120Sh	254,10	1	101.5	3/20/2014	15:03	CCV	CCV	N/A	
CCV-2	v	123Sb	51.46	1	101.5	3/28/2014	15:03	ccv	ccv	N/A	
CCV-2	Ý	135Ba	105.10	1	101.5	3/28/2014	15;03	CCV	CCV	N/A	
CCV-2	Y	137Ba	102.60	1	101.5	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	203TI	10.42	1	104.3	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y	205T)	10,30	1	104.3	3/28/2014	15:03	CCV	CCV	N/A	
CCV-2	Y 	208Pb	25.26	1	104.3	3/28/2014	15:03	CCV		N/A	
CCB-2	Ŷ	98e	U,00	1	101.1	3/28/2014	15:08	CCB	CCB	N/A N/A	
008-2 CCB-2	Ý	21 AI 4733	0.10	1 4	101,1	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ý	48Ti	0.11	, 1	101.1	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ŷ	51V	0.26	1	101.1	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	52Cr	-0.24	1	101.1	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	55Mn	0.01	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	59Co	0.00	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	10.00

SAMPLE ID	RPT	Anai	Conc (ug/L)	DF	IS Rec (%)	AnalDate	AnalTime	Samp Туре	LIMS ID	Method	Comments
CCB-2	Y	60Ni	-0.01	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CC8-2	Ν	62Ni	-0.66	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	ICS-A FH,
CCB-2	Y	63Cu	-0.03	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	65Cu	-0.03	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ŷ	66Zn	0.05	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	68Zn	0.03	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ý	7980	0.23	1	101.4	3/28/2014	15:08	CCB	CCB	N/A N/A	
CCB-2	Ý	82Se	0.09	1	101.4	3/28/2014	15:08	CC8	CCB	N/A	
CCB-2	Ŷ	86Sr	0.00	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ŷ	88Sr	0.02	1	101.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ŷ	97Mo	0.32	1	98.8	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	98Mo	0.35	1	98.8	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	107Ag	-0.06	1	98.8	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	109Ag	-0.05	1	98.8	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	111Cd	0.00	1	98.8	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	114Cd	0.02	t	98.8	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	118Sn	1.12	1	98.3	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ŷ	120Sn	1.19	1	98.3	3/28/2014	15:08	CCB	CCB	N/A	· · · ·
CCB-2	r V	12150	0.07	1	96.3	3/20/2014	15:06	CCB		N/A N/A	
CCB-2	v	135Ba	0.04	1	98.3	3/28/2014	15:05	CCB	CCB	Ν/A Ν/Δ	
CCB-2	Ŷ	137Ba	0.00	1	98.3	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ý	203TI	0.02	1	100.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Ŷ	205TI	0.00	1	100.4	3/28/2014	15:08	CCB	CCB	N/A	
CCB-2	Y	208Pb	0.00	1	100.4	3/28/2014	15:08	CCB	ССВ	N/A	
LCS-02293-01 10x	.Y	9Be	19.41	10	103.2	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	alarin dela dalarin manana menyaranya nyanya nyana na ana ana ana ana ana
LCS-02293-01 10x	Y	27AI	530.90	10	103.2	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	47Ti	264.10	10	103.2	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	48Ti	266.00	10	103.2	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	51V	104.90	10	103.2	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	52Cr	54,28	10	103.2	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	55Mn	53.42	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Ŷ	59C0	53.10	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10X	Y N	CON	51.21	10	104.6	3/26/2014	10:13	LCS	101402293-01	6020 5	10 S-A EU
LCS-02293-01 10X	N	63Cu	52.01	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	acom rn,
LCS-02293-01 10x	Ý	65Cu	52.82	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 \$	
LCS-02293-01 10x	Ŷ	66Zn	98.66	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	68Zn	97.65	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	75As	49.44	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Ŷ	78Se	45,21	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	82Se	46.13	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	86Sr	51.95	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	88Sr	51.85	10	104.6	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	97Mo	54.18	10	100.7	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y N	- 98MO	53.03	10	100.7	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02283-01 10X	N V	107/49	52.80	10	100.7	3/28/2014	15.13	1.05	IO1402293-01	6020 S	
LCS-02293-01 10x	N	111Cd	25.11	10	100.7	3/28/2014	15:13	LCS	JO1402293-01	6020 5	
LCS-02293-01 10x	Ŷ	114Cd	25.20	10	100.7	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Ŷ	118Sn	217.40	10	100.4	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Ņ	120Sn	216.10	10	100.4	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Ν	121Sb	51.13	10	100.4	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	123Sb	51,55	10	100.4	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	135Ba	54.07	10	100.4	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	Y	137Ba	53.04	10	100.4	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10x	N	20311	51.62	10	102	3/28/2014	15:13	LCS	JQ1402293-01	6020 S	
LCS-02293-01 10X	Ŷ	20011	52.29	10	102	3/28/2014	10:13	LCS	JQ1402293-03	6020 S	
14400000 004 400	3	20050	01,02	40	102	3/20/20 14	10.10		14402093-01	6020 G	ztyktów takony od obszacy przez za starowy na starowania zakryzego na starowania tak zakrywania tak tak starow
1402003-001 10X	v	27A1	679.70	10	102.4	3/28/2014	15-18	SAMP	J1402083-001	6020 G	
11402083-001 10x	Ý	4711	9.57	10	102.4	3/28/2014	15:18	SAMP	.11402083-001	6020 5	
J1402083-001 10x	Ň	48Ti	10.33	10	102.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Y	51V	1 1 1	10	102.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Y	52Cr	5.16	10	102.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Y	55Mn	86.12	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Y	59Co	0.37	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Y	60Ni	2.54	10	103.4	3/28/2014	15;18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Ν	62Ni	2.11	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	ICS-A FH,
J1402083-001 10x	N	63Cu	5.38	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Y	65CU	5.35	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
31402003-001 10X	¥ N	0040 6975	24.00 25.62	10	103.4	3/28/2014 3/28/2044	15-19	SAMP	1402083-001	6020 S	
.1402003-001 10X	N V	758e	0.05	10	103.4	3/28/2014	15:18	SAMP	11402083-001	6020 S	
J1402083-001 10v	Ŷ	78Sa	-0.17	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 \$	
J1402083-001 10x	N	82Se	0.06	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Ŷ	86Sr	18.46	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	
J1402083-001 10x	Ν	88Sr	18,54	10	103.4	3/28/2014	15:18	SAMP	J1402083-001	6020 S	100

438 Page 11 of 15

Inorganic Analysis: <u>Metals</u>

Validation Package

Sample Prep and Ancillary Data

384956

11

Preparation Information Benchsheet

Prep Run: 204596Prep Workflow: MetDigAqMSStatus:PreppedPrep Date:03/21/2014Team:MetalsPrep Method:EPA 3005ACurrent Step: DigestionDigestion03/21/2014Analyst:JPAULEYRush/NPDES:NPDESNPDESOg/14/2014

Lab Code	Client ID	Bottle #	Initial Amt	Final Volume	Spike Amt	Spike ID	Analytical Method	TestNo List	Comments
JQ1402134-04	Method Blank		50 mL	50 mL			200.8,6020	As T, Be T, Cd T, Cr T, Cr T, Cu T, Mn T, Mo T, Ni T, Pb T, Pb T, Sb T, Se T, Tl T, Zo T	
JQ1402134-03	Lab Control Sample		50 mL	50 mL	0.25 mL 0.25 mL	. 55300 . 55301	200.8,6020	As T, Be T, Cd T, Cr T, Cr T, Cu T, Mn T, Mo T, Ni T, Pb T, Pb T, Sb T, Se T, Tl T, Zo T	
31402003-001	OW-5	.02	50 mL	50 mL	1	1	200.8	Cd T, Cr T, Cu T, Ni T, Pb T, Zn T	
J1402003-002	OW-6	.02	50 mL	50 mL			200.8	Cd T, Cr T, Cu T, Ni T, Pb T, Zn T	
J1402003-003	OW-7	.02	50 mL	50 mL			200.8	Cd T, Cr T, Cu T, NI T, Pb T, Zn T	
31402003-004	OW-8	.02	50 mL	50 mL			200.8	Cd T, Cr T, Cu T, NI T, Pb T, Zn T	
J1402025-001	GAIN-M-25A-031814	.03	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T, TI T	Tier IV
J1402025-002	GAIN-M-36B-031B14	£0.,	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T,	Tier IV
J1402025-003	GAIN-HG-245-031814	.03	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T, Ti T	Tier IV
31402025-004	GAIN-M-25B-031814	.03	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T, Ti T	Tier IV
J1402025-005	GAIN-HG-33S-031914	.03	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T, TI T	Tier IV
J1402025-006	GAIN-HG-34S-031914	.03	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T,	Tier IV
J1402025-007	GAIN-HG-22D-031914	.03	50 mL	50 mL			6020	As T, Be T, Cd T, Cr T, Mn T, Mo T, Pb T, Sb T, Se T,	Tier IV
J1402026-001	MW-46	.04	50 mL	50 mL			6020	As T	
)1402026-001:)Q1402134-01	Matrix Spike	.04	50 mL	50 mL	0.25 mL 0.25 mL	55300 55301	6020	As Τ	Client requested QC
)1402026-001:)Q1402134-02	Duplicate Matrix Spike	.04	50 mL	50 mt.	0.25 mL 0.25 mL	55300 55301	6020	As T	Client requested QC
11402026-002	DUP-1	.05	50 mL	50 mL			6020	As T	
1402026-003	MW-6	.05	50 mL	50 mL			6020	As T	
11402026-004	MW-41	.05	50 mL	50 mL			6020	As T	
1402026-005	MW-42	.05	50 mL	50 mL			6020	As T	
1402026-006	MW-1	.05	50 mL	50 mL			5020	As T	
1402037-001	OBDF-14078-MW-02	.01	50 mL	50 mL			5020	As T, Cd T, Cr T, Pb T	

440

	-			1		
402037-002	OBDF-14078-MW-03	.01	50 mL	50 mL	6020	As T, Cd T, Cr T, Pb T
402037-003	OBDF-14078-MW-04	.01	50 mL	50 mL	6020	As T, Cd T, Cr T, Pb T

Spiking Solutions

Spiking Solutions						۷	Vitness:	
Name	Туре	ID	Expires /	Name	Туре	ID	Expires	/
ICPMS Stock Solution A	Spike	55300	4/1/2014	ICPMS Stock Solution B	Spike	5530	1 4/1/2014	

Preparation Materials

Step	Name	ID /	Step	Name	ID
Digestion	50mL Digestion Tube	67095	Digestion	Hydrochloric Acid (HCI) Reagent Grade	67600
Digestion	Nitric Acid Reagent Grade HNO3	67599 🖌		· · · · · · · · · · · · · · · · · · ·	

Preparation Hardware / Equipment

Step	Name	Property	Value	Step	Name	Property	Value	
Digestion]- BlockDigester- 06			Digestion]- Thermometer- 04 ✓	Temperature	94	deg C

Preparation Steps

<u>Step</u>	Started	Finished	<u>By</u>	Assisted By	Training?	Comments
Digestion	21-MAR-1 <u>4</u> 09:29	21-MAR-14 14:32 🖌	JPAULEY		N	

Comments

Received By:

Review	1999 - 1999 -	ለም ትርጉሙ መመመስ መስለት የሚያሳር የትርጉሙ በደግሞ የመስለም መስማ የሚያሳር በርድር / የሚያሳር / የሚያሳር በርድር መስማ መስማ የመስጥ በርጉሙ ነው ለመስለታ ታዲ
Reviewed by: Dat	e: 3/26/14	
Chain of Custody	999 m 1997 ta 1997 ta 1997 ta 1	
Relinquished By:	Date:	Extracts/Digestions Examined Yes No

Date:

http://devapps.casholdings.int/WebPrep/bs final.aspx?pf=1

Preparation Information Benchsheet

Prep Run:	204592	Prep Workflow:	MetDigAqICP-	/Status: Current Step:	Prepped Diaestion	Prep Date:	03/21/2014 08:46
Ieam:	Metals	Prep Method:	EPA 3005A			Due Date:	03/25/2014
MIGIYSL.	JEAULET	RUSH/ NYDES:	NPDES			Hold Date:	09/14/2014

Lab Code	Client ID	Bottle #	Initial Amt	Final Volume	Spike Amt	Spike ID	Analytical Method	TestNo List	Comments
JQ1402131-02	Method Blank		50 mL	50 mL			200.7,6010B	Al T, As T, Ca T, Fe T, Fe T, Li T, Mg T, Na T, V T, Zn T	
JQ1402131-01	Lab Control Sample		50 mL	50 mL	0.25 mL 0.25 mL	62628 62629	200.7,6010B	Al T, As T, Ca T, Fe T, Fe T, Li T, Mg T, Na T, V T, Zo T	
J1402002-001	DSN-001A	.04	50 mL	50 mL			200.7	Zn T	
J1402003-001	OW-5	.02	50 mL	50 mL			200.7	Са Т, Мg Т	
)1402003-002	OW-6	.02	50 mL	50 mL			200.7	Са Т, Мg Т	
01402003-003	OW-7	.02	50 mL	50 mL	*		200.7	Са Т, Мд Т	
31402003-004	OW-8	.02	50 mL	50 mL			200.7	Ca T, Mg T	
31402005-001	Effluent	.03	50 mL	50 mL			200.7	FeT	
J1402005-004	Influent	.03	50 mL	50 mL			200.7	Fe T	
J1402022-001	MW-15S	.01	50 mL	50 mL			6010B	As T	
J1402022-002	MW-135R	.01	50 mL	50 mL			6010B	νт	
J1402022-003	DUP1	.01	50 mL	50 mL	:		6010B	As T	
31402022-004	DUP2	.01	50 mL	50 mL			6010B	VT	
J1402022-005	EQB	.01	50 mL	50 mL			6010B	As T, V T	
J1402025-001	GAIN-M-25A-031814	.03	50 mL	50 mL			6010B	AI T, Fe T, LI T, Na T	Tier IV
J1402025-002	GAIN-M-36B-031814	.03	50 mL	50 mL			6010B	Al T, Fe T, Li T, Na T	Tier IV
J1402025-003	GAIN-HG-24S-031814	.03	50 mL	50 mL			6010B	Al T, Fe T, Li T, Na T	Tier IV
J1402025-004	GAIN-M-25B-031814	.03	50 mL	50 mL			6010B	АІ Т, Fe T, LI T, Na T	Tier IV
J1402025-005	GAIN-HG-33S-031914	.03	50 mL	50 mL			6010B	Al T, Fe T, Li T, Na T	Tier IV
J1402025-006	GAIN-HG-34S-031914	.03	50 mL	50 mL			6010B	Al T, Fe T, Li T, Na T	Tier IV
J1402025-007	GAIN-HG-22D-031914	.03	50 mL	50 mL			60106	AIT, FeT, LIT, NaT	Tier IV
J1402025-007: JQ1402131-03	Matrix Spike	.03	50 mL	50 mL	0.25 mL 0.25 mL	62628 62629 *	6010B	Al T, Fe T, LI T, Na T	Tier IV
J1402025-007: JQ1402131-04	Duplicate Matrix Spike	.03	50 mL	50 mL	0.25 mL 0.25 mL	62628, 62629	£010B	Al T, Fe T, Li T, Na T	Tier IV
J1402037-001	OBDF-14078-MW-02	.01	50 mL	50 mL			6010B	Al T, Fe T, Na T	
		<u></u>	7						

24 Total Samples consisting of 20 Client Samples, 2 Client QC Samples, 2 Batch QC Samples associated with the current Prep Run.

Spiking Solution	ns									Ţ	Witnes	3 5 .
Name		Туре	ID	Expires	Name				Туре	ID	Expire	35
ICP Stock Solution A		Spike	6262	8 8/19/2014	ICP Stock	Solution	B		Spike	6262	98/19/2	014
Preparation Ma	terials								1979 - 1996 and in the advance for a second			
Step Name				ID	Step	Name					TD	
Digestion 50mL Diges	tion Tube 🧳	****		67095	Digestion	Hydrochi	oric Acid (H	CI) Rea	gent Grade	•	67600	5
Digestion Nitric Acid R	eagent Grad	e HNO3		67599	<u> </u>					1 ⁵⁷		
Preparation Ha	rdware / ame	Equipme	nt Value	А ман 1949 б.Ж.б. (1999) ал (1997) а (1997) а (1997) а (1997) а	Ston		Name	Dr	onerty	Value	*****	- 10 (u)-610 10
Digestion BI	ockDigester-				Digestion		J- Thermome	eter-Tei	mperature	92	de	g C
Preparation Ste	ps											
<u>Step</u> Digestion	<u>Started</u> 21-MAF 08:46	<u>Finish</u> -14 21-MA 15:20	20 E R-14 J	와 PAULEY	As	sisted By	<u>Tra</u> N	ining?	<u>Comme</u>	ents		
Comments	F	*										
Reviewed by:	fil	Da	rte: 3	24-14								
Chain of Custod	Y									1000 In 2002 In 2007 In 2007	and the second second second	
Relinquished By:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date:					Extracts/Di Yes	gestion	s Examin	<u>ed</u> No
Received By:			······	Date:								

CAS LIMS Prep Run: 204622

Page 1 of 2

385022 Run: 204622 JP 3/24/14

Preparation Information Benchsheet

Prep Run:	204622	Prep Workflow	r: Haf	DiaAa S	status:		Prepp	bed	Dran	Nata	03/21/2014
Team:	Metals	Prep Method:	Met	hod	Current	Step:	Diges	stion	s e cop	Pate.	14:21
Analyst:	JPAULEY	Rush/NPDES:	Bot	h					Due	Date:	03/21/2014
,, ,			200						Hold	Date:	04/04/2014
										/	
Lab Code		Client ID	Bottie #	Initial Amt	Final Volume	Spike Amt	Spike ID	Anal Mei	ytical	/TestNo List	Comments
JQ1402159-02	Method Blar	۱K		40 mL	40 mL			245.1,	7470A	Hg T	
JQ1402159-01	Lab Control	Sample		40 mL	40 mL	0.5 mL	68623	245.1,	7470A	Hg T	
J1401837-002	14-0263 Un	it 1 Supernate Return	.01	40 mL	40 mL			245.1		Нд Т	
J1401837-003	14-0264 Un	it 2 Supernate Return	.01	40 mL	40 mL		ļ	245.1		Нд Т	
31401881-001	14-0250 SB	S	.01	0.100 mL	40 mL			245.1		Нд Т	Reduced volume due to color change after 15 mins
J1401916-001	GW8871		.03	40 mL	40 mL			7470A		Hg T	
J1402025-001	GAIN-M-25/	A-031814	.03	40 mL	40 mL			7470A		Hg T	Tier IV
J1402025-002	GAIN-M-36I	3-031814	.03	40 mL	40 mL			7470A		Hg T	Tier IV
J1402025-003	GAIN-HG-24	4S-031814	.03	40 mL	40 mL			7470A		Нд Т	Tier IV
)1402025-003: JQ1402159-03	Matrix Spike	3	.03	40 mL	40 mL	0.5 mL	68623	7470A		Нд Т	Tier IV
J1402025-003: JQ1402159-04	Duplicate M	atrix Spike	.03	40 mL	40 mL	0.5 mL	68623	7470A		Hg T	Tier IV
J1402025-004	GAIN-M-25	3-031814	.03	40 mL	40 mL			7470A		Hg T	Tier IV
31402025-005	GAIN-HG-3	3S-031914	.03	40 mL	40 mL			7470A		Hg T	Tier IV
J1402025-006	GAIN-HG-34	\$5-031914	.03	40 mL	40 mL			7470A		Hg T	Tier IV
J1402025-007	GAIN-HG-2	2D-031914	.03	40 mL	40 mL			7470A		Нд Т	Tier IV
J1402037-001	OBDF-1407	8-MW-02	.01.	40 mL	40 mL			7470A		Hg T	
31402066-001	TMW-1		.01	40 mL	40 mL			7470A		Hg T	
)1402066-002	TMW-2		.01	40 mL	40 mL			7470A		Hg T	······
)1402066-003	TMW-3		.01	40 mL	40 mL			7470A		Hg T	
J1402066-004	TMW-4		.01	40 mL	40 mL			7470A	la la casa da casa da casa da casa da casa da casa da casa da casa da casa da casa da casa da casa da casa da c	Нд Т	
J1402066-005	TMW-S		.01	40 mL	40 mL		·	7470A		Hg T	
31402066-006	TMW-6		.01	40 mL	40 mL			7470A		Hg T	
11402066-007	TMW-7		.01	40 mL	40 mi.			7470A		Hg T	

1				1 40 mL	40 mL		/470A	Hg I		
24 Total San associated w	nples consistin /ith the current	g of 20 C t Prep Ru	lient S n.	Samples,	2 Client	QC Sar	nples, 2 Bal	ch QC Sa	mples	
Spiking So	lutions			07)		***			w	itness:
Name		Tvne	ĩD	Fynires						
Mercury 100 ug	I/L Hg	Spike	6862	3/3/27/2014]					
5.1-65.1100000000000000000000000000000000000	баналан «Саланалан аналан алан алан алан алан ала				*	19 - 11 A 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1				
Preparatio	n Materials							/		
Step Name	e			ID	Sten	Name				TD
Digestion Potas	sium Permanganat	e RG KMnO4		57124	Digestion	50mL Di	aestion Tube			67095
Digestion Hydro	oxylamine Sulfate 9	8% Minimur	n	57241	Digestion	Nitric Ac	id Reagent Gra	de HNO3		67599
Digestion Potas	sium Persulfate RG	K2S2O8		64849	Digestion	Sulfuric	Acid Reagent G	rade H2SO4	······	67601
Preparatio	n Hardware / _{Name}	⁷ Equipm Property	ent Value		Sten		Name	Property	Value	/
Digestion	J- BlockDigester-				Digestion		J- Thermometer	Temperatur	e 91	deg C
	01	<u> </u>]	<u></u>	55			
Preparatio Step Digestion	01 n Steps <u>Started</u> 21-MAR 14:21	Finisha -14 21-MA 16:21	ed	<u>By</u> IPAULEY		isted By	<u> 55</u> <u>Training</u> N	1 12 <u>Comm</u>	l ents	
Preparation Step Digestion Comments	01 n Steps <u>Started</u> 21-MAR 14:21	Finisha -14 21-MA 16:21	2 <u>d</u>	<u>By</u> IPAULEY	Ass	isted By	<u>Training</u> N	1 1? Comm	<u>ents</u>	
Preparation Step Digestion Comments Review	n Steps <u>Started</u> 21-MAR 14:21	Finisha -14 21-MA 16:21	ed R-14	IPAULEY	Ass	isted By	<u>Training</u> N	1 3 <u>? Comm</u>	<u>ents</u>	
Preparation Step Digestion Comments Reviewed by:	01 n Steps Started 21-MAR 14:21	Finisha -14 21-MA 16:21	ed R-14	By IPAULEY 3/25/1	<u>Аss</u>	isted By	<u>Trainin</u> N	1 3? Comm	ents	
Preparation Step Digestion Comments Reviewed by: Reviewed by: Chain of Cu	In Steps Started 21-MAR 14:21	Finisha 2-14 21-MA 16:21	ed R-14 Date:	3/25/	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	isted By	<u>Training</u> N	1 12 <u>Comm</u>	ents	
Preparation Step Digestion Comments Reviewed by: Chain of Cu Relinguished By	In Steps Started 21-MAR 14:21	E-14 21-MA 16:21	ed R-14	<u>By</u> IPAULEY 33351	<u>۸</u> ۸ ۲	isted By	<u>Trainin</u> N	1 <u>a?</u> Comm <u>Extracts/Di</u>	<u>ents</u> <u>qestions E</u>	xamined

.

Preparation Information Benchsheet

MetDigAqR- Status: Prep Date: 03/21/2014 09:29 Prepped Prep Run: 204595 Prep Workflow: MSAA Current Step: Digestion Team: Metals EPA 3005A Prep Method: Due Date: 03/29/2014 JPAULEY Analyst: Rush/NPDES: NPDES Hold Date: 09/14/2014

Lab Code	Client ID	Bottle #	Initial Amt	Final	Spike Amt	Spike ID	Analytical Method	TestNo List	Comments
JQ1402133-04	Method Blank		50 mL	50 mL			200.8,6020	As D, Be D, Cd D, Cf D, Cr D, Cu D, Mn D, Mo D, Ni D, Pb D, Pb D, Sb D, Se D, TI D, Zp D	Lab filtered on 3/19
JQ1402133-03	Lab Control Sample		50 mL	50 mL	0.25 mL 0.25 mL	55300 55301	200.8,6020	As D, Be D, Cd D, Cr D, Cr D, Cu D, Mn D, Mo D, Ni D, Pb D, Pb D, Sb D, Se D, TI D, Zn D	Lab filtered on 3/19
J1402003-00i	OW-5	.07	50 mL	50 mL			200.8	Cd D, Cr D, Cu D, Ni D, Pb D, Zn D	
J1402003-002	OW-6	.07	50 mL	50 mL			200.8	Cd D, Cr D, Cu D, Ni D, Pb D, Zn D	
31402003-003	OW-7	.07	50 mL	50 mL			200.8	Cd D, Cr D, Cu D, Ni D, Pb D, Zn D	
31402003-004	OW-8	.07	50 mL	50 mL		ļ	200.8	Cd D, Cr D, Cu D, Ni D, Pb D, Zn D	
31402025-001	GAIN-M-25A-031814	.02	50 mL	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	Tier IV
J1402025-002	GAIN-M-368-031814	.02	50 mL	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	Tier IV
J1402025-003	GAIN-HG-24S-031814	.02	50 mL	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, Tl D	Tier IV
)1402025-004	GAIN-M-25B-031814	.02	50 ml.	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	Tier IV
)1402025-005	GAIN-HG-33S-031914	.02	50 mL	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, Tl D	Tier IV
J1402025-006	GAIN-HG-34S-031914	.02	50 mL	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, Tl D	Tier IV
)1402026-001	MW-46	.03	50 mL	50 mL			6020	As D	Lab filtered on 3/19
J1402026-001: JQ1402133-01	Matrix Spike	.03	50 mL	50 mL	0.25 mL 0.25 mL	55300 55301	6020	As D	Lab filtered on 3/19; Client 🖌
)1402026-001:)Q1402133-02	Duplicate Matrix Spike	.03	50 mL	50 mL	0.25 mL 0.25 mL	55300 55301	6020	As D	Lab filtered on 3/19; Client requested QC
11402026-002	DUP-1	.06	50 mL	50 ml.			6020	As D	Lab filtered on 3/19
11402026-003	MW-6	.06	50 mL	50 mt.			6020	As D	Lab filtered on 3/19
1402026-004	MW-41	.06	50 mL	50 mL			6020	As D	· · · · · · · · · · · · · · · · · · ·
11402026-005	MW-42	.06	50 mL	50 mL			6020	As D	Lab filtered on 3/19
1402026-006	MW-1	.06	50 mL	50 mL			6020	As D	Lab filtered on 3/19

20 Total Samples consisting of 16 Client Samples, 2 Client QC Samples, 2 Batch QC Samples associated with the current Prep Run.

Spiking Solutions

Spiking Solutions						Ŵ	itness:	
Name	Туре	ID	Expires ,	Name	Түре	ID	Expires	
ICPMS Stock Solution A	Spike	5530	04/1/2014	ICPMS Stock Solution B	Spike	55301	4/1/2014	

Preparation Materials

Step	Name	ID	Step	Name	ID
Digestion	Flip Filters for 50mL Tubes 0.45um Dissolved	62380	Digestion	Nitric Acid Reagent Grade HNO3	67599
L	[Metal	02000	Digestion	Hydrochloric Acid (HCl) Reagent Grade	67600
Digestion	50mL Digestion Tube	67095 🖌			

Preparation Hardware / Equipment

Step	Name	Property	Value	Step	Name	Property	Value	
Digestion	J- BlockDigester- 06			Digestion	J- Thermometer- 04 -	Temperature	94 🖊	deg C

Preparation Steps

Step	<u>Started</u>	Finished	<u>Βγ</u>	Assisted By	Training?	Comments
Digestion	21-MAR-14 09:29	21-MAR-14 14:32 -	JPAULEY -		N	

Comments

Review

Reviewed by: ____

Sho _____ Date: _____ 3/27/14

Chain of Custody

Relinquished By:	Date:	Extracts/Digestions Examin	<u>ned</u> No
Received By:	Date:		

Preparation Information Benchsheet

Prep Run:	204900 Matala	Prep Workflow:	MetDigAqR- MSAA	Status: Current Step:	Prepped Digestion	Prep Date:	03/26/2014 10:00
		Prep Method:	EPA 3005A	· · · · · · · · · · · · · · · · · · ·		Due Date:	03/31/2014
Milalyst.	JPAULET	Rush/NPDES:	NPDES			Hold Date:	09/15/2014

					w				
Lab Code	Client ID	Bottle #	Initial Amt	Final Volume	Spike Amt	Spike ID	Analytical Method	TestNo List	Comments
JQ1402258-02	Method Blank		50 mL	50 mL			200.8,6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	
JQ1402258-01	Lab Control Sample		50 mL	50 mL	0.25 mL 0.25 mL	85300 55301	200.8,6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TL D	
J1402025-007	GAIN-HG-22D-031914 ,	.02	50 mL	50 mL			6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	Tier IV* 🖌
J1402025-007: JQ1402258-03	Matrix Spike	.02	50 mL	50 mL	0.25 mL 0.25 mL	55300 55301	6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	-
J1402025-007: JQ1402258-04	Duplicate Matrix Spike	.02	50 mL	50 mL	0.25 mL 0.25 mL	55300 55301	6020	As D, Be D, Cd D, Cr D, Mn D, Mo D, Pb D, Sb D, Se D, TI D	
31402076-001	25162	.03	50 mL	50 mL			200.8	As D	
J1402076-002	6070300	.03	50 mL	50 mL			200.8	As D	

7 Total Samples consisting of 3 Client Samples, 2 Client QC Samples, 2 Batch QC Samples associated with the current Prep Run.

Spiking Solutions

Spiking Solutions						W	itness:
Name	Туре	ID	Expires	Name	Туре	ID	Expires /
ICPMS Stock Solution A	Spike	55300	4/1/2014	ICPMS Stock Solution B	Spike	55301	4/1/2014

Preparation Materials

Step	Name	ID	, Step	Name	ID
Digestion	50mL Digestion Tube	67095 7	Digestion	Hydrochloric Acid (HCI) Reagent Grade	67600
Digestion	Nitric Acid Reagent Grade HNO3	67599 🎜			<u></u>

Preparation Hardware / Equipment

Step	Name	Property	Value	 Step	Name	Property	Value	
Digestion]- BlockDigester- 06			 Digestion]- Thermometer- 04	Temperature	93	deg C

Preparation Steps

Step	Started	Finished	By	Assisted By	Training?	Comments
Digestion	10:00	14:58	JPAULEY		N	
Comments	A	z=11+=15+1==1======		na provensko na na provensko na kole na kole na kole na kole na		
Review	•		_ / /		· · · · · · ·	
Reviewed by: 3/20	/	Date:	3/31/14			

CAS LIMS Prep Run: 204900

Chain of Custody		
Relinquished By:	Date:	Extracts/Digestions Examined
		Yes No
Received By:	Date:	

Preparation Information Benchsheet

Prep Run:	204591 Metals	Prep Workflow:	MetDigAqR- ICP	Status: Current Step:	Prepped Digestion	Prep Date:	03/21/2014 08:46
Analyst:	JPAULEY	Prep Method:	EPA 3005A		L	Due Date:	03/31/2014
		RUSH/NPDES:	NPDES			Hold Date:	09/14/2014

Lab Code	Client ID	Bottle #	Initial Amt	Final Volume	Spike Amt	Spike ID	Analytical Method	TestNo List	Comments
JQ1402130-02	Method Blank		50 mL	50 mL			60108	Al D, Fe D, Na D	
JQ1402130-01	Lab Control Sample		50 mt.	50 mL	0.25 mL 0.25 mL	62628 62629	6010B	Al D, Fe D, Na D	
J1402025-001	GAIN-M-25A-031814	.02	50 mL	50 mL			60108	Al D, Fe D, Na D	Tier IV
J1402025-002	GAIN-M-36B-031814	.02	50 mL	50 mL			60108	Al D, Fe D, Na D	Tier IV
J1402025-002: JQ1402130-03	Matrix Spike	.02	50 mL	50 mL	0.25 mL 0.25 mL	62628 62629 /	60108	Al D, Fe D, Na D	Tier IV
J1402025-002: JQ1402130-04	Duplicate Matrix Spike	.02	50 mL	50 mL	0.25 mL 0.25 mL	62628 62629	6010B	Al D, Fe D, Na D	Tier IV
J1402025-003	GAIN-HG-24S-031814	.02	50 mL	50 mL			6010B	Al D, Fe D, Na D	Tier IV
J1402025-004	GAIN-M-25B-031814	.02	50 mL	50 mL			6010B	Al D, Fe D, Na D	Tier IV
J1402025-005	GAIN-HG-33S-031914	.02	50 mL	50 mL			6010B	Al D, Fe D, Na D	Tier IV
J1402025-006	GAIN-HG-34S-031914	.02	50 mL	50 mL			6010B	Al D, Fe D, Na D	Tier IV
31402025-007	GAIN-HG-22D-031914	.02	50 mL	50 mL			6010B	Al D, Fe D, Na D	Tier IV

11 Total Samples consisting of 7 Client Samples, 2 Client QC Samples, 2 Batch QC Samples associated with the current Prep Run.

Spiking Solutions						V	Vitness:
Name	Туре	ID	Expires	Name	Type	ID	Expires
ICP Stock Solution A	Spike	6262	8 8/19/2014	ICP Stock Solution B	Spike	62629	8/19/2014
							1

Preparation Materials

Step	Name	ID	Step	Name	ID
Digestion	50mL Digestion Tube	67095	Digestion	Hydrochloric Acid (HCI) Reagent Grade	67600
Digestion	Nitric Acid Reagent Grade HNO3	67599			

Preparation Hardware / Equipment

	Step	Name	Property	Value	Step	Name	Property	Value	
	Digestion	J- BlockDigester- 05			Digestion	J- Thermometer- 03	Temperature	92	deg C
• •		60000 (1000 00000000) (1 000000) (1000 0000000000)	terenako hananezen errenako anteren bizten errenako handera harrenako	and the second second second second second second second second second second second second second second secon	and a second proceeding to a second by the base succession and the second second second second second second se		and the second second second second second second second second second second second second second second second		

Preparation Steps

Step	<u>Started</u> 21-MAR-14	Finished 21-MAR-14	<u>By</u>	Assisted By	Training?	Comments
Digestion	08:46	15:20	JPAULEY		N	
	7	7				

Comments

and a few for the second and an and a second second second and the second second second second second second se

Review Reviewed by: Juli Link	Date:	
Chain of Custody	9999999765554 c1591 ca banka	1990 den en de la de la mena senar persona de la de la dena de la departa (1990 de la mena de la de la desena d
Relinquished By:	Date:	Extracts/Digestions Examined Yes No
Received By:	Date:	

http://devapps.casholdings.int/WebPrep/bs_final.aspx?pf=1

Run: 385020

Preparation Information Benchsheet

Prep Run: Team:	204565 Prep W Metals Prep M	/orkflo	w:HgDig Metho	JAqDiss	Status: Current S	Pr i tep : Di	epped Prep gestion	Date: ()3/20/2014 L8:40
Analvet	1PAILEV Duch/	NONEC	MDDE	с с			Due	Date: ()3/31/2014
	JINOLLI NUSHII	Vr DLJ	. NEUL	3			Hold	Date: (04/15/2014
					/	,			
Lab Code	Client ID	Bottle	Tnitial	/ Final/	Snike	V Sniko	Analysical	Transa.	Common
		#	Amt 🖌	Volume	Amt	ID	Method	List	J ILJUININGIILS
JQ1402113-02	Method Blank		40 mL	40 mL			7470A	Hg D	
JQ1402113-01	Lab Control Sample		40 mL	40 mL	0.5 mL	68623	7470A	Hg D	
J1402025-001	GAIN-M-25A-031814	.02	40 mL	40 mt.			7470A	Ha D	Tier IV
J1402025-001: JQ1402113-03	Matrix Spike	.02	40 mL	40 mL	0.5 mL	68623	7470A	Hg D	Tier IV
J1402025-001: JQ1402113-04	Duplicate Matrix Spike	.02	40 mL	40 mL	0.5 mL	68623	7470A	Hg D	Tier IV
J1402025-002	GAIN-M-36B-031814	.02	40 mL	40 mL			7470A	Hg D	Tier IV
J1402025-003	GAIN-HG-24S-031814	.02	40 mL	40 mL			7470A	Hg D	Tier IV
J1402025-004	GAIN-M-25B-031814	.02	40 mL.	40 mL		-	7470A	Hg D	Tier IV
J1402025-005	GAIN-HG-335-031914	.02	40 mL	40 mL			7470A	Hg D	Tier IV
J1402025-006	GAIN-HG-34S-031914	.02	40 mL	40 mL			7470A	Hg D	Tier IV
31402025-007	GAIN-HG-22D-031914	.02	40 mL	40 mL			7470A	Hg D	Tier IV

11 Total Samples consisting of 7 Client Samples, 2 Client QC Samples, 2 Batch QC Samples associated with the current Prep Run.

Spiking Solutions

Name	Туре	ID	Expires
Mercury 100 ug/L Hg	Spike	68623	3/27/2014

Witness:

Preparation Materials

Step	Name	ID	Step	Name	ID
Digestion	Potassium Permanganate RG KMnO4	57124	Digestion	50mL Digestion Tube	67095
Digestion	Hydroxylamine Sulfate 98% Minimum	57241	Digestion	Nitric Acid Reagent Grade HNO3	67599
Digestion	Potassium Persulfate RG K2S2O8	64849	Digestion	Sulfuric Acid Reagent Grade H2SO4	67601

Preparation Hardware / Equipment

Step	Name	Property	Value		Step	Name	Property	Value 🍃	/
Digestion	J- BlockDigester- 02				Digestion	J- Thermometer- 89	Temperature	90	deg C
Preparation S	teps	المعالمات المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم	an an an it is to for the original state of the original state of the original state of the original state of t	/		Lafonday, Benggi Lafond Yana yana mana yanga mana yang mana mana mana yang	e e e e e e e e e e e e e e e e e e e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Step	<u>Started</u> 20-MAR	Finishe	<u>d By</u> R-14	de	Assisted By	Training	? <u>Comme</u>	<u>ents</u>	
Digestion	18:40	20:40	JPAULE	EY		И			

Comments

Review Reviewed by:	N Date: 3/2	4/14		
Chain of Custody		ta 19 a fa fa fa an ann ann ann an ann ann an		
Relinquished By:	Dat	2:	Extracts/	Digestions Examined
Received By:	Dat	2;	tes	NO
	######################################	<u>in manana na manana ing kapat sa 1994 na ina manana manana manana kabana ing ka</u> ng kala ka	NA TY MEN THE MENN AND A TYPE THE NAME OF THE COMPANY AND A THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE AD	5372536576676676777777777777777777777777

 1.5^{\pm}

453

$http://devapps.casholdings.int/WebPrep/bs_final.aspx?pf{=}1$

Inorganic Analysis: General Chemistry and Physical Parameters

Validation Package

Sample and QC Results

Analytical Report

Chants	Deeper Feet Inc	Service Request:	11402025
Chem:	beazer East, mc.	Service Request.	51-02025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/18/14 - 3/19/14
Sample Matrix:	Water	Date Received:	3/19/14

Analysis Method: 300.0

Units: mg/L Basis: NA

Chloride

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	1.3	1.0	0.2	1	NA	3/21/14 21:15	
GAIN-M-36B-031814	J1402025-002	7.8	1.0	0.2	1	NA	3/21/14 21:31	
GAIN-HG-24S-031814	J1402025-003	9.1	1.0	0.2	1	NA	3/21/14 21:47	
GAIN-M-25B-031814	J1402025-004	26.7	1.0	0.2	1	NA	3/21/14 22:35	
GAIN-HG-33S-031914	J1402025-005	7.8	1.0	0.2	1	NA	3/21/14 22:51	
GAIN-HG-34S-031914	J1402025-006	28.5	1.0	0.2	1	NA	3/21/14 23:07	
GAIN-HG-22D-031914	J1402025-007	3.1	1.0	0.2	1	NA	3/21/14 23:23	
Method Blank	J1402025-MB	ND U	1.0	0.2	1	NA	3/21/14 13:21	

Analytical Report

Client:	Beazer East, Inc.
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14
Sample Matrix:	Water

Service Request: J1402025 Date Collected: 3/18/14 - 3/19/14 Date Received: 3/19/14

> Units: ColorUnits Basis: NA

Analysis Method: SM 2120 B

Color, True

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	ND U	5.0	5.0	1	NA	3/19/14 18:15	
GAIN-M-36B-031814	J1402025-002	10.0	5.0	5.0	1	NA	3/19/14 18:19	
GAIN-HG-24S-031814	J1402025-003	ND U	5.0	5.0	1	NA	3/19/14 18:20	
GAIN-M-25B-031814	J1402025-004	10.0	5.0	5.0	1	NA	3/19/14 18:27	
GAIN-HG-33S-031914	J1402025-005	5.0	5.0	5.0	1	NA	3/19/14 18:30	
GAIN-HG-34S-031914	J1402025-006	5.0	5.0	5.0	1	NA	3/19/14 18:32	
GAIN-HG-22D-031914	J1402025-007	30.0	5.0	5.0	1	NA	3/19/14 18:34	
Method Blank	J1402025-MB	ND U	5.0	5.0	1	NA	3/19/14 18:08	

Analytical ReportClient:Beazer East, Inc.Service Request:J1402025Project:Gainesville March 2014 UIC GW Monitoring/OM-0450-14Date Collected:3/18/14 - 3/19/14Sample Matrix:WaterDate Received:3/19/14

Units: pH Units Basis: NA

Analysis Method: SM 2120 B

pH of Color Analysis

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	6.96	-	and a second second second second second second second second second second second second second second second	1	NA	3/19/14 18:15	
GAIN-M-36B-031814	J1402025-002	7.48	-		1	NA	3/19/14 18:19	
GAIN-HG-24S-031814	J1402025-003	7.27	-		1	NA	3/19/14 18:20	
GAIN-M-25B-031814	J1402025-004	6.41	-		1	NA	3/19/14 18:27	
GAIN-HG-33S-031914	J1402025-005	7.41	-		1	NA	3/19/14 18:30	
GAIN-HG-34S-031914	J1402025-006	9.00	-		1	NA	3/19/14 18:32	
GAIN-HG-22D-031914	J1402025-007	7.17	-		1	NA	3/19/14 18:34	

· · ·	Analytical Report		
Client:	Beazer East, Inc.	Service Request:	J1402025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/18/14 - 3/19/14
Sample Matrix:	Water	Date Received:	3/19/14
•			

Analysis Method: SM 2540 C

Solids, Total Dissolved

					Dilution	Date	Date	
Sample Name	Lab Code	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Note
GAIN-M-25A-031814	J1402025-001	163	10	10	1	NA	3/21/14 16:00	
GAIN-M-36B-031814	J1402025-002	163	10	10	1	NA	3/21/14 16:00	
GAIN-HG-24S-031814	J1402025-003	132	10	10	1	NA	3/21/14 16:00	
GAIN-M-25B-031814	J1402025-004	196	10	10	1	NA	3/21/14 16:00	
GAIN-HG-33S-031914	J1402025-005	162	10	10	1	NA	3/21/14 16:00	
GAIN-HG-34S-031914	J1402025-006	119	10	10	1	NA	3/21/14 16:00	
GAIN-HG-22D-031914	J1402025-007	154	10	10	1	NA	3/21/14 16:00	
Method Blank	J1402025-MB	ND U	10	10	1	NA	3/21/14 16:00	

Units: mg/L

Basis: NA

Analytical Report

Client:	Beazer East, Inc.
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14
Sample Matrix:	Water

Service Request: J1402025 Date Collected: 3/18/14 - 3/19/14 Date Received: 3/19/14

> Units: pH Units Basis: NA

Analysis Method: SM 4500-H+ B

pН

Sample Name	Lab Code	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
GAIN-M-25A-031814	J1402025-001	7,45		******	}	NA	3/21/14 21:02	Q
GAIN-M-36B-031814	J1402025-002	7.83	-		1	NA	3/21/14 21:13	Q
GAIN-HG-24S-031814	J1402025-003	7.68	-		1	NA	3/21/14 21:21	Q
GAIN-M-25B-031814	J1402025-004	7.00	-		1	NA	3/21/14 21:30	Q
GAIN-HG-33S-031914	J1402025-005	7.86	-		I	NA	3/21/14 21:38	Q
GAIN-HG-34S-031914	J1402025-006	8.92	-		1	NA	3/21/14 21:46	Q
GAIN-HG-22D-031914	J1402025-007	7.62	-		1	NA	3/21/14 21:55	Q

	QA/QC Report
Client:	Beazer East, Inc.
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14
Sample Matrix:	Water

Service Request: J1402025 Date Collected: 3/19/14 Date Received: 3/19/14 Date Analyzed: 3/21/14

Matrix Spike Summary General Chemistry Parameters

Sample Name:	GAIN-HG-22D-031914	Units: mg/L
Lab Code:	J1402025-007	Basis: NA
Analytical Method:	300.0	

		GAIN-H N J14	łG-22D-031 <mark>Iatrix Spike</mark> 02025-007N	914MS 9 4S		
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits	
Chloride	3.1	53.5	50.0	101	90 - 110	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

	QA/QC Report	
Client: Project: Sample Matrix:	Beazer East, Inc. Gainesville March 2014 UIC GW Monitoring/OM-0450-14 Water	Service Request: J1402025 Date Collected: 3/18/14 Date Received: 3/19/14 Date Analyzed: 3/19/14
	Replicate Sample Summary General Chemistry Parameters	
Sample Name: Lab Code:	GAIN-M-25A-031814 J1402025-001	Units: ColorUnits Basis: NA

					GAIN-M- 4[25A-03181 DUP		н Т
				Sample	Duplica J140202	te Sample 5-001DUP		RPD
Analyte Name	Method	LOQ	MDL	Result	Result	Average	RPD	Limit
Color, True	SM 2120 B	5.0	5.0	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

		QA	/QC Report					
Client: Project: Sample Matrix:	Beazer East, Inc. Gainesville March 2014 U Water	UIC GW Monitor	ing/OM-0450)-14		Service Re Date Coll Date Rec Date Ana	quest: J140 ected: 3/18 eived: 3/19 lyzed: 3/21	02025 8/14 9/14 1/14
		Replicate General Ch	Sample Sum emistry Para	mary meters				
Sample Name: Lab Code:	GAIN-M-25B-031814 J1402025-004					U B	nits: mg/L asis: NA	
Analyte Name	Method	LOO	MDL	Sample Result	GAIN-M 4I Duplica J140202 Result	-25B-03181 DUP te Sample 5-004DUP Average	RPD	RPD Limit
Solids, Total Dissolved	I SM 2540 (C 10	10	196	194	195	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

	QA/QC Report		
Client:	Beazer East, Inc.	Service Request:	J1402025
Project:	Gainesville March 2014 UIC GW Monitoring/OM-0450-14	Date Collected:	3/19/14
Sample Matrix:	Water	Date Received:	3/19/14
		Date Analyzed:	3/21/14
	Replicate Sample Summary		

Replicate Sample Summary General Chemistry Parameters

Sample Name: Lab Code:	GAIN-HG-22D-031914 J1402025-007					U	nits: mg/L asis: NA	
Analyte Name	Method	LOQ	MDL	Sample Result	GAIN-HO 141 Duplica J140202: Result	-22D-0319 DUP te Sample 5-007DUP Average	RPD	RPD Limit
Chloride	300.0	1.0	0.2	3.1	3.0	3.05	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

		QA/Q	C Report					
Client:	Beazer East, Inc.					Service Rec	uest: J14	02025
Project:	Gainesville March 2014 UIC G	W Monitoring	z/OM-0450-	14		Date Colle	ected: 3/19)/14
Sample Matrix:	Water					Date Reco	eived: 3/19)/14
						Date Anal	yzed: 3/21	1/14
	G	Replicate Sa eneral Chem	mple Summ istry Paran	ıary neters				
Sample Name	GAIN-HG-22D-031914					U	nits: pHU	nits
Lab Code:	J1402025-007					B	asis: NA	
					GAIN-HC 14 Duplica	G-22D-0319 DUP te Sample		
				Sample	J140202	5-007DUP		RPD
Analyte Name	Method	LOQ	MDL	Result	Result	Average	RPD	Limit
bH	SM 4500-H+ B	ب مەنبىيىنى بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بى يىرى بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىي		7.62	7.62	7.62	<]	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Beazer East, Inc.Project:Gainesville March 2014 UIC GW Monitoring/OM-0450-14Sample Matrix:Water

Service Request: J1402025 Date Analyzed: 3/19/14 -3/21/14

Lab Control Sample Summary General Chemistry Parameters

Units: ColorUnits Basis: NA

		Lab C	Control Sample	
		J14	02025-LCS	
			Spike	% Rec
Analyte Name	Method	Result	Amount % Rec	Limits
Color, True	SM 2120 B	30.0	25.0 120	80 - 120

Results flagged with an asterisk (*) indicate values outside control criteria,

QA/QC ReportClient:Beazer East, Inc.Project:Gainesville March 2014 UIC GW Monitoring/OM-0450-14Sample Matrix:Water

Service Request: J1402025 Date Analyzed: 3/19/14 -3/21/14

Lab Control Sample Summary General Chemistry Parameters

Units: mg/L Basis: NA

		Lab C J14	Control Sam 02025-LCS	ple S	
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride Solids, Total Dissolved	300.0 SM 2540 C	50.1 301	50.0 300	100 100	90 - 110 85 - 115

Results flagged with an asterisk (*) indicate values outside control criteria.

Inorganic Analysis: General Chemistry and Physical Parameters

Validation Package

Raw Data

(ALS) Elisabersian	1999 STARIA 			- K-1	. 1			· · · · · · · · · · · · · · · · · · ·
Analyst: (FISCH	tCR		Date:	3-19-1	Ц		LIMS ID:	384507 12414
				Calibration S	itds Trace f	bren 844	-21A	EXD: 32-24-14
aOH Trace # N	A	Exp: NA	<u> </u>	Color LCS T	race # (2)	en R6-12	<u> </u>	Exp: 5-30-15
2504 Trace #	<u> </u>	Exp: N4	<u>+</u>	pH Calibratio	on Book & I	Page Number 🖇	567 pe	<u></u>
Sample ID	Initial pH (Acceptance Range 4-10)	Adjusted pH yalue (Range 4-10)	Sample Vol Used (mL)	Dilution Factor	Color /Reading (CU)	Final Result (CU)	Reading Time	Comments
18	NA	NA	SU	١	Ø	0	1805	
CS TV=25CU	I		50		30	30	1812	120 % Rec : Criteria 80-120% m
1402025-1	696		50		0	0	18:15	
I IMP	7.03		50		0	0	18:17	RPD KI'I.
2.	7.48		50		10	0	18:19	
3	7.27		50		_0_	0	1820	
<u> </u>	6.41		50		0]	(0	18:27	
5	7.41		50		5	5	1830	
6	9.00		50		5.	5	1832	
1 7	7.17	J.	50	V	30	30	1834	
Contraction and the local data a				-		eterseging car yellana (j) en: Miljeret Miljeret and karjonaleter	277/bitterrough	
								\geq
						,		
- · · ·								
·						1		
					-	A	1-1-19-11	4
	<u></u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	Reviewed E	зу:	3/21	0/14 468

COLOR 12/31/2013

Columbia Analytical Services Analytical Run Coversheet

Analyst: ABR	ABRATLI Analysis Date:			3/21/2014		J	-Titrator-01		
Analyses: <u>Cond</u>		Method References	:Co	ond: 120.1	′ 2510B p⊦	150.1 / 45	500H ⁺ B / 9040		
LIMS Analytical Batch Numbers Within This Analysis Run									
384878	384878								
agina kananana manana da 1944 - 1946 da sa sa sa kanana na arawana manana manana sa	RACABIL	ITY	r						
	Stock Standa	ard		Trace ID		Go	od Through		
	pH-2 Primar	у		EENR5-720		9	130/14		
700 3/24/1	ч 🔶 pH-7 Primar	у		- K6-23A		8	130/15		
	(pH-1 2.46 Prim	ary		RG	RG-IIR		1/30/14		
	pH-7 Seconda	ary		1 pc	V 26-78B		11/30/15		
Conc	Juctivity Primary (14	.9 µmhos/cm)		NA			NA		
Cond	luctivity Primary (14	12 µmhos/cm)					T		
Condu	uctivity Primary (128	90 µmhos/cm)							
Condu	ctivity Secondary (1	000 µmhos/cm)	· · ·						
	******	Com	nems						
And Chammada and the State of All and the State of State State and Annual Annual Annual Annual Annual Annual A				Mahalandaria e estre asissadori					
·····		·····							
	<u> </u>	······							
<u></u>	****								
	······								
+					******				

Reviewed By / Date:

R staulin

PC-TitratION PLUS Calibration Report

Calibration Record # 692

"False" means the calibration was NOT within the specified ranges

Calibration Data	Standard	Reading
	4.00	134.15
	7.00	-40.28
	10.00	-215.45

Columbia Analytical Services

Auto Titrator (pH, Conductivity) Data Sheet

Operator: ABRATLI

Sample ID	RPT	Cond (uMbo)	nH	Temp (°C)	Vol (ml.)	Analysis Date	Analysis Time	00
		(divino)			(IIIL)	0000	1010	
prime	Y	802.53	7.96	23.44	15	3/21/2014	18:30:40	
rinse-1	Y	0.17	6.07	24.25	15	3/21/2014	18:36:24	
pH 4 readback	Y		4.01	23.2	15	3/21/2014	18:45:25	
pH 7 readback	Y		7.00	23.09	15	3/21/2014	18:51:04	
pH 10 readback	Y		10.01	23.03	15	3/21/2014	18:56:42	
ICV pH 7	Y		7.00	23.28	15	3/21/2014	19:02:20	
rinse-2	Y	0.37	6.74	23.68	15	3/21/2014	19:10:25	
ccv-250 alk	Y	539.4	10.70	23.65	15	3/21/2014	19:17:35	
ccb-blank	Y	0.79	6.34	23.73	15	3/21/2014	19:22:25	CCB OK

2014032	
Order Number	
1223	

Run Number	1223 Order	Nun	<u>1ber</u>	201403	7-7-7-								·	
SampleID	Schedule Name	<u>Vial</u>	RunDate	RunTime	<u>Vol (mL)</u>	cond (uS)	На	palk-mg/L	talk-mg/L	bcarb-mg/L	carb-mg/L	hvdr-mg/L	Operator	Temp
RH4-readback		ო	3/21/2014	18:45	1.00	00'1-	4.01	00.1		1.00	-1.00	-1.00	ABRATL	-23.20
pH 7 readback	Hd	4	3/21/2014	18:51	1.00	-1.00	7.00	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	23.09
pH 10 readback	Hd	ĥ	3/21/2014	10:56	1 00	-1.00	10.01	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	23.03
ICV pH 7	Hd	Q	3/21/2014	19:02	1.00	-1.00	00.7	 	-1.00	-1.00	-1.00	-1.00	ABRATLI	23.28
rinse-2	אדוואו וא א געם עדעאדטו ורוואטר	۲.,	ASSIGNA.	19:10	15.00	.37	6.74	00	2.72	2:72	8	0	ABRATLI	23.68
ccv-250 alk	אבוואו נעש וע דום אבוואובטו וכוואטכ	8	3/21/2074 4		15.00	539.40	10.70	114.74	227.67	00.	225.86		ABRATLI	23,65
ccb-blank	אבוועו זע זוע חם אבוואנבטי וטועטט	თ	3/21/2014	19:22	15.00	67.	6.34	00	3.38	3.38	00	00	ABRATID	23.73
phineducture	PH QC.FUIL		3/21/2014	49:31	001		8.05		1.00	-1.00	-1.00	-1.00	ABPATL	23,00
pH-7 CCV-1	PH QC		3/21/2014	19:36	1.00	-1,00	7.00	-1,00	-1.00	-1.00	-1.00	-1.00	ABRATLI	23.01
J1401915-001	CONDUCTIVITY-PH	ო	3/21/2014	19:40	1.00	332.43	7.99	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	20.15
J1401915-001R	CONDUCTIVITY-PH	ო	3/21/2014	19:44	1.00	324.11	8.02	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	20.11
JQ1402169-01 DUP	CONDUCTIVITY-PH	4	3/21/2014	19:48	1.00	326.19	8.01	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	19.88
JQ1402169-01 DUPR 4	1% L&BCONDUCTIVITY-PH	4	3/21/2014	19:52	1.00	320.99	8.03	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	20.18
J1401915-002	CONDUCTIVITY-PH	ŝ	3/21/2014	19:56	1.00	326.19	7.94	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	20.20
J1401915-002R	CONDUCTIVITY-PH	ŝ	3/21/2014	20:00	1.00	324.11	7.96	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	20.51
J1401915-003	CONDUCTIVITY-PH	Q	3/21/2014	20:05	1.00	327.23	7.97	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	20.59
J1401915-003R	CONDUCTIVITY-PH	9	3/21/2014	20:09	1.00	324.11	7.98	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.03
J1401984-001	CONDUCTIVITY-PH	7	3/21/2014	20:13	1.00	330.35	7.96	-1.00	-1.00	-1.00	-1,00	-1.00	ABRATLI	21.16
J1401984-001R	CONDUCTIVITY-PH	7	3/21/2014	20:17	1.00	328.27	7.97	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.41
J1401984-002	CONDUCTIVITY-PH	ω	3/21/2014	20:21	1.00	329.31	7.94	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.21
J1401984-002R	CONDUCTIVITY-PH.	õ	3/21/2014	20:26	1.00	326.19	7.95	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.40
J1401984-003	CONDUCTIVITY-PH	6	3/21/2014	20:30	1,00	326.19	7.92	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.11
J1401984-003R	CONDUCTIVITY-PH	თ	3/21/2014	20:34	1.00	325,15	7.94	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.44
J1402002-001	CONDUCTIVITY-PH	10	3/21/2014	20:38	1.00	2,311.66	8.04	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.08
J1402002-001R	CONDUCTIVITY-PH	10	3/21/2014	20:44	1.00	2,311.66	8.05	-1.00	-1.00	-1.00	1.00	-1.00	ABRATLI	21.40
J1402019-001	CONDUCTIVITY-PH	-	3/21/2014	20:48	1.00	1,704.78	7.40	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.37
J1402019-001R	CONDUCTIVITY-PH	,	3/21/2014	20:54	1.00	1,680.10	7.43	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.53
L 1402025-001	CONDUCTIVITY-PH	12	3/21/2014	20:58	1.00	237.78	7.40	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	21.79
NH402025-001R	CONDUCTIVITY-PH	12	3/21/2014	21:02	1.00	235.70	7.45	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.03
pH-7 CCV-2	PH QC		3/21/2014	21:05	1.00	-1.00	7.00	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.86

Page: 686 of 687 PC-TitratION PLUS by Man-Tech Associates, Inc.

GENERAL RESULTS REPORT.SRW Copyright Hinterland Software Ltd.

-1.00

Run Rumber	1225 <u>O</u>	der Nun	<u>nber</u>	201403	21-3									
<u>SampleID</u>	Schedule Name	<u>Vial</u>	RunDate	RunTime	<u>Vol (mL)</u>	cond (uS)	핑	<u>paik-mg/L</u>	talk-mg/L	bcarb-mg/L	carb-mg/L	hydr-mg/L	<u>Operator</u>	Temp
J1402025-002	CONDUCTIVITY-PH	14	3/21/2014	21:09	1.00	260.66	7.80	, -1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.54
J1402025-002R	CONDUCTIVITY-PH	14	3/21/2014	21:13	1.00	256.50	7.83	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.67
J1402025003	CONDUCTIVITY-PH	15	3/21/2014	21:17	1.00	198.68	7.66	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.81
J1402025-003R	CONDUCTIVITY-PH	15	3/21/2014	21:21	1.00	196.49	7.68	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.93
J1402025-004	CONDUCTIVITY-PH	16	3/21/2014	21:26	1.00	314.75	6.98	ر -1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.72
J1402025-004R	CONDUCTIVITY-PH	16	3/21/2014	21:30	1.00	313.71	7.00	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.74
J1402025-005	CONDUCTIVITY-PH	17	3/21/2014	21:34	1.00	263.78	7.83	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.60
J1402025-005R	CONDUCTIVITY-PH	17	3/21/2014	21:38	1.00	260.66	7.86	-1.00	-1,00	-1.00	-1.00	-1.00	ABRATLI	22.66
J1402025-006	CONDUCTIVITY-PH	18	3/21/2014	21:42	1.00	159.05	8.97	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.54
J1402025-006R	CONDUCTIVITY-PH	18	3/21/2014	21:46	1.00	157.70	8.92	-1.00	-1.00	-1.00	-1.00	-1,00	ABRATLI	22.66
J1402025-007	CONDUCTIVITY-PH	19	3/21/2014	21:50	1.00	231.54	7.60	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.58
J1402025-007R	CONDUCTIVITY-PH	19	3/21/2014	21:55	1.00	228.42	7.62	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.58
JQ1402169-02 DUP	CONDUCTIVITY-PH	20	3/21/2014	21:59	1.00	232.58	7.60	, -1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.74
JQ1402169-02 DUPR ≦15₀M	PB CONDUCTIVITY-PH	20	3/21/2014	22:03	1.00	228.42	7.62	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.78
pH-7 CCV-3	PH QC		3/21/2014	22:05	1.00	-1.00	7.01	-1.00	-1.00	-1.00	-1.00	-1.00	ABRATLI	22.87

Page: 687 of 687 PC-TitrattON PLUS by Man-Tech Associates, Inc.

473

GENERAL RESULTS REPORT.SRW Copyright Hinterland Software Ltd.

Columbia A	nalytical	Services
Analvtical	Run Cove	ersheet

Analysis:T			
	otal Dissolved Solids	Method References:	160.1 / SM 2540C
	COLUDME		
104°C Over		Balance ID:	1
180°C Over			<u>V</u>
100 0 0101			
	REAGEN		
Rea	agent Name	Trace ID	Good Through
	LCS	Gen 844-24A	6-4-14 -
·	1		
<u></u>	c	comments	
·····	· · · · · · · · · · · · · · · · · · ·		<u></u>
· ·		***************************************	
		••••••••••••••••••••••••••••••••••••••	
	94444-1/1020-1020-1020-1020-1020-1020-1020-10		
		uu (20)	· · ·
	10-1		
		un na sen de déla de la companya en mana ser contra companya de la dela companya de la dela companya en encomp	
	······································		
an new good and a second and a second and a second and a second second second second second second second second		,	

Reviewed By / Date:

W 3/24/14

Solids	U
olved	SM 2540
Diss	d 160.1/
Total	Metho

d 160.1/ SM 2540C				Date/Time In	Date/Time In	Date/Time In	Date/Time In	Date/Time In	Date/Time In
Analyst	LFISCHER	MRL: 10 mg/L	QC Limits	03/22/14	03/24/14	03/24/14			
Set-up Date:	3/21/14	LCV TV: 300 mg/L	85 to 115% Rec	9:35	12:27	16:20			
Set-up Time:	16:00:00	LODV TV: 30 mg/L	70 to 130% Rec	Date/Time Out	Date/Time Out	Date/Time Out	Date/Time Out	Date/Time Out	Date/Time Out
	-	Default Samp Vol (mL): 100		03/24/14	03/24/14	03/24/14			
				9:16	13:45	18:00			
015H	Einply Dish Spec	and FinalDistre		Dish +	T Dish +	Dish- Reside Wit3	DISh+ Repide Mt4	OISh + Reside Wn 5	Dish + Reside Wi 6

180°C Oven Dates, Times, and Weights

\$

-	an annual second second	27777	7777	87773	7777	7777	87777	****	7777	27777	7777	7777	07777		7777	77773	7777	7777	7777	7777	7777	7777	W7777	7777	
	+ 5 (1)																								
	Teslor (6																								
	ی ج																								
_	2				IA						IA)			\square	(IA	IA	IA)	(A)		\square	H				IA)
	+5															$\langle \rangle$									$\langle \rangle$
	Pesic																								
。	1ê				34							04		56				83	75	03					
18:0	tid 20				74.36							68.74		92.77		\square		101.12	93.22	71.61					
	а. А(
3:45	t No	3.4842	8056	3765	.3638	.2900	4158	4904	2894	.9509	1.8876	.7442	4102	. 7756	4374	1727	.2269	1.1282	.2272	6106	.5425	.6000	.6889	.5393	1.4206
Ĺ	2.2	73	85	88	74	69	75	67	96	87	78	68	67	92	73	86	66	10.	63	71	. 69	67	94	88	10
16		1841	054	3765	629	898	156	900	894	508	879	437	100	751	375	724	268	1274	267	101	423	003	893	395	4209
<u>.</u>	1	73.4	85.8	88.3	74.3	69.2	75.4	67.4	96.2	87.9	78.8	68.7	97.4	92.7	73.4	98.7	99.2	101.	93.2	71.6	69.5	67.6	94.6	88.5	101.
													·						$\overline{\ }$		-				
	iej -		, Sec																þ						0
	Cem		0.3% F																.0% RF						3% RF
	ğ		10																-						0
	1.11			\mathbf{i}	~	\searrow				<u> </u>												`	_		\leq
	÷,	1.0	1.0	50	2.0	2.0	1.0	1.0	1.0	4.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	4.0	4.0	4.0
	() Ou		0.1	4.0	6.0	4.0	7.0	5.0	0.0	0.0	0	0	q	a.	3.0	3.0	2.0	9,0	0.4	2.0	9.0	4.0	4.0	4.0	6.0
	201	4	8	4	4	10	53	22	53	554	1	2		· · ·	ió.	ó	ĕ	ត	ര	ici				4	45
	and a sub-second second second second second	1 1		*	-									٢	÷		ġ	·	÷	1	1	15,	252	N N	
	100	842	056	765 11	634 1	900	158	904	894	509	876	440	102	756 1	374 1	727	269	283	275 1	103 1	425 11	000 15	889 25/	393 2	206 2
	trailDish+ Residue VM (0)	73.4842	85.8056	88.3765 11	74.3634	69.2900	75.4158	67.4904	96.2894	87.9509	78.8876	68.7440	97.4102	92.7756 1	73.4374 10	98.7727	99.2269	101.1283	93.2275 1	71.6103 11	69.5425 11	67.6000 15/	94.6889 252	88.5393 2	101.4206 2
	amp Final Distr- Val: Restitie Mi ML) 10)	100 73.4842	100 85.8056	50 88.3765 11	50 74.3634 1	50 69.2900	100 75.4158	100 67.4904	100 96.2894	25 87.9509	100 78.8876	100 68.7440	100 97.4102	100 92.7756 1	100 73.4374 10	100 98.7727	100 99.2269	100 101.1283 1	100 93.2275 1	100 71.6103 1	100 69.5425 11	100 67.6000 15/	25 94.6889 25/	25 88.5393 2	25 101.4206 2
	c Samp Final Dish + Vot Residue Vh (mL) (9)	100 73 4842	100 85.8056	3 50 88.3765 11	2 50 74.3634 1	2 50 69.2900	100 75.4158	100 67.4904	100 96.2894	0 25 87.9509 2	100 78.8876	100 68.7440	100 97.4102	100 92.7756 1	100 73.4374 10	100 98.7727	100 99.2269	100 101.1283 1	100 93.2275 1	100 71.6103 11	100 69.5425 11	100 67.6000 15) 25 94.6889 254	25 88.5393 2	25 101.4206 2
	Spec Spec Final Dish + Spec Voi Registration Cond (mL) (0)	1 100 73.4842	1 100 85.8056	1573 50 88.3765 11	1792 50 74.3634 1	1292 50 69.2900	337 100 75.4158	344 100 67.4904	337 100 96.2894	3500 25 87.9509 2	26 100 78.8876	27 100 68.7440	19 100 97.4102	20 100 92.7756 1	260 100 73.4374 10	290 100 98.7727	220 100 99.2269	340 100 101.1283 1	340 100 93.2275 1	290 100 71.6103 11	180 100 69.5425 11	260 100 67.6000 15 [,]	3400 25 94.6889 25/	3400 25 88.5393 2	3400 25 101.4206 2
	Dish Spec Samp Final Dish + 05h Spec Vol Residue Vi 0) Cond (mL) [9]	38 1 100 73.4842	55 1 100 85.8056	93 1573 50 88.3765 11)31 1792 50 74.3634 1	1292 50 69.2900	13-1 337 100 75.4158	79 344 100 67.4904	74 337 100 96.2894	74 3500 25 87.9509 2	59 26 100 78.8876	19 27 100 68.7440	91 19 100 97.4102	45 20 100 92.7756 1	11 260 100 73.4374 1	64 290 100 98.7727	37 220 100 99.2269	087 340 100 101.1283 1	81 340 100 93.2275 1	41 290 100 71.6103 11	06 180 100 69.5425 11	46 260 100 67.6000 15 [,]	53 3400 25 94.6889 254	77 3400 25 88.5393 2	592 3400 25 101.4206 2
	Samp Dish Samp Final Dish + Samp Dish Spec. Volt Residue Vol Wi g) Cond (mb) (g)	73.4838 1 100 73.4842	85.7755 1 100 85.8056	88.3193 1573 50 88.3765 11	74.2931 1792 50 74.3634 1	69.2398 1292 50 69.2900	75.3931 337 100 75.4158	67.4679 344 100 67.4904	96.2674 337 100 96.2894	87.8874 3500 25 87.9509 2	78.8859 26 100 78.8876	68.7419 27 100 68.7440	97.4091 19 100 97.4102	92.7745 20 100 9 2.7756 1	73.4211 260 100 73.4374 10	98.7564 290 100 98.7727 1	99.2137 220 100 99.2269	101.1087 340 100 101.1283 1	93.2081 340 100 93.2275 1	71.5941 290 100 71.6103 1	69.5306 180 100 69.5425 11	67.5846 260 100 67.6000 15-	94.6253 3400 25 94.6889 25/	88.4777 3400 25 88.5393 2	101.3592 3400 25 101.4206 2
	DISH Emply Dish Spec Val Residuary 10 M 30 Cond (mb) (3)	PJG 73.4838 1 100 73.4842	AMP 85.7755 1 100 85.8056	PIT 88.3193 1573 50 88.3765 11	AXE 74.2931 1792 50 74.3634 1	NLO 69.2398 1292 50 69.2900	GGK 75.3931 337 100 75.4158	QRT 67.4679 344 100 67.4904	AJB 96.2674 337 100 96.2894	THE 87.8874 3500 25 87.9509 2	LEF 78.8359 26 100 78.8876	NXS 68.7419 27 100 68.7440	END 97.4091 19 100 97.4102	URN 92.7745 20 100 92.7756 1	TOT 73.4211 260 100 73.4374 1	SAY 98.7564 290 100 98.7727	FEL 99.2137 220 100 99.2269	MUF 101.1087 340 100 101.1283 1	HER 93.2081 340 100 93.2275 1	ERQ 71.5941 290 100 71.6103 1	ARG 69.5306 180 100 69.5425 11	ZRK 57.5846 260 100 67.6000 15-	COB 94.6253 3400 25 94.6889 25-	MTV 88.5393 25 88.5393 2	GRL 101.3592 3400 25 101.4206 2
	CISH Empty Dish Spec. Val. Restaurov (b) Wit (c) Cond (mb.) (c)	PJG 73.4838 1 100 73.4842	AMP 85.7755 1 100 85.8056	PIT 88.3193 1573 50 88.3765 11	AXE 74.2931 1792 50 74.3634 1	NLO 69.2398 1292 50 69.2900	GGK 75.3931 337 100 75.4158	QRT 67.4679 344 100 67.4904	AJB 96.2674 337 100 96.2894	THE 87.8874 3500 25 8 7.9509	LEF 78.8859 26 100 78.8876	NXS 58.7419 27 100 68.7440	END 97.4091 19 100 97.4102	URN 92.7745 20 100 92.7756 1	TOT 73.4211 260 100 73.4374 1	SAY 98.7564 290 100 98.7727	FEL 99.2137 220 100 99.2269	MUF 101.1087 340 100 101.1283 1	JP HER 93.2081 340 100 93.2275 1	ERQ 71.5941 290 100 71.6103 1	ARG 69.5306 180 100 69.5425 11	ZRK 57.5846 260 100 67.6000 15-	COB 94.6253 3400 25 94.6889 254	MTV 88.4777 3400 25 88.5393 2	JP GRL 101.3592 3400 25 101.4206 2
	E.ID IN TITUT Samp Final Dish + Cond Samp Final Dish + Cond Samp Cond (mb) - C	4817 PJG 73.4838 1 100 73.4842	4817 AMP 85.7755 1 100 85.8056	1-001 PIT 88.3193 1573 50 88.3765 11	1-002 AXE 74.2931 1792 50 74.3634 1	1-003 NLO 69.2398 1292 50 69.2900	001 GGK 75.3931 337 100 75.4158	4-002 QRT 67.4679 344 100 67.4904	4-003 AJB 96.2674 337 100 96.2894	9-003 THE 87.8874 3500 25 87.9509 2	3-001 LEF 78.8359 26 100 78.8876	3-002 NXS 58.7419 27 100 68.7440	3-003 END 97.4091 19 100 97.4102	3-004 URN 92.7745 20 100 92.7756 1	5-001 TOT 73.4211 260 100 73.4374 1	5-002 SAY 38.7564 290 100 98.7727	5-003 FEL 99.2137 220 100 99.2269	5-004 MUF 101.1087 340 100 101.1283 1	004DUP HER 93.2081 340 100 93.2275 1	5-005 ERQ 71.5941 290 100 71.6103 1	5-006 ARG 69.5306 180 100 69.5425 11	5-007 ZRK 57.5345 260 100 67.6000 15-	5-003 COB 94.6253 3400 25 94.6889 254	3-003 MTV 88.4777 3400 25 88.5393 2	003DUP GRL 101.3592 3400 25 101.4206 2
	AMPLE ID IDSH Emply Dish Spec. Vol. Residuar04 AMPLE ID ID Witig) Cond (mb.) (9)	18-384817 PJG 73-4838 1 100 73-4842	CS-384817 AMP 85.7755 1 100 85.8056	401971-001 PIT 88.3193 1573 50 88.3765 11	401971-002 AXE 74.2931 1792 50 74.3634 1	401971-003 NLO 69.2398 1292 50 69.2900	401984-001 GGK 75.3931 337 100 75.4158	401984-002 QRT 67.4679 344 100 67.4904	401984-003 AJB 96.2674 337 100 96.2894	401999-003 THE 87,8874 3500 25 87,9509 2	402003-001 LEF 78.8859 26 100 78.8876	402003-002 NXS 58.7419 27 100 68.7440	402003-003 END 97.4091 19 100 97.4102	402003-004 URN 92.7745 20 100 92.7756 1	402025-001 TOT 73.4211 260 100 73.4374 1	402025-002 SAY 98.7564 290 100 98.7727 1	402025-003 FEL 99.2137 220 100 99.2269	402025-004 MUF 101.1087 340 100 101.1283 1	2025-004DUP HER 93.2081 340 100 93.2275 1	402025-005 ERQ 71.5941 290 100 71.6103 1	402025-006 ARG 69.5306 180 100 69.5425 11	\$02025-007 ZRK 57.5846 260 100 67.6000 15	402035-003 COB 94.6253 3400 25 94.6889 25-	402063-003 MTV 88.4777 3400 25 88.5393 2	2063-003DUP GRL 101.3592 3400 25 101.4206 2
	DISH Emply Dish Spec. Samp Final Dish - SAMPLE ID ID Witig) Cond (mb.) (9)	MB-384817 PJG 73.4838 1 100 73.4842	LCS-384817 AMP 85.7755 1 100 85.8056	J1401971-001 PIT 88.3193 1573 50 88.3765 11	J1401971-002 AXE 74.2931 1792 50 74.3634 1	J1401971-003 NLO 69.2398 1292 50 69.2900	J1401984-001 GGK 75.3931 337 100 75.4158	J1401984-002 QRT 67.4679 344 100 67.4904	J1401984-003 AJB 96.2674 337 100 96.2894	J1401999-003 THE 87.8874 3500 25 87.9509 2	J1402003-001 LEF 78.8859 26 100 78.8876	J1402003-002 NXS 58.7419 27 100 68.7440	J1402003-003 END 97.4091 19 100 97.4102	J1402003-004 URN 92.7745 20 100 92.7756 1	J1402025-001 TOT 73.4211 260 100 73.4374 1	J1402025-002 SAY 38.7564 290 100 98.7727 1	J1402025-003 FEL 99.2137 220 100 99.2269	J1402025-004 MUF 101.1087 340 100 101.1283 1	J1402025-004DUP HER 93.2081 340 100 93.2275 1	J1402025-005 ERQ 71.5941 290 100 71.6103 1		₩₩02025-007 ZRK 57.5845 260 100 67.6000 15-	¹ √402035-003 COB 94.6253 3400 25 94.6889 254	J1402063-003 MTV 88.4777 3400 25 88.5393 2	J1402063-003DUP GRL 101.3592 3400 25 101.4206 2

ALS Environmental Analytical Run Coversheet

. т.т. Т.т.с._{гор}

Analyst:	ABB	_ Ana	lysis Date:		3/21/2014	4	Inst ID:	J-IC-0	03
Analysis:	Ion Chromatog	graphy		Method R	eferences:		300.0 / 9	9056	
		_IMS Ana	lytical Ba	tch Numt	ers Withi	n This An	alysis Run	*****	
384	756 384	4759	384	1761	384	1763			
		<u> </u>	STA	NDARD	FRACABI	<u>.ITY</u>			
Sto	ock Standard	Wo	orking Sta	ndards M	lade	Tra	ce ID	Good Thr	ough
			CCV/LC	CS/Spike		IC03	- <u>918</u>	41	13/14
			MRL Inte	ermediate		IC03	- 90B	4/2	114
			DE		DAGADU				
		anant Ma	<u> </u>	AGENII	RACABIL			-	
	Ke	agent Nai	ne			Irac	ze ID	Good Thr	ough
	Elu	lent				IC03	- 91E	3 28	14/
·									
				.					
		STAN		ONCENT	RATIONS		GES		
							Bomb		
	Element	MRL	UQL	ICV	ccv	LCS	LCS	Units	
	Fluoride	0.2	20	5	5	5	0	mg/L	
	Chloride	0.5	200	50	50	50	13.38	mg/L	
	Nitrite	0.2	20	5	5	5	0	mg/L	
	Bromide	0.2	20	5	.5	5	0	mg/L	
	Nitrate	0.2	20	5	5	5	0	mg/L	
	OPO4	0.1	5	2.5	2.5	2.5	0	mg/L	
	Sulfate	0.5	200	50	50	50	321	ma/L	
a she ta									
			0 . 1	Com	nents		<u></u>		
~				A	MAA	Sr2 /			1
2054	-1 sent for	rean	alysi	<u></u>	19100	<u> </u>			
2054 1994	-1 sent for -36 sent f	for real	alysi ralys	<u>is - 0</u>	dill	tign w	la resu	lt < mar	
2054 1994 2053	$\frac{-1}{-36} \frac{1}{5} \frac$	br rea were	alysi rolys	is - ta	dilut dilut	lign w	la resu	lt < MRL altix	. /
2054 1994 2053	-1 sent for -36 sent f -1 to -3 -ferece (p)	Freak Freak Were	alysi ren a	<u>is - 0</u> <u>is -</u> <u>+ a</u>	dilut	lign w lign du	la resu	lt <mrl< td=""><td></td></mrl<>	
2054 1994 2053 inter	-1 sent for -36 sent f -1 to -3 -ferece (ph	rean for rea were	alysi ren a	$\frac{s-o}{s-a}$	dilud	ion du	la resu	lt «mrl altix	

Reviewed By / Date:

\$ 3/27/14 476

IC RUN SEQUENCE

Instrument ID: J-IC-003

Analysis Date:

3/21/2014

¥¥

INT 1 - 44	Somela ID	Analysis Data (Time	5 3. 10	1811.		Analysis	
4						Date/ I me	File ID
1 2	MRL	3/21/14 12:17	y3211217.CHVV	51	J1401994-008 5x	3/22/14 3:23	y3220323.CHW
2	CCB	3/21/14 12:49	y3211249.CHVV	52	J1401994-009 5x	3/22/14 3:39	y3220339.CHW
3		3/21/14 13:05	y3211305.CHW	53	J1401994-010 5x	3/22/14 3:55	y3220355.CHW
4 r	WB-364756	3/21/14 13:21	y3211321.CHW	54	J1401994-011	3/22/14 4:11	y3220411.CHW
5	LUS-384756	3/21/14 13:37	y3211337.CHW	55	CCV	3/22/14 4:27	y3220427.CHW
6	J1402053-001 1000x	3/21/14 13:53	y3211353.CHW	56	ССВ	3/22/14 4:43	y3220443.CHW
1	J1402053-002 1000x	3/21/14 14:09	y3211409.CHW	57	J1401994-012	3/22/14 4:59	y3220459.CHW
8	J1402053-003 1000x	3/21/14 14:25	y3211425.CHW	58	J1401994-014	3/22/14 5:15	y3220515.CHW
9	CCV	3/21/14 16:09	y3211609.CHW	59	J1401994-015	3/22/14 5:31	y3220531.CHW
10	ССВ	3/21/14 16:25	y3211625.CHW	60	J1401994-016	3/22/14 5:47	y3220547.CHW
11	J1402067-001	3/21/14 16:41	y3211641.CHW	61	J1401994-017 5x	3/22/14 6:03	y3220603.CHW
12	J1402067-001 2x	3/21/14 16:57	y3211657.CHW	62	J1401994-018 5x	3/22/14 6:19	ý3220619.CHW
13	J1402067-002	3/21/14 17:13	y3211713.CHW	63	J1401994-019 5x	3/22/14 6:35	y3220635.CHW
14	J1402067-003	3/21/14 17:29	y3211729.CHW	64	J1401994-020	3/22/14 6:51	y3220651.CHW
15	J1402067-005	3/21/14 17:45	y3211745.CHW	65	J1401994-021	3/22/14 7:07	y3220707.CHW
16	J1402067-006	3/21/14 18:02	y3211802.CHW	66	J1401994-022	3/22/14 7:23	y3220723.CHW
17	J1402067-006 2x	3/21/14 18:18	y3211818.CHW	67	CCV	3/22/14 7:39	y3220739.CHW
18	J1402068-001	3/21/14 18:34	y3211834.CHW	68	CCB	3/22/14 7:55	y3220755.CHW
19	CCV	3/21/14 18:50	y3211850.CHW	69	J1401994-022DUP	3/22/14 8:11	y3220811.CHW
20	CCB	3/21/14 19:06	y3211906.CHW	70	J1401994-022MS	3/22/14 8:27	y3220827.CHW
21	J1402053-006	3/21/14 19:22	y3211922.CHW	71	MB-384761	3/22/14 8:43	y3220843.CHW
22	J1402053-007	3/21/14 19:38	y3211938.CHW	72	LCS-384761	3/22/14 8:59	y3220859.CHW
23	J1402054-001	3/21/14 19:54	y3211954.CHW	73	J1401994-023	3/22/14 9:15	y3220915.CHW
24	J1402054-002	3/21/14 20:11	y3212011.CHW	74	J1401994-023DUP	3/22/14 9:31	y3220931.CHW
25	J1402054-003	3/21/14 20:27	y3212027.CHW	75	J1401994-023MS	3/22/14 9:47	y3220947.CHW
26	J1402054-003DUP	3/21/14 20:43	y3212043.CHW	76	J1401994-024	3/22/14 10:02	y3221002.CHW
27	J1402054-003MS	3/21/14 20:59	y3212059.CHW	77	J1401994-026	3/22/14 10:18	y3221018.CHW
28	J1402025-001	3/21/14 21:15	y3212115.CHW	78	J1401994-027 10x	3/22/14 10:34	y3221034.CHW
29	J1402025-002	3/21/14 21:31	y3212131.CHW	79	CCV	3/22/14 10:50	y3221050.CHW
30	J1402025-003	3/21/14 21:47	y3212147.CHW	80	CCB	3/22/14 11:06	y3221106.CHW
31	CCV	3/21/14 22:03	y3212203.CHW	81	J1401994-028	3/22/14 11:22	y3221122.CHW
32	CCB	3/21/14 22:19	y3212219.CHW	82	J1401994-029 5x	3/22/14 11:38	y3221138.CHW
33	J1402025-004	3/21/14 22:35	y3212235.CHW	83	J1401994-030	3/22/14 11:54	y3221154.CHW
34	J1402025-005	3/21/14 22:51	y3212251.CHW	84	J1401994-031	3/22/14 12:10	y3221210.CHW
35	J1402025-006	3/21/14 23:07	y3212307.CHW	85	J1401994-032	3/22/14 12:26	y3221226.CHW
36	J1402025-007	3/21/14 23:23	y3212323.CHW	86	J1401994-033	3/22/14 12:42	y3221242.CHW
37	J1402025-007DUP	3/21/14 23:39	y3212339.CHW	87	J1401994-034 5x	3/22/14 12:58	y3221258.CHW
38	J1402025-007 MS	3/21/14 23:55	y3212355.CHW	88	J1401994-035	3/22/14 13:14	y3221314.CHW
39	MB-384759	3/22/14 0:11	y3220011.CHW	89	J1401994-036 5x	3/22/14 13:30	y3221330.CHW
40	LCS-384759	3/22/14 0:27	y3220027.CHW	90	J1401994-037	3/22/14 13:46	y3221346.CHW
41	J1401994-002	3/22/14 0:43	y3220043.CHW	91	ccv	3/22/14 14:02	y3221402.CHW
42	J1401994-002DUP	3/22/14 0:59	y3220059.CHW	92	CCB	3/22/14 14:18	y3221418.CHW
43	ccv	3/22/14 1:15	y3220115.CHW	93	J1401994-038	3/22/14 14:34	y3221434.CHW
44	CCB	3/22/14 1:31	y3220131.CHW	94	J1401994-039	3/22/14 14:50	y3221450.CHW
45	J1401994-002MS	3/22/14 1:47	y3220147.CHW	95	J1401994-039DUP	3/22/14 15:06	y3221506.CHW
46	J1401994-003 20x	3/22/14 2:03	y3220203.CHW	96	J1401994-039MS	3/22/14 15:22	y3221522.CHW
47	J1401994-004	3/22/14 2:19	y3220219.CHW	97	J1401994-040	3/22/14 15:38	y3221538.CHW
48	J1401994-005	3/22/14 2:35	y3220235.CHW	98	J1401994-041 5x	3/22/14 15:54	v3221554.CHW
49 50	J 140 1994-000	3/22/14 2:51	y3220251.CHW	99	MB-384763	3/22/14 16:10	y3221610.CHW
00	017013397007	JIZZI 14 3,01	YJZZUJUI.UHVV	100	103-384/63	3/22/14 16:26	y3221626.CHW

IC RUN SEQUENCE

Instrument ID: J-IC-003

	Instrument ID:	J-IC-003			Analysis Date:	3/21/2	014
		Analysis				Analysis	
INJ #	Sample ID	Date/Time	File ID	INJ #	Sample ID	Date/Time	File ID
101	J1401994-042	3/22/14 16:42	y3221642.CHW			· · · · · · · · · · · · · · · · · · ·	
102	J1401994-042DUP	3/22/14 16:58	y3221658.CHW				
103	CCV	3/22/14 17:14	y3221714.CHW				
104	CCB	3/22/14 17:30	y3221730.CHW				
105	J1401994-042MS	3/22/14 17:46	y3221746.CHW				
106	J1401994-043	3/22/14 18:02	y3221802.CHW				
107	J1401994-044	3/22/14 18:18	y3221818.CHW				
108	J1401994-045	3/22/14 18:34	y3221834.CHW				
109	J1401994-046	3/22/14 18:50	y3221850.CHW				
110	J1401994-047	3/22/14 19:06	y3221906.CHW				
111	J1401994-048	3/22/14 19:22	y3221922.CHW				
112	J1402059-001 2x	3/22/14 19:38	y3221938.CHW				
113	J1402059-002 2x	3/22/14 19:54	y3221954.CHW				
114	J1402059-002DUP 2x	3/22/14 20:10	y3222010.CHW				
115	CCV	3/22/14 20:26	y3222026.CHW				
116	CCB	3/22/14 20:42	y3222042.CHW				
117	J1402059-002MS 2x	3/22/14 20:58	y3222058.CHW				
118	CCV	3/22/14 21:14	y3222114.CHW				
119	CCB	3/22/14 21:30	y3222130.CHW				

REPORTED DATA WITH FAILING CRITERIA

METHOD: 300.0 / 9056

Analysis Start Date: 3/21/2014

Sample ID	Analyte	Failure	Data File
······································			

Δ	7	G
7	1	1

5

170																	
y3212147.CHW	3/21/14 21:47	tililizin							2.314	0.000	0.000	0.153	0.000	9.064	0.506		J1402025-003
y3212131.CHW	3/21/14 21:31			te					0.501	0.000	0,000	0,000	0,000	7,818	0.331		J1402025-002
y3212115.CHW	3/21/14 21:15								4.883	0.000	0.000	0,000	0.000	1.258	0.138		J1402025-001
y3212059.CHW	3/21/14 20:59	99.6 %	103.0 %	108.2 %	106.0 %	100.0 %	100.7 %	96.0 %	77.006	2.574	5.981	5.299	5.124	58.114	4.958		J1402054-003MS
y3212043.CHW	3/21/14 20:43	0.1 %	0.0 %	2.3 %	0.0 %	0.8 %	0.3 %	1.9%	27.162	0.000	0,560	0.000	0.121	7.756	0.159		J1402054-003DUP
y3212027.CHW	3/21/14 20:27								27,194	0.000	0.573	0.000	0.122	7.777	0,156	<u>د.</u>	J1402054-003
y3212011.CHW	3/21/14 20:11								102.313	0.113	1,438	0,189	0,000	19.847	0.196	<u>د</u>	J1402054-002
y3211954.CHW	3/21/14 19:54								OVER	0.000	0.978	0.000	0.000	9.658	0.201		J1402054-001
y3211938.CHW	3/21/14 19:38								124.409	0.000	0.154	0.000	0.000	6.041	0.189		J1402053-007
y3211922.CHW	3/21/14 19:22								91.910	0.000	0.000	0,163	0.000	9.698	0.205		J1402053-006
y3211906.CHW	3/21/14 19:06	< 0.5	< 0.1	< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	 	CCB
y3211850.CHW	3/21/14 18:50	% 0.86	108.7 %	105.3 %	103.3 %	100.6 %	99.3 %	99.0 %	49.003	2.718	5,264	5.166	5.032	49.640	4.951		CCV
y3211834.CHW	3/21/14 18:34								38.120	0.663	0.275	0.000	0.000	8.282	0.342		J1402068-001
y3211818.CHW	3/21/14 18:18								5.963	0.109	0.000	0000	0,000	1.501	0.171	N	J1402067-006
y3211802.CHW	3/21/14 18:02								12.855	0.167	0.000	0.000	0.000	2.913	0.218		J1402067-006
y3211745.CHW	3/21/14 17:45								1.620	0.000	0.000	0.000	0.000	2.192	0.207		J1402067-005
y3211729.CHW	3/21/14 17:29								66.523	0.000	0.000	0.355	0.000	7.758	0,195	 د	J1402067-003
y3211713.CHW	3/21/14 17:13								49,946	0.000	0.000	0.676	0.000	12,418	0.140		J1402067-002
y3211657.CHW	3/21/14 16:57						·		10.206	0.000	0,187	0.267	0.000	30.253	0,154	N	J1402067-001
y3211641,CHW	3/21/14 16:41								21.551	0.094	0.231	0.388	0.000	60.996	0.187		J1402067-001
y3211625.CHW	3/21/14 16:25	< 0.5	< 0.1	< 0.2	< 0.2	< 0.2	< 0,5	< 0.2	0.000	0,000	0,000	0.000	0.000	0,000	0.000		CCB
y3211609.CHW	3/21/14 16:09	99.2 %	109.2 %	106.6 %	105.5 %	101.7 %	100.1 %	103.3 %	49.596	2.729	5,331	5.274	5.083	50.030	5,166		CCV
y3211425.CHW	3/21/14 14:25								26,690	0.000	0.000	0.000	0.000	0.319	0.000	1000	J1402053-003
y3211409.CHW	3/21/14 14:09								2.442	0,000	0.000	0.000	0.000	0.000	0.000	1000	J1402053-002
y3211353.CHW	3/21/14 13:53								6,192	0.000	0.000	0.000	0.000	0.323	0.000	1000	J1402053-001
y3211337.CHW	3/21/14 13:37	99.1 %	109.0 %	106.9 %	105.8 %	101.8 %	100.3 %	101.7 %	49.547	2.726	5.346	5.290	5.089	50.127	5.086		LCS-384756
y3211321.CHW	3/21/14 13:21	< 0.5	< 0.1	< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0,000	0.000	0.000	0.000	0.000	0.000	ــــ	MB-384756
y3211305.CHW	3/21/14 13:05	98.7 %	106.7 %	106.1 %	103.6 %	101.3 %	99.9 %	102.1 %	49.371	2.667	5,307	5.182	5.064	49.968	5,106		CCV
y3211249.CHW	3/21/14 12:49	< 0.5	< 0.1	< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000		CCB
y3211217.CHW	3/21/14 12:17								0.716	0.155	0.264	0.277	0.249	0.656	0.247	<u>ــــــــــــــــــــــــــــــــــــ</u>	MRL
File ID	Sample Date/Time	S04	OPO4	NO3	Br	NO2	ß	т, г	SO4 (mg/L)	OPO4 (mg/L)	(mg/L)	Br (mg/L)	NO2 (mg/L)	Cl (mg/L)	F~ (mg/L)	무	Sample ID
				eries	Recov	QC				W)	tions (RA	oncentra	Analyte C	4			
⁵ age 1 of 4							-	ë	OT REPORTE	- DATA N				iheet	nary S	m	IC Data S

IC Data Summary Sheet Analyte Concentrations (RAW) Sample D 1 1 0.00 0.000			
IC Data Summary Sheet Analyte Concentrations (RAW) Sample D Dr France No.2 B NO.3 CRW CCV 1 0.000 0			
IC Data Summary Sheet Analyte Concentrations (RAW) Analyte Concentrations (RAW) Sample D IF C CR No Concentrations (RAW) CCB 1 OP Impl No Concentrations (RAW) CCB 1 OP Source Interview (RAW) CCB Impl No CO Source Interview (RAW) CCB Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) Interview (RAW) <td></td> <td></td>			
IC Data Summary Sheet - Analyte Concentrations (RAW) Sample D Dr F- (may) Analyte Concentrations (RAW) F- (may) C CCV 1 0.000			
IC Data Summary Sheet - Analyte Concentrations (RAW) Sample D Imple D Analyte Concentrations (RAW) Sample D Imple D Imple D Imple D Imple D Imple D <th col<="" td=""><td>< 0.2 < 0.5 < 0.2</td><td>< 0.2 < 0</td></th>	<td>< 0.2 < 0.5 < 0.2</td> <td>< 0.2 < 0</td>	< 0.2 < 0.5 < 0.2	< 0.2 < 0
IC Data Summary Sheet Data Not REPORTE Analyte Concentrations (RAW) Sample D DF F- Cl NO2 Br NO3 OPO Sol CCB 1 4875 49.913 6.000 0.000	10.0 % 101.4 % 102.8 %	105,1 % 107.4	
Definingsi in miggi in			
IC Data Summary Sheet -DATAIVE Concentrations (RAW) Sample ID Franci Cincentrations (RAW) Sample ID Franci Cincentrations (RAW) Sample ID Franci Cincentrations (RAW) CCW 1 Analyte Concentrations (RAW) CCW 1 Analyte Concentrations (RAW) CCW 1 Analyte Concentrations (RAW) CCW 1 Analyte Concentrations (RAW) Analyte Concentration of the part of the part of the part of the part of the part of the part of the part of the part of the pa			
IC Data Summary Sheet -Analyte Concentrations (RAW) Sample ID DF (mpt)<			
)1.7 % 100.3 % 10	1.6 % 105.9 % 106.:	
	< 0.2 < 0.5 <	:0.2 < 0.2 < 0	
	03.1% 101.1% 10	2.6 % 105.0 % 107.;	
IC Data Summary Sheet Data Not Reported Analyte Concentrations (RAW) Sample ID DF G_1 NO2 Br NO3 $OPO4$ SO4 F G_1 G_1 G_2 Br G_3 $OPO4$ $SO4$ F G_1 G_2 Br G_3 $OPO4$ $SO4$ F G_1 CCV 1 4.875 4.9.913 5.060 5.192 5.283 2.599 49.192 97.5 % 99.8 % 1 J1402025-006 1 0.148 26.695 0.000 0.000 0.000 0.000 0.000 40.90 49.8 49.8 49.8 30.9 40.00 40.9 40.2	0.0 % 0.0 %	0.0 % 0.0 % 0.0	
IC Data Summary Sheet - DATA NOT REPORTED Sample ID Fr- CI NO2 B NO3 OPATA NOT REPORTED Sample ID DF Img/L) Img/L			
IC Data Summary Sheet - DATA NOT REPORTED Sample ID OF CI NO2 Br COC Br CO Br CI NO2 Br CI NO2 Br CI NO2 Br CI MI2 MI2 Br CI MI2 MI2 MI2 MI2 Br CI MI2 MI2 MI2 MI2 MI2 AI AI AI AI AI AI AI AI AI AI	9.3 % 101.0 % 10	2.4 % 104.9 % 107.	
IC Data Summary Sheet - DATA NOT REPORTED Sample ID F- CI NO2 BR NO3 OPO4 Source of the formations (RAW) Sample ID F- CI NO2 BR NO3 OPO4 Source of the formations (RAW) CCW I A 49.913 5.060 5.192 5.269 49.192 99.8 % 11 CCW I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 I J1402025-007 1 0.151 3.044 0.000 0.000 0.000 0.000 I J1402025-007 1 0.151 <th col<="" td=""><td>< 0.2 < 0.5</td><td>< 0.2 < 0.2 < 0</td></th>	<td>< 0.2 < 0.5</td> <td>< 0.2 < 0.2 < 0</td>	< 0.2 < 0.5	< 0.2 < 0.2 < 0
OPE INTERPORTED - DATA NOT REPORTED Sample ID DF CI NO3 OPO4 SOU Sample ID DF CI NO3 OPO4 SOU CCV 1 OPO6 S.293 2.599 49.192 97.5 % 99.8 % 10 CCV 1 OPO0 CO OPO0 S.293 2.599 49.192 97.5 % 99.8 % 10 CCV 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	8.4 % 100.8 % 10	1.4 % 102.0 % 106.	
- DATA NOT REPORTED Analyte Concentrations (RAW) Sample ID DF (mg/L)<	1.3% 0.2% 0.	0% 0.0% 0.0	
- DATA NOT REPORTED Analyte Concentrations (RAW) Sample ID DF Cl NO2 Br NO3 OPC4 SO4 F Cl CCV 1 4.875 49.913 5.060 5.192 5.293 2.569 49.192 97.5 % 99.8 % 10 J1402025-004 1 0.148 26.695 0.000 0.000 0.000 15.400 <			
- DATA NOT REPORTED Analyte Concentrations (RAW) Sample ID DF (mg/L)<			
- DATA NOT REPORTED Sample ID DF CI NO2 BF NO3 OPC4 SO4 CCV I Analyte Concentrations (RAW) CCV BF NO3 OPC4 SO4 CCV I A 1875 49.913 5.192 5.293 2.569 49.192 97.5 % 99.8 % 10 J1402025-004 1 0.000			
IC Data Summary Sheet - DATA NOT REPORTED Sample ID DF CI NO2 Br NO3 OPO4 SO4 Sample ID DF CI NO2 Br NO3 OPO4 SO4 CCV 1 49.913 5.060 5.192 5.293 2.569 49.95 % 99.8 % 10 CCV 1 0.000 0.000 0.000 0.000 CI CCB 1 0.000 <th cols<="" td=""><td></td><td></td></th>	<td></td> <td></td>		
IC Data Summary Sheet - DATA NOT REPORTED Analyte Concentrations (RAW) Sample ID DF (mg/L) (mg/L) Br NO3 OPO4 SO4 F Cl CCV 1 4.875 49.913 5.060 5.192 5.293 2.569 49.192 97.5 % 99.8 % 10	< 0.2 < 0.5 <	0.2 < 0.2 < 0	
IC Data Summary Sheet - DATA NOT REPORTED Analyte Concentrations (RAW) - DF Fr- Cl NO2 Br NO3 OPO4 SO4 Sample ID DF (mg/L) <	7.5 % 99.8 % 11	01.2 % 103.8 % 105.	
IC Data Summary Sheet -DATA NOT REPORTED Analyte Concentrations (RAW)	F~ 0 N	D2 Br NC	
IC Data Summary Sheet		QC Recoveries	

-

.

V3221346	3/22/14 13:46								8.884	0.000	0.399	0.000	0.000	13.000	0.157		150-56610410
,										Schoole of a state	11101001 003						
V3221330	3/22/14 13:30								0.000	8	0000	8 8	8	0.00	0.000	5	J1401994-036
y3221314	3/22/14 13:14								3.687	0.000	0.155	0_000	0.000	7.732	0.140	<u>ب</u>	J1401994-035
y3221256	3/22/14 12:58								10.525	0.000	0.183	0.377	0.000	98.500 🖋	0.135	5	J1401994-034
y3221242	3/22/14 12:42								5,909	0.000	0.594	0.264	0.000	63.687	0.138		J1401994-033
y3221226	3/22/14 12:26								17.755	0.000	0.814	2.299	0,000	142.943	0.146	<u>د محمد محمد محمد محمد محمد محمد محمد مح</u>	J1401994-032
y3221210	3/22/14 12:10		÷						0.639	0.000	0.683	0.327	0.000	116.089	0,144		J1401994-031
y3221154	3/22/14 11:54								8,895	0.000	0.263	0.000	0.000	4.209	0,148	د م.	J1401994-030
y3221138	3/22/14 11:38								3.845	0,000	0.254	0.240	0.000	47.267	0,000	сл 	J1401994-029
y3221122	3/22/14 11:22								15,510	0,000	0.697	0.493	0.000	112.939	0.153		J1401994-028
y3221106	3/22/14 11:06	< 0.5	< 0.1	< 0.2	< 0.2	< 0.2	< 0,5	< 0.2	0.000	0.000	0.000	0.000	0.000	0,000	0,000	<u> </u>	ССВ
y3221050	3/22/14 10:50	100.2 %	109.0 %	107.8 %	105.5 %	102.8 %	101.4 %	102.0 %	50,102	2.726	5.389	5.277	5.141	50.721	5,102		CCV
y3221034	3/22/14 10:34								27.953	0.000	0.210	0.257	0.000	155.235	0.000	5	J1401994-027
y3221018	3/22/14 10:18								0,845	0.000	0.236	0,000	0.000	35,408	0,000	***	J1401994-026
y3221002	3/22/14 10:02								22.757	0.692	0,362	0.341	0.000	73,491	0.249		J1401994-024
y3220947	3/22/14 9:47	100.5 %	103.4 %	107.7 %	105.8 %	102.2 %	94.1 %	96.1 %	72.835	3.305	5.746	5,633	5.112	120.415	5.054		J1401994-023MS
y322093	3/22/14 9:31	0.1 %	5.9 %	3.1 %	3.0 %	0.0 %	0.1 %	0.4 %	22,605	0.679	0.352	0.331	0.000	73.245	0.251		J1401994-023DUP
y322091	3/22/14 9:15				- 1				22.589	0.720	0.363	0.341	0.000	73.344	0.250		J1401994-023
y3220859	3/22/14 8:59	100.2 %	109.7 %	108.0 %	107.1 %	102.7 %	101.5 %	99.1 %	50.098	2.743	5,399	5,355	5.137	50,736	4,953		LCS-384761
y322084	3/22/14 8:43	< 0.5	< 0,1	< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0.000	0.000	0,000	0.000	0.323	0.000		MB-384761
y322082	3/22/14 8:27	112.8 %	120.1 %	123.0 %	120.3 %	116.9 %	98.1 %	114.9 %	93.588	3.002	6,497	6.433	5.846	198.461	5.747	<u>د المحم</u>	J1401994-022MS
y322081	3/22/14 8:11	0,1 %	0.0 %	0.3 %	0.2 %	0.0 %	0.0 %	0.0 %	37.255	0.000	0.346	0,419	0.000	149,406	0.000	 	J1401994-022DUP
y322075	3/22/14 7:55	< 0.5	< 0,1	< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0.000	0.000	0.000	0.000	0,000	0.000		CCB
y322073	3/22/14 7:39	100.2 %	105.3 %	107.6 %	105.3 %	102.8 %	101.5 %	99.4 %	50.091	2.632	5.382	5.264	5,140	50,747	4,971		CCV
y322072	3/22/14 7:23								37.207	0.000	0.345	0.418	0.000	149,401	0.000	<u>۔۔۔</u> د۔	J1401994-022
y322070	3/22/14 7:07								1.762	0.000	0.297	0.000	0.000	2.262	0.138		J1401994-021
y322065	3/22/14 6:51								1.765	0.000	0.310	0,000	0.000	2.280	0.137		J1401994-020
y322063	3/22/14 6:35								4,616	0.122	0.148	0.000	0,000	8.672 🖌	0,148	<u>ست</u>	J1401994-019
y322061	3/22/14 6:19								32,411	0,000	0.147	0.000	0.000	41.260	0.000	сл 	J1401994-018
y322060	3/22/14 6:03								4.504	0,000	0.188	0.187	0.000	36,486	0.000	cri A	J1401994-017
File	Sample Date/Time	SiO4	0P04	NO3	Br	NO2	Q	711 2	SO4 (mg/L)	OPO4 (mg/L)	NO3 (mg/L)	Br (mg/L)	NO2 (mg/L)	CI (mg/L)	(mg/L)	무	Sample ID
				eries	Recov	Q	:	·		S)	ons (RA)	vncentrati	nalyte Cc	Ą			
Page 3 of						1		D	T REPORTE	- DATA NO				heet	nary S	liumn	IC Data S

0.5 3/22/14	0,1 <(< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0.000	0.000	0.000	0,000	0.316	0,000		CCB
7 9	.9 % 100.	08.4 % 109	106.8 % 10	103.5 %	101,9 %	100.0 %	50.367	2.747	5.418	5.339	5.173	50,969	5.000	·	CCV
0%	.8 % 90,1	08.1 % 102	105.6 % 10	102.6 %	95.9 %	97.7 %	154,566	2,569	5.404	5.723	5,129	115.743 🖋	5.035	N	J1402059-002MS
0.5	0.1 <(< 0.2 A	< 0,2	< 0,2	< 0,5	× 0 ×	0.000	0.000	0.000	0.000	0.000	0.316	0.000	<u>د</u> ۔	ССВ
.7 %	1 % 100	08.4 % 107	105.5 % 1	103.4 %	102.1 %	99.8 %	50.362	2.678	5.420	5,327	5.169	51.057	4.991		CCV
2 %	0.2	0.0% 0.0	11.1 %	0.0 %	0.1 %	1.4%	109.806	0.000	0.000	0.495	0.000	67.827 🎤	0.146	N	J1402059-002DUP
						- `	109.554 4	0,000	0.000	0_443	0.000	67.792 🖍	0.148	N	J1402059-002
							117.697 •	0,000	0.000	0,453	0.000	65.893 🖍	0.144	2	J1402059-001
							4.309	0.000	0.212	0.000	0,000	10.840	0,155		J1401994-048
							0.939	0,000	0.295	0.000	0,000	2.733	0.135		J1401994-047
							0.949	0.000	0,303	0.000	0.000	2.756	0.135		J1401994-046
							9.820	0,000	0.728	0.170	0,000	18.237	0.137		J1401994-045
							1.144	0.000	0.154	0.000	0.000	1.730	0.136		J1401994-044
							2.218	0.000	0,146	0.000	0,000	3.311	0,141	<u>بروند میں اور اور اور اور اور اور اور اور اور اور</u>	J1401994-043
.1 %	*.1 % 86.	06.4 % 107	105,5 % 1	101.6 %	87.1 %	96.8 %	169.863	2.677	5,552	5.967	5.080	180.803	5.003	<u>د.</u> د.	J1401994-042MS
0, 5	0.1 <	< 0.2 <	< 0.2	< 0.2	< 0.5	< 0.2	0.000	0.000	0.000	0.000	0.000	0.320	0.000	 	ССВ
1.5 %	7.8 % 100	08.1 % 107	106.1 % 1	103.2 %	101.8 %	100.2 %	50.227	2.695	5,403	5.307	5,160	50.896	5,008		✓ cov
2%	0% 0.2	4.2 % 0.	9,9 %	0.0 %	0.0 %	2.5 %	127.039	0.000	0.241	0.766	0.000	137.263	0.160		J1401994-042DUP
							126.808	0.000	0.231	0.694	0.000	137.243	0.164	مستحصیت : :	J1401994-042
),3 %	7.8 % 100	07.9 % 107	105.8 % 1	102.9 %	101.6 %	100.4 %	50.141	2.695	5,393	5.290	5.144	50,793	5.020		LCS-384763
0.5	0.1	< 0.2	< 0.2	< 0.2	< 0.5	< 0.2	0,000	0.000	0.000	0.000	0,000	0,000	0.000		MB-384763
							8.764	0.000	0.182	0.344	0.000	88.834 🖌	0.137	57 	J1401994-041
							5.919	0.112	0.279	0.000	0.000	24.204	0.241		J1401994-040
.7 %	3.1% 98.	06.7 % 11:	107.4 % 1	99.3 %	93.2 %	101.5 %	89.267	2.828	5,744	5.369	4.965	117.893	5.218		J1401994-039MS
% 6	0% 2.9	3.8 % 0.	0.0 %	0.0 %	0.1 %	6.1 %	41.101	0,000	0.392	0.000	0.000	71.188	0.151	 	J1401994-039DUP
		•					39.907	0.000	0.407	0.000	0.000	71.271	0.142		J1401994-039
							8.882	0.000	0.397	0.000	0.000	12.988	0.157		J1401994-038
0.5	0.1	< 0.2 <	< 0.2	< 0.2	< 0.5	< 0.2	0,000	0.000	0.000	0.000	0.000	0.350	0.000		ССВ
0.2 %	3.1 % 100	07.9 % 10	106.0 % 1	102.9 %	101.5 %	98.7 %	50.124	2.577	5,395	5.298	5,143	50.745	4.937	<u></u>	1 PCV
ğ	P04 S	NO3 O	Br	NO2	C	1 1 1	SO4 (mg/L)	OPO4: (mg/L)	NO3 (mg/L)	Br (mg/L)	NO2 (mg/L)	CI (mg/L)	F- (mg/L)	뭐	Sample ID
		es	Recoveri	QC				(M)	tions (RA	oncentra	vnalyte C	Þ		**************************************	
i.						0	T REPORTE	- DATA NO				heet	nary S		IC Data S

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.129	0.46	4.105	0.87	0.2473	F
2	4.96	0.133	0.91	8.201	0.90	0.6561	C1
3	5.76	0.155	0.67	6.991	0.90	0.2487	NO2
4	7.09	0.205	0.08	1.149	0.87	0.2774	Br
5	8.06	0.215	0.44	6.422	0.92	0.2638	NO3
6	9.14	0.278	0.07	1.277	0.82	0.1555	0 Phos
7	10.74	0.263	0.25	4.430	0.89	0.7161	SO4
7	13.00	0.197	2.88	32.576	0.88	2.565	

METHOD 300.0/9056A

Report date: Printed by:	3/25/2014 12:13:50 Alexandra Jangrell-B	
Ident: Analysis from: File:	CCB 3/21/2014 12:49:25 y3211249.CHW	Last save: 3/25/2014 12:13:50
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87584	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 3 1.0 µL 1.0000	

No peaks METHOD 300.0/9056A

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.135	18.32	169.743	0.93	5.106	F
2	4.97	0.138	128.04	1177.050	0.93	49.97	C1
3	5.74	0.175	21.78	246.167	0.99	5.064	NO2
4	7.03	0.207	2.68	37.624	0.88	5.182	Br
5	7.97	0.229	17.83	265.759	0.97	5.307	NO3
6	9.11	0.234	2.72	42.913	0.92	2.667	0 Phos
7	10.72	0.271	47.24	830.251	0.98	49.37	SO4
7	13.00	0.199	238.62	2769.507	0.94	122.7	

METHOD 300.0/9056A

No peaks METHOD 300.0/9056A

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
1	3.55	0.136	18.12	169.083	0.93	5.086	F
3	4.97	0.139	21.80	247.421	0.93	50.13 5.089	Cl NO2
4 5	7.03	0.209 0.230	2.71 17.88	38.462 267.835	0.88 0.97	5.29 5.346 ⁻	Br NO3
6 7	9.12 10.72	0.236 0.272	2.76 47.28	44.018 833.256	0.92 0.98	2.726 49.55	0 Phos SO4
7	13.00	0.200	238.46	2780.888	0.94	123.2	

6

5

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

12

min

10

METHOD 300.0/9056A

Report date: Printed by:	3/25/2014 12:14:01 Alexandra Jangrell-B	
Ident: Analysis from: File:	CCB 3/21/2014 16:25:20 y3211625.CHW	Last save: 3/25/2014 12:14:01
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87597	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 15 1.0 μL 1.0000	

No peaks METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

N

Report date: Printed by:	3/25/2014 12:14:09 Alexandra Jangrell-B	
Ident: Analysis from: File:	CCV 3/21/2014 18:50:24 y3211850.CHW	Last save: 3/25/2014 12:14:09
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87606	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 36 1.0 µL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.56	0.135	17.94	164.532	0.94	4.951	F
2	4.99	0.139	126.25	1169.296	0.93	49.64	Cl
3	5.77	0.176	21.48	244.640	0.99	5.032	NO2
4	7.06	0.210	2.66	37.494	0.89	5.166	Br
5	8.02	0.230	17.61	263.498	0.97	5.264	NO3
6	9.13	0.238	2.71	43.882	0.92	2.718	O Phos
7	10.75	0.272	46.66	823.954	0.98	49	SO4
7	13.00	0.200	235.32	2747.296	0.95	121.8	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

Ŵ

Report date: Printed by:	3/25/2014 12:14:10 Alexandra Jangrell-B	
Ident: Analysis from: File:	CCB 3/21/2014 19:06:23 y3211906.CHW	Last save: 3/25/2014 12:14:10
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87607	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 37 1.0 µL 1.0000	

No peaks METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

492

No	Retention min	Width/2 min	Height mV	Area mV*sec	Gaussian	Amount	Name
1	3.56	0.140	0.04	0.329	0.95	0.1378	F
2	4.98	0.136	2.46	22.497	0.92	1.258	Cl
З	0.00	0.000	0.00	0.000	0.00	0	NO2
4	0.00	0.000	0.00	0.000	0.00	0	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
6	0.00	0.000	0.00	0.000	0.00	0	0 Phos
7	10.81	0.251	4.54	74.680	0.97	4.883	SO4
7	13.00	0.075	7.04	97.506	0.41	6.279	

METHOD 300.0/9056A

This report has been created by IC $\ensuremath{\mathsf{Net}}$ METROHM LTD

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.119	0,94	6.982	1.03	0.3308	F
2	4.98	0.141	19.17	178.166	0.95	7.818	Cl
3	0.00	0.000	0,00	0.000	0.00	0	NO2
4	0.00	0.000	0.00	0.000	0.00	0	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
б	. 0.00	0.000	0.00	0.000	0.00	0	0 Phos
7	10.90	0.324	0.04	0.813	0.86	0.5014	SO4
7	13.00	0.083	20.15	185.961	0.41	8.651	

METHOD 300.0/9056A

Report date:	3/25/2014 12:14:20	
Printed by:	Alexandra Jangrell-B	
Ident: Analysis from: File:	J1402025-003 3/21/2014 21:47:36 y3212147.CHW	Last save: 3/25/2014 12:14:20
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87617	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 J1402025-003 25 1.0 µL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.56	0.128	1.48	13.030	0.88	0.5064	F
2	4.98	0.139	22.48	207.723	0.95	9.064	Cl
3	0.00	0.000	0.00	0.000	0.00	0	NO2
4	7.19	0.209	0.02	0.269	0.93	0.1531	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
6	0.00	0.000	0.00	0.000	0.00	0	0 Phos
7	10.79	0.247	1.91	31.363	0.94	2.314	SO4
7	13.00	0.103	25.90	252.386	0.53	12.04	

METHOD 300.0/9056A

Report date:	3/25/2014 12:14:21	
Printed by:	Alexandra Jangrell-B	
Ident:	CCV	
Analysis from:	3/21/2014 22:03:35	
File:	y3212203.CHW	Last save: 3/25/2014 12:14:21
Method:	131210Cal.mtw	Last save: 3/16/2014 17:33:11
Run operator:	Alexandra Jangrell-B	
Analysis number:	87618	
Dilution:	1	
LIMS ID:	•	
Vial number:	26	
Volume:	1.0 uL	
Amount:	1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
1	2 EC	0 105	17 04	1.01 0.11	0 0 1		Mark.
T	3.00	0.135	1/.84	161.941	0.94	4.8/5	F.
2	4.99	0.139	127.34	1175.762	0.93	49.91	Cl
3	5.77	0.176	21.61	245.983	0.99	5.06	NO2
4	7.07	0.213	2.65	37.694	0.91	5.192	Br
5	8.02	0.229	17.77	265.062	0.97	5.293	NO3
6	9.12	0.234	2.60	41.095	0.92	2.569	O Phos
7	10.74	0.271	46.96	827.180	0.98	49.19	SO4
7	13.00	0.200	236.77	2754.716	0.95	122.1	

METHOD 300.0/9056A

No peaks METHOD 300.0/9056A

This report has been created by IC $\ensuremath{\mathsf{Net}}$ METROHM LTD

R

Report date: Printed by:	3/25/2014 12:14:22 Alexandra Jangrell-B	
Ident: Analysis from: File:	J1402025-004 3/21/2014 22:35:33 y3212235.CHW	Last save: 3/25/2014 12:14:22
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87620	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 J1402025-004 38 1.0 µL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.142	0.07	0.692	0.93	0.1483	F
2	4.98	0.144	65.54	625.793	0.94	26.69	Cl
3	0.00	0,000	0,00	0.000	0.00	0	NO2
4	7.22	0.248	0.03	0.477	0.88	0.1825	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
6	0.00	0.000	0.00	0.000	0.00	0	0 Phos
7	10.80	0.264	14.77	252.358	0.99	15.4	SO4
7	13.00	0.114	80,41	879.319	0.54	42.43	

METHOD 300.0/9056A

Report date: Printed by:	3/25/2014 12:14:23 Alexandra Jangrell-B	
Ident: Analysis from: File:	J1402025-005 3/21/2014 22:51:32 y3212251.CHW	Last save: 3/25/2014 12:14:23
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87621	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 J1402025-005 39 1.0 µL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.118	0.88	6.466	1.04	0.3159	F
2	4.98	0.140	19.19	178.866	0.94	7.848	Ĉì
3	0.00	0.000	0.00	0.000	0.00	0	NO2
4	0.00	0.000	0.00	0.000	0.00	0	Br
5	0.00	0.000	0.00	0.000	0.00	Õ	NO3
6	0.00	0.000	0.00	0.000	0.00	Ō	0 Phos
7	10.89	0.310	0.04	0.731	0.89	0.4965	S04
7	13.00	0.081	20.11	186.063	0.41	8.66	

METHOD 300.0/9056A

Report date: Printed by:	3/25/2014 12:14:24 Alexandra Jangrell-B	
Ident: Analysis from: File:	J1402025-006 3/21/2014 23:07:31 y3212307.CHW	Last save: 3/25/2014 12:14:24
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87622	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 J1402025-006 40 1.0 µL 1.0000	

No	Retention min	Width/2 min	Height mV	Area mV*sec	Gaussian	Amount	Name
1	3.55	0.116	2.08	15.101	1.02	0.5666	F
3	0.00	0.000	0.00	0.000	0.94	28.54 0	CL NO2
4 5	0.00	0.000	0.00	0.000 0.000	$0.00 \\ 0.00$	0 0	Br NO3
6 7	$0.00 \\ 10.78$	0.000 0.242	0.00 2.01	0.000 32.453	0.00 0.93	0 2,379	O Phos SO4
7	13.00	0.071	76.88	716.967	0.41	31.48	

METHOD 300.0/9056A

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.139	0.08	0.720	0.96	0.1491	F
2	4.98	0.137	7.13	65,017	0.94	3.05	Cl
3	0.00	0.000	0.00	0.000	0.00	0	NO2
4	0.00	0.000	0.00	0.000	0.00	0	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
6	0.00	0.000	0.00	0.000	0.00	0	0 Phos
7	10.80	0.256	0.79	13.640	0.92	1.263	SO4
7	13.00	0.076	8.00	79.377	0.40	4.462	

METHOD 300.0/9056A

Report date: Printed by:	3/25/2014 12:14:26 Alexandra Jangrell-B	
ldent: Analysis from: File:	J1402025-007DUP 3/21/2014 23:39:29 y3212339.CHW	Last save: 3/25/2014 12:14:26
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87624	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID: Vial number: Volume: Amount:	1 JQ1402152-06 42 1.0 μL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.141	0.08	0.783	0.88	0.151	F
2	4.98	0.137	7.12	64.885	0.94	3.044	Cl
3	0.00	0.000	0.00	0.000	0.00	0	NO2
4	0.00	0.000	0.00	0.000	0.00	0	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
6	0.00	0.000	0.00	0.000	0.00	0	0 Phos
7	10.80	0.255	0.78	13.310	0.92	1.243	SO4
7	13.00	0.076	7.99	78,978	0.39	4.439	

METHOD 300.0/9056A

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec	ι.		
1	3.55	0.141	17.85	168.484	0.95	5.068	F
2	4.99	0.144	131.70	1259,779	0.94	53.46	Cl
3	5.77	0.180	21.19	246.418	0.99	5.069	NO2
4	7.14	0.243	2.43	36.990	1.02	5.101	Br
5	8.08	0.232	17.92	267.101	1.00	5.332	NO3
6 '	9.17	0.267	2.27	40.762	0.94	2.551	0 Phos
7	10.78	0.277	47.99	859.523	0.99	51.08	SO4
7	13.00	0.212	241.36	2879.057	0.98	127.7	

METHOD 300.0/9056A

This report has been created by IC $\ensuremath{\mathsf{Net}}$ METROHM LTD

Report date: Printed by:	3/25/2014 12:14:31 Alexandra Jangrell-B	
Ident: Analysis from: File:	CCV 3/22/2014 01:15:26 y3220115.CHW	Last save: 3/25/2014 12:14:31
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87630	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID:	1	
Vial number:	48	
Volume:	1.0 µL	
Amount:	1.0000	

No	Retention min	Width/2 min	Height mV	Area mV*sec	Gaussian	Amount	Name
1 2 3 4 5 6 7	3.56 4.99 5.78 7.08 8.04 9.12 10.75	0.136 0.140 0.177 0.213 0.231 0.237 0.272	18.43 128.49 21.82 2.67 17.90 2.72 47.53	171.487 1191.271 249.475 38.166 268.581 43.566 840.231	0.94 0.93 0.99 0.90 0.97 0.92 0.98	5.157 50.57 5.132 5.252 5.36 2.702 49.95	F Cl NO2 Br NO3 O Phos SO4
7	13.00	0.201	239.56	2802.778	0.95	124.1	

METHOD 300.0/9056A

Report date: Printed by:	3/25/2014 12:14:32 Alexandra Jangrell-B	
Ident: Analysis from: File:	CCB 3/22/2014 01:31:25 y3220131.CHW	Last save: 3/25/2014 12:14:32
Method: Run operator: Analysis number:	131210Cal.mtw Alexandra Jangrell-B 87631	Last save: 3/16/2014 17:33:11
Dilution: LIMS ID:	1	
Vial number:	49	
Volume:	1.0 µL	
Amount:	1.0000	

No peaks METHOD 300.0/9056A

ALS Environmental Analytical Run Coversheet

Analyst: JSJ Ana		Ilysis Date: 12/10/2013		Inst ID:	J-IC-0	J-IC-003					
Analysis:		Method References:			300.0 / 9056						
LIMS Analytical Batch Numbers Within This Analysis Run											
		V TO THE REAL									
		and an an	ST.		TRACAR						
Stoc	k Standard	w	orkina Sta	andards i	<u>I KACADI</u> Made			<u></u>	8		
	· · · · · · · · · · · · · · · · · · ·		Calibra	tion Stds					ougn		
			MRI Int	ermediate			0411	1/10/20	114		
		1		CV	·		2 770	12/25/20	013 -		
			W. N. N		and and a second second second second second second second second second second second second second second se		<u>3-77C</u>	1/10/20			
			RE	AGENT 1	RACABIL	ITY					
	R(eagent Na	me			Tra Tra	ce ID	Good Thr	ough		
	E!	uent		·····		IC03-0	321	12/17/20)13		
						ļ					
				an shi		1955 P. J. March March 1980	n sun gunda i n u gastale ng Annansi na nani na nanana nan				
		STA	NDARD C	ONCENT	RATIONS	AND RAN	IGES		n de la secola de la secola de la secola de la secola de la secola de la secola de la secola de la secola de la La secola de la secola de la secol		
	Element	MRL	UQL	ICV	ccv	LCS	Bomb	l Inite			
	Fluoride	0.2	20	5	5	5	0	Onits			
	Chloride	0.5	200	50	50	50	13.38	mg/L	-		
	Nitrite	0.2	20	5	5	5	0	mg/L			
	Bromide	0.2	20	5	5	5	0	mg/L			
- L	Nitrate	0.2	20	5	5	5	0	mg/L			
	OPO4	0.1	5	2.5	2.5	2.5	0	mg/L			
	Sulfate	0.5	200	50	50	50	321	mg/L			
			a the second of the	Comr	<u>nents</u>			an			
				New Ca	libration	<u> </u>					
		ан ^а н талар жалан бай (стаба) 2016 жалан ор					<u> </u>				
		97409789	7947) ala de anticipa de la calencia		4+4+++++++++++++++++++++++++++++++++++						
-	dan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kana Kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kana	dő Trónsmandsog á szülő teletősé kanadassnago ppe	******			Martinini and a state of the second second second second second second second second second second second second	*** •,•,•,•,•				
9489147744244274444444444444444444444444444	99999999999999999999999999999999999999		***************************************				**************************************	ŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦ			
1844 (9)++++=3,25,25,25,27,27,27,20,2000000099++++=3,22,20,25,26,20049; cc/v224	ĸĸĸĸĸĸĸĸĸţĸţĊţĊŎŎĸĸĊĬĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ		*********						anna maranana peneroko peneroka katika katika katika		
NH498bvillikannen pilipinen mit angener	,				anganggan militik dan an amang da kanangan an an				#27##2#####0000101###0000000		
			m	aviawad F	Sel Data.	Ŵ	1011	112			
		Reviewed By / Date: YF 12 13									

EIM. 506

IC RUN SEQUENCE

Instrument ID: J-IC-003

	Instrument I	D: J-IC-003			Analysis Date:	12/10/	2013
INJ	# Sample ID	Analysis Date/Time	File ID	INJ #	Sample ID	Analysis Date/Time	File ID
1	Blank	12/10/13 19:22	xc101922.CHW	*****			rito (C
2	CAL#1	12/10/13 19:39	xc101939.CHW				i
3	CAL#2	12/10/13 19:55	xc101955.CHW				
4	CAL#3	12/10/13 20:11	xc102011.CHW			-	
5	CAL#4	12/10/13 20:27	xc102027.CHW				
6	CAL#5	12/10/13 20:43	xc102043.CHW				
7	CAL#6	12/10/13 20:59	xc102059.CHW				
8	CAL#7	12/10/13 21:15	xc102115.CHW				
9	CAL#8	12/10/13 21:31	xc102131.CHW				
10	CAL#9	12/10/13 21:47	xc102147.CHW				
11	ICV	12/10/13 22:19	xc102219.CHW				
12	ICB	12/10/13 22:35	xc102235.CHW				
13	MRL	12/10/13 22:51	xc102251.CHW				

507
REPORTED DATA WITH FAILING CRITERIA

METHOD: 300.0 / 9056

Analysis Start Date:

mple ID	Analyte	Failure	
			Data File

508

Sheet
Summary
IC Data

- DATA NOT REPORTED

.

Page 1 of 1

en the two of the bootstands of the second second second second second second second second second second second		HARDING AND AND AND AND AND AND AND AND AND AND															
		5	Ar	nalyte Co	ncentratic	ns (RAM	6				l 20	Secover	ies				
Sample ID	Ь	(J/Gu)	(1007) (1107)	NO2 (mg/L)	Br (mg/L)	NO3 (mg/L)	OPO4 (mg/L)	S04 (mo/L)	ţ,	C	CON NO	à	CON		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	1	
Blank		0.000	0.000	0.000	0.000	0.000	0.000	0.000		5	700	ő	NUS	0104	sog	sample Date/Time	File (D
CAL#1	-	0.176	0.607	0.167	0.174	0.186	0.090	0.692							12.000 and 10.000	12/10/13 19:22	xc101922.CHW
CAL#2		0.235	0.953	0.230	0.250	0.240	0.130	0.952								12/10/13 19:39	xc101939.CHW
CAL#3		0.451	2.178	0.447	0.442	0.436	0 246	1 030								12/10/13 19:55	xc101955.CHW
CAL#4		0 862	4 539	0 012	0000	970 Q										12/10/13 20:11	xc102011.CHW
CA1 #5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0.000	C/0'n	0.479	4.018							-	12/10/13 20:27	xc102027.CHW
		2.440	767.71	2.472	2.335	2.418	1.229	11.622								12/10/13 20:43	xc102043.CHW
CAL46		5.123	24.871	5.043	4.875	5.040	2.518	24.604		5. _{11.}					·····	12/10/13 20:50	VC1020ED CHIM
CAL#7	4	10.217	50.653	10.207	10.682	10.363	4.998	51.327								31-12 21-12	2010011E 01100
CAL#8		19.867	101.158	19.887	19.727	19.828	7.130	103.219								01.12.01.01.121	
CAL#9		0.000	199.289	0.000	0.000	0.000	0.000	198.135								10.12.010121	XC1UZ131.CHW
···· ICV	÷-	5.071	50.782	5.027	4.816	5,213	2.505	50.817	101 4 %	101 6 0/	100 E 01	10 000			-	14:13 21:01	XC102147.CHW
/ ICB	d	0.00.0	0.000	0.000	0.000	0.000	0.000	0.000	< 0.5	8 0 2 9 0 2	% c.0.>	% ? ?	104.3%	100.2 %	01.6 % 1	2/10/13 22:19	xc102219.CHW
MRL.		0.237	0.614	0.235	0.254	0.247	0 135	0.874	N 21	1220	1.7 <	20200	2.0.2	1.0 2	 < 0.5 < 0.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 	12/10/13 22:35	xc102235.CHW
2	•					:	2	+ 10.0					10.00	10.66	-	2/10/13 22:51	xc102251.CHW

Report date: Printed by:	12/11/2013 13:50:17 Janet Jones
Ident: Analysis from: File:	Blank 12/10/2013 19:22:48 xc101922.CHW x3\2\9Ca\
Method:	131007Gal.mtw
Run operator:	Janet Jones
Analysis number:	83264
Dilution:	1
LIMS ID:	JQ1308867-01
Vial number:	13
Volume:	1.0 µL
Amount:	1.0000

Last save: 12/11/2013 13:50:17 Last save: 12/10/2013 13:07:05

Quantitation method: Custom

No peaks METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.53	0.131	0.19	1.642	0.88	0.1759	F
2	4.99	0.135	0.75	7.030	0.85	0.6067	C1
3	5.83	0.161	0.26	2.867	0.85	0.1674	NO2
4	7.25	0.214	0.03	0.417	0.90	0.174	Br
5	8.28	0.216	0.17	2.515	0.86	0 1857	NO3
6	9.25	0.237	0.02	0.302	0.91	0.08997	0 Phos
7	10.83	0.283	0.21	4.025	0.88	0.692	SO4
7	13.00	0.197	1.62	18.797	0.87	2.092	

METHOD 300.0/9056A

This report has been created by IC $\ensuremath{\mathsf{Net}}$ METROHM LTD

Report date: Printed by:	12/11/2013 13:50:20 Janet Jones	
Ident:	CAL#2	
Analysis from:	12/10/2013 19:55:45	Last same 10/11/0010 10 50 00
LTTG.	131210Call	Last save: 12/11/2013 13:50:20
Method:	131007Gal.mtw	Last save: 12/10/2013 13:07:05
Run operator:	Janet Jones	
Analysis number:	83266	
Dilution:	1	
LIMS ID:	JO1308867-01	
Vial number:	16	
Volume:	1.0 µL	
Amount:	1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.53	0.127	0.42	3.671	0.85	0.2347	F
2	4.99	0.130	1.68	15.243	0.85	0.9528	Cl
3	5.83	0.155	0.56	6.048	0.85	0.2301	NO2
4	7.26	0.216	0.07	0.953	0.89	0.2497	Br
5	8.27	0.207	0.36	5.232	0.85	0.2401	NO3
6	9.24	0.261	0.05	0,896	0.85	0.1299	O Phos
7	10.83	0.270	0.45	8.409	0.87	0.9522	SO4
7	13.00	0.195	3.58	40.452	0.86	2,989	

METHOD 300.0/9056A

Report date: Printed by:	12/11/2013 13:50:21 Janet Jones	
Ident: Analysis from: File:	CAL#3 12/10/2013 20:11:45 xc102011.CHW	Last save: 12/11/2013 13:50:20
Method: Run operator: Analysis number:	1312106-1 1 31007Cal .mtw Janet Jones 9 12/11/13 83267	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID: Vial number: Volume: Amount:	1 JQ1308867-01 17 1.0 µL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.52	0.121	1.31	11.104	0.86	0.4505	F
2	4.99	0.130	4.95	44.317	0.88	2.178	C1
3	5.83	0.150	1.64	17.068	0.86	0.4474	NO2
4	7.25	0.211	0.16	2.318	0.90	0.4421	Br
5	8.25	0.198	1.10	15.049	0.86	0.4362	NO3
6	9.22	0.263	0.15	2.639	0.84	0.2465	0 Phos
7	10.83	0.257	1.42	24.892	0.89	1.93	SO4
7	13.00	0.190	10.73	117.388	0.87	6.131	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

Report date: Printed by:	12/11/2013 13:50:21 Janet Jones	
Ident: Analysis from: File:	CAL#4 12/10/2013 20:27:50 xc102027.CHW r3/21/9cal	Last save: 12/11/2013 13:50:21
Method: Run operator: Analysis number:	131007Cal.mtw Janet Jones 7 12/11/13 83268	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID: Vial number: Volume: Amount:	1 18 1.0 µL 1.0000	

No	Retention min	Width/2 min	Height mV	Area mV*sec	Gaussian	Amount	Name
1	3.53	0.123	2.96	25.247	0.88	0.8616	F
2	4.99 5.82	$0.134 \\ 0.154$	3.84	40.625	0.89	4.539 0.9134	CL NO2
4	7.24	0.206	0.39	5.514	0.88	0.89	Br
5	8.23	0.200	2.70	37.082	0.87	0.8748	NO3
7	10.83	0.253	3.45	60.088	0.85	4.018	O Phos SO4
7	13.00	0.190	24.63	275.067	0.88	12.58	

METHOD 300.0/9056A

Report date: Printed by:	12/11/2013 13:50:22 Janet Jones	
Ident: Analysis from: File:	CAL#5 12/10/2013 20:43:49 xc102043.CHW	Last save: 12/11/2013 13:50:22
Method: Run operator: Analysis number:	131007cal.mtw Janet Jones 72/11/13 83269	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID:	1	
Vial number:	19	
Volume:	1.0 µL	
Amount:	1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.52	0.127	9.09	79.501	0.91	2.446	F
2	4.98	0.137	30.38	283.351	0.89	12.25	Cl
3	5.81	0.164	10,77	118.721	0.92	2.472	NO2
4	7.23	0.202	1.17	16.014	0.91	2.335	Br
5	8.19	0.209	8.18	115.405	0.90	2.418	NO3
6	9.21	0.238	1.10	17.969	0.88	1.229	0 Phos
7	10.82	0.271	10.50	188.462	0.95	11.62	SO4
7	13.00	0.193	71.19	819,423	0.91	34.77	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

Report date: Printed by:	12/11/2013 13:50:23 Janet Jones	
Ident: Analysis from: File:	CAL#6 12/10/2013 20:59:49 xc102059.CHW	Last save: 12/11/2013 13:50:23
Method: Run operator: Analysis number:	131007Cal.mtw Re, 11/13 Janet Jones 83270	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID:	1	
Vial number:	20	
Volume:	1.0 µL	
Amount:	1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.53	0.134	18.74	170.324	0.93	5.123	F
2	4.99	0.140	61.23	582.570	0.89	24.87	C1
3	5.81	0.177	20.87	245.150	0.94	5.043	NO2
4	7.22	0.211	2.53	35,226	0.95	4.875	Br
5	8.16	0.220	16.99	251.702	0.90	5.04	NO3
6	9.21	0.235	2.53	40.157	0.91	2.518	0 Phos
7	10.82	0.281	21.99	408.340	0.95	24.6	SO4
7	13.00	0.200	144.86	1733.468	0.92	72.07	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

Report date: Printed by:	12/11/2013 13:50:24 Janet Jones	
Ident: Analysis from: File:	CAL#7 12/10/2013 21:15:49 xc102115.CHW	Last save: 12/11/2013 13:50:24
Method: Run operator: Analysis number:	Janet Jones 22/12/17/3 83271	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID: Vial number: Volume: Amount:	1 21 1.0 µL 1.0000	

Νo	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.54	0.144	34.49	340.253	0.93	10.22	F
2	5.00	0.142	122.83	1193.272	0.89	50.65	- Cl
3	5.80	0.197	38.05	491.096	0.96	10.21	NO2
4	7.19	0.250	5.25	83.652	1.04	10.68	Br
5	8.11	0.234	34.30	541.852	0.89	10.36	NO.3
6	9,21	0.241	5.89	94.331	0.94	4,998	0 Phos
7	10.81	0.291	44.80	863.703	0.93	51.33	SO4
7	13.00	0.214	285.61	3608.160	0.94	148.4	

METHOD 300.0/9056A

Report date: Printed by:	12/11/2013 13:50:25 Janet Jones	
Ident: Analysis from:	CAL#8 12/10/2013 21:31:48	Test 12/11/2012 12 52 25
ttte:	131210CAL	Last save: 12/11/2013 13:50:25
Method: Run operator: Analysis number:	131007Gal.mtw Janet Jones 97 12/11/13 83272	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID:	1	
Vial number: Volume:	22 1 0 III	
Amount:	1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.55	0.161	60.20	652.534	0.96	19.87	F
2	5.02	0.149	237.69	2387.174	0.91	101.2	Cl
3	5.79	0.222	64.75	926.860	1.00	19.89	NO2
4	7.12	0.323	9.40	180.390	1.15	19.73	Br
5	8.08	0.251	65.69	1114.548	0.89	19.83	NO3
6	9.20	0.248	12.63	205.939	0.95	7.13	0 Phos
7	10.79	0.303	87.54	1758.957	0.93	103.2	SO4
7	13.00	0.237	537.91	7226.401	0.97	290.8	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

N

á. A

Report date: Printed by:	12/11/2013 13:50:26 Janet Jõnes	
Ident: Analysis from: File:	CAL#9 12/10/2013 21:47:47 xc102147.CHW	Last save: 12/11/2013 13:50:26
Method: Run operator: Analysis number:	Janet Jones Proving 83273	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID: Vial number: Volume: Amount:	1 23 1.0 µL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	0.00	0.000	0.00	0.000	0.00	0	F
2	5.07	0.173	416.93	4697.769	0.98	199.3	Cl
3	0.00	0.000	0.00	0.000	0.00	0	NO2
4	0.00	0.000	0.00	0.000	0.00	0	Br
5	0.00	0.000	0.00	0.000	0.00	0	NO3
6	0.00	0.000	0.00	0.000	0.00	0	O Phos
7	10.74	0.315	163.99	3436.142	0.93	198.1	SO4
7	13.00	0.070	580.92	8133,911	0.27	397.4	

METHOD 300.0/9056A

Report date: Printed by:	12/11/2013 13:50:27 Janet Jones	
Ident: Analysis from: File:	ICV 12/10/2013 22:19:45 xc102219.CHW	Last save: 12/11/2013 13:50:27
Method: Run operator: Analysis number:	131067Cal.mtw Janet Jones 112/12/12 83275	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID:	1	
Vial number:	25	
Volume:	1.0 µL	
Amount:	1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	min	mV	mV*sec			
1	3.53	0.136	18.11	168.586	0.92	5.071	F
2	5.00	0.142	123.66	1196.323	0.89	50.78	C1
3	5.81	0.178	20.79	244.405	0.94	5.027	NO2
4	7.21	0.222	2.39	34.770	0.97	4.816	Br
5	8.16	0.222	17.45	260.800	0.90	5.213	NOR
6	9.21	0.236	2.50	39.918	0.91	2,505	0 Phos
7	10.81	0.290	44.46	854.976	0.94	50.82	SO4
7	13.00	0.204	229.37	2799.777	0.92	124.2	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

520

3

á

Report date: Printed by:	12/11/2013 13:50:28 Janet Jones	
Ident: Analysis from: File:	ICB 12/10/2013 22:35:44 xc102235.CHW	Last save: 12/11/2013 13:50:28
Method: Run operator: Analysis number:	Janet Jones R21113 83276	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID: Vial number: Volume: Amount:	1 26 1.0 µL 1.0000	

No peaks METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

a ndaharahari

Report date: Printed by:	12/11/2013 13:50:29 Janet Jones	
Ident: Analysis from: File:	MRL 12/10/2013 22:51:49 xc102251.CHW	Last save: 12/11/2013 13:50:29
Method: Run operator: Analysis number:	131007Cal.mtw Janet Jones // 12/11/13 83277	Last save: 12/10/2013 13:07:05
Dilution: LIMS ID:	1	
Vial number: Volume: Amount:	27 1.0 μL 1.0000	

No	Retention	Width/2	Height	Area	Gaussian	Amount	Name
	min	mín	mV	mV*sec			
1	. 3.51	0.129	0.42	3.735	0.86	0.2366	F
2	4.98	0.136	0.76	7.208	0.85	0.6142	Č1
3	5.81	0.158	0.58	6.320	0.86	0.2354	NO2
4	7.25	0.219	0.07	0.981	0.88	0.2537	Br
5	8.25	0.208	0.39	5.601	0.86	0.2474	NO3
6	9.18	0.271	0,05	0.977	0.90	0.1353	0 Phos
7	10.82	0.282	0.20	3.729	0.90	0.6745	SO4
7	12.99	0.200	2.47	28.551	0.87	2.397	

METHOD 300.0/9056A

This report has been created by IC Net METROHM LTD

「「「「「「」」」

K3 = 0K2 = 4.78122e - 08K1 = 0.0421314K0 = 0.310544Base: Area Ref.channel: ch1 ISTD: Formula: Quadratic Weight: 1/X Level Height Area Conc. Vol/Dil Retention Used File

523

 $\Delta t = \Delta \Delta t = \Delta t = \Delta t$