FINAL REPORT

Perchlorate Destruction and Potable Water Production
Using Membrane Biofilm Reduction
and Membrane Filtration

ESTCP Project ER-200541

November 2013

Patrick Evans
Jennifer Smith
Tony Singh
Hoon Hyung
Clyde Arucan
Daniel Berokoff
CDM Smith

David Friese Ryan Overstreet Renato Vigo **APTwater**

Bruce Rittman Aura Ontiveros-Valencia He-Ping Zhao Youneng Tang Bi-O Kim Steven Van Ginkel Rosa Krajmalnik-Brown Arizona State University

This document has been cleared for public release

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
18-11-2013 Final		Oct. 2005 - Nov.2013
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER	
±	Perchlorate Destruction and Potable	W912HQ-10C-0075
Water Production Using Mem	brane Biofilm Reduction	5b. GRANT NUMBER
		N/A
		5c. PROGRAM ELEMENT NUMBER
		N/A
6. AUTHOR(S)		5d. PROJECT NUMBER
Evans, Patrick J.; Smith,	Jennifer L.; Singh, Tony S.; Hoon,	ER-200541
Huyng; Arucan, Clyde; Bero	koff, Daniel; Friese, David;	5e. TASK NUMBER
<u>-</u>	nato; Rittmann, Bruce; Ontiveros-	N/A
	ing; Tang, Youneng; Kim, Bi-O; Van	5f. WORK UNIT NUMBER
Ginkel, Steven; and Krajma	N/A	
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
CDM Smith Federal Programs	Corporation	
Eva Opitz		
1050 N Reed Station Rd STE		
Carbondale, IL 62902-7305		
9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S) ESTCP
Environmental Security Tec	hnology Certification Program	
Andrea Leeson		11. SPONSOR/MONITOR'S REPORT
901 N Stuart St., Suite 30	NUMBER(S)	
Arlington, VA 22203	N/A	
12. DISTRIBUTION / AVAILABILITY STAT	EMENT	

Distribution Statement A: Approved for Public Release, Distribution is Unlimited

13. SUPPLEMENTARY NOTES

None

This study demonstrated use of a membrane biofilm reactor (MBfR) for drinking water treatment from perchlorate- and nitrate- contaminated groundwater. The MBfR used anoxic autotrophic biodegradation for the complete destruction of perchlorate and nitrate. The objectives were to demonstrate the feasibility of MBfR to destroy perchlorate and nitrate in groundwater and produce potable water at the pilot scale, evaluate process control parameters to optimize performance, and estimate full-scale technology costs. These objectives were successfully demonstrated. The study included four phases: Start-Up, Optimization, Steady State, and a Challenge phase to assess system robustness and resiliency. Using indigenous organisms, the MBfR was colonized with perchlorate- and nitrate-reducing bacteria within approximately one month. Perchlorate was reduced by approximately 94 percent to 9.2±2.3 µq/L in the effluent of the lag reactor during Steady State. Total nitrogen (the sum of nitrate and nitrite) was reduced by approximately 99 percent to an average of 0.12±0.07 mg-N/L in the effluent of the lag reactor during Steady State.

15. SUBJECT TERMS

biodegradation, membrane, filtration, biofilm, potable, perchlorate, nitrate, drinking water treatment

16. SECURITY CLASSIFICATION OF		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Dr. Patrick Evans	
a. REPORT	b. ABSTRACT	c. THIS PAGE	עט -	384	19b. TELEPHONE NUMBER (include area
U	U	U			code)
					425-519-8300

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY	X
	Back	ground and Technology Description	X
	Perfo	ormance Objectives and Results	xi
	Cost	s xiii	
	Impl	ementation Issues	xiv
1.0	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Objectives of the Demonstration	
	1.3	Regulatory Drivers	
	1.4	Stakeholder/End-User Issues	4
2.0	TEC	HNOLOGY	5
	2.1	Technology Description	
	2.2	Technology Development	
	2.3	Advantages and Limitations of the Technology	
3.0		FORMANCE OBJECTIVES	
3.0			
	3.1 3.2	Summary Treatment Effectiveness	
	3.2	Disinfection Effectiveness	
	3.3 3.4	Ability To Meet Drinking Water Treatment Primary And Secondary Mcls	
	3.5	ReliabilityReliability	
	3.6	Safety	
	3.7	Permit Compliance	
	3.8	Regulatory Acceptance	
4.0		DESCRIPTION	
	4.1	Site Location and History	
	4.2	Site Geology/Hydrogeology	
	4.3	Contaminant Distribution.	
5.0		Γ DESIGN	
	5.1	Conceptual Experimental Design	
	5.2	Baseline Characterization	
	5.3	Treatability or Laboratory Study Results	
	5.4	Design and Layout of Technology Components	
		5.4.1 Process Equipment	
		5.4.2 Online Monitoring and Control	
	5.5	Field Testing	41
		5.5.1 Installation and Start-Up	41
		5.5.2 Optimization	44
		5.5.3 Steady State	
		5.5.4 Challenge	
		5.5.5 Backwash Water Characterization	
	_	5.5.6 Demobilization	
	5.6	Sampling Methods	48

		5.6.1 Analytical/Testing Methods	48
		5.6.2 Sample Collection	49
	5.7	Sampling Results	53
		5.7.1 Start-Up	53
		5.7.2 Optimization	57
		5.7.3 Steady State	65
		5.7.4 Challenge	73
6.0	PERI	FORMANCE ASSESSMENT	77
	6.1	Treatment Effectiveness	77
		6.1.1 Perchlorate	77
		6.1.2 Nitrate and Nitrite	78
	6.2	Disinfection Effectiveness	78
	6.3	Ability to Meet Drinking Water Treatment Primary and Secondary MCLs	78
		6.3.1 Odor	78
		6.3.2 Turbidity	79
		6.3.3 DOC	79
		6.3.4 pH	79
	6.4	Reliability	80
	6.5	Safety	80
	6.6	Permit Compliance	80
	6.7	Regulatory Acceptance	81
7.0	COS	Γ ASSESSMENT	82
	7.1	Cost Model	82
		7.1.1 Capital Cost Estimation	82
		7.1.2 Operational Costs	
		7.1.3 MBfR System Design Basis	84
		7.1.4 Ion Exchange System Design Basis	88
	7.2	Cost Drivers	89
	7.3	Cost Analysis	89
		7.3.1 MBfR System	89
		7.3.2 IX System	92
		7.3.3 Comparison of the Technologies	93
8.0	IMPI	EMENTATION ISSUES	96
	8.1	Regulations and Permits	96
	8.2	End-User Concerns	
	8.3	Procurement	97
9.0	REEL	FRENCES	98

APPENDICES

Appendix A: Points of Contact

Appendix B: Field Logs

Appendix C: Field Notes and Monitoring Data Appendix D: Field Methods

Appendix E: Quality Assurance and Quality Control

Appendix F: Laboratory Analytical Data

Appendix G: Online Monitoring Data
Appendix H: MBfR Demonstration at East Valley Water District

Appendix I: CDPH Letter of Conditional Acceptance

LIST OF TABLES

Table 2.1 Chronological Development of the MBfR Technology	11
Table 2.2 Technological Comparison for Perchlorate Removal	
Table 3.1 Performance Objectives	
Table 4.1 Historical Water Quality at Well 22	
Table 5.1 Summary Statistics for Influent Water Quality at Well 22 throughout the	
Demonstration from April 2011 to January 2012	26
Table 5.2 Gas Supply Equipment	
Table 5.3 Sample Port Locations	
Table 5.4 System Interlock Alarm Responses	
Table 5.5 Phase I System Start-Up	
Table 5.6 Phase II System Optimization Tests	
Table 5.7 System Upset Conditions	
Table 5.8 Phase IV System Challenge Tests	
Table 5.9 Sample Collection Frequency	49
Table 5.10 Analytical Methods	51
Table 5.11 Comparison of Two-Stage and Single-Stage Operation	61
Table 5.12 Batch Test First-Order Rate Constants	64
Table 5.13 Steady State Operating Parameters	65
Table 5.14 Steady State Finished Water Disinfection Byproducts	71
Table 7.1 Cost Estimate Model	83
Table 7.2 Operations Cost Calculation Basis	83
Table 7.3 MBfR System Design Parameters	85
Table 7.4 MBfR System Configurations	88
Table 7.5 IX System Design Parameters	88
Table 7.6 MBfR Capital Costs	90
Table 7.7 MBfR Operation Cost	91
Table 7.8 MBfR Annual Project Cost	91
Table 7.9 IX Capital Cost	92
Table 7.10 IX Operational Cost	
Table 7.11 IX Annual Project Cost	93

LIST OF FIGURES

Figure 2.1 Schematic of Hydrogen-Fed MBfR (a) Membrane Cross Section, (b) Woven Fiber	S
and Biofilm, and (c) Membrane Module Design	5
Figure 2.2 Process Flow Diagram	8
Figure 4.1 Site Vicinity Map	22
Figure 4.2 Approximate Extent of Perchlorate Contamination	23
Figure 5.1 Experimental Design	25
Figure 5.2 MBfR Treatment System	29
Figure 5.3 MBfR Treatment System Arrangement	
Figure 5.4 MBfR Treatment System Process Flow	30
Figure 5.5 MBfR Pilot Treatment Plant Piping and Instrumentation Diagram	31
Figure 5.6 MBfR Vessel System Piping and Instrumentation Diagram	
Figure 5.7 MBfR Vessel Side-Reactors Prior to Installation (a) and After Installation (b)	36
Figure 5.8 OIT System Monitoring Screen for the Lag MBfR	38
Figure 5.9 Demonstration Schedule	41
Figure 5.10 Start-Up Perchlorate and Phosphate Dose (a) and Influent Flow Rate (b)	54
Figure 5.11 Start-Up Total Nitrogen and Phosphate Dose (a) and Influent Flow Rate (b)	55
Figure 5.12 MBfR Lag Tracer Study	57
Figure 5.13 Autopsy of MBfR Reactor Modules	58
Figure 5.14 Optimization Perchlorate and Influent Flow (a) and Recycle Flow (b)	
Figure 5.15 Optimization Total Nitrogen and Influent Flow (a) and Recycle Flow (b)	60
Figure 5.16 Effect of Influent Flow Rate on Perchlorate Removal	
Figure 5.17 Preliminary Batch Test for MBfR1 (a) and MBfR2 (b)	
Figure 5.18 MBfR1 Batch Test with Varying Recycle Ratios	
Figure 5.19 MBfR2 Batch Test with Varying Recycle Ratios	
Figure 5.20 Effect of Sparge Frequency on Nitrate Performance	65
Figure 5.21 Steady State MBfR Perchlorate and Flow Rate (a) and Total Nitrate+Nitrite (b)	67
Figure 5.22 Steady State Stoichiometric Hydrogen Demand, Hydrogen for Membrane Fiber	
Flushing, and Excess Hydrogen	
Figure 5.23 Steady State MBfR Lag Reactor Effluent Water Quality Bioindicators	
Figure 5.24 Steady State Finished Water Quality Bioindicators (a), Sulfide, and Odor (b)	
Figure 5.25 Steady State Treatment System DOC	
Figure 5.26 Steady State Finished Water Turbidity	
Figure 5.27 Steady State Media Filter Pressure Drop.	
Figure 5.28 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 4-He	
Shut-off of Hydrogen	75
Figure 5.29 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 24-	
Hour Shut-off of Hydrogen	
Figure 5.30 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 4-He	
Shut-off of Power	76
Figure 5.31 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 24-	
Hour Shut-off of Power	
Figure 7.1 3-D Rendering of Exemplary MBfR System	
Figure 7.2 Process Flow Diagram of MBfR System	
Figure 7.3 Comparison of MBfR 30-Year Amortized Capital and Operating Costs with IX and	
FXB operating at 1,000 gpm	95

ACRONYMS

A specific surface area

ABS acrylonitrile butadiene styrene

ANSI American National Standards Institute
APHA American Public Health Association

ASTM American Society for Testing and Materials

ASU Arizona State University

AWWA American Water Works Association

As(V) arsenate BrO₃ bromate C concentration

C_o initial concentration, influent CCL Contaminant Candidate List

CCl₃ chloroform

CCR California Code of Regulations

CDPH California Department of Public Health

CF cubic feet

CFM cubic feet per minute

CFU/mL colony forming units per milliliter

cis-1,2 DCE cis-1,2 dichloroethene

ClO₄ perchlorate CO₂ carbon dioxide COC chain of custody

Cr(VI) chromate

CT Concentration of disinfectant "C" multiplied by the contact time "T"

CTA cellulose triacetate
DB denitrifying bacteria
DBCP dibromochloropropane
DBP disinfection byproduct

DBP-FP Disinfection byproduct formation potential

DO dissolved oxygen

DOC dissolved organic carbon DoD Department of Defense

DWEL Drinking Water Equivalent Level

E. coli Escherichia coli

EPS Extracellular polymeric substances

ESTCP Environmental Security Technology Certification Program

EVWD East Valley Water District
FBRR Filter Backwash Recycling Rule
fact below ground ourfold

ft bgs feet below ground surface FXB fixed-bed bioreactor GAC granular activated carbon

g grams

g H₂/m²-day grams of hydrogen per meter squared per day

gpm gallons per minute

gpm/ft² gallons per minute per square foot

HAA haloacetic acid

HMI human machine interface HPC heterotrophic plate counts

IX Ion Exchange
J contaminant flux
LEL lower explosive limit
LSI Langelier Saturation Index

m² square meters m³ cubic meters

m³/d cubic meters per day
MBfR membrane biofilm reactor
MCL Maximum Contaminant Level

MG million gallons

mg/kg/d milligrams per kilogram per day mg/m²/d milligrams per square meter per day mg-N/L milligrams per liter as nitrogen

mg/L milligrams per liter

mL milliliters

MPN most probable number mS/cm millisiemens per centimeter

mV millivolts

NaCl sodium chloride

NO₃ nitrate NO₂ nitrite

NDEA N-nitrosodiethylamine NDMA N-nitrosodimethylamine NDBA N-nitrosodi-n-propylamine NDPA N-nitroso-di-n-propylamine

ng/L nanograms per liter

NPDWR National Primary Drinking Water Regulation NSDWR National Secondary Drinking Water Regulations

NTU nephelometric turbidity units

OH hydroxide ion

OIT operator interface terminal ORP oxidation-reduction potential

P&ID piping and instrumentation diagram
PLC Programmable Logic Controller
PRB perchlorate-reducing bacteria

psi pounds per square inch

psig pounds per square inch gauge

O volumetric flow rate

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan

qPCR quantitative polymerase chain reaction RASP Rialto Ammunition Storage Point RWQCB Regional Water Quality Control Board

SCFH standard cubic feet per hour SCFM standard cubic feet per minute

SCADA supervisory control and data acquisition

SDWA Safe Drinking Water Act

Se(VI) selenate

SRB sulfate reducing bacteria

SU standard units

SWTR Surface Water Treatment Rule

TCA trichloroethane
TCE trichloroethene
TCR Total Coliform Rule
TDS total dissolved solids
THM trihalomethane

THM-FP trihalomethane formation potential

TON threshold odor number TSS total suspended solids TT treatment technique

UCMR Unregulated Contaminant Monitoring Rule

U.S. United States

USEPA United States Environmental Protection Agency

V volume

VC vinyl chloride

VFD variable frequency drive
VOC volatile organic compound
WCLC West Coast Loading Corporation
WEF Water Environment Federation
WVWD West Valley Water District

μg/L micrograms per liter

um micrometers

μS/cm microsiemens per centimeter

Acknowledgements

This project was funded by the Environmental Security Technology Certification Program (ESTCP). We are very appreciative of the support and encouragement from Dr. Andrea Leeson. The project wishes to thank and recognize the support provided by Tom Crowley of West Valley Water District (WVWD) and Ron Buchwald of East Valley Water District, (EVWD) who granted access to the Demonstration sites. The project team wishes to thank Sean McCarthy, Eugene Leung with the California Department of Public Health (DPH) and Heather Collins formerly with DPH for their interest and support in the project. Contact information for individuals involved in this project is provided in Appendix A.

EXECUTIVE SUMMARY

BACKGROUND AND TECHNOLOGY DESCRIPTION

Perchlorate (ClO₄⁻) is a human health concern because it can prevent assimilation of iodide in the thyroid by competitively inhibiting its uptake. Iodide regulates normal functions of the thyroid and is critical in the growth and development of fetuses, infants, and children (USEPA 2005). As of February 2011, the United States Environmental Protection Agency (USEPA) determined that perchlorate can be regulated under the Safe Drinking Water Act (SDWA), and in October 2007, California Department of Public Health (CDPH) established a maximum contaminant level (MCL) of 6 micrograms per liter (μg/L). Nitrate is a co-contaminant in water with perchlorate because ammonium nitrate is a main component in rocket fuel and explosives (Wang et al. 2002). In addition, nitrate is often found in groundwater because of agricultural impacts. Nitrate (NO₃⁻) is regulated by the SDWA and has an MCL of 10 milligrams per liter as nitrogen (mg-N/L).

While ion-exchange (IX) resins are currently used for perchlorate treatment, they are costly and do not destroy contaminant mass. By contrast, membranes are increasingly used in the drinking water industry for full-scale potable water treatment. The membrane biofilm reactor (MBfR) process demonstrated in this project used the latest advances in membrane technologies and included anoxic biological reduction using a staged hydrogen-fed membrane biofilm reactor, aerobic biological stabilization, media filtration, and disinfection. This technology builds upon a number of previously successful MBfR studies treating perchlorate and nitrate in groundwater. The MBfR uses anoxic biodegradation for the complete destruction of perchlorate, and it may be used for nitrate removal. The reactor is comprised of numerous permeable hollow-fiber gastransfer membranes that are pressurized with hydrogen gas. Hollow fiber membranes are widely used in a range of industries for bubble-less gas transfer. The MBfR is an adaptation of this proven approach for perchlorate and nitrate treatment. Bubble-less gas transfer allows delivery of hydrogen gas directly to the bacteria. This results in nearly 100 percent hydrogen usage, which makes the process economical (no donor waste) and safe. A biofilm containing a community of perchlorate-reducing, nitrate-reducing, and other bacteria grow on the exterior surface of the hollow fibers. Hydrogen serves as the electron donor that also minimizes biomass generation. This process results in reduction of perchlorate and nitrate and can also be used for a range of other oxidized contaminants including trichloroethene (TCE), chromate, selenate, and bromate (Nerenberg and Rittmann 2004; Rittmann et al. 2004; Adham et al. 2005; Chung et al. 2006b; Chung et al. 2006c; Chung et al. 2006d).

The purpose of this Demonstration was to evaluate the feasibility of MBfR to destroy perchlorate and nitrate in groundwater and produce potable water at the pilot scale, evaluate process control parameters to optimize performance, and estimate full-scale technology costs. This pilot-scale treatment system was installed at West Valley Water District (WVWD) in Rialto, California. The treatment train consisted of two 575-gallon MBfR vessels, in a two-stage lead/ lag configuration, containing seven polypropylene-fiber membrane modules in each tank. The 14 modules had a total membrane surface area of 2,000 square meters (m²). Groundwater was pumped into the lead MBfR vessel. The effluent from the lead vessel then flowed into the lag MBfR vessel. Recirculation pumps with an adjustable flow rate of 70 to 280 gpm were used for recirculating water through the membrane modules in each MBfR vessel. The MBfR lag vessel effluent was

subsequently processed by aeration, media filtration, and disinfection. Indigenous microorganisms attached to the membrane exterior surfaces and created a biofilm. Electron donor (hydrogen gas) and nutrients (phosphoric acid) were supplemented to the reactors. The attached microorganisms preferentially reduced dissolved oxygen (DO), nitrate, perchlorate, and sulfate. Additional processing prior to groundwater re-injection included filtration through granular activated carbon (GAC) and ion exchange resin to meet California Regional Water Quality Control Board permit requirements for discharge to groundwater. The study included four phases: Start-Up, Optimization, Steady State, and a Challenge Phase. The Challenge phase included intentional process upsets to assess resiliency and reliability of the technology. A parallel and important laboratory investigation of the MBfR performance was also conducted at Arizona State University. This research is briefly summarized in this report and fully documented in a separate report (Rittmann et al. 2013).

PERFORMANCE OBJECTIVES AND RESULTS

Perchlorate

Perchlorate was reduced from an average of $154\pm5~\mu g/L$ to an average of $9.2\pm2.3~\mu g/L$ in the effluent of the lag reactor during Steady State (94.4 percent reduction). While the treatment objective of 6 $\mu g/L$ was not met, perchlorate was consistently removed with little variation (coefficient of variation was 0.75%).

During Optimization, influent flow rate and recycle flow rate were observed to affect perchlorate treatment efficacy, as discussed in detail in Section 5.7.2. The effect of influent flow rate and associated electron acceptor loading was evaluated for flows rates of 10, 15, and 20 gpm. Perchlorate was on average 8.5 µg/L while operating at 10 gpm, 17.9 µg/L at 15 gpm, and 27 µg/L at 20 gpm. Recycle flow rates were tested further during batch tests, where four recycle flow rates were tested in each MBfR vessel. In general, the best performance was observed when recycle flow rates were increased indicating mass transfer limitations. However, operation at the highest recycle rates did not promote complete perchlorate removal. Other factors including an overabundance of sulfate-reducing bacteria relative to perchlorate reducing bacteria limited complete perchlorate reduction (Rittmann et al. 2013). Finally, the impact of sparge frequency and gas type was evaluated. Sparging was conducted to remove buildup of biomass and inert compounds in the membranes. Use of compressed air rather than nitrogen for sparging resulted in no measurable change in performance. Compressed air is less expensive than nitrogen and may be used to decrease operational costs. Sparging frequencies of 24 hours or less did not change perchlorate or nitrate removal appreciably; 12 hours was selected for Steady State operations.

Batch tests demonstrated that complete perchlorate removal was possible but was observed to occur when sulfate reduction and sulfide generation began. Modeling and bench-scale studies by ASU demonstrated that complete perchlorate removal was observed without sulfide production if removal flux of nitrate and oxygen – expressed as stoichiometric hydrogen demand – was about 0.18 grams of hydrogen per meter squared per day (g H_2/m^2 -day) (Rittmann et al. 2013). Operation under these conditions in the laboratory prevented overgrowth of sulfate reducing bacteria. However, single-stage operation of the pilot-scale system at a removal flux of nitrate

and oxygen of $0.12~g\text{-H}_2/\text{m}^2\text{-d}$ did not prevent overgrowth of sulfate reducing bacteria and promote complete perchlorate reduction. Therefore, other differences between the laboratory and pilot-scale systems such as trans-membrane liquid velocity and associated mass-transfer resistance may have prevented complete perchlorate reduction.

Nitrate

The MBfR was highly effective at removing nitrate. Total nitrogen (the sum of nitrate and nitrite) was reduced from an influent average of 9.0 mg-N/L to an average of 0.12±0.07 mg-N/L in the effluent of the lag reactor during Steady State (98.3 percent reduction). Nitrate reduction was consistently removed with little variation (coefficient of variation was 0.94%) with the highest effluent total nitrate as 0.24 mg-N/L. Similar to perchlorate, factors controlling performance were influent flow rate and recycle flow rate. Reductions of nitrate to less than 0.5 mg-N/L were demonstrated at a flow as high as 18 gpm. Highest reductions were observed when recycle flow rates were highest. Another key finding was that 79 percent of nitrate was reduced across the lead reactor with an average lead effluent concentration of 1.8±0.16 mg-N/L during Steady State. As such, a full-scale system may include single-stage operations, thus decreasing capital and operational costs and system footprint.

Drinking Water Treatment Goals

Other drinking water treatment goals that were evaluated during the Demonstration included disinfection, odor, turbidity, dissolved organic carbon (DOC), and pH. Disinfection was accomplished using sodium hypochlorite with a free chlorine residual of 0.2 mg/L to meet disinfection requirements based on CT. CT stands for the concentration of disinfectant "C" multiplied by the contact time "T" in minutes. Fecal coliforms, total coliforms, *Escherichia coli* (*E. coli*) and heterotrophic plate counts (HPCs) were used as indicator parameters for disinfection performance. During Steady State *E. coli*, fecal coliforms, and total coliforms were below the detection limit (2/100 mL) in all post-disinfection samples. HPCs were on average 43 most probable number per milliliter (MPN/mL), and no samples were greater than the MCL of 500 MPN/mL. Disinfection byproducts were below regulatory limits. Haloacetic acids (HAA5) were below detection (< 6 μ g/L) and total trihalomethanes TTHMs) averaged 4.8 μ g/L compared to the MCL of 80 μ g/L. Nitrosamines were not detected.

Odorous compounds, primarily hydrogen sulfide, can be inadvertently generated if conditions become more strongly reducing than targeted. The performance objective for odor was less than the US EPA National Primary Drinking Water Regulation's secondary standard for threshold odor number (TON) of three. The average TON during Steady State was 2.2.

Turbidity is also of concern since this technology involves growing a biofilm that can detach from membrane surfaces. Media filtration in combination with a coagulant filter aid was employed down-stream of the MBfR process. An average turbidity of 0.27 nephelometric turbidity units (NTU) was observed at the filter effluent during Steady State. The media filter was backwashed approximately every 12 hours, which resulted in wasting approximately 3 percent of the system influent water. Media filter backwash water was analyzed for TSS to

estimate solids generated for disposal. Based on these samples, approximately 10,000 grams (22 pounds) of solids were generated per MG of water treated from media filter backwashing.

Residual biodegradable organic compounds in treated water can decrease water biostability and promote regrowth of organisms in distribution systems. DOC was selected as a surrogate indicator for biological stability. The increase in DOC from the system influent to the finished water was on average 0.4 milligrams per liter (mg/L) during Steady State. While the goal for this project was less than a 0.2 mg/L increase, the metric is not driven by regulation, and requirements for biological stability are specific to each drinking water distribution system. This increase of 0.4 mg/L DOC is not necessarily biodegradable and may be stable in some distribution systems.

Control of pH was important for this system, since denitrification and other reduction processes can result in increased alkalinity. During the MBfR Demonstration, the pH of the finished water remained within the secondary MCL of between 6.5 and 8.5 standard units (SU). The average finished water pH was 7.8±0.2 SU during the one-month Steady State period.

COSTS

The cost assessment was conducted for an MBfR treating nitrate and not perchlorate because the 6-µg/L performance objective for perchlorate removal was not achieved. The cost model used water quality conditions at the site, located at Well 22 in Rialto, California. The model assumed full-scale operations were at 1,000 gpm with six different operating scenarios. Three nitrate treatment goals were selected for a 1,000 gpm full-scale MBfR system: 1) 28 mg-N/L of influent and 4.0 mg N/L effluent, 2) 10 mg N/L of influent and 6.8 mg N/L effluent, and 3) 18 mg N/L of influent and 6.8 mg N/L of effluent. Scenario 1 has similar design conditions to previously published work (Brown et al. 2008; Webster and Togna 2009) and was included in this study for comparison. The three treatment goals were applied to two MBfR system designs: a design using the same process used in the Demonstration (Scenario 1, 2 and 3) and a design modified and improved based on information gathered during the Demonstration (Scenario 4, 5 and 6). The modified design includes several enhancements to increase system efficiency and decrease wastewater generation. Unit total costs including operations, maintenance, and amortized capital for the various scenarios were expressed in terms of MG of water treated as follows:

Scenario	Purpose	Cost (\$/MG treated)
1	Comparable to previous research studies	706
2	Represents conditions similar to this Demonstration	863
3	An example system with higher nitrate concentrations	2,037
4	Comparable to scenario 1, but with a revised treatment process integrating key lessons from the Demonstration	582
5	Comparable to scenario 2, but with a revised treatment process integrating key lessons from the Demonstration	640
6	Comparable to scenario 3, but with a revised treatment process integrating key lessons from the Demonstration	1,290

Note: MG – million gallons

Comparison between the MBfR system and IX showed that the MBfR was more economical, particularly when wastewater disposal for IX regeneration is included. IX resin regeneration disposal costs are largely site-specific. Wastewater from the MBfR system, which includes media backwash water and MBfR sparging water, can be discharged through the municipal sanitary sewer after removing some suspended solids. However, wastewater generated during IX regeneration cannot be directly discharged to a municipal sewer mainly because of the high salt concentrations. The unit operations, maintenance, and amortized capital costs for IX were estimated to be \$2,781/MG water treated for Scenario 1, \$2,787/MG for Scenario 2 and \$3,462/MG for Scenario 3. MBfR costs were also compared with the ESTCP project "Direct Fixed-Bed (FXB) Biological Perchlorate Destruction Demonstration" (Brown et al. 2008). The unit cost of the FXB system was \$730/MG, which is similar to the MBfR unit cost of \$706/MG for Scenario 1. However, MBfR costs are lower when compared with the modified design - the cost for Scenario 4 was approximately 30% lower at \$528/MG. The MBfR was shown to be competitive with other biological treatment technologies for nitrate removal.

IMPLEMENTATION ISSUES

The results of this Demonstration study showed that: 1) the MBfR bioreactor treatment system provided consistent and robust nitrate removal; 2) the reactor provided reductions in perchlorate over 90 percent, but did not meet the treatment objective of less than 6 µg/L; 3) aeration, media filtration, and disinfection provide effective post-treatment; 4) system operation is straightforward, requiring no specialized training; 5) the indigenous bacterial communities formed a biofilm within approximately one month; and 6) total water production costs are lower than conventional IX treatment. While there are currently no Federal regulations for perchlorate in place, the USEPA has established an Interim Drinking Water Health Advisory of 15 µg/L. The CDPH has developed rules that are more stringent and established a State MCL of 6 µg/L as of October 2007. The MCL for nitrate is 10 mg-N/L. All applicable Federal and State regulations and requirements for drinking water treatment must be met for a full-scale MBfR system. In addition to meeting primary and secondary drinking water treatment regulations, regulatory acceptance, permitting, and safety are important implementation issues. A major end-user concern with this system is use of hydrogen, a flammable gas. The data presented herein demonstrated that this issue was easily managed and did not necessitate extraordinary efforts. The following observations and actions were part of this Demonstration:

- Hydrogen was supplied using an on-site generation system with back-up cylinders. The cylinders were on a gas-supply pad that stabilized and manifolded the gases together.
- Flammable gas/no-smoking placards were used at the site.
- Lower explosive limit (LEL) sensors stopped the system when hydrogen was detected.
- Liquid nitrogen was supplied in a commercially available dewar. From a cold surface hazard perspective, liquid nitrogen is handled as liquid oxygen is at commercial facilities.
- Liquid carbon dioxide was supplied in cylinders similar to hydrogen back-up cylinders. These were secured in the same containment area as hydrogen and nitrogen.

Conditional acceptance of the MBfR has been obtained from CDPH. The first full-scale MBfR system for treatment of nitrate in drinking water is in the process of being permitted at Cucamonga Valley Water District. The combination of data from this Demonstration project in

conjunction with regulatory acceptance of a full-scale system will support additional work and willingness to design and operate this technology full-scale.

1.0 INTRODUCTION

1.1 BACKGROUND

Perchlorate is a strong oxidizer that is primarily used in solid rocket fuels, fireworks, explosives, and road flares. While perchlorate can generate from natural processes, the majority of occurrence in the United States (U.S.) is from anthropogenic sources. Perchlorate is a human health concern because it can prevent assimilation of iodide in the thyroid by competitively inhibiting its uptake. Iodide regulates normal functions of the thyroid and is critical in the growth and development of fetuses, infants, and children (USEPA 2005). As of February 2011, the U.S. Environmental Protection Agency (USEPA) determined that perchlorate can be regulated under the Safe Drinking Water Act (SDWA). EPA then began the process of determining and proposing a National Primary Drinking Water Regulation (NPDWR) for perchlorate to establish a national primary maximum contaminant level (MCL) in drinking water (Lehman and Subramani 2011).

Perchlorate is present in many potable water supplies throughout the U.S. (Wang et al. 2002), with the highest density of contamination in Southern California, west central Texas, and New Jersey, New York, and Massachusetts (Lehman and Subramani 2011). From 2001 to 2005, USEPA required sampling for perchlorate in potable water supplies that serve more than 10,000 customers under the Unregulated Contaminant Monitoring Rule 1 (UCMR1). Of the 3,865 drinking water systems that were sampled, perchlorate was detected in 647 samples from 25 states, which represented 160 systems (Brandhuber et al. 2009). The frequency of perchlorate detection in these systems was approximately 4.1 percent (GAO 2010). Many but not all of the anthropogenic sources of perchlorate were attributable to Department of Defense (DoD) and DoD-contractor operations.

Nitrate (NO₃⁻) is commonly found as a co-contaminant in water with perchlorate because ammonium nitrate is a main component in rocket fuel and explosives (Wang et al. 2002). Nitrate is regulated by the SDWA and has an MCL of 10 mg-N/L. Costs for mitigating perchlorate and nitrate contamination can be significant; thus, demonstration and validation of cost-effective treatment technologies is critical to the DoD.

Anoxic biodegradation can be used to treat perchlorate and nitrate, and it can result in complete elimination of the contaminants. The anoxic autotrophic membrane biofilm reactor (MBfR) may be used for biologically mediated perchlorate and nitrate reductions. Autotrophic bacteria do not use organic carbon as a source for growth; instead, they grow using bicarbonate as a carbon source. Since most groundwater is oligotrophic (i.e., low organic carbon), autotrophic hydrogen-oxidizing bacteria would be indigenous and favored under conditions promoted in the MBfR. The reactor is comprised of numerous permeable hollow fiber gas-transfer membranes that are pressurized with hydrogen gas. The membranes are woven together into a permeable sheet. Water is pumped through the reactor and contacts the outside of the fiber membranes. Hydrogen is pumped through the interior of the fibers, and a biofilm containing a community of indigenous perchlorate- and nitrate-reducing bacteria grow on the exterior surface of the hollow fibers. These bacteria are ubiquitous in the environment (Urbansky 1998). Hydrogen serves as the electron donor for biological denitrification of nitrate to elemental nitrogen and for reduction of

perchlorate to chloride ions. Use of hydrogen for autotrophic biodegradation is ideal because hydrogen has a low biomass yield, relatively low cost (13 to 15 times less than common organic amendments), is relatively insoluble in water, and does not persist in treated water, thereby preventing further microbial growth caused by excess donor (Rittmann and Snoeyink 1984; Nerenberg et al. 2002).

The purpose of this Demonstration was to validate the feasibility of the MBfR for anoxic biodegradation of perchlorate and nitrate. A pilot-scale drinking water treatment plant using the MBfR technology was installed at the WVWD Well 22 facility in Rialto, California. The treatment train included perchlorate and nitrate removal using two MBfRs in series. Additional downstream processing included stabilization of the MBfR effluent to remove DOC via aerobic biological filtration. An aeration tank was used to increase DO concentration and oxidation-reduction potential (ORP) prior to filtration. The media filtration and a coagulant filter aid were used to remove suspended solids and turbidity. Water was subsequently disinfected using chlorination. Post process treatment was required by the California Regional Water Quality Control Board prior to discharge back to groundwater and included granular activated carbon (GAC) filtration and ion exchange (IX). GAC was used for removal of chlorinated solvents present as a co-contaminant in the source water. IX was used for removing residual perchlorate prior to injection back to groundwater.

1.2 OBJECTIVES OF THE DEMONSTRATION

The purpose of this Demonstration was to evaluate the feasibility of the MBfR to destroy perchlorate and nitrate in groundwater and produce potable water at the pilot scale, evaluate process control parameters to optimize performance, and estimate full-scale technology costs. Additional objectives were to obtain regulatory acceptance of the technology, conduct a safe Demonstration, and have no permit violations.

Specific advantages of the technology include perchlorate and nitrate destruction, minimization of DOC in the effluent, and minimization of TSS and bacteria in the produced water. The project was organized into four phases: Start-Up, Optimization, Steady State, and a Challenge phase. Groundwater was pumped from a well to an equalization tank, and then to the MBfR at flow rates as high as 22 gpm. The Start-Up phase was designed to promote growth of perchlorate- and nitrate-reducing bacteria on the hollow fiber membranes. During Optimization, operational conditions were varied to evaluate system performance with respect to contaminant removal and operating and maintenance requirements. A period of Steady State operation assessed process stability, which is critical for potable water production. The Challenge phase included intentional process upsets to assess resiliency and reliability of the technology, such as influent flow shutdown and discontinuation of electron donor delivery.

1.3 REGULATORY DRIVERS

Widespread contamination of groundwater with perchlorate was not discovered in the U.S. until 1997. During that year, the CDPH adopted a provisional action level of $18 \,\mu\text{g/L}$ based on limited toxicological data, but there was no analytical method that was sensitive to this concentration. Later that year, a new analytical method was developed that was more sensitive with a detection

limit of 4 µg/L (Hatzinger 2005; USEPA 1998). EPA added perchlorate to the Contaminant Candidate List (CCL) in 1998. This list encompasses contaminants that are being considered for regulation under the Safe Drinking Water Act (SDWA). From 2001 to 2005, the USEPA required drinking water utilities to monitor for perchlorate and report results under Unregulated Contaminant Monitoring Rule 1 (UCMR1). In February 2005, EPA set the official reference dose for perchlorate as 0.0007 milligrams per kilogram per day (mg/kg/d), a drinking water equivalent level (DWEL) of 24.5 µg/L based on the monitoring results and results from additional toxicological investigations from the National Research Council of the National Academy of Sciences (Lehman and Subramani 2011). USEPA has since established an Interim Drinking Water Health Advisory of 15 µg/L. In the absence of formal federal regulatory guidance, several states began regulating perchlorate in drinking water. In 2006 Massachusetts established an MCL of 2 µg/L, in October 2007 California established an MCL of 6 µg/L, and in 2009 New Jersey established an MCL of 5 µg/L (Lehman and Subramani 2011). Perchlorate is also governed under the California's guidance document for the use of extremely impaired sources when the concentration exceeds 10 times the MCL (60 µg/L), the source water "is extremely threatened with contamination due to proximity to known contaminating activities", "contains a mixture of contaminants of health concern", or "is designed to intercept known contaminants of health concern" (CDPH 1997). In February 2011, EPA released the determination that perchlorate met the SDWA criteria for regulation, and EPA is currently in the process of establishing an MCL (Lehman and Subramani 2011). Nitrate is regulated by the SDWA and has an established MCL of 10 (mg-N/L).

In addition to meeting regulatory requirements for perchlorate and nitrate, groundwater that is used as a drinking water source needs to comply with all applicable regulations under EPA's SDWA. This includes relevant regulations such as the Total Coliform Rule (TCR), the Interim, Long Term 1, and Long Term 2 Enhanced Surface Water Treatment Rules (SWTR), the UCMR 1, Filter Backwash Recycling Rule (FBRR), the Stage 1 and Stage 2 Disinfection Byproduct (DBP) Rules, the Groundwater Rule, and the Lead and Copper Rule. Several states have their own regulations that are more stringent than the SDWA. The CDPH is responsible for certifying drinking water treatment technologies pursuant to California Health and Safety Code Section 116830. The CDPH is also responsible for permitting drinking water supplies. The California Code of Regulations (CCR), Title 22 (Social Security), Division 4 (Environmental Health) specifies requirements for potable water that are analogous to the SDWA. Accordingly, specific treatment requirements for potable water production in addition to perchlorate and nitrate removal include but are not limited to:

- Compliance with primary drinking water standards for nitrite.
- Filtration to remove suspended solids and bacteria.
- Disinfection to ensure that the potable water supply does not contain pathogenic bacteria (e.g., *E. coli*, fecal coliforms, and total coliforms) or elevated levels of heterotrophic bacteria.

DBP formation is measured by monitoring for trihalomethanes (THMs) and haloacetic acids (HAAs) at the effluent of the finished water. Currently, the USEPA and the State of California have established MCLs of 0.08 mg/L and 0.06 mg/L for THMs and HAAs, respectively. Additional analysis for DBP formation potential (DBP-FP) and nitrosamines were monitored

during steady state and the Challenge phase per request by the CDPH. California considers N-nitrosodimethylamine (NDMA) and other nitrosamines as emerging contaminants and consequently has not issued an MCL. However, the State of California issued a Notification Level of 10 nanograms per liter (ng/L) for three nitrosamines: N-nitrosodiethylamine (NDEA), NDMA, and N-nitrosodi-n-propylamine (NDBA). Response levels are concentrations where CDPH recommends removing the source from service, as water quality levels correspond to a 10⁻⁴ risk level for cancer. Response Levels of 100, 300, and 500 ng/L are set by CDPH for NDEA, NDMA, and NDBA, respectively. The USEPA has not specified an MCL for nitrosamines.

1.4 STAKEHOLDER/END-USER ISSUES

Potential stakeholders and end-users for the technology include DoD Remedial Project Managers, DoD contractors, private and public water utilities, and regulatory agencies including the CDPH. The general public is an important end-user since they will consume potable water produced by a permitted full-scale system. These stakeholders and end-users may use or evaluate the technology for potable water production from groundwater contaminated with perchlorate and nitrate. This technology may also be used for non-potable water treatment, as in remediation of contaminated groundwater. The technology may also be applicable to reduction of other oxidized contaminants including trichloroethene, chromium VI, selenate, and others (Chung et al. 2006b; Chung and Rittmann 2007; Chung et al. 2007; Rittmann et al. 2004).

This Demonstration answered several questions about MBfR for perchlorate and nitrate reduction, including:

- Is the process robust to potential process upsets?
- What are the treatment costs?
- How does the technology perform under various operating conditions?
- What are the key design parameters for technology optimization?
- What is the likelihood for regulatory acceptance of the technology?

2.0 TECHNOLOGY

2.1 TECHNOLOGY DESCRIPTION

The MBfR process is based on the latest advances in membrane technology and includes anoxic biological reduction using a staged hydrogen-fed membrane biofilm reactor followed by aerobic biological stabilization, media filtration, and disinfection (Figure 2.1). This technology builds upon a number of previously successful MBfR studies treating high concentrations of perchlorate and nitrate in groundwater. The MBfR design uses permeable hollow-fiber membranes pressurized with hydrogen gas (H₂). Hydrogen is fed to the lumen of hollow-fiber gas-transfer membranes, and bacteria grow naturally as a biofilm on the exterior of the membranes exposed to contaminated water. Membrane sheets of woven hollow-fiber filaments are wrapped around an interior perforated core, and water flows out radially (Figure 2.1c). Hollow fiber membranes are widely used in a range of industries for bubble-less gas transfer. Bubble-less gas transfer allows delivery of hydrogen gas directly to the bacteria. This results in nearly 100 percent hydrogen usage, which makes the process economical (no donor waste) and safe.

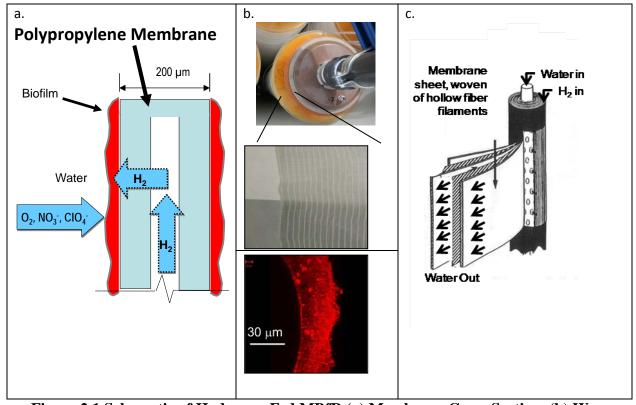


Figure 2.1 Schematic of Hydrogen-Fed MBfR (a) Membrane Cross Section, (b) Woven Fibers and Biofilm, and (c) Membrane Module Design

The treatment process for the Demonstration consisted of two 575-gallon MBfR vessels, in a two-stage lead/lag configuration containing seven polypropylene-fiber membrane modules in each tank. The 14 modules had a total membrane surface area of 2,000 m². Influent water was fed into the lead MBfR vessel. The lead vessel effluent then flowed into the lag MBfR vessel. Recirculation pumps with an adjustable flow rate of 70 to 280 gpm were used for recirculating

water through the membrane modules in each MBfR vessel. The MBfR lag vessel effluent was subsequently processed by aeration, media filtration, and disinfection. Indigenous microorganisms from the feed water attached on to the membrane surface and created a biofilm. Adequate quantities of electron donor (hydrogen gas) and nutrients (phosphoric acid) were added to the reactors. The attached microorganisms preferentially consumed DO, nitrate, and perchlorate. As such, the biofilm contained aerobic, nitrate-reducing, and perchlorate-reducing bacteria. Sulfate can also be reduced to sulfide provided sufficient hydrogen gas is delivered.

The biological process was staged to minimize reactor volume and control growth. The goal was to achieve an increased volumetric loading by taking advantage of the well-known plug-flow effect from using reactors in series. Reactors in series allow treatment of higher substrate concentrations in the first stage, with a low concentration in the lag reactor to act as a polishing process and meet low-level effluent standards. The first stage was used to remove DO, nitrate, and some perchlorate. The second stage was used to remove the remainder of the perchlorate. The two vessels alternated positions between lead and lag periodically to sustain similar biological growth between the two vessels. Carbon dioxide (CO₂) was used for pH control to prevent precipitation of hardness. The denitrification process produces alkalinity, which increases the pH. Carbon dioxide was added to lower the pH back to near neutral, with a set point of 7.2 standard units (SU). Carbon dioxide was also used as a carbon source for microbial assimilation. The stoichiometric relationships between hydrogen, carbon dioxide, and electron donor with cell mass production (C₅H₇O₂N), alkalinity produced (hydroxide ion, OH⁻), and other byproducts for different electron acceptors were developed assuming 0.091 as the fraction of electrons going to assimilate biomass per electron from hydrogen (Rittmann and McCarty 2001), as follows:

```
Oxygen: 4.4H_2 + 2O_2 + 0.143CO_2 + 0.0285NO_3^- \Rightarrow 0.0285C_5H_7O_2N + 0.0285OH^- + 4.286H_2O

Nitrate: 4.4H_2 + 1.6285NO_3^- + 0.143CO_2 + \Rightarrow 0.0285C_5H_7O_2N + 0.8N_2 + 1.6285OH^- + 3.629H_2O

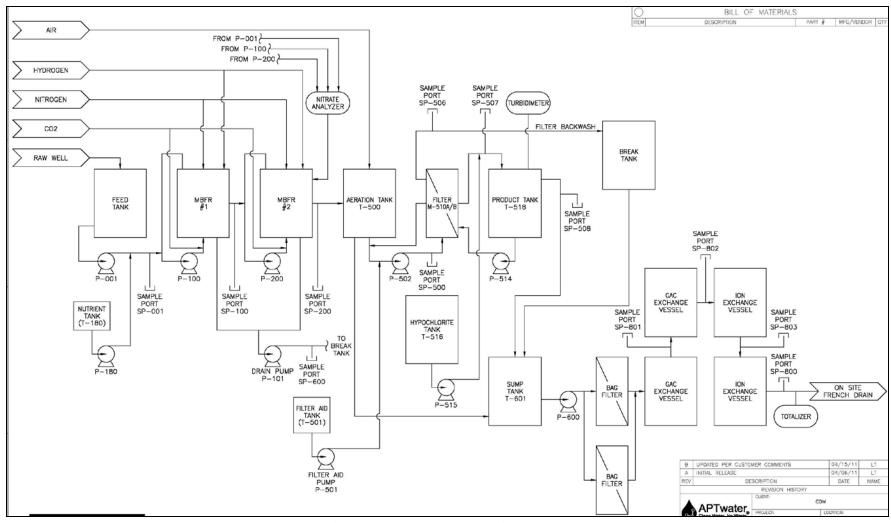
Perchlorate: 4.4H_2 + ClO_4^- + 0.143CO_2 + 0.0285NO_3^- \Rightarrow 0.0285C_5H_7O_2N + Cl^- + 0.0285OH^- + 4.286H_2O

Sulfate: 4.4H_2 + SO_4^{2-} + 0.143CO_2 + 0.0285NO_3^- \Rightarrow 0.0285C_5H_7O_2N + HS^- + 1.0285OH^- + 3.286H_2O
```

The low biomass yield of 0.0285 mole of $C_5H_7O_2N$ per mole NO_3^- translates into a slow growth rate for autotrophs (Lee and Rittmann 2002) and thus fewer operational controls needed for biomass control and lower solids handling.

Post Treatment: For drinking water treatment applications, post-MBfR processes need to achieve the following water quality goals:

- Water stability: since biological nitrate and perchlorate reduction requires anoxic conditions, water must be re-aerated during the post-treatment process. Oxygenation also removes taste and odor-causing compounds (e.g. sulfide).
- Turbidity: to meet SWTR requirements.
- Wastewater solids management: solids generated from sparging the MBfR and media filter backwashing must be disposed of using an appropriate method.
- Disinfection: as with any drinking water treatment process, a disinfection step must be included to minimize the potential for bacteria regrowth and meet CT requirements.
- Disinfection Byproduct Formation: DBPs must be below their respective MCLs.


The treatment processes implemented downstream of the MBfR included aeration, media filtration, and disinfection. Additional processing prior to groundwater re-injection included filtration through GAC and IX resin to meet California Regional Water Quality Control Board permit requirements. The process flow diagram is provided in Figure 2.2.

The first step after MBfR treatment was aeration to replenish DO. After aeration, water passed through a media filter where solids and DOC were removed. A coagulant, or filter aid, was added prior to the media filter. This chemical addition allowed for more efficient suspended solids removal by the filter. The effluent from the media filter was pumped to the finished water where sodium hypochlorite was added for disinfection. This water was discharged to the sump tank. Water from the sump tank was fed through two bag filters operated in parallel for solids removal prior to two GAC vessels operated in series. The GAC vessels removed volatile organic compounds that were present as co-contaminants. For complete removal of perchlorate before reinjection to groundwater, the GAC effluent was conveyed through two IX vessels in series. A back flush/effluent tank system capable of storing media filter backwash water was also part of the system. Key design criteria for the MBfR included:

- Membrane surface area
- Membrane packing density
- Number of reactor stages
- Hydraulic residence time in each stage
- Influent flow rate and electron acceptor loading
- MBfR water recirculation flow rate
- Hydrogen gas pressure
- Hydrogen consumption rate
- Sparge frequency
- Sparge gas composition

Key design criteria for the media filter system included:

- Coagulant/filter aid type and dose
- Filter surface loading rate
- Filter media type(s) and depth(s)
- Backwash frequency

Figure 2.2 Process Flow Diagram

Factors Affecting Performance of the MBfR: A simple steady-state mass balance on the contaminant (perchlorate or nitrate) around the MBfR can be expressed as:

$$0 = QC_o - QC - JAV (2.1)$$

where $Q = \text{volumetric flow rate, cubic meters per day } (m^3/d)$

 C_0 = influent contaminant concentration, grams per cubic meter (g/m³)

C =effluent contaminant concentration, g/m³

J = contaminant flux, grams per square meter per day (g/m²-d)

A = biofilm specific surface area, square meters per cubic meter (m^2/m^3)

V = MBfR volume, cubic meters (m³)

Rearranging (2.1) to solve for C provides a useful format for understanding in equation 2.2:

$$C = C_o - JAV/Q (2.2)$$

The product JAV/Q gives the removal of the contaminant in terms of concentration. It shows the inherent trade-offs among J, A, and V for a given Q and C_o . For instance, large values of J, A, or both make it possible to have a small value of V, which leads to savings in construction and land costs. Likewise, a high value of the specific surface area (A) makes it possible to trade off high flux, and vice versa. In general, it is desirable to have a large flux (J). Factors that can lead to a large flux and that were considered in this project are:

- Contaminant loading. As a first approximation, the reduction kinetics for perchlorate degradation is first order, which means greater perchlorate concentrations increase J proportionally. Increasing influent flow rates increases contaminant loading.
- Fast mass-transport of the contaminant from the bulk liquid to the surface of the biofilm. This is controlled by turbulence, which depends on the liquid velocity past the biofilm. The liquid velocity is controlled by the amount of process water that is recycled. The liquid velocity was used to maintain an optimum biofilm thickness.
- *Hydrogen availability*. An increased hydrogen pressure, which controls the availability of the donor substrate to the biofilm, increases hydrogen and contaminant flux (Lee and Rittmann 2002). Hydrogen pressure controls the flux with a nearly linear relationship (Ziv-El and Rittmann 2009).
- A high accumulation of the desired bacteria in the biofilm. In this case, the key bacteria are those that reduce perchlorate and nitrate. While oxygen is a preferred electron acceptor followed by nitrate and nitrite, perchlorate reduction will occur once these competing electron acceptors are low enough. Previous research showed that perchlorate reducers are facultative anaerobes and can reduce nitrate and oxygen as well as perchlorate to gain energy and grow. This is called secondary utilization of perchlorate. In addition, other bacteria that can reduce oxygen and/or nitrate may also be present in the biofilm. Co-reduction of perchlorate, nitrate and oxygen at high rates is favored by having a high concentration of active biomass. This concentration depends on the influent groundwater chemistry as well as the MBfR staging. A high concentration of desired bacteria in the biofilm is preferable for high biofilm thickness because of mass transfer limitations and greater maintenance requirements.

• Staging. A high influent concentration of perchlorate drives faster kinetics, but is contrary to achieving a low effluent concentration. However, this conundrum is solved by having multiple stages in series. A high concentration occurs in the first stage so that J is high, but the next stage has a low C and J to meet lower effluent water quality objectives. J averaged over the entire system is increased considerably by staging (Levenspiel 1962), and this translates into smaller capital costs and space requirements.

Although high J is desirable for good performance and cost effectiveness, it is not the only factor that can be optimized to achieve the goals. The other powerful tool is achieving a high specific surface area, A. A high specific surface area can be attained by proper combination of two strategies:

- Fine fibers with a high ratio of surface area to mass or volume. The specific surface area of one fiber is inversely proportional to its diameter. Thus, making the diameter smaller automatically increases A. For instance, decreasing the fiber diameter from 300 micrometers (μm) to 100 μm increases each fiber's specific surface area threefold. This strategy is limited by the ability to manufacture a durable fiber in smaller diameters.
- *High packing density*. Increasing the number of fibers per unit volume of the MBfR makes the specific surface area proportionally higher. For instance, increasing the density from 3 percent of the reactor volume to 9 percent increases A threefold. The packing density should not be increased so much that it prevents good water-flow distribution in the fibers or that it allows the fibers to clump together.

Periodic pulsing with gas and backwashing are a means to prevent fiber clumping and maintain good flow distribution, despite using small fibers at a high packing density. Gas pulsing in the MBfR stages is conducted by sparging with nitrogen gas or alternatively with air.

2.2 TECHNOLOGY DEVELOPMENT

The MBfR technology for perchlorate and nitrate removal was invented, developed, and extensively tested by Dr. Bruce Rittmann and co-workers (Lee and Rittmann 2002; Nerenberg and Rittmann 2004; Nerenberg et al. 2003; Nerenberg et al. 2002; Rittmann and Lee 2002). Bench-scale MBfRs reduced perchlorate from 105 $\mu g/L$ to less than 4 $\mu g/L$ with a perchlorate flux of 23 milligrams per square meter per day (mg/m²/d); this demonstrated the potential for the MBfR to be a cost-effective full-scale design. Additional research that validated perchlorate removal by hydrogen-fed autotrophs in bioreactors has been conducted by Dr. Bruce Logan (Logan and LaPoint 2002; Miller and Logan 2000; Logan et al. 2004). MBfR flux measured in Dr. Rittmann's laboratory demonstrated first-order reaction kinetics and the importance of hydrogen pressure. MBfR design data for a staged process based on Dr. Rittmann's data demonstrated the value of reactor staging (Rittmann et al. 2004). Increased hydrogen pressure countered the effect of increased nitrate loading to the MBfR (Lee and Rittmann 2002). These data supported MBfR responsiveness to changing water quality and operational conditions.

Pilot-scale testing of the MBfR technology and an engineering analysis were conducted at La Puente Water Treatment Plant in California (Adham et al. 2004). While the pilot system successfully reduced perchlorate from approximately 60 μ g/L to less than 4 μ g/L and generated a

wealth of operating experience, the typical flow rate of 0.3 gpm was too low to obtain accurate cost and performance data. Furthermore, the membrane module design used at La Puente was poorly suited for the MBfR and resulted in slow mass transfer and short-circuiting.

The microbial, functional, and structural interactions between perchlorate and nitrate reduction in the MBfR biofilm was recently investigated for an MBfR system that had complete reduction of perchlorate and nitrate when hydrogen was not limiting. The MBfR's biofilm was found to be composed of autotrophic genera *Sulfuricurvum*, *Hydrogenophaga*, and *Dechloromonas* dominating the biofilm (Zhao et al. 2011). The hydrogen-based MBfR also has been shown to be highly effective for reducing a wide range of oxidized contaminants beyond nitrate and perchlorate (Nerenberg and Rittmann 2004; Rittmann et al. 2004; Adham et al. 2005; Chung et al. 2006b; Chung et al. 2006c; Chung et al. 2006d). These include TCE, chromate, selenate, and bromate. Thus, the hydrogen-based MBfR removed multiple oxidized contaminants simultaneously. A list of oxidized contaminants that have been demonstrated with the MBfR to date is shown in Table 2.1.

Table 2.1 Chronological Development of the MBfR Technology

			Efficiency/Loading /	Ç
Year	Application	Scale	Removal Rate	Reference
2002	NO_3	Bench	92% - C ₀ 5 mg-N/L	(Lee and Rittmann
				2002)
2002	ClO_4	Bench	30 to 99% - C_0 0.2 to 25 mg/L	(Nerenberg et al.
				2002)
2003	ClO ₄	Pilot	ClO ₄ : 96% - C ₀ 55 µg/L	(Nerenberg et al.
			$NO_3^-:>97\% - C_0 5.5 \text{ mg-N/L}$	2003)
2004	ClO ₄ , NO ₃	Lab,	ClO ₄ : 95% - C ₀ 50 µg/L	(Rittmann et al.
		bench	NO ₃ ⁻ : 76% - C ₀ 10 mg/L	2004)
2006	Arsenate [As(V)]	Lab	68% - C ₀ 0.142 mg/L	(Chung et al.
				2006a; Chung et al.
				2007)
2006	Chromate [Cr(VI)]	Lab	84% - C ₀ 1000 μg/L	(Chung et al.
2005	a 1			2006d)
2006	Selenate [Se(VI)]	Lab	94% - C ₀ 260 μg/L	(Chung et al.
				2006c; Chung et al.
2007	D (D O 5)	T 1	000/ 0 15 /	2006b)
2007	Bromate (BrO ₃)	Lab	>99% - C ₀ 1.5 mg/L	(Chung and
2007	D 4	т 1	. 000/ C 1.5 /I	Rittmann 2007)
2007	Bromate	Lab	>99% - C ₀ 1.5 mg/L	(Downing and
2007	NO - C10 - C ₂ (VI)	Danah	NO 5 > 000/ C 10 m = N/L :	Nerenberg 2007)
2007	NO_3 , CIO_4 , $Se(VI)$,	Bench	NO_3 : >99% - C_0 10 mg-N/L;	(Chung et al. 2007)
	Cr(VI), As(V),		DBCP: below detection (BD)	
	Dibromochloropropane (DBCP)		- C_0 1.4 μ g/L; ClO ₄ and CLO ₃ : BD -	
	(DDCF)		C_0 82 μ g/L	
2008	NO ₃ -, ClO ₄ -	Bench	NO_3^- : 5.4 g-N/m ² -d	(Van Ginkel et al.
2008	1103, C104	Delicii	ClO_4 : 5.0g ClO_4/m^2 -d	2008)
		L	104. 3.0g C104/III -u	2000 <i>)</i>

			Efficiency/Loading /	
Year	Application	Scale	Removal Rate	Reference
2008	1,1,1-Trichloroethane	Lab	87% (TCE), 95% (TCA), 99%	(Chung and
	(TCA), TCE,		(CCl_4) - C_0 1000 μ g/L of each	Rittmann 2008)
	Chloroform (CCl ₃)			
2008	TCE	Lab	93% - C ₀ 1 mg/L	(Chung et al.
				2008a)
2008	NDMA	Lab	96% - C ₀ 0.2 μg/L	(Chung et al.
				2008b)
2009	NO_3	Lab	>99% - C _o 200 with 230 g-	(Hasar 2009)
			N/m ² -d loading	
2009	NO_3 , ClO_4	Lab	NO_3 : >99.5% with 0.21 mg-	(Ziv-El and
			NO ₃ /cm ² -d loading;	Rittmann 2009)
			ClO ₄ : 3.4 µg/cm ² -d loading	
2011	<i>p</i> -Chloronitrobenzene	Lab	99.3% - C ₀ 2 mg/L	(Xia et al. 2011)
2011	2-Chlorophenol	Lab	94.7% - C ₀ 1-5 mg/L	(Xia et al. 2011)

East Valley Water District (EVWD) Perchlorate Reduction Demonstration

The first stage of this project involved a pilot-scale Demonstration of the MBfR at East Valley Water District (EVWD). An MBfR with post media filtration was demonstrated for perchlorate reduction using groundwater at EVWD Well 28A in San Bernardino, California. The six-month Demonstration included 1) a Start-Up phase designed to promote growth of perchlorate-reducing bacteria (PRB) on the membranes, and 2) an Optimization phase of variable operating conditions to test system performances, and to assess compliance with regulatory requirements.

The process included MBfR modules with cellulose triacetate (CTA) membranes, aerobic biodegradation, media filtration, and chlorination. Post-processing steps were integrated for the removal of DOC, TSS, bacteria, and disinfection. A series of quantitative and qualitative performance objectives were established for the Demonstration. The quantitative performance objective for perchlorate was an effluent concentration of 6 μ g/L. The qualitative performance objectives of safety and permit compliance were specific for Demonstration activities *per se* rather than the technology, but were critical for the successful Demonstration. Taste and odor were considered a critical aspect of general public acceptance.

During Start-Up, perchlorate removal was achieved in about 6 weeks, with influent concentrations of approximately 50 μ g/L reduced to less than 6 μ g/L. However, perchlorate removal was not sustained because of excessive biofilm growth and short-circuiting as described below.

During the Optimization phase, the impacts of various operational parameters on perchlorate reduction and effluent water quality were investigated. These included influent flow rate, perchlorate concentration, and recirculation rate. The MBfR was tested over progressive increases in flow rates from 1 to 6 gpm to assess system performance under variable loadings. Influent concentrations of perchlorate (approximately 55 μ g/L) and nitrate (approximately 7 mg-N/L) were constantly fed to the reactor during Optimization. Effluent perchlorate and nitrate

concentrations below the set success criteria were observed at a flow rate of 1 gpm. When the system flow rate increased from 1 gpm to 3 gpm, perchlorate performance was maintained. However, there was a slight increase in effluent nitrate and nitrite concentrations; thus the performance requirements for nitrate and nitrite were not met. The reactor performance abruptly deteriorated during the next 3 weeks when the system was operated at 6 gpm. Under these conditions, effluent perchlorate concentrations increased to approximately 45 µg/L and total nitrogen increased to approximately 3.8 mg-N/L. The influent flow rate was decreased from 6 gpm back to an intermediate flow of 3 gpm for 1 month. Although perchlorate and nitrate removal were slightly improved at 3 gpm to approximately 25 µg/L and 1.5 mg/L, respectively, the success criterion for perchlorate was not met. The flow rate was then decreased to 1 gpm, which resulted in effluent nitrate below detection and effluent perchlorate of approximately 18 µg/L after 2 weeks. Recirculation flow in the MBfR was increased from 90 to 180 gpm to further promote perchlorate reduction and to support system recovery. Although perchlorate reduction improved significantly (approximately 65 percent) and effluent nitrate was reduced to below detection, the perchlorate performance objective was not met. The feed perchlorate concentration was then reduced from 50 µg/L to 15 µg/L (i.e., the typical EVWD well 28A concentration) to determine if the MBfR was capable of achieving the 6-µg/L perchlorate goal when the feed concentration was lowered. This resulted in effluent concentrations lower than 6 µg/L, which met the success criterion for perchlorate.

The analysis of the results and visual examination of biofilm growth at the membrane surface revealed possible explanations of poor system performance. There was an uneven distribution of bacteria at the membrane surfaces in the three bioreactors, the high accumulation of biomass in the first stage and the limited biofilm density in the third stage indicated a poor biofilm control, and possible poor flow distribution, thus the loss of effective membrane surface area for mass transfer to occur. The membranes had regions sparsely populated with biofilm and other regions densely populated with biomass. Several areas had dark brown/black biomass, which indicated over-reducing conditions. A variety of operating configurations were unsuccessful in overcoming the maldistribution of biofilm and flow. The design of the membrane modules was concluded to be the primary factor causing maldistribution – the design included bundles of individual fibers that could not be sparged or backwashed effectively. An alternative membrane design was warranted to validate the feasibility of this technology. The MBfR modules from EVWD were redesigned to improve biofilm control and improve performance. The Demonstration at WVWD is the focus of this report, which was based on an MBfR with the revised design. Additional details are provided in Appendix H.

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

The membrane-based system for bio-reduction of perchlorate and nitrate has the following advantages:

- Perchlorate and nitrate are biologically reduced to chloride, water, and nitrogen gas. Thus, the target contaminants are eliminated, not transferred to another phase, as is the case for IX resin, tailored activated carbon, and reverse osmosis.
- Hydrogen-based bio-reduction in the MBfR uses an inorganic electron donor (i.e., hydrogen) and an inorganic carbon source (i.e., bicarbonate or carbon dioxide) for autotrophic bacteria.

This eliminates the need to supply an organic electron donor to support heterotrophic bacteria, as is the case for other biological treatment approaches such as fluidized bed reactors, packed or fixed bed reactors, and continuous stirred tank reactors. Advantages of autotrophy over heterotrophy include reduced biomass generation, decreased electron donor costs, lower residual organics requiring downstream treatment, lower potential for disinfection by-product formation because of lower residual organics, less potential for pathogen growth, and self-regulating control of the hydrogen-supply rate. Thus, the MBfR makes the biological reduction process simple, reliable, and less costly.

- Biological reduction of perchlorate with the MBfR is likely to be approved by regulators.
 For example, the CDPH, in reviewing pilot-scale work conducted at La Puente, stated in their
 June 16, 2003 letter, "The membrane biofilm reactor does appear to be a promising
 technology for perchlorate reduction" (Adham et al. 2004). The letter includes specific
 comments that are addressed as part of this Demonstration project.
- The hydrogen-based MBfR technology may also degrade other oxidized contaminants that often occur along with nitrate and perchlorate. These include selenate, chromate, bromate, and TCE. Thus, this technology may be used to solve many problems, which is not the case for other technologies such as IX.
- The media filter removes DOC that is present in the incoming water and that may be generated in the hydrogen-based MBfR. While the hydrogen-based MBfR adds some DOC, downstream processing with aerobic biologically active filtration can remove biodegradable DOC, making the water more biologically stable.

Limitations of the technology include:

- Multiple MBfR stages have not previously been demonstrated on a field scale to document consistent perchlorate removal or to establish a cost basis. This Demonstration project was specifically designed to address this limitation.
- The integration of the hydrogen-based MBfR with aeration and media filtration has not previously been tested for its ability to generate potable water. This Demonstration project was specifically designed to provide data necessary to critically evaluate performance.
- The ability to maintain stable control of the biofilm and prevent fouling in the MBfR has not been demonstrated at the pilot scale. This Demonstration project was specifically designed to address this limitation.
- The technology uses hydrogen, which is flammable. Engineering design of the MBfR system must comply with codes for design and operation of systems using hydrogen.
- The anoxic biological treatment process may increase chlorine demand. Higher chlorine doses may be required and result in higher formation of DBPs, chlorine demand, THM-FP, and DBPs including THMs and HAAs were measured in the Demonstration to assess this potential concern. On the other hand, use of hydrogen as the electron donor generates less biomass and thus less chlorine demand than biological treatment processes using heterotrophic bioprocesses.
- Biological perchlorate treatment may require greater operator attention, as it may be less robust with respect to process upsets compared to IX systems. The overall economics of perchlorate treatment will drive any decision regarding the implementation of biological treatment.

• The MBfR-based approach will require regulatory approvals for production of potable water. This Demonstration project was specifically designed to gather the information needed to support regulatory approval.

The primary technology used today for production of potable water from perchlorate-impacted water is IX. Other technologies that are at various stages in development include tailored activated carbon and various biological treatment technologies. A brief description of strengths and weaknesses of different technologies is summarized in Table 2.2. The fluidized bed bioreactor and the packed bed bioreactor have already received conditional acceptance from the CDPH for treating perchlorate-impacted water.

Table 2.2 Technological Comparison for Perchlorate Removal

Table 2.2 Technological Comparison for Perchlorate Removal					
Technology	Strengths	Weakness			
Ion Exchange	 Full scale installations are in operation Simple design and operation High recoveries Low cost and very effective 	 Can accumulate uranium and become a Technologically Enhanced Naturally Occurring Radioactive Material Not a green technology (exhausted ion exchange resins are collected and sent for incineration or regenerated with brine as a waste stream) 			
Tailored Activated Carbon	 High capacity Easy operation Tested at pilot and full scale 	 Requires chemical or thermal activation Not a sustainable technology (exhausted activated carbon is collected and sent for incineration) Other components can leach creating secondary pollution High cost of production and maintenance 			
Biological Treatment Technologies	 Proven effective for perchlorate reduction Full-scale systems are under construction and nearing acceptance Fluidized bed bioreactor and the packed bed bioreactor have received conditional acceptance from CDPH Simple design and operation 	 Sensitive to water and environmental conditions Require startup time Fouling and clogging of various systems, if not maintained properly 			

3.0 PERFORMANCE OBJECTIVES

3.1 **SUMMARY**

Performance objectives were established for this Demonstration to provide a basis for evaluating MBfR performance and cost for the reduction in perchlorate, nitrate, and nitrite concentrations in groundwater. The performance objectives apply to the complete MBfR and post treatment process train, as summarized in Table 3.1.

Table 3.1 Performance Objectives

Performance	Data		Performance
Objective	Requirements	Success Criteria	Objective Met?
Quantitative P	erformance Obje	ectives	
Determine	Pre- and post-	Post-treatment	No - lag reactor effluent perchlorate
treatment	treatment	concentrations:	was 9.2 µg/L (average) during Steady
effectiveness	concentrations	ClO_4 $\leq 6.0 \mu g/L$	State.
	of perchlorate,		
	nitrate, and	$NO_3 \le 0.5 \text{ mg-N/L}$	Yes - nitrate and nitrite were below 0.5
	nitrite (NO ₂ -)	NO_2 ≤ 0.5 mg-N/L	mg-N/L for all samples at the lag
			effluent during Steady State.
Determine	Post	Post-disinfection	Yes - fecal and total coliforms and <i>E</i> .
disinfection	disinfection	concentrations:	coli were below the detection limit of
effectiveness	concentrations	fecal coliforms	2 MPN/100 mL in all post-disinfection
	of fecal	below detection	samples during Steady State. HPCs
	coliforms, total	total coliforms	were on average 43 MPN/mL during
	coliforms,	below detection	Steady State and no sample was greater
	HPCs	$HPCs \le 500 MPN/$	than 500 MPN/mL.
		mL	

Performance Objective	Data Requirements	Success Criteria	Performance Objective Met?
Determine ability to meet drinking water treatment primary and secondary MCLs	Post disinfection odor, turbidity, organic carbon, and pH	TON ≤ 3	Yes - TON was 2.2 on average, but 3 of 12 samples were above a TON of 3. These 3 samples were associated with process shutdowns because of high winds.
		Turbidity ≤ 0.2 NTU	No – The average turbidity was 0.27 NTU and turbidity exceeded 0.2 NTU 33 percent of the time based on online measurements. Further optimization can address this issue.
		DOC increase ≤ 0.2 mg/L	No - DOC increased an average of 0.4 mg/L from the system influent to post-disinfection during Steady State. However, this metric for distribution system stability is not driven by regulation and may be acceptable.
		$6.5 \le pH \le 8.5 \text{ SU}$	Yes - pH was between 6.5 and 8.5 SU in all samples analyzed.
Reliability	Operating Records	≥ 95 percent uptime during steady state operational period	Yes - system up time during steady state was 98 percent.
Qualitative Performance Objectives			
Safety	Operating records	No reportable health and safety incidents	Yes – there were no reportable health and safety incidents.
Permit Compliance	Monthly permit reports	No violations	Yes – there were no permit violations.
Regulatory Acceptance	Review by CDPH	Obtain letter of conditional acceptance from the CDPH	Yes – Conditional acceptance for treatment of nitrate was received on July 26, 2013.

3.2 TREATMENT EFFECTIVENESS

The key performance objective in this Demonstration was to reduce perchlorate to below California regulatory levels and to reduce nitrate to less than 0.5 mg-N/L. Pre- and post-treatment samples were collected from the system influent, lead and lag MBfR effluents, and finished water effluent at regular intervals during the steady-state performance period. MBfR effluent concentrations of perchlorate, nitrate, and nitrite were measured and compared with the success criteria outlined in Table 3.1.

Perchlorate - US EPA determined that perchlorate can be regulated under the SDWA. EPA then began the process of determining and proposing a National Primary Drinking Water Regulation (NPDWR) for perchlorate to establish a national primary MCL in drinking water. In the absence of formal federal regulatory guidance, several states began regulating perchlorate in drinking water and in October 2007 California established an MCL of 6 µg/L (Lehman and Subramani 2011). Thus, the effluent perchlorate performance objective was 6 µg/L. Perchlorate was reduced from an average of 154±5 µg/L to an average of 9.2±2.3 µg/L in the effluent of the lag reactor during Steady State (94.4 percent reduction). Perchlorate was consistently removed with little variation (coefficient of variation was 0.75%). While the performance metric for perchlorate was not met, perchlorate was consistently reduced by more than 90 percent during Steady State, highlighting the reliability of this technology. Research conducted by ASU indicated that sulfate reducing bacteria likely provided too much competition with perchlorate-reducing bacteria for hydrogen and space in the biofilm, which led to an inability to achieve $< 6 \mu g/L$ perchlorate. ASU experiments demonstrated complete perchlorate reduction in the absence of sulfate reduction when dissolved oxygen was intentionally fed to a lag reactor at a low electron acceptor flux (i.e., 0.18 g H₂/m²-day expressed as hydrogen equivalents). These results suggest that process modifications may promote complete perchlorate reduction in the MBfR (Rittmann et al. 2013).

Nitrate and Nitrite – Nitrate is a commonly observed contaminant in water. According to the NPDWR, the MCL for nitrate has been set at 10 mg-N/L, and for nitrite at 1 mg-N/L. Nitrate destruction was quantified using the sum of the nitrate and nitrite concentrations.

The performance objective for nitrate and nitrite was less than 0.5 mg-N/L. Total nitrogen was between 0.069 and 0.24 mg-N/L during steady state. Total nitrogen (the sum of nitrate and nitrite) was reduced from an influent average of 9.0 mg-N/L to an average of 0.12±0.07 mg-N/L in the effluent of the lag reactor during Steady State (98.3 percent reduction). Nitrate reduction was consistently removed with little variation (coefficient of variation was 0.94%), with the highest effluent total nitrate at 0.24 mg-N/L. The MBfR provided consistent removals despite some system upset conditions. Thus, the results met the metrics set for the nitrate and nitrite performance criteria.

3.3 DISINFECTION EFFECTIVENESS

Hypochlorite was used after MBfR biological reduction and media filtration as a disinfectant. HPCs were used as a surrogate indicator parameter for total bacteria. Total and fecal coliforms were used as an indicator of contamination by human or animal fecal wastes. The performance objective for disinfection was post-disinfection concentrations of total and fecal coliforms below detection and HPCs less than or equal to 500 colony forming units per milliliter (CFU/mL). The MCL for fecal and total coliforms is below the detection limit of 2 MPN/100 mL. Under NPDWR, HPC is regulated as a treatment technique (TT), a required process intended to reduce the level of a contaminant in drinking water. Under USEPA's SWTR, systems using surface water or groundwater under the direct influence of surface water must achieve a HPCs no greater than 500 MPN/mL (67 FR 1811).

During Steady State, hypochlorite concentrations were dosed to maintain a target free chlorine residual of 0.2 mg/L to meet CT requirements. Free chlorine residual at the disinfection basin was monitored to check that, at a minimum, the levels met CT requirements. Fecal and total coliforms were below the detection limit (2/100 mL) in all post-disinfection samples during the Steady State performance period. HPCs were on average 43 MPN/mL, and no sample was greater than 500 MPN/mL during Steady State. Thus, the performance objective for disinfection effectiveness was met.

3.4 ABILITY TO MEET DRINKING WATER TREATMENT PRIMARY AND SECONDARY MCLs

Treated water was required to comply with primary and secondary MCLs for drinking water. The parameters of interest include post-disinfection odor, turbidity, and pH. DOC is also of interest because it can contribute to water instability in the distribution system and is a potential source of disinfection byproducts.

Odor - Biological reduction processes in the MBfR can potentially lead to the formation of odors. Under the conditions favorable to nitrate and perchlorate reduction, sulfate reduction may also occur, resulting in formation of sulfide. USEPA National Secondary Drinking Water Regulations (NSDWR) require a secondary standard of TON equal to or less than 3 to be considered as aesthetically acceptable finished water and this was set as the performance objective. Quantitative measurements of odors were performed in the finished water. An average TON of 2.2 was observed during Steady State; however, there were three exceedances of 12 samples collected. These exceedances were associated with process shutdowns that occurred because of high winds. The process shutdowns resulted in a non-flowing system which resulted in over-reducing conditions and resultant sulfate reduction. The metric for this performance objective was met based on the average TON.

Turbidity - Fine particles resulting from biological treatment can cause an increased turbidity in the effluent, which can make water aesthetically unacceptable. While turbidity *per se* is not a major health concern, it can be associated with presence of pathogens and can affect disinfection efficiency. Media filtration in combination with a coagulant filter aid was employed to meet turbidity requirements. Turbidity was monitored throughout the treatment system, but for this performance objective, the success criteria were compared to the media filter effluent turbidity. The performance objective for turbidity in the finished water was less than or equal to 0.2 NTU. An average turbidity of 0.27 NTU was observed from online measurements during normal steady state operation. The average turbidity value was higher than the performance criteria and thus this performance objective was not met. Further optimization of the media filtration process would result in meeting the objective.

Dissolved Organic Carbon – Residual biodegradable organic compounds in treated water can decrease water biostability and promote regrowth of organisms in distribution systems. DOC was selected as a surrogate indicator for biological stability. The performance objective for DOC required the increase in the system to be less than or equal to 0.2 mg/L. DOC samples were collected throughout the treatment system. For this performance objective, the increase in DOC was measured from the system influent to the finished water. An average DOC increase of

0.4 mg/L from the system influent to post-disinfection was observed during Steady State. The net increase in DOC exceeded the performance objective indicating that treated water was less biologically stable. Hence the performance objective for biological stability was not met during Steady State. On the other hand, biological stability is specific to a particular distribution system and the observed increase in DOC may be acceptable. Disinfection byproducts and byproduct potentials were below MCLs. Haloacetic acids (HAA5) were below detection (< 6 μ g/L) and total trihalomethanes TTHMs) averaged 4.8 μ g/L compared to the MCL of 80 μ g/L. Nitrosamines were measured and not detected.

pH - pH control and monitoring was essential as most of the chemical and biological reactions in aquatic environment occur within an optimal range. In particular, pH control was important for this system since denitrification and other reduction processes can result in increased alkalinity and increased pH. Desirable pH typically lies in the range of 6.5 to 8.5 SU, which is a secondary MCL under the NSDWR. A variation in treated water pH from this range may pose health, infrastructure (e.g. corrosion), and public acceptability issues. Under NSDWR, USEPA recommends these secondary standards to water systems but does not require systems to comply. During the MBfR Demonstration, the pH of the finished water remained within the performance standards of 6.5 to 8.5 SU. An average value of 7.8±0.2 SU was observed during the Steady State period. The metric for this performance objective was met.

3.5 RELIABILITY

Reliability of the treatment processes plays an important role in planning and designing of any water treatment facility. The goal during this Demonstration was to guarantee high quality treated water, particularly from a public health standpoint. Robust system performance indicates the ability of a specific process to meet all the water quality standards, regardless of anticipated fluctuations in raw water quality or operating conditions.

For this performance objective, the reliability of the MBfR system was measured as the up time during the one-month long Steady State phase. The performance objective was set to have at least \geq 95 percent uptime during the steady state operational period. Overall system up time of 98 percent was observed, which confirmed the reliability of the MBfR technology. The performance objective on system reliability was met.

3.6 SAFETY

Safety concerns linked to water and wastewater treatment operations often originate from the use of hazardous chemicals and gases; thus, metrics of safety performance were included among the qualitative performance objectives to be met during the MBfR Demonstration. In particular, the use of pressurized gases such as hydrogen (flammable), nitrogen, and CO₂, increase the level of risk and hazard, requiring additional safety measures to be implemented. Flammability associated with the use of hydrogen gas was of main concern and required specific engineering design measures including explosivity sensors and automatic shutdown provisions for safe gas use. Other measures including placarding in the area to prevent sources of ignition and appropriate health and safety training were also required.

Metrics for meeting the safety performance objective included no reportable health and safety incidents during the Demonstration site. Health and safety incident reports and regular monitoring of gases at the Demonstration site were used to evaluate this performance objective. There were no health and safety incidents reported during the Demonstration. Flammable gas concentrations were not detectable during various times at the field site. During the few instances when a hydrogen leak was detected, the system was automatically shut down. The metric for this performance objective was met.

3.7 PERMIT COMPLIANCE

Contaminated groundwater was used for the MBfR technology Demonstration. The water was treated through the MBfR process followed by post disinfection, and a final polishing step using GAC and IX filters before being injected back into the aquifer. The California Regional Water Quality Control Board (RWQCB) requires a permit for any such re-injection of treated water. California RWQCB issued permit number R8-2002-0033-038 for the re-injection of treated water into groundwater during this Demonstration. Monitoring of influent and effluent parameters was conducted during this study and monthly permit compliance reports were submitted per the permit requirements. No violations of the permit occurred during this MBfR Demonstration. Thus, the metric for this performance objective was met.

3.8 REGULATORY ACCEPTANCE

This performance objective was to obtain a letter of conditional acceptance from the CDPH. A letter indicating conditional acceptance for the MBfR for treatment of nitrate was received from the CDPH on July 26, 2013 (Appendix I). This is the process by which the State of California evaluates unconventional alternative treatment technologies for compliance with drinking water treatment regulations under Title 17 and 22 of the California Code of Regulations. APTwater has constructed a full-scale system for potable water treatment of nitrate using the MBfR technology at Cucamonga Valley Water District in California. This system is in the process of being permitted by CDPH for full-scale operation.

4.0 SITE DESCRIPTION

4.1 SITE LOCATION AND HISTORY

The first stage of this project involved a pilot-scale Demonstration of the MBfR at EVWD in San Bernadino, California, using water from EVWD Well 28A. Results from this pilot-scale Demonstration were discussed in Section 2.2. This second stage of this project was conducted at WVWD's Well 22 in Rialto, California (Figure 4.1). The EVWD Well28A location is also shown on Figure 4.1 for reference. WVWD Well 22 was a former agricultural well that was not being used as a water source prior to the Demonstration. The site is bounded by Vineyard Avenue to the north, Linden Avenue to the east, and West Norwood Street to the south. The areas surrounding the well are mixed residential, agricultural, and industrial. The City of Rialto Municipal Airport is located less than one mile south of the well. Contamination of perchlorate and volatile organic compounds (VOCs) is believed to have originated from weapons/explosives manufacturing and storage at the Rialto Ammunition Storage Point (RASP) northwest of the well site. The RASP was operated by the U.S. Army from 1942 to 1945. The site was owned and occupied by West Coast Loading Corporation (WCLC) until 1957. WCLC performed the loading, assembly and testing of munitions with perchlorate for the US Army and Navy. B.F. Goodrich owned and operated the site for propellant manufacturing and testing until 1963. The site was sold by B.F. Goodrich in the 1960s and was subsequently used by various defense contractors, fireworks, and pyrotechnics companies. The nearby Mid-Valley Sanitary Landfill is another known source of VOCs (GeoSyntec 2005).

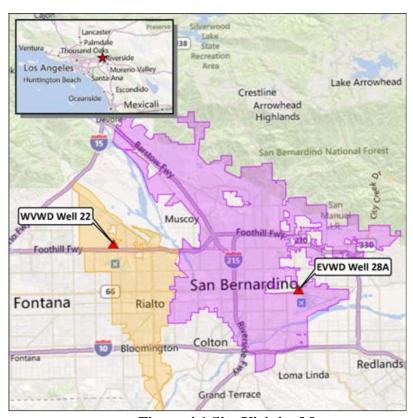


Figure 4.1 Site Vicinity Map

4.2 SITE GEOLOGY/HYDROGEOLOGY

WVWD Well 22 is located within the Rialto-Colton groundwater basin. Numerous subterranean barriers and faults direct groundwater flow within the basin. The basin is largely comprised of unconsolidated alluvial sediments. The aquifer system beneath the site consists of coarse to medium sand and gravel to 200 feet below ground surface (ft bgs) underlain by sand to 500 ft bgs. The upper water-bearing unit begins at the surface and extends to 130 ft bgs. The middle water-bearing unit lies directly underneath the upper unit and extends to greater than 1,000 ft bgs. The water bearing units within the basin are unconfined and are hydraulically connected to each other. Consolidated deposits and a basement complex composed of metamorphic and igneous rocks underlie the water-bearing units. Recharge to the Rialto-Colton groundwater system comes from a number of sources. Manual recharge with imported water, underflow across faults, inflow from rivers and drainages, and infiltration (rainfall and irrigation water) provide the majority of recharge to the system (Wooldenden and Kadhim 2005).

4.3 CONTAMINANT DISTRIBUTION

The primary contaminants of concern in groundwater in the Rialto-Colton basin are perchlorate, nitrate, and trichloroethene (Figure 4.2). The plume extends from the RASP source area in the northwest toward the southeast and is more than 3 miles long and half a mile wide. Historically, perchlorate and TCE concentrations have been measured in the source area as high as 10,000 and 420 μ g/L, respectively (GeoSyntec 2007). In 2011, perchlorate and TCE concentrations in the plume were observed as high as 1,100 and 42 μ g/L, respectively (USEPA 2011). Historical water quality data at Well 22 that was available prior to the Demonstration are shown in Table 4.1.

Figure 4.2 Approximate Extent of Perchlorate Contamination

Table 4.1 Historical Water Quality at Well 22

Analyte	Units	Dates	Minimum	Average	Maximum
Alkalinity	mg/L as CaCO ₃	8/21/2003	NA	150	NA
Chloride	mg/L	8/21/2003	NA	7.3	NA
Hardness	mg/L as CaCO ₃	8/21/2003	NA	170	NA
Nitrate	mg-N/L	3/21 and 9/10/2008	9.9	10	10
Perchlorate	μg/L	3/21/2008 to	79	90	100
1 eremorate	μg/L	1/27/2009	19	90	
pН	SU	8/21/2003	NA	7.3 - 7.7	NA
Sulfate	mg/L	8/21/2003	NA	21	NA
TCE	μg/L	3/21/2008 to	23	25	30
ICE	μg/L	1/27/2009	23	23	30
Total dissolved solids	mg/L	8/21/2003	NA	230	NA

Note:

NA – Not applicable

5.0 TEST DESIGN

This section provides a detailed description of the MBfR system design, operation, and testing conducted for the Demonstration.

5.1 CONCEPTUAL EXPERIMENTAL DESIGN

This nine-month Demonstration was initiated in April 2011 using perchlorate- and nitrate-contaminated groundwater from WVWD Well 22 in Rialto, California. The treatment system included two anoxic MBfRs operated in series to reduce oxygen to water, nitrate to nitrogen gas, and perchlorate to the chloride ion. The first MBfR vessel had seven membrane modules that were primarily used for reduction of oxygen and nitrate. The second MBfR vessel contained seven membrane modules and primarily reduced the remaining nitrate and perchlorate. Phosphorous was supplemented as a nutrient and carbon dioxide was amended for pH neutralization and control of hardness precipitation and as a carbon source for microbial cell synthesis. Post-MBfR treatment processes included aeration to re-oxygenate the water, media filtration supplemented with a coagulant/filter aid to remove suspended solids, and disinfection using sodium hypochlorite. Additional post-treatment to meet RWQCB permit requirements involved GAC for VOCs and IX for perchlorate. The experimental design had four phases (Figure 5.1).

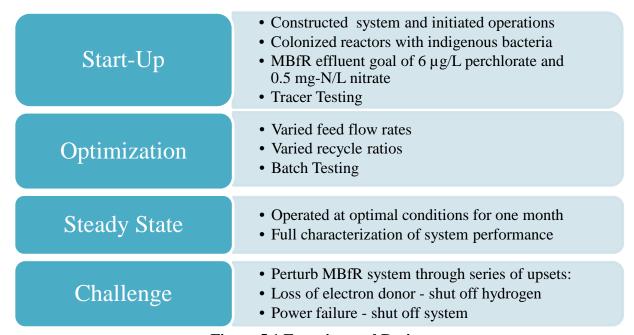


Figure 5.1 Experimental Design

Start-Up was initiated after construction of the system was complete and the system was placed on-line. During Start-Up, indigenous bacteria colonized the membranes to form an active biofilm. The goals for completion of Start-Up included nitrate concentrations below 0.5~mg-N/L and perchlorate below $6~\mu\text{g/L}$. The second phase was Optimization during which operational conditions were varied to assess system performance. The goal was to determine which operating conditions produced peak performance in terms of perchlorate and nitrate removal. The third

phase was a period of Steady State to assess process stability and sensitivity to changes in influent water quality conditions. System stability is a critical condition for potable water production. The final stage of the Demonstration was the Challenge phase. This included intentional process upsets to assess resiliency and reliability of the technology. Four system upset tests were conducted: a 4-hour and 24-hour shut-off of hydrogen, as well as a 4-hour and 24-hour full system shut down. Testing of the system was conducted during the rebound period after each upset condition.

5.2 BASELINE CHARACTERIZATION

Baseline characterization consisted of obtaining historical monitoring data for groundwater chemistry from WVWD. Historical monitoring data were obtained from 2003 to 2009. The average concentration of perchlorate was 90 μ g/L and nitrate was 44.5 mg-N/L. See Section 4.3 for a description of the contaminant distribution. Groundwater quality was slightly different during the Demonstration than historical monitoring results (Table 5.1) because the original groundwater flow from Well 22 was lower than what was planned during the Demonstration, at approximately 1 gpm. In April 2011, the pump at WVWD Well 22 was replaced with a Grundfos 25S50-26 submersible pump, and the intake was moved from 474 ft bgs to 483 ft bgs to increase water production to 30 gpm.

Table 5.1 Summary Statistics for Influent Water Quality at Well 22 throughout the Demonstration from April 2011 to January 2012

Analyte	Units	Average	Standard Deviation	Count
Alkalinity	mg/L as CaCO ₃	150	11.3	28
Hardness	mg/L as CaCO ₃	200	7.5	27
Nitrate	mg-N/L	8.82	0.38	32
Perchlorate	μg/L	170	17	70
pН	SU	7.5	0.11	71
Sulfate	mg/L	21	0.85	27
TCE	mg/L	54	7.0	28
TDS	mg/L	260	15	28

5.3 TREATABILITY OR LABORATORY STUDY RESULTS

Numerous bench- and pilot-scale studies have been conducted demonstrating the feasibility of hydrogen MBfR for treatment of perchlorate and nitrate (see Section 2.2 for a detailed description of technology development). Additional laboratory work was conducted in conjunction with the field effort by ASU and is reported separately (Rittmann et al. 2013). The ASU Team carried out multiple experiments to decipher why the two-stage MBfR system did not achieve the 6μ g/L effluent perchlorate goal. The team carried out extensive analyses of hydrogen, oxygen, nitrate, perchlorate, and sulfate fluxes during the pilot study and correlated them to a range of analyses conducted on the MBfR side-reactors from the pilot. These side-reactors contained hollow-fiber membranes and were fed water from a side-stream of the pilot-scale system. These were sampled and sent to ASU for analysis. ASU also carried out bench-scale MBfR experiments and developed mechanistic mathematical models to identify and quantify the

kinetic and ecological mechanisms underpinning the performance of the pilot and bench-scale MBfRs.

A large amount of biomass accumulated between the spacers in the pilot side reactor laboratory modules. Biofilm thickness in the MBfR side-reactor lab modules was typically approximately 200 μm. The biofilm was only approximately 10 percent inorganic, which indicated that hardness precipitation was effectively mitigated by pH-control. While the biofilm contained between 40 and 50 percent extracellular polymeric substances (EPS), the cells were predominantly living, particularly near the membrane substratum. The biofilm communities were similar between lead and lag MBfR, where the community of perchlorate-reducing bacteria (PRB) made up the smallest fraction of the active bacteria [determined by quantitative polymerase chain reaction (qPCR)]. From bench-scale MBfRs at ASU, *Dechloromonas* was an important denitrifying bacteria (DB) and PRB when perchlorate reduction was successful. However, *Dechloromonas* were not always the main PRB. However, sulfate-reducing bacteria (SRB) always were present, and SRB became more numerous when the electron acceptor surface loading was significantly decreased in an attempt to drive perchlorate to non-detectable levels. As SRB became more numerous, their greater demand for hydrogen a competition for space in the biofilm led to an inability to achieve the perchlorate treatment objective of 6 μg/L.

The ASU studies concluded that the fluxes of oxygen, nitrate, and sulfate need to be managed in order attain the 6-µg/L perchlorate treatment objective and simultaneously prevent sulfide generation. Electron acceptor fluxes were normalized by hydrogen consumption flux (g H₂/m²day) for comparison. A moderate flux of nitrate and oxygen helped promote PRB growth and perchlorate-reduction while preventing sulfate reduction. Modeling indicated that a flux of combined nitrate and oxygen of 0.036 to 0.21 g H₂/m²-day promoted perchlorate reduction, while a flux of greater than 0.36 g H₂/m²-day caused serious inhibition of perchlorate reduction. Modeling demonstrated that a flux of 0.2 to 0.4 g H₂/m²-day prevented sulfate-reduction, with a recommended target flux of ~ 0.3 g H_2/m^2 -day. Bench-scale testing with a synthetic medium demonstrated that complete perchlorate reduction was possible at a combined nitrate and oxygen flux of up to 0.25 g H₂/m²-day. In a bench-scale two-stage MBfR fed Rialto groundwater, a nitrate and oxygen flux of 0.18 g H₂/m²-day stopped sulfate reduction, despite the fact that SRB were present. Bench-scale results suggested that sulfate reduction did not necessarily slow perchlorate reduction, although the pilot results gave the best perchlorate reduction when sulfate flux was lowest (combined nitrate and oxygen flux of greater than 0.17 g H₂/m²-day). When using groundwater collected from the site, a nitrate and oxygen flux of less than or equal to 0.18 g H₂/m²-day allowed full perchlorate reduction, while partial degradation (~30%) occurred at greater than ≥ 0.21 g H₂/m²-day.

Similar trends were observed in the pilot MBfRs. When hydrogen was limiting, a NO_3^- flux of 0.3 g H_2/m^2 -day suppressed $SO_4^{2^-}$ reduction in the pilot lag MBfR. When hydrogen delivery was not limiting, a NO_3^- flux of 0.17 g H_2/m^2 -day slowed $SO_4^{2^-}$ reduction. Modeling runs using conditions in the pilot-scale reactors suggested that external mass-transport resistance was greater in the pilot-scale than bench-scale MBfRs. Modeling also showed that the pilot-scale reactors may have selected for different and less-efficient PRB. A significant difference between the ASU laboratory studies and the pilot-scale studies was that DO was introduced into the ASU lag reactor. This occurred because water from the lead reactor was collected and then fed to the

lag reactor. The water became oxygenated by this process. This difference led to inhibition of sulfate reduction and attainment of complete perchlorate reduction in the ASU lag reactor. DO did not enter the pilot-scale lag reactor, thus sulfate reduction was not inhibited and complete perchlorate reduction was observed only when sulfate reduction occurred.

In summary, the modeling and bench-scale tests conducted by ASU showed no intrinsic roadblock for achieving a very low perchlorate concentration in the absence of sulfide generation. Attainment of this goal would require managing nitrate and oxygen loading to promote PRB growth and suppress sulfate reduction. A two-stage treatment train may not be the best configuration for this goal. If a two-stage system is used, particular attention has to be paid to nitrate and oxygen loading to the lag MBfR. While the results did not have an exact target value, they suggested that the lag MBfR should have a total hydrogen demand flux for nitrate and oxygen of around 0.18 g $\rm H_2/m^2$ -day to achieve desired perchlorate reduction without significant sulfate reduction.

5.4 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS

This section describes the design attributes of equipment used for this Demonstration. The major MBfR treatment processes included:

- MBfR vessels operated in a lead/lag configuration two 575-gallon polyethylene tanks with seven membrane modules per vessel
- Aeration tank 350-gallon polyethylene tank with Danner Manufacturing AP-100 air compressor pump and a ClearWaterTM 7-inch round, 1.5-inch thick aeration stone
- Media filters operated independently two 21-inch diameter, 62-inch tall media filtration units filled with Next-SandTM media
- Product (finished water) tank 1000-gallon polyethylene tank
- GAC filtration vessels operated in a lead/lag configuration two 36-cubic foot (CF) steel vessels, 36 inches diameter and 77-inches tall filled with Calgon F300 8 x 30 mesh GAC
- IX resin vessels operated in a lead/lag configuration two 36-CF steel vessels, 42 inches diameter and 48-inches tall filled with CalRes 2109 IX resin

The treatment system facing east is shown in Figure 5.2. The system was placed within a secondary containment structure with Conex shipping container on the north and south sides of the skid for protection from seasonal high winds (i.e., the Santa Ana winds). A cover was also placed above the skid to protect equipment from direct sun exposure and rain. The California Building Code requirements for wind loading were followed for calculating structure requirements. The MBfR and post-treatment system are shown in Figure 5.3. The GAC and IX resin vessels were added to meet permitting requirements for discharge to groundwater. They were placed within the southern Conex container. A process flow diagram showing actual units used in the Demonstration are shown in Figure 5.3, and the piping and instrumentation diagram (P&ID) is shown in Figure 5.4. Figure 5.5 shows the P&ID for the individual membrane modules (7) in each vessel.

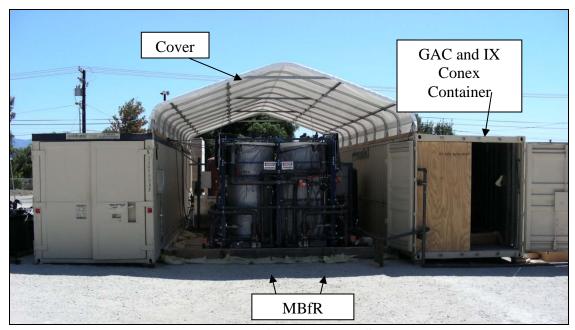


Figure 5.2 MBfR Treatment System

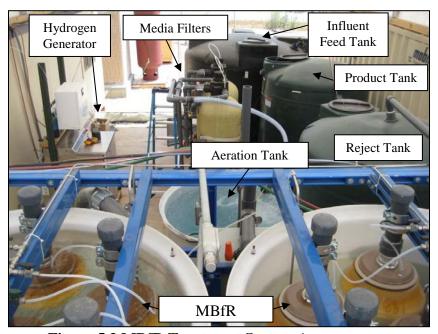


Figure 5.3 MBfR Treatment System Arrangement

Figure 5.4 MBfR Treatment System Process Flow

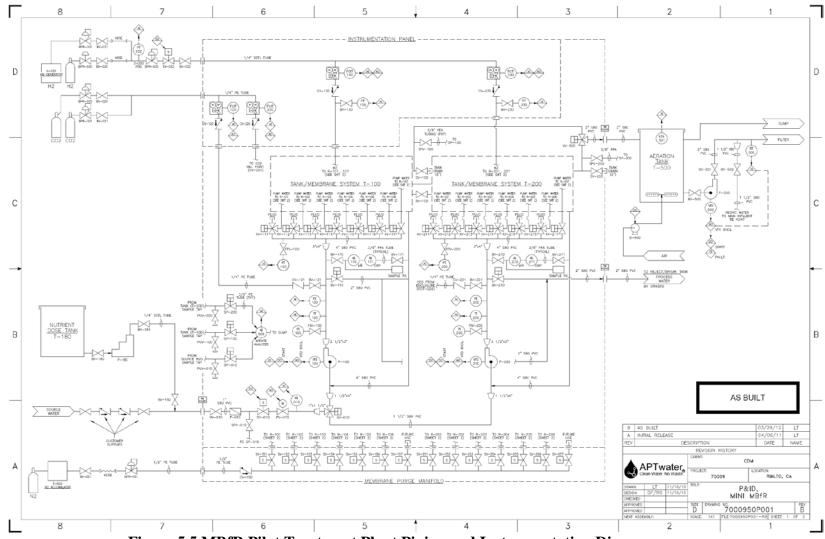
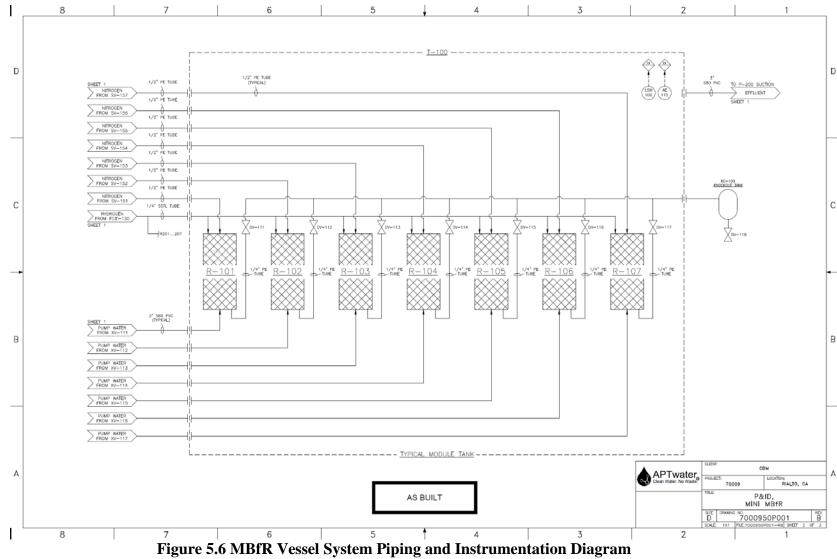



Figure 5.5 MBfR Pilot Treatment Plant Piping and Instrumentation Diagram

5.4.1 Process Equipment

Influent Well

Well 22 had a Grundfos 25S50-26 variable frequency drive submersible pump capable of 30 gpm at 460 feet of head. The pump intake was set at 483 ft bgs and the well was screened from 430 to 492 ft bgs. Operation of the well was controlled by low- and high-level switch floats in the influent feed tank that were tied to the well control panel. The influent well pump was also tied to secondary containment switches so that the pump would not operate if a secondary containment level switch was engaged. Influent well water was routed to a 2,500-gallon polyethylene feed tank through a 1.5-inch influent line. A Goulds 1ST 1.5-horsepower pump (P-001) was used to pump water from the raw water feed tank to the MBfR system through a 2-inch discharge line. The tank diameter was 95 inches and the height was 89 inches. The tank was black to prevent algal growth.

Gas Supply Pad

The MBfR system required supplementation of hydrogen as the electron donor, carbon dioxide for pH control, and nitrogen as an anoxic inert gas. The theoretical hydrogen feed requirement was based on the oxygen, nitrate, and perchlorate demand. The oxygen demand is associated with aerobic respiration. Oxygen is a more energetically favorable electron acceptor so reduction of oxygen occurs preferentially followed by nitrate, nitrite, and perchlorate (Nerenberg et al. 2008; Lee and Rittmann 2002). The stoichiometric ratios for hydrogen to oxygen, nitrate, and perchlorate are shown in Section 2.1. The membrane hydrogen pressure was adjusted based on stoichiometric dosing requirements. The actual hydrogen throughput was pressure regulated "on demand" by bacterial utilization of hydrogen on the exterior surface of the membrane. The rate of flow across the membrane was dependent on the interior pressure on the lumen and the concentration gradient between the lumen and the exterior surface. Pure hydrogen was present in the lumen and as bacteria on the membrane exterior consumed hydrogen, a gradient was established which increased the flow rate of hydrogen across the membrane. The faster bacteria consumed hydrogen, the faster hydrogen would permeate through the membrane. Additionally, as the pressure on the interior of the lumen increased the driving force for hydrogen across the membrane correspondingly increased.

Carbon dioxide was supplemented for pH control to the membrane lumen and to the vessel bulk water. The reduction reactions produce alkalinity, which increases the pH. Carbon dioxide was dosed to control pH at 7.2 SU using online probes. The pH was selected to maintain a pH that was conducive to biological growth and to maintain a negative Langelier Saturation Index (LSI) to prevent formation of carbonate in the biofilm. The LSI is determined based on specific water quality parameters and is used as an indicator of the formation of calcium carbonate and magnesium carbonate scale. The pH was monitored using online probes in each MBfR vessel and controlled by the operator interface terminal (OIT) and programmable logic controller (PLC). Nitrogen gas was supplied for control of biomass growth on the membranes through sparge events. Nitrogen gas was used rather than compressed air to maintain anoxic conditions within the reactor.

Hydrogen was supplied by a Proton Energy Systems HOGEN® S series, model 40 generator. The generator used a proton exchange membrane that produced hydrogen at a rate up to 40

standard cubic feet per hour (SCFH) at 70 degrees Fahrenheit and one atmosphere of pressure. The unit's hydrogen purity specification was 99.995%. ASTM Type II deionized water was supplied for the generator by an Aqua Solutions® model H-40-C. One 6-pack of K hydrogen cylinders was used for back-up. Liquefied carbon dioxide was supplied in a 50-pound VGL dewar. One 50-pound G carbon dioxide cylinder was used for back up. Liquefied nitrogen was supplied in a 560-pound VGL dewar. Specifications for each gas supply vessel are described in detail in Table 5.2.

Table 5.2 Gas Supply Equipment

Description	Specification
Liquid nitrogen	VGL Dewar, 560 pounds with 24,350 CF gas capacity
Liquid carbon dioxide	VGL Dewar, 50 pounds with 3,347 CF gas capacity
Hydrogen generator	Proton Energy Systems HOGEN® S40 generator
Compressed carbon dioxide	One backup G cylinder, 50 pounds with 412 CF of gas capacity
Compressed hydrogen	One backup 6-pack of K cylinders, 120 pounds with 1,314 CF
	of gas capacity

MBfR Vessel Skid

The MBfR technology was APTwater's NSF 61 certified AroNiteTM biochemical reduction system for autotrophic reduction of nitrate and perchlorate. There were two MBfR vessels (T-100 and T-200) operated in a lead/lag configuration. Each vessel was a 575-gallon open-top, flat bottom, 42-inch diameter and 96-inch tall polyethylene tank. Each vessel contained seven membrane modules, for a total of 14 modules. Each module consisted of thousands of parallel hollow-fiber polypropylene membranes that were woven together using solid polyester fibers to form sheets. The sheets were wrapped around a perforated acrylonitrile butadiene styrene (ABS) core to form hundreds of sheet layers. Water flowed from the center of the perforated ABS core radially outward and perpendicular to the hollow-fiber membrane sheets. The sheets were connected to the top and bottom of each reactor to epoxy heads. The top of each reactor was flush with the end of the epoxy head, and the fibers were connected to a 1/4-inch stainless steel fitting that was pressurized with hydrogen. This allowed hydrogen gas to enter the lumen of each hollow fiber from the top of the module. The rate of hydrogen gas transfer was controlled by the rate of hydrogen depletion outside of the membrane. Pure hydrogen was present in the lumen, and hydrogen diffusion through the membrane was controlled by the concentration gradient on the membrane exterior. As bacteria in the biofilm consume hydrogen on the outside surface of the membrane, a hydrogen concentration gradient is established, which increases the flow rate of hydrogen across the membrane. The faster that bacteria consume hydrogen, the faster the hydrogen will permeate from the lumen to the exterior surface. Nitrate- and perchloratecontaminated water flowed across the outside of the hollow fiber membranes and indigenous organisms colonized the exterior fiber surface. The bubble-less gas transfer across the membrane to the bacteria allowed for maximum electron donor utilization. The total surface area for the 14 modules was 2.000 m^2 .

While the system was operated in a lead/lag configuration, a three-way valve was installed to allow the PLC to switch between the two vessels as the lead or lag position. The purpose of switching vessel positions was to maintain similar active growth of biomass in both vessels. If the configuration was left constant, the lead vessel would receive the bulk of nutrients. The lag

reactor may also develop a population of sulfate-reducing bacteria if hydrogen is over-fed and/or other electron acceptors such as oxygen, nitrate, and perchlorate are under-fed. Another possible benefit to switching lead/lag positions was that if sulfate-reducing bacteria developed while in the lag position, higher concentrations of DO present in the influent water would inhibit their growth once switched to the lead position. The frequency of position change was every 96 hours. As described in the research report by ASU (Rittmann et al. 2013), the sulfate-reducing bacteria still persisted even though this strategy was used.

An Ebara 3U 65-160/10 recirculation pump was installed in each MBfR vessel (P-100 and P-200), and each had an adjustable flow rate of 70 to 280 gpm. The recirculation pump was installed to provide mixing and increase mass transfer efficiency of contaminants to the biofilm inside the modules. The module fibers were periodically sparged with nitrogen to control biofilm formation. Water was drained from the reactors using a Goulds 1ST drain pump (P-101). The frequency of sparging was controlled by the PLC and was based on maintaining constant discharge pressure on each vessel. The sparge was conducted by draining the vessel to 22 percent of its capacity and then sparging with nitrogen gas at 10 standard cubic feet per minute (SCFM) for 1 minute. The vessel was emptied, refilled to 22 percent capacity, and sparged a second time at 1 SCFM. This water was then purged, the vessel refilled to full capacity, which completed the sparge process. For approximately one month during Optimization testing, compressed air was used in place of nitrogen for sparging. Phosphorous supplementation was added to the treatment line upstream of the lead MBfR vessel. NF certified phosphoric acid was dosed from a 5-gallon tank (T-180) using a Pulsafeeder Pulsatron E Plus Series diaphragm metering pump (P-180). The rate of phosphorous supplementation was targeted to attain a residual concentration of approximately 0.5 mg/L in the lead MBfR reactor influent.

Five side-reactors were installed with each MBfR vessel (Figure 5.7a). These side-reactors were comprised of the same material as the main reactor and used for biofilm sampling. A slipstream of water from the main reactor was circulated through the side reactors. A side-reactor was harvested from the lead and the lag vessels at the end of each phase (Start-Up, Optimization, Steady State, and Challenge) and then sent to ASU for analysis (Rittmann et al. 2013). The side reactors contained the membrane fabric within a 4-inch by 3-inch space within the interior of a 6-inch-by-6-inch square polycarbonate unit. The polycarbonate unit was housed in a 6-inch by 10-inch polycarbonate container. The surface area of the membrane was approximately 35.6 square inches (230 square centimeters).

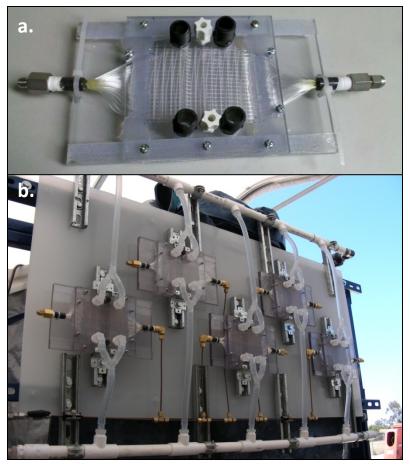


Figure 5.7 MBfR Vessel Side-Reactors Prior to Installation (a) and After Installation (b)

Aeration tank

The aeration tank was a 350-gallon polyethylene tank (T-500). Air was sparged through the bottom of the tank using a small Dannan AP-100 air compressor and a 7-inch round, 1.5-inch thick aeration stone in the bottom of the tank (ClearWaterTM Air Stone CWAS-FF41C) rated at 1.5 cubic feet per minute (CFM). Water was pumped from the aeration tank to the media filter using a Goulds 1ST 1.5 horsepower pump (P-502). A small percentage of the aeration tank effluent flow (approximately 1 gpm) was routed to the sump tank via an overflow weir rather than fed to the media filter by setting the media filter flow slightly less than the MBfR feed flow. The purpose of splitting the flow was to maintain constant hydraulic head in the aeration tank.

Media filter

Two parallel 21-inch diameter and 62-inch tall fiberglass tanks were used for the media filters (M-510A/B). However, only one filter was operated at a given time. Each tank contained 7.5 cubic feet or 36-inches of Next-Sand filtration media (14 x 40 mesh clinoptilolite aluminosilicate) with 2 cubic feet of ½ x ½ inch support stone. The filter was backwashed using a Goulds 2ST 3 horsepower pump (P-514). Water from the product tank was used for backwashing at a rate of 48 gpm [approximately 22 gallons per minute per square foot (gpm/ft²)] for 10 to 13 minutes. Backwashes were triggered when the pressure differential across the filter was in excess of 10 pounds per square inch (psi). Two Kinetico Hydrus multi-tank automatic backwash valves with backwash control with a Kinetico Hydrus Smart Start Controller were

used with the PLC for timed backwash control. Backwash water was collected in a 950-gallon break tank. On day 125, the last day of Start-Up, a filter aid began being used at the influent of the media filter to increase filter removal efficiency and decrease effluent turbidity. The filter aid was an NSF 60 Sterling Water Technologies aluminum chlorohydrate (SWT-8806A). This was changed to aluminum chlorohydrate SWT-2000 on day 173. The filter aid was stored in one 5-gallon tank (T-501) and was added to the system using a Masterflex L/S pump (P-501).

Finished Water Tank

NSF 60 sodium hypochlorite was added to the media filter effluent water for disinfection using an Iwaki America Inc. E-Class metering pump (P-515) prior to entering the product tank. The chlorine dose was calculated based on CT requirements and chlorine demand tests (see Section 5.6). The sodium hypochlorite tank was a 25-gallon NSF60 hypochlorite tank (T-516). Finished water, or product water, was stored in a 1,000-gallon (T-518) polyethylene tank that was 64 inches in diameter and 81 inches tall.

Break Tank and Sump

The break (reject) tank was used as a temporary storage container for media filter backwash water. This was a 950-gallon polyethylene tank. Water from the reject tank and product tank were pumped to the sump prior to GAC treatment. The sump tank was a 400-gallon polyethylene tank (T-601) with a Goulds 1ST sump pump (P-600).

Granular Activated Carbon (GAC) Filtration

Two Carbon Supply Inc. L-1000 steel vessels were installed in a lead/lag configuration. The vessels were 36 inches in diameter and 77 inches high. The vessels contained 1,000 pounds of F300 8 x 30 mesh GAC for removal of VOCs in compliance with RWQCB permit requirements. Two parallel in-line bag filters were installed upstream of the GAC vessels for turbidity and solids removal. The solids retained by the filters were primarily associated with detached biofilm.

Ion Exchange (IX) Resin

Two Calgon TW-36 vessels were installed in a lead/lag configuration. The vessels were each filled with 36 cubic feet or approximately 2,300 pounds of CalRes 2109 IX resin. The vessels were 42 inches in diameter and 67 inches high. The vessels were installed with IX resin to remove residual perchlorate in compliance with RWQCB permit requirements.

Groundwater Discharge

The effluent of the IX resin treatment was discharged to an existing French drain under California RWQCB permit number R8-2002-0033-038.

Monitoring through each stage of the process was conducted at the sampling locations identified in Table 5.3. Specific details on the sampling protocol for each Phase are outlined in Section 5.6.

Table 5.3 Sample Port Locations

Sample Port	Description
SP-001	MBfR influent
Strainer	Post phosphate injection, prior to MBfR1
SP-100	MBfR1 effluent
SP-200	MBfR2 effluent
SP-500	Aeration tank effluent
SP-506	Filter backwash
SP-507	Media filter effluent
Post-NaOCl	Post sodium hypochlorite injection, prior to product tank
SP-508	Product tank (finished water) effluent
SP-600	MBfR solids drain
SP-801	GAC 1 effluent
SP-802	GAC 2 effluent
SP-803	IX 1 effluent
SP-800	Permitted outfall

5.4.2 Online Monitoring and Control

Operator Interface Terminal (OIT) System/Programmable Logic Controller (PLC)

The PLC uses software to control a wide variety of operating parameters and is controlled by a touch screen OIT [commonly called a human machine interface (HMI)]. The OIT was used to control system operations, track parameters, and check and control system processes (Figure 5.8). An Allen-Bradley PLC was used to control the treatment system. System interlock alarm responses are shown in Table 5.4.

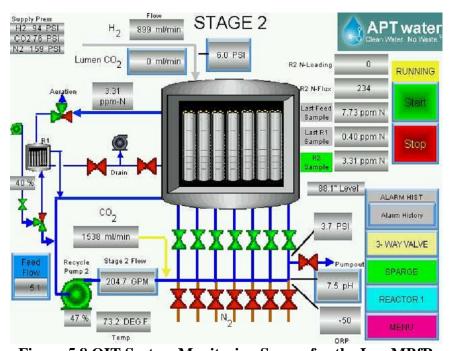


Figure 5.8 OIT System Monitoring Screen for the Lag MBfR

Table 5.4 System Interlock Alarm Responses

Table 5.4 System Interlock Alarm Responses								
Alarm Description	Computer Action	Operator Response						
E-Stop	Shuts down all valves, pumps,	If the E-Stop button is pushed						
	and gas flows.	accidentally, pull out the E-Stop button						
		to reset it and acknowledge the alarm.						
Remote Shutdown	Shuts down all valves, pumps,	Resolve the remote shutdown signal,						
	and gas flows. If the well	acknowledge the alarm, and restart the						
	pump is not running, the	system.						
	MBfR receives a shutdown							
	signal.							
High Hydrogen	Closes all hydrogen valves.	Investigate reason for high pressure,						
Pressure		such as a failed regulator or hydrogen						
		control valve.						
High Temperature	Shuts down the valves, pump,	Determine the cause of the high						
	and gas flows to the stage	temperature. Consider reducing the						
	with the high temperature to	recycle flow rate set point for that unit						
	prevent overheating the	in order to minimize heat input [so the						
	pumps or the biomass.	Variable frequency drive (VFD) will						
		run slower].						
High Differential	Alarm only.	Consider adjusting sparge settings to						
Pressure		reduce the pressure buildup. Consult						
		APTwater when making adjustments.						
Low Water Flow	Shuts down all valves, pumps	Determine the cause of the low water						
	and gas flows for that stage.	flow.						
	This alarm protects the pump							
	from dead heading, which can							
	lead to premature failure.							
LEL (hydrogen	LEL detector will shut down	Stop any hot work (electrical, drilling,						
leak) Detection	all hydrogen valves.	cars, welding, etc.) and look for						
		hydrogen leaks and repair.						
VFD Failure	Each stage will shut down on	Ensure that the circuit breaker is ON.						
	low flow.	Refer to the VFD manual for						
		troubleshooting the VFD.						
Water Flow	Warning only.	Determine why water flow is not at						
Deviation from		setpoint (plugged feed filter, high						
setpoint		differential pressure in modules, feed						
		regulator pressure set too high/low,						
		flow setpoint incorrect, etc.).						

Alarm Description	Computer Action	Operator Response
pH High	Warning only. High pH can	Check the CO ₂ cylinders. High pH
	lead to Hardness pH in the	indicates that the CO ₂ gas flow may not
	feed water precipitating out,	be working. Verify that all valves are
	which will cause plugging if	open between the cylinder and the
	allowed to continue.	MBfR. Open the appropriate pH
		Control screen and verify that the
		controller is in Auto and that there is
		CO ₂ flow and the setpoint for pH is 7.2
		SU. Open the Mass Flow Controller
		cabinet and see if the readout on the
		screen shows a CO2 flow.
pH Low	Warning only. Low pH can	Follow the same steps as for High pH.
	cause the bacteria to perform	Consider lowering the CO ₂ regulator
	less than optimal. Very low	pressure and the maximum CO ₂ flow to
	pH water is also more	help avoid adding too much CO ₂ .
	corrosive.	
Sparge Timeout	System exits sparge cycle.	Resolve the cause of a long sparge.

Nitrate Analyzer

Nitrate analyzers were supplied by Endress and Hauser (Reinach, Switzerland). In the beginning of the project, the Stamosens CNM750/CNS70 nitrate analysis system was used, with a nitrate-N detection range of 0.2 to 60 mg/L. This analyzer was replaced on day 88 with a Liquiline CM44x controller and a Viomax CAS51D sensor. This sensor had a nitrate-N detection range of 0.01 to 10 mg/L. An automated Asahi Electromni electrically actuated ball valve was placed upstream of the nitrate analyzer and switched hourly between a supply of MBfR lead effluent and lag effluent to the analyzer which allowed monitoring by the OIT system. Water from the influent to the MBfR system was analyzed by the nitrate analyzer one hour each day.

pH and ORP Probes

The pH and ORP analyzers were supplied by George Fischer Signet (El Monte, CA). The Signet DryLoc 2750 pH/ORP probe had a range of 0 to 14 pH SU and 0±2000 millivolts (mV) for ORP and was monitored by the OIT system. The analyzers were used to continuously monitor effluent pH and ORP of the MBfR lead and lag tanks. The pH analyzer was tied into the PLC to control the addition of carbon dioxide gas to maintain a consistent pH.

Turbidimeters

Turbidity analyzers were supplied by Endress and Hauser and monitored by the OIT system. The Liquisys M CUM223/253 analyzer was used to continuously monitor the effluent from the product tank. On day 166, a Turbimax CUE22 in-line analyzer was installed downstream of the media filter. The two turbidimeters were monitored for the duration of the study.

LEL/Hydrogen Detectors

Since hydrogen gas was used for an electron donor, Scott Sentinel II LEL sensors were supplied to monitor for leaks. The LEL sensor span was 0 to 100 percent. Hydrogen has a low LEL of 4

percent and presents a significant safety hazard. These sensors were tied into the PLC and if the reading was within 25 percent of the LEL, the PLC would shut down all hydrogen valves.

5.5 FIELD TESTING

The field Demonstration was comprised of four phases of testing including Start-Up, Optimization, Steady State, and Challenge. The Start-Up phase included a period of colonization and acclimation for bacteria on the fiber membranes. The objective of the Optimization phase was to vary operational parameters, including flow rate and recycle flow rate, to find the best performing and most cost-effective strategy. The Steady State phase was conducted to assess the system stability during constant conditions. The Challenge phase included a series of intentional system upsets followed by system monitoring to assess system resiliency and stability. The dates and durations of each phase and test conducted are shown in Figure 5.9. Field logs are included in Appendix B, and field notes and monitoring data are included in Appendix C.

Figure 5.9 Demonstration Schedule

5.5.1 Installation and Start-Up

The following site alterations were conducted prior to installation of the MBfR treatment system:

- The existing well pump was tested and did not supply adequate flow for project requirements. The well pump and motor were replaced.
- A new distribution box and electrical panel were installed to provide power required to operate the MBfR system.
- A new electrical pole and upsized transformer were installed adjacent to the site to provide power to the new electrical panel.

- A new concrete pad and security fence were installed to provide structural support for the gases.
- Two Conex shipping containers were installed and leveled plumb to each other. A heavy-duty canopy was installed by connecting the span of the two shipping containers.
- Secondary containment was installed for spill prevention. An additional secondary containment was installed in one of the shipping containers for spill prevention from additional treatment system components.

After the system was constructed, gas and water leaks were tested in pipelines and vessels prior to Start-Up. The first day of Start-Up was April 20, 2011. The maximum flow rate that the system was permitted to produce was 30 gpm. Table 5.5 lists initial start-up conditions and targets planned for the study. The pH in the MBfR vessels was kept relatively constant between approximately 7.0 and 7.5 SU to maximize biological activity, minimize precipitation in the biofilm, and minimize carbon dioxide consumption. NSF grade phosphoric acid was added as a nutrient supplement at a target concentration of 0.5 mg-P/L. The dose was determined based on nutrient demand for cellular growth and previous research (Brown et al. 2008).

Table 5.5 Phase I System Start-Up

Table 3.3 I hase I System Start-Op								
Parameter	Units	Initial Value	Target	Range				
Feed flow rate	gpm	1	maximum	1 to 30				
			sustainable					
Recycle flow rate in each tank	gpm	140	140	70 to 280				
Hydrogen pressure	psi	5	30	5 to 30				
Carbon dioxide flow rate	SCFH	7.0 to 7.5	7.0 to 7.5	3 to 20				
MBfR tank lead/lag reversal time	days	3	3	-				
MBfR module nitrogen sparge	hours	Off	24	12 to 96				
and tank drain frequency								
MBfR module nitrogen sparge	minutes	3	1	-				
duration								
Nitrogen sparge flow rate per	SCFM	10	10	-				
module								
Media filter backwash rate	gpm	40 to 48	48	40 to 48				
Media filter backwash duration	minutes	20	10-15	0 to 20				
Effluent perchlorate	μg/L	Average	< 4	< 4 to 100				
		influent of 166						
Effluent nitrate	mg-N/L	Average	< 0.5	0 to 2.5				
		influent of 8.6						

Online process monitoring for the Demonstration included a combination of manually recorded monitoring parameters and online data from the supervisory control and data acquisition (SCADA) system. Monitoring data included:

- Hydrogen flow rates and cumulative volume (SCADA)
- Hydrogen pressures (SCADA)
- Tank carbon dioxide flow rates and cumulative volume (SCADA)
- Module carbon dioxide flow rates and cumulative volume (SCADA)

- Nitrogen pressure (SCADA)
- Nitrogen flow rates and cumulative volume (gauges)
- Gas supply tank pressures/levels (gauges)
- Aeration tank air flow rate and pressure (gauge)
- Cumulative volume to 2,500-gal feed tank (gauge)
- Instantaneous flow rate to 2,500-gal feed tank (gauge)
- Feed flow rate to MBfR skid (SCADA)
- Recycle flow rates (SCADA)
- Recycle pump discharge/core tube pressures (SCADA)
- Filter flow rate (SCADA)
- Backwash frequency and duration (SCADA)
- Nitrogen/air scour frequency and duration (SCADA)
- pH (SCADA)
- ORP (SCADA)
- Temperatures (SCADA)
- Nitrate (SCADA)
- Turbidity (SCADA)
- Hypochlorite flow rate and cumulative volume (graduated cylinder/stopwatch, level indicator)
- Coagulant/flocculant flow rate and cumulative volume (graduated cylinder /stopwatch, level indicator)
- Media filter inlet pressure (SCADA)
- Media filter outlet pressure (SCADA)
- Media filter backwash events (SCADA)
- Media filter backwash flow rate and volume per event (SCADA)
- Bag filter pressures (gauges)
- GAC and IX vessel pressures (gauges)
- Cumulative volume discharged to French drain (gauge)

Chlorination Disinfection Study

Disinfection of treated water was attained using NSF 60 grade sodium hypochlorite. Chlorine demand tests were conducted on days 52 and 53 using the Chemetrics test kit K-2504 (DPD colorimetric method) and following Standard Method 2350 for chlorine demand (APHA 1998). Residual free chlorine was measured after 1, 5, 60, 140, and 160 minutes as representative of the approximate hydraulic residence time between the injection point and the effluent of the product tank. Chlorine demand was evaluated to guide chlorine-dosing needs. During operations, residual chlorine was also measured at the finished water to confirm that the appropriate residual was attained.

The USEPA Ground Water Rule requires at least 99.99 percent (4-log) inactivation (disinfection) or removal (filtration) of viruses be provided by Public Water Systems using ground water that is not under the direct influence of surface water as its source. No filter credit is allowed for biological treatment systems, thus the entire 4-log inactivation/removal must be accomplished by disinfection. The USEPA "Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources" (USEPA 1991) was used

as a guideline for achieving the 4-log inactivation. The CT requirement was calculated as the concentration of disinfectant "C" multiplied by the contact time "T" in minutes. The chlorine dose was altered to meet CT requirements at the finished water tank.

Tracer Test

A tracer test was conducted on day 109 to evaluate the hydraulic residence time in the MBfR reactors. There was potential for "short-circuiting" of flow that bypassed portions of the reactors. A high-concentration sodium chloride (NaCl) solution was used as a conservative tracer in the lag reactor. A 300-g/L stock solution was made with a conductivity of 459 millisiemens per centimeter (mS/cm). Conductivity measurements were collected using a Hach Sension handheld conductivity meter. Background conductivity readings were collected from the lag reactor effluent prior to adding the solution and were approximately 400 microsiemens per centimeter (μ S/cm). A single pulse of salt solution was added to the siphon inlet of lag MBfR while the system was operating at 18 gpm. The lag effluent conductivity was measured every 15 minutes until conductivity declined to near baseline levels.

The key indicator of start-up success was attaining perchlorate concentrations in the effluent of the lag reactor of less than the EPA Method 314.0 analytical reporting limit of 4 μ g/L. Other parameters used to assess start-up progress included concentrations of DO, nitrate, nitrite, and sulfide in the lag reactor; hydrogen consumption; ORP, and biomass accumulation on MBfR fibers.

5.5.2 Optimization

The primary goal of the Optimization phase was to identify peak operating conditions for the MBfR. This phase was designed to obtain data under a variety of operating conditions and assess the effects of operating conditions on perchlorate and nitrate removal. Previous research indicated that hydrogen pressure, which controls electron donor availability, and electron acceptor surface loading rate were key operating parameters for the MBfR (Zhao et al. 2011; Ziv-El and Rittmann 2009). Other parameters include the recycle flow rate, which affects mass transfer, MBfR gas sparge frequency, and the gas used for sparging. Table 5.6 presents conditions for the Optimization tests. The general approach was based on variation of the MBfR recycle rate and feed water flow rate. Membrane hydrogen pressure was adjusted to alter the electron donor delivery capacity to match stoichiometric requirements. Influent flow rate was varied to assess performance at various hydraulic residence times and contaminant loading rates. Recycle rate was varied to evaluate liquid-phase mass transfer resistance and associated effects on contaminant removal flux. The effect of lead/lag reversal on perchlorate and nitrate treatment was also assessed.

Table 5.6 Phase II System Optimization Tests

		Flow	Recycl	le Rate	Hydrogen Pressure			ClO ₄	Sparge
Start Day	End Day	Rate (gpm)	MBfR1 (gpm)	MBfR2 (gpm)	MBfR1 (psi)	MBfR2 (psi)	N Loading (mg-N/m ² d)	Loading (mg/m ² d)	Rate (hrs)
127	132	15	280	280	17	19	739	12.7	24
132	140	10	280	280	12	15	493	8.5	24

					Hydı	ogen			
		Flow	Recycl	e Rate	Pres	sure		ClO ₄	Sparge
Start	End	Rate	MBfR1	MBfR2	MBfR1	MBfR2	N Loading	Loading	Rate
Day	Day	(gpm)	(gpm)	(gpm)	(psi)	(psi)	$(mg-N/m^2d)$	(mg/m ² d)	(hrs)
140	141	20	280	280	20	24	986	17	24
141	146	5	280	280	20	10	246	4.2	24
146	148	15	210	180	10	15	739	12.7	6
148	151	15	210	210	10	15	739	12.7	6
151	154	10	210	180	10	13	575	9.9	6
154	155	10	180	180	15	12	575	9.9	6
155	157	10	180	180	15	12	575	9.9	12
158	162	10	180	180	15	12	575	9.9	24
162	169	5	180	180	15	12	287	5	24
169	178	10	180	180	15	12	575	9.9	24
179	182	10	180	180	15	12	575	9.9	12
182	197	10	150	180	15	15	575	9.9	12
197	202	10	150	180	15	17	575	9.9	4
202	205	10	150	180	15	15	575	9.9	4
206	209	10	150	180	15	15	575	9.9	48
209	217	8	150	120	15	15	647	11.1	12
217	217	6	150	120	16	16	517	8.9	12
217	228	6	150	120	16.5	16.5	517	8.9	12

Batch Testing

Batch tests were conducted to evaluate mass transfer limitations, determine whether reduction of perchlorate concentrations to less detection limits was possible, and determine how sulfide production correlated with perchlorate reduction. Two batch tests were conducted to systematically evaluate the effect of recycle flow rate on performance (see detailed methods in Appendix D). The first was on day 141. The influent flow was increased from 10 to 20 gpm on the day prior to the test until the nitrate analyzer readings were above 5.5 mg-N/L in the lead reactor effluent. On the day of the test, the influent and effluent lines were closed on the lead vessel. The recycle pump was operated at a rate of 280 gpm and the hydrogen pressure was 28 psig. The nitrate analyzer was monitored online at the lead vessel and at the discharge of the recycle pump. Samples were collected when the online nitrate analyzer reading was 2.5, 0.5, and 0 mg-N/L. Samples were also collected after 5, 10, and 20 minutes of attaining 0 mg-N/L in the reactor. The same protocol was followed for the lag vessel except the hydrogen pressure was 20 psig. The samples were sent an analytical laboratory for perchlorate, sulfate, and sulfide analyses.

The second batch test was conducted on days 200 and 202. These tests were conducted to assess the effect of varying recycle flow rates on nitrate and perchlorate removal. On the day prior to the test (day 119), influent flow was 10 gpm and the recirculation flow rate was 180 gpm on MBfR2 and 150 gpm on MBfR1. The two vessels had different recycle ratios because MBfR1

had 4 modules and MBfR2 had 6 modules. The lead vessel (MBfR2) had a hydrogen pressure of 17.5 psi, and the lag vessel (MBfR1) was 15 psig.

Single-Stage Operation

The system was designed to operate in series, in a lead/lag configuration. On day 143, the flow was decreased from 10 to 5 gpm and the lag reactor was bypassed to simulate single-stage operation. The nitrate analyzer was monitored online and water samples were collected on day 144 at the influent and effluent of the lead reactor for perchlorate, nitrate, and nitrite to assess performance. Total sulfide and sulfate were collected from the aeration tank to assess the impact of sulfate-reducing bacteria. The vessels were placed back on a lead/lag configuration at the end of day 144.

System Upsets

System upsets including module failures, leaks, level alarms, and loss of hydrogen supply occurred during Optimization (Table 5.7). Each vessel initially had seven membrane modules. Several modules had mechanical failures due to delamination of the epoxy head from the reactor core, which was likely associated with manufacturing issues that have since been remedied. On day 146, failure of the O-ring seal at the bottom of the reactors resulted in hydrogen bypass. The design was changed to a screw-mount rather than O-ring connection to mitigate further bypass. The reactors were exposed to air during these maintenance activities for approximately 19 hours.

Table 5.7 System Upset Conditions

				Reactor	s Online			
Start Day	End Day	System Down	O-ring Bypass	Reactor Failure	Hydrogen Leak	No Hydrogen Supply	MBfR 1	MBfR 2
146	146	X	X	ranure	Leak	Supply	7	7
			Λ				/	/
150	153	X		X	X		6	6
169	169	X		X			5	6
182	183	X		X			4	6
205	207	X		X			4	4
217	217	X					4	4
220	220					X	4	4
228	229	X					4	4

Sparging

Compressed air was used in place of nitrogen for sparging on days 168 to 191 to test effects on performance. Since the reactors are targeting anoxic bio-reduction, nitrogen gas was normally used for sparging. The duration of the compressed air sparging was 1 minute at 10 SCFM and the tested frequencies were once every 48, 24, 22, 12, 6, and 4 hours.

5.5.3 Steady State

Steady State operation was conducted from days 230 to 258 to assess performance, stability, and responsiveness to normal fluctuations in water quality. The system was operated at conditions determined during Optimization that produced the best performance with respect to perchlorate

and nitrate removal. Disinfection was assessed by maintaining appropriate disinfectant contact time and residual to meet CT requirements. Finished water quality and aesthetics were assessed including turbidity, DBPs, DBP-FP, nitrosamines, DOC, and TON.

5.5.4 Challenge

The primary goal of the Challenge phase was to perturb MBfR operation sufficiently to temporarily disrupt perchlorate and nitrate removal and then monitor response to baseline operations. Hydrogen shutoff simulated loss of electron donor. System shutdown tests simulated power failure and shutdown of all operations (Table 5.8). System monitoring and sampling was conducted when the system was placed back online until conditions rebounded to baseline conditions. Maintenance activities conducted during Optimization provided information on system resiliency and reliability (see Section 5.5.2), and were therefore not evaluated further.

Table 5.8 Phase IV System Challenge Tests

Test	Test Description	Challenge Duration
1	Hydrogen shutoff	4 hours
2	Hydrogen shutoff	24 hours
3	System Shutdown	4 hours
4	System Shutdown	24 hours

5.5.5 Backwash Water Characterization

Membrane fibers were gas sparged to control accumulation of inert compounds and biofilm growth on the exterior surface of the membrane fibers. The frequency of sparging was controlled by the PLC and was selected to maintain a relatively constant reactor discharge pressure, which was affected by biomass and solids accumulation on the membranes. The frequency of sparge events was varied throughout the project over the range of once every 48, 24, 12, 6, and 4 hours. The sparge process included draining the lag vessel by approximately 78 percent, sparging with nitrogen gas for one minute at 10 SCFM, and draining the vessel to approximately 3.2 percent full. The vessel drainage period was 2 to 4 minutes. Sparge samples were collected as a 3-point composite from 0.5, 1.5, and 2.5 minutes after draining. The vessel was then partially filled to 22 percent of capacity, water was recirculated at 30 gpm for one minute, and the vessel was drained a second time. The total time that the fibers were exposed to air was about 10 minutes and did not result in drying of the biofilm. The biofilm was exposed to air during this time. However the nitrate- and perchlorate-reducing bacteria are facultative and are not killed by exposure to oxygen. A separate composited sample of this drain water was also collected. This process was conducted individually for the lead and lag vessels. Samples were analyzed in an analytical laboratory for TSS. Turbidity measurements were analyzed initially using a Hach 2100P turbidimeter until it was replaced by a more sensitive Hach 2100N on day 188.

The media filter was backwashed when the pressure differential across the filter was in excess of 10 psi. Manual backwashes were initiated for sampling when the differential pressure across the filter was close to the backwash set point. Water from the product tank was used for backwashing at a rate of 45 to 50 gpm (21 to 23 gpm/ft²) for 10 to 13 minutes. The entire backwash process used approximately 400 to 500 gallons of water. Five 200-mL samples were

collected at 1, 3, 5, 7, and 9 minutes and composited. Samples were analyzed in an analytical laboratory for TSS using Standard Method 2540D (APHA 1998). Turbidity measurements were conducted in the field using a Hach 2100 P turbidimeter until it was replaced by a Hach 2100N on day 188.

5.5.6 Demobilization

Demobilization activities included:

- Gas injection, phosphorus supplementation, and disinfection injection systems were disassembled.
- The system was drained, flushed with well water, and drained again.
- The influent tank, MBfR vessels, aeration tank, media filter, product tank, GAC and IX vessels, and piping were disassembled.
- Secondary containment infrastructure was removed.
- Electrical power was disconnected and terminated by an electrician.
- GAC and IX resin were characterized and disposed.
- The influent well electrical panel, cabinets, power and control wiring were left in place and the piping to the system was removed.
- The outfall discharge French drain was capped.
- Remaining chemicals and field test kits were removed from the site.
- The gas canisters, carbon dioxide, and nitrogen tanks were removed from the site.
- The Conex trailers, associated equipment, and canopy were removed off-site.
- Lab waste was disposed as hazardous waste off-site.
- The GAC and IX vessels were removed from the site.

5.6 SAMPLING METHODS

This section describes the sampling locations, collection procedures, and analysis methods performed during the MBfR Demonstration project. The primary sampling locations included the influent groundwater (MBfR influent), MBfR lead and lag effluents, and the post-aeration, treatment process (i.e., media filter, bag filter, GAC, and IX) effluents. QA/QC results are summarized in Appendix E.

5.6.1 Analytical/Testing Methods

Table 5.9 lists the parameters tested, sampling locations, and frequency of collection during the Demonstration. Most of the samples were grab samples, except for the MBfR sparge and filter backwash samples, where composites were collected (Appendix D). Test America (Irvine, CA) performed the off-site laboratory analysis and was certified by the California Environmental Laboratory Accreditation Program. Sulfide, nitrate, nitrite, DO, and chlorine residual were measured in the field using test kits. Temperature, ORP, turbidity, and pH were measured using hand-held probes. On-line monitoring data were also collected continuously through the OIT for nitrate, pH, ORP, and temperature. The sampling frequency varied between once a week to three times a week depending on the parameter and phase of the Demonstration.

5.6.2 Sample Collection

Sample bottle size, type, and preservative are shown in Table 5.10. Sample bottles were completely filled, capped with no headspace, and stored in an on-site refrigerator or coolers at less than 4°C after collection. Coolers were kept out of direct sunlight as much as possible. A chain-of-custody (COC) form, sealed in a plastic bag to protect it from water, was placed inside the cooler. Samples were submitted to the laboratory within one day of sampling. The QAPP provides a more in-depth discussion of sample documentation procedures. For on-site water quality analysis, probes and field test-kits were used. Field monitoring equipment were calibrated at the beginning of each field day and recorded on the field log (Appendix B). For the off-site laboratory analysis, the selected methods represented standard USEPA procedures or modifications of these procedures for the analytes of concern.

Table 5.9 Sample Collection Frequency

A maluta		Samples/We	ek	
Analyte	Start-Up	Optimization	Steady State	Location
Laboratory Analy	ses		•	
	3	3	3	Influent
Perchlorate	6	6	6	MBfR
		3	3	Finished Water
Perchlorate		1		Influent
(Confirmatory)	2	4	1	MBfR
(Comminatory)		1		Finished Water
Nitrate and	1	1	1	Influent
Nitrite	2	2	2	MBfR
Mune			1	Finished Water
TCE ais 1.2	1	1	1	Influent
TCE, cis-1,2- DCE, and VC	2	2	2	MBfR
DCE, and VC	1	1	1	Post MBfR
	1*	1*	1*	MBfR Sparge
TSS	2	2	2	Post MBfR
	1*	1*	1*	Media Filter Backwash
TON			3	Finished Water
Fecal/Total	1	1	1	MBfR
Coliforms, E.	2	2	2	Post MBfR
coli, HPCs	1	1	1	Finished Water
	1	1	1	Influent
DOC	1	1	1	MBfR
DOC	2	2	2	Post MBfR
	1	1	1	Finished Water
HAAs			1	Influent
пааѕ	1	1	3	Finished Water
THM-FP			3	Finished Water

A 1 . 4 .		Samples/We	T			
Analyte	Start-Up	Optimization	Steady State	Location		
THMs	1	1	2	Finished Water		
Nitrosamines			1	Finished Water		
Sulfate	1	1	1	Influent		
	1	1	1	MBfR		
Total Sulfide		1	1	Post MBfR		
		1	1	Finished Water		
Alkalinity	1	1	1	Influent		
	2	2	2	MBfR		
TDS	1	1	1	Influent		
103	2	2	2	MBfR		
Phosphate	1			Influent		
Ammonia	1	1	1	Influent		
Allillollia	1	1	1	MBfR		
TT 1	1	1	1	Influent		
Hardness	2	2	2	MBfR		
Field Analyses	•					
Nitrate and	3	3	3	Influent		
Nitrite and Nitrite	6	6	6	MBfR		
	3	3	3	Finished Water		
	3	3	3	Influent		
Sulfide	6	6	6	MBfR		
Sulfide	3	3	3	Post MBfR		
	3	3	3	Finished Water		
	3	3	3	Influent		
Turbidity	1*	1*	1*	MBfR Sparge		
	6	6	6	Post MBfR		
	1*	1*	1*	Media Filter Backwash		
	3	3	3	Finished Water		
pH, Temperature, ORP, DO	3	3	3	Influent		
	6	6	6	MBfR Sparge		
	6	6	6	Post MBfR		
	3	3	3	Finished Water		
Chlorine	3	3	3	Finished Water		

* Samples were collected approximately once per week.

Notes: Additional samples were collected for specific monitoring and permit compliance purposes. MBfR includes MBfR lead and lag effluent. Post MBfR includes the aeration tank and media filter. **Table 5.10 Analytical Methods**

	-	able 5.10 Allalytic	Holding			
Analyte	Bottle	Preservative	Time	Method	Type	PQL
Perchlorate	500 mL poly	4°C	28 d	EPA 314.0	Lab	4 μg/L
Perchlorate (Confirmatory)	125 mL sterile poly	4°C	28 d	EPA 332.0	Lab	0.2 μg/L
Chlorite/chlorate	125 mL brown poly	4°C, EDA	14 d	EPA 300.1	Lab	10 μg/L
Nitrate	500 mL poly	4°C	48 h	EPA 300.0	Lab	0.1 mg-N/L
Nitrite	500 mL poly	4°C	48 h	EPA 300.0	Lab	0.1 mg-N/L
Turbidity	1 L poly	4°C	24 h	EPA 180.1	Lab	1 NTU
TSS	500 mL poly	4°C	7 d	SM 2540D	Lab	10 mg/L
TON	500 mL glass	4°C	24 h	SM 140.1	Lab	NA
Fecal Coliforms	100 mL sterile poly	4° C, $Na_2S_2O_3$	6 h	SM 9221E	Lab	1/100 mL
Total Coliforms				SM 9221B	Lab	1/100 mL
HPC	100 mL sterile poly	4°C	24 h	SM 9215	Lab	1/mL
DOC	250 mL glass	4°C	28 d	SM 5310C	Lab	$0.2~\mu g/L$
TCE, cis-1,2 dichloroethene	3x40 mL VOAs	HCl, 4°C	14 d	EPA 8260B	Lab	1 μg/L
(cis-1,2 DCE), vinyl						
chloride (VC)						
VOCs	3x40 mL VOAs	HCl, 4°C	14 d	EPA 8260B	Lab	Varies
THMs	2x40 mL VOAs	4° C, $Na_2S_2O_3$	14 d	EPA 524.2	Lab	1 μg/L
Sulfate	500 mL poly	4°C	28 d	EPA 300.0	Lab	0.5 mg/L
Total Sulfide	500 mL poly	ZnAc ₂ & NaOH	7 d	SM 4500-S-C,D	Lab	0.1 mg/L
Alkalinity	500 mL poly	4°C	14 d	SM 2320B	Lab	10 mg/L
Total dissolved solids	500 mL poly	4°C	7 d	SM 2540C	Lab	10 mg/L
(TDS)						
HAAs	3x60 mL VOAs	4°C, NH ₄ Cl,	14 d	EPA 552.2	Lab	1 μg/L
		agitate for 1 min				
Ethylene Dibromide	3x40 mL VOAs	4°C, Na ₂ S ₂ O ₃	14 d	EPA 504	Lab	0.02 μg/L
Chloride	500 mL poly	4°C	28 d	EPA 300.0	Lab	0.5 mg/L
Phosphate	500 mL poly	4°C	48 h	EPA 300.0	Lab	0.1 mg/L
Ammonia	500 mL poly	$4^{\circ}\text{C}, \text{H}_2\text{SO}_4$	28 d	SM 4500NH3-D	Lab	0.5 mg-N/L
Hardness	500 mL poly	4°C, HNO₃	180 d	SM 2340B	Lab	10 mg/L

			Holding			
Analyte	Bottle	Preservative	Time	Method	Type	PQL
DBP-FP	500 mL glass	4°C	14 d	SM 5710B/EPA 524.2	Lab	0.5 μg/L
Nitrosamines	500 mL poly	4°C	7 d	EPA 3520C/1625	Lab	75 ng/L
Sulfide	NA	NA	NA	Chemetrics test kit K- 9510	Field	0.05 mg/L
Nitrate	NA	NA	NA	Chemetrics test kit K-6905	Field	0.1 mg-N/L
Nitrite	NA	NA	NA	Chemetrics test kit K-7002	Field	0.025 mg-N/L
DO	NA	NA	NA	Chemetrics test kit K-7512 (high) K-7501 (low)	Field	1 mg/L - high, 0.025 mg/L - low
Chlorine	NA	NA	NA	Chemetrics test kit K- 2504	Field	0.1 mg/L
Phosphate	NA	NA	NA	Chemetrics test kit K-8510	Field	0.05 mg/L
pH, temperature, ORP	NA	NA	NA	Oakton pH 6+ pH probe	Field	0.01 SU, 0.1°C, 1 mV
Turbidity	NA	NA	NA	EPA Method 180.1, Hach 2100 N and 2100P Turbidimeter	Field	0.01 NTU

Note: Standard Methods followed (APHA 1998).

EDA – ethylenediamine $Na_2S_2O_3$ – sodium thiosulfate HCl – hydrochloric acid NH_4Cl – ammonium chloride H_2SO_4 – sulfuric acid $ZnAc_2$ – zinc acetate

HNO₃- nitric acid

Challenge phase testing involved intentionally creating an upset condition and monitoring system performance after the upset. Upset conditions included shutting off either hydrogen or the entire system for a period of either 4 or 24 hours. Grab samples of the finished water were collected for perchlorate, nitrate, and nitrite before the upset, then hourly for 10 hours.

5.7 SAMPLING RESULTS

This section summarizes the results of the Demonstration. See Appendix F for the laboratory analytical data results and Appendix G for raw online monitoring data.

5.7.1 Start-Up

The purpose of Start-Up was to develop a biofilm on the membranes and demonstrate removal of perchlorate and nitrate. Start-Up lasted from day 0 to day 112. Success during Start-Up was assessed by visual inspection of the 14 membrane modules for biomass development, when perchlorate was below 4 μ g/L, and when nitrate was below 0.5 mg-N/L. The system was initially operated at 5 gpm, and the MBfR effluent perchlorate concentrations were 4.5 μ g/L and nitrate was 0.25 mg-N/L by day 8 (Figure 5.10b and Figure 5.11b). The flow rate was steadily increased and effluent perchlorate and nitrate concentrations increased. The phosphate amendment system provided inconsistent delivery of nutrient until day 53, as the process was being optimized. Shortly thereafter, perchlorate and nitrate concentrations began to decrease while the influent flow rate was held constant at 12 gpm. Perchlorate was reduced from 140 to 11 μ g/L (Figure 5.10a), and nitrate decreased from 49 mg-N/L to 0.25 mg-N/L (Figure 5.11a) within a week after the phosphate amendment system was fixed. The flow rate was steadily increased again and the system initially responded with higher effluent perchlorate concentrations but stabilized at approximately 10 μ g/L within a few weeks, even when flow rates were increased to 22 gpm.

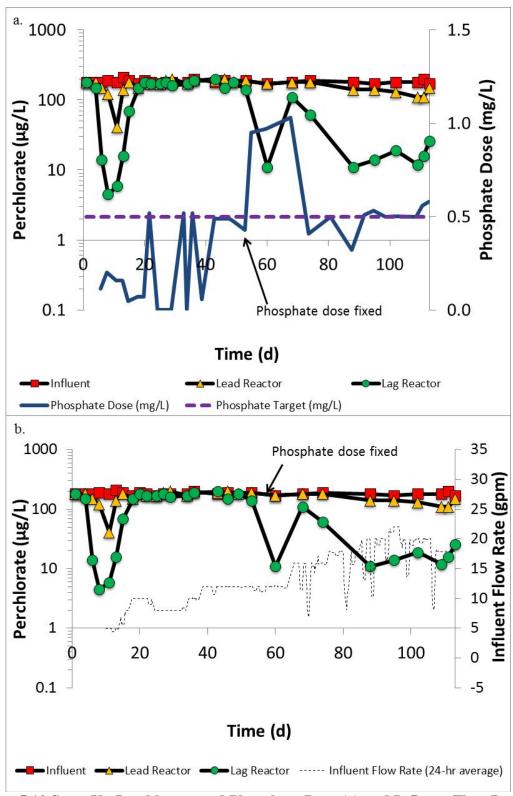


Figure 5.10 Start-Up Perchlorate and Phosphate Dose (a) and Influent Flow Rate (b)

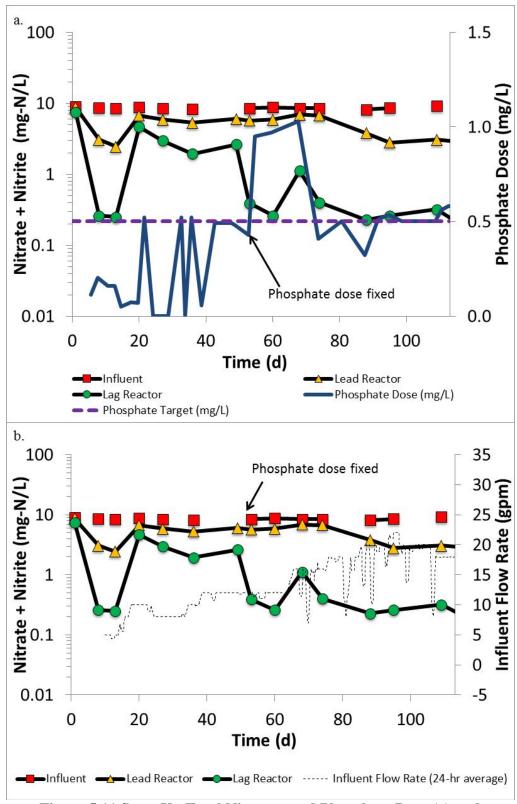


Figure 5.11 Start-Up Total Nitrogen and Phosphate Dose (a) and Influent Flow Rate (b)

Disinfectant Dose Assessment

Chlorine dose was determined based on CT requirements for a 4-log reduction for virus removal. The "C" value represents the concentration of the disinfectant (free chlorine in this case). The "T" value of the CT calculation represents the hydraulic residence time of the finished water tank multiplied by a baffling factor. A maximum flow of 5 gpm and a baffling factor of 0.1 (unbaffled) were used to develop a worst case "T" value of 20 minutes in the 1,000-gallon finished water tank. CT requirements were determined using the worst case scenario of a pH of 8 SU and a water temperature of 15°C (USEPA 2003). Under these worst-case conditions, a minimum of 0.2 mg/L chlorine residual was required in finished water for a 4-log inactivation (CT requirement of 4 mg-min/L). As the influent flow rate varied, the "T" value was adjusted accordingly resulting in different required "C" values. The chlorine dose was adjusted as needed to maintain the minimum required CT throughout the Demonstration. For example, at the maximum flow of 22 gpm, the chlorine residual needed to meet CT requirements was 0.9 mg/L.

On day 49 samples from the finished water tank were collected to determine the chlorine demand after contact times of 1, 5, 60, 140, and 160 minutes. The demand after one minute was 0.8 mg/L, while all contact times of 5 minutes or greater were 5.7 mg/L. The hydraulic residence time in the finished water tank varied depending on the flow rate from 45 minutes to 3 hours. Variations in water quality including temperature and concentrations of DOC, sulfate, sulfide, and turbidity can affect the actual chlorine demand at any particular point in time. As such, the chlorine residual was monitored at the finished water effluent three times per week.

Tracer Test

A tracer test was used on the lag MBfR to determine the residence time and flow dispersion. The test was conducted on day 109 using a concentrated salt solution. The influent flow rate was 18 gpm and the approximate volume of water in the lag reactor was 270 gallons. The MBfR lab effluent conductivity readings increased immediately after addition of the salt pulse and was back to baseline conditions approximately 90 minutes later (Figure 5.12). The recycle flow rate was 209 gpm, which was much greater than the feed flow rate of 18 gpm and effectively made the MBfR a continuous stirred tank reactor (CSTR). The actual average hydraulic residence time was 19 minutes, compared to a theoretical hydraulic residence time of 15 minutes if only advection is considered. The conductivity curve had a long tail at the end indicative of high dispersion, consistent with CSTR behavior. The Pèclet number measures the ratio of the mass fluxes caused by advection and diffusion and provides an indication of the relative importance of each. The Pèclet was calculated as 1.48 indicating that dispersion strongly impacted mass transport. Plug flow (no dispersion) would have a very high Pèclet number, whereas systems with a Pèclet number of 5 or less are considered to have a large amount of dispersion (Levenspiel 1962). System bypass was identified in several modules at the O-ring connection between the module and the water distribution header. Bypass may have further contributed to dispersion observed in the MBfR. The O-ring was replaced with a screw connection on day 146, which eliminated the bypass problem.

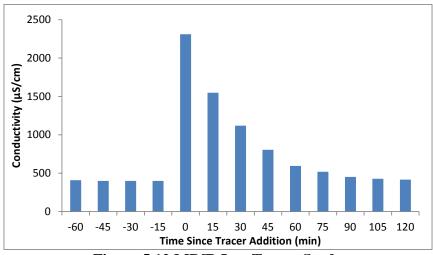


Figure 5.12 MBfR Lag Tracer Study

5.7.2 Optimization

System optimization lasted from day 113 to 230. The purpose of this phase was to identify optimal operating conditions to enhance performance of the MBfR. A range of conditions were systematically evaluated including altering influent flow rates and thus electron acceptor loading, MBfR vessel recycle flow rates to alter mass transfer rates, hydrogen pressure to alter electron donor delivery capacity, sparge frequencies, and sparge gases (i.e., use of nitrogen gas compared to compressed air). This provided a comprehensive dataset to evaluate relationships between controlling parameters and performance. Several system upsets occurred between days 113 and 127, and a few modules failed due to delamination of the epoxy head from the reactor core (Table 5.7). These failures were attributable to the manufacturing process that has since been rectified. The recycle flow rate in each reactor was subsequently reduced proportionally to the reduction in the number of membrane modules to maintain a constant water velocity in each module. The first two module failures occurred on day 150; these modules were removed and the membranes were inspected. Figure 5.13 shows the surface of the membrane sheets, which line the reactor interior. Samples of the membrane were sent to ASU for analysis and are referred in their report as shipment number 3 (Rittmann et al. 2013). Biomass was evenly distributed and was not overly reduced (overly reduced biomass appears dark brown or black in color). These observations contrast to the previous Demonstration conducted at EVWD where dark patches of overly reduced biomass were observed. This difference indicates the module design changes between the EVWD and WVWD Demonstrations were successful with respect to improving control of biofilm growth.

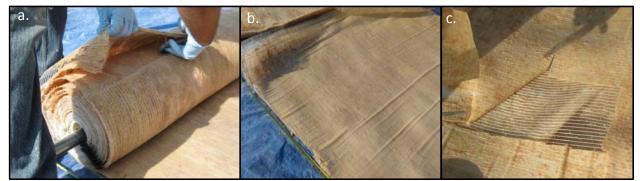
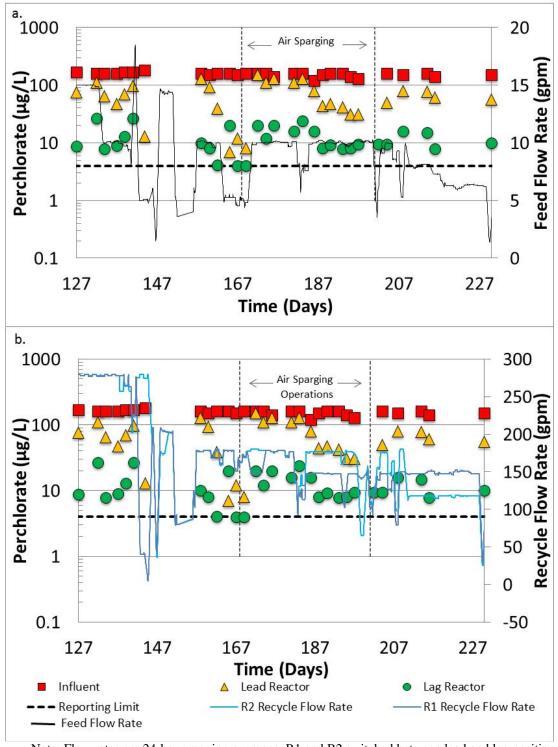
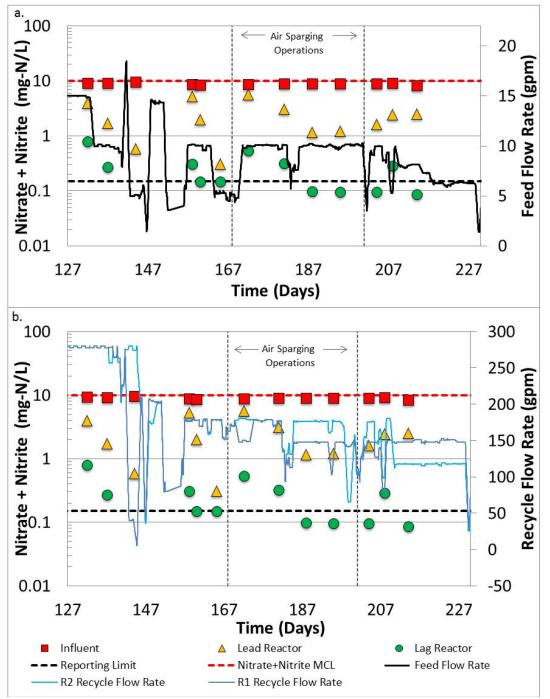



Figure 5.13 Autopsy of MBfR Reactor Modules


Figures 5.14 and 5.15 show an overview of perchlorate and total nitrogen concentrations in the system influent, effluent of the lead reactor, and effluent of the lag reactor under a range of influent flow rates, recycle flow rates, and hydrogen pressures. Influent flow rates were varied between 5 and 20 gpm, recycle flow rates varied between 100 and 280 gpm, and the hydrogen pressure ranged from 11 to 28 psi. Optimization included a series of short-duration tests to systematically evaluate impacts of a single operational change. However, several upset conditions occurred during this time frame (see Table 5.7), and in an effort to find optimal conditions, several parameters were altered simultaneously. The short-duration tests are discussed in detail below to demonstrate the impact of two-stage (e.g. lead/lag) compared to single-stage operations and varying influent flow rate, recycle flow rate, hydrogen pressure, sparge frequency, and use of nitrogen gas compared to compressed air for sparging.

On days 143 and 144 the system was operated with only one vessel to determine whether single-single-stage treatment would suffice. Prior to this time, the two-stage system was operated at 10 gpm. On day 143 MBfR2, which had previously been in the lead position, was operated at 5 gpm and MBfR1 was taken off-line. The recycle flow rate in MBfR2 was 280 gpm and the hydrogen pressure was 13 psi. Influent perchlorate was 180 µg/L and total nitrogen was 9.7 mg-N/L; the MBfR effluent perchlorate was 13 µg/L and total nitrogen was 0.59 mg-N/L. While these values do not meet the performance objective for nitrate or perchlorate, a large percentage (93 percent for perchlorate and 94 percent for nitrate) was removed. Table 5.11 shows two-stage data under similar operating conditions for comparison on day 139. The influent perchlorate was 170 µg/L and lag effluent was 13 µg/L. Online nitrate readings were 8 mg-N/L at the influent and 0.54 mg-N/L in the lag reactor. While the perchlorate and nitrate loading during single-stage operations on day 143 were slightly higher than two-stage on day 139, the system was operating under similar conditions. The performance in removal of perchlorate and nitrate (measured in terms of removal normalized to membrane area) was similar regardless of whether the system operated as single- or dual -stage indicating little benefit of two-stage operation.

<u>Note:</u> Flow rates are 24-hour moving averages. R1 and R2 switched between lead and lag positions during optimization.

Figure 5.14 Optimization Perchlorate and Influent Flow (a) and Recycle Flow (b)

<u>Note:</u> Flow rates are 24-hour moving averages. R1 and R2 switched between lead and lag positions during optimization.

Figure 5.15 Optimization Total Nitrogen and Influent Flow (a) and Recycle Flow (b)

Single-stage and dual-stage operation did not promote complete perchlorate reduction. The nitrate-plus-oxygen flux reported in terms of stoichiometric hydrogen demand during single-stage operation was $0.12 \text{ g-H}_2/\text{m}^2$ -d. Laboratory and modeling studies conducted by ASU (see Section 5.3) indicated that complete perchlorate reduction without sulfate reduction should be

expected at a nitrate-plus-oxygen flux of $0.18 \text{ g-H}_2/\text{m}^2$ -d which is similar to the value reported above. Therefore, other differences between the laboratory and pilot-scale systems may have affected complete perchlorate reduction. These differences are discussed below and include external mass transfer resistance and excess hydrogen delivery.

Table 5.11 Comparison of Two-Stage and Single-Stage Operation

	Tuble Cill Comparison of 1 % Stage and Single Stage Operation								
Parameter	Two-Stage (Day 139)	Single Stage (Days 143,144)							
Influent flow rate (gpm)	10	5							
Recycle Flow Rate (gpm)	280	280							
Hydrogen Pressure (psi)	MBfR1 – 13 (lead) MBfR2 - 15	13							
Membrane Surface area (m ²)	2,000	1,000							
Perchlorate Loading (mg/m ² -d)	4.63	4.91							
Nitrate Loading (mg-N/m ² -d)	218	264							
Perchlorate Removal Flux (mg/m²-d)	4.28	4.55							
Nitrate+Nitrite Removal Flux (mg-N/m²-d)	203	248							

The effect of influent flow rate was evaluated for flows of 10, 15, and 20 gpm on days 127 to 141. Effluent perchlorate was, on average, 8.5 µg/L while operating at 10 gpm, 17.9 µg/L at 15 gpm, and 27 µg/L at 20 gpm. Recycle flow rates were at a maximum of 280 gpm in both vessels, and the hydrogen pressure was altered to keep the ratio of electron donor delivery to acceptor loading consistent. A batch test was conducted on day 141 (discussed below) and demonstrated that perchlorate reduction to less than the performance objective of 6 µg/L was possible although sulfate was reduced to sulfide. The combined results of the varying influent flow rate tests and the batch tests indicated that attainment of perchlorate performance objectives was possible if the system was given a long enough residence time. Flow rate was systematically tested again on days 208 to 230 with flows of 10, 8, and 6 gpm (Figure 5.16). Influent perchlorate was approximately 160 µg/L while the average lag effluent at 10 gpm was 11.7 µg/L, 8 gpm was 11.4 ug/L, and 6 gpm was 9 ug/L. At these flow rates, total nitrogen (nitrate+nitrite) was consistently below 0.5 mg-N/L. Total nitrogen was attained below 0.5 mg-N/L when flows were as high as 15 gpm. However, optimization tests were focused on meeting both perchlorate and nitrate treatment objectives. The flow rate to be used for Steady State was determined to be 6 gpm based on these results.

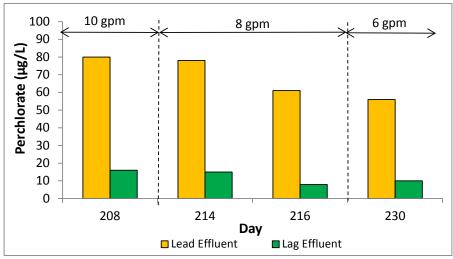


Figure 5.16 Effect of Influent Flow Rate on Perchlorate Removal

While operating conditions were varied during Optimization, perchlorate was not able to attain less than 6 μ g/L in the lag effluent. Initial batch tests were conducted on day 141 to determine whether perchlorate concentrations could meet the performance objective of 6 μ g/L or whether some inhibitory conditions (microbial or other) were present that were hindering performance (Figure 5.17, method details in Appendix D). Perchlorate was removed to less than 0.5 μ g/L and total nitrogen (the sum of nitrate and nitrite) was removed to below detection in MBfR1 and MBfR2. Removal of perchlorate to concentrations below the performance objective began at the same time the sulfate reduction began, and nitrate was completely removed. These results agree with previous research which demonstrated a clear hydrogen utilization preference: oxygen, followed by nitrate, nitrite, and then perchlorate (Ziv-El and Rittmann 2009). The results also demonstrate that complete removal of in the two-stage MBfR perchlorate was possible.

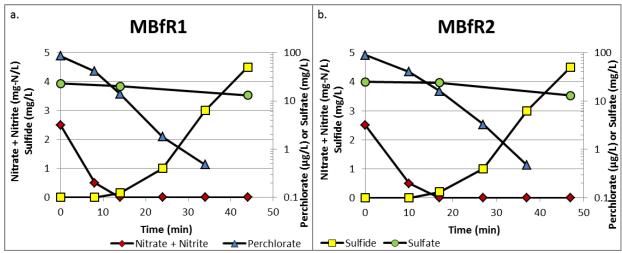
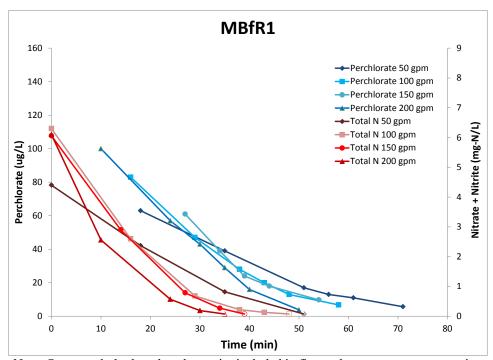
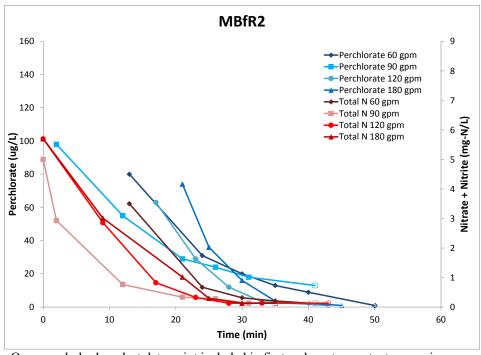



Figure 5.17 Preliminary Batch Test for MBfR1 (a) and MBfR2 (b)

Recycle flow rates were systematically evaluated by conducting a second series of batch tests on days 200 and 202 for MBfR 2 and 1, respectively. The tests showed that perchlorate and nitrate reduction occurred at a faster rate for higher recycle flow rates (Figures 5.18 and 5.19). The


recycle flow rates were slightly higher in MBfR2 than MBfR1 because MBfR2 had more membrane surface area with 6 modules rather than 4 modules in MBfR1. The flow rates were selected to provide similar conditions for mass transfer. While the highest recycle flow rate of 200 gpm in MBfR1 had the fastest rate of degradation, sulfide generation was also higher in this vessel, with as high as 2 mg/L after 50 minutes. Sulfate reduction also occurred in MBfR2, with 1.2, 2.4 and 2.3 mg/L sulfide at 180, 120 and 90 gpm, respectively after approximately 40 minutes (not shown). Similar to the preliminary batch test findings, sulfide generation began occurring after the nitrate concentration was below detection (<0.5 mg-N/L) and as perchlorate concentrations were below 20 μ g/L. There appeared to be overlap between perchlorate- and sulfate-reduction.

First-order rate constants were calculated for perchlorate and nitrate reduction at various recycle flow rates (Table 5.12). While the first-order rate constants for nitrate reduction were similar between MBfR1 and MBfR2, the rate constant for perchlorate was more than double in MBfR2 at higher recycle flow rates. These data indicate the liquid-phase mass transfer resistance was controlling the rate of perchlorate reduction The first-order rate constants for a recycle flow rate of 60 gpm in MBfR2 appeared to be an outlier, compared to the overall trend of increasing rate constants with increasing recycle flow rates. We hypothesize that the 90-gpm sample and 60-gpm sample were likely switched in the field.

Note: Open symbols show last data point included in first-order rate constant regression

Figure 5.18 MBfR1 Batch Test with Varying Recycle Ratios

Note: Open symbols show last data point included in first-order rate constant regression

Figure 5.19 MBfR2 Batch Test with Varying Recycle Ratios

Table 5.12 Batch Test First-Order Rate Constants

	MBfR1		MBfR2						
Recycle	Perchlorate	Nitrate+Nitrite	Recycle	Perchlorate	Nitrate+Nitrite				
Flow (gpm)	(1/s)	(1/s)	Flow (gpm)	(1/s)	(1/s)				
200	4.7	7.4	180	11	7.1				
150	4.1	6.5	120	10	6.1				
100	3.6	5.7	90	3.2	5.5				
50	2.7	4.6	60	7.3	7.3				

The final parameter varied during Optimization was sparge gas type and sparging frequency. Sparging with compressed air rather than nitrogen had no impact on performance for removal of nitrate or perchlorate (Figures 5.14 and 5.15). Effluent perchlorate concentrations were below 10 µg/L when sparging was conducted with nitrogen or with compressed air between days 190 and 205 (Figure 5.14). The frequency of sparging was varied from every 48 hours to every 4 hours. On days 156 to 162, flow rates and hydrogen pressures were constant while the sparge frequency was varied (Figure 5.20). The average lead and lag reactor effluent nitrate concentrations were 2.5 and 0.24 mg-N/L, respectively when sparging every 12 hours. This was similar to when the sparge frequency was every 24 hours, with 2.7 and 0.11 mg-N/L in the lead and lag vessel, respectively. On days 183 to 199, other conditions were held constant and the sparge frequency was varied. The average lead and lag reactor effluent nitrate concentrations were 1.6 and 0.44 mg-N/L, respectively when sparged at 12-hour intervals. Concentrations were similar at a sparge frequency of every 4 hours at 1.7 and 0.35 mg-N/L. In summary, the sparge frequency had little impact on effluent concentrations of nitrate in the range of every 4 hours to

every 24 hours. Therefore, the sparging frequency for Steady State was set at 12 hours to minimize system down time without compromising performance.

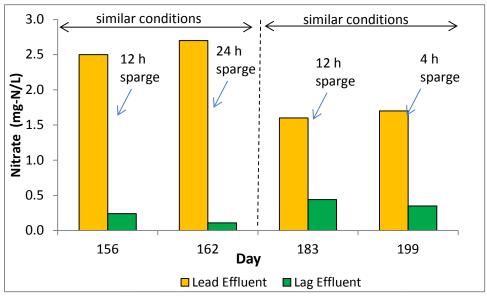


Figure 5.20 Effect of Sparge Frequency on Nitrate Performance

5.7.3 Steady State

The Steady State phase lasted from day 230 to 258. Operations were held constant using the optimal conditions identified during Optimization (Table 5.13). Flow rate was set at 6 gpm to increase the hydraulic residence time and promote greater perchlorate reduction. Phosphate was dosed to attain an influent concentration of 0.5 mg/L. Hydrogen was fed to the MBfR at a rate of 0.05 SCF/gallon of water treated and carbon dioxide at a rate of 0.002 SCF/gallon of water treated. Module sparging occurred every 24 hours using nitrogen. An aluminum chlorohydrate coagulant was added as a filter aid at a dose of 0.1 g/min prior to filtration. After media filtration, sodium hypochlorite was added as a disinfectant to achieve 0.2 mg/L residual chlorine at the effluent of the finished water tank.

The system was online approximately 98 percent of the time which met the performance objective of greater than 95 percent uptime. However, on days 250, 251, and 252 (January 3, 4, and 5, 2012) the system was temporarily shut down due to false triggering of high-level sensors in the secondary containment and in Reactor 2. The sensors were tripped each day by abnormally high winds (the Santa Ana winds). This was not included as down time because the trigger was not associated with normal operating conditions.

Table 5.13 Steady State Operating Parameters

Parameter	Value/Set Point
Influent Flow Rate	6 gpm
Influent Oxygen	8.7 mg/L
Influent Nitrate	8.6 mg-N/L
Influent Perchlorate	154 μg/L
Oxygen Loading	$248 \text{ mg O}_2/\text{m}^2\text{-d}$

Parameter	Value/Set Point
Nitrate Loading	$246 \text{ mg-N/m}^2\text{-d}$
Perchlorate Loading	$4.41 \text{ mg ClO}_4/\text{m}^2\text{-d}$
Sparge Frequency	12 hours
Recycle Flow Rate	R1 - 150 gpm
	R2 – 120 gpm
Hydrogen Pressure	R1- 16.5 psi
	R2 – 16.5 psi

Perchlorate and nitrate removal during Steady State was consistent over time (Figure 5.21). Perchlorate was reduced from an average of $154\pm5~\mu g/L$ to an average of $9.2\pm2.3~\mu g/L$ in the effluent of the lag reactor during Steady State (94.4 percent reduction). While perchlorate was above the treatment objective of $6~\mu g/L$, nitrate met the treatment objective of 0.5~m g/L in the effluent. Nitrate + nitrite were reduced from an influent average concentration of 9.0~m g-N/L to an average of $0.12\pm0.07~m g-N/L$ at the MBfR lag effluent (98.3 percent reduction).

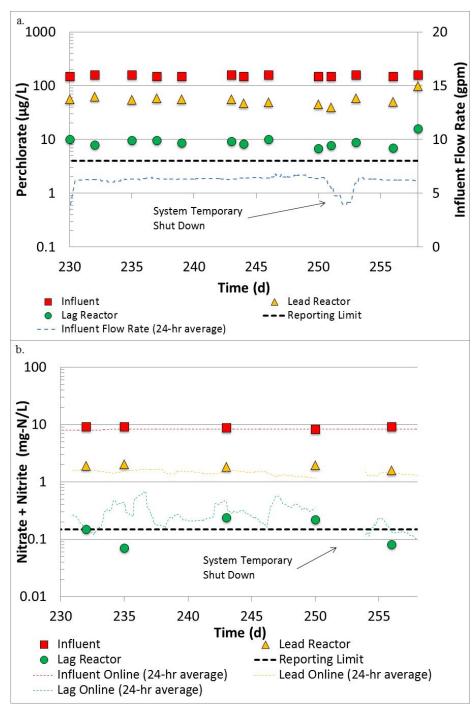


Figure 5.21 Steady State MBfR Perchlorate and Flow Rate (a) and Total Nitrate+Nitrite (b)

Hydrogen demand was calculated based on theoretical stoichiometric requirements for conversion of oxygen to water, nitrate to nitrogen gas, and perchlorate to chloride. Hydrogen was also consumed for sulfate reduction, but this was only five percent of the total stoichiometric demand and was not included in the calculation. The lag reactor effluent sulfide concentration was on average 1 mg/L, which is equivalent to 3 mg/L sulfate consumption. For an influent flow rate of 6 gpm, the hydrogen demand was 0.51 SCFH for oxygen, 1.89 SCFH for nitrate, and 0.02

SCFH for perchlorate. On average 29.6% of the hydrogen fed to the lead reactor was biologically consumed based on stoichiometric demand (determined by calculation), 24.9% was used during intentional membrane fiber flushing to eliminate water vapor condensation and accumulation of inert gases such as nitrogen (measured), and 45.4 percent was excess (calculated by subtracting stoichiometric demand and fiber flush flow from total flow) (Figure 5.22). In the lag reactor, 6.6 percent of the hydrogen was used for stoichiometric demand (primarily for removal of residual nitrate and perchlorate), 26.8 percent for membrane fiber flushing, and 66.5 percent was excess. The lead reactor had higher hydrogen use than the lag reactor because of greater influent concentrations of oxygen and nitrate. Since the lead and lag reactors switched positions between vessels periodically, the hydrogen demand associated with either MBfR1 or MBfR2 varied depending on position. The system operated with excess hydrogen in an attempt to achieve complete perchlorate reduction. This excess may have been one of the reasons that sulfate-reducing bacteria outcompeted perchlorate-reducing bacteria and prevented complete perchlorate reduction.

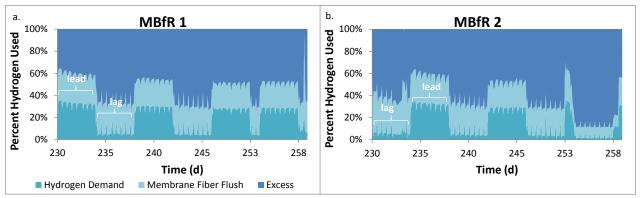


Figure 5.22 Steady State Stoichiometric Hydrogen Demand, Hydrogen for Membrane Fiber Flushing, and Excess Hydrogen

Carbon dioxide was used for pH control and as a carbon source for autotrophic cell synthesis. The influent pH was on average 7.52±0.11 SU and additional alkalinity was generated from the reduction reactions, particularly denitrification. The set point for both reactors was 7.2 SU, and pH adjustment between 7.5 and 7.2 SU accounted for the largest portion of carbon dioxide demand (62±0.1 percent). Approximately 30.5±0.1 percent of the carbon dioxide demand was used for alkalinity generated during reduction of oxygen, perchlorate, nitrate, and sulfate following the stoichiometry discussed in Section 2.1 (Stumm and Morgan 1996). Only a small fraction of the total carbon dioxide needed was associated with cell synthesis, approximately 7.0±0.2 percent. Approximately 9,000 L of carbon dioxide were used during the one-month Steady State period. Of this flow, approximately 5,300 L were used for pH adjustment, 1,900 L were for neutralizing alkalinity generated during reduction reactions (primarily driven by nitrification), 440 L were for cell synthesis, and the remaining 1,360 L (15 percent) were excess or system losses suggesting potential for optimization.

Bacteria were detected in the MBfR effluent, which was likely associated with detachment of biomass from the membranes (Figure 5.23). The lag reactor effluent had HPC counts between 10⁴ and 10⁵ colony forming units per milliliter (CFU/mL). *E. coli*, total coliforms, and fecal coliforms were below the detection limit of 2 most probable number per 100 milliliters

(MPN/100mL) in all samples collected. There were three time points when total coliforms were detected during Steady State, on days 232, 243, and 256. The highest detection was on day 232 with 36.7 MPN/100mL. These samples were collected prior to disinfection. While this system is a biological treatment technology, the growth of pathogenic organisms was not promoted.

HPCs were significantly lower in the finished water following disinfection, on average 43 CFU/mL (Figure 5.24). All samples collected from the finished water were below drinking water standards for *E. coli*, total coliforms, fecal coliforms, and HPCs. TON was below the Secondary MCL of 3 in all but three samples (Figure 5.24b). Those were on days 246, 250, and 251 with an average threshold odor number of 4.5. Day 250 also had the highest total sulfide measurement during Steady State of 0.041 mg/L. The system was down periodically on days 250 to 253 due to high winds triggering the secondary containment level switch. When the system was down, the MBfRs operated in batch mode, which resulted in more strongly reducing conditions than normal operations.

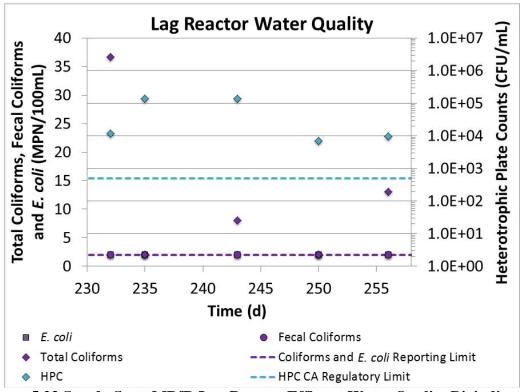


Figure 5.23 Steady State MBfR Lag Reactor Effluent Water Quality Bioindicators

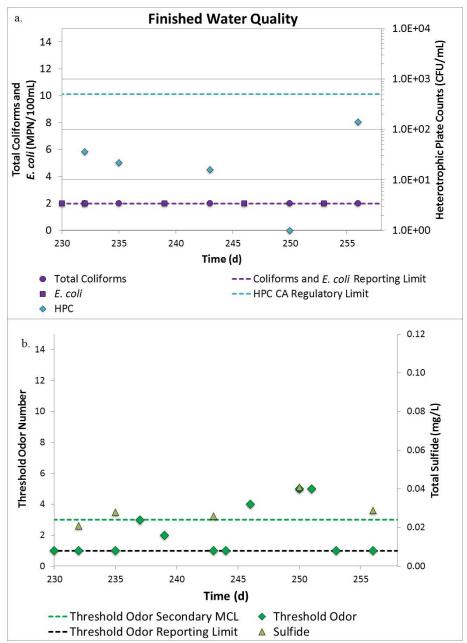


Figure 5.24 Steady State Finished Water Quality Bioindicators (a), Sulfide, and Odor (b)

The performance objective for DOC was to have less than a 0.2-mg/L increase from the system influent to the finished water (Figure 5.25). DOC increased in the effluent of the MBfR lag, but was subsequently reduced by the media filter. DOC increased an average of 0.4±0.1 mg/L from the influent to the effluent during Steady State. Influent DOC concentrations were uncharacteristically high (above 1 mg/L) in three of the five time points tested. The average influent DOC was 0.56±0.38 mg/L prior to Steady State. It is not known why concentrations increased. This higher than normal organic loading may have resulted in increased biomass production thus increasing the effluent DOC. While the goal for this project was less than a 0.2 mg/L increase, the metric is not driven by regulation, and requirements for biological stability

are specific to each drinking water distribution system. The increase of 0.4 mg/L DOC may not be all biodegradable DOC and may be stable in some distribution systems.

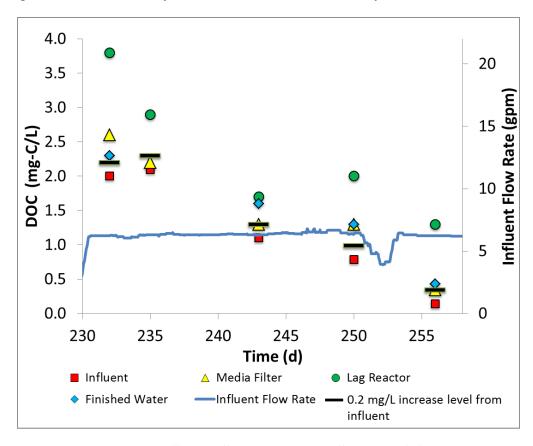


Figure 5.25 Steady State Treatment System DOC

DBPs including HAAs and THMs were measured in the finished water (Table 5.14). DBPs were below the MCL in all samples. DBP-FP was tested to determine DBPs generated during worst-case conditions; concentrations were significantly lower than the MCL (< 20 percent of the MCL). Nitrosamines including N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), and N-nitroso-di-n-propylamine (NDPA) were below their respective CDPH Notification Level of 10 nanograms per liter (ng/L), or 0.01 μ g/L, in the finished water. Nitrosamines are emerging contaminants that are not currently regulated for drinking water (e.g., no MCL) but are being evaluated by the USEPA.

Table 5.14 Steady State Finished Water Disinfection Byproducts

Analyte	Average	Max	MCL
HAA5 (μg/L)	<6	<6	60
HAA6 (µg/L)	<7	<7	
TTHMs (µg/L)	4.8	12	80
Maximum THM-FP (μg/L)	14.6	47	
Nitrosamines (µg/L)	< 0.0019	< 0.0019	

Finished water turbidity was near the treatment objective of 0.2 NTU, with an average of 0.27 NTU (Figure 5.26). Turbidity was below 0.2 NTU 67 percent of the time based on on-line turbidity measurements. The intermittent temporary system shutdowns during days 250 to 253 were not included in turbidity analysis since it was triggered by weather events (i.e., high winds) and not normal operational issues. The SWTR requires that turbidity always be below 1 NTU and that 95 percent of the samples be less than 0.3 NTU. While this system utilized groundwater as a source water, the performance goal was to achieve turbidity of less than 0.2 NTU. The turbidity was not always below 1 NTU, although samples were below 0.3 NTU approximately 79 percent of the time and below 0.2 NTU approximately 67 percent of the time. The majority of time points where turbidity was above 0.2 NTU were from days 230 to 235. During this time, a noticeable sulfur odor was present in the aeration tank. Sulfate was being reduced to sulfide and possibly elemental sulfur due to strongly reducing conditions in the MBfR. Colloidal sulfur may have contributed to higher turbidity readings. The filter aid dose was adjusted from 2 to as high as 7 mL/min to reduce filter effluent turbidity. The filter aid was an aluminum chlorohydrate coagulant and was injected prior to the media filter. As such, the residence time may not have been sufficient to promote mixing and coagulation. Figure 5.26 shows turbidity breakthrough almost immediately after a backwash. The filtration system has a non-standard filter material and was not optimized for filtration performance. An improvement on the system design would be to inject the filter aid further upstream.

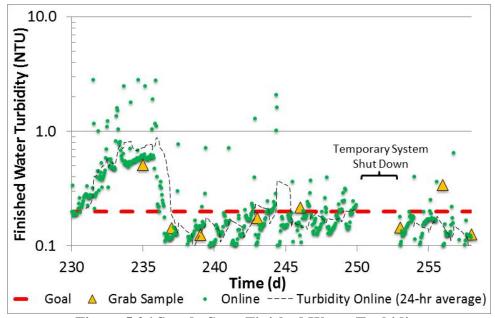


Figure 5.26 Steady State Finished Water Turbidity

The MBfR reactors were sparged every 12 hours. Approximately 13 percent of the influent water was used for sparging and was diverted as wastewater. A full-scale system currently installed at Cucamonga Valley Water District for nitrate reduction wastes approximately 1 to 3 percent of the influent water due to sparging. Samples from the sparge water were collected and analyzed

_

¹ Based on information provided by APTwater, 2 to 3 percent of influent flow would likely be wasted in a full-scale system. There are several parameters that would be altered to achieve lower percent water wasted. First, if the influent flow rate increased, the percent wasted would be reduced appreciably because the reactors were sparged on

for total suspended solids (TSS) to estimate mass of solids generated. Based on these samples, approximately 2,930 grams or 6.5 pounds of solids would have been generated per million gallons (MG) of water treated. Theoretical sludge production using cell yields and stoichiometric equivalents presented in Section 2 would have been 4,000 g/MG water treated (8.9 pounds).

The media filter was backwashed on average approximately every 12 hours, which resulted in wasting approximately 3 percent of the system influent water due to backwashing. The backwash trigger was changed during Steady State to when finished water turbidity was greater than 0.3 NTU rather than when the pressure drop was greater than 10 psi. The trigger was altered because turbidities were higher than the performance objective of 0.2 NTU at the initiation of the Steady State phase. Samples from the media filter backwash water were collected and analyzed for TSS to estimate solids generated for disposal. Based on these samples, approximately 10,000 grams or 22 pounds of solids were generated per MG of water treated. The head loss accumulation rate across the media filter was fairly consistent at 5.2±1.5 psi/d (Figure 5.27).

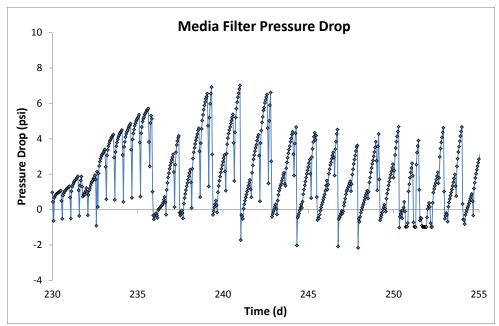


Figure 5.27 Steady State Media Filter Pressure Drop

5.7.4 Challenge

The Challenge phase lasted from days 259 to 271. There were four intentional upset conditions evaluated: turning off the hydrogen supply for 4 and 24 hours, and turning the system off completely for 4 and 24 hours. After the system was restored to normal operating conditions, the

a specified time interval. Increasing the flow rate from 6 to 20 gpm would result in a reduction of water wasted from 13 to 4 percent. Second, the initial transfer of water from the lag reactor during the sparge process to reduce the lag MBfR operating level was discharged as waste in the pilot. This fluid would not need to be wasted in a full-scale system because the water has been treated and is of the lag MBfR water quality. This would reduce wastewater by approximately half. Finally, during Steady State there were 4 reactors in each vessel rather than 7 at the initiation of the pilot. Since there were fewer reactors in the vessels, there was more space for water to fill the vessels, thus increasing water consumption. A full-scale system has been installed and tested at Cucamonga Valley Water District for nitrate reduction. This system wastes approximately 1 to 3 percent of the influent water due to sparging.

finished water was monitored approximately hourly for 10 hours. The influent flow rate was 6 gpm and the hydraulic residence time from the MBfR lag effluent to the finished water was approximately 2.4 hours. The baseline lag effluent concentrations prior to the intentional upsets were $16 \,\mu g/L$ for perchlorate and $0.23 \,mg-N/L$ for nitrate.

The hydrogen shut-off simulated a temporary loss of electron donor supply. Approximately two hours after restarting the system, the concentrations of perchlorate and nitrate steadily dropped during the 4-hour hydrogen shut-off period (Figure 5.28) and 24-hour shut-off period (Figure 5.29). This corresponded well with the hydraulic residence time between the lag reactor and the finished water monitoring point. The rate of recovery was slightly faster for perchlorate after the 4-hour shut-off period (first-order rate constant of 0.173 hr⁻¹) than the 24-hour period (0.147 hr⁻¹). By contrast, nitrate was slightly slower to recover after the 4-hour shut-off period (0.152 hr⁻¹), compared to the 24-hour period (0.195 hr⁻¹). In both situations, nitrate recovered to less than 1 mg-N/L within the 10-hour period of monitoring. While perchlorate did not reach pre-upset concentrations within the monitoring period, the concentration would likely recover within 12 hours based on these first-order rate constants. One contribution to this recovery time was the presence of only 4 modules in each vessel designed for 7 modules. Thus, a substantial percentage of the liquid volume in each vessel was not in contact with the active biomass and thus was not subject to biodegradation up re-instatement of hydrogen flow. The recovery trends were similar to the tracer study trends indicative of high reactor dispersion and CSTR-type operation.

Turning off the power supply did not have strong impacts on effluent water quality after the 4-hour shut-off (Figure 5.30) or the 24-hour shut-off period (Figure 5.31), as concentrations remained relatively constant. For these cases, the reactors went into a batch reactor mode, which resulted in more contact time with the contaminated water. While sulfide was not monitored in any of the Challenge phase tests, this would be helpful to be included in a monitoring program for a full-scale system for potential odor issues.

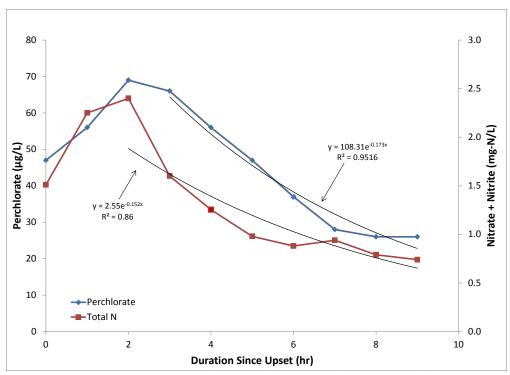


Figure 5.28 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 4-Hour Shut-off of Hydrogen

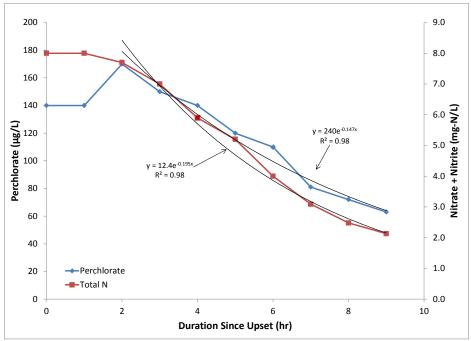


Figure 5.29 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 24-Hour Shut-off of Hydrogen

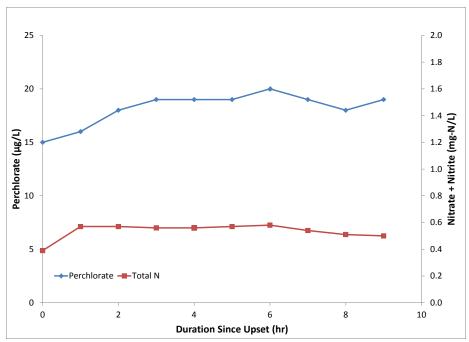


Figure 5.30 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 4-Hour Shut-off of Power

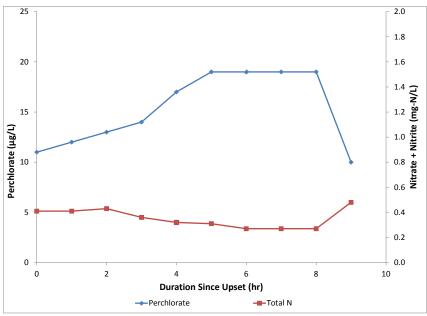


Figure 5.31 Perchlorate and Total Nitrogen Concentrations at the Finished Water after a 24-Hour Shut-off of Power

6.0 PERFORMANCE ASSESSMENT

A summary of the performance objectives along with an overview of technology performance was presented in Section 3, and results were discussed in detail in Section 5.7. The performance objectives included treatment effectiveness, disinfection effectiveness, ability to meet drinking water treatment primary and secondary MCLs, reliability, safety, permit compliance, and regulatory acceptance. This section includes an assessment of technology performance that is supported by data presented in Section 5.

6.1 TREATMENT EFFECTIVENESS

The MBfR was a reliable method for treating nitrate, and while perchlorate was not treated to below 6 μ g/L, it was consistently reduced by more than 90 percent. Biomass was visually observable on the membrane surfaces during an autopsy of a reactor. Visually, the biomass was uniformly light brown in color, indicating the biomass was not overly reduced. Reliability of the system is discussed further in Section 6.4.

6.1.1 Perchlorate

Perchlorate was reduced from an average of $154\pm5~\mu g/L$ to an average of $9.2\pm2.3~\mu g/L$ in the effluent of the lag reactor during Steady State (94.4 percent reduction). While the treatment objective of $6~\mu g/L$ was not met, perchlorate was consistently removed with little variation (coefficient of variation was 0.73%).

During Optimization, influent flow rate and recycle flow rate were observed to affect perchlorate treatment efficacy, as discussed in detail in Section 5.7.2. The effect of influent flow rate and associated electron acceptor loading was evaluated for flows rates of 10, 15, and 20 gpm. Perchlorate was on average 8.5 µg/L while operating at 10 gpm, 17.9 µg/L at 15 gpm, and 27 µg/L at 20 gpm. Recycle flow rates were tested further during batch tests, where four recycle flow rates were tested in each MBfR vessel. In general, the best performance was observed when recycle flow rates were increased indicating mass transfer limitations. However, operation at the highest recycle rates did not promote complete perchlorate removal. Finally, the impact of sparge frequency and gas type was evaluated. Sparging was conducted to remove buildup of biomass and inert compounds in the membranes. Use of compressed air rather than nitrogen for sparging resulted in no measurable change in performance and could be used to decrease operational costs. Sparging frequencies of 24 hours or less did not change perchlorate or nitrate removal appreciably; thus 12 hours was selected for Steady State operations.

Batch tests demonstrated that complete perchlorate removal was possible but was observed to occur when sulfate reduction and sulfide generation began. Modeling and bench-scale studies by ASU demonstrated that complete perchlorate removal was observed without sulfide production if removal flux of nitrate and oxygen – expressed as stoichiometric hydrogen demand – was about 0.18 g $\rm H_2/m^2$ -day (Rittmann et al. 2013). However, single-stage pilot-scale operation did not promote complete perchlorate reduction at a removal flux of nitrate and oxygen of 0.12 g- $\rm H_2/m^2$ -d. Therefore, other differences between the laboratory and pilot-scale systems such as trans-

membrane liquid velocity and associated mass-transfer resistance may have prevented complete perchlorate reduction.

6.1.2 Nitrate and Nitrite

This Demonstration validated the technical feasibility of the MBfR for treatment of nitrate. Total nitrogen (the sum of nitrate and nitrite) was reduced from an influent average of 9.0 mg-N/L to an average of 0.12±0.07 mg-N/L in the effluent of the lag reactor during Steady State (98.3 percent reduction). Thus, the treatment objective of 0.5 mg-N/L was met. Nitrate reduction was consistently removed with little variation (coefficient of variation was 0.94%) with the highest total nitrate concentration of 0.24 mg-N/L. Similar to perchlorate, factors controlling performance were influent flow rate and recycle flow rate. These factors were evaluated in detail during Optimization (see Section 5.7.2). Nitrate removal to below 0.5 mg-N/L was demonstrated during Optimization testing at flow rates as high as 18 gpm based on online nitrate measurements. Recycle flow rates were tested at four different levels, and the best performance was generally observed when recycle flow rates were highest. Another key finding during Steady State was that 79 percent of nitrate was reduced across the lead reactor with an average lead effluent concentration of 1.8±0.16 mg-N/L. As such, a full-scale system could include single-stage operations depending on nitrate treatment goals, thus decreasing capital and operational costs and system footprint.

6.2 DISINFECTION EFFECTIVENESS

Disinfection was accomplished using sodium hypochlorite with a free chlorine residual of 0.2 mg/L to meet disinfection requirements. Fecal coliforms, total coliforms, *E. coli*, and HPCs were used as indicator parameters for disinfection performance. Fecal and total coliforms and *E. coli* were below the detection limit (2/100 mL) in all samples during Steady State. HPCs were on average 43 MPN/mL, and no sample was greater than 500 MPN/mL during Steady State. Thus, the performance objective for disinfection effectiveness was met.

6.3 ABILITY TO MEET DRINKING WATER TREATMENT PRIMARY AND SECONDARY MCLs

This section addresses the ability of the MBfR to address primary and secondary MCLs and other constituents relevant to production of drinking water. TCE was present in the MBfR influent but was not removed. TCE removal was not an objective of this demonstration.

6.3.1 Odor

Biological reduction processes can include generation of sulfide. During batch testing discussed in Section 5.7.2, degradation of perchlorate below the performance objective of 6 μ g/L was observed during the same time when sulfide concentrations began increasing above approximately 1 mg/L. The performance objective for the TON was less than or equal to 3 based on the USEPA NSDWR requirements. An average TON of 2.2 was observed during Steady State; however, 3 of the 12 samples collected were above the performance objective. The three samples were associated with weather-related process shutdowns and accumulation of sulfide at

a concentration of 0.04 mg/L. This concentration of sulfide can be mitigated by a more rigorous aeration step. It is possible that the odor could have been associated with chlorine as well.

6.3.2 Turbidity

Media filtration in combination with a coagulant filter aid was employed downstream of the MBfR to meet the performance objective of less than or equal to 0.2 NTU in the finished water. An average turbidity of 0.27 NTU was observed from online measurements during Steady State. However, there were several instances where turbidity was greater than 1 NTU. Turbidity was below 0.2 NTU approximately 67 percent of the time, and thus this performance objective was not met. Most of the data when turbidity was above 0.2 NTU were from days 230 to 235. During this time, a noticeable sulfur odor was present in the aeration tank. Colloidal sulfur likely generated by oxidation of biogenic sulfide may have contributed to higher turbidity readings. Prevention of sulfide production would minimize turbidity exceedances. An improvement to the design to increase the filter aid efficacy would be to move the filter aid injection location further upstream to increase mixing time. Additionally, the experimental filter media Next-Sand TM was used, thus turbidity results may not be translatable to conventional filtration media.

The media filter was backwashed on average approximately every 12 hours, which resulted in wasting 3 percent of the system influent water. Media filter backwash water was analyzed for TSS to estimate solids generated for disposal. Based on these samples, approximately 10,000 grams or 22 pounds of solids would have been generated per MG of water treated.

6.3.3 DOC

Residual biodegradable organic compounds in treated water can decrease water biostability and thus promote regrowth of organisms in distribution systems. DOC was selected as a surrogate indicator for biological stability, with a performance objective of no more than a 0.2-mg/L increase in DOC from the influent to the finished water. While this was a goal for the project, it was not driven by regulation and specific requirements for stability are specific to each drinking water distribution system. The increase in DOC from the system influent to the finished water was on average 0.4 mg/L during Steady State. The net increase in system DOC exceeded the performance objective indicating that the performance objective was not met. Even though this goal was not met, this increase may be suitable and considered stable in some distribution systems. Water stability in the distribution system is affected by many factors and DOC is just one of those factors (Schneider et al. 2013).

6.3.4 pH

The target for pH was between 6.5 and 8.5 SU, which is a secondary MCL under the NSDWR. In particular, pH control was important for this system since denitrification and other reduction processes can result in increased alkalinity and increased pH. Bioreduction pathways are optimal between a pH of 6.8 and 7.5 SU for perchlorate (Adham et al. 2004), though optimal perchlorate was found at 8 SU when a range between 6.5 to 8.8 was tested (Nerenberg et al. 2002) and 7.2 to 8.2 SU for nitrate (Xia et al. 2010). During the MBfR Demonstration, the pH of the finished water remained within the performance standards ($6.5 \le pH \le 8.5$). An average value of

7.8±0.2 SU was observed at the finished water during Steady State. The metric for this performance objective was met.

6.4 RELIABILITY

This performance objective was to demonstrate greater than 95 percent uptime during Steady State. The system uptime during Steady State was 98 percent and this performance objective was met. System reliability was further evaluated during Challenge testing when either hydrogen (electron donor) or system power was shut off for either 4 hours or 24 hours. As discussed in Section 5.7.4, hydrogen shut-off resulted in increased nitrate and perchlorate concentrations. System recovery occurred within 10 hours for nitrate, and was anticipated to occur within 12 hours for perchlorate. First-order rate constants were calculated to estimate recovery time. The rate of recovery was slightly faster for perchlorate after the 4-hour shut-off period (first-order rate constant of 0.17 hr⁻¹) than the 24-hour period (0.15 hr⁻¹). By contrast, nitrate recovery was slightly slower after the 4-hour shut-off period (0.15 hr⁻¹), compared to the 24-hour period (0.20 hr⁻¹). The system was relatively unaffected by power shut off as the bioreactor simply had more time to continue to degrade contaminants. Nitrate and perchlorate concentrations remained relatively constant over the 4-hour power shut off duration. Total nitrogen went from 0.4 to 0.5 mg-N/L, and perchlorate went from 15 to 19 µg/L in the finished water. Similarly, when power was shut off for 24 hours, total nitrogen went from 0.4 to 0.5 mg-N/L and perchlorate went from 11 to 10 µg/L in the finished water. The time for system recovery from hydrogen shut-off could be mitigated by operating the system in a batch recirculation mode. Additionally, at the time of the test there were 4 modules in each vessel that were originally designed for 7 modules. Increasing the number of reactors per vessel would also increase mass transfer and likely result in faster recovery. The recovery trends were similar to the tracer study trends indicative of high reactor dispersion and CSTR-type operation.

6.5 SAFETY

Safety concerns with this technology include use of a pressurized flammable gas, hydrogen, and other pressurized gases including nitrate and carbon dioxide. Generation of sulfide from sulfate can also cause inhalation hazards. There were no health and safety incidents reported during the Demonstration. Hydrogen leaks were detected by a sensor and the system was automatically shut down for maintenance. Hydrogen sulfide and LEL were monitored on a daily basis during the Optimization phase when a sulfide odor was noted by field staff. There were a few instances when the system was shut down due to a detection by the LEL sensor. However, no detections above the permissible exposure limit or threshold limit values were observed. The metric for this performance objective was met.

6.6 PERMIT COMPLIANCE

The California RWQCB reviewed the Demonstration Plan and approved discharge of 43,200 gallons per day of treated groundwater back into the ground via a French drain. The system influent was monitored for VOCs and the effluent was monitored for flow rate, pH, VOCs, total nitrogen, chloride, phosphate, TDS, and sulfate. These values were monitored and if detected,

were compared against permit requirements. There were no permit violations of California RWQCB permit number R8-2002-0033-038; therefore, this objective was met.

6.7 REGULATORY ACCEPTANCE

A letter of conditional acceptance for the MBfR for treatment of nitrate was received the CDPH on July 26, 2013 (Appendix I). APTwater has installed an MBfR system at the Cucamonga Valley Water District for full-scale treatment of nitrate. The system is called ARoNiteTM that stands for Autotrophic Reduction of Nitrate. In December of 2011, the system became NSF 61-certified. The Optimization data gathered from this study were used to help develop the design and operations of the Cucamonga Valley Water District facility. This system is in the process of being permitted by CDPH for full-scale operation.

7.0 COST ASSESSMENT

The cost assessment was conducted for an MBfR treating nitrate and not perchlorate because the $6-\mu g/L$ performance objective for perchlorate removal was not achieved. This section provides the cost assessment for a full-scale 1,000 gpm MBfR system under six scenarios. Each scenario was assessed during a 30-year life cycle. Since the MBfR process did not meet treatment objectives for perchlorate, the assessment focused solely on nitrate removal. The assessment was performed to obtain a generic cost data considering engineering, equipment, construction, and operational costs. The test data from the Rialto Well 22 site were used as a basis for developing the estimate. Comparisons were made between the MBfR and conventional IX and a packed bed or fixed-bed bioreactor (FXB).

7.1 COST MODEL

7.1.1 Capital Cost Estimation

The purpose of the capital cost estimate is to assess the generic project cost for system installation and construction. The capital cost includes equipment, installation, and construction, as well as standard line items to account for indirect costs. Equipment costs were obtained from system suppliers. Site installation and construction costs were estimated from the project team's experience on similar construction projects. Total installed cost and line items included in the cost estimate were calculated from the cost model in Table 7.1. A 30-year amortized cost was calculated from the total installed cost, assuming a 2.0% real discount rate obtained from the Office of Management and Budget.

It should be noted that for an objective comparison of capital costs, the following items on direct and indirect costs, which can vary greatly by site and/or project conditions, are not considered in this study:

- Land acquisition costs
- Major site improvement work, such as fill material or substantial clearing
- Raw water resource development and pumping/piping system
- Finished water storage
- Laboratory or staff office space
- Bringing utilities to/from the site (water, wastewater, power, communications)
- Environmental assessment of site
- Owner administration and legal fees

While effort was made to provide a realistic cost estimate, caveats must be placed that the installation costs are only applicable for systems operating at 1,000 gpm. For larger systems, though scaling of the costs may be directly proportional in some cases (i.e., electrical design), it is not always directly scaled. For example, with larger installations, significantly more design, labor, and materials would be required for structural design. Although a cost reduction might be observed based on an economy of scale, this reduction may be offset by the need for larger delivery trucks, fuel fees, additional labor, etc.

Table 7.1 Cost Estimate Model

Cost Element	Basis
Equipment Installed Cost	From System Suppliers
Civil and Construction Cost	Based on system footprint, including excavation,
	grading, and 2-foot concrete foundation
Piping and Mechanical Installed Cost	Assumed \$45/square foot
Electrical, Instrumentation, and	Assumed 10% of the total installed cost for electrical
Controls Installed Cost	and 2% for instrumentation and controls
Subtotal Direct Cost	Sum of the Above
Permit Fees and Sales Taxes	12% of Subtotal Direct Cost
Bond and Insurance	3% of Subtotal Direct Cost
Subtotal A	Subtotal Direct Cost + Permit Fees and Sales Taxes +
Subtotal A	Bond and Insurance
General Conditions	10% of Subtotal A
Contractor Overhead and Profit	15% of Subtotal A
Subtotal B	Subtotal A + General Conditions + Contractor
Subtotal B	Overhead and Profit
Contingency	25% of Subtotal B
Subtotal C	Subtotal B + Contingency
Engineering Design Services	10% of Subtotal C
Total Installed Cost	Subtotal C + Engineering Design Services

7.1.2 Operational Costs

Annualized operational costs are estimated for a 30-year plant life cycle with 2.0% real discount rate from Office of Management and Budget. Table 7.2 shows the calculation basis. Unit costs were based on quotes from equipment vendors and APTwater.

Table 7.2 Operations Cost Calculation Basis

Component	Units	Value
MBfR Costs		
Hydrogen, On-site Generation	\$/lb	0.59
Carbon Dioxide	\$/lb	0.24
Coagulant	\$/lb	1.1
75% Phosphoric Acid	\$/lb	0.85
Power	\$/kWh	0.12
Membrane Replacement Cycle	yr	10
Media Filter Replacement Cycle	yr	10

Component	Units	Value
IX Resin Costs		
IX Resin Replacement Cycle	yr	10
IX Regeneration Waste Discharge Fee	\$/gal	0.1
Salt for IX Regeneration	\$/ton	130

The following items are excluded from the operational cost estimate:

- Operation labor
- Raw and product water pumping
- Disinfection chemical
- Minor equipment and lighting power

7.1.3 MBfR System Design Basis

Three nitrate treatment goals were selected for a 1,000-gpm full-scale MBfR system: 1) 28 mg-N/L of influent and 4.0 mg N/L effluent, 2) 10 mg-N/L of influent and 6.8 mg-N/L effluent, and 3) 18 mg-N/L of influent and 6.8 mg-N/L of effluent. In all of these scenarios, a portion of the 1000-gpm stream would be treated by the MBfR to 0.5 mg-N/L and the remaining untreated water would be blended with the treated water to meet the above-stated effluent nitrate goal. Scenario 1 has a nitrate concentration similar to the previously published work on biological treatment technologies (Brown et al. 2008; Webster and Togna 2009) and is included in this study for comparison. Scenarios 2 and 3 were included to demonstrate mid-range and high-range nitrate loading, respectively. Scenario 2 has a nitrate concentration equal to that observed during the WVWD demonstration. Scenario 3 has a nitrate concentration in excess of the MCL of 10 mg-N/L to simulate treatment of a water source that would actually require treatment. The three treatment goals were applied to two MBfR system designs: a design using the same process used in the Demonstration (Scenarios 1, 2 and 3) and a design based on results from the Demonstration and APTwater's continued process development and optimization (Scenario 4, 5 and 6). The modified design was incorporated in the construction of the Cucamonga Valley Water District MBfR for nitrate treatment. It includes several enhancements to increase system efficiency and decrease wastewater generation. For example, scenarios 1 to 3 were designed similar to the pilot-scale field Demonstration where there was 100 percent excess hydrogen relative to the demand for biotransformation and fiber flushing to remove moisture and accumulated inert gases. By contrast, scenarios 4 to 6 were estimated assuming that hydrogen with 30 percent stoichiometric excess would be sufficient, similar to the full-scale system being installed at Cucamonga Valley Water District. The sparging frequency was also reduced from once every 12 hours in scenarios 1 to 3 to once every 24 hours in scenarios 4 to 6, which reduced the amount of wastewater generated in the modified design. The design bases for each scenario are shown in Table 7.3.

Table 7.3 MBfR System Design Parameters

	ic 7.5 WIDIK 5	Scenario								
]	Based or	ı	Based on Optimized					
		Den	nonstrat	tion	System Data from					
			Results		A	PTwate	er			
Component	Units	1	2	3	4	5	6			
Influent Water Quality										
Flow Rate	gpm	1,000	1,000	1,000	1,000	1,000	1,000			
Temperature	Deg C	20	20	20	20	20	20			
рН	SU	7.5	7.5	7.5	7.5	7.5	7.5			
TDS	mg/L	260	260	260	260	260	260			
Oxygen	mg/L	6	6	6	6	6	6			
Sulfate	mg-SO ₄ /L	20	20	20	20	20	20			
Nitrate	mg-N/L	6.3	10.2	18.1	6.3	10.2	18.1			
Nitrate	mg-NO ₃ /L	28	45	80	28	45	80			
MBfR System Flow Distri	bution									
Total Flow Rate	gpm	1,000	1,000	1,000	1,000	1,000	1,000			
Bypass Flow Rate	gpm	601	649	357	601	649	357			
MBfR System Flow Rate	gpm	399	351	643	399	351	643			
Operating Conditions										
Hydrogen Excess	%	100	100	100	30	30	30			
Sparge Interval	hrs	12	12	12	24	24	24			
Nitrate, MBfR Effluent	mg-N/L	0.5	0.5	0.5	0.5	0.5	0.5			
Minate, MBIK Efficient	mg-NO ₃ /L	2.2	2.2	2.2	2.2	2.2	2.2			
Nitrate, After Blending	mg-N/L	4.0	6.8	6.8	4.0	6.8	6.8			
with Bypass Stream	mg-NO ₃ /L	17.7	30.0	30.0	17.7	30.0	30.0			

The MBfR system consists of multiple vessel skids containing membrane modules and auxiliary equipment for aeration, filtration, and disinfection. A single vessel skid consists of two 32-membrane module basins. The footprint of one vessel skid is 24 feet by 8 feet. In this study, it is assumed that vessels would operate with a single-stage configuration. Each auxiliary skid has a compressed air system for membrane sparging, PLC controls and analyzers, aeration tank, and media filtration. The footprint of the auxiliary skid is 28 feet by 8 feet. Figure 7.1 shows a three-dimensional (3-D) rendering of the exemplary MBfR system with one vessel skid and one auxiliary skid. Figure 7.2 shows a process flow diagram of a typical MBfR system. Table 7.4 summarizes the system configuration for each scenario.

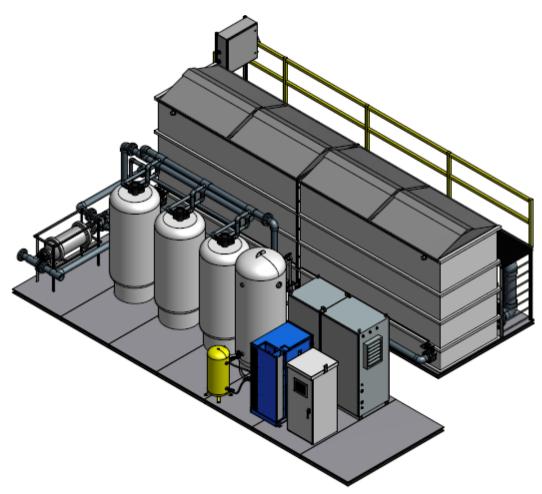


Figure 7.1 3-D Rendering of Exemplary MBfR System

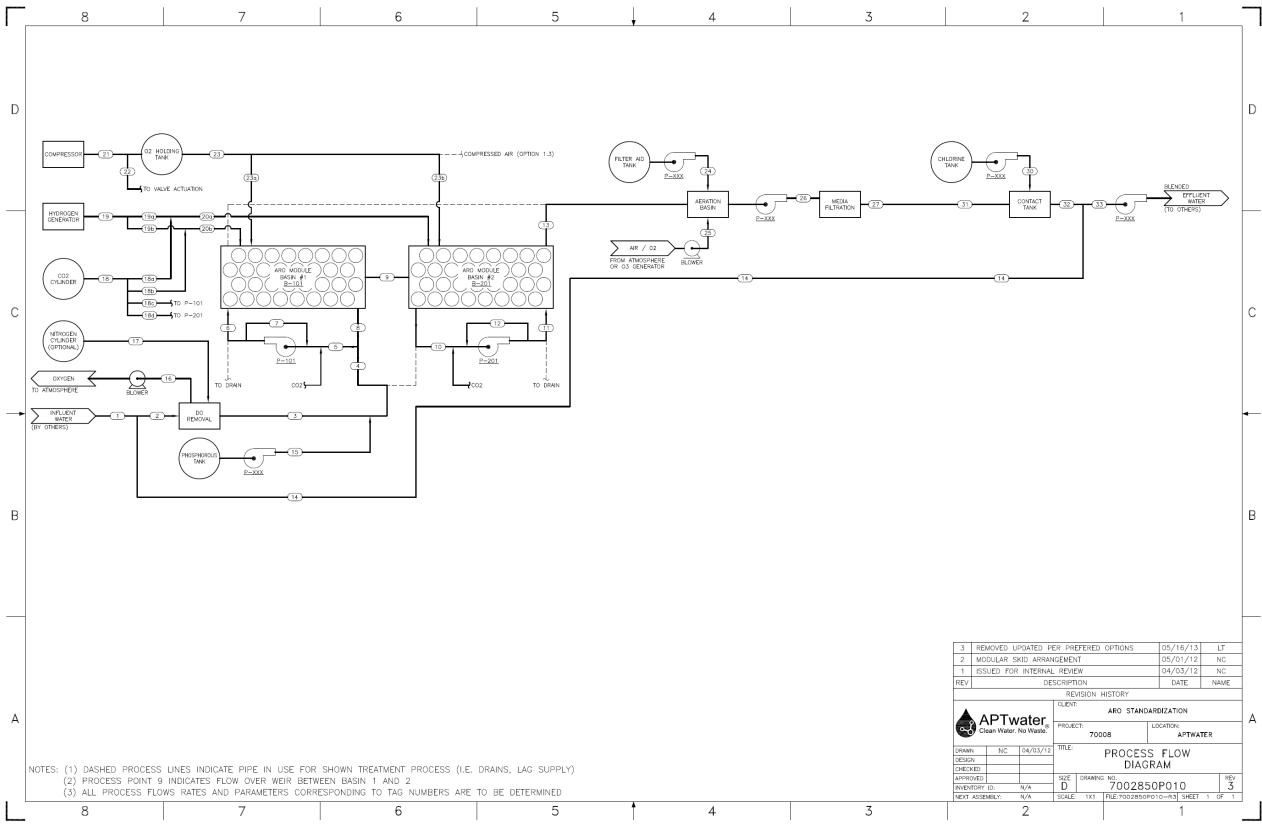


Figure 7.2 Process Flow Diagram of MBfR System

Table 7.4 MBfR System Configurations

	Scenario								
	Based or	n Demons Results	stration	Based on Optimized System Data from APTwater					
	1	2	3	4	5	6			
Minimum Quantity of Modules	163	210	644	93	120	368			
Modules with Redundancy	192	256	672	128	160	384			
Quantity of Module Skids	3	4	11	2 3		6			
Quantity of Auxiliary Skids	2	2	3	2	2	3			
Construction Area Required (m ²)	1024	1216	2784	832	1024	1824			

7.1.4 Ion Exchange System Design Basis

IX is a common water treatment process used to reduce various ionic species in water and wastewater. In this study, the cost of nitrate removal by the IX system was estimated and compared to the MBfR system. Table 7.5 summarizes design parameters of a regenerable IX system. The IX system was designed to treat 1,000 gpm with the same treatment goals established for Scenarios 1 to 3 (Table 7.5). The IX system consists of three IX vessels along with pre-filter skids, a brine regeneration system, and a regeneration waste storage system.

Table 7.5 IX System Design Parameters

	· ·		Scenario	
Component	Units	1	2	3
Influent Water Quality	7			
Flow Rate	gpm	1,000	1,000	1,000
Temperature	Deg C	20	20	20
pН	SU	7.5	7.5	7.5
Total Dissolved Solids	mg/L	260	260	260
Oxygen	mg/L	6	6	6
Sulfate	mg-SO ₄ /L	20	20	20
Nitrate	mg-N/L	6.3	10.2	18.1
Miliale	mg-NO ₃ /L	28	45	80
IX Flow Distribution				
Total Flow Rate	gpm	1000	1000	1000
Bypass Flow Rate	gpm	280	280	280
IX Flow Rate	gpm	720	720	720
Effluent Treatment Go	oals (post-blendi	ng)		
Nitrate	mg-N/L	4.0	6.8	6.8
muate	mg-NO ₃ /L	17.7	30.0	30.0

7.2 COST DRIVERS

The main drivers for the capital cost are the nitrate concentration in influent water and the target nitrate concentration in effluent water. Since the MBfR system can achieve an effluent nitrate concentration down to 0.5 mg N/L or less, it is not necessary to treat the entire influent stream with MBfR to meet target effluent concentrations. Hence, part of influent water can bypass the MBfR system and be blended with the MBfR effluent to meet the target nitrate concentration. The nitrate concentration in the influent water and the target nitrate concentration in the effluent water will eventually determine the bypass ratio of influent water to the MBfR system. A higher bypass ratio requires a smaller equipment size, which will reduce the capital cost.

One of the main drivers for the operational cost of the MBfR system is electricity for recirculation pumps. The electricity for the recirculation pump can account for up to 60% of the operational cost. In general, the recirculation flow increases in proportion to the MBfR system size. As described above, the system size is largely affected by the MBfR system bypass ratio, and the MBfR system bypass ratio will be mostly determined by influent nitrate concentrations and the target effluent nitrate concentrations. Hence, the nitrate concentrations are the most important factor affecting both the capital and operational costs of the MBfR system. Consumption of process chemicals such as hydrogen gas, carbon dioxide gas, and phosphoric acid are other important factors for the operation cost. The chemicals are critical for the biological reduction of DO and nitrate, and need to be supplied to the system continuously. The chemical cost, particularly hydrogen and carbon dioxide, account for a significant portion of the MBfR system operational costs.

7.3 COST ANALYSIS

7.3.1 MBfR System

Table 7.6 shows the capital cost estimate for the MBfR system under different operating scenarios. Scenarios 1 to 3 considered the design that was used for the Demonstration project. Scenarios 4 to 6 are based on the modified MBfR design, which enhanced the system efficiency and reduced wastewater generation. The total installed cost estimate for the MBfR system ranged from \$3,757,100 for Scenario 4 to \$13,635,500 for Scenario 3, and the 30-year amortized installed cost ranged from \$167,800 for Scenario 4 to \$608,900 for Scenario 3. In general, the total installed cost was related to the MBfR bypass ratio and it increased as the MBfR bypass ratio decreased. As the MBfR system bypass ratio increased, the system required a smaller equipment size that reduced the capital cost in turn.

Table 7.6 MBfR Capital Costs

Cost Element Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6									S	cenario 6		
Equipment Installed Cost	\$	1,988,100	\$	2,404,300	\$	5,444,400	\$	1,466,200	\$	1,812,400	\$	3,416,600
Civil and Construction Cost	\$	139,300	\$	165,400	\$	378,600	\$	113,200	\$	139,300	\$	248,100
Piping and Mechanical Installed Cost	\$	95,700	\$	113,600	\$	260,000	\$	77,700	\$	95,700	\$	170,400
Electric and I&C Installed Cost	\$	300,000	\$	356,300	\$	815,700	\$	243,800	\$	300,000	\$	534,400
Subtotal Direct Cost	\$	2,523,000	\$	3,039,500	\$	6,898,600	\$	1,900,800	\$	2,347,300	\$	4,369,400
Permit Fees and Sales Taxes	\$	302,800	\$	364,800	\$	827,900	\$	228,100	\$	281,700	\$	524,400
Bond and Insurance	\$	75,700	\$	91,200	\$	207,000	\$	57,100	\$	70,500	\$	131,100
Subtotal A	\$	2,901,400	\$	3,495,400	\$	7,933,400	\$	2,185,900	\$	2,699,400	\$	5,024,800
General Conditions	\$	290,200	\$	349,600	\$	793,400	\$	218,600	\$	270,000	\$	502,500
Contractor Overhead and Profit	\$	435,300	\$	524,400	\$	1,190,000	\$	327,900	\$	404,900	\$	753,800
Subtotal B	\$	3,626,700	\$	4,369,200	\$	9,916,700	\$	2,732,400	\$	3,374,200	\$	6,281,000
Contingency	\$	906,700	\$	1,092,300	\$	2,479,200	\$	683,100	\$	843,600	\$	1,570,300
Subtotal C	\$	4,533,400	\$	5,461,500	\$	12,395,900	\$	3,415,500	\$	4,217,700	\$	7,851,200
Engineering Design Services	\$	453,400	\$	546,200	\$	1,239,600	\$	341,600	\$	421,800	\$	785,200
Total Installed Cost	\$	4,986,700	\$	6,007,700	\$	13,635,500	\$	3,757,100	\$	4,639,500	\$	8,636,300
Installed Cost, 30 Year Amortized	\$	222,700	\$	268,300	\$	608,900	\$	167,800	\$	207,200	\$	385,700

Table 7.7 MBfR Operation Cost

Cost Element	Scenario 1		Scenario 2		Scenario 3		Scenario 4		Scenario 5		Scenario 6	
Electricity	\$	90,900	\$	114,400	\$	269,300	\$	67,300	\$	78,900	\$	162,800
Coagulant	\$	3,800	\$	3,400	\$	6,200	\$	3,800	\$	3,400	\$	6,200
Phosphoric Acid	\$	4,400	\$	3,900	\$	7,100	\$	4,400	\$	3,900	\$	7,100
Hydrogen	\$	18,200	\$	23,700	\$	72,600	\$	5,900	\$	7,600	\$	23,300
Carbon Dioxide	\$	5,500	\$	7,900	\$	26,300	\$	12,100	\$	17,600	\$	58,500
Aeration	\$	13,200	\$	16,100	\$	42,300	\$	7,200	\$	6,900	\$	11,700
Membrane Replacement	\$	13,000	\$	16,400	\$	39,300	\$	9,400	\$	11,300	\$	23,600
Annual Operation Cost, 30 Year Amortized	\$	149,000	\$	185,800	\$	463,100	\$	110,100	\$	129,600	\$	293,200

Table 7.8 MBfR Annual Project Cost

Cost Element	Scenario 1		Scenario 2		Scenario 3		Scenario 4		Scenario 5		Scenario 6	
Installed Cost,	\$	222,700	\$	268,300	\$	608,900	\$	167,800	\$	207,200	\$	385,700
30 Year Amortized	Ψ	222,700	¥	200,300	Ψ	000,700	Ψ	107,000	¥	207,200	Э	303,700
Annual Operation Cost,	4	149,000	4	185,800	\$	463,100	4	110,100	\$	129,600	\$	293,200
30 Year Amortized	Ψ	149,000	Ψ	105,000	Ψ	403,100	Ψ	110,100	φ	129,000	Ψ	293,200
Annual Total Project Cost,	4	371,700	•	454,100	Φ.	1,072,000	\$	277,900	\$	336,800	\$	678,900
30 Year Amortized (\$)	φ	371,700	9	434,100	Ψ	1,072,000	9	211,900	9	330,800	9	070,300
Annual Total Project Cost,	•	706	•	863	d	5 2,037	Φ	528	Ф	640	•	1,290
30 Year Amortized (\$/MG)	Ф	700	Ф	003	1	2,037	Þ	328	Ф	040	Ф	1,290

Scenarios 1 to 3 considered the design that was used for the Demonstration. Scenarios 4 to 6 are based on the modified MBfR design that enhanced the system efficiency and reduced wastewater generation. The total installed cost estimate for the MBfR system ranged from \$3,757,100 for Scenario 4 to \$13,635,500 for Scenario 3 and the 30-year amortized installed cost ranged from \$167,800 for Scenario 4 to \$608,900 for Scenario 3. In general, the total installed cost was related with the MBfR bypass ratio and it increased as the MBfR bypass ratio decreased.

Table 7.7 shows operational costs for the MBfR system. Those costs ranged from \$110,100 for Scenario 4 to \$463,100 for Scenario 3. Electrical power was the major component of the operational costs, accounting for approximately 60 percent of the cost. A major power consumer of the MBfR system is the recirculation pump for the MBfR vessels. Recirculation flow rate increases as the bypass ratio decreases (i.e., as the MBfR system treats more influent water), resulting in higher operational cost. The cost for chemicals including hydrogen is the other important parameter accounting for 20 to 30 percent of the operational cost.

Table 7.8 presents total 30-year amortized project costs for the MBfR system. The 30-year amortized project cost ranges from \$277,900 for Scenario 4 to \$1,072,000 for Scenario 3.

7.3.2 IX System

For the IX system, the capital cost does not change between the scenarios since the same influent stream is treated by IX while the regeneration cycle is varied by the nitrate loading. Table 7.9 shows the capital cost estimate for the IX system, and for all three scenarios the total installed cost was \$4,510,800, with a 30-year amortized installed cost of \$201,500.

Table 7.9 IX Capital Cost

Cost Element	Scenario	Scenarios 1, 2, and 3				
Equipment Installed Cost	\$	1,613,700				
Civil and Construction Cost	\$	216,900				
Piping and Mechanical Installed Cost	\$	151,700				
Electric and I&C Installed Cost	\$	300,000				
Subtotal Direct Cost	\$	2,282,100				
Permit Fees and Sales Taxes	\$	273,900				
Bond and Insurance	\$	68,500				
Subtotal A	\$	2,624,400				
General Conditions	\$	262,500				
Contractor Overhead and Profit	\$	393,700				
Subtotal B	\$	3,280,500				
Contingency	\$	820,200				
Subtotal C	\$	4,100,700				

Cost Element	Scenarios	s 1, 2, and 3
Engineering Design Services	\$	410,100
Total Installed Cost	\$	4,510,800
Installed Cost, 30 Year Amortized	\$	201,500

Table 7.10 shows the operational cost estimate for the IX system. The 30-year amortized operation cost ranges from \$1,261,800 for Scenario 1 to \$1,620,000 for Scenario 3. IX regeneration waste discharge accounts for the major portion of the cost. The cost generally increases as nitrate loading to the IX system increases. The 30-year amortized annual project costs are estimated at \$1,463,300 for Scenario 1, \$1,466,600 for Scenario 2, and \$1,821,500 for Scenario 3 as shown in Table 7.11.

Table 7.10 IX Operational Cost

	Scenario 1	Scenario 2	Scenario 3
Salt	\$ 39,400	\$ 50,900	\$ 95,000
Prefilter	\$ 10,800	\$ 10,800	\$ 10,800
IX Resin Replacement	\$ 2,500	\$ 2,500	\$ 2,500
IX Regeneration Waste Disposal	\$ 1,209,100	\$ 1,200,900	\$ 1,511,700
Annual Operation Cost, 30 Year Amortized	\$ 1,261,800	\$ 1,265,100	\$ 1,620,000

Table 7.11 IX Annual Project Cost

	Scenario 1	Scenario 2	Scenario 3
Installed Cost, 30 Year Amortized	\$ 201,500	\$ 201,500	\$ 201,500
Annual Operation Cost, 30 Year Amortized	\$ 1,261,800	\$ 1,265,100	\$ 1,620,000
Annual Project Cost, 30 Year Amortized	\$ 1,463,300	\$ 1,466,600	\$ 1,821,500
Annual Total Project Cost,			
30 Year Amortized (\$/MG)	\$ 2,781	\$ 2,787	\$ 3,462

7.3.3 Comparison of the Technologies

A comparison between the MBfR system and the IX system shows that the MBfR system has higher capital cost for scenarios 1 through 3 (Table 7.12). However, under the given operational cost calculation basis shown in Table 7.2, the operational cost of the IX is much higher than that of the MBfR. Especially for the IX system, the operational cost is largely affected by the wastewater discharge, and costs can vary widely by site. While wastewater from the MBfR system, which is mostly from media backwash waste and MBfR sparging water, can be discharged through the municipal sanitary sewer after removing some of suspended solids, wastewater generated during IX regeneration cannot be directly discharged to the municipal sewer mainly due to the high salt concentration. Wastewater discharge cost can be extremely high and this can inhibit the implementation of IX technology. For example, for the Rialto Well

22 site, hauling IX regeneration wastewater off-site to the nearest treatment facility was approximately \$0.10 per gallon. Considering the amount of regeneration wastewater from the IX system, the 30-year amortized annual operation cost for regeneration wastewater was estimated to be \$1,209,000 for Scenario 1, \$1,201,900 for Scenario 2, and \$1,511,700 for Scenario 3. These costs alone are higher than the total project costs for the MBfR system when compared under the same operational scenarios. An evaporation pond, a zero liquid discharge system, or an on-site waste reduction facility can be other options to handle the IX regeneration waste. This decision can be made only after careful consideration of all site-specific conditions, including availability of the discharge sites, proximity to the treatment facility, land availability, land cost and electric cost. The IX regeneration waste handling cost is the main driver for the IX system, which could affect the process selection between the IX and the MBfR. The MBfR system can be a viable option for nitrate removal especially when it is difficult to find an economical solution to handle the IX regeneration wastewater.

The MBfR was also compared with a previous study, ESTCP project 0544, "Direct Fixed-Bed Biological Perchlorate Destruction Demonstration" (Brown et al. 2008). This project estimated the cost of a FXB for perchlorate removal. For the comparison of the two studies, it should be first noted that the FXB system project cost is estimated in 2008 based on a 2.8 percent discount rate, while the MBfR system in this study is estimated in 2013 based on a 2.0 percent discount rate. In the FXB system, the main cost drivers were DO and nitrate concentrations, similar to the MBfR system, even though the main target of the technology was perchlorate. The FXB also treated the entire 1,000 gpm flow stream. In the FXB system, due to the very low level of perchlorate in influent water and low electron donor demand, the perchlorate concentration affects the project cost very little. Figure 7.3 shows a comparison between the MBfR, IX, and FXB systems for a 1,000 gpm system and water quality outlined under scenario 1. Based on 1,000 gpm influent flow with 28 mg/L of nitrate in influent water, the 30-year amortized project cost of the FXB system was \$384,000, which is similar to the 30-year amortized project cost of \$371,700 for the MBfR system tested at the Demonstration plant (Scenario 1). However, when compared with the modified MBfR design (Scenario 4), the MBfR system shows approximately 30% lower project cost of \$277,900. The comparison with the FXB and the IX implies that MBfR cost can be lower or equivalent to competing biological reduction technologies and thus can be a competitive technology for nitrate removal.

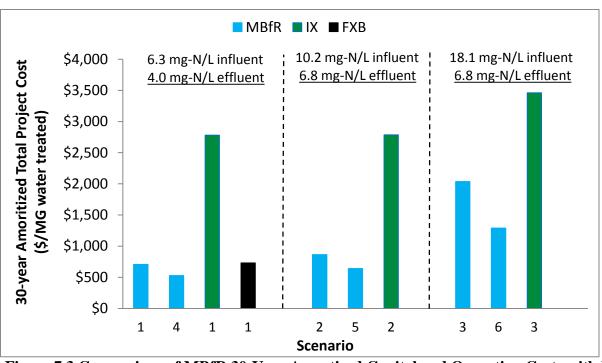


Figure 7.3 Comparison of MBfR 30-Year Amortized Capital and Operating Costs with IX and FXB operating at 1,000 gpm

8.0 IMPLEMENTATION ISSUES

The MBfR system for treatment of nitrate and production of potable water was shown to be possible and effective. The MBfR system is ready for applications involving treatment of drinking water sources contaminated with nitrate. Implementation for treatment of nitrate requires meeting necessary permitting regulations and that the key findings from this Demonstration are integrated into a full-scale process. The MBfR can be designed to treat source waters with different nitrate concentrations. Sulfate will not affect treatment of nitrate because the MBfR is not operated under sufficiently reducing conditions when treating nitrate. Treatment of perchlorate to less than 6 μ g/L was not possible and requires further development. The parallel research conducted by Arizona State University provides possible ways to address this current limitation (Rittmann et al. 2013).

8.1 REGULATIONS AND PERMITS

All potable water treatment systems must follow the SDWA regulations established by the USEPA. Specific regulations under the NPDWR are the SWTR including the interim, Long Term 1, and Long Term 2 Enhanced SWTR; Total Coliform Rule; URCMR 1; FBRR; Stage 1 and Stage 1 DBP Rules; Groundwater Rule; and the Lead and Copper Rule. Additional state requirements and regulations may apply if the state is provided primacy to implement the regulations. The regulatory agency within the State of California that has been delegated primacy is the CDPH. The CDPH has set more stringent primary and secondary MCLs under Title 22 of the CCR (Social Security), Division 4 (Environmental Health). The CDPH is responsible for certifying drinking water treatment technologies pursuant to California Health and Safety Code Section 116830. The CDPH is also responsible for permitting drinking water supplies.

All applicable Federal and State regulations and requirements must be met for a full-scale MBfR system for potable water treatment including, but are not limited to:

- Compliance with primary drinking water standards for nitrite.
- Filtration to remove suspended solids and bacteria.
- Disinfection to ensure that the potable water supply does not contain pathogenic bacteria (e.g., *E. coli*, fecal coliforms, and total coliforms) or elevated levels of heterotrophic bacteria.

While there are currently no Federal regulations for perchlorate in place, the USEPA has established an Interim Drinking Water Health Advisory of 15 μ g/L. In February 2011 EPA released the determination that perchlorate met the SDWA criteria for regulation and EPA is currently in the process of establishing an MCL (Lehman and Subramani 2011). The CDPH has developed rules that are more stringent and established a State MCL of 6 μ g/L as of October 2007.

8.2 END-USER CONCERNS

The results of this Demonstration study showed that: 1) the MBfR bioreactor treatment system provided consistent and robust nitrate removal and high but incomplete perchlorate removal; 2)

aeration, media filtration, and disinfection provided effective post-treatment but filtration required further optimization; 3) system operation was straightforward, requiring no specialized training; 4) the bacterial communities in these systems were indigenous organisms that formed a biofilm within approximately one month; and 5) total water production costs are lower than conventional IX treatment. A full-scale MBfR system for nitrate treatment and potable water generation is in the process of being permitted at Cucamonga Valley Water District. The combination of data from this Demonstration project in conjunction with regulatory approval of a full-scale system will support additional work and willingness to design and operate this technology full-scale.

An end-user concern is use of hydrogen, a flammable gas. The data presented herein demonstrated that this issue was easily managed and did not necessitate extraordinary efforts. Specifically the following observations and actions were part of this Demonstration:

- Hydrogen was supplied using an on-site generation system with back-up cylinders. The
 cylinders were contained on a gas-supply pad that stabilized and manifolded the supply
 gases together.
- Flammable gas/no-smoking placards were used.
- LEL sensors stopped the system when hydrogen was detected.
- Liquid nitrogen was supplied in a commercially available dewar. From a cold surface hazard perspective, liquid nitrogen is handled the same as liquid oxygen at hospitals and other commercial facilities.
- Liquid carbon dioxide was supplied in cylinders similar to hydrogen back-up cylinders. These were secured in the same containment area as hydrogen and nitrogen.

8.3 PROCUREMENT

APTwater provides a commercially available MBfR skid system, called ARoNite™. The system includes MBfR vessels and auxiliary equipment, which may include downstream processing (aeration, media filtration, disinfection), based on customer requirements. Procurement of compressed or liquefied gases can be accomplished through a variety of national vendors. Gas generators are specialized pieces of equipment but are available from several manufacturers. Gas manifolds and distribution systems are not off-the-shelf and will require engineering design and custom fabrication.

9.0 REFERENCES

- Adham, S., K.P. Chiu, G. Lehman, B.E. Rittmann, and J. Chung. 2005. Novel membrane biofilm reactor for groundwater treatment and remediation. National Water Research Institute.
- Adham, S., T. Gillogly, G. Lehman, B. Rittmann, and R. Nerenberg. 2004. *Membrane Biofilm Reactor Process for Nitrate and Perchlorate Removal*. Denver, Colo.: AwwaRF.
- APHA, A., and WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington, DC: APHA.
- Brandhuber, P., S. Clark, and K. Morley. 2009. A Review of perchlroate occurance in public drinking water systems. *Journal AWWA* 101 no. 11: 63-73.
- Brown, J., C.V. Lauderdale, G. Estavo, A. Ettori, W. Shih, S. Poust, S. Walker, L. Raskin, G. Upadhyaya, X. Li, and E. Morgenroth. 2008. Final Report: Direct fixed-bed biological perchlorate destruction demonstration. ESTCP project ER-0544. Environmental Security Technology Certification Program.
- CDPH. 1997. Policy Memo 97-005 Policy Guidance for Direct Domestic Use of Extremely Impared Sources. Internal memorandum. California Department of Health Services. http://www.cdph.ca.gov/certlic/drinkingwater/Documents/DWdocuments/memo97-005.pdf.
- Chung, J., R. Brown, and B. Rittmann. 2008a. Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. *Environmental Science & Technology* 42 no. 2: 477-483.
- Chung, J., X. Li, and B.E. Rittman. 2006a. Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. *Chemosphere* 65 no. 1: 24-34.
- Chung, J., R. Nerenberg, and B.E. Rittmann. 2006b. Bio-reduction of selenate by a hydrogen-based membrane biofilm reactor. *Environmental Science & Technology* 40 no. 5: 1664-1671.
- Chung, J., and B.E. Rittmann. 2007. Bio-reductive dechlorination of 1,1,1-trichloroethance and chloroform using a hydrogen-based membrane biofilm reactor. *Biotechnology and Bioengineering* 97 no. 1: 52-60.
- ———. 2008. Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogen-based membrane biofilm reactor. *Water Science and Technology* 58 no. 3: 495-501.
- Chung, J., B.E. Rittmann, W.F. Wright, and R.H. Bowman. 2007. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor. *Biodegradation* 18 no. 2: 199-209.
- Chung, J., H.W. Ryu, M. Abbaszadegan, and B.E. Rittmann. 2006c. Community structure and function in an H2-based membrane biofilm reactor capable of bio-reduction of selenate and chromate. *Applied Microbiology and Biotechnology* 72 no. 6: 1130-1339.
- Chung, J.A., Z. Chen, and B.E. Rittmann. 2008b. Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor. *Chemosphere* 70 no. 3: 516-520.
- Chung, J.C., R. Nerenberg, C. Torres, and B.E. Rittmann. 2006d. Bio-reduction of soluble chlormate using a hydrogen-based membrane biofilm reactor. *Water Research* 40 no. 8: 1634-1642.
- Downing, L.S., and R. Nerenberg. 2007. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor. *Biotechnology and Bioengineering* 98 no. 3: 543-550.

- GAO. 2010. Pechlorate: Occurnace is Widespread but at Varying Levels; Federal Agencies Have Taken Some Actions to Respond to and Lessen Releases.
- GeoSyntec. 2005. Draft Remedial Investigation Report, Prepared for Goodrich Corporation.
- ———. 2007. Goodrich Corporation progress report for the month of September, 2007, 160-acre Parcel, Rialto, California.
- Hasar, H. 2009. Simultaneous removal of organic matter and nitrogen compounds by combining a membrane bioreactor and a membrane biofilm reactor. *Bioresource Technology* 100 no. 10: 2699-26705.
- Hatzinger, P.B. 2005. Perchlorate biodegradation for water treatment. *Environ Sci Technol* 39 no. 11: 239A-247A.
- Lee, L.C., and B.E. Rittmann. 2002. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. *Water Resources* 36 no. 8: 2040-2052.
- Lehman, S.G., and A. Subramani. 2011. *State-of-Science on Perchlorate Treatment Technologies and Regulations*. Denver, Colorado: Water Research Foundation.
- Levenspiel, O. 1962. *Chemical Reaction Engineering. An Introduction to the Design of Chemical Reactors.* . New York.: John Wiley and Sons.
- Logan, B.E., and D. LaPoint. 2002. Treatment of perchlorate- and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor. *Water Res* 36 no. 14: 3647-53.
- Logan, B.E., B. Min, K. Kim, J. Miller, D. LaPoint, J. Batista, J. Liu, P.J. Evans, A. Chu, and S. Price. 2004. Bioreactor systems for treating perchlorate-contaminated water: bench- and pilot- scale investigations. AwwaRF.
- Miller, J.P., and B.E. Logan. 2000. Sustained perchlorate degradation in an autotrophic, gasphase, packed-bed bioreactor. *Environmental Science & Technology* 34 no. 14: 3018-3022.
- Nerenberg, R., Y. Kawagoshi, and B. Rittmann. 2008. Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor. *Water Research* 42 no. 4: 1151-1159.
- Nerenberg, R., and B.E. Rittmann. 2004. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. *Water Science and Technology* 49 no. 11-12: 223-230.
- Nerenberg, R., B.E. Rittmann, T.E. Gillogly, G.E. Lehman, and S.S. Adham. 2003. Perchlorate reduction using a hollow-fiber membrane biofilm reactor: kinetics, microbial ecology, and pilot-scale studies. In *International Battelle Conference*, C-08.
- Nerenberg, R., B.E. Rittmann, and I. Njam. 2002. Perchlorate reduction in a hydrogen-based membrane-biofilm reactor. *J. AWWA* 94 no. 11: 103-114.
- Rittmann, B., and P. McCarty. 2001. *Environmental Biotechnology: Principles and Applications*Boston: McGraw-Hill
- Rittmann, B., and V.L. Snoeyink. 1984. Achieving biologically stable drinking water. *Journal AWWA* 76: 106-114.
- Rittmann, B.E., and K.C. Lee. 2002. Hollow-fiber membrane biofilm reactor for autohydrogenotrophic treatment of water, vol. 6,387,262.
- Rittmann, B.E., R. Nerenberg, K.C. Lee, I. Najm, T.E. Gillogly, G.E. Lehman, and S.S. Adham. 2004. Hydrogen-based hollow-fiber membrane biofilm reactor (HFMBfR) for reducing oxidized contaminants. *Water Science and Technology: Water Supply* 4 no. 1: 127-133.

- Rittmann, B.E., A. Ontiveros-Valencia, H.-P. Zhao, Y. Tang, B. Kim, S. van Ginkel, and R. Krajmalnik-Brown. 2013. Nitrate and perchlorate destruction using the membrane biofilm reactor: Analysis of the microbial ecology and biofilm development of side reactors and pilot reactor modules, bench-scale studies, and mechanistic modeling. ESTCP Project ER-200541.
- Schneider, O.D., M.W. LeChevallier, P.J. Evans, J. Smith, R. Chappell, L.A. Weinrich, P. Jjemba, S. Diehl, and M. Kreminskaya. 2013. An operational definition of biostability in drinking water. In *AWWA Biological Treatment Symposium*. Denver.
- Stumm, W., and J.J. Morgan. 1996. *Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters*. 3rd ed. ed. Hoboken, NJ: Wiley Science.
- Urbansky, E.T. 1998. Perchlorate chemistry: implications of analysis and remediation. *Bioremediation Journal* 2 no. 2: 81-95.
- USEPA. 1991. Guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources. http://water.epa.gov/lawsregs/rulesregs/sdwa/swtr/upload/guidsws.pdf.
- ——. 1998. External Review Draft Perchlorate Environtmental Contamination: Toxicological Review and Risk Characterization Based on Emerging Information. Washington, D.C.: USEPA Office of Research and Development.
- ——. 2003. LT1ESWTR Disinfection Profiling and Benchmarking. EPA Office of Water.
- ——. 2005. Perchlorate (ClO4-) and Perchlorate Salts. Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency.
- ——. 2011. Summary of perchlorate and volatile organic compounds in groundwater, June/July 2011, BF Goodrich Site, San Bernadino County, California.
- Van Ginkel, S.W., C.H. Ahn, M. Badruzzaman, D.J. Roberts, S.G. Lehman, S.S. Adham, and B.E. Rittmann. 2008. Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR). *Water Res* 42 no. 15: 4197-205.
- Wang, H.-C., A. Eaton, and B. Narloch. 2002. *National Assessment of Perchlorate Contmination Occurrence*. Denver, Colorado: AWWA and the Awwa Research Foundation.
- Webster, T.S., and P. Togna. 2009. Final report: Demonstration of a full-scale fluidized bed bioreactor for the treatment of perchlorate at low concentrations in groundwater. Environmental Security Technology Certification Program.
- Wooldenden, L.R., and D. Kadhim. 2005. Geohydrology and Water Chemistry in the Rialto-Colton Basin, San Bernadino County, California.
- Xia, S., H. Li, Z. Zhang, Y. Zhang, X. Yang, R. Jia, K. Xie, and X. Xu. 2011. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. *Journal of Hazardous Materials* 30 no. 192: 593-598.
- Xia, S., F. Zhong, Y. Zhang, H. Li, and X. Yang. 2010. Bio-reduction of Nitrate from Groundwater Using a Hydrogen-Based Membrane Biofilm Reactor. *Journal of Envionmental Sciences* 22 no. 2: 257-262.
- Zhao, H.-P., S.V. Ginkel, Y. Tang, D.-W. Kang, B. Rittmann, and R. Krajmalnik-Brown. 2011. Interactions between perchlorate and nitrate recdcutions in the biofilm of a hydrogen based MBfR. *Environmental Science & Technology* 45 no. 23: 10155-10162.
- Ziv-El, M., and B. Rittmann. 2009. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in hroundwater using a hydrogen-based membrane biofilm reactor. *Water Research* 43 no. 1: 173-181.

APPENDIX A POINTS OF CONTACT

Point of Contact	Organization	Phone/Fax/Email	Role in Project
Andrea Leeson	ESTCP 4800 Mark Center Drive Suite 17D08 Alexandria, VA 22350	Phone 571-372-6398 Email <u>Andrea.Leeson@osd.mil</u>	ESTCP Environmental Restoration Program Manager
Patrick Evans	CDM Smith 14432 S.E. Eastgate Way, Suite 100 Bellevue, WA 98007	Phone 425-519-8300 Cell 206-351-0228 Email evanspj@cdmsmith.com	Principal Investigator
Bruce Rittmann	Arizona State University Biodesign Institute 1001 South McAllister Ave. P. O. Box 875801 Tempe, AZ 85287-5801	Phone 480-727-0434 Cell 847-804-2598 Email rittmann@asu.edu	Co-Principal Investigator
Tom Crowley	West Valley Water District 855 West Base Line Road Rialto, CA 92376	Phone 909-875-1804 X702 Cell 909-213-7055 Email tcrowley@wvwd.org	WVWD Site Owner
David Friese	APTwater APTwater 2516 Verne Roberts Circle, Suite H-102 Antioch, CA 94509	Phone 562-661-4999 X612 Cell 925-708-0480 Email dfriese@aptwater.com	Project Manager
Ryan Overstreet	APTwater 2516 Verne Roberts Circle, Suite H-102 Antioch, CA 94509	Phone 562-661-4999 X611 Cell 925-360-7206 Email roverstreet@aptwater.com	Process Engineer
Eva Opitz	CDM Federal Programs 1050 North Reed Station Road, Suite D Carbondale, IL 62902	Phone 618-351-4530 Email opitzem@cdmsmith.com	Program Manager
Jennifer Smith	CDM Smith 14432 S.E. Eastgate Way, Suite 100 Bellevue, WA 98007	Phone 425-519-8300 Email smithjl@cdmsmith.com	Project Engineer
Eugene Leung	California Department of Public Health 850 Marina Bay Parkway Building P, 1st Floor Richmond, CA 94804	Phone 510-620-3460 Email Eugene.Leung@cdph.ca.gov	Regulatory Oversight

Point of Contact	Organization	Phone/Fax/Email	Role in Project
Sean	California Department of	Phone 909-383-4328	Regulatory
McCarthy	Public Health	Email	Oversight
	464 W. 4th Street, Room	Sean.McCarthy@cdph.ca.gov	_
	437. San Bernardino CA		
	92401		

APPENDIX B FIELD LOGS

ESTCP: Techn Demonstration Plan
Perchlorate Destruction Deing Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: #-21-11
Time: 9AM
Operator: DAN BEILOKOFF

nerthanian incertification

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall		
pH										-			MBfR Details:	
Temperature	(°C)		_										Target Flow Rate:	{g
ORP	(mV)									_				
Pressure	(psi)													
Dissolved Oxygen	(mg/L)													
Nitrate	(mg/L)												· <u> </u>	
Nitrite	(mg/L)	<u> </u>										-		
Turbidity	(NTU)													\perp
Chlorine Residual		la de la companya de							Planting.					
Chlorine Hesiduai	(mg/L)	SEEKS	1241						1					
				_	-									
					<u> </u>									
			-	<u> </u>										
				-	 					-			1	

VESTERDAY (4-20) APT + CDM WORKED ON GETTING MERR + ASSOCIATED SYSTEM HYDRAKICS UP AND RUNDING. AT END OF DAY, THE GERATION TANK + PRODUCT TANK WAS DOSE WITH ~ 65 ppm of chloring (1.42a) IN 1300aa). AT gam on (4-21), Took CL2 RESIDUALS ON BOTH ARRATION + PRODUCT TANKS AND BOTH RECORDED LEVELS OVER 5 MJ/L. CALIBRATED PH ORP METERS AND TURBIDIMETER. DID NOT TAKE SAMPLES TODAS AS THE RAC DISTOSORB UNITS WERE NOT OPERATING PROPERLY - THE PRESSURE WAS BUILDING UP IN THE VESSELS TO THE POINT WHERE IT WAS RESTRICTING FLOW. APT LEFT MERRY ON RECIRC SO IT CAN BEGIN TO INNOCULATE, ADDED IPPM H3PDY TO EACH REACTOR. WORKING TOWARDS GETTING NEW GAC UNIT IN SYSTEM IN ORDER TO SOLVE PRESSURE BUILD-UP 15546.

Hypo Tank

ESTCP: Techr / Demonstration Plan
Perchlorate Destruction Using Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Time: Operator:		JEFUKE	96	ł M		111	411					
Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBFR 1	MBF R3	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
pΗ			6.21	5,83		6.24	5.85					
Temperature	(°C)		20.5	19.7		31.2	20-1					
ORP	(mV)		-424	-453		-325	-405					
Pressure	(psi)								*			
Dissolved Oxygen	(mg/L)	7.0	20	0.8								·
Nitrate	(mg/L)	8.0	7.5	7.5			·					
Nitrite	(mg/L)	0	0	0								
Turbidity	(NTU)		0.36	0.48								
Chlorine Residual	(mg/L)	ugh Karolis Mari Swald Sala		i. Norwali	i kazo			•				
		1		1								

MBfR Details:	9	20Am	_
Target Flow Rate:	(gpm)		
PH RI		5.8	
ORP RI	μV	-1150	
TEMP RI	°F	75	
PH RQ		7.8	
orf ra	MV	+196	
remp Ra	٥Ę	66.4	
NITEAR ANALYZER		8.08	
LAST N FEED		-1.5 ppm	K
LAST N RI		ව වර්	j
LAST N RA		0,00	
_			

Hypo Tank	(gal)	

Notes: MBFR	HAD NO	155KES	OPERATIN	g over	NIGHT.	PH	METER	CHECK :	DIPPEL) INTO B	UFFER	ri T
SOLUTION	, READ	4.01.	BUFFER ;	7 SOLUTU	ON, RI	EAD	7,00%	BUFFER	10	SOLEITION,	READ	10.11
ORP METE	R READ	219mV	AGAINST	STANDAL	RD' SOL	UTIC	on.	CALIBRA	TED	APT'S	PH	_
			NBFR 1						1 1			_
	•	<u> </u>										_

ESTCP: Techr Demonstration Plan
Perchlorate Destruction Using Membrane Biofilm Reduction
ESTCP Project Number ER-200541

 Date:
 4-29-11

 Time:
 11 AM

 Operator:
 DANIEL BEROKUFF

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	
эн	_	7.43	7.65	7.68	7.87								М
Temperature ·	(°C)	19.5		20.2	20.4								Та
ORP	(mV)	90	-127	-/2多	Q								L
ressure	(psi)	-	-	_	-	1	_]				-	-	L
Dissolved Oxygen	(mg/L)	11	3	3	48		_						L
Vitrate	(mg/L)	8	6	7									L
Nitrite	(mg/L)	0	0	0				-		· ·			
Turbidity	(NTU)			-									L
Chlorine Residual	(mg/L)												L
SULFIDE		ELLIA ALL LONG LA CA										1	
July - 1 1 1 1 1 1 1 1 1	(270)	· -											
		-		 	-								
	_	 	 										
			 					ţ .					Γ

LEAD! MBFR 2 LAG: MBFR 1

MBfR Details:		
Target Flow Hate:	(gpm)	
		

Hypo rank (gai) 1	Hypo Tank	(gal)	
-------------------	-----------	-------	--

WITHOUT ANY MISHAPS. SYSTEM RAN OVERNIGHT IN ORDER SENSOR SOOM CALIBRATE 70 WAS UNDBLE TO PERFORM MMAY NOT $B\epsilon$ 100% ACKURGATE. FIELD FUNNING BACKWHSHES ON BOTH MULTIMEDIA Due ON FILTER.

ESTCP: Tec logy Demonstration Plan
Perchlorate Destruction sing Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: 4-25-11
Time: 10AM

Operator: DAN BEROKUFF

hilling on some and his bill 43

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рH			8,39	8,73		٠						
Temperature	(°C)		23.6	23,5								
ORP	(mV)		-618	-565								
Pressure	(psi)		بند	-								
Dissolved Oxygen	(mg/L)		0,35	0,25								
Nitrate	(mg/L)		0	3.2								
Nitrite	(mg/L)		Ð	2.0					·			,
Turbidity	(NTU)		2.36	3,10				* 0				
Chlorine Residual	(mg/L)	A de des									PSC.	
										,		
												-

MBfR Details:	//	AM	_
Target Flow Rate:	(gpm)		1
PH RI		8,5	
ORP RI		-1150	
TEMP RI		79.1	
PH RZ		7.6	
ORP RQ		604	ľ
TEMP RZ		73.4	
NITRATE ANALYZER		0.91	
LAST N FEED		-/15 ppv	١,
LAST N RI		0	
LAST N Ra		0	

	Нуро Тапк	(gal)
--	-----------	-------

NOTICED THAT Y MODULES WERE TURNED OFF ON MER J. SPOKE TO RYAN (APT) WHO KNEW ABOUT THAT AND THEN HAD ME TURN THEM BACK ON AROUND 11: 20 AM. TOOK DAILY READING PRIOR TO TURNING ON THE Y REACTORS THAT WERE PREVIOUSLY OFF.

ESTCP: Ter logy Demonstration Plan Perchlorate Destructic sing Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: 5-2-11
Time: 9AM
Operator: DANIEL BEROKEFF

LEAD: MBFR 1 LAG: MBFR 2

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рН		7,55	7.38	6.58	7.13		7,24	7.47				
Temperature	(°C)	18,7	19.7	30.3	20.1		20.4	20.4			•	
ORP	(mV)	108	-170	-103	20		136	133			_	
Pressure	(psi)		1							٠		
Dissolved Oxygen	(mg/L)	. 11	0.9	3. O	70			7.0				
Nitrate	(mg/L)	B	6	2.4				2.0				
Nitrite	(mg/L)	0	O. O	0				0				
Turbidity	(NTU)	_		_	0,99	i	0.36	0.79				
Chlorine Residual	(mg/L)	1 47 1 11 11		(W ₁ 3								
SULFIDE-	(mg/L)	0	0	0	0			0				
7.307	`							·				
					t.							

MBfR Details:	10	:00AM
Target Flow Rate:	(gpm)	•
MBFR PM		7,5
MERFRAH		7.5
NITRATE ANALYZE	دام	0.43
RI ORP	,	-243
RZ ORP	·	-549
RI Recycle Pate	M	210
Ra " "	BRN	210
FEED RATE	SPIM	5
RI Ha FLOW	11/15	630
R2 " "	1*	690

Phosphote feed fate 2 m/min

Hypo Tank (gal)
Phospate tank (3al) 3

TOTALIZER #3al 3,8,25,300

Notes:
SYSTEM APPEARS TO BE STABLE OVER IT'S FIRST WEEKEND, (NO MAJOR ISSUES/LEAKS). DH METER
READ 4.02, 7.01, 10.1) AGAINST BUFFER SOLUTIONS. ORP READ 218MV AGAINST BUFFER.

Date:	05/04/	it							·						
Operator:	ARUCA			6.75	24.4								MBFR 2 L MBCR 1	EAD	
Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall			
pH		7.48	Est V	6.58	17,44	- ·	7,00	7.58					MBfR Details:	7	
Temperature	(°C)	19.0	23.5		22.6	· Williams	13.	22.4					Target Flow Rate:	(gpm)	
ORP	. (mV)	100	-2i0	88	65		102	176							
Pressure	(psi)														
Dissolved Oxygen	(mg/L)	9	·	0	7	-	5.5	5.5							
Nitrate	(mg/L)	8	0.6	2.4	!	-		1.2							
Nitrite	(mg/L)	C	0	0				0							
Turbidity	(NTU)				4.35		1.32	0.75					* .		
Chlorine Residual	(mg/L)	Wist			Mirk.						級無等				
SULFIDE		OV	0	0	0	_	ļ	0							
							-								
						·	1	.*			· .				
					,			•		<u> </u>				_	_
						ļ <u>.</u>					<u> </u>	Ì			<u> </u>
													Hypo Tank	(gal)	l
					•										

Notes: PH meter/tested w/ buffer, readings are 4.02, 7.02, 10.07. Off meter tested, reading is 217.

Feed pump was short down due to air in system. Dave w/ APT says NO3 levels are low and

Lut would. Calibrated turbidity meter, APT WORKED TOWARDS FILLING HYPO TANK AND DETERMINE PUMP
FLOW RATE BASED ON CONCENTRATION. TOPPED OF PHOSPHATE TANK: 3,899 WATER + 42,3ml
853 \$ \$43004.

	Outlet totalizer	Target Flow Rate	Internal Recycle Rate	MBfR 1 pH	MBfR 2 pH	Nitrate Analyzer	Air flow	Air tank Press	Sodium Hypo tank		Phosphate Feed Rate	Bag Filter dp
Date	gal	gpm	gpm	SCADA	SCADA	mg-N/L	scfm	psig	gal			(psi)
4/20/11 18:00			-	-	-	-	-	-		-	-	-
4/21/11 9:00		-			-		-	-	-	-	-	-
4/22/11 8:00		-	-	5.8	7.8	8.08		-	-		-	- <u>-</u>
4/25/11 10:00		-		8.5	7.6	0.91		-	₩.	-	-	-
4/28/11 18:40	3799700	-				-	<u>-</u>	-	.	5	2	-
4/29/11 11:00	-	5	210		-	-	-	. =.		-	2	<u> </u>
5/2/11 9:00		5	210	7.5	7.5	0.43	-	-	0	3	2	-
5/4/u 9:30	3837690	5.0	210	6.7	7.5	0.43	1.8	3.6	. 0	1.8	2	<u> </u>
									<u> </u>	<u> </u>	_	
							ļ			<u> </u>		<u> </u>
<u> </u>			<u> </u>						 	<u> </u>	 	
								 	 		<u> </u>	
<u> </u>						+	 	 	-	 	 	├ ──
:	!			<u> </u>			-	 	 	 	 	
	. :		· ·			+		 		 	 	┼──
	_		 	<u> </u>		 	<u> </u>	+		<u> </u>	 	
· · · · · · · · · · · · · · · · · · ·							1	 	+	 	 	+
	 	1		 		+	+	+	+	+	 	+
			 		_		1.	+	+	 	 	
	·		+	-			+	+	+	+	 	
	 		- 	 -		+	+	+	+	+	+	+

ADD MBFR 1+2 ORP COLUMNS

y Demonstration Plan Perchlorate Destruction Cong Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: Time: REDOKOFF Operator:

Lead Reactor: R2

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рН		7.42	6.73	6.30	7.91		1	7.14				
Temperature	(°C)	19.2	21.3	18.9	20,5							
ORP	(mV)	120	-205	-160	90			120				
Dissolved Oxygen	(mg/L)	9	3.5	0.2	7			5.5				
Nitrate	(mg/L)	8	0					0				
Nitrite	(mg/L)	0	0	0.1								ewa And
Sulfide	(mg/L)	U	0	0	0			0				
Turbidity	(NTU)			物类的的								the second second
Chlorine Residual	(mg/L)	MG.										KV 1975
	•					<u> </u>						·
									<u>. </u>		,	
									_			<u> </u>
	-									<u> </u>		

Manual Site Data:		
Outlet Totalizer:	gal	3847400
Target Flow Rate:	gpm	5
Internal Recycle Rate:	gpm	210
MBfR 1 pH:		6.4
MBfR 2 pH:		7.5
MBIR 1 ORP:	m∨	-505
MBfR 2 ORP:	m∨	-520
Nitrate Analyzer:	mg-N/L	0.43
Air Flow (Aeration):	scfm	17
Air Tank Pressure:	. psî	3.7
Sodium Hypo Tank:	gal	
Phosphate Tank:	gal	3.5
Phosphate Feed Rate:	ml/min	2
Bag Filter dp:	psi	
CO2 Cylinder Pressure:	psi	78
H2 Cylinder Pressure:	psi	93

AERATION TANK HAS SLIGHT SINELL OF SULFUR, MBFR FEED PUMP = 1 GPM DUE TO PROBLEMS TO EVENINE PROBLEM OF PLANNED TO PAISE LOW LEVEL SWITCH IN PAW WATER THINK AIR / VORTEX - LOW LEVEL SENSOR WAS RAISED 18" IN FEED /RAW WATER TRAK - APT INFORMED COM THAT FEED PUMP LOST PRIME OVER NIGHT, APT HAD SET FLOW TO I GIPM, 11:80 - FLOW HAS INCREASED ARE TAKEN WHILE PUMP IS FLOWING @ 10 GDM/11145 to 10 GPM ON FEED PLUMP. LAB SAMPLES CHANGED RACE FILTER.

NITEATH

NHIPATE 5720 HZ } TOOK ABOUT 4 MINUTES TO FILL SOOML READING 5697 HZ } BOTTLE FOR SP-100 (MBFR 2)

MBFR(2:) MBFR 2 2:1

2: FINISH

ESTCP: Techr y Demonstration Plan
Perchlorate Destruction Config Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: 5 /9 / 11
Time: 10 A M
Operator: DANIEL 3- Lead Reactor: R1

Parameter	Units	Influent	MBIR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рН		7.28	7.38	6.25	6.86		6.98	6.93				
Temperature	(°C)	17.4	18,9	19.0	18,6		178	171				
ORP	(mV)	102	-235	-190	<u>-35</u>		85	108				4.046
Dissolved Oxygen	(mg/L)	8	0.7	3	7			7				
Nitrate	(mg/L)	8	0.3	0								
Nitrite	(mg/L)	Ô	0.4	0				0	Contract of	\$ 44.7 S		
Sulfide	(mg/L)	0	0	Ó	0			0				
Turbidity	(NTU)		本产生 。	建筑	2,01			0.00	a di ca di			
Chtorine Residual	(mg/L)											
	<u> </u>				l	<u> </u>						
								<u> </u>			<u> </u>	
										•		
						<u> </u>				<u> </u>		

Manual Site Data:			
Outlet Totalizer:	gal	386760	p.
Target Flow Rate:	gpm	5	•
Internal Recycle Rate:	gpm	210	
MBfR 1 pH:	-	7.6	•
MB/R 2 pH:	-	7.5	
MBfR 1 ORP:	'nV	-540	
MB(R 2 ORP:	m∨	-569	
Nitrate Analyzer:	mg-N/L	0.43	5966 Hz
Air Flow (Aeration):	scfm	1.8	
Air Tank Pressure:	psi	3,5	
Sodium Hypo Tank:	gal	12.5	
Phosphate Tank:	gal	1.4	
Phosphate Feed Rate:	ml/min	2] . , , ,
Bag Filter dp:	psi	0	
CO2 Cylinder Pressure:	psi		
H2 Cylinder Pressure:	psi	700	
LUST N Feed]	8,73 PC	MN
cast N (RI)		0,43	
LASTN (Pd)		0.43	

Votes:	OFF	PHOSPHATE	TANKE	ADDED	48,2ML	H3704	AND	3,6901	HaO.	UN 77 .	
7 01 7 09										<u> </u>	
					•						
										-	
·		<u></u>			100						

ESTCP: Tech y Demonstration Plan
Perchlorate Destruction Sing Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: 5/11/11
Time: 8 00
Operator: A P-UCAN

Lead Reactor: 122

Spaces boxes are to remain plane?

Parameter	Units	Influent	MB/R 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рH		7.47	6.42	6.38	6.85		6.83	7.10				
Temperature	(°C)	18.7	18.8	10.0	19.4		19.5	19.2				
ORP	(mV)	90	-170	~ 70	-5		50	90	M 45			4.3.5
Dissolved Oxygen	(mg/L)	ō	1.5	0	3.5			3.5				
Nitrate	(mg/L)	□	0	1.2	A Series and	\$10.0				erezii kii		
Nitrite	(mg/L)	O,	0					0			Distriction	16.00
Sulfide	(mg/L)	0	0	0	T 0			0	HL1			
Turbidity	(NTU)		alexone.		2.46		1.05	1,31		10000	100	16.45.23
Chlorine Residual	(mg/L)						1 2	0_				
								l			<u> </u>	
										·	<u> </u>	
			_									ļ ·
												<u> </u>
-			-									

Manual Site Data:		32865 a
Outlet Totalizer:	gal	3205
Target Flow Rate:	gpm	210
Internat Recycle Rate:	gpm	
MBfR 1 pH:		6.4_
MBfR 2 pH:		7.5
MBfR 1 ORP:	mV	-492
MBIR 2 ORP:	m∨	101
Nitrate Analyzer:	mg-N/L	3.33
Air Flow (Aeration):	scfm	1.7
Air Tank Pressure:	psi	3.5
Sodium Hypo Tank:	gal	
Phosphate Tank:	gal	3.2
Phosphate Feed Rate:	mi/min	2
Bag Filter dp:	psi	
CO2 Cylinder Pressure:	psi	78
H2 Cylinder Pressure:	psi	94
N2 PRESSUPE		

SHOOTED BY CHOS TODAY, LAB SIMPLES FOR NITRATE WERE TAKEN FROM ANALYZER FEED AT TOP OF EACH PEACTOR, SAMPLES WERE SENT W/ 24 HOUR TAT. FOR NITRATE AND PERCHLOPATE, CLYDE HAS DEMOVED FEED DUMP SUCTION FIRE TO TROUBLE SHOOT TROBLEM

5/13/11

ESTCP: Tech

y Demonstration Plan

Perchlorate Destruction ing Membrane Biofilm Reduction

ESTCP Project Number ER-200541

Time: Operator: Shaded bakes and don	DANIE	BER	0KOFF	 - -	Lead Reactor:	Ra						
Parameter	Units	Influent		Way zunant	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
pH		7.31	765	7.80	8,01		7.94	7.94				
Temperature	(°C)		20.3	20.0	20,2		20.4	20,6				
ORP	(mV)	96	-565	-261	-57		143	300		25.76	a de la co	\$5000 600
Dissolved Oxygen	(mg/L)	9	0.02	0.20	7							PARTIES
Nitrate	(mg/L)	8,0	0.5	6.25				0.5				
Nitrite	(mg/L)	0	0.3	3,0	100			0.15	自然 自分		10.00	6.6
Sulfide	(mg/L)	0	0	0	0			0				
Turbidity	(NTU)	30.113		南州东	1.01		1009	1.01				
Chlorine Residual	(mg/L)				16-17-27			0.15				
			1.			_						
									<u> </u>			<u> </u>
											<u> </u>	↓
							1					

Manual Site Data:		•		
Outlet Totalizer:	gal	38 96800		
Target Flow Flate:	gpm	ষ্ঠ		
Internal Recycle Rate:	gpm	210		
MBfR 1 pH:		7.5		
MBfR 2 pH:	-	7.6		
MBIR 1 ORP:	mV	-557		
MBIR 2 ORP:	mV	67		
Nitrate Analyzer:	mg-N/L	0.10	5966	Hz
Air Flow (Aeration):	scfm	1.7		٠.
Air Tank Pressure:	psi	3.7		
Sodium Hypo Tank:	gal.	1215		
Phosphate Tank:	gal	2.3	1	
Phosphate Feed Rate:	ml/min	2		
Bag Filter dp:	psi	0	}	
CO2 Cylinder Pressure:	psi	0*		
H2 Cylinder Pressure:	psi _.	700		
			4	

PRIME

APT WAS ON SITE YESTERDAY FIXING PROBLEM IN FEED PUMP. PIPE SHAVING WERE FOUND LODGED IN THE IMPELLER. APT WAS ON SITE YESTERDAY FIXING PROBLEM IN FEED PUMP. PIPE SHAVING WERE FOUND LODGED IN THE IMPELLER. INCREASED FEED RATE TO BEDDINGS FOR FIELD ANALYSIS KITS, INSPECTED FEED TANK FOR ANY APPLITIONAL PIPE SHAVINGS BUT NOTHING WAS VISIBLE. APT SET UP CHLORINE DOBE PUMP TO BEGIN FEEDING MEDIA FILTER VESTERDAY. MEASURED FLOW RATE ON CL2 PUMP -> PUMP SET (P) /3 | STROKES/MIN AND 25% STROKE LENGTH. THIS YELLDS D. I MYMIN (13.5% SODIUM HYPO).

ADDED 3.7 Gal AND 36ML H3POY TO PHOSPHATE TANK.

30ML -> 14min = 2.14 MZ/MIN CL2

LAST Food Sample: 8.76ppm N CAST RI SAMPLE: 0.07ppm N 2ast RZ SAMPLE: 6.42ppm N

ESTCP: Tech y Demonstration Plan Perchlorate Destruction G Membrane Biofilm Reduction ESTCP Project Number ER-200541

erator:	DANI		COKEF	ŀ	Lead Reactor:	RI		,					Manual Site Data:] .	
<u> </u>									[Outlet Totalizer:	gal	3933
neter	2	ent	₹	<u>ئ</u> ي	to ti	is Solle	Filter	hed	ent	C 2	1 ient	i ited	Target Flow Rate:	gpm	10
Parameter	Units	Influent	-640 MB/m+	1.4G	Aeration	MBfR Sollds Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	Internal Recycle Rate:	gpm	210
	<u> </u>	9			7.79		2 20		isah meneral			_	MBfR 1 pH:	-	7,2
		7.47 17.3	7,38	7.41	7.79		7.79	7.85					MBfR 2 pH:	-	7,2
perature	(°C)	452	18,6 -370	-552	10,		18:1	197	別別 第十 表別 東北 土			i	MB(R 1 ORP:	m∨	-53
	(mV)	952	0.15	0,05	-11 1		5 5	180	경제 3등4 경제 경기 (2				MBfR 2 ORP:	mV	-65
olved Oxygen	(mg/L)	8	7	5				3.5					Nitrate Analyzer:	mg-N/L	6.15
ite	(mg/L)	6	3	3,5				3,5					Nitrate Analyzer Frequency:	Hz	532
e	(mg/L)	8	6	0	<i>(2)</i>			313					Last N Feed	ppm (N)	8.4
ide	(mg/L)							0 110					Last N F1	1	6.14
bidity	(NTU)				0.62	* 11 > 1 - STERBIRDE	U,72	0.48					Last N R2	1	3.20
rine Residual	(mg/L)								dill Elyfa	:				1	
													Air Flow (Aeration):	scfm	1.7
													Air Tank Pressure:	psi	3.6
				-									Sodium Hypo Tank:	gal	12
		<u> </u>	1									-	Phosphate Tank:	gal	3,4
			l	<u> </u>]		<u> </u>			<u> </u>			Phosphate Feed Rate:	ml/min	2
	į.				٠								Bag Filter dp:	psi	0
					-	•			7				CO2 Cylinder Pressure;	psi	0
es:													H2 Cylinder Pressure:	psi	700
APT IL	CREAS	ED TA	EGGT	FLOW	RATE	FROM	1 8 ac	m to	10 apr	Cr	Keckel	PH P	POBE AGANST	Bus	FER
OLUTION				•	OUING !	4.6	0.790	5.10	14%			' '			

ESTCP: Techi y Demonstration Plan
Perchlorate Destruction Using Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: 5/18/11
Time: 94M
Operator: DANIEL BEROKOFF

Lead Reactor: R1

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рН		7.45	7.39	7.33	ファフフ		7.77	7.82				
Temperature	(°C)	17.6	18,6	19.0	18,9		18,6	17.7				
ORP	(mV)	80	-280	-5 30	-80		110	300				
Dissolved Oxygen	(mg/L)	9	0015	0.10	7		5,5	6				
Nitrate	(mg/L)	8	7	6		dang		6				
Nitrite	(mg/L)	0	3	3,5				3.5				
Sulfide	(mg/L)	<i>O</i> a	0	0	0			0				
Turbidity	(NTU)	-			1016	-	0.64	0.39				
Chlorine Residual	(mg/L)							0				
•									·			
												[· _

Manual Site Data:		
Outlet Totalizer:	gal	396 040
Target Flow Rate:	gpm	10
Internal Recycle Rate:	gpm	210
MBfR 1 pH:	-	7.2
MBfR 2 pH:	-	7.2
MBfR 1 ORP:	mV	-23
MBfR 2 ORP:	mV	-642
Nitrate Analyzer:	mg-N/L	3.68
Nitrate Analyzer Frequency:	Hz	5611
Last N Feed	ppm (N)	8,29
Last N R1		6.31
Last N R2		3.66
Air Flow (Aeration):	scfm	1.6
Air Tank Pressure:	psi	3,6
Sodium Hypo Tank:	gal	11.5
Phosphate Tank:	gal	2.2
Phosphate Feed Rate:	mVmin	a
Bag Filter dp:	psi	0
CO2 Cylinder Pressure:	psi	0
H2 Cylinder Pressure:	psi	700

TOPPED OFF PHOSPHATE TANK: ADDED 37.5 ML H3POY AND 2.8 gal H3D.

APT HAD ME MEHSURE THE FIBER PURGE RATE ON EACH REACTOR THEN DRAIN EACH PURGE LINE...

RI WAS BURBLING @ 2 RUBBLES PER SECOND AND R2 WAS PURGING @ 5-8 BUBBLE PER SECOND,

RI PID NOT HAVE ANY MOISTURE IN ITS LINES. R2 HAD ~0.5 ML WORTH OF MOISTURE TWAT

CAME OUT OF ITS LINES. 4 DID THIS @ 12:40pm. AT 1:40pm APT HAD ME INCREASE PURGE RATE ON

RI TO EQUAL THAT OF R2 AS BEST AS POSSIBLE. BOTH PURGING @ ~8 BUBBLES/SECOND.

NOTES TO TEST AMERICA: · Needed 5 DOC AMBERS (250 ML), ONLY SENT US 3

- * NECDED 2 SOOML Porys W/H2504 For Ammonia but received NONE
- · Need pre-printed COCs + LABELS
- Need new box of 100 vox's W/HCI PRESERVATIVE ON S/27/H SINCE MONDAY
- ·Ako need all neekly bottles on 5/27/11 SINCE MON IS MEMORIAL
- · Need more blank labels

Data Log t

ESTCP: Techr y Demonstration Plan
Perchlorate Destruction Country Membrane Biofilm Reduction
ESTCP Project Number ER-200541

_		, ,	_					•					•			
Date:	05/2															
Time:	8 1:3					4-11-11	•									
Operator:	24	E Apuc	AN		Lead Reactor:	P2]	•						٦ .	+	
SHE TO A CONTRACT	<u> </u>									•			Manual Site Data:	<u> </u>		_
		· · · · · ·				1	<u>. </u>	T	1				Outlet Totalizer:	gal	39872	00
ite.	(0)	l E	_	Q.	5	MBfR Solids Drain	Media Filter Effluent	P 2	- <u>t</u>	a t	_ ŧi	all ted	Target Flow Rate:	gpm	10	
Paramete	Units	Influent	MBfR	MBfR 2	Aeration	ff S Orai	dia F	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	Internal Recycle Rate:	gpm	210	1
g.		_				2	l			. –		_	MBfR 1 pH:	+-	7.5	
pH		7.47	7.70	7.74	7.98		7.93	7.85					MBfR 2 pH:	+-	7.5	•
Temperature	(°C)	19.0	19.6	19.3	19.5		19.6	19.3					MBfR 1 ORP:	mv mv	-685	1
ORP	(mV)	60	-186	-375	-70		80	100					MBIR 2 ORP:	mV	-565	1
Dissolved Oxygen	(mg/L)	9	数 5.5	2.5	7_		7	8					Nitrate Analyzer:	mg-N/L	6.95	1
Nitrate	 (mg/L)	8	116.8	47				6.5					Nitrate Analyzer Frequency:	Hz	5255	1
Nitrite	_(mg/L)	0	1.75	1.60				1.75					Last N Feed	ppm (N)		8.23
Sulfide	(mg/L)	10	0	0	0			0				W	Last N R1	+	3.44	1
Turbidity	(NTU)	0.43	- AND		0.31	_	0.35	0.21					Last N R2	+	4.49	1
Chlorine Residual	(mg/L)							0					Edot 14 12	+	7,71	┥
													Air Flow (Aeration):	scfm	1.0	1/3 F41
						<u> </u>							Air Tank Pressure:	psi	3.60	1 ,
						<u> </u>						<u>.</u>	Sodium Hypo Tank:	gal	2.00	
						<u> </u>		<u> </u>					Phosphate Tank:	gal	5	4
-			<u> </u>			<u> </u>	<u> </u>		<u> </u>		l		Phosphate Feed Rate:	ml/mln	2	1
													Bag Filter dp:	psi	0	1
-				•				*		•		•	CO2 Cylinder Pressure:	psi	72	1
												· •	H2 Cylinder Pressure:	psi	92	7
Notes: ALL	Theme	NT PEA	bwas/.	SAMPLE	S TAL	LEN A	FTEP	PHOSPH	ATE	u Jest u	104 HG	NT ·			1	J
PHOSPHAT													logon and	CONG	۵.	
05 0.5	2 \	- P / 1	LPT OL	SUTE	EST WG	TEW	SEW	SOR S	STE WA	عهدر	T DOL	ON FP	om wioo - 12	:30		
		ALIBRAT		A AME	020	-SENS	1 24c	OP RI	AND I	22.						-
API T	100000		OV V	- Paler			- · · ·									_

Data Log et

Date: Time: ESTCP: Techr y Demonstration Plan
Perchlorate Destruction Long Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Parameter	Units	Influent	CEAD CEAD	i.AG	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
pН		7.58	7.48	7,58	8,00		7.96	7.98		1. 1 j		7 17
Temperature	(°C)	18.0	19.0	19.5	19.4		19.3	18.4				
ORP	(mV)	100	-417	-560	-80		140	177	\$ 3 L S			
Dissolved Oxygen	(mg/L)	9	0.15	0,05	7		6	6				
Nitrate	(mg/L)	8	4	m m				1003				
Nitrite	(mg/L)	0	3	3				3				
Sulfide	(mg/L)	0	O	0	0			0				
Turbidity	(NTU)	-	10.144		1,04		0,30	0.22				
Chlorine Residual	(mg/L)	A S						Ø				
		<u> </u>										

gal	4021400)
gpm	8	
gpm	210	
-	7,2	
-	7,2	
m∨	-239	
mV	-590	
mg-N/L	5,14	
Hz	5439	
ppm (N)	8.37	
	5,13	
	1,49	
	= 1 to	
scim	25%	É
psi	3,5	_
gal	10,5	
gal	5	
m∜min	2	
psi	0	
psi	0	
psi	2200	
	gpm gpm gpm gpm gpm mV mV my My mg-N/L Hz ppm (N) scfm psi gal gal mi/min psi	gpm 8 gpm 210 - 7, 2 - 7, 2 mV - 39 mV - 590 mg-N/L 5, 14 Hz 5434 ppm (N) 8, 37 5, 13 1, 49 ppm (N) 8, 3, 5 gal 10, 5 gal 5 mt/min 2 psi 0

WHEN PHOSPHATE TANK WAS FILLED LAST WEEK. THE VALVE LEADING TO DOSE PLIMP THE SYSTEM ALL WEEKEND. UPON OPENING MALVE SO NO PHOSPHATE WAS WAS SKECESFULLY BEING DOSETI TO SYSTEM. SOMBER WITERNAL RE FLOW RATE WAS LOWERED ON 8 apm From Woom Due to LACK OF NITRATE REMOVAL (THIS MAY BE DUE TO ON CLA PUMP TO 40 AND DECREASED STROKE/MIN TO 80 UPON FACH SITE VISIT - Pund LOSING ITS PRIME SHOULD BE OFFRATING MID TO HIGH RANGE. GENERATOR STOPPED WORKING, ONLY HAD 700,65 PEMAING IN BACKUP 6-PACK SO THAT RAN DRY OVER WEEKEND, SWITCHED HOSE OVER TO ALTERNATE

Demonstration Plan ESTCP: Techno? Perchlorate Destruction (Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: Time: APUCAN Operator:

Lead Reactor: P1

Parameter	Units	Influent	MBfR 1	MBfR 2	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
рH		7.54	7.46	7.52	7.97		7.93	7.92	11 11 1	100		1. 84. 6
Temperature	(°C)	18.9	18.8	20.0	19.9	300	20.0	19.8				
ORP ·	(mV)	120	-280	-452	<u>-60</u>		60	320				
Dissolved Oxygen	(mg/L)	9.0	0.15	0.05	5.5	4311	6.0	7.0				
Nitrate	(mg/L)	7	5	2.5				1.75	4 4			
Nitrite	(mg/L)	0	1.2	1.5		12.15		1.6				
Sulfide	(mg/L)	Ô	0	0	0	All Carries		0				
Turbidity	(NTU)	0.59	可是绘图		0.68		0.47					
Chlorine Residual	(mg/L)	Ministra.				A. 10.						
	·											
			•				-					

Manual Site Data:	8	
Qutlet Totalizer:	gal	40444
Target Flow Rate:	gpm ·	8
Internal Recycle Rate:	gpm	210
MBfR 1 pH:	-	7.2
MBfR 2 pH:	-	7.2
MBIR 1 ORP:	mV	-103
MBfR 2 ORP:	mV	-590
Nitrate Analyzer:	mg-N/L	1
Nitrate Analyzer Frequency:	Hz	
Last N Feed	ppm (N)	
Last N R1		
Last N R2		
Air Flow (Aeration):	scfm	1.7
Air Tank Pressure:	psi	3.5
Sodium Hypo Tank:	gal	1/4 1=44
Phosphate Tank:	gal	4.5
Phosphate Feed Rate:	mt/mîn	2
Bag Filter dp:	isq	0
CO2 Cylinder Pressure:	psi	70/25
H2 Cylinder Pressure:	psi	400/1

APT OUSITE PEPAIRING NITHATE ANALYZER, NO PEAPINGS WERE RECORDED

FOR NITPOTE AT HIME. DAVID MUSICO AND JOHNATHAN POBERTS WITH NALCO, VISIT SLITE FOR

CONSULTATION OF FILTER AID, IF WY THE TREATMENT PROCESS WAS EXPLAINED.

PEAUESTED DISCHAPGE BUITS INFORMATION AND WATER QUALITY PESUITS. DEAFT

EWAIL REGARDING VISHT - COLE FROM COM ONSITE PICK-UP ALL TRASH AND

ESTCP: Techr y Demonstration Plan Perchlorate Destruction Lang Membrane Biofilm Reduction ESTCP Project Number ER-200541

	Danier			•	Lead Reactor:	-	_						Manual Site Data:]	
 1			7										Outlet Totalizer:	gal	4064700
eter	\$	ent	415	(J.)	₹	i jig	Filter	hed Fer	7. je	ent 5	1 lent	Tall Ed	Target Flow Rate:	gpm .	8
Paramete	Units	Influent	AERAT	C.A.G	, e	WBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	Internal Recycle Rate:	gpm	210
			_	,	700	≥ ayn callangi		7,91	. 新用 子 水水(10.00)			Maria di Sal	MBfR 1 pH:	-	7,2
		7.53	7.92	7.47	7.58		7.85		開報(其代)) [編集 - 東北 - 5				MB(R 2 pH:	-	7.2
perature	(°C)	19.2	20.7 -90	<i>20</i> ,9 -583	20,3		106	19,9					MBfR 1 ORP:	mV	-558
	(mV)	125			7440		770	145	提供 基津 35 提供 1.数字 43				MBfR 2 ORP:	mV	-272
olved Oxygen	(mg/L)	7	7 ंदित	0,00				2					Nitrate Analyzer:	mg-N/L	6,22
ate	(mg/L)		6	\$1.5	SALAN SA Kulista S			<u>~</u>	機能の変わる。 機能の変われ				Nitrate Analyzer Frequency:	Hz	5312
te	(mg/L)	Ð	3	1,5				2					Last N Feed	ppm (N)	8.40
de	(mg/L)	0	0	0	0			\mathcal{O}					Last N R1	T	0.07
bidity	(NTU)	٠.	14,7531		422	TOTAL CENTURES	0.38						Last N R2	+-	6.20
orine Residual	(mg/L)		1499					0		•				 	4,3-
				- :				<u> </u>					Air Flow (Aeration);	scfm	1.6
								ļ					Air Tank Pressure:	psi	3.6
							•		<u> </u>				Sodium Hypo Tank:	gal	9
							ŀ		<u> </u>				Phosphate Tank:	gal	4.5
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	l	<u> </u>		<u> </u>				Phosphate Feed Rate:	mi/min	2
			•	•									Bag Filter dp:	psi	0
					•								CO2 Cylinder Pressure:	psi	0
					•								H2 Cylinder Pressure:	psi	1700
s: NGECTU	DI VA	LVE TO	IZ PHOS	SPHATE	LINE	was o	LOSED	UPON	SIR AR	LRIVAL	. IMME	DIATEL	Y OPENED A	ND R	EINSTATE
ow To	ع سي	, PA	مر الم	m.l.s. ""1	EST BI) PHP	SPATE	<i>∆</i> n<.	N6 I	و عامدان	(A) 42	8 USD	L = TIME ZER	0 (2)) 460m2=

Data Log =t

ESTCP: Tech

y Demonstration Plan

Perchlorate Destruction Cong Membrane Biofilm Reduction

ESTCP Project Number ER-200541

Date: 6-1-11
Time: 8:30 AM
Operator: DANIEC BEROKEF

Lead Reactor: R1

Parameter	Units	Influent	26455 CAP3-1	2.4G	Aeration	MBfR Solids Drain	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Ouffall
pH .	•	7.53	7.41	7.56	7,91		7.87	7.93		2 . 4 .		
Temperature	(°C)	18,0	19.6	20.2	2001		20,1			N. 1		
ORP	(mV)	166	-33)	-495	-114		127					1.50
Dissolved Oxygen	(mg/L)	9	0.15	0	7		7	フ				
Nitrate	(mg/L)	8	7	3,75				3.75				n a sa
Nitrite	(mg/L)	0	008	3,0			-	3,0				
Sulfide	(mg/L)	Ø	0	Ð	0			0				
Turbidity	(NTU)	0.19		差别 形态	0.81	-	0.39	0.27				
Chlorine Residual	(mg/L)				11.	1						
												-

Manual Site Data:		
Outlet Totalizer:	gal	4120700
Target Flow Rate:	gpm	10
Internal Recycle Rate:	gpm	210
MBfR 1 pH:	-	7.2
MBIR 2 pH:	-	7.2
MBfR 1 ORP:	mV	-
MBfR 2 ORP:	mV	-691
Nitrate Analyzer:	mg-N/L	2.24
Nitrate Analyzer Frequency:	Hż	5777
Last N Feed	ppm (N)	8,34
Last N R1		6.30
Last N R2		2.23
-	<u> </u>	
Air Flow (Aeration):	scfm	1.6
Air Tank Pressure:	psi	3.6
Sodium Hypo Tank:	gal	7.5
Phosphate Tank:	gal	3,2
Phosphate Feed Rate:	ml/mln	2
Bag Filter dp:	psi	0
CO2 Cylinder Pressure:	psi	(== .
H2 Cylinder Pressure:	psi	1700

CHECKED PH PROBE AGAINST BUFFERS - RESULTS WERE AS FOLLOWS: 4.00, 7.02 10,17. 5/31/11 THE PHOSPHATE MADE OPERATOR sur E THAT CHEMICAL WAS BEING FED INTO TANK SOMETIME OVER THE NIGHT AND BUILT HIGH パンハンケ WHICH PIZEVENTED OUT AIR BUBBLE IMMEDIATELY BLED AND INCREASED FROM A 25 STROKE LENGTH 35. OVER THE SPAN FROM A TOTAL OF B. Ygal # 43 POY SOLUTION ADDED TO SYSTEM. YESTERDAY, OPERATOR ADDES 2,5 gal 420 ANS 200ml 95% H3FOY

GET CLZ SPREADSHEET GOING -> CALC WHATS CONC. IS BEING DOSED

INTANK: DID A 4000: | DILUTION -> YEELDS 3. OPPM = 3.0 ×4000 = 12,000 ppm in TANK

B-18

INCREASED CL2 FAME TO 1005TROKE LENGTH AND DECREASED SPM TO 40.

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

do 103/11 Date: 9:00 Time: ARUCAN Lead Reactor: P2/ Operator: Manual Site Data: Outlet Totalizer: gal Permitted Outfall GAC 2 Effluent 10 IX1 Effluent Target Flow Rate: Internal Recycle Rate: 210 7.2 MBfA 1 pH: 7.54 7.55 7.94 MBfA 2 pH: 7.2 20.4 20.3 18.8 19.4 20.0 20 Temperature MBIR 1 ORP: -59 330 220 -460 (mV) MB!R 2 ORP: -70% 7.5 9 Dissolved Oxygen (ma/L) Nitrate Analyzer: mg-N/L 5.04 5.0 1.5 Nitrate Analyzer Frequency: 5450 0:75 (mg/L) 8.3 Last N Feed 0 0 (mg/L) Last N R1 5.01 0.61 0.4-0.25 (NTU) Turbidity Last N R2 0.99 Chlorine Residual (mg/L) Air Flow (Aeration): 1.6 3.0 Air Tank Pressure: Sodium Hypo Tank: 164/5 Phosphate Tank: Phosphate Feed Rate: Bag Filter do: CO2 Cylinder Pressure: H2 Cylinder Pressure: CHIMEDON WELDING STOP BY TO CHECK CHEMICAL SUPPRY, PICHARD W APT WATER IS ONS! TO PEPAIR THE CHICKING DOSING PUMP. NUTRATE FE ANALYZER **FEED** LINE TAP A NEW PHOSPHATE INTECTION POINT, AND THY TO TROUBLESHOOT ANY THE PHOSPHATE FEED PUMP, DANIEL IS ONSITE TO ASSIST APT ON TROUBLES PROTING THE CHIORINE PUMP. HE HAS MIXED NEW BATCH OF CHURWE SOLUTION. HE WILL CHECK CHIOPING PESIDUAL @ THE DIFFECTLY DOWNSTREAM OF INJECTION POINT. ADDED 4 GAL 12.5% CLZ AND LEGAL WATER FROM FILTER EFFLUENTS CLZ TEST & 4GAL +27212.5% CLZ + JGAL 3% CLZ -> PUMP SETTING @ 100 STROKE LENGTH + 35TM 285PM + 12 GAL FILTER EFFLUENT YEILDS SPPM

Date:	6/6/	11														
Time:	8:3	30		_			_									
Operator:	ARUCI	AN		_	Lead Reactor:	22							·	_		
Sape Gradings or													Manual Site Data:		•	
	-1		I v.	Τ	 	- m	Т	ī	<u> </u>			1	Outlet Totalizer:	gal	41933	00
neter	a a	l #	2=	Q ₂	, Eg	fR Solids Drain	ent a	e h	2 f	7.2 ent	- -	itted Fall	Target Flow Rate:	gpm	12	1
Paramete	Units	Influent	MBIR 1	EAD MBfR 2	Aeration	# # E	Media Filter Effluent	Finished	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	Internal Recycle Rate:	gpm	210	1
	 	- Par par	7		100				entra de la la				MBfR 1 pH:	-	7.2	1
pΗ		7.52	\$20.3	7.54 B.5	7.83		7.79	7.93					MBfR 2 pH:	-	7.2	1
Temperature	(°C)	18.7		H	20.3		20.3	 	- 1844 ときついて - 1846 と同じた。				MBfR 1 ORP:	mV	-512	1
ORP	(mV)	10	-545°	0.15	160		ے نے	250					MBfR 2 ORP:	m∨	-302	1 .
Dissolved Oxygen	(mg/L)	7	2.2	5.6	7.0		5.5	2.0					Nitrate Analyzer:	mg-N/L	1.86	1
Nitrate	(mg/L)	0	1.7	1.0		1844 1841 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 184 		1 20					Nitrate Analyzer Frequency:	Hz	5810	
Nitrite	(mg/L)	 6	0	0	0			1.34					Last N Feed	ppm (N)	8.33	
Sulfide	(mg/L)				0.72			0.42					Last N R1		1.85	
Turbidity	(NTU)	0.25			0.72								Last N R2		6.48	1
Chlorine Residual	(mg/L)		13K 34 t	. <u>Asian Nada</u>	さまり - 5年 1			0		Jani (1	<u> </u>					1
MB(sc)	September 1	1					3	<u> </u>	-		<u> </u>		Air Flow (Aeration):	scfm	1.7	
W/46/2/	BOOKER VEL	RUPGE	<u> </u>					*	·		-	+	Air Tank Pressure:	psi	3.6	1
WEFF 1	mi	83		-			-						Sodium Hypo Tank:	gal	15.5	ADJUST
wafe 2	ml	2				<u> </u>		 					Phosphate Tank:	gal	4.7	100€
mant a	\$00C	<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>			<u> </u>	Phosphate Feed Rate:	ml/min		made
•													Bag Filter dp:	psi	55.	
0.41-													CO2 Cylinder Pressure:	. psi	85/2	90
8:45 Notes:				/				. ^		1	•		H2 Cylinder Pressure:	psi	90/170	20
- C1	DE W											H	MITEOGEN	PSI	1	1
													E PATE ON Y		ibe .	-
													DICTED ON PH			_
													FLOW. CYDE			_
													E HAS SET PHOS			
@ 652	TUCHETH	LENATI	1 (0 10	6 STRA	res. CH	102 INC	Bumb	Ser	AT LOS	FREQU	enct -	to ache	ive I ppm clyo	ie to	P (TR-ITE	Demos
(P	IOSPHATE	- Dump	_(4%)			\					٠			<u> </u>		
	MINS.)		•	,	PATE	7							Note: Che		(a) 200	2014
(-110	ine !	STROKE!	STRUE	S (MEA	54 pe 17)		\			•					1 PPM
7	:00	30	25		<1 m/	wh S	EEMED	to Loc	SE PRI	we,			top	C12	4	· .
1 .	1	35	25		المنا/اسار				4.7	_			PECA Y	ST.	^	ک (بہر آ
. \	:00	1		1	ml /mi.						- 1					$\stackrel{\smile}{\smile}$
,	7:00	契	25	<u></u>	m/m	k Edm			•		/					
	2:00	50	20	16	f h mi/n	``` ``.≤₄	EVED -	TO LOAG	C PRIM	€)					•
) 7	2:00	50	10	2	b mi/n	uh —	الورياماوي			•)					
/ 2	2:00	60	10	1~	2-3 ml	/ win		B-20			\sim					

Data L	On.	Sh	ee	l
--------	-----	----	----	---

ESTCP: Technology Demonstration Plan
Perchlorate Destruction sing Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: Time:	6-10	AM		1			1									
Operator: Shaded boxes are to re	DAN E	EROKU		l	Lead Reactor	KI							Manual Site Data:			
						T <u>.</u>			Ι				Outlet Totalizer:	gal	425310C	
Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall		Target Flow Rate:	gpm	12	
Para	5	₫	·Lc Rea	Pea Pea	Aera	Aedia Effil	Finis	8 🖺	\$ ₫	≚≝	Per l		Internal Recycle Rate:	gpm	210	1.0
-11		7.53	7, 50	7.54	7.85	7.83	7.88						MBfR 1 pH:		7.2	
pH Temperature	(°C)	18.2	19.5	20,3	20,2	20,2	19.4						MBIR 2 pH:	-	7,2	
ORP	(mV)	123	-320			80	305						MBIR 1 ORP:	mV	-252	
Dissolved Oxygen	(mg/L)	9	0.15	0	6	6	5.5	NEWS					MBIR 2 ORP:	mV	-662	
Nitrate	(mg/L)	7.6	6.0	5.0	1		4.5						Nitrate Analyzer Purge rate	.mg-N/L	41	}milimeter
Nitrite	(mg/L)	0	1.5	3.0	See See		2.4						Mirate Analyzer Eroquency: K2	سجاظه	40)
		Õ	0	0	0		0						Last N Feed	ppm (N)	7.79	
Sulfide Turbidity	(mg/L)	_				0.44							Last N R1		4.84	
Chlorine Residual	(NTU)				Opto	0.47	0.70						Last N R2		1.06	
Chionne Hesiquai	(mg/L)	建筑有限公司				100206568						自己 有的人的现在分词	Air Flow (Aeration):		1.7	
													Air Tank Pressure:	scfm	3,6	
													Sodium Hypo Tank:	psi	6	
							***						Phosphate Tank:	gal	1.5	
									-				Phosphate Feed Rate:	gal	2.5	
* Signifies either ME	BfR 1 or MBfR 2	depending on v	hich reactor i	s in the lead	or lag position	this changes	every 72 hou	rs					Bag Filter dp:	ml/min	0	
												BACKUP	CO2 Cylinder Pressure: H2 Cylinder Pressure:	psi	700	
												جـ عدد	H2 Cylinder Pressure:	psi	1400	

Miscellaneous Results:

Parameter	Turbidity (NTU)	Chlorine Residual
MBfR Solids Drain	1	
Filter Backwash	-	
Post Media Filter		30pm

NZ MICROBULK. BEGAN RECORDING MEMBRANE PURGE RATE TODAY AS NITRATE ANALYZER WENT DOWN PRESS THE RESET BUTTON-FIXED READING AROUND THEN APT HAD ME SODILIM HYPO (12,5% 8 GAL MEDIA FILTER EFFLUENT. SET PUMP @ 180% STROKE LENGTH DUE TO ADDED 330 ML PHOSPHATE TANK AND WATER ME PRESSING WRONG KEY

ON ANALYZER

B-21

ESTCP: Technology Demonstration Plan Perchlorate Destructi sing Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: 6-13-1\
Time: 9'30 AM

Operator: D. BEROKOFF

Lead Reactor: R2

Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	
pН		7,52	7.53	7.51	7.80	7.73	7.68					
Temperature	(°C)	18.8	19.7	20,5	20.4	20,5	20.2					
ORP	(mV)	585	<i>-335</i>	-570	-90	100	150					
Dissolved Oxygen	(mg/L)	9	0.15	0	6	6	5.5					
Nitrate	(mg/L)	9	8	3.5			3.0					
Nitrite	(mg/L)	0	2.2	204			1.7					
Sulfide	(mg/L)	0	0	0	0		0					
Turbidity	(NTU)	0.45			0.86	0.56	0.38					
Chlorine Residual	(mg/L)				,		0					
		-						-				

Last N R1 Last N R2 Air Flow (Aeration): Air Tank Pressure: scfm 3,5 Sodium Hypo Tank: psi Phosphate Tank: gal Phosphate Feed Rate gal 205 Bag Filter dp: ml/mir 0 CO2 Cylinder Pressure: psi 500 H2 Cylinder Pressure: psi 1400

4301300

210

-611

-228

7.81

<u>39</u> 41 PHILIMETERS

gal

gpm

mV

mV

mg-N/L

Manual Site Data:

Outlet Totalizer:

Target Flow Rate: Internal Recycle Rate:

MBfR 1 pH: MBfR 2 pH: MBfR 1 ORP:

MBfR 2 ORP:

Last N Feed

BACKUP

CYLINDERS &

Miscellaneous Res Parameter	ults: Turbidity (NTU)	Chlorine Residual
MBfR Solids Drain	-	
Filter Backwash	•	
Post Media Filter		2,5

DUE TO DISCHARGE COMPRESSION FITTING CONNECTION ON DOSING PUMP - WAS NOT TIGHTENED. CEAK / CEASED UPON TIGHTENING FITTING).

(LEAKING NOISE PHOSPHATE DOSING PUMP WAS LEAKING UPON ARRIVAL ANALYZER WAS OFF UPON ARRIVAL AERATION COMPRESSOR WAS OFF UPON ARRIVAL, OVER THE ANALYZER AND AGRATION COMPRESSOR TO SHUT OFF- AS WEEKEND THE GFI SWITCHED OFF CAUSING NITRATE GFI AND BOTH AERATION/WZ ANALYZER CAME BACK ON. THEY ARE TIED TO THE SAME RECEPTACLE. RESET 140 SAM (FROM 40) JUST TO BETAIN HAD TO INCREASE SODIUM HYPO Pump To ON POST FILTRATION, APPEARS SODIUM HYPO APPEARS TO BE DEGRADING

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: Time:	6-15 10AN			-04										-	469	
Operator: Shaded boxes are to re		ROKOFF	F0 111 2		Lead Reactor:	R2							Manual Site Data: Outlet Totalizer:	ER	534393	ZTAKEN @
			SP-100B	Sr-200A								interest to the same	Outlet Totalizer:	gal	4333400	
Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	(a) +	Target Flow Rate:	gpm	12	
Pari	.	_ ₹	- 8	. %	Aei	Medi	Ë >	3 #	Ø #	- #	Per o		Internal Recycle Rate:	gpm	210	2.7
-11							(10 7 my 42 m	MBfR 1 pH:	16	7,2	
pH	(°C)			2-2-21/2									MBfR 2 pH:		7,2	1
Temperature ORP							4-6					1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MBfR 1 ORP:	mV	-611	1
	(mV)		-	- I with									MBfR 2 ORP:	mV	-188	1
Dissolved Oxygen Nitrate	(mg/L) (mg/L)				No. and the		15			A A	No.	100 to 10	NitrotenAnalyzer RISPARG RATE	mg-N/L		>MILLIMETERS
				1240									Nitrate Analyzar Erequency:	Hz])", [2 +/6/5]
Nitrite	(mg/L)				The Market of					Sen Street	bales, Skills		Last N Feed	ppm (N)	8,26	
Sulfide	(mg/L)			TO THE PARTY OF TH									Last N R1		0.79	=50
Turbidity	(NTU)								国内国际				Last N R2	()	6.12	1
Chlorine Residual	(mg/L)												Air Flow (Aeration):		1.7	1
0.00		- 1	7	N. 10									Air Tank Pressure:	scfm	3.8	
										25 A A		1721	Sodium Hypo Tank:	psi	0	1
								1.					Phosphate Tank:	gal	3.7	a s
		507 200		4 4 1 1									Phosphate Feed Rate:	gal	O* -	L
* Signifies either ME	BfR 1 or MBfR :	2 depending on	which reactor	is in the lead	or lag position -	this changes	every 96 hou	urs				لِـــــا	Bag Filter dp:	ml/min	6*	ν, , , , , , , , , , , , , , , , , , ,
100		, ,										10A 15	CO2 Cylinder Pressure:	psi		see Notes
												V	H2 Cylinder Pressure:	psi		1
Miscellaneous Resu										BAG REAL	FILTER > 6ps) 1	DP GANG DURING	INLET PRESSURE	P51	11,2	
Parameter	Turbidity (NTU)	Chlorine Residual	Chlorine Residual							AND	AFTER S	SUMP				
MBfR Solids Drain Filter Backwash										GOING	04/05	F.				
Time Pump setting (%/sp		1000]												

PATEVANS, JEN SMITH VISITED SITE TO GO OVER SYSTEM W/JEN.

65: PHOSPHATE SUCTION LINE ACCUMULATED AIR BUBBLES CAUSING - FYSTEM NO PHO

NOISE PHOSPHATE SUCTION LINE ACCUMULATED AIR BUBBLES CAUSING SYSTEM NO PHOSPHATE BOSE DOSED TO SYSTEM. VISUALLY INSPECTED TOPS OF REACTORS - FOAM ACCUMULATING IN LAG REACTOR WHICH IS A SIGN OF BIOLOGICAL ACTIVITY. ALSO ON RI IT WAS OBSERVED THAT THE CENTER MODULE WAS MORE BROWN IN APPEARANCE COMPARED TO THE OUTER MODULES. TOOK WEEKLY PERMIT SAMPLES ON EFFLUENT.

PHOSPHATE PUMP TEST (FLOW): 480ml-453ml=27ml in IOMIN = 2.7ml/MIN @ PLMP SETTING OF SEDD STROKE LENGTH }

445ml-420ml=25ml in 10min = 2.5ml/MIN @ PLMP SETTING OF SEDD STROKE LENGTH

B-23

400ml -380 ML = 20ML IN 10MIN @ STROKE &=30 AND 205pm

TIME D	TIME 3	Pump STROKE LENGTH	Pump SPM	VOLUME DISPLACED	ML/MIN
9:04m	9:14 am	60	20	467,5ml - 434ml	3.35
9:16 AM	10:12AM	60	30	427mc - 239mc	3.36
10:59Am	11:12 AM	50	30	766mc - 300	5.72
11:13 AM	11:31AM	40	30	278mi - 214mi	4.92
11:33 AM	11:47 Am	40-30	30		4-
- * 1				MIN (30% STROKE /20 5831	3,5

B-24

Data Log Sheet

ESTCP: Technology Demonstration Plan Perchlorate Destruct sing Membrane Biofilm Reduction ESTCP Project Number ER-200541

ate: ime:	6-16-11 8:30AM		*	some Hype Pery									71/27		
perator: aded boxes are to re	D. BER	CKOFF		1	Lead Reactor:	RI				1		or 1	INLET TOTAL	LIZER	:54933
		•	57-100A	SP-200B)				445		7.4	1 6	Manual Site Data:) and	The state of the s
k						b		Army bearing		133			Outlet Totalizer:	gal	4348200
Parameter	Jnits	nfluent	*Lead	*Lag Reactor	Aeration	Media Filter Effluent	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall		Target Flow Rate:	gpm	12
Par	ם	<u> </u>	- §	P. eg	- Aer	Medi	ië 🗴	3 ∰	9 ₩	- ₹	P 9	1	Internal Recycle Rate:	gpm	210
ı		7.66	7.52	7.53	7.84	7.76	7.87						MBfR 1 pH:		7.2
mperature	(°C)	19.0	19,9	20.6		19.6	20.4						MB(R 2 pH:	A10-6	7.2
P	(mV)	161	-282	-526	-75	151	65			世際事業企			MBIR 1 ORP:	mV	- 303
solved Oxygen	(mg/L)	9	0.5	0	7	6	6		Fig. 19				MBIR 2 ORP:	mV	-663
ate	(mg/L)	9	80	4			4						Nitrate Analyzer:	-mg-N/L	A - 1
		0	1.5	3			3						Nitrate Analyzer Frequency:	+Hz	
te	(mg/L)	0	-		O		0						Last N Feed	ppm (N)	7.95
ide	(mg/L) (NTU)	0,97	0	0		0.38	-						Last N R1	W 0 1	5.42
oidity			2		1,01	0:50	0,77						Last N R2		0.69
orine Residual	(mg/L)		A SALUR CO				1002						Air Flow (Aeration):	14	1.7
									No.		,	7	Air Tank Pressure:	scfm	3.8
													Sodium Hypo Tank:	psi	0
				X 11			13.1	1	8		Qu.	1	Phosphate Tank:	gal	4.3
							-						Phosphate Feed Rate:	gal	2.0
gnifies either ME	fR 1 or MBfR 2	depending on	which reactor	is in the lead o	or lag position -	this changes	every 72 hour	rs .					Bag Filter dp:	ml/min	6
							96					200005	CO2 Cylinder Pressure:	psi	800
												3ACKUP {	H2 Cylinder Pressure:	psi	1400
cellaneous Resurameter fR Solids Drain er Backwash st Media Filter	lts: Turbidity (NTU)	Chlorine Residual	(* _A	JOTE: 1 URING	BEGAN OUR S	SAMPL ITE M	ING FR	20M 5	5P-100A '5EN	+ 5F ON 6/	2-200B	TODAY	PER PAT'S	DIRE	CT 10N
Sta Cer	HEU 3	1 twb	dity S	tantan	ds; me	sured	30.61	76 wi	14 NTU	, and	OO NT	u.DI	OTICED AIR MITS WAY TO I WRITER FROM NT-POST NUTE ED LEAD REAV	3€1NG	6, <0,
7 (0~252	x perchi	locate 1	and no	trateli	nitrite	oraly:	5/5		sal cr.	59	01-200	3) (5)	La Leno Rest	1024	LMEJ KON
04	1200	01	rigHO2	7 × 19	in of the	eed wx	ater to	phos	Phate	- tank	-i final .	reading	t=5 gallons		

6/16/11 - SUDIUM Hypo Pump

Time 1	TIME @	Pump STROKE LENGTH 90	SPM	DISPLACED (MC)	me/min
1:00pm	1:10pm	100	30	476m2 - 417mL	5.9 mg
1:12 pm	1:22pm	100	20	407ml-364ml	4.3
1:24pm	1:34pm	100	15	355mi - 322mi	3.3
1:35pm	1:55pm	100	40	458mi - 308	7.5
1:56	2:06pm	100	50	500mc - 394	10.6
2:07	2:24pm	100	55	454-253	11.8

(6/16/11)

2:40pm

		SP-100A	SP-100B	SP-200B	
~	PH	7.49	7,49	7.51	
	TEMP	20.7	20.6	21.10	
	ORP	-300	-395	-559	
	DO	0,4	0,2-0,1	0.20	
	NITRATE	8	8	4	
-	NITRITE	1.7	1,8	3,6	
		1	•		B-26

SP-200A not collected (MBFR 1 is in the lead)

Post Media Filter

ESTCP: Technology Demonstration Plan Perchlorate Destructi sing Membrane Biofilm Reduction ESTCP Project Number ER-200541

6/20/11 Date: 800PM Time: Lead Reactor: R2 INFLUENT TOTALIZER: 614854 D. BEROKOFF Operator SP-200A SP-100B Outlet Totalizer: Permitted Outfall Media Filte Effluent Target Flow Rate: 12 Internal Recycle Rate: 210 MBfR 1 pH: 7.2 7.66 7.49 MBfR 2 pH: 7/9,9 22.7 23.0 7.2 Temperature (°C) MBfR 1 ORP: -613 -425-600 120 (mV) MBfR 2 ORP: Dissolved Oxygen (mg/L) 3.25 2.83 Hilopm Nitrate (mg/L) Nitrate Analyzer Frequency: Nitrite (mg/L) 7.81 Last N Feed Sulfide (mg/L) Last N R1 0.06 Turbidity (NTU) Last N R2 4.84 **♦>5** Chlorine Residual (mg/L) Air Flow (Aeration): 1.8 3.9 Air Tank Pressure: 30* Sodium Hypo Tank: Phosphate Tank: 2.2 Phosphate Feed Rate: Mymin _gat-Bag Filter dp: Signifies either MBfR 1 or MBfR 2 depending on which reactor is in the lead or lag position - this changes every 72 hours SEE MAKE/MODEL : IWAKI/EWB1071-VCC CAPACITY: 0.6 GPH CO2 Cylinder Pressure: 1400 NOTES H2 Cylinder Pressure: 1500 RI Purge rate um Miscellaneous Results: Turbidity Chlorine Parameter R2 Purge rate MM 38 MAX PSI : 115 Residual MBfR Solids Drain Filter Backwash

NOTES ADDED 16 GAL 12.52 SODIUM HYPO ADAND IL GAL FILTER EFFLUENT, MEAS BEGAN DOSING POST
MEDIA EFFLUENT AROUM AT 12:30 pm, PUMP SETTING MESSET TO 1002 STROKE LENGTH AND SUSPEM FOR
AN INJECTION VOLUME OF ~ 10.6 ML/MIN. AT 2:30 pm MEASURED RESIDUAL ON FINISHED WATER,
IT READ WELL OVER Sppm. BEFORE LEAVING SITE I TURNED DOWN METERING PUMP TO 100% AND
30 Spm FOR AN INJECTION VOLUME OF ~ 5.9 ML/MIN. APT HAD ME CONDUCT A NITRATE ANLYZER
TEST BETWEEN 1:15 pm. 2pm ALL WHILE SHUTTING OFF FEED - THIS WAS DOWE PIZIOR TO TAKING
DAILY DATA - THIS CAUSED HE US TO NOT BE ABLE TO TAKE ANY FURTHER DATA, TOOK WEEKLY
SAMPLES DED FOR PERMIT COMPLIANCE. COVERED AND H SOD, HYPO TANK WIBLACK BAGS, COVERED
ONLINE TURBIDIMETER AND DEP PROBE ASSETTATED W/BLACK TRASH BAGS. TO
RA

NITRATE ANALYZER

diameter 1		•
TIME	<i>N</i>	HZ
1:18pm	0.10	5965
1:24pm	0.10	5965
1:30 pm	0,10	5965
1:35pm	1	5965
1:40 pm	1	5965
1:45pm	L .	5965
	1	5965
1:55pm	0010	5765
	ì	5965
2:01pm	10.10	13 763

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Da	_{nte:} %/27/	u _		Time: 7:30 Operator: ARUCAN											
		· · · · · · · · · · · · · · · · · · ·			Fiel	d Samples	1								
Calibration	pH calibration? Standards: 24 Standard Readin	ORP calibration?													
	Lead Reactor:	MfBR1	□ MfBR2		<u>Lead Sample</u> <u>Lag Sample</u> SP-100A										
!	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor,	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall		
_	рH	(std units)	7.52	7.71	7.58	7.86	7.81		7.95						
Sample Data	Temperature	(°C)	18.8	20.6	21.5	214	21.6		21.5						
ᇛ	ÖRP	(mV)	415 201	-120	-610	-130	90		255		3.7		445		
San	Dissolved Oxygen	(mg/L)	9	0.4	0	6.5	7		7						
	Nitrate + Nitrite	(mg/L-N)	8.75	6.0	0.4				0						
	Nitrite	(mg/L-N)	0	1.7	0				0	,		, 			
	Sulfide	(mg/L)	. 0	0	0	0			0						
	Turbidity	(NTU)	0.43			0.69	0.34	1 3 35 3	6.38						
	Chlorine Residual * Signifies MBfR 1 of	(mg/L)	aendioa oo 2			on this shares	monitors	7.5	6.0			to remain blar			
	Oiginies Mbit/ 1 C		pending on it le		sad or lag positi	on - gns changes	Creir 30 IIC	uis	-	revie, allete	n myas ala	(Prominer Dias			

Post Finished Water									
System	Inspectio	n							
Collect while sump is ru	nning								
Bag Filter ∆P	psi								
GAC-1 Pressure	psig								
GAC-2 Pressure	psig								
IX-1 Pressure	psig								

Feed Tank Additions										
Time										
Time:	H3PO4	Sodium Hypo								
Initial Tank Level (gal)	MAZI	15								
Stock Added 570 m	135	Ø								
Water Used For Dilution	3.0	15								
Volume Dilution Added (gal)	30	15								
Total Volume Added (gal)	COLUD	15								
Final Tank Level (gal)	5.0	30								

Backwash sta	rt time:		
Backwash dur	- γ	min	
Initial Product	gal		
Final Product	gal		
Time of sampl	e collection:		
Location	Turbidity (NTU)	TSS Col	lected?
MBfR Solids Drain		□Yes	□No
Filter Backwash		□Yes	□No

	Inventory						
H3PO4 Stock (gal)							
Sodium	Hypo Stock (gal)						
est	Dissolved Oxygen						
d d d?	Nitrate + Nitrite						
균월	Nitrite						
E S	Sulfide						
Additional Field Test Kits Needed?	Chiorine						
ğ	o-Phosphate	·					

	NOTES:									
	Clapesional @ FINTER EFFLYENT = 7.5, Clapesional @									
	THE PRODUCT = 6.0. FIELD SAMPLES THEN @	8:00 . # \$ OPP								
	PROBES TESTED ACTAINST STANDARDS, INFLUENT O	OP WAS PETESTE								
	AND = 201. B-29									

Treatment Sys	stem In	spection
Outlet Totalizer	gal	
Target Flow Rate	gpm	12
internal Recycle Rate	gpm	212
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-65
MBfR 2 ORP	m∨	-570
Nitrate Frequency	Hz	5966
Last N Feed	ppm (N)	9.10
Last N R1	ppm (N)	5.49
Last N R2	ppm (N)	0.06
MBfR1 Sparge Rate	mm	-
MBfR2 Sparge Rate	· mm ·	_
Phosphate Tank Level	gal	2.1
Phosphate Feed Rate	mL/min	2
Phosphate Pump Settings	spm % stroke	30 20
Aeration Tank Air Flow	scfm	1.7
Air Tank Pressure	psig	4
Target Media Filter Flow Rate	gpm	
Media Filter Inlet Pressure	psig	
Media Filter Outlet Pressure	psig	5
Sodium Hypo Tank Level	gal	15
Sodium Hypo Feed Rate	mL/min	
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	
Coagulant Feed Rate	mL/min	
Coagulant Pump Settings		
CO2 Cylinder Pressure	psi	-
12 Cylinder Pressure	psi	
12 Pressure	psi	•
12 Flow Rate	scfm	

NOTES: 9:45 - PECIEVE SHIPMENT OF HYPOCHLORITE, 4 DRUMS OF
IC GRUNDIS WERE DELIVERED. HITPATE + NITRATE FIELD SAMPLES
WERE TAKEN PARAMEL OF DI WATER & 10.01 0.1 mg/L AS N
STANDARD SOLUTIONS. PESUITS AKE SUMMARIZED BELOW.

10:35 - PECIEVE SHIPMENT OF CHEMETRICS PROSPHATE TEST KIT.

P TANK SOLUTION IS DIMPTED TO 1:10 x & TIMES. THAT SOLUTIONS
IS REDUCED TO 1:2. THE RESULT IS RECORDED BELOW. 12:00

TEST AMERICA ONSITE TO APPE PICK-4P SAMPLES. COM CONTACTED
APT AND DISCUSSED PHOSPHATE TANK. IT WAS DETERMINED THAT
ADDITIONAL H3POY WAS ADDED ON 06/22 (900ml H3POY & 4.5 GALS H20).

A LEAK IS PRESENT BETWEEN GAC VESSELS. IT ONLY OCCURS WHEN

SYSTEM IS UNDER PRESSURE. APT HAS WEOFMED COM, THAT HYDROGEN
GENERATOR WAS SHUT OFF ON THURSDAY, HYDROGEN CYLINDERS AFE
CHUBRATED WING THE AMCO STANDARDS.

TO SOUTH TO SOUTH THE SOUTH OF THE SOUTH OF

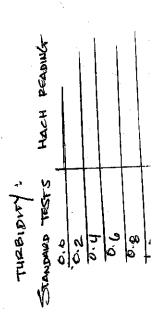
SOLUTION PEDICED TO OTE CONCENTA!

CANEDON

HITPATE STANDARD

INTERPRETE INTERTE NITRITE NHRITE

10.0 ± 0.1 mg nitrate


5 Tandard

10 (2)

250 mg/L hitrate

HOTE: STANDARD WAS DILLITED TO A 5:1 SOLUTION (NITRATE)

PHOSPHATE: AND SYDEDUCTION OF 10:1 AND DINATION DINATION WAS 5X DEDUCTION 4x 5X DEDUCTION 5X 1.55 DEDUCTION 4x 5X DEDUCTION 4x 5X DEDUCTION 4x 5X DEDUCTION 5

ESTCP: Technology Demonstration Plan

Da	nte: 07/05	-/u		Time:	. 45	Perchlorate	Destruct ESTCP I	Project Nu	ımber ER	-20054	1	ction					<i>9</i> 69289	7
_` 		/		Time.			·	Operato	r: <u>A2</u>	uca	<u> </u>	_			Treatment Sys	stem In		
c	1			* .	<u>Fie</u>	ld Samples	<u> </u>]	Outlet Totalizer	gal	466410	-
Calibration	pH calibration? Standards: □4		ÍNo		ORP calibrat Temp (Deg 0	ion? □Yes)	ŹNo		Turbidity	calibrati	on? □	Yes N	0		Target Flow Rate	gpm	10	
Cali	Standard Readir	ng: 4:	7:10:		Standard Re	ading: 200:			Standard	s: ⊔0 Readin	LJ0.2 🗔 g: 0:	0.4 ቯ0.6 1:	□1.0 ———		Internal Recycle Rate	gpm	210	
	Lead Reactor:	MfRR1	. □ MfRR2	Lead Sample SP-100A E	Lag Sample SP-200A □	0-		72h			 -	7			MBfR 1 pH	std units	7.2	
		T	T	SP-100B □	SP-200B S	, Sai	Tiple Colle	ction Time:	8	<u> </u>	J .			8	MBfR 2 pH	std units	7.2	
	mete	Units	ent	ad	it di	lion	er e	ᇦᇐᇼᆝ	ber er	- #	7 E	Ħ	<u>B</u> =	Ĭ	MBfR 1 ORP	m∨	8	
,	Parameter	5	Influent	"Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	ermitted Outfall	7	MBfR 2 ORP	mV	-261	
	pH	(std units)	7.52	7.78	7.62	7.87	7.78	delakens	7.80	<u> </u>		7	~~~~	X	Nitrate Frequency	Hz	4202	
Data	Temperature	(°C)	18.9	20.2	24.1	21	21.3					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.69	•	Last N Feed	ppm (N)	8.13	
e I	ORP		90	-150	-355	40			21.3				23.1	2	Last N R1	ppm (N)	6.36	
Sample		(mV)	9	0.5	0		95		240	Carried And				ĺ	Last N R2	ppm (N)	0.68	
	Dissolved Oxygen	(mg/L)				3.5	5		ص ا		2.7	April 2		l	MBfR1 Sparge Rate	mm	210	
	Nitrate + Nitrite	(mg/L-N)	8.5	7.5	1.8	10 (Mr. 1771	4.43		1.6)# (A)			MBfR2 Sparge Rate	mm	210	
	Nitrite	(mg/L-N)	0	1.6	1.2		(#15), (12) (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13), (13)		1.0						Phosphate Pump Settings	spm % stroke	20	
	Sulfide	(mg/L)	0	0	0	0		***********	0				7. Z	ļ	Aeration Tank Air Flow	scfm	1.7	
	Turbidity	(NTU)	0.45			0.74	0.6		1-2					ļ	Air Tank Pressure	psig	3.9	
	Chlorine Residual	(mg/L)	- Children		na A Giori			0	0	NOTE:	J. O		74 (<u>2</u> 4 4 6		Target Mediá Filter Flow	gpm	-C-36W070	,
٠	* Signifies MBfR 1 o	or MBfR 2 de	pending on if rea	actor is in the lea	id or lag position	- this changes ev	ery 96 hour	s		Note: shade	ed boxes are	to remain blani	r	- 1	Rate Media Filter Inlet Pressure	·	19	
	Post Fin	ished Wa	iter					- - i	[F	<u> </u>	psig	-	
	System	Inspection	on	<u>چ</u> ي	Backwash start	Backwash R	ecora					entory		L	Media Filter Outlet Pressure	psig	井17.S	
Coll	ect while sump is ru	nning		,	Backwash durat		min		.	H3PO4 S	Type Stock (gal)		Check		Sodium Hypo Pump Settings	spm ∵	30	
	Bag Filter ∆P	psi			Initial Product To	ank Level	gal				typo Stoc		60	F	Settings	% stroke	00	
	SAC-1 Pressure SAC-2 Pressure	psig			Final Product Ta		gal			1	Dissolved	<u> </u>	100		Coagulant Tank Level	gal		
	IX-1 Pressure	psig psig			Time of sample				, ,	를 살 나	Nitrate + N		~		Coognitort Dump Cottings			
		Poig			Location MBfR Solids	Turbidity (NTU)	TSS Col	lected?		Fie	Nitrite		~	-	Coagulant Pump Settings			
	Feed Tan	k Additi	ons		Drain Drain		□Yes	□No	ł	5 m	Sulfide			.	CO2 Cylinder Pressure	psi ∮		35
		Народа	Sodium Hypo	"	Filter		*			å X	Chlorine o-Phospha	oto		╌		(
ime		9:00	8:05	15.	Backwash		□Yes ————	□No		<u></u>	o-r nospik			ŀ	12 Cylinder Pressure	psi }	NO KEY	
	Tank Level (gal)	2.5		16			.		<u> </u>					ļ		7	/ /	,
	of Water Used For	MAN NO	(O	}	NOTES:				<u> </u>					Ľ	I2 Pressure	psi	166	
)iiutie	on		FILT. GEF			ier on f			31 201	STAIR.	2 4	CT CF	AL STEA	Ν	I2 Flow Rate	scfm		
<u>, , </u>	ne Dilution Added	MB	8	į		FREEL						D WA		-				
otal gai)	Volume Added	2.5	14			Solution			- 4:16	, main	11710.	. 773 1	25 867		deen			

Note: There are 3785 mL per gallon.

5.0

NOTES 07/07

CNSITE TO FILL PHOSPHATE TANK W/ 2.3 GALLONS OF

INFLUENT WATERONLY. CHECK CHUORINE PESIDUAL IN MEDIA

FILTER EFFLUENT (2.0 ppm) AND IN THE BREAK. PRODUCT

THINK (21.0 ppm, BUT DID SHOW FAINT PINK COLOR). ALSO

CL SWAPPED GAGES ON GAC AND IX SYSTEMS.

GAC GRUGE PANGES O -60 PSI, AND IX NOW PANGES

FROM 0 - 15 PSI.

9405272

Androne Strange Secretary Server Secretary Server Secretary Server Secretary Server Secretary Se

Note: There are 3785 mL per gallon.

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

	/	/ . .					ESTCP I	Project Nu									
C	Date: <u>07/11/</u>			Time:	3.30			Operator	<u> A</u>	-uce	,N	_		ſ	Treatment Sys	tem In	spection
			,		Fie	ld Samples	·		45	ED: ((2.1,2	0, 100		4	Outlet Totalizer	gal	47748
1	pH calibration?	□Yes ⊭	ľNo		ORP calibrat	ion? □Yes ∫	∕ No					Yes ∮	/	1 1	Target Flow Rate	gpm	16
l i	5 Standards: □4	□7 □10	7:10:		Temp (Deg C				Standard	0⊒ :ab	□0.2 □	0.4	□1.0		Internal Recycle Rate	gpm	210
F		<u> </u>			Lag Sample					,			 .		MBfR 1 pH	std units	7.2
	Lead Reactor:	Lead Reactor: ☑ MfBR1 ☐ MfBR2			SP-200A Sample Collection Time: 9:00							MBfR 2 pH	std units				
	eter.	· ·	Ħ	р	.or	5	e z z	J E o	P -	- E	Effluent GAC 2 Effluent	T E	р <u>=</u>	1	MBfR 1 ORP	mV	153
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent		Effluent IX 1 Effluent	Permitted Outfall	P	MBfR 2 ORP	mV	-565
	<u> </u>		<u> </u>	, œ	<u> </u>	ă .	- w				0 11	<u> </u>	-\$~~		Nitrate Frequency	Hz	4255
"	рН	(std units)	7.58	7.62	7.50	7.76						Ç	7.64	⋛ [ast N Feed	ppm (N)	7.82
1 g	Temperature	(°C)	19.0	19.8	20.5	20.3		ay an early to			onski V	r enga	ريسيد	_ [ast N R1	ppm (N)	6.59
Samos	ORP	(mV)	90	-160	-3515	-70			-	C. SHARET			司基础	L	ast N R2	ppm (N)	0.08
8	Dissolved Oxygen	(mg/L)	9	0.35	0	7		7776XXE33		2000 35 29 Awres				N	MBfR1 Sparge Rate	mm	210
	Nitrate + Nitrite	(mg/L-N)	8	7.5	0.5	1.51.4		A. Warel (ř.	kara:	C. Vigo Jan	£ light (i.e.	٨	MBfR2 Sparge Rate	mm	210
	Nitrite	(mg/L-N)	0	1.1	0.3	Frank (1817 today jaya)		Section 1985	-	24-110-1				F	Phosphate Pump Settings	spm % stroke	30 100
	Sulfide	(mg/L.)	0	0	0	0		2			1 (CALLES		9.74	7	Aeration Tank Air Flow	scfm	1.5
	Turbidity	(NTU)	0.51		2455 bildi	2.80	- Contained and	Ži i i			2 (E.S.)	Sept May 100	COS	_ _	Air Tank Pressure	psig	3.9
L	Chlorine Residual	(mg/L)			555 438 428 388 533 533 533	e jaroka za sa	42			£1,4597.53			and the second		arget Media Filter Flow Rate	gpm	BYFASS
	* Signifies MBfR 1	or MBfR 2 de	pending on if rea	actor is in the le	ad or lag position	1 - this changes ev	very 96 hou	irs		Note: shad	led boxes are	to remain blan	k	N	Media Filter Inlet Pressure	psig	BYPASS
Γ	Post Fin	ished Wa	ter	· ·		Backwash R	ecord				Inv	entory		N	Media Filter Outlet Pressure	psig	BYPASS
Ŀ	System	Inspection			Backwash start		00014				Туре	ontory	Check	s	Sodium Hypo Pump	spm	OFF
Co	ollect while sump is ru	nning 2	HUNGE		Backwash dura	ition	min			НЗРО4	Stock (gal)	0.4		ettings	% stroke	OFF
\vdash	Bag Filter ∆P	psi	2		Initial Product T	ank Level	gal				Hypo Stoo	ck (gal)	50+		Coagulant Tank Level	gal	
<u>_</u>	GAC-1 Pressure	psig	14		Final Product T		gal	<u> </u>		Field Test seded?		d Oxygen	1	. L	oragaiant fant Eoroi	gui	
\vdash	GAC-2 Pressure IX-1 Pressure	psig	3.5	1	Time of sample					8 S	Nitrate +	Nitrite		- 1,	Coagulant Pump Settings		
L_	IX-1 FICSSUIE	psig	2.5	} .	Location	Turbidity (NTU)	155 C	ollected?		E E	Nitrite		-V_	- -	-		
Г	Feed Tar	ık Additi	ons	274	MBfR Solids Drain		□Yes	□No		Additional Kits Ne	Sulfide Chlorine		- 0 -	С	O2 Cylinder Pressure	psi	34
		H3PO4	Sodium Hypo	<u> </u>	Filter		□Yes	□No		Ado	o-Phosph	nate .	1	I.,	10:0-1-1-1		7.
Tim		9:00	OFF	w 00	Backwash		ies	□1 40						ľ	2 Cylinder Pressure	psi	92
⊢	ial Tank Level (gal)	2.6	<u> </u>	# 83						•				N	2 Pressure	psi	169
	ck Added	130		44,	NOTES:					MED	IA]	. [`		poi	10/
Dîlu	ne of Water Used For ution	INF		7313	APT HA	S WFORW	ed a	5Dm	LHWI 1	effû	iens:	FILTER	2-5	N	2 Flow Rate	scim	
(gal		2.5	•	<u>Ú</u>	ARE NO	T OPERA	TUNET	AND U	PATER	500	u Ac	EDATIE	21 40	_			
Tota	Total Volume Added 2 10			_				· -		-		 					

BYPASSED TO SUMP. NO SAMPLES WILL BE COLLECTED

FOR THE MEDIA FILTERKZOP PRODUCT TANK.

NOTES OT/11/11:

CLAMERON WELD HAS BEEN NOTIFIED FOR LOW CO2 SUPPLY.

THEY WIN BE CUSITE HOMOPROW MORNING FOR PEPLACEMENT.

APT HAS WISTRUCTED COM TO TUKE PH AND OFF PEADINGS

AT THE REACTORS OVERFLOW. SAMPLE RESULTS SUMMARIZED

BELOW. COM CHANGED BAG FILTERS FOR GAR/IX

SISTEM.

PH 0PP TEMP P1 OVERFION 7.64 -220 20.2 P2 OVERFION 7.56 -420 20.4

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

ESTCP Project Number ER-200541

-101						ESTCP P							INLET TOTAL	ZER: 1	12356
te: 7/18/1)			Time:	: 00AM			Operator	BER	OKOF	F	-		Treatment Sy	stem In	spection
			• 14	Fiel	d Samples								Outlet Totalizer	gal	4925400
H calibration?	□Yes 12	/ No	a tahas	ORP calibrati	on? □Yes I	No	F33	Turbidity	calibratio	n? 🗆	Yes ⊡No	5,000	Target Flow Rate	gpm	10
tandards: □4 tandard Reading	□7 □10			Temp (Deg C				Standard	s: □0 [□0.2 □0	0.4 □0.6 1:	□1.0	Internal Recycle Rate	gpm	210
		7.	Lead Sample										MBfR 1 pH	std units	9-151
Lead Reactor:	☐ MfBR1	☐ MfBR2		SP-200A □ SP-200B □	Sa	mple Collec	ction Time:	~	W 1.	40			MBfR 2 pH	std units	
ter		nt	J or	-0	A u	n n	E o	pa	t t	2 nt	ıt	pe	MBfR 1 ORP	mV	
Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1	Permitted Outfall	MBfR 2 ORP	mV	9
Par	-	Ξ	* &	* &	Ae	5 L H	L S T	F >	ο =	ΘĦ	1	a o	Nitrate Frequency	Hz	
	(std units)	2)						N. O.				7.51	Last N Feed	ppm (N)	13.031
mperature	(°C)							16.3			7	21.9	Last N R1	ppm (N)	
IP	(mV)												Last N R2	ppm (N)	
			150 7	1.7.3 (2)	STYGET	1					\mathcal{T}		MBfR1 Sparge Rate	mm	
solved Oxygen	(mg/L)			000									MBfR2 Sparge Rate	mm	
rate + Nitrite	(mg/L-N)												Phosphate Pump Settings	- anm	30
rite	(mg/L-N)													% stroke	≠00 30
lfide	(mg/L)												Aeration Tank Air Flow	scfm	
rbidity	(NTU)				Rope K	18 9 M	6.0	3 51	-				Air Tank Pressure	psig	
nlorine Residual	(()												Target Media Filter Flow Rate	gpm	
ignifies MBfR 1 c	(mg/L) or MBfR 2 dep	pending on if rea	ctor is in the le	ad or lag position	n - this changes e	very 96 hou	rs		Note: shade	ed boxes are	to remain blan	4	Media Filter Inlet Pressure	psig	
Post Fin	ished Ma	tor						1			-	3700	Media Filter Outlet Pressu	+ • •	
75-57	Inspection				Backwash F						entory	Objects		-	
while sump is ru				Backwash start Backwash dura		min	40		H3PO4 5	Type Stock (gal)	Check	Sodium Hypo Pump Settings	spm % stroke	
ag Filter ∆P	psi	7		Initial Product T		gal	1	1		Hypo Sto		50+	Coagulant Tank Level	gal	
C-1 Pressure	psig			Final Product T	ank Level	gal	, -,		Test		d Oxygen	1	Coagulant Tank Level	yaı	
C-2 Pressure -1 Pressure	psig psig			Time of sample	collection: (2:0	5/13:15/	la:24/1	2:34	ield	Nitrate +	Nitrite	V	Coagulant Pump Setting	s 	
111000010	paig			MBfR Solids	ruibiaky (1110)	100 cc		T WASH	1 4 8	Sulfide	2.00-0.00	V	000 0 11 1 2	.	
Feed Tar	k Additi	ons		Drain		uzres	□No		dition	Chlorine		/	CO2 Cylinder Pressure	psi	
	H3PO4	Sodium Hypo		Filter	-	□Yes	₩No		Ā	o-Phosph	nate	/	H2 Cylinder Pressure	psi	
	1:00m	-		Backwash	V60 V50 V50]						-	94
nk Level (gal)	2,3	-					100					A	N2 Pressure	psi	
dded Water Used For	500ml			NOTES: FLO	W RATE	READ	-								
	INFL	-		LOWERED	FEED R	ATE DI	5 7/	17/11	DUE	TO	HIC	H	N2 Flow Rate	scfm	
Dilution Added	2.7	~		SHMP L	EVEL AL	ARM.	BAG	FIL	TER	WAS	, Fui	205			
olume Added	2.7	1			BIOMP	(-)	١				EVENT				
ank Level	5.0	28			TE FLE	,							ACK UP		

Note: There are 3785 mL per gallon.

COM CHANGED OUT BAG FILTER AND SET VALVE CONFIGURATION TO RUN IN PARALLEL.

DID NOT TAKE DAILY SAMPLING OR WEEKLY LAB SAMPLING. SAMPLED FOR WEEKLY

FIELD

PERMIT COMPLIANCE IN ADDITION TO VOC'S ON GAC-I FOR BACKUP DATA, WAS ALSO ABLE TO SUCCESSFULLY SAMPLE MBFR BACKWASH WATER FOR TSS (TOTAL OF 4 COMPOSITE BACKWASH SAMPLES).

TARGET FLOW RATE WAS SET TO 18 gpm.

BRIEFLY STOPED INFLUENT FEED PUMP TO REPAIR/TIGHTEN LEAK ON DISCHARGE PLUMBING.

PHOSPHATE: FLOW = 200 pm

ADD 500ml H3P04

2.79al Feed water

PHOSPHATE READING TAKEN FROM INFLUENT STRAINER (POST INJECTION) = 5ppm } AS POY = @ 5ppm

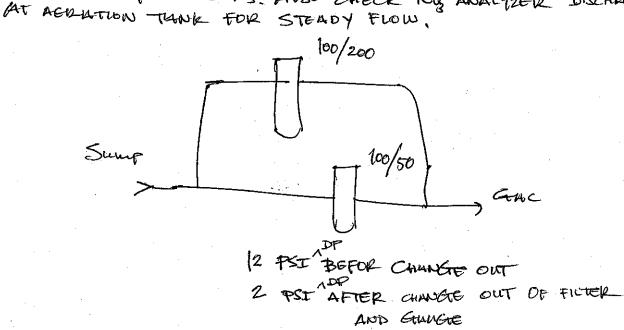
5.1

Final Tank Level

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

	, ,					ES		ject Numb						INFL PATE	1286	36
D	ate: 7/25/11	<u> </u>		Time:	8:30			Operator	AR	ucu	N	-		Treatment Sy	stem In	spection
_			·		Fiel	ld Samples	· <u>·</u>							Outlet Totalizer	gal	50866
15	pH calibration?	MVes [1No		ORP calibrati	ion? □Yes □	Λo		Turbidity	calibratio	on?	Yes ⊿N	0	Target Flow Rate	gpm	20.0
Calibration	Standards: 1544 Standard Readin	237 2310 a: 4: 41:01		10.00	Temp (Deg C Standard Rea	>):	7.1.5	•	Standard	s: □0 〔	□0.2 □	0.4 🗀0.6 1:	□1.0	Internal Recycle Rate	gpm	210.0
	Standard Reading	9.4	~ ~		Lag Sample			*			g, o			MBfR 1 pH	std units	7.21
	Lead Reactor:	□ MfBR1	MfBR2		SP-200A	San	nple Collec	ction Time:	2:00)]		:	MBfR 2 pH	std units	7.20
	je.		<u> </u>			٦	۳. <u>۴</u>	E	- B	<u> ۽ ۽ ا</u>	2 12	Ħ	P =	MBfR 1 ORP	mV	-387
} :	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluen	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	m∨	- 45
	Par		<u> </u>	* 8	* &	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	ᄝᄪᇳ	L S T	E 5	ο <u>Π</u>	0 =	_ #	<u> </u>	Nitrate Frequency	Hz	*
	pH	(std units)	7.56	7.45	7.67	7.85	7.82		7.80	1.04	2593	W 35400	7.56	Last N Feed	ppm (N)	8.07
Data	Temperature	(°C)	20.0	21,7	21.9	219	23.1	190 (38) (3)	22.8				24.	Last N R1	ppm (N)	0.44
Ιœ) 	(mV)	135	-290	-540	-244	-90	4 Depth Arts	100	200	New York			Last N R2	ppm (N)	2.04
Samol	Dissolved Oxygen	(mg/L)	9	0,35	0	16	7	2.75.2	8				15 (25)	MBfR1 Sparge Rate	mm	210
	Dissolved Oxygen		8.5	3.0	0.4			7 9 8 9 9 Yea	0	(1) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E				MBfR2 Sparge Rate	mm	210
	Nitrate + Nitrite Nitrite	(mg/L-N)	0	0.6	8	\$16.75°			0		100 males			Phosphate Pump Settings	spm % stroke	20 30
	Sulfide	(mg/L-N) (mg/L)	0	0	0.2	0.4		4.23	0		A GENE			Aeration Tank Air Flow	scfm	1.6
	Turbidity	(NTU)	0.49				0.31	Company of the compan	23		. (98° 59°)	Train of the		Air Tank Pressure	psig	4.0
	Chlorine Residual	(mg/L)		ingresional confliction at the confliction of the c	The Control of		- aact	1.25	0.4	11 To - KEEP		April 1		Target Media Filter Flow Rate	gpm	15
_	* Signifies MBfR 1		epending on if n	eactor is in the I	ead or lag posit	ion - this changes	ечегу 96 һ	ours		Note: shad	led boxes an	to remain blai	nk	Media Filter Inlet Pressure	psig	7.6
	Post Fini					Backwash R	lecord]		lnv	entory		Media Filter Outlet Pressure	psig S	.60)4
Ļ		Inspecti			Backwash star			1	-		Туре		Check	Sodium Hypo Pump Settings	spm % stroke	30
F	bllect while sump is π. Bag Filter ΔP	psi psi	fter CHA	NOTE OUT	Backwash dura Initial Product		min gal		1		Stock (ga Hypo Sto		50+			100
H	GAC-1 Pressure	psig	W	1	Final Product		gal]	Test	Т .	d Oxygen	7	Coagulant Tank Level	gal	
F	GAC-2 Pressure	psig	4]	Time of sample	e collection: Turbidity (NTU)	Tee C	offected?	-	Field T	Nitrate + Nitrite	Nitrite		Coagulant Pump Settings	s	
L	IX-1 Pressure	psig	2.2	_	Location MBfR Solids	Turbidity (1410)			1 .			NEED IN	DEWA	>		4
Г	Feed Tan	ık Addit	ions	7	Drain		□Yes	□No		Additional Kits Ne	Chlorine		シ	CO2 Cylinder Pressure	psi	82
		H3P04	Sodium Hypo]	Filter Backwash		□Yes	□No		PΨ	o-Phosp	hate		H2 Cylinder Pressure	psi	92
\vdash		9:00	11:00	4	Dackwasii		<u> </u>		J				•	· · · · · · · · · · · · · · · · · · ·		
\vdash	tial Tank Level (gal) ock Added 500 74	100	17 0	-	NOTES:									N2 Pressure	psi	192
Ту	pe of Water Used For	INFL.	0	1		onsive And	ORCE	シンドか	0.06	am its	iFLU <i>E</i> s	ot fil	w	N2 Flow Rate	scfm	
Vo	ution . lume Dilution Added	5.0	Ö	1										ale Marin 1970	<u>ــــــــــــــــــــــــــــــــــــ</u>	A 838
(g: To	al) ital Volume Added	Eil	L Ö	4		to lingfor peacetops. Percipc. Dumps are operating the NEW NO3 ANALYZER										

EMPTY. WHEN FILLING A LEAK WAS DETECTED


PHOSPHATE HANK IS

DID NOT LOCATE EVER! ON DUPLAY

NOTES CONT.

CUXDE ON VMC CALL FROM 10:00-11:00

THE PUMP SUCTION / TANK CONNECT. COM WILL DEMOVE TUBING AND PEINSTAN PEPAIR LEAK, COM HAS PE-PRIMED AND PESTALTED PHOSPHATE INTECTION FUMP. APT HAS INSTRUCTED COM TO HOLD OFF WATER QUALITY UNTIL AFTERNOON TIMEFRAME & COM TO COOPDINATE CHANGE OF DICK-UP TIME. COM HAS CHANGE BOTH BAGT FILTERS (100/50 in one (200/100 IN THE OTHER) AND PLACED THEM BOTH ONLINE IN PARAMEL CONFIGURATION. TEST AMERICA CONFIRMS IN NEW PICK-UP TIME OF 4: 30m FOR Sumples. 11-60 - APT CONFIRMS THAT MBFR PEACTORS CHANGE LEAD REACTORS FROM NEFR# -> MBFR#2. SAMPLES FOR LEAD WILL BE - TUKEN FROM SP-100A AND LAG FROM SP-200B, (DISKEGIRD NOTATION ON FIELD FORM). COM APT INFORMED COM THAT SAMPING SP-100B & SP-200B WIN PEQUIRED SHUTTING NO3 ANALYZER FEED BEFORE OPENING ETTHER SP. THIS WILL PREVENT DRAINING THE ANALYSER. APT INFORMED! INSTRUCTED COM from TO PEMOVE AIR-POCKETS FROM LINES IF THIS OCCURS. ALSO CHECK NO ANALYZER DISCHARGE

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: 8/1/11	Time: 7:45	Operator: APUCAN
Batc	Time.	

Г	Field Samples												
Calibration	pH calibration? Standards: □4 Standard Readin	□7 □ 1 0			Temp (Deg C Standard Rea	on? □Yes / :): ading: 200:			Standard:	s: □0 [□0.2 □	Yes □No 0.4 □0.6 1:	□1.0
	Lead Reactor.	□ MfBR1	MfBR2	SP-100A SP-100B	SP-200A □	Sam	ple Collec	ction Time:	E 1	:30			
	Parameter	Units	influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
l	рН	(std units)	7.60	7.70	7.71	7.88	8.01		8.30		MAKAGESTA LOGAL		7.79
Dat	Temperature	(°C)	19.0	21.0	21.7	21.7	22,1		21.9				22.4
<u>o</u>	ORP	(mV)	-120	-301	-560	-206	-73		90			1918 - W. 1918 -	
San	Dissolved Oxygen	(mg/L)	9	0.15	0	5.5	G		6			a deba	
	Nitrate + Nitrite	(mg/L-N)	9.5	2.6	0.4				0				
	Nitrite	(mg/L-N)	0	0.8	0				0				
	Sulfide	(mg/L)	0	0	0	0.2			0				
	Turbidity	(NTU)	0.5			0.62	6.51	64.55 4546.45	0.49		¥ : 1/2		
	Chlorine Residual	(mg/L)				this changes	AND SECTION OF THE PROPERTY OF	0.3	0	- 46.4		to pemain hlan	

	ished Wa Inspectio	
Collect while sump is ru	inning	
Bag Filter ∆P	psi	2
GAC-1 Pressure	psig	李10
GAC-2 Pressure	psig	7

Feed Tar			
	H3PO4	Sodium Hypo	
Time	5:00	WARO	4:30
Initial Tank Level (gal)	0	9.0	
Stock Added	900M	14 GAZ	
Type of Water Used For Dilution	INFL.	MFILT	
Volume Dilution Added (gal)	5	1460	FALLEN
Total Volume Added (gal)	5.1	20	
Final Tank Level (gal)	5.1	Wano	29.0

	Backwash Record						
Backwash star	t time:						
Backwash dur	ation	min					
Initial Product	Tank Level	gal					
Final Product	Tank Level	gal					
Time of sampl	e collection:						
Location	Turbidity (NTU)	TSS Col	lected?				
MBfR Solids Drain		□Yes	□No				
Filter Backwash		□Yes	□No				

Inventory						
	Туре	Check				
H3PO4	Stock (gal)	\				
Sodium	Hypo Stock (gal)	\				
rest ب	Dissolved Oxygen					
F 5.	Nitrate + Nitrite	>				
声麗	Nitrite	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Additional Field Te	Sulfide					
캶	Chlorine	. •				
Àğ	o-Phosphate					

NOTES:		
OBSERVED	ICING ON NOTPOGEN THANK . COMERON	ا د
WELDING	CONTACTED, THEY WILL BE ONSITE L	ATE P
TO DAY TO C	CHECK NOTENK AND PERLACE CLE DE	WAR
	TE INJECTION TANK WAS FEED LIN	

Treatment System Inspection

	·	-
Outlet Totalizer	gal	52772
Target Flow Rate	gpm	210 2 ₂
Internal Recycle Rate	gpm	210
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-548
MBfR 2 ORP	m∨	-544
Nitrate Frequency	Hz	-2-7 0
Last N Feed	ppm (N)	7.70
Last N R1	ppm (N)	6.21
Last N R2	ppm (N)	1.92
MBfR1 Sparge Rate	mm	210
MBfR2 Sparge Rate	mm	210
Phosphate Pump Settings	spm % stroke	20 30
Aeration Tank Air Flow	scfm	1.6
Air Tank Pressure	psig	3.9
Target Media Filter Flow Rate	gpm	18
Media Filter Inlet Pressure	^a psig	10.7
Media Filter Outlet Pressure	psig	7.5
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	
Coagulant Pump Settings		
CO2 Cylinder Pressure	psi	63
H2 Cylinder Pressure	psi	91
N2 Pressure	psi	95
N2 Flow Rate	scfm	

Notes:

NEEDS TO BE REPLACED, PHOSPHATE NOT INTECTIVE AT THIS POINT. APT HAS INSTRUCTED EDW TO INCHERSE PRESSURE FOR CO2 IS NOW @ 60-65 PSI. CAMERON WELDING ONSITE TO DIROP OF ADDITIONAL CO2 CYLINDER. DEWAR (CO2) WILL BE DEPLACED TOMORROW. CLAMERON WELDING INSTRUCTED COM TO DE-ICE NITREGEN THANK AND FEED LINE. PRESSURE BUILDER VALVE HAS BEEN OPENED TO INCHERSE PRESSURE IN THE NITREGEN. COM TO CONFIRM IN A FEW HOURS IF PRESSURE HAS GONE UP. CURPENT IN TANK.

PRESSURE = 105. PRESSURE HAS NOT INCHERSED AS OF 5:00 AND PEMAINS AT 105.

ADDE	FIONAL
------	--------

Samples:	7 1			
Th	SP-loop FORM 7.71	SP-200B	phloop metr 2	Ph Loop MBAR
-temp	21.7	22,7	20.9	22.3
May De	-560	~320	-243	-550

0

5.0

(gal) Final Tank Level

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

	8/8/u			Time:	3:30	ES	TCP Pro	ject Numb	A >-	10541 2UCA	N.			Treatment Sys	tom in	
Da	ate: 7 7 4			Time:				Operator								
					Fiel	d Samples			-		·			Outlet Totalizer	gal.	54597
Calibration	pH calibration? Standards: □4	-	No		ORP calibrati		Z No		Turbidity Standard			Yes ⊠ N 0.4 ⊟0.6		Target Flow Rate Internal Recycle Rate	gpm gpm	20
鰋	Standard Reading		7:10	:	Standard Rea	,			Standard	Readin	g: 0:	1:				
۲				Lead Sample	Lag Sample		-				1			MBfR 1 pH	std units	7.2
	Lead.Reactor:	☐ MfBR1 ✓ MfBR2	>		SP-200B □ SP-100B 🗹	San	nple Collec	ction Time:	9:0	0				MBfR 2 pH	std units	7.2
	- Le	·	<u> </u>	· ·		E .	a _ E	_ E _	ed -	- E	2 nt	Ę	pe =	MBfR 1 ORP	mV	-564
	Parameter	Units	Influent	*Lead	*Lag Reacto	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	210
	Para		<u> </u>	* &	* &	¥	≥ " "	S	i = >	0 1	Θ #	ш	80	Nitrate Frequency	Hz	
	PΗ	(std units)	7.57	7.51	7.46	7.68	7.65		7.68				7.60	Last N Feed	ppm (N)	1.2/
ata	Temperature	(°C)	18.8	20.1	20.9	20.8	21.0		20.9			10.36	20.9	Last N R1	ppm (N)	0.10
le le	ORP	(mV)	110	-190	-505	-220	10		264					Last N R2	ppm (N)	3.42
Sample Data	Dissolved Oxygen	(mg/L)	9	0.9	0	6	6		7	(V. 1902.) (V. 1902.)		e de la companya de La companya de la co		MBfR1 Sparge Rate	mm	210
	Nitrate + Nitrite	(mg/L-N)	8.0	外.2	0				0		Z W.S.			MBfR2 Sparge Rate	mm	210
	Nitrite	(mg/L-N)	0	0.8	0	a jajustij Lietuvija	45.5		0		513(0,21)	d to		Phosphate Pump Settings	spm % stroke	30
	Sulfide	(mg/L)	0	0	D	0.1			0	2020 S				Aeration Tank Air Flow	scfm	1.7_
			0.290	(100 M.) A. (100 M.)	Swatshinin	6.422	0.304		0.147			Shig .		Air Tank Pressure	psig	3.9
	Turbidity Control	(NTU)			on E			1.0	6.2		\$\$	f. Sil		Target Media Filter Flow Rate	gpm	/8
_	* Signifies MBfR 1	(mg/L) or MBfR 2 de	epending on if n	eactor is in the	lead or lag posit	ion - this changes	every 96 h	nours		Note: shad	led boxes an	to remain bla	nk	Media Filter Inlet Pressure	psig	10.2
	Post Fin	ichad W	ator	1	Γ				1					Media Filter Outlet	psig	7.5
		Inspecti		-	Backwash star	Backwash F	<u>kecora</u>		-		Type	entory	Check	Pressure Sodium Hypo Pump	spm	30
Co	ollect while sump is ru			-	Backwash dun		min	Ţ	1	Н3РО4	Stock (ga	1)	1.0	Settings	% stroke	1 7
	Bag Filter ∆P	psi	2]	Initial Product	Tank Level	gal]		Hypo Sto	ck (gal)	45	Coagulant Tank Level	gal	
	GAC-1 Pressure	psig	17	4	Final Product		gal	<u> </u>	4	Field Test seded?	Dissolve Nitrate +	d Oxygen				
\vdash	GAC-2 Pressure IX-1 Pressure	psig	19	1	Time of sample	Turbidity (NTU)	TSS C	ollected?	†	ield	Nitrite	·		Coagulant Pump Settings		
_	**		<u></u>	_	MBfR Solids	-	□Yes	□No	1	nal F	Sulfide		-	CO2 Cylinder Pressure	psi	90
Г	Feed Tar	ık Addit	ions].	Drain				1	Additional Kits Ne	Chlorine					/
L		H3PO4	Sodium Hypo	_	Filter		□Yes	□No	`		o-Phosp		<u> </u>	H2 Cylinder Pressure	psi	92
Fir	me :	9:30		<u> </u>	Backwash				_ ^	·		ader_	PHOSPI	l -		
<u> </u>	tial Tank Level (gal)	2.8	19	:	r					ATE	KIT	 		N2 Pressure	psi	169
	Stock Added 340 0 NOTES: Type of Water Used For INF 0 CHIORINATER FEED FUMP WAS MINOR LEAK									N2 Flow Rate	scfm	+				
Dil	ution	w =	0	1										NZ FIOW Rate	SGIIII	<u></u>
(ga		2.2	0]	AT DO	schurg	5 con	NECTU	9N. 5	t tuz	8 2	een				
To	tal Volume Added	12.1	l 0	1	DEBAN	SD 1+	CAC	MACH	CA -	to a t	THE	_^空\	14 21	•		

WATER SYSTEM BHAS A LARGER DISCHARGE

PRESSURE = 19-20 PSI. A LARGER DP ACCHOSS THE IM SYSTEM IS RECORDED. COM AND APT HAS COOKDINATED A & SPARGE AT 12:00 PM. CDM HAS TUKEN THE SPARGE PROCESS.

Final Tank Level

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Da	e: 8/11/11			Time: 93	30AM	· 	•	Operator	BE	ROKOS	==	_		Treatment Sys	tem Ins	pection
						d Samples								Outlet Totalizer	gai	
no	pH calibration?		Ma			on? □Yes □	□Nio		Turbidity	calibratio	nn? [Yes □N	lo lo	Target Flow Rate	gpm	-
Calibration	pin calloration? Standards: □4 Standard Reading	□7 □10			Temp (Dea C			-	-	is: □0	□0.2 □	0.4 🗆 0.6	. □1.0	Internal Recycle Rate	gpm	
Ö.	Standard Neading	9. 4	7	Lead Sample		24119. 200.								MBfR 1 pH	std units	
	Lead Reactor:	☐ MfBR1 ☐ MfBR2	>	SP-200A □	\$P-200B □ SP-100B □	Sam	ple Collec	ction Time:]			MBfR 2 pH	std units	
	<u> </u>		#		1	5	۳ <u>۱</u>	E a	pa _	- =	2 7	Έ	B =	MBfR 1 ORP	mV	
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	m∨	
	Para	ן יי	īī	- 8 - 8	_ * ₽) Ae	ᆂᄔᄄ	L & T	፟	Q E	Ø =	_ =	Per	Nitrate Frequency	Hz	
		(std units)											2	Last N Feed	ppm (N)	
afa	pH Temperature							1871E-177		7957 470				Ľast N R1	ppm (N)	
še 🗅		(°C)								V/035000	VO. 1			Last N R2	ppm (N)	
Sample Data	ORP	(mV)			<u> </u>					100 (100)				MBfR1 Sparge Rate	mm	
0,	Dissolved Oxygen	(mg/L)			<u> </u>		N / Yu. 4					· 请 20 仓	i de Goton	MBfR2 Sparge Rate	mm	
	Nitrate + Nitrite	(mg/L-N)		,	<u> </u>		20						7 2	Phosphate Pump Settings	spm	
	Nitrite	(mg/L-N)			 			199/12 P						Aeration Tank Air Flow	% stroke	
	Sulfide	(mg/L)			m stellensk sykke.					KI TA		Market Sign				
	Turbidity	(NTU)							:					Air Tank Pressure	psig	
	Chlorine Residual	(mg/L)							·		N.S.			Target Media Filter Flow Rate	gpm	
	* Signifies MBfR 1	or MBfR 2 de	pending on if re	eactor is in the	lead or lag posit	ion - this changes	every 96 h	ours	<u>. </u>	Note: shad	led boxes ar	to remain bla	ink	Media Filter Inlet Pressure	psig	
Γ.	Post Fin	ished Wa	ıter	1	<u> </u>	Daalawaah 🛭	·]		les	onton		Media Filter Outlet	psig	
		Inspecti			Backwash star	Backwash R	ecora		-	-	Туре	entory	Check	Pressure Sodium Hypo Pump	spm	
Со	lect while sump is n	unning	· · ·	1	Backwash dur		min			H3PO4	Stock (ga	1)		Settings	% stroke	
	Bag Filter ∆P	psi			Initial Product	Tank Level	gal				Hypo Sto			Coagulant Tank Level	gal	
	GAC-1 Pressure	psig			Final Product		gal			est	Dissolve Nitrate +	d Oxygen		-	ļ	
	GAC-2 Pressure IX-1 Pressure	psig		-	Time of sampl	Turbidity (NTU)	Teec	ollected?		ed .	Nitrate	Nitrite	 	Coagulant Pump Settings		1
L	IV-1 Liesznie	psig	<u> </u>	J	MBfR Solids	Turbidity (1410)			┪	le Fi	Sulfide					
Г	Feed Tar	nk Addit	ions	1	Drain		□Yes	□No		Additional Field Test Kits Needed?	Chlorine		+ -	CO2 Cylinder Pressure	psi	
	1 000 101	H3PO4	Sodium Hypo	1	Filter				1	Add	o-Phosp					
Tin	B .			1	Backwash		□Yes	□No						H2 Cylinder Pressure	psi	
Init	al Tank Level (gal)	†		1		· · · · · · · · · · · · · · · · · · ·								N2 Pressure	psi	
Sto	Stock Added NOTES: COM ON SITE TO PERFORM CONDUCTIVITY							צדיטו		P3,						
	e of Water Used For				_	R TEST							IXED	N2 Flow Rate	scfm	
Vo	ume Dilution Added			1								_	G. AL			
	SIH LBS OF "MORTONS" SALT WITH 107GAL															

D.I. WATER IN CARBOY, SALT NEVER DISSOLVED

CALLOWED CAPBOY TO ISUT IN SUN FOR 3 HOURS WHILE OCCASSIONALLY STIRRING BUT SOLUTION NEVER DISSOLVED. IT WAS DETERMINED THAT SOLUTION WAS AT SATURATION

TIME	TASK	CONDUCTIVITY
9:44 Am	BEGAN RECORDING CONDUCTIVITY ON LAG REACTOR (SP-200B)	392
9:54		392 392
10:14		392

D.L. WATER = 2.25/15/ex

NOTES CONTINUEDS

CDM OPTED TO ABANDON EXPERIMENT AND DETERMINE PROPER MIXING CALCULATIONS AND REATTEMPT TRACER EXPERIMENT TOMORROW.

ESTCP: Technology Demonstration Plan

Perchlorat	e Destruction Using Membrane Biofilm Reduction
	ESTCP Project Number ER-200541
7:45	Operator: APLICAN

\$629100 18

-585

.0.07

20

Da	nte: 8/15/	n		Time:	7:45		- CARD 19	Operator	APL	CAN	1	_		Treatment Sys	tem In	spection
			9 1	100	Field	d Samples	3	196	处元.	A. H.		A367		Outlet Totalizer	gal	562910
ion	pH calibration?	□Yes ☑	Ńο		ORP calibration	on? □Yes	⊠Ño	1444	Turbidity	calibration	on?	Yes ⊡K	lo	Target Flow Rate	gpm	18
Calibration	Standards: □4 [Standard Reading	⊒7: □1ố			Temp (Deg C) Standard Rea): <u> </u>	i.	2	Standard	s: □0	□0.2 □	l0.4 □0.6 1:_	□1.0	Internal Recycle Rate	gpm	210
۴	- P 1				Lag Sample) il	2	7 V V I	• 71/-1/	7 16 VOLU V 16 1 1 1 1	(4) (1)			MBfR 1 pH	std units	7.2
	Lead Reactor:	☐ MfBR1 ☐ MfBR2	>	SP-200A ☐ SP-100A ☑		San	nple Collec	ction Time:	8:4	30]		8	MBfR 2 pH	std units	7.2
	fer	5 10	Ħ	- b	_ 6	E .	a L E	E o	pa _	- t	2 nt	Ħ	р е =	MBfR 1 ORP	m∨	-585
	Parameter	Units	Influent	*Lead Reactor	*Lag Reacto	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	nta mit	MBfR 2 ORP	mV	-46
	Par	7 >	≝	Re *	* &	Ae	<u>_</u> = #	R S H	E	o ⊞	ΩH	<u> </u>	Permitted Outfall	Nitrate Frequency	Hz	-6-6-1
	pH	(std units)	7.56	7.63	7.70	7.91	7.87	140	7-89				7.69	Last N Feed	ppm (N)	6.61
ata	Temperature	(°C)	18.8	19.9	20.7	20.6	20.7		20.8		0.3	47 4	20.7	Last N R1	ppm (N)	. 0.07
응	1 1/2		115	-350	-560	-290	-110		230					Last N R2	ppm (N)	2.49
Sample Data	ORP 4	(mV)	9	0.8	0.25	6	6		7					MBfR1 Sparge Rate	mm	280
ľ	Dissolved Oxygen	(mg/L)	-		0.2	U	U		0		of the series			MBfR2 Sparge Rate	mm	280
	Nitrate + Nitrite	(mg/L-N)	7.5	3.3	0.6										spm	
	Nitrite 19	(mg/L-N)	0	0.6		_		200.	0.	888. 73 + (3)	841	7. 4.		Phosphate Pump Settings	% stroke	20
	Sulfide	(mg/L)	0	0	0	0		M	0.					Aeration Tank Air Flow	scfm	1-6
	Turbidity	(NTU)					-		() ()			1000		Air Tank Pressure	psig	3.9
	Chlorine Residual	(mg/L)						1.1	0.3		\$ 75	9 A 7	1	Target Media Filter Flow Rate	gpm	18
_	* Signifies MBfR 1 o		epending on if r	eactor is in the	lead or lag position	on - this changes	every 96 þ	ours	10 0	Note: shad	ded boxes ar	e to remain bla	nk	Media Filter Inlet Pressure	psig	11.9
Г	Post Fini	shed W	ator	1						1 2	3.	1		Media Filter Outlet	psig	
	System				Total (1997)	Backwash F	Record	2	1			entory		Pressure		7.5
Co	llect while sump is ru	1/4		┥	Backwash start Backwash dura	28	min		120	H3PO4	Type Stock (ga	0.00	Check	Sodium Hypo Pump Settings	spm % stroke	100
۳	Bag Filter ΔP	psi	04	TOM	Initial Product T		gal	<u> </u>	•	1	Hypo Sto				70 30 300	700
\vdash	GAC-1 Pressure	psig	18	CORDE	Final Product T		gal		1		T	ed Oxygen		Coagulant Tank Level	gal	-
	GAC-2 Pressure	psig	14		Time of sample] 94.	1	10	Field Test	Nitrate -				-	-
	IX-1 Pressure	psig	60		Location	Turbidity (NTU)	TSS C	ollected?		Field Teeded?	Nitrite			Coagulant Pump Settings		
	n's	٠.		_	MBfR Solids		ПУ] <i>y</i> ,	Nee Nee	Sulfide			COO Culinder Brown		89
	Feed Tan	k Addit	ions	, r	Drain		□Yes	□Ņo	2	itio .	Chlorine	1		CO2 Cylinder Pressure	psi	5/
		• нзро4	Sodium Hypo	138	Filter				47 1 8 4	Additional F	o-Phosp	hate		110 O 15 do 1		0
Tin	ne 🛴 👍	8:00	8:30	100	Backwash		□Yes	□No	h					H2 Cylinder Pressure	psi	72
Init	ial Tank Level (gal)	2.9	12	78					17					N2 Pressure	psi	7
Sto	ck Added	250	6	100	NOTES:									112 1 1000010		177
	e of Water Used For	INFL	FILTER		MAKINE	4 SALT	SOLU	NON	CONSIS	TING	TOP	1.7 G	W.L	N2 Flow Rate	scfm	-
	ume Dilution Added	2.1	12	1		ED AND									-	
Tot	al Volume Added	2.1	18	1	6 8	to wel	•									
(ga Fin	l) al Tank Level	5.0	30	+	10.0	200			4	Ny D	100	01(64	-25		1	
(ga	1)	0.0	1	_1	VIGOUD	ひるレイ・	т	15	1							

NOTES CONT .:

CO2 DEWAR IS EMPTY. DIM TO CONTRCT CAMERON
FOR BEPILL. DP GALGE IS ASSUMED TO BE MALPLINCTIONING
DUE TO AIR IN THE TUBING CAUSED BY CYCLING OF
THE & Sump pump. Com to INVESTIGATE

Alter.

11:15 - 400 11:45 - 400

DI WATER = 0.11 45/cm SOLUTION = ERROR 16:1 DILLETION = 45.9 m5/cm

CONDUCT IVITY	TEST	CONDUCTIVITY	2 31 0 <i>U</i> 1	I S S S S S S S S S S S S S S S S S S S
	12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15 14:45	2.31 ms/cm 1548 MS/cm \$06 MS/cm 595 MS/cm 579 MS/cm 452 MS/cm 429 MS/cm 417 MS/cm		CONTINOS GOA
	15:00 15:15 15:30 15:45 16:00 16:15 16:45 17:00 17:15	B-46		

ESTCP: Technology Demonstration Plan ate Destruction ! ... : Membrane Biofilm Reduction

Perchlorate Destruction : Membrane Biofilm ESTCP Project Number ER-200541

Da	te: 8/17/	<u> </u>		Time:	5:30			Operator	AR	1001	7	-	
Γ_					Fiel	d Samples			1				
alibration	pH calibration? Standards: □4 Standard Reading	□Yes		-	ORP calibration?								□1.0
	Lead Reactor:	☐ MfBR1	>	SP-200A □	Lag Sample SP-200B □ SP-100B ☑	OOB Sample Collection Time: 8:45							
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
Data	pH ·	(std units)	7.57	7.62	7.71	7.85	7.84	1	7.81				7.44
	Temperature	(°C)	19.0	20.7	21.2	21.0	21.2		21.0				21.2
Sample	ORP	(mV)	90	-360	-550	-320	-/20		250				
San	Dissolved Oxygen	(mg/L)	10	1.5	0.1	6	7		8				
	Nitrate + Nitrite		6.5	3.2	0.3				0.2				
	Nitrite	(mg/L-N)	0	0.5	0				0				
	Sulfide	(mg/L)	0	0	0	0.1			0				
	Turbidity	(NTU)	0.510			0.383	0264		0.211				
L	Chlorine Residual * Signifies MBfR 1	(mg/L)	pending on if re	eactor is in the l	ead or lag posit	ion - this changes	every 96 h	1 · 25	0.9	Note: shad	led boxes an	e to remain blar	nk
	Post Fin			1					1		le:		
1	L OST LIII	IGIICU TEC	(LG)	1	1	Backwash F	recora		1	1	IIIV	entory	

Post Fini System	shed Wat Inspectio	
Collect while sump is ru	nning	·
Bag Filter ΔP	psi	2
GAC-1 Pressure	psig	16
GAC-2 Pressure	psig	12_
IX-1 Pressure	psig	.6

Feed Tan	k Additi	ons
	H3PO4	Sodium Hypo
Time	9:15	9:15
Initial Tank Level (gal)	3.8	27
Stock Added		4-
Type of Water Used For Dilution		-
Volume Dilution Added (gal)		
Totaì Volume Added (gal)		
Final Tank Level (gai)	3.8	27

	Backwash Re	cora					
Backwash start time:							
Backwash dur	ation	min					
Initial Product	Tank Level	gal					
Final Product	Tank Level	gal					
Time of sampl	e collection:						
Location	Turbidity (NTU)	TSS Collected?					
MBfR Solids Drain		□Yes	□No				
Filter Backwash		□Yes	□No				

	Inventory	
	Туре	Check
НЗРО4	Stock (gal)	0.6
Sodium	Hypo Stock (gal)	~40,
əst	Dissolved Oxygen	~
L F	Nitrate + Nitrite	~/
g ij	Nitrite	/ ,
Additional Field Test Kits Needed?	Sulfide	
Egg Sg	Chlorine	27
Ā	o-Phosphate	1 1
	oen	PED

NOTES:	
10:30 - CAMERON WELDING ONSITE TO PEPLACE	<u>:</u>
CO2 DEWAR AND CYLINDER, ON REINSTAU OF	
DEWAR, THE PRESSURE REGULATOR READ OPSI	
BUT IT IS FULL ADJUSTMENT KNOB	
R-47	

Outlet Totalizer gal \$680800 Target Flow Rate gpm /8 Internal Recycle Rate gpm 210 MBfR 1 pH std units 7.2 MBfR 2 pH std units 7.2 MBfR 1 ORP mV -587 MBfR 2 ORP mV -43 Nitrate Frequency Hz	Treatment System Inspection						
Internal Recycle Rate gpm 210	Outlet Totalizer	gal	5680800				
MBfR 1 pH std units 7.2 MBfR 2 pH std units 7.2 MBfR 1 ORP mV -587 MBfR 2 ORP mV -43 Nitrate Frequency Hz Last N Feed ppm (N) 3.76 Last N Feed ppm (N) 0.23 Last N R1 ppm (N) 2.92 MBfR1 Sparge Rate mm 286 MBfR2 Sparge Rate mm 286 Phosphate Pump Settings scfm /. 6 Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4.0 Target Media Filter Flow gpm #\$ 16 Media Filter Inlet Pressure psig 6.2 Pressure psig 6.2 Sodium Hypo Pump spm % stroke Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 71 N2 Pressure psi 71 N	Target Flow Rate	gpm	/8				
MBfR 2 pH std units 7. 2 MBfR 1 ORP mV - 587 MBfR 2 ORP mV - 43 Nitrate Frequency Hz Last N Feed ppm (N) 3. 76 Last N R1 ppm (N) 0. 23 Last N R2 ppm (N) 2. 92 MBfR1 Sparge Rate mm 280 MBfR2 Sparge Rate mm 280 Phosphate Pump Settings scfm /. 6 Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4. 0 Target Media Filter Flow gpm #\$ 16 Media Filter Inlet Pressure psig 6. 2 Sodium Hypo Pump spm % stroke 100 Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 71 N2 Pressure psi 71 N2 Pressure psi 182	Internal Recycle Rate	gpm	210				
MBfR 1 ORP MBfR 2 ORP MBfR 2 ORP Nitrate Frequency Last N Feed Last N R1 Last N R2 MBfR1 Sparge Rate MBfR2 Sparge Rate Phosphate Pump Settings Aeration Tank Air Flow Air Tank Pressure Target Media Filter Flow Rate Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings H2 Cylinder Pressure psi M2 Service Psi M2 Stroke Alic Air Tank Pressure Alic Air Tank Pressure Amedia Filter Outlet Pressure Sodium Hypo Pump Settings Co2 Cylinder Pressure Psi M2 Stroke M2 Service M3 Media Filter Outlet Pressure M4 O M5 Stroke M6 O M6 O M6 O M7 Stroke M7 O M7 Stroke M8 Stroke M8 Stroke M9 Stroke	MBfR 1 pH	std units	7.2				
MBfR 2 ORP mV -43 Nitrate Frequency Hz Last N Feed ppm (N) 3 · 76 Last N R1 ppm (N) 0 · 23 Last N R2 ppm (N) 2 · 92 MBfR1 Sparge Rate mm 286 MBfR2 Sparge Rate mm 286 Phosphate Pump Settings scfm /· 6 Aeration Tank Air Flow scfm /· 6 Air Tank Pressure psig 4 · 0 Target Media Filter Flow gpm F8 · 16 Media Filter Inlet Pressure psig 6 · 2 Sodium Hypo Pump spm 50 Sodium Hypo Pump spm 50 Sodium Hypo Pump Settings gal Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 71 N2 Pressure psi 71 N2 Pressure psi 182	MBfR 2 pH	std units	7.2				
Last N Feed ppm (N) 3 · 76 Last N R1 ppm (N) 2 · 92 MBfR1 Sparge Rate mm 280 Phosphate Pump Settings Serm / 6 Air Tank Pressure psig 4 · 0 Target Media Filter Flow Rate pressure Media Filter Outlet Pressure Settings Coagulant Tank Level gal Coagulant Pump Settings H2 Cylinder Pressure psi 182 Phosphate Pump Settings and part of the psi 182 Coagulant Pump Settings for psi 182	MBfR 1 ORP	mV .	-587				
Last N Feed ppm (N) 3.76 Last N R1 ppm (N) 0.23 Last N R2 ppm (N) 2.92 MBfR1 Sparge Rate mm 280 Phosphate Pump Settings Spm % stroke Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4.0 Target Media Filter Flow Rate psig 1.8 Media Filter Outlet Pressure psig 6.2 Sodium Hypo Pump Settings % stroke 1.00 Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 182 N2 Pressure psi 182	MBfR 2 ORP	, mV	-43				
Last N R1 ppm (N) 2.23 Last N R2 ppm (N) 2.92 MBfR1 Sparge Rate mm 280 MBfR2 Sparge Rate mm 280 Phosphate Pump Settings spm % stroke Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4.0 Target Media Filter Flow Rate psig 11.8 Media Filter Inlet Pressure psig 11.8 Media Filter Outlet pressure Sodium Hypo Pump Settings % stroke 100 Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 133 H2 Cylinder Pressure psi 182	Nitrate Frequency	Hz					
Last N R2 ppm (N) 2 · 92. MBfR1 Sparge Rate mm 280 Phosphate Pump Settings spm // 6 stroke Aeration Tank Air Flow scfm // 6 Air Tank Pressure psig 4 · 0 Target Media Filter Flow Rate psig 1 · 8 Media Filter Inlet Pressure psig 1 · 8 Media Filter Outlet psig 6 · 2 Sodium Hypo Pump spm 90 Settings ystroke 100 Coagulant Tank Level gal Coagulant Pump Settings H2 Cylinder Pressure psi 182 N2 Pressure psi 182	Last N Feed	ppm (N)	3.76				
MBfR1 Sparge Rate mm 280 MBfR2 Sparge Rate mm 280 Phosphate Pump Settings Spm % stroke Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4.0 Target Media Filter Flow Rate psig 11.8 Media Filter Inlet Pressure psig 11.8 Media Filter Outlet psig 6.2 Sodium Hypo Pump Settings Settings Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 33 H2 Cylinder Pressure psi 182	Last N R1	ppm (N)	0.23				
MBfR2 Sparge Rate mm 28 C Phosphate Pump Settings	Last N R2	ppm (N)	2.92				
Phosphate Pump Settings spm % stroke Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4. 0 Target Media Filter Flow Rate gpm #\$ 16 Media Filter Inlet Pressure psig 1. 8 Media Filter Outlet Pressure psig 6. 2 Sodium Hypo Pump Settings spm 90 Coagulant Tank Level gal	MBfR1 Sparge Rate	mm	280				
Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4. 0 Target Media Filter Flow Rate psig 11. 8 Media Filter Inlet Pressure psig 11. 8 Media Filter Outlet psig 6. 2 Sodium Hypo Pump spm 90 Settings ystroke 100 Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 133 H2 Cylinder Pressure psi 182	MBfR2 Sparge Rate	mm	280				
Aeration Tank Air Flow scfm /. 6 Air Tank Pressure psig 4.0 Target Media Filter Flow Rate psig /1.8 Media Filter Inlet Pressure psig /1.8 Media Filter Outlet psig 6.2 Sodium Hypo Pump spm 30 Settings Settings Qal Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 33 H2 Cylinder Pressure psi 41 N2 Pressure psi 182	Phosphate Pump Settings						
Target Media Filter Flow Rate Media Filter Inlet Pressure Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings CO2 Cylinder Pressure Pressure Description Des	Aeration Tank Air Flow		1.6				
Rate gpm 45 16 Media Filter Inlet Pressure psig 11 · 8 Media Filter Outlet psig 6 · 2 Sodium Hypo Pump spm 50 Settings 90 Coagulant Tank Level gal 60 Coagulant Pump Settings CO2 Cylinder Pressure psi 33 H2 Cylinder Pressure psi 91 N2 Pressure psi 182	Air Tank Pressure	psig	4.0				
Media Filter Outlet Pressure psig 6 · 2 Sodium Hypo Pump Settings spm 30 Coagulant Tank Level gal	•	gpm	#\$ 16				
Pressure psig 6 · 2 Sodium Hypo Pump spm 20 Settings % stroke / 00 Coagulant Tank Level gal	Media Filter Inlet Pressure	psig	11.8				
Sodium Hypo Pump spm 90 Settings % stroke 100 Coagulant Tank Level gal		psig	6.2				
Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 333 H2 Cylinder Pressure psi 91 N2 Pressure psi 182		spm	20				
Coagulant Pump Settings	Settings	% stroke	100				
CO2 Cylinder Pressure psi 33 H2 Cylinder Pressure psi 9/ N2 Pressure psi 182	Coagulant Tank Level	gal	-				
H2 Cylinder Pressure psi 91 N2 Pressure psi 182	Coagulant Pump Settings						
H2 Cylinder Pressure psi 91 N2 Pressure psi 182	· · · · · · · · · · · · · · · · · · ·						
N2 Pressure psi 182	CO2 Cylinder Pressure	psi	33				
	H2 Cylinder Pressure	psi	91				
N2 Flow Rate scfm	N2 Pressure	psi	182				
	N2 Flow Rate	scfm					

NOTES:

PRESSURE TO THE SYSTEM IS BE PSI NOW.

ESTCP: Technology Demonstration Plan

Perchlorate Destruction (

Membrane Biofilm Reduction

ESTCP Project Number ER-200541

Date:_8	/19	111	
J 410	-	/ • •	

Time: 9:00Aim

Operator: BEROKOFF

	rgere				Fiel	d Samples							
Calibration	pH calibration? Standards: □4 □ Standard Reading	□7 □10			Temp (Deg C): <u>100 }</u> 6		Si a Ti		s: 🗆 0	□0.2 □	Yes ☑No 0.4 □0.6 1:	□1.0
	Lead Sample Lag Sample Lead Reactor: □ MfBR1												
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
_	pН	(std units)	7.64	7.78	7,44	7.65	7.63		7.70				-
Data	Temperature	(°C)	33.0	20.4	21.2	21,1	21.4		21.7				1
Sample	ORP	(mV)	99	-322	-511	-272	-134		590				
Sa	Dissolved Oxygen	(mg/L)	9.0	0.8	0.1	5.5	3.5	:	4.0				
	Nitrate + Nitrite	(mg/L-N)	9.0	4.0	0.6				0.8				
	Nitrite	(mg/L-N)	0.0	100	0.4	· .			0.0				
	Sulfide	(mg/L)	0	0	0.1	0.05			0				
	Turbidity	(NTU)	-			0.790	0,320		0.214		5 多数 发展器		
	Chlorine Residual * Signifies MBfR 1 c	(mg/L)						1.0	0.7				

Post Finished Water System Inspection						
Collect while sump is running						
Bag Filter ∆P	psi	2				
GAC-1 Pressure	psig	i (0				
GAC-2 Pressure	psig	11				
IX-1 Pressure	psig	4.2				

Feed Tank Additions						
	H3PO4	Sodium Hypo				
Time	2:00pm	1:00pm				
Initial Tank Level (gal)	D, 0	25				
Stock Added	520	~				
Type of Water Used For Dilution	INF	-				
Volume Dilution Added (gal)	3.0	-				
Total Volume Added (gal)	3.1	-				
Final Tank Level (gal)	5,0	25				

Backwash Record								
Backwash star	t time: 12:3	6pm						
Backwash dur	ation	min	12					
Initial Product	Tank Level	gal						
Final Product	gal							
Time of sampl	e collection: 1 3 3	40						
Location	Turbidity (NTU)	TSS Co	llected?					
MBfR Solids Drain	_	□Yes	□No					
Filter Backwash	48	I ✓Yes	□No					

Inventory								
	Туре	Check						
НЗРО4	Stock (gal)	8						
Sodium	Hypo Stock (gal)	~40						
est	Dissolved Oxygen	/						
F &	Nitrate + Nitrite							
ede e	Nitrite							
Additional Field Test Kits Needed?	Sulfide	/						
Kits	Chlorine							
Ā	o-Phosphate							

NEED TO ORDER PH BUFFERS

NOTES: CALGON ON SITE @ 8:45AM TO PICK UP DISPOSOIZOS AND SPENT GAC/IX (SUPER SACKS) APT ON SITE TO PERFORM MAINTENANCE DUTIES ON SYSTEM. DID NOT REPLACE BAG FILTERS AS COM WILL AWAIT WORD FROM APT WHEN SUMP FREQUENCIES INCREASE PER OUR CONFERENCE CALL ON MONDAY.

Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	5731200
Target Flow Rate	gpm	18
Internal Recycle Rate	gpm	210
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7,2
MBfR 1 ORP	mV	-378
MBfR 2 ORP	mV	-537
Nitrate Frequency	Hz	rgasta
Last N Feed	ppm (N)	2.93
Last N R1	ppm (N)	2.80
Last N R2	ppm (N)	0.31
MBfR1 Sparge Rate	mm	280
MBfR2 Sparge Rate	mm	280
Phosphate Pump Settings	spm % stroke	30
Aeration Tank Air Flow	scfm	1.6
Air Tank Pressure	psig	3.9
Target Media Filter Flow Rate	gpm	16 *
Media Filter Inlet Pressure	psig	13,8
Media Filter Outlet Pressure	psig	6.3
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	_
Coagulant Pump Settings	-	
CO2 Cylinder Pressure	psi	8.0
H2 Cylinder Pressure	psi	90
N2 Pressure	psi	175
N2 Flow Rate	scfm	_

77

NOTES CONT ...

SENT IT IN FOR TSS ANALYSIS,

PURGE TURBIDITY: 48.0 NTU

- SAMPLED PRODUCT (FINISHED) FOR THRESHOLD ODOR, HAAS, TTHMS. THIS IS FOR WEEK 1 OF OPTIMIZATION ONLY.
- · TOOK PHOSPHATE READING @ STRAINER = 2.0 PPM.

Trump, Julee M.

From: Arucan, Clyde

Sent: Monday, August 22, 2011 1:20 PM

To: Evans, Patrick; Berokoff, Daniel; Smith, Jennifer L. **Cc:** David Friese; Ryan Overstreet; Renato Vigo

Subject: RE: Overflow photos

All – I am back in the office now and Rich B. is onsite. We decided that he would be able to handle the pump down of the containment area. Here is a summary of my findings.

- Well was in the "AUTO" position (normally in AUTO), but was not operating because the "hi level" alarm indicator was illuminated. I do not know which high level switch is associated with the Well controls? Containment switch or feed tank level switch?
- Containment area was completely full with many pumps and other equipment partially underwater.
- Area around the containment area is saturated due to either overflow or a leak in the containment walls.
- Tank levels are as follows

Tarik reveis are as follows							
Tank	Level	Comments					
Feed	Full	Engaging all three level switches					
Product/Finished	Full	Up to level of overflow to sump, no flow to sump tank was observed					
Aeration	90%	Up to level of overflow to sump, no flow to sump tank was observed					
Sump	75%	3 of the 4 level switches were engaged. Hi-hi not engaged					
Reject	10-25%						
MBfR1	75%	Top 2 feet of modules are exposed					
MBfr2	75%	Top 2 feet of modules are exposed					
IX/GAC Containment	Empty						

- No major leaks were apparent with system off. Valving and sample ports were in normal positions. The levels in the tanks appeared to be steady.
- A water sample for perchlorate analysis was taken.
- Rich and I had a discussion of pumping the containment area into the Reject tank. We also disussed raising the sump pump so it has time to dry off and operate when the reject tank does get full.

Clyde Arucan

CDM

9220 Cleveland Ave. Suite 100 Rancho Cucamonga, Ca 91730

W: (909) 579-3500 M: (909) 201-1414

From: Evans, Patrick

Sent: Monday, August 22, 2011 10:19 AM **To:** Berokoff, Daniel; Smith, Jennifer L.

Cc: David Friese; Ryan Overstreet; Renato Vigo; Arucan, Clyde

Subject: RE: Overflow photos

Thanks Daniel. Let's use either spray paint or some other means of marking the ground to show the extent of the wet soil

From: Berokoff, Daniel

Sent: Monday, August 22, 2011 10:17 AM **To:** Evans, Patrick; Smith, Jennifer L.

Cc: David Friese; Ryan Overstreet; Renato Vigo; Arucan, Clyde

Subject: Overflow photos

<< File: photo.jpg >> << File: photo.jpg >> << File: photo.jpg >>

ESTCP: Technolog

monstration Plan

Perchlorate Destruction Using ...embrane Biofilm Reduction ESTCP Project Number ER-200541

Da	te: <u>8/26/11</u>			Time: _ 8	20AM			Operator	BERO	KOFF	:	-	
					Field	d Samples						ri n	And
Calibration	pH calibration? Standards: □4 Standard Reading	□7 □10			ORP calibrati Temp (Deg C Standard Rea				Turbidity of Standards Standard	s: □0 [□0.2 □	0.4 □0.6	□1.0
	Lead Reactor:	☐ MfBR1		if MBfR1 in LE/	AD: SP-200B □ AD: SP-100B ₪	San	nple Collec	tion Time:	9:3	Одм	ATA	-jabus Kast	763
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
	рН	(std units)	7.65	7.47	7.86	7,99	7.92		7.92				7.75
Data	Temperature	(°C)	19.6	21.6	23,0	22.9	23,5		24.4				24,0
Sample	ORP	(mV)	435	-403	-540	-293	-69		639				W. 5
San	Dissolved Oxygen	(mg/L)	9,0	0.9	0.15	5,0	2,5		3.0				
	Nitrate + Nitrite	(mg/L-N)	9.0	3.3	0.1				0				
	Nitrite	(mg/L-N)	0	0.75	0	A Maria			0				
	Sulfide	(mg/L)	0	0.0	0.4	0.2			0				
	Turbidity	(NTU)	0.150			1.30	0.30		0.375				
	Chlorine Residual	(mg/L)						1.0	0375	2.0			
_	* Signifies MBfR 1	or MBfR 2 de	epending on if re	eactor is in the I	ead or lag posit	ion - this change	s every 96 h	ours	430	Note: shad	led boxes ar	e to remain bla	ınk
Γ	Post Fin	ished Wa	ater			Backwash J	Record			-	Inve	entory	
1	System	Inspecti	on		Backwach etar	t time:			1		Type		Check

Post Fini System		
Collect while sump is ru	nning	
Bag Filter ∆P	psi	4
GAC-1 Pressure	psig	18
GAC-2 Pressure	psig	14
IX-1 Pressure	psig	3,2

Feed Tank Additions						
	H3PO4	Sodium Hypo				
Time	8:30 AM	2:00pm				
Initial Tank Level (gal)	3.9	16				
Stock Added	~	-				
Type of Water Used For Dilution	-	-				
Volume Dilution Added (gal)	-	,				
Total Volume Added (gal)	~	,				
Final Tank Level (gal)	3,9	16				

Backwash Record								
Backwash star	t time:							
Backwash dur	ation	min						
Initial Product	Tank Level	gal						
Final Product	Tank Level	gal						
Time of sampl	e collection:							
Location	Turbidity (NTU)	TSS Col	lected?					
MBfR Solids Drain	_	□Yes	□No					
Filter Backwash	_	□Yes	□No					

	Inventory	
	Туре	Check
НЗРО4	Stock (gal)	8
Sodium	Hypo Stock (gal)	~40
d ?	Dissolved Oxygen	1
ede	Nitrate + Nitrite	V
Ne Pa	Nitrite	/
is is	Sullide	1/
Additional Field Fest Kits Needed?	Chlorine	~
ĕ Þ	o-Phosphate	2

Treatment System Inspection								
Outlet Totalizer	gal	58/2300						
Target Flow Rate	gpm	15						
Internal Recycle Rate	gpm	280						
MBfR 1 pH	std units	7,2						
MBfR 2 pH	std units	7.2						
MBfR 1 ORP	mV	-340						
MBfR 2 ORP	mV	-91						
Nitrate Frequency	Hz	-						
Last N Feed	ppm (N)	3.08						
Last N R1	ppm (N)	0.13						
Last N R2	ppm (N)	2.17						
MBfR1 Sparge Rate	mm	280						
MBfR2 Sparge Rate	mm	280						
Phosphate Pump Settings	spm	সূত						
Phosphate Concentration at Strainer	% stroke mg/LPO4	2.5						
Aeration Tank Air Flow	scfm	0.5						
Air Tank Pressure	psig	5,3						
Target Media Filter Flow Rate	gpm	14						
Media Filter Inlet Pressure	psig	9.0						
Media Filter Outlet Pressure	psig	5,0						
Sodium Hypo Pump	spm	30						
Settings	% stroke	100						
Coagulant Tank Level	gal	-						
Coagulant Pump Settings		-						
CO2 Cylinder Pressure	psi	62						
H2 Cylinder Pressure	psi	90						
N2 Pressure	psi	172						
N2 Flow Rate	scfm	_						

WAS TYPICALLY SEEN HISTORICALLY. -

NOTES CONT ...

CDM NOTIFIED APT (RICH) WHO INDICATED THAT THE COMPRESSOR WAS INDEED LENDER WATER DURING THE OVERFLOW INCIDENT. APT WILL DISCUSS AMONOGY THEMSELVES AND DETERMINE A SOLUTION. LOWER D.O. VALUES WERE SEEN ACROSS THE MEDIA FILTER AND PRODUCT TANK. FINISHED WATERS. HIGHER: PSI VALUE INDICATED THE LINE MIGHT BE CLOGGED, APT TOOK APART FEED TUBING AND DISCOVERED BLOCKAGE - THERE WAS A SOLID THAT GOT CAUGHT IN THE LINE. COMPRESSOR READINGS ARE BACK TO 201 PSE AND 301 SCFM.

TURBIDITY WAS HIGHER ON PRODUCT FINISHED WATER COMPARED TO FILTER EFF. TOOK DUPLICATE

IT WAS NOTICED THAT H3PD4 TANK LEVEL DID NOT LOWER IN VOLUME SINCE THE AM, SUPE-ENOUGH THE PUMP WAS OFF. THE RESET BUTTON ON THE GFCI ONTLET WAS NOT ACTUATED, UPON RESETTING THE OUTLET, FUMP STATES PRIMED PUMP AND VERIFIED FLOW. Pump STARTED ESTCP: Technolog

monstration Plan

Perchlorate Destruction Using ...embrane Biofilm Reduction

)a	ate: 8/31/	u —		Time:	8:30	 -	ESTCP	Project N Operator	4.	R-20054 もP-いく	11 14 N	_	
_					Field	d Samples							
Calibration	pH calibration? Standards: □4 Standard Readin	□Yes 口 □7 □10 g: 4:	No . 7: 10	:	ORP calibrati Temp (Deg C Standard Re		<u>√</u> No -		Standard	is: □0	□ 2.0.2	Yes	□1.0
	Lead Reactor:	□ MfBR1 ■ MfBR2	Lead Sample	if MBfR1 in LE	AD: SP-200B □		nple Collec	ction Time:	9:0	00			
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
	ρΗ	(std units)	7.52	7.46	7.81	8.01	7.95	# d \	7.89				7.60
ממס	Temperature	(°C)	19.9	20.7	22.0	22.0	22.1		21.9				22:
2	ORP	(mV)	175	-370	-540	-285	-20		224			market and a	
Š	Dissolved Oxygen	(mg/L)	9	1.5	0.1	5.5	6		8				
	Nitrate + Nitrite	(mg/L,-N)	8.2	2.2	0.4				0.2	*			
	Nitrite	(mg/L-N)	0	0.4	0				0				
	Sulfide	(mg/L)	O	0	-0	. 0			0				
	Turbidity	(NTU)	0.469			1.13	0.503		1.429				
_	Chlorine Residual	(mg/L)						2.6	/. t				79. O.A
_	* Signifies MBfR 1 o	or MBfR 2 de	pending on if re	eactor is in the l	ead or lag positi	on - this changes	every 96 ho	ours		Note: shad	ed boxes are	e to remain blar	ık
	Post Fini					Backwash F	Record				Inve	entory	- A-All
	System	Inspection	on		Backwash star						Check		

Post Fini System	shed Wa Inspection						
ollect while sump is running							
Bag Filter ΔP	psi	3					
GAC-1 Pressure	psig	Ü					
GAC-2 Pressure	psig	14					
IX-1 Pressure psig 44							

Feed Tank Additions							
	H3PO4		Sodiu	т Нуро			
me	2	<u>8</u>	non				
tial Tank Level (gal)		1		1			
ock Added							
pe of Water Used For Jution							
nume Dilution Added at)							
stal Volume Added al)	1	\bigvee		1			
nal Tank Level ai)		7	6	Y			

		Backwash R	ecord	
	Backwash star	t time:		
	Backwash dura	ation	no in	
	initial Product	fank Level	gal	
/	Final Product	ank Level	gal	
_	Time of sample	collection:		
	Location	Turbidity (NTU)	TSS Co	llected?
	MBfR Solids Drain		□Yes	□No
	Filter Backwash		□Yes	□No

Inventory							
	Туре	Check					
H3PO4	Stock (gal)	4					
Sodium	Hypo Stock (gal)	40)	•				
9 6	Dissolved Oxygen						
Fiel	Nitrate + Nitrite		•				
Additional Field	Nitrito		~				
₽	Samae		خو				
Add	Chlorine		/				
~ ₽	o-Phosphate	~					

NOTES:
Sabium HYPO Pump OFF IN THE AM. COM PUGGES IT
BUCK IN. APT HAS EXPLAINED THAT A LEAR
WAS FETECTED AT SODIUM HYPO INJECTION
FOINT AND WAS CLOSED YESTERDAY BEFORE
B-55

Treatment Sys	tem In	spection
Outlet Totalizer	gai	589996
Target Flow Rate	gpm	15
Internal Recycle Rate	gpm	280
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-348
MBfR 2 ORP	mV.	-/05
Nitrate Frequency	Hz	*
Last N Feed	ppm (N)	7.82
Last N R1	ppm (N)	0.19
Last N R2	ppm (N)	1.65
MBfR1 Sparge Rate	mm	280
MBfR2 Sparge Rate	mm	280
Phosphate Pump Settings	spm % stroke	20
Phosphate Concentration at Strainer	mg/LPO4	1.4
Aeration Tank Air Flow	scfm	3.3
Air Tank Pressure	psig	22
Target Media Filter Flow Rate	gpm	14
Media Filter Inlet Pressure	psig	7.1
Media Filter Outlet Pressure	psig	5.1
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	· •—-
Coagulant Pump Settings		
CO2 Cylinder Pressure	psi	300/59
H2 Cylinder Pressure	psi	300/59 224/91
N2 Pressure	psi	325/172
N2 Flow Rate	scfm	

HE LEFT. 10:00 - CHIMERON SAREIN ONSITE. HE WAS GIVEN A TOUR OF THE ENTIRE FACILITY AND WALKED THROUGH THE PROCESS. CLAMEPON SNAPPED PHOTOS OF THE SYSTEM, FICH B. ONSITE TO TEST AND INSTALL FILTER AID PUMP, PICK STURES FLUTER AID Jump? 1:55 Pm, POSING thate INFO BELOW COM AND APT TEST NEW LEVEL OF CONTIANIMENT FLOAT SWITCH. COM DETERMINED POPE ON THE FLOAT SWITCH WILL NOT ENGINGE WHEN INVERTED. DUE TO THE SIZE OF THE FLOAT (3" FOUND CYLINDER) THE POPE MUST BE LENGTHENED FOR IT TO BE ENGLIGED. COM APT 4145 LENGTHEN THE POPE AND LOWERED THE PNOT/CONNECTION POINT. FLOWT NOW ENGINEES AT APPROX. 7"-8" OF STANDING WATER. APT AIRS INSTAIL A SECONDARY LEVEL SWITCH WHICH WILL ENGRAGE AT 4"-5"

DOSING PACE: 3 ml/min.

DOSING CONC.: 0.5 ml/L

FEED CONC.: 0.10/p

ESTCP: Technolog

monstration Plan

see

Perchlorate Destruction Using ...embrane Biofilm Reduction ESTCP Project Number ER-200541 Time: 9100Am Operator: BEROKOFF

					Field	Samples							1
Calibration	pH calibration? Standards: 124 Standard Reading		7: <u>\/A</u> 10:		ORP calibrati Temp (Deg C Standard Rea	on? []Yes [:):ading: 200: _2	220			s: □0	□0.2 □	Yes □N 0.4 □0.6 1:_	□1.0
	Lead Reactor: MIBR1 SP-100B if MBfR1 in LEAD: SP-200B Sample Collection Time: 10 Afron												
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
	рН	(std units)	7.64	7.56	7.70	8,00	7.88		7.97			120 110	7,87
Data	Temperature	(°C)	19,9	21,5	22,7	22.6	22.9		23.4				22.9
Sample	ORP	(mV)	454	-380	-550	-250	38		681				A TANKS
San	Dissolved Oxygen	(mg/L)	9	1.5	0.1	6,0	5.0		5.5				
	Nitrate + Nitrite	(mg/L-N)	6.0	3.0	0.0				0.25				
ľ	Nitrite	(mg/L-N)	0	0.6	0.05				0				
	Sulfide	(mg/L)	0	0	0.6	0.3			0				16
	Turbidity	(NTU)	_			1.17	0.257		0,251				
	Chlorine Residual	(mg/L)					10.00	3.75	1.75				

Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours

Note: shaded boxes are to remain blank

Post Finished Water System Inspection							
Collect while sump is ru	nning						
Bag Filter ∆P	psi	13					
GAC-1 Pressure	psig	16					
GAC-2 Pressure	psig	11)					
IX-1 Pressure	psig	2.3					

Feed Tank Additions		
	H3PO4	Sodium Hypo
Time	1:30pm	1:30pm
Initial Tank Level (gal)	2.8	25
Stock Added	250	at-
Type of Water Used For Dilution	INF	-
Volume Dilution Added (gal)	2.2	^
Total Volume Added (gal)	2.2	-
Final Tank Level (gal)	5.0	25

D	17.0	7 0 D.	_
Backwash star	t time: 12:2	28Pr	`
Backwash dur	ation	min	
Initial Product	Tank Level	gal	
Final Product	Tank Level	gal	
Time of sampl	e collection:		
Location	Turbidity (NTU)	TSS Col	lected?
MBfR Solids Drain SEE BACK		 ∀es	□No
Filter Backwash	_	□Yes	₽No

Inventory		
	Туре	Check
H3PO4	Stock (gal)	~
Sodium	Hypo Stock (gal)	1
т С Р	Dissolved Oxygen	
Fiel	Nitrate + Nitrite	V
Additional Field est Kits Needed?	Nitrite Sumue	1
Additior Fest Kits	Chlorine	V
Tes	o-Phosphate	V

NOTES: APT ON SITE TO REFILL FILTER AID AND ADJUST PUMP SETTINGS TO ACCOMMODATE FOR THE THE INCREASED CONCENTRATION. CDM PERFORMED BACKWASH ON MBFR

Outlet Totalizer gal 5943460 Target Flow Rate gpm 15 Internal Recycle Rate gpm 280 MBfR 1 pH std units 7, 2 MBfR 2 pH std units 7, 2 MBfR 1 ORP mV -331 MBfR 2 ORP mV -51 Nitrate Frequency Hz - Last N Feed ppm (N) 7, 78 Last N R1 ppm (N) 7, 78 Last N R2 ppm (N) 7, 72 MBfR1 Sparge Rate mm 288 MBfR2 Sparge Rate mm 288 Phosphate Pump Settings 5mg/LPO4 2, 0 Phosphate Concentration at Strainer mg/LPO4 2, 0 Aeration Tank Air Flow scfm 3, 2 Air Tank Pressure psig 7, 5 Media Filter Inlet Pressure psig 7, 5 Media Filter Inlet Pressure psig 7, 5 Media Filter Inlet Pressure psig 7, 5 Sodium Hypo Pump Settings 7	Treatment System Inspection			
Target Flow Rate gpm 15 Internal Recycle Rate gpm 280 MBfR 1 pH std units 7, 2 MBfR 2 pH std units 7, 2 MBfR 1 ORP mV -33 MBfR 2 ORP mV -5 Nitrate Frequency Hz -	Outlet Totalizer	gal	5942400	
MBIR 1 pH std units 7, 2 MBIR 2 pH std units 7, 2 MBIR 1 ORP mV -33 1 MBIR 2 ORP mV -5 1 Nitrate Frequency Hz Last N Feed ppm (N) 7, 7 8 Last N R1 ppm (N) 0, 2 5 Last N R2 ppm (N) 2, 7 2 MBIR1 Sparge Rate mm 28 8 MBIR2 Sparge Rate mm 28 8 Phosphate Pump Settings phosphate Concentration at Strainer Aeration Tank Air Flow scfm 3, 2 Air Tank Pressure psig 2, 2 Target Media Filter Flow Rate psig 7, 5 Media Filter Outlet Pressure psig 5, 0 Sodium Hypo Pump Settings % stroke 1000 Coagulant Tank Level gal 1 Coagulant Pump Settings Psi 80 H2 Cylinder Pressure psi 90 N2 Pressure psi 80	Target Flow Rate	gpm	15	
MBfR 2 pH MBfR 1 ORP MBfR 2 ORP MV MBfR 2 ORP MV MItrate Frequency Last N Feed Last N R1 Last N R2 MBfR1 Sparge Rate MBfR2 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Media Filter Flow Rate Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Gal Coagulant Pump Settings MY/N; N SCOC Cylinder Pressure MS Air Documentation and Air Plow Sodium Pool Air Pool MY/N; N MY/N; N MY/N; N MS Pool MS Pool MS Pressure Psi MS Pool MS Po	Internal Recycle Rate	gpm	280	
MBIR 1 ORP MBIR 2 ORP MIV -33) MBIR 2 ORP Nitrate Frequency Last N Feed Depth (N) Last N R1 Depth (N) Dias Last N R2 Depth (N) Dias MBIR 2 Sparge Rate MBIR 2 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Target Media Filter Flow Rate Media Filter Inlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings Pii Co2 Cylinder Pressure Psi Psi Psi Psi Psi Psi Psi Ps	MBfR 1 pH	std units	7.2	
MBfR 2 ORP Nitrate Frequency Last N Feed Last N Feed Last N R1 Last N R2 MBfR1 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Rate Media Filter Inlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MFR2 Sparge Rate	MBfR 2 pH	std units	7.2	
Nitrate Frequency Last N Feed Last N R1 Last N R2 MBfR1 Sparge Rate MBfR2 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Media Filter Flow Rate Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MY/M; N SCO N2 Pressure Psi Air Tank Pressure Air Tank Pressure Psi Air Tank Pressure Air Tank Pressure A	MBfR 1 ORP	mV	-331	
Last N Feed ppm (N) 7,78 Last N R1 ppm (N) 0,25 Last N R2 ppm (N) 2,72 MBfR1 Sparge Rate mm 288 MBfR2 Sparge Rate mm 280 Phosphate Pump Settings pm % stroke 30 Phosphate Concentration at Strainer psig 2,2 Aeration Tank Air Flow scfm 3,2 Air Tank Pressure psig 2,2 Target Media Filter Flow Rate psig 7,5 Media Filter Inlet Pressure psig 7,5 Media Filter Outlet pressure psig 5,0 Sodium Hypo Pump Settings % stroke 1000 Coagulant Tank Level gal 1 Coagulant Pump Settings Mulicip School 1000 H2 Cylinder Pressure psi 80 N2 Pressure psi 80 N2 Pressure psi 175	MBfR 2 ORP	mV	-51	
Last N R1 Last N R2 ppm (N) D, 25 Dpm (N) D, 72 MBfR1 Sparge Rate MBfR2 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Pate Media Filter Inlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings N2 Pressure Psi D Coagulant Pressure Psi D Coagulant Pump Settings MC/A; N 5 CO2 Cylinder Pressure Psi Psi D Coagulant Pump Settings MC/A; N 5 Po Po Pop Pop Pop Pop Pop Pop Pop Pop Po	Nitrate Frequency	Hz	-	
Last N R2 ppm (N) D, 72 MBfR1 Sparge Rate mm D80 MBfR2 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Target Media Filter Flow Rate Media Filter Inlet Pressure Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level H2 Cylinder Pressure ppi ppm MYAIN STONE Ppm D14 Ppi Ppi Ppi Ppi Ppi Ppi Ppi Pp	Last N Feed	ppm (N)	7.78	
MBIR1 Sparge Rate mm 288 MBIR2 Sparge Rate mm 280 Phosphate Pump Settings % stroke 30 Phosphate Concentration at Strainer Scfm 3.2 Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.2 Target Media Filter Flow gpm 144 Media Filter Inlet Pressure psig 7.5 Media Filter Outlet Pressure psig 5.0 Sodium Hypo Pump Settings % stroke 100 Coagulant Tank Level gal 1 Coagulant Pump Settings psi 80 H2 Cylinder Pressure psi 90 N2 Pressure psi 175	Last N R1	ppm (N)	0,25	
MBfR2 Sparge Rate mm 380 Phosphate Pump Settings spm % stroke 30 Phosphate Concentration at Strainer Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.2 Target Media Filter Flow Rate Media Filter Inlet Pressure psig 7.5 Media Filter Outlet Pressure psig 5.0 Sodium Hypo Pump Settings % stroke 1000 Coagulant Tank Level gal 1 Coagulant Pump Settings Mulicip School	Last N R2	ppm (N)	2.72	
Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Air Tank Pressure Auraget Media Filter Flow Rate Media Filter Inlet Pressure Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MCAIR STROKE Auraget Media Filter Flow Paig Solium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MCAIR STROKE Psi Auraget Media Filter Flow Psi Solium Hypo Pump Spm Solium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MCAIR STROKE Psi Auraget Aurage	MBfR1 Sparge Rate	mm	288	
Phosphate Pump Settings % stroke 30 Phosphate Concentration at Strainer Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.2 Target Media Filter Flow gpm 144 Media Filter Inlet Pressure psig 7.5 Media Filter Outlet Pressure psig 5.0 Sodium Hypo Pump spm 30 Settings % stroke 1000 Coagulant Tank Level gal 1 Coagulant Pump Settings Mynin 5 CO2 Cylinder Pressure psi 80 H2 Cylinder Pressure psi 80 N2 Pressure psi 175	MBfR2 Sparge Rate	mm	280	
Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Psig Target Media Filter Flow gpm Media Filter Inlet Pressure Media Filter Outlet Pressure Psig Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MUMIN CO2 Cylinder Pressure Psig MUMIN FROM Pressure Psig Psig	Phosphate Pump Settings		20	
Air Tank Pressure psig 2,2 Target Media Filter Flow Rate psig 7,5 Media Filter Inlet Pressure psig 7,5 Media Filter Outlet Pressure psig 5,0 Sodium Hypo Pump Spm 30 Settings 9 stroke 100 Coagulant Tank Level gal 1 Coagulant Pump Settings psi 80 H2 Cylinder Pressure psi 80 N2 Pressure psi 175			2.0	
Target Media Filter Flow gpm 14 Media Filter Inlet Pressure psig 7,5 Media Filter Outlet Pressure psig 5,0 Sodium Hypo Pump spm 30 Settings 7,5 Coagulant Tank Level gal 1 Coagulant Pump Settings psi 80 H2 Cylinder Pressure psi 80 N2 Pressure psi 175	Aeration Tank Air Flow	scfm	3.2	
Rate gpm 14 Media Filter Inlet Pressure psig 7,5 Media Filter Outlet Pressure psig 5,0 Sodium Hypo Pump Settings spm 30 Coagulant Tank Level gal 1 Coagulant Pump Settings M/M;N 5 CO2 Cylinder Pressure psi 80 H2 Cylinder Pressure psi 90 N2 Pressure psi 175	Air Tank Pressure	psig	2.2	
Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings MUMIN 5 CO2 Cylinder Pressure Psi Psi Psi Psi Psi Psi Psi Ps	•	gpm	14	
Pressure psig 5. C Sodium Hypo Pump spm 30 Settings % stroke 100 Coagulant Tank Level gal 1 Coagulant Pump Settings M/m; N 5 CO2 Cylinder Pressure psi 8 H2 Cylinder Pressure psi 90 N2 Pressure psi 175	Media Filter Inlet Pressure	psig	7.5	
Settings % stroke / DO Coagulant Tank Level gal / Coagulant Pump Settings		psig	5.0	
Coagulant Tank Level gal 1 Coagulant Pump Settings M/M;N 5 CO2 Cylinder Pressure psi 80 H2 Cylinder Pressure psi 90 N2 Pressure psi 175			30	
Coagulant Pump Settings MUNIN 5 CO2 Cylinder Pressure psi 80 H2 Cylinder Pressure psi 90 N2 Pressure psi 175		% stroke	100	
CO2 Cylinder Pressure psi 8 0 H2 Cylinder Pressure psi 90 N2 Pressure psi 175	Coagulant Tank Level	gal	1	
CO2 Cylinder Pressure psi 80 H2 Cylinder Pressure psi 90 N2 Pressure psi 175	Coagulant Pump Settings	MYMIN	5	
N2 Pressure psi 175	CO2 Cylinder Pressure		80	
1/5	H2 Cylinder Pressure	psi	190	
	N2 Pressure	psi	175	
	N2 Flow Rate	scfm		

NOTES CONT ...

TEST AMERICA DID NOT SLOT US IN FOR COURIER PICK-UP TODAY, THEY WILL SEND SOMEONE FROM LAB TO PICK UP @ COM RANCHO OFFICE & LATER TODAY OR TUESDAY MORNING.

·	
SAMPLE	TURB (NTU)
LAG IST DRAINS	
LAG DNO DRAIN	
LEAD IST DRAIN	3.4
LEAD 2ST DRAIN	7011

TURBIDITY	CALIBRATION: TYES INO	
STANDAR	DS: M<0.1 M20 M200 M1000	
	174000	
STANDARD	READING: HONOT DO.301	
	Ho. 191 1.0	
0.107:	0.3018 0.4912 1.02	
		3

ESTCP: Technolog

monstration Plan Perchlorate Destruction Using ... embrane Biofilm Reduction

ESTCP	Project	Number	ER-200541

4:00 **ARUCUN** Time: Operator: Field Samples pH calibration? □Yes ☑No ORP calibration? □Yes ☑No Turbidity calibration? □Yes ☑No Standards: 🗆 4 🗀 7 🗀 10 Temp (Deg C): Standards: □0 □0.2 □0.4 □0.6 □1.0 Standard Reading: 4: Standard Reading: 200: Standard Reading: 0: Lead Sample Lag Sample if MBfR1 in LEAD: SP-200B Lead Reactor: Sample Collection Time: 10:30 ☐ MfBR2 SP-100A if MBfR2 in LEAD: SP-100B Parameter Finished Water *Lead Reactor Influent *Lag Reactor Aeration Media Filter Effluent Post Sodium Hypo GAC 1 Effluent 7.59 7.60 7.82 (std units) Sample Data 21.8 23.5 23.6 Temperature (°C) 100 -270 ORP (mV) 0.9 0.10 8 Dissolved Oxygen (mg/L) 4.1 0.8 0.6 Nitrate + Nitrite (mg/L-N) 0.6 0. 0 Nitrite (mg/L-N) 0 0 Sulfide (mg/L) 0.351 0.311 Turbidity (NTU) 0,4 Chlorine Residual Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Note: shaded boxes are to remain blank

Post Finished Water] [Backwas
System Inspection	B	ackwash start time:
Collect while sump is running	В	ackwash duration

Collect while sump is ru	ınning	.1
Bag Filter ∆P	psi	7
GAC-1 Pressure	psig	17
GAC-2 Pressure	psig	12
IX-1 Pressure	psig	3

Feed Tan	ık Additi	ons
	H3PO4	Sodium Hypo
Time	1:45	1:45
Initial Tank Level (gal)	1-8	15
Stock Added (M-L)	150	1 .
Type of Water Used For Dilution	/NF	
Volume Dilution Added (gal)	3.2	
Total Volume Added (gal)	3.3	
Final Tank Level (gal)	5.0	Ψ

Backwash Record			
Backwash star	t time:		
Backwash dura	ation	min	**
Initial Product	Галk Level	gal	
Final Product 1	ank Level	, gal	
Time of sample		4	
Location	Turbidity (NTU)	TSS Col	lected?
MBfR Solids Drain		□Yes	□No
Filter Backwash		□Yes	□No

Inventory		
	Туре	Check
H3PO4	Stock (gal)	4
Sodium	Hypo Stock (gal)	30
d d?	Dissolved Oxygen	7
Fiel	Nitrate + Nitrite	
Additional Field est Kits Needed?	Nitrite	
ig si	Juliue	
등상	Chlorine	
A Tes	o-Phosphate	

NOTES:		
PICHADI	D & PACH ONSITE TO CHECK PEPFORMANCE OF	
	LANT PUMP. LIEDUA FICTER IS SHOWING A	
	4.5 PSI (NORMALLY 2-2.5PSI). APT REQUESTE	;p
	OF DEWAR DELIVERS PRESTURE BE LOWE	

Treatment System Inspection							
Outlet Totalizer	gal	0048200					
Target Flow Rate	gpm	15					
Internal Recycle Rate	gpm	280					
MBfR 1 pH	std units	7.2					
MBfR 2 pH	std units	7.2					
MBfR 1 ORP	mV	102					
MBfR 2 ORP	mV	-472					
Nitrate Frequency	Hz						
Last N Feed	ppm (N)	7.71					
Last N R1	ppm (N)	3.82					
Last N R2	ppm (N)	0.66					
MBfR1 Sparge Rate	mm	280					
MBfR2 Sparge Rate	mm	280					
Phosphate Pump Settings	spm % stroke	20 30					
Phosphate Concentration at Strainer	% stroke mg/LPO4	1.4					
Aeration Tank Air Flow	scfm	3.2					
Air Tank Pressure	psig	2.2					
Target Media Filter Flow Rate	gpm	14.0					
Media Filter Inlet Pressure	psig	9.5					
Media Filter Outlet Pressure	psig	5.0					
Sodium Hypo Pump	spm	20					
Settings	% stroke	(00					
Coagulant Tank Level	gal						
Coagulant Pump Settings	4 m	[/min					
CO2 Cylinder Pressure	psi	105					
H2 Cylinder Pressure	psi	91					
N2 Pressure	psi	175					
N2 Flow Rate	scfm						

TO 75 PSI FIRM 105 PSI. APT OFFSITE @ 11:30.

1:50 - APT INSTRUCTED COM TO LOWER FEED FLOW TO

10 GPM. COM HAS ADJUSTED THE LAGT REACTOR OUTLET.

FLOW BY "THOULING" VALVE ON THE STAND PIPE

PRIOR TO THE AEPATION TIANK. COM HAS LAND

REDUCED THE MEDIA FILTER FLOW RATE TO 9-0 GPM,

BY THROTILING THE VALVE BETWEEN THE MEDIA FILTER

AND TRODUCT TIANK.

Data Log Sheet

ESTCP: Technology Demonstration Plan Perchlorate Destruction Membrane Biofilm Reduction

ESTCP Project number ER-200541

Dε	ite: 1/4	711	•	Time:	4:00			Operator		<i>puc</i>	NN	_			
Field Samples															
Calibration	pH calibration? Standards: □4 Standard Readi	□7 □10		:	ORP calibrat Temp (Deg 0 Standard Re	C):	□No		Standard	s: □0 l	□0.2 □	Yes □Ñ 0.4 ቯ0.6 1:	□1.0		
	Lead Reactor	. □ MfBR1 □ MfBR2	>	SP-200A □	<u>ple Lag Sample</u> ☐ SP-200B ☐ Sample Collection Time ☐ SP-100B ☐					[lo:a0					
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall		
~	pН	(std units)	7.54	7.43	7.65	7.99	7.84		7.83				7.48		
Date	Temperature	(°C)	19.0	22.3	24.2	24.1	24.3		24.1				24.2		
Sample Data	ORP	(mV)	135	-435	-520	-23/	-80		290						
San	Dissolved Oxygen	(mg/L)	9	2.5	. 15	6.5	7.0		8.0						
	Nitrate + Nitrite	(mg/L-N)	8.5	2.8	0.1				0						
	Nitrite	(mg/L-N)	. 0	0.4	0				0						
	Sulfide	(mg/L)	297	0	0.8	0.6			0						
	Turbidity	(NTU)	0.297			1.13	.306		.276				gapana		
	Chlorine Residual	(mg/L)	nonding on if re	notor is in the l	and or lag positi	on this shapes		0.6	0.2						
* Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position Post Finished Water System Inspection				Backwash R	ecord	d Inventory									
Col	lect while sump is r				Backwash dura		min	14/14		H3PO4 5	Type Stock (gal) · · · · · · · · · · · · · · · · · · ·	Check		
Bag Filter ∆P psi 3				Initial Product		gal	13/B			Hypo Stoo		28			
	GAC-1 Pressure	psig	15		Final Product T		gal	W/A		est	Dissolved	Oxygen			
-	GAC-2 Pressure IX-1 Pressure	psig psig	14		Time of sample		T00.0-	Un ada alD		Pid T	Nitrate +	Nitrite			
	IX-11 resaure	psig		١.	Location MBfR Solids	Turbidity (NTU)	TSS Co	lected?		ll Fig	Nitrite				
Feed Tank Additions				Drain	on Back	Yes	□No		P 8	Sulfide Chlorine	·	-			
		H3PO4	Sodium Hypo		FBHBA / 1	20 -	- //			Add	o-Phosph	ıate			
Time	9	2:30	2:45	,	Backwash		1 Phes	L'⊡Ne-	. '			-			
Initia	l Tank Level (gal)	3.5	//		· · · · · · · · · · · · · · · · · · ·		-{				i.	-	•		
Stoc	k Added WL	120	6.2.5	STALS	NOTES:						• •				
Type Dilui	of Water Used For	INF	MEDIA	-	_	onsite at	1.60	90	NSTALL	SHA	DE O	S CHE	MICIAL		
Volu (gal)	me Dilution Added	1.5	16.5		PAD. AP										
	l Volume Added	1.5	Wis	/96ms		Just Enou			MATY			EN BU	cx-		
Fina (gal)	l Tank Level	5	30	·	WASHIN	G		-R-61							
			-			, -		N OI							

Treatment System Inspection							
Outlet Totalizer	gal	6078500					
Target Flow Rate	gpm	10					
Internal Recycle Rate	gpm	280					
MBfR 1 pH	std units	7.2					
MBfR 2 pH	std units	7.2					
MBfR 1 ORP	mV	-288					
MBfR 2 ORP	mV	-50					
Nitrate Frequency	Hz						
Last N Feed	ppm (N)	7.43					
Last N R1	ppm (N)	0-33					
Last N R2	ppm (N)	2.18					
MBfR1 Sparge Rate	mm	280					
MBfR2 Sparge Rate	mm	286					
Phosphate Pump Setting	gs spm % stroke	1.0					
Aeration Tank Air Flow	scfm	3.3					
Air Tank Pressure	psig	2.2					
Target Media Filter Flow Rate	gpm	7					
Media Filter Inlet Pressu	re psig	5.7					
Media Filter Outlet Pressure	psig	2.1					
Sodium Hypo Pump	spm	30					
Settings	% stroke	100					
Coagulant Tank Leve	l gal	3.5					
Coagulant Pump Settin	gs mL/wir	. 4					
CO2 Cylinder Pressure	psi	73					
H2 Cylinder Pressure	psi	7/					
N2 Pressure	psi	175					
N2 Flow Rate	scfm						

APT INFORMED COM TO NOT PEDFORM

BACKWASH DIE TO PECENT BACKWASH YESTEPDAY,

DURING THE SPANGE PROCESS, THE H2 LEL ALAKM

THAD GROVE ON AND WAS @ 370/0 AT STEP

2, SPANGE LAGT. DENATION THANK WAS LOWER

AND COM NOTICED WHITE FILM ON THANK. PHOTOS

DITACHED.

LOCIATION	-tuppioty
LEAD I LEAD I LEAD 2 AERATION MEDIA -FILTERS	15.7 17.2 3.92 6.52 1.81 0.489

ESTCP: Technology Demonstration Plan

Perchlorate Destruction !

Membrane Biofilm Reduction

ESTCP Project Number ER-200541

9:00 ARUCAN Time: Operator: **Field Samples** ZYes □No ORP calibration? Turbidity calibration? □Yes ☑No Temp (Deg C): 18.6 Standard Reading: 200: 216 Standards: Ø4 Ø7 Ø10 Standard Reading: 4: <u>4:26</u> 7: <u>7:15</u> 10: **[0.][** Standards: □0 □0.2 □0.4 □0.6 □1.0 Standard Reading: 0: Lead Sample Lag Sample Lead Reactor: MfBR1 SP-200A SP-200B Sample Collection Time: SP-100A □ SP-100B □ Finished Water Influent *Lead Reactor Permitted Outfall *Lag Reactor GAC 1 Effluent GAC 2 Effluent 7.65 7.68 7.65 7-82 7.60 (std units) 19.0 23.9 23: 23.8 21.9 23.2 Temperature (°C) 110 -315 -390 ORP (mV) 5.5 0.7 0.2 Dissolved Oxygen (mg/L) 0 1.6 0 Nitrate + Nitrite (mg/L-N) 0.2 Nitrite (mg/L-N) 2.0 0 0 0 Sulfide (mg/L) 0.360 Turbidity (NTU) 0.2 Chlorine Residual

		1 1113									
* Signifie	s MBfR 1	or MBfR	2 depen	idina on	if react	or is in	the lead o	or lag position	- this chan	ges eve	rv 96 hours

	ished Wa Inspection										
Collect while sump is running											
Bag Filter ∆P	psi	7									
GAC-1 Pressure	psig	1G									
GAC-2 Pressure	psig	14-									
IX-1 Pressure	psig	3									

Feed Tai	nk Additi	ons]-
	H3PO4 -	Sodium Hypo	
Time	1:45	/:30	
Initial Tank Level (gal)	3	27	25
Stock Added	7/60	0	1
Type of Water Used For Dilution	INFLIENT	. 0	
Volume Dilution Added (gal)	2.0	0	·
Total Volume Added (gal)	2.0	0	
Final Tank Level (gal)	5.0	47 3	15

Backwash Record											
Backwash start time:											
Backwash dura	ation	min -									
Initial Product	Tank Level	gal									
Final Product	Fank Level	gal									
Time of sample	e collection:										
Location	Turbidity (NTU)	TSS Col	lected?								
MBfR Solids Drain	N/A	□Yes	□No								
Filter Backwash	N/A	□Yes	□No								

	Inventory	
	Check	
H3PO4	Stock (gal)	4
Sodium	Hypo Stock (gal)	30
est	Dissolved Oxygen	
d	Nitrate + Nitrite	~
ege -ije	Nitrite	١
Additional Field Tesl Kits Needed?	Sulfide NEGO	
Aits	Chlorine	
Ad	o-Phosphate	~

Note: shaded boxes are to remain blank

NOTES:
MANAGORE. APT INFORMED COM THAT WEDIN FICTERS
PEDFORMED BACKWASH WAST NIGHT - COM NOTED THE
COAGMANT TANK IS EMPTY AND INFORMED LAPT.
CAM HAS LACCIDENTIALY SUBT ENGINEED

Treatment Sys	tem In	spection
Outlet Totalizer	gal	6121600
Target Flow Rate	gpm	10
Internal Recycle Rate	gpm	280
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-272
MBfR 2 ORP	. mV	-452
Nitrate Frequency	Hz	₹~~
Last N Feed	ppm (N)	7.93
Last N R1	ppm (N)	1.20
Last N R2	ppm (N)	0.91
MBfR1 Sparge Rate .	mm	280
MBfR2 Sparge Rate	mm	280
Phosphate Pump Settings	spm % strake	20
Aeration Tank Air Flow	scim	3.3
Air Tank Pressure	psig	2.2
Target Media Filter Flow Rate	gpm	9.0
Media Filter Inlet Pressure	psig	2.6
Media Filter Outlet Pressure	psig	2.1
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	0
Coagulant Pump Settings	holus	. 4
CO2 Cylinder Pressure	psi	72
H2 Cylinder Pressure	psi	91
N2 Pressure	psi	175
N2 Flow Rate	scfm	
_		

PHOSPHATE CONSC (APM): 1.1

A NOTES CONT.

THE SECONDARY CONTINUMENT SWITCH. THE SYSTEM WAS SHUT OFF. COM THAT RESTARTED THE SYSTEM. CHURCHNATION FEED CHANGED TO 40 STROKES/WIND AND 100% STROKE LENGTY

CONTIACT
EQUIPCE FOR GRAS WETER

Data Log 5	Sheet
------------	-------

ESTCP: Technologemonstration Plan
Perchlorate Destruction Ush..., Membrane Biofilm Reduction
ESTCP Project Number EB-200541

Da	te: <u>9-14-11</u>			Time: _ <i>j 0 :</i>	30AM			Operator:				_		Treatment Sys	tem Ins	spection
					Fiel	d Samples						,		Outlet Totalizer	gal	6150600
ö	pH calibration?	□Yes	No		ORP calibration	on? □Yes [al No	Nac	Turbidity of	calibratio	on?. Ø	Yes □N	0	Target Flow Rate	gpm	10
Calibration	Standards: □4 □ Standard Reading	□7 □10			Temp (Dea C				Standards: Readings:	20 2	200 1 € 200	⊡1000 l		Internal Recycle Rate	gpm	280
0			Lead Sample		7		Helm	7	Tioudings.	0.107	0.001	0	· · · _ ·	MBfR 1 pH	std units	7.2
	MIRRI CONTRACTOR CONTRACTOR CONTRACTOR TO CO										MBfR 2 pH	std units	7.2			
										MBfR 1 ORP	mV	-81				
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-324
	Par		드	* &	Č	¥	< - m	- ÿ -	Ē >	ο Π	ο Π	n	80	Nitrate Frequency	Hz	-
~	pН	(std units)	7.64	7.48	7.37	7.82	7.66		7.73				7.67	Last N Feed	ppm (N)	7.95
Data	Temperature	(°C)	19.8	22.2	24.2	24,0	24.1		24,0				24.1	Last N R1	ppm (N)	2.26
ple	ORP	(mV)	-20	-192	-293	-247	-134		318					Last N R2	ppm (N)	0.47
Sample Data	Dissolved Oxygen	(mg/L)	9	0.9	0.1	7.0	2,5		3.0					MBfR1 Sparge Rate	mm	280
	Nitrate + Nitrite	(mg/L-N)	9	3	0	新 有数据			0.2					MBfR2 Sparge Rate	mm	240
		l constant	0	0.75	001			K L	0					Phosphate Pump Settings	spm % stroke	20 30
	Nitrite	(mg/L-N)	0	0	1.0	0.5			0					Phosphate Concentration	mg/LPO4	
	Sulfide	(mg/L)	00107				0,39		0.29					at Strainer Aeration Tank Air Flow	scfm	3,2
	Turbidity		0610				1 21 24	0.6	0.2					Air Tank Pressure	psig	2,2
	Chlorine Residual * Signifies MBfR 1 o	(mg/L) or MBfR 2 de	epending on if re	actor is in the l	ead or lag positi	on - this changes	every 96 h		000	Note: shad	led boxes ar	e to remain bla	nk	Target Media Filter Flow	gpm	9
	Post Fini	shed Wa	ater			Backwash F	1		Inv	entory	-	Rate Media Filter Inlet Pressure	psig	3.0		
	System				Backwash star		iecoru				Туре		Check	Media Filter Outlet		
Со	lect while sump is ru	nning			Backwash dura		min			НЗРО4	Stock (ga		306	Pressure	psig	2,2
	Bag Filter ∆P	psi	3-4	* 1	Initial Product	ank Level	gal				Hypo Sto		30	Sodium Hypo Pump	spm	40
	GAC-1 Pressure	psig	16		Final Product T		gal		1	ed?		ed Oxygen	4 ea	Settings	% stroke	100
	GAC-2 Pressure IX-1 Pressure	psig psig	14		Time of sample Location	Turbidity (NTU)	TSS C	ollected?	1	Additional Field Test Kits Needed?	Nitrate +	Nitrite	9	Coagulant Tank Level	gal	0.5
					Lead Purge 1		□Yes	□No	1	itiona Cits P	Sulfide		i	Coagulant Pump Settings		
	Feed Tan		ions		Lead Purge 2		□Yes	□No		Add est P	Chlorine		6		ļ	6 MYMIN
_		H3PO4	Sodium Hypo		Lag Purge 1		□Yes □Yes	□No	1		o-Phosp	hate	3	CO2 Cylinder Pressure	psi	75
Tim		-		-	Lag Purge 2 Media Filter		□Yes	□No							-	10
-	al Tank Level (gal)			-	Wedia Filler				J					H2 Cylinder Pressure	psi	90
Тур	e of Water Used For				NOTES:									N2 Pressure	psi	175
	tion ume Dilution Added			1	CCION	SITE TO	INSTA	cc NEI	U FLOA	T SW	itch s	OR SE	CONDARY	N2 Flow Rate	scfm	-
(ga Tot) al Volume Added			1	CONTAIN	MENT. A	PT ON	SITE	TO CE	NSTRI	ect .	SHADE	BARRIE			
(ga Fin) al Tank Level		-	-	ALONG N	WRTHERM	END	OF ME	FR UN	JIT_	INCR	EASED	> SODIL	M HYPO PUMP	SETT	INGS TO
ſοa		er gallon.		1	60 spm	@ 106	7 SI	- (Fi	ZOM L	105p	4/10	0%)	MEASI	RED CLZ RESI	DUAL	DIRECTO
					AFTER	MEDIA F	ELTER	- = B4	625	29/2	. Th	IERÉ		NO TAFF COVE		

NOTES CONT ...

PORTION OF SODIUM HYPO TANK WHICH WOULD LEAD THE CONCENTRATION
TO DEGRADE, COVERED LID W/ BLACK TRASH BAG IN ORDER TO BOCK LIGHT.

CCI WAS STILL ON SITE WHEN @ 1:30pm TRYING TO TROUBLESHOOT THE RELAYS
FOR THE HIGH LEVEL SWITCH.

Data Log Sheet

ESTCP: Technolo

emonstration Plan

Perchlorate Destruction Using Membrane Biofilm Reduction

ESTCP Project Number ER-200541

Da	te: <u>9-16-11</u>			Time:	4m			Operator	BER	OKO	FF			Treatment Sys	tem Ins	spection
					Fiel	d Samples								Outlet Totalizer	gal	6184300
tion	pH calibration?	□Yes Ø	Νο		ORP calibration	on? □Yes □	Νο		Turbidity of	calibratio	n? 🗆	Yes ⊡N	0	Target Flow Rate	gpm	20
Calibration	Standards: □4 ☐ Standard Reading	□7 □10	7: 10:	Temp (Deg C): Standards: □0 □20 □200 □1000 □4000 10: 0.301: 0.491:										Internal Recycle Rate	gpm	280
_	Lead Sample Lag Sample												MBfR 1 pH	std units	7,2	
	Load Reporter: MBB1 MBR1 MBR1											MBfR 2 pH	std units	7,2		
	eter	S	ent	ld tor	g tor	ion	ia er ent	Er o	ned er	1 ent	2 ent	- ant	Permitted Outfall	MBfR 1 ORP	mV	-247
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluen	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	E iii	MBfR 2 ORP	mV	-81
	Pa		. =	* Œ				S			0 111	ш		Nitrate Frequency	Hz	•
ď	рН	(std units)	7.63	7.42	7.53	7.83	7.73		7.78				7.86	Last N Feed	ppm (N)	7.78
Data	Temperature	(°C)	18.9	20,0	21.1	21.1	21.1		20.9				20.8	Last N R1	ppm (N)	0,80
Sample	ORP	(mV)	130	-285	-430	-195	-88		379					Last N R2	ppm (N)	3,63
Sar	Dissolved Oxygen	(mg/L)	9	1.5	0,2	5,5	4.5		4.5					MBfR1 Sparge Rate	mm	280
	Nitrate + Nitrite	(mg/L-N)	9	4.5	0.8				0.7					MBfR2 Sparge Rate	mm	280
	Nitrite		Ó	0.75	0.4				0					Phosphate Pump Settings	spm % stroke	3 o 3 o
		(mg/L-N)	0	0	0.05	0			0					Phosphate Concentration	mg/LPO4	
	Sulfide Turbidity	(mg/L) (NTU)) (_		0.45					at Strainer Aeration Tank Air Flow	scfm	312
	Chlorine Residual	(mg/L)						0.4	0.05					Air Tank Pressure	psig	2,2
_	* Signifies MBfR 1 c		pending on if re	eactor is in the l	ead or lag positi	on - this changes	every 96 h			Note: shad	ed boxes ar	e to remain bla	nk	Target Media Filter Flow Rate	gpm	9
Γ	Post Fini					Backwash R]	Inventory				Media Filter Inlet Pressure	psig	7.5		
L		Inspection	on 		Backwash start		PAGO		-		Туре		Check	Media Filter Outlet Pressure	psig	2.2
100	llect while sump is ru Bag Filter ΔP	nning psi	3		Backwash dura		min gal		-		Stock (ga Hypo Sto		30	Sodium Hypo Pump	spm	60
H	GAC-1 Pressure	psig	14		Final Product T	ank Level	gal		1			d Oxygen	3/4	Settings	% stroke	100
	GAC-2 Pressure	psig	9		Time of sample		00 PW]	Additional Field Test Kits Needed?	Nitrate +	Nitrite	18	Coagulant Tank Level	gal.	1
L	IX-1 Pressure	psig	(,)	J	Location Lead Purge 1	Turbidity (NTU)	□Yes	ollected? □No	1	ional ts Ne	Nitrite Sulfide		1			-
Г	Feed Tan	k Additi	ions]	Lead Purge 2		□Yes	□No		Additi	Chlorine		6	Coagulant Pump Settings	MUMin	7
		НЗРО4	Sodium Hypo		Lag Purge 1		□Yes	□No]	, b	o-Phosp	hate	3	CO2 Cylinder Pressure	psi	75
Tim		2:45			Lag Purge 2		□Yes	□No	1							7 3
\vdash	al Tank Level (gal)	2.4	12		Media Filter	17.7	(Z) Yes	□No	ė	180	P- 560	. cent	AINMEN	H2 Cylinder Pressure	psi	90
	e of Water Used For	160	3.0		NOTES:					///					<u> </u>	
Dilu	ition	INF	MED. FILT	1		STALLED A	16.1. E	02- 5	201706	Y VC	2-4-17	DAY	AND	N2 Pressure	psi	161
Vol (ga	ume Dilution Added)	2,6	1100	15						•				N2 Flow Rate	scfm	
Tot (ga	al Volume Added	2.6	18		MARIOUS MAINTENANCE TASKS AND TO MEET WITH										_	
	al Tank Level	5.0	30	1	VARIOUS	MAINTE	NANC	E TAS	KS A	ND 7	O M	EET :	VITH	VISITORS INTERE	FTED	IN THE
	e: There are 3785 mL p	per gallon.		•	TECHNO	COGY, CO	NDUC	TED !	PATCH	1651	OH	MBYK	THIS	NILLADED SHUTT	NG OF	Ff INFLUE
					TO MOST	K AND W	VALTIN	B-6	7 TAKE	- rei	CHO	ICH IE	SHIM	FOR A2 FIRST	MON	ORING
					06 W	ITRATE C	81807	010	011	SCE	KER	12 (DI	17 7 415	FOR MY FIRST	THE	NRIL

ESTCP: Technolo

emonstration Plan

Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Da	ate: 9-19-1			Time: 91/	SAM			Operator						Treatment Sys	tem Ins	spection
					Fiel	d Samples								Outlet Totalizer	gal	6209200
tion	pH calibration?	□Yes Ø	ÍΝο	, 160	ORP calibration	on? □Yes E	1No	155	Turbidity	calibratio	on?	Yes 🗷	lo	Target Flow Rate	gpm	5
Calibration	Standards: □4 Standard Reading	□7 □10			Temp (Deg C				Standards:	:□0 □:	20 🗆 200	□1000		Internal Recycle Rate	gpm	280
_			Lead Sample			-		170	riodalingo.	0.107	0.001.			MBfR 1 pH	std units	_
	Lead Reactor:	☐ MfBR1 ☑ MfBR2	5P-200B	Sample Collection Time: 10 Att										MBfR 2 pH	std units	7.2
	iter	(0					r a	E o	p _	- E	2 nt	Ħ	B =	MBfR 1 ORP	mV	~
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-221
	Par		ੂ	* &	* %	Ae	ᇫᅩᇤ	S	声》	2 7	ΩĦ	_ #	Per O	Nitrate Frequency	Hz	
ซ	pН	(std units)	7.67	7.40	1	8,02	7.76		7.88				7.55	Last N Feed	ppm (N)	7.98
Data	Temperature	(°C)	24.0	25.1	1	24.8	25.2		25.4				24.8	Last N R1	ppm (N)	0.
Sample	ORP	(mV)	86	-293	1	-107	-102		733					Last N R2	ppm (N)	0.31
San	Dissolved Oxygen	(mg/L)	9	0.25	1	6.5	4.5		6.5					MBfR1 Sparge Rate	mm	280
	Nitrate + Nitrite	(mg/L-N)	8	0.5	-				0.5					MBfR2 Sparge Rate	mm	280
	Nitrite		0	0.1	1				0					Phosphate Pump Settings	spm	20
	Sulfide	(mg/L-N) (mg/L)	0	0.1	-	0			0					Phosphate Concentration at Strainer	% stroke mg/LPO4	3.5
	Turbidity	(NTU)	0.12			2.87	0.45		0.37					Aeration Tank Air Flow	scfm	3,3
	Chlorine Residual	(mg/L)						75	>5					Air Tank Pressure	psig	2.1
	* Signifies MBfR 1 o	or MBfR 2 de	epending on if re	eactor is in the l	ead or lag positi	on - this changes	every 96 ho	•	,	Note: shad	led boxes are	to remain bla	nnk	Target Media Filter Flow	gpm	4.5
	Post Fini	ished Wa	ater]		Backwash R	Inventory					Rate Media Filter Inlet Pressure	psig	10.9		
	System	Inspecti	on		Backwash star				1	Type Check				Media Filter Outlet	poia	
Сс	llect while sump is ru	ınning			Backwash dura	ation	min				Stock (ga		~5	Pressure	psig	111
	Bag Filter ∆P	psi	3		Initial Product		gal				Hypo Sto		~27	Sodium Hypo Pump	spm	60
_	GAC-1 Pressure GAC-2 Pressure	psig	15		Final Product T Time of sample		gal		4	ed?	Dissolve Nitrate +	d Oxygen	3/4	Settings	% stroke	100
	IX-1 Pressure	psig psig	1.8	1	Location	Turbidity (NTU)	TSS Co	ollected?		Additional Field Test Kits Needed?	Nitrite	Mille	9	Coagulant Tank Level	gal	2.5
				•	Lead Purge 1		□Yes	□No		ition Kits I	Sulfide		1	Coagulant Pump Settings		
L	Feed Tan				Lead Purge 2		□Yes	□No	1	Add est h	Chlorine		5	Coagaiant Tamp Coungs	MYMIN	4
Tie		H3PO4	Sodium Hypo		Lag Purge 1		□Yes □Yes	□No	4		o-Phosp	hate	3	CO2 Cylinder Pressure	psi	70
Tin		<u> </u>	2.0		Lag Purge 2		□Yes		-							
_	ial Tank Level (gal)	2,2	22	-	Media Filter		□ res	□No]					H2 Cylinder Pressure	psi	90
_	ock Added (ML) De of Water Used For	25		1	NOTES:									N2 Proceure	po!	
Dil	ution lume Dilution Added	INF	_		DAIN	RQ 15 11	OPER	ATION	TODE	n/	THIS	PONE	BY	N2 Pressure	psi	179
(ga	ıl)	2.8	-	1). WILL				_				N2 Flow Rate	scfm	_
(ga	tal Volume Added	2.8	~]										wen (0-11)	DID	NOT ADJU
Fir	al Tank Level	5.0	22		Art 10	<u>rektor</u>	-/^ <i>></i> /	GNIFIC	4157	MHI	NTEN	MNCE	0,10	(/ / / /		
No	te: There are 3785 mL p	per gallon.			CHLOSIN	E PUMP :	SETTLA	JGS 6	N FRI	PAY.	TUM	IT WA	S STIL	LAT 60 SPM.	upon	CHECKIN
					RESIDU POST ME	AL, THE DIA FUT	CONCE	WERE	58NS 55	PPM	. AD	THE F JUSTES	SETT	WATER TANK	AND M, H	OWEVER

NOTES CONT ...

CONCENTRATION @ POST MEDIA FILTER BTILL MEASURED > 5ppm. Upon #20WERING

PUMP SETTINGS TO 20 SPM + 100% SIRENGTH, POST MEDIA RESIDUAL READ 2.5ppm. WAITED

3 HRS BEFORE TAKING RESIDUAL ON FINISHED WATER TANK >> 4ppm.

Note: There are 3785 mL per gallon.

ESTCP: Technolo

emonstration Plan

Perchlorate Destruction Usi., Membrane Biofilm Reduction

ESTCP Project Number ER-200541

7:00 Operator: ARUCIAN Time: Field Samples ORP calibration? ☑Yes □No Standards: □0 □20 □200 □1000 □4000 Readings: 0.107: <u>433</u>0.301: <u>341</u> 0.491: <u>•506</u> Temp (Deg C): 20.8 Standards: 24 🗀 7 🗹 10 Standard Reading: 200-22-3 10:10:00 Standard Reading: 4. 41 7: Lead Sample Lag Sample Lead Reactor: ☐ MfBR1 Sample Collection Time: 7130 if MBfR1 in LEAD: SP-200B □ **∠**MfBR2 if MBfR2 in LEAD: SP-100B J SP-100A ☑ Permitted Outfall Aeration GAC 2 Effluent IX 1 Effluent Parameter *Lead Reactor *Lag Reactor Finished GAC 7.94 7.85 (std units) 18.6 98 20.7 20-8 20.9 Temperature (°C) 90 130 -120 566 50 ORP (mV) 2 0 50 a 6. Dissolved Oxygen (ma/L) 3.8 0.4 Nitrate + Nitrite (mg/L-N) 8 0 Nitrite (mg/L-N) Sulfide (mg/L) 2.96 ,503 679 Turbidity (NTU) 0 Chlorine Residual (mg/L)
Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Chlorine Residual Note: shaded boxes are to remain blank After change Post Finished Water **Backwash Record** inventory outof **System Inspection** Type Check Backwash start time: Lilver Collect while sump is running H3PO4 Stock (gal) min Backwash duration Sodium Hypo Stock (gal) Bag Filter ΔP initial Product Tank Level gal Additional Field Test Kits Needed? Dissolved Oxygen GAC-1 Pressure 0 Final Product Tank Level gal Nitrate + Nitrite GAC-2 Pressure Time of sample collection: psig Turbidity (NTU) TSS Collected? Location IX-1 Pressure □Yes □No Sulfide _ead Purge 1 Feed Tank Additions □Yes □No Chlorine ead Purge 2 □Yes □No o-Phosphate H3PO4 Sodium Hypo ag Purge 1 □Yes □No アミろり ag Purge 2 □Yes □No nitial Tank Level (gal) Media Filter 400m Stock Added Type of Water Used For INF Dilution IS UNPLUGGED, COM Volume Dilution Added 5 TANK FOUND: Total Volume Added (gal) Final Tank Level CHODINE

Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	638970
Target Flow Rate	gpm	10
Internal Recycle Rate	gpm	180
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-614
MBfR 2 ORP	mV	-65
Nitrate Frequency	Hz	حــند
Last N Feed	ppm (N)	7.98
Last N R1	ppm (N)	0.03
Last N R2	ppm (N)	2.64
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm % stroke	20
Phosphate Concentration at Strainer	mg/LPO4	2
Aeration Tank Air Flow	scfm	3.4
Air Tank Pressure	psig	2.1
Target Media Filter Flow Rate	gpm	9
Media Filter Inlet Pressure	psig	10.2
Media Filter Outlet Pressure	psig .	1.5
Sodium Hypo Pump	spm	20
Settings	% stroke	100
Coagulant Tank Level	gal	
Coagulant Pump Settings		07-1-
CO2 Cylinder Pressure	psi	91
H2 Cylinder Pressure	psi	92
N2 Pressure	psi	143
N2 Flow Rate	scfm	

Data	Loa	Sheet
Data	LOG	CHICCE

Note: There are 3785 mL per gallon.

ESTCP: Technolo emonstration Plan

Perchlorate Destruction Using Membrane Biofilm Reduction
ESTCP Project Number FR-200541

Da	te: 10/5/11			Time: 8	30Am		ESTOP	Operator	BER	0K0F	F			Treatment Sys	tem In:	spection
					Field	d Samples								Outlet Totalizer	gal	6418800
ation	pH calibration?	□Yes Ø	No			on? □Yes	□Nο	instal	Turbidity					Target Flow Rate	gpm	10
Calibration	Standards: □4 [Standard Reading		7: 10:		Temp (Deg C) Standard Rea		1		Standards: Readings:			□1000 □ : 0.4		Internal Recycle Rate	gpm	180
_			Lead Sample		(1358)	3 1 21	11 200	-		7.	-			MBfR 1 pH	std units	7.2
	Lead Reactor:	□ MfBR1 □ MfBR2			AD: SP-200B 🗆 AD: SP-100B 🕟		nple Collec	tion Time:	9:3	DAM	1	1768	200	MBfR 2 pH	std units	7,2
	eter	S	ınt	dtor	g	<u>io</u>	ᆵᆵ	ᇴᇀ。	er ed	1 ent	2 ent	- ant	ted	MBfR 1 ORP	mV	-630
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-90
	Pa		드	* Œ	Œ	ď		Ø –	正 _		O III	ŭ	9 O	Nitrate Frequency	Hz	140
ď	pН	(std units)	7.67	7,58	7.48	7.89	7.82		7.89				7.70	Last N Feed	ppm (N)	7.99
Dat	Temperature	(°C)	18.6	-9319	6 296	20,5	20,3		18.6				18.8	Last N R1	ppm (N)	Ó
Sample Data	ORP	(mV)	179	-428	-547	-237	30	* 1	59					Last N R2	ppm (N)	2.24
San	Dissolved Oxygen	(mg/L)	9.0	0.15	0.05	7.0	4.5		6.5					MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)	9,0	2.10	0				0.5					MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)	0	0.75	0				0					Phosphate Pump Settings	spm % stroke	30
	Sulfide	(mg/L)	0	0	1.5	0.9			0					Phosphate Concentration at Strainer	mg/LPO4	1.5
l is	Turbidity	(NTU)							0.44			55		Aeration Tank Air Flow	scfm	3,2
	Chlorine Residual	``				Sales Sales Sales		0*	0*					Air Tank Pressure	psig	2.0
Ь	* Signifies MBfR 1 o	(mg/L) or MBfR 2 de	pending on if re	eactor is in the l	ead or lag position	on - this changes	every 96 h	ours	~	Note: shad	ed boxes are	e to remain blar	nk	Target Media Filter Flow	gpm	9,0
_	Post Fini	ished Wa	ter	1				SEE					Rate Media Filter Inlet Pressure	psig	2.6	
		Inspection			Backwash start	Backwash F	tecora		NOTES				Check	Media Filter Outlet	F - 9	
Co	llect while sump is ru			1	Backwash dura		min	/	1	H3PO4	Stock (ga	1)	Officer	Pressure	psig	1.5
Г	Bag Filter ΔP	psi	13	1	Initial Product T		gal	/	1	Sodium Hypo Stock (gal)				Sodium Hypo Pump	spm	20
Г	GAC-1 Pressure	psig	10	1	Final Product T	ank Level	gal]	д 9	Dissolve	d Oxygen		Settings	% stroke	100
	GAC-2 Pressure	psig	5]	Time of sample]	Fiel	Nitrate +	Nitrite		Coagulant Tank Level	gal	5
	IX-1 Pressure	psig	0]	Location	Turbidity (NTU)		ollected?	1	la S	Nitrite				J 94.	>
_				•	Lead Purge 1		√QYes	□No	4	Kits Kits	Sulfide			Coagulant Pump Settings	4.1.7	
ᆫ	Feed Tar				Lead Purge 2		□Yes	□No	4	Additional Field Test Kits Needed?	Chlorine				ML/MTU	34
Tim	ne .	H3PO4	Sodium Hypo	-	Lag Purge 1 Lag Purge 2		☐Yes ☐Yes	□No	-	F	o-Phosp	hate		CO2 Cylinder Pressure	psi	90
⊢	ial Tank Level (gal)			1	Media Filter		□Yes	□No	1							· ·
_	ck Added		es	1					_					H2 Cylinder Pressure	psi	90
	pe of Water Used For ution			1	NOTES:	23 9859	30					¥		N2 Pressure	psi	144
	ume Dilution Added	,	-	1		SITE UPO								N2 Flow Rate	scfm	-
Tot	al Volume Added			1		FICANT 2										
Fin	l) al Tank Level			CONNECTIONS; THERE IS A CRACK ON ON OF THE DISCHAR									SCHME GF			

FITTINGS. EPOXY-ED FITTING AND ACCOURD TO DRYOLD SEVERAL HOURS LATER -ATTEMPTED TO RESTART PUMP BUT IB-ZENTINUED TO LEAK. RICH WIAPT IS ORDERING THE FITTING TOR THIS, REPLACED BAG FILTER WITH 100/50 BAGS.

NOTES CONT ...

HIGH SUMP LEVEL TRIGGERED FROM PAIN. REMOVED WATER FROM SEC. CONTAINMENT AND DISCHARDED IT TO THE GROUND (RAIN WATER ONLY). ELEVATED THE "COM" SECONDARY CONTAINMENT HIGH LEVEL SWITCH & INCHES.

ESTCP: Technolc

'emonstration Plan

ESTCP Project Number ER-200541 1:00 ARUCIAN Operator: **Field Samples** ORP calibration? . □ Nes □ No pH calibration? □Yes □No Turbidity calibration? ✓Yes □No Standards: 24 27 210 Standard Reading: 4: 4.047: 7.02 10: 10.0 [Temp (Deg C): 19-9 Standard Reading: 298— 21/ Standards: 20 220 2200 21000 □4000 Readings: 0.107: _____ 0.301: _____ 0.491: _____ Lead Sample Lag Sample Lead Reactor: MiBR1 if MBfR1 in LEAD: SP-200B Z Sample Collection Time: ☐ MfBR2 SP-100A / if MBfR2 in LEAD: SP-100B *Lead Reactor GAC 1 Effluent Aeration *Lag Reactor Media Filter Effluent Post Sodium Hypo Influent Units (std units) 20.5 Temperature 90 ORP (mV) 0.2 0.05 Dissolved Oxygen (mg/L) 0.2 0.2 Nitrate + Nitrite (mg/L-N) 0 0.75 Ô Nitrite (mg/L-N) 0.2 0.8 0 Sulfide (mg/L) Turbidity (NTU) 0.6 0. i Chlorine Residual Chlorine Residual (mg/L)
Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours.

Post Finished Water System Inspection							
Collect while sump is ru	nning						
Bag Filter ΔP	psi	2					
GAC-1 Pressure	psig	17					
GAC-2 Pressure	psig	13					
IX-1 Pressure	psia	2.15					

Feed Tar			
	H3PO4	Sodium Hypo	
Time	3:00	3:00	
Initial Tank Level (gal)	2	- 10	
Stock Added	250	8 GH	LUONS
Type of Water Used For Dilution	INF	FILTER	
Volume Dilution Added (gal)	3.0	16	·
Total Volume Added (gal)	3-0	24	
Final Tank Level	5.0	30-	
Note: There are 3785 mL	oer gallon.		•

·-	Ĉ t	ilc pine	<u>ــ ريم)</u>	
	ر خ ا جودور Backwash R		sump	
Backwash star	t time: 12 🖁 (00		
Backwash dura	ation	min		
Initial Product	gal			
Final Product 1	ank Level	gal		
Time of sample	e collection:			
Location	Turbidity (NTU)	TSS Co	llected?	
Lead Purge 1		□Yes	□No	
Lead Purge 2	/	Yes	□No	
Lag Purge 1	\sim	□Yes	□No	
Lag Purge 2		□Yes		
Media Filter		□Yes	□No	

Inventory						
	Туре	Check				
H3PO4	Stock (gal)	4				
Sodium	Hypo Stock (gal)	15/				
را ط؟	Dissolved Oxygen	· •				
je je	Nitrate + Nitrite	1				
Ne F	Nitrite	V/				
fion	Sulfide	/				
Additional Field Fest Kits Needed?	Chlorine	1				
, Te	o-Phosphate					

NOTES:	
APT ONSING TO VENT MOISTURE	top gas lines, may
Affect gas pressine reading	isis. Com Couecte
TUDBIDITY SAMPLE AND SEND	
NOTICE WELL DVC PIPIN	IG HAS MICHED, THE WE
HAVE ADDRESSED ISSUE BUTTO	PLACING CANDBAGE

Treatment Sys	tem In	spection
Outlet Totalizer	gal	644680
Target Flow Rate	gpm	10
Internal Recycle Rate	gpm	180
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-224
MBfR 2 ORP	mV	- 422
Nitrate Frequency	Hz	
Last N Feed	ppm (N)	8-03
Last N R1	ppm (N)	1.81
Last N R2	ppm (N)	-0.02
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm % stroke	20
Phosphate Concentration at Strainer	mg/LPO4	42
Aeration Tank Air Flow	scfm	432
Air Tank Pressure	psig	7.1
Target Media Filter Flow Rate	gpm	9.0
Media Filter Inlet Pressure	psig	2.3
Media Filter Outlet Pressure	psig	1.5
Sodium Hypo Pump	spm	17==
Settings	% stroke	011
Coagulant Tank Level	gal	/
Coagulant Pump Settings	•	2
CO2 Cylinder Pressure	psi	90
H2 Cylinder Pressure	psi	60
N2 Pressure	psi	142
N2 Flow Rate	scfm	

ONLINE TURBINTY

Notes cont:

COM CONDUCT GTAS READINGS AT FOINTS ONSITE.

SUMMARY BELOW. COM TO DISCUSS SUMPLE INSTALLATION
ON TROOWCT THANK LINE TO THE SUMP. APT HUS REDUCED
FROW TO 5 GTPM. APT HAS REFINED THE FILTER AND SOULTION.
COM UNABLE TO CALIBRATE TUPBIDITY METER

4-5745 m	etek po	EADINGS		s.
Hospital Control of the Control of t	0	METHANE	co	H2 S
CAL. TEST	120/0	2.5(50%)	50.	25
PASS/FAIL	P2455	7455	₹48S	PASS
AERATION	20.9	0	135	4
TOP OF MBFR SKID	21.0	. 0	110	0
WEDIA FILTER	21.1	0	4	0
4-aus con ber	14	58	60	24
				·

TURBIDITY W/ NO VIAL

Outlet Totalizer

Target Flow Rate

ESTCP: Technolc emonstration Plan Perchlorate Destruction Usiba Membrane Biofilm Reduction

Da	te: 10/10/	ii -		Time:	1:15		ESTCP	Project N Operator	lumber E	R-2005	41 64 N	-	٠
	Field Samples												
	pH calibration? Standards: ∠14 Standard Readin		INO -7: <u>7: 08</u> 10	<u> jo.11</u>	ORP calibration Temp (Deg Control Standard Rea): ading: -200:	□No 218		Turbidity Standards Readings:			Yes □N 1/2/1000 [1/2/11/40.4	lo /4000 191 <u>622</u> 2
	Lead Reactor:	☐ MfBR1 ☐ MfBR2	Lead Sample SP-100A	if MBfR1 in LE	AD: SP-200B □ AD: SP-100B ⊅		nple Collec	tion Time:	12:0	0]		
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
m m	pН	(std units)	7.42	7.59	7.52	8.01	7.91		7.89	4		****	7.52
Data	Temperature	(°C)	19.9	215	21.5	22.0	21.8		21.2				21.3
Sample	ORP	(mV)	140	-سنسي	2,1		-						
Sar	Dissolved Oxygen	(mg/L)	9	0.3	0.0	4	5		6.5				
	Nitrate + Nitrite	(mg/L-N)	8.7	2.2	0				0.2	:			
	Nitrite	(mg/L-N)	б	0.25	0				0				
	Sulfide	(mg/L)	0		3.5	4.0			O				
	Turbidity	(NTU)	0.295			2.67	1.59		1.26				
	Chlorine Residual	(ma/L)						>5	5				

Chlorine Residual (mg/L) Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours

Post Finished Water					Backwash R	ecord	
System	Inspecti	on		Backwash star	t time:		-2
hile sump is r	unning		1	Baekwash dura	ation	min	
Filter ∆P	psi	.2	1.	Initial Product	Cank Level	gaf	
1 Pressure	psig	10		Final Product T	ank Level	gal	
2 Pressure	psig	13	1	Time of sample	e collection:		
Pressure	psig	.3,	1	Location	Turbidity (NTU)	TSS Col	lected?
	*		•	Lead Purge 1		Ľ X es	□No
Feed Tar	nk Addit	ions		Lead Purge 2		□Yes	□No
	H3PO4	Sodium Hypo		Lag Purge		□Yes	DW0

_ag Purge 2 Media Filter

Inventory										
Type Check										
H3PO4	4									
Sodium	Hypo Stock (gal)	10 GAL								
ر ط؟	Dissolved Oxygen									
ge ei	Nitrate + Nitrite	~								
R E	Nitrite									
lion Its	Sulfide									
Additional Field est Kits Needed?	Chlorine									
ө <u>т</u>	o-Phosphate									

Note: shaded boxes are to remain blank

Feed Tank Additions											
	H3PO4	Sodium Hypo									
Time ;	4:30	9:30									
Initial Tank Level (gal)	3	25									
Stock Added	0	0									
Type of Water Used For Dilution	NF	0									
Volume Dilution Added (gal)	2	.0									
Total Volume Added (gal)	52	0									
Final Tank Level (gal)	5	25									
Note: There are 3785 mL per gallon.											

Collect while sump is running

Bag Filter ΔP

GAC-1 Pressure

GAC-2 Pressure

IX-1 Pressure

NOTES:
COM NOTICED FILTER-AID-HANK IS EMPTY, ALEXTED
APT AND STUT-OFF THINK. COM UNABLE TO TAKE
ORP AT LOCATIONS, PROBE NEEDS TO BE REPLACED.
EDM THAS MEASURED GIAS, READWAS ON BACK

□No

□No

□Yes

□Yes

Internal Recycle Rate 80 gpm MBfR 1 pH std units MBfR 2 pH std units MBfR 1 ORP mV MBfR 2 ORP mV Nitrate Frequency Hz Last N Feed ppm (N) Last N R1 ppm (N) Last N R2 ppm (N) 0.02 MBfR1 Sparge Rate mm MBfR2 Sparge Rate spm Phosphate Pump Settings % stroke Phosphate Concentration mg/LPQ4 at Strainer Aeration Tank Air Flow scfm Air Tank Pressure psig Target Media Filter Flow gpm Media Filter Inlet Pressure psig Media Filter Outlet 13 Pressure 30 Sodium Hypo Pump spm Settings % stroke 00 Ô Coagulant Tank Level Coagulant Pump Settings m//min CO2 Cylinder Pressure psi H2 Cylinder Pressure DS N2 Pressure N2 Flow Rate scfm

Treatment System Inspection

gai

gpm

1647080b

	ð	Co	LEL	H28
(CHOSE LID)	21.4	143	O	2
(OPEN LID)	21.0	119	0	1

NOTES 1

COM CHANGED CHLORINE INTECTION DIMP SETTINGS TO

20 STROKES FER MIN W/ 100 % STROKE LENGTH. THE CHANGE
WAS MADE DUE TO HIGH CHIORINE RESIDUAL IN THE PRODUCT
TANK.

Date: 10/14/11

ESTCP: Technolog

monstration Plan

Perchlorate Destruction Using .viembrane Biofilm Reduction

ESTCP Project Number ER-200541

Time: 9AM Operator: BEROKOFF

	Field Samples												
Calibration													⊒4000
Lead Sample Lead Reactor: MiBR1												BARA	- 50
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
۳ ا	pН	(std units)	7,60	7,20	7,52	8,06	7.88		7.91				7.48
Data	Temperature	(°C)	20,0	22,5	24,0	23.9	24.2		24,3				24.1
ample	ORP	(mV)	•	- د	-	-	-		-				
Sal	Dissolved Oxygen	(mg/L)	9	0,25	0.05	7.0	0.05		1.0				
	Nitrate + Nitrite	(mg/L-N)	8	0.4	0				0				
	Nitrite	(mg/L-N)	0	0.2	0				0				
	Sulfide	(mg/L)	O	0	6	4			0				
	Turbidity	(NTU)	-			_	-		8,58				
	Chlorine Residual * Signifies MBfR 1 c	(mg/L)	nending on if re	eactor is in the l	ead or lag positi	on - this changes	every 96 h	2,5	0.4	Note: shad	ed hoves are	e to remain blar	nk

•	•

		Backwash Record								
	Backwash star	Backwash start time:								
	Backwast dura	ation	min							
	Initial Product	Initial Product Tank Level								
	Final Product	Final Product Tank Level								
	Time of sample	e collection:	/							
	Location	Turbidity (NTW)	TSS							
	Lead Purge 1									
	Lead Purge 2		Z							

Backwasn star	t time:					
Backwash dura	min	/				
Initial Product	gal					
Final Product T	gal					
Time of sample			1 0			
Location	Turbidity (NSV)	TSS Collected?				
Lead Purge 1		□Yes	□No			
Lead Purge 2		∑Yes	□No			
Lag Purge 1		□Yes	□No			
Lag Punge 2		□Yes	□No			
./						

	Inventory	
	Туре	Check
H3PO4	V	
Sodium	Hypo Stock (gal)	/
d 2	Dissolved Oxygen	/
je je	Nitrate + Nitrite	/
al F Nee	Nitrite	/
tion	Sulfide	
Additional Field Test Kits Needed?	Chlorine	/
Te Te	o-Phosphate	~

i i	0.00	100
Initial Tank Level (gal)	3	18
Stock Added	50	~
Type of Water Used For Dilution	124	-
Volume Dilution Added (gal)	2	~
Total Volume Added (gal)	2	~

Post Finished Water

System Inspection

Feed Tank Additions

psi

psig

psig

psig

14

Sodium Hypo

10:15

9.5

Collect while sump is running

Bag Filter ΔP

GAC-1 Pressure

GAC-2 Pressure

IX-1 Pressure

Time

Final Tank Level

Note: There are 3785 mL per gallon.

Lead Purge 1	□Yes	□No	100	litiona Kits P	Sulfide
Lead Purge 2	∑Yes	□No		St G	Chlorine
Lag Purge 1	□Yes	□No		A Te	o-Phosphate
Lag Purge 2	□Yes	□No			
Media Filter	□Yes	□No			

DUDIUM HYPO TANK WAS LEFT UNCOVERED EXPOSING IT TO LIGHT. WITH COVERED W/BLACK TRASH BAG AND SECURED IT TO TANK. INCREASED SPM ON PUMP (a) TO 40 Spm from 30. THIS ELEVATED POST MEDIA FILTER CLZ CONCENTRATION TO 4.5 P.SM.

Treatment System Inspection

gpm

std units

std units

mV

mV

Hz

ppm (N)

ppm (N)

ppm (N)

mm

spm

% stroke

mg/LPO4

scfm

psig

gpm

psig

psig

spm

% stroke

psi

scfm

649 8800

5

180

-240

8,17

0.05

240 240

20

2.0

3.5

30

100

2,0

OFF

153

Outlet Totalizer

MBfR 1 pH

MBfR 2 pH

MBfR 1 ORP

MBfR 2 ORP

Last N Feed

Last N R1

Last N R2

at Strainer

Rate

Pressure

Settings

Nitrate Frequency

MBfR1 Sparge Rate

MBfR2 Sparge Rate

Phosphate Pump Settings

Phosphate Concentration

Aeration Tank Air Flow

Target Media Filter Flow

Media Filter Inlet Pressure

Air Tank Pressure

Media Filter Outlet

Sodium Hypo Pump

Coagulant Tank Level

Coagulant Pump Settings

CO2 Cylinder Pressure

H2 Cylinder Pressure

N2 Pressure

N2 Flow Rate

Target Flow Rate

Internal Recycle Rate

NOTES CONT ...

USED SILICON SOLUTION TO PREP SAMPLE VIALS DURING TURBIDIMETER CALIBRATION AND DURING SAMPLE ANALYSIS. ACCORDING TO THE VALUES IN BELOW TABLE, EVEN THE LOUINTU STANDARD DID NOT READ PROPERLY BY DISPLAYING A VALUE NEAR ONLY NTU. NEW SAMPLE VIALS WERE USED DURING TODAY'S ANALYSIS.

TURBIDIMETER IS WAY OFF -> READING 8:0 ON PRODUCT WATER. THIS INSTRUMENT REQUIRES A FACTORY "TUNE UP"

TURBIDITY STANDARDS-POST CACIBRATION

4000 NTU -> 3999

1000 NTU -> 996 997

200 NTU -> 200

20 NTU -> 20.6

<001 NTC1 → 0.394

ESTCP: Technolc

emonstration Plan

Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Date: 10/17/11			Time: 9AM Operator: BEROKOFF						Treatment System Inspection							
Field Samples									-			~		Outlet Totalizer	gal	6539000
Įģ.		ØYes □	No		ORP calibrati	on? □Yes	ENo	. XC	USED コ Turbidity	noc P calibratio	on? '(🕠	Yes M	Ký o	Target Flow Rate	gpm	10
Callbration	Standards: 🗹4 [፵⁄ □10 g: 4: <u>ሣ,୦୦</u>	7: <u>6.98</u> 10:	,	Temp (Deg C Standard Rea): ading: 200:	eno Ofderi Sew Pre	ре Ве	Standards Readings:				□4000 l91:	Internal Recycle Rate	gpm	150/180
۲			Lead Sample	*				- N - 15	Troudingo.					MBfR 1 pH	std units	7,2
	Lead Reactor:	☐ MfBR1	SP-100A □		AD: SP-200B □	San	nple Collec	tion Time:	100	1			-	MBfR 2 pH	std units	7.2
	ster	s	Ę	ъ <u>Б</u>	ro:	no	art	- E o	ed .	- ţ	a II	Ę	ted III	MBfR 1 ORP	mV	-393
	Parameter	Units	nfluent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-22
	Pai		<u> </u>	* #		 - -	Σ P P		ii ×	O T	о Б	<u></u>	<u>a</u> 0	Nitrate Frequency	Hz	
۳	рН	(std units)	7.57	7.16	7.59	7.94	7.76		7.77				788	Last N Feed	ppm (N)	8,0%
Sample Data	Temperature	(°C)	19.3	21:1	21.8	21.7	21.8		22				aa	Last N R1	ppm (N)	0.26
튙	ORP	(mV)		-	-		_		-					Last N R2	ppm (N)	5,5
Sa	Dissolved Oxygen	(mg/L)	0.0	0.4	0.1	7.0	4.5		55	Page 1				MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)	10	7.5	0.7				0.6					MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)	0	1.8	0.4				0					Phosphate Pump Settings	spm % stroke	20 30
	Sulfide	(mg/L)	arrho	0	0	O			0					Phosphate Concentration	mg/LPO4	36
			0.29			2.99	1.50		0.85					at Strainer Aeration Tank Air Flow	scfm	3,2
	Turbidity	(NTU)	U r & j			011 T	1100	20	1 .					Air Tank Pressure	psig	3,2
L	Chlorine Residual * Signifies MBfR 1 c	(mg/L) or MBfR 2 de	pending on if re	actor is in the	lead or lag positi	on - this changes	s every 96 h		1,25	Note: shad	ed boxes are	to remain bia	nk	Target Media Filter Flow	 	4
$\overline{}$	Do et Fini	- l 197		1 .					1			•		Rate	gpm	
ľ	Post Fini System				Backwash Record				Inventory				Media Filter Inlet Pressure	psig	8.0	
Co	llect while sump is ru			·	Backwash start time: /2:30 Backwash duration min		-	Type Check H3PO4 Stock (gal)			Check	Media Filter Outlet Pressure	psig	1.3		
٣	Bag Filter ΔP	psi	2		Initial Product		min gal		1		Hypo Stoo		160	Sodium Hypo Pump	spm	30
	GAC-1 Pressure	psig	14		Final Product T		gal	Ĺ	1	_		d Oxygen/		Settings	% stroke	100
	GAC-2 Pressure IX-1 Pressure	psig	10]	Time of sample	collection: Turbidity (NTU)	Too o	ollected?]	Additional Field Test Kits Needed?	Nitrate +		78	Coagulant Tank Level	gal	2
_	IX-1 Flessure	psig	1	J	Location Lead Purge 1	Turbidity (NTO)	□Yes	□No	1	ional ts N	Nitrite Sulfide	40163	4	· · · · · · · · · · · · · · · · · · ·	<u> </u>	6)EF
Г	Feed Tan	k Additi	ons	1	Lead Purge 2	_	□Yes	□No	1 .	dditi	Chlorine	y- /	5	Coagulant Pump Settings		
		H3PO4	Sodium Hypo		Lag Purge 1	<u>-</u>	□Yes	□No]	Ψ ĕ	o-Phospi	nate (3	CO2 Cylinder Proseuro		0,7
Tin		1:40	2 00		Lag Purge 2	_	□Yes	□No	_					CO2 Cylinder Pressure	psi	87
	al Tank Level (gal)	2.7	8	·	Media Filter	27.4	ØYes	□No].			٠		H2 Cylinder Pressure	psi	88
	ck Added	275m	7901		NOTES:						1	·			F	00
Dili	e of Water Used For ution	INF	MEDIA FIL	TER	_					V 1 1 4 40				N2 Pressure	psi	141
Vol (ga	ume Dilution Added	2.3	15		REACTOR		TWE I			,				N2 Flow Rate	scfm	
	al Volume Added	2.3	22]		se mode									e (-1)	
Fin	al Tank Level	5	30	1.										end so they		
Note: There are 3785 mL per gallon. SERVICE,								CE, US	ED 2100P MOD	EL 1	NSTEAD.					

SENDING TUBIDIMETER IN FOR STACTORY SERVICE, USED 2100P MODEL INSTEAD.

NOTES CONT ...

UPON TOPPING OFF CHLORING TANK, REDUCED SPM ON PUMP
TO 305pm (From 40). CONGRED TANK AFTER FULING. haden

TURBIDITY	BACKCHECK	(POST	CALIBRATION))
•				

Standard	READING (NTU)
1001	0.06
20	20.0
100	99.3
800	>100

ESTCP: Technolc

emonstration Plan

Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Dat	0/19/1			Time:	7:00			Operator	AP	KUN	· 		Treatment Sys	tem Ins	spection]
	·····				Fiel	d Sample	s						Outlet Totalizer	gal	65674ct	3
Ę.	H calibration?	Zves □	No		ORP calibrati	on? ⊠Yes-	1		Turbidity	calibration	? □Yes □No	, ·	Target Flow Rate	gpm	10	1
pra	Standards: □4 Standard Readin		. 7:10:	· 	Temp (Deg C Standard Rea);	E.		Standards		□200 □1000 □	4000	Internal Recycle Rate	gpm	100	BOTH S
쒸			Lead Sample	·	. •	220							MBfR 1 pH	std units	7.2	
	Lead Reactor:	☐ MfBR1 MfBR2		if MBfR1 in LE	AD: SP-200B □	َ.ِ Sa	mple Collec	tion Time:	11:00	0			MBfR 2 pH	std units	7.2]
ţ	Į.	[- 5 b	_ 5	- 5	e z ŧ	<u> </u>	<u>е</u> "	뉴 별 《	~ # # #	<u>e</u> <u>=</u>	MBfR 1 ORP	mV	-395]
ł	ameter	Units	utlnent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-47	1
1	Par]]		* &	* &	Ae	│ [⋧] ьѿ│	_ % _	造》	<u> </u>		90	Nitrate Frequency	Hz]
_ [Н	(std units)	7.38	7.27	7.52	7.86	7.77		7.79	1000		7.67	Last N Feed	ppm (N)	8.08	
g	emperature	(°C)	18.4	20.9	21.1	21.6	21.6		21.3			21.1	Last N R1	ppm (N)	202	0,02
흺	ORP	(mV)	1-71*	20*					-				Last N R2	ppm (N)	-02	3,07
듄	Dissolved Oxygen	(mg/L)	8	0.3	0.1	5	6		7				MBfR1 Sparge Rate	mm	200	
ľ	Vitrate + Nitrite		8.5	2.8	0		100		0.2				MBfR2 Sparge Rate	mm	240	1
ľ		(mg/L-N)	0	0.25	0				0				Phosphate Pump Settings	spm.	20	1
Ī	Nitrite	(mg/L-N)	6	0	0.4	0-1			ŏ	_			Phosphate Concentration	% stroke mg/LPO4		1
Ī	Sulfide	(mg/L)	0.35			2.5	0.9		0.8				at Strainer Aeration Tank Air Flow	scfm		3.2
F	urbidity	(NTU)	75			2.7		1.0	014				Air Tank Pressure	psig	2.0	1
<u></u> ;	Chlorine Residual Signifies MBfR 1	(mg/L) or MBfR 2 de	epending on if re	eactor is in the	lead or lag positi	on - this change	es every 96 ho		\ \		boxes are to remain blank		Target Media Filter Flow	gpm	9.0	1
-	Post Fin	ished Wa	ater] 🦠		Backwash	Record		1	·	inventory	Ĩ	Rate Media Filter Inlet Pressure	psig	1.6	1
	System	Inspecti	on		Backwash star				AT .		Туре	Check	Media Filter Outlet	psig	1.5	1
Colle	ect while sump is r	unning -			Backwash dura	tion	min		Samp			4	Pressure	ļ · ·		4
	Bag Filter ΔP	psi	2		Initial Product	_	gal				ypo Stock (gal)	15	Sodium Hypo Pump Settings	spm	30 100	4
	AC-1 Pressure	psig	20.5	}	Final Product Time of sample		gal	<u> </u>	1	Held Person	Dissolved Oxygen Litrate + Nitrite	15		% stroke		-
_	AC-2 Pressure IX-1 Pressure	psig psig	1.5		Location	Turbidity (NTL) TSS Co	llected?	j .	Neek	litrite	8	Coagulant Tank Level	gal	3	
	Feed Tai	ık Addit	ions	- 1	Lead Purge 1 Lead Purge 2		□Yes	□No	-	1 ≅ ≅ ⊢	Sulfide Chlorine	4	Coagulant Pump Settings	ent/ini	30	1
	1 000 10.	нзро4	Sodium Hypo		Lag Purge 1		□Yes	□No	_	₹ ĕ o	-Phosphate	B	CO2 Cylinder Pressure	psi		1
Time		9:30	9:30		Lag Purge 2		□Yes	√⊠No	<u> </u> -				OOZ Cymraci i ressure	PSI	88	_
Initia	Tank Level (gal)	3.5	25		Media Filter		□Yes	_ No`	<u> </u>		-		H2 Cylinder Pressure	psi	91	
	Added	0	0		INOTES.			-	<u> </u>	-				<u> </u>		4
Type Diluti	of Water Used For	MA	NA		NOTES:		****	-110 -141	c cult	RCO L	la ADT A	120	N2 Pressure	psi	149	_
	ne Difution Added	0	0								22. APT A	~~~	N2 Flow Rate	scfm		_
	Volume Added	0	0	1							T N2 K NO			\ ·	.56 (BE	burce:
	Tank Level	3.5	25	1							ssor was		TURBIOTTY (OF)	.56	
	There are 3785 mL	per gallon.		-	INSTAU	W-MN					D HAAT		/	1	0.21/51	EADY)
									o) ket uart		0.60		tabbiotty (inst	r 		

APT WAS ABLE TO PEPAIR THE "LEAKY" IMPRILE

FROM MEGR | THE FAILURE WAS NOT DUE TO

EFOXY, IT WAS FOUND THAT THE TOP NUT WAS LOOSE.

APT PEAPPLIED O-PING AND TIGHTENED THE

TEP NUT. COM & APT OBSERVED THAT SITE DOES HAVE

LESS PUNGFANT (H2S) EVELL. *OPP PROBE NOT PENDINGT

CORRECTLY. AT 12:30, APT SHUT DOWN FILTER AID.

INITIAL TURBURTY PEABLACE ON & IN-LINE PROBE = 0.29.

(2) 1:30 THREBURTY = 0.666. COM MONITORED AGUSES (O2, H2S, CO, LEL)

PESSILTS ARE AS FOLLOWS;

	CAL. Bettle	PASS ?	AGRATION K	OIT
02	12%	P	20.1	20.2
Co	50 ppm	P	6/3	2
LEL	50%	P	0/0	0
H2S	25 ppm	P	0/0	0

CO. 1:45
APT HAS DECIDED TO THEY A NEW FILTER AW. DEMNINGES
WILL BE RELIAYED FROM APT. CO. 2:00 APT PEPS AND DAVID
TRESE DUSITE TO TAKE TOWN OF TREWTMENT PLANT:

ESTCP: Technolo emonstration Plan

ESTCP Project Number ER-200541 Date: /0/21/11 Time: _9:00AM Operator: BEROKOFF

					Fiel	d Samples						,	
Calibration	pH calibration? Standards: ☑4 Standard Reading	☑Yes □ ☑7 □10 g: 4: \$_00			ORP calibration Temp (Deg C Standard Rea				Standards:	₽6 ₽2	20 🗹 🛮 00	Yes □Ne Ø 6 9 € : 0.4	34000-
	Lead Reactor:	□ MfBR1 ☑ MfBR2		Lag Sample if MBfR1 in LEA if MBfR2 in LEA		Sam	ple Collec	tion Time:	10:0	30	\$ (A) 	WERRY SANG	T
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
ľ	рН	(std units)	7.57	7,23	7.58	7.93	7.83		7.85				7.66
Data	Temperature	(°C)	18.8	20,4	21.3	21,2	21.1		20,5				20.5
Sample	ORP	(mV)	-	45-	_	-	_		~				
Sa	Dissolved Oxygen	(mg/L)	9	0,5	0.1	7	5.5		7				
	Nitrate + Nitrite	(mg/L-N)	9	By 7	0.6				0.6				
	Nitrite	(mg/L-N)	\bigcirc	2.0	0.4				0				
	Sulfide	(mg/L)	0	0	001	0			0				
	Turbidity	(NTU)	0.24	列数基础		3.01	1.66		0.94				
	Chlorine Residual * Signifies MBfR 1 c	(mg/L) or MBfR 2 de	pending on if re	eactor is in the le	ead or lag positi	on - this changes	every 96 ho	100 ours	0.3	Note: shad	ed boxes are	to remain blan	ık

Post Finished Water System Inspection									
Collect while sump is running									
Bag Filter ∆P psi 2_									
GAC-1 Pressure	psig	15							
GAC-2 Pressure	psig	11							
IX-1 Pressure	psig	1.1							

Feed Tank Additions									
	H3PO4	Sodium Hypo							
Time	1:00	10130							
Initial Tank Level (gal)	2	20							
Stock Added	24 OM								
Type of Water Used For Dilution	INF	~							
Volume Dilution Added (gal)	3	-							
Total Volume Added (gal)	3.	-							
Final Tank Level	5	20							

	Backwash Re	ecord	(1)
Backwash star	t time: 11:56	PAM	
Backwash dura	ation	min	~40.
Initial Product	Γank Level	gal	•
Final Product 1	ank Level	gal	-
Time of sample	collection: (1:5	94M-	12:2597
Location	Turbidity (NTU)		ollected?
Lead Purge 1	3.39	⊡Yes	□No
Lead Purge 2	5.14	☑Yes	□No
Lag Purge 1	83.4	☑Yes	□No
Lag Purge 2	37.9	☑Yes	□No
Media Filter	~	□Yes	⊠No

(0.	Inventory	
	Туре	Check
H3PO4	Stock (gal)	જ
Sodium	Hypo Stock (gal)	15
d d?	Dissolved Oxygen	15
ie e	Nitrate + Nitrite	7
al P Nee	Nitrite	7
tion	Sulfide	4
Additional Field est Kits Needed?	Chlorine	5
Te Te	o-Phosphate	3

NOTES:							
COAGULAN	T TANK	WAS	EMPT	y wPON	APRIVAL	. CDM	TURNEL
OFF COAG	MLANT	METER	1116	Pump.	INCREASE	D 50D	lum
Hypo Pun	AP SET	TINGS	To	4 Ospin	(FROM	305PK	1) TO
HYPO Pun OBTAIN							

Internal Recycle Rate gpm 180	Treatment System Inspection								
Internal Recycle Rate gpm 180	Outlet Totalizer	gal	6596100						
MBfR 1 pH std units 7, 2 MBfR 2 pH std units 7, 3 MBfR 1 ORP mV -494 MBfR 2 ORP mV 33 Nitrate Frequency Hz - Last N Feed ppm (N) 8,09 Last N R1 ppm (N) 0,23 Last N R2 ppm (N) 6,17 MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate mm 240 Phosphate Pump Settings spm 20 Phosphate Concentration at Strainer as fm 3,2 Aeration Tank Air Flow scfm 3,2 Air Tank Pressure psig 2,0 Target Media Filter Flow Rate psig 9,7 Media Filter Inlet Pressure psig 1,5 Sodium Hypo Pump Settings spm 30 Sodium Hypo Pump Settings % stroke 1,00 Coagulant Tank Level gal 0 Coagulant Pump Settings Mylin 1,7 CO2 Cylinder Pressure psi	Target Flow Rate	gpm	10						
MBfR 2 pH std units 7.2 MBfR 1 ORP mV -4444 MBfR 2 ORP mV 33 Nitrate Frequency Hz	Internal Recycle Rate	gpm	180						
MBfR 1 ORP mV -444 MBfR 2 ORP mV 33 Nitrate Frequency Hz	MBfR 1 pH	std units	7.2						
MBfR 2 ORP mV 33 Nitrate Frequency Hz — Last N Feed ppm (N) \$3.09 Last N R1 ppm (N) \$3.09 Last N R2 ppm (N) \$3.617 MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate mm 240 Phosphate Pump Settings pm 20 Phosphate Concentration at Strainer spm 20 Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow Rate psig 9 Media Filter Inlet Pressure psig 1.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings pm 30 Settings 100 100 Coagulant Tank Level gal 0 Coagulant Pump Settings Myrir 17 CO2 Cylinder Pressure psi 4 M2 Pressure psi 142	MBfR 2 pH	std units	7.2						
Nitrate Frequency Last N Feed ppm (N) S, 09 Last N R1 ppm (N) D, 23 Last N R2 ppm (N) MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow Air Tank Pressure Target Media Filter Flow Rate Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings M20 MY/Lir 17 CO2 Cylinder Pressure psi N2 Pressure psi M2 Pressure psi M2 My/Lir 17 M2 Pressure psi M41 M41 M53 M44 M54 M54 M54 M54 M55 M56 M56	MBfR 1 ORP	mV ·	-444						
Last N Feed ppm (N) \$3.09 Last N R1 ppm (N) 0.23 Last N R2 ppm (N) 6.17 MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate mm 240 Phosphate Pump Settings spm 20 Phosphate Concentration at Strainer mg/LPO4 Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow Rate gpm 9 Media Filter Inlet Pressure psig 1.5 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings spm 30 Settings 7.00 7 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynix 1.7 CO2 Cylinder Pressure psi 8.7 H2 Cylinder Pressure psi 1.42	MBfR 2 ORP	mV	.23						
Last N R1 ppm (N) O.23 Last N R2 ppm (N) 66.17 MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate mm 240 Phosphate Pump Settings Spm % stroke 30 Phosphate Concentration at Strainer Aeration Tank Air Flow Scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings % stroke 100 Coagulant Tank Level gal Co Coagulant Pump Settings H2 Cylinder Pressure psi 87 N2 Pressure psi 142 N2 Pressure psi 142	Nitrate Frequency	Hz							
Last N R2 ppm (N) 46.17 MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate mm 240 Phosphate Pump Settings spm 20 Phosphate Concentration at Strainer mg/LPO4 Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow Rate gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings spm 30 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynir 1.7 CO2 Cylinder Pressure psi 8.7 H2 Cylinder Pressure psi 4.9 N2 Pressure psi 1.42	Last N Feed	ppm (N)	8,09						
MBfR1 Sparge Rate mm 240 MBfR2 Sparge Rate mm 240 Phosphate Pump Settings spm 20 Phosphate Concentration at Strainer mg/LPO4 30 Aeration Tank Air Flow scfm 312 Air Tank Pressure psig 2.0 Target Media Filter Flow Rate gpm 9 Media Filter Inlet Pressure psig 1.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings spm 30 Settings 7 1.00 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynix 1.7 CO2 Cylinder Pressure psi 8.7 H2 Cylinder Pressure psi 8.6 N2 Pressure psi 1.42	Last N R1	ppm (N)	0.23						
MBfR2 Sparge Rate mm 240 Phosphate Pump Settings spm 20 Phosphate Concentration at Strainer mg/LPO4 Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow Rate gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings spm 30 Sodium Hypo Pump Settings % stroke 100 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynin 17 CO2 Cylinder Pressure psi 8 H2 Cylinder Pressure psi 8 N2 Pressure psi 142	Last N R2	ppm (N)	66.17						
Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure scfm 3.0 Sodium Hypo Pump spm 3.0 Settings scfm 3.2 Air Tank Pressure psig 4.7 Media Filter Inlet Pressure psig 4.7 Coagulant Tank Level gal 0 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynir 17 CO2 Cylinder Pressure psi 8.7 H2 Cylinder Pressure psi 8.9 N2 Pressure psi 1.42	MBfR1 Sparge Rate	mm	_						
Phosphate Pump Settings Phosphate Concentration at Strainer Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure settings Sodium Hypo Pump spm 30 Settings settings Coagulant Tank Level gal Coagulant Pump Settings CO2 Cylinder Pressure psi 87 H2 Cylinder Pressure psi 87 N2 Pressure psi 142 N2 Pressure psi 142	MBfR2 Sparge Rate	mm	240						
Phosphate Concentration at Strainer Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump spm 30 Settings stroke 100 Coagulant Tank Level gal 0 Coagulant Pump Settings 7 CO2 Cylinder Pressure psi 8 7 H2 Cylinder Pressure psi 8 7 N2 Pressure psi 142	Phosphate Pump Settings		20						
Aeration Tank Air Flow scfm 3.2 Air Tank Pressure psig 2.0 Target Media Filter Flow Rate gpm 9 Media Filter Inlet Pressure psig 4.7 Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings spm 30 Settings % stroke 100 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynir 17 CO2 Cylinder Pressure psi 8 H2 Cylinder Pressure psi 8 N2 Pressure psi 142			30						
Target Media Filter Flow Rate Media Filter Inlet Pressure Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings Mynir 17 CO2 Cylinder Pressure Psi 87 H2 Cylinder Pressure psi 142 Psig 1.7 April 17 Psig 1.7 Psig 1.7	NOTA CONTRACTOR OF THE PARTY OF	scfm	3,2						
Rate Media Filter Inlet Pressure Media Filter Outlet Pressure Sodium Hypo Pump Settings Coagulant Tank Level Coagulant Pump Settings Mynir 17 CO2 Cylinder Pressure Psi H2 Cylinder Pressure Psi Psi Psi Psi Psi Psi Psi Ps	Air Tank Pressure	psig	2.0						
Media Filter Outlet Pressure psig 1.5 Sodium Hypo Pump Settings spm 30 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynir 1.7 CO2 Cylinder Pressure psi 8.7 H2 Cylinder Pressure psi 8.9 N2 Pressure psi 1.42		gpm	9						
Pressure psig 1 - 7 Sodium Hypo Pump spm 30 Settings % stroke / 00 Coagulant Tank Level gal 0 Coagulant Pump Settings M/min 1.7 CO2 Cylinder Pressure psi 8.7 H2 Cylinder Pressure psi 8.9 N2 Pressure psi 1.42	Media Filter Inlet Pressure	psig	4.7						
Settings % stroke 100 Coagulant Tank Level gal 0 Coagulant Pump Settings Mynin 17 CO2 Cylinder Pressure psi 8 7 H2 Cylinder Pressure psi 8 9 N2 Pressure psi 142		psig	1.5						
Coagulant Tank Level gal C Coagulant Pump Settings Mynin 17 CO2 Cylinder Pressure psi 87 H2 Cylinder Pressure psi 89 N2 Pressure psi 142	Sodium Hypo Pump	spm	30						
Coagulant Pump Settings Mynin 17 CO2 Cylinder Pressure psi 87 H2 Cylinder Pressure psi 89 N2 Pressure psi 142	Settings	% stroke	100						
CO2 Cylinder Pressure psi 8 7 H2 Cylinder Pressure psi 8 9 N2 Pressure psi 142	Coagulant Tank Level	gal	0						
CO2 Cylinder Pressure psi 8 7 H2 Cylinder Pressure psi 8 9 N2 Pressure psi 142	Coagulant Pump Settings	Mynin	17						
N2 Pressure psi 142	CO2 Cylinder Pressure		87						
110	H2 Cylinder Pressure	psi	39						
N2 Flow Rate scfm	N2 Pressure	psi	142						
	N2 Flow Rate	scfm	-						

MEDIA FILTER (NTW) = 0.41@10AM TURBIDITY (NTW) = 0.51@10AM PRODUCT TANK (NTW) = 0.51@10AM

NOTES CONT.

TOOK 4-GAS READINGS TODAY. ALL GAS LEVELS READ ZERO EXCEPT 02 (20.9).
TOOK TSS AND TURBIDITY SAMPLES ON MBFR SPARGE,

2100P TURBIDIMETER	STANDARDS BEFORE CASISFATION	BEFORE CALIBRATION	POST CALIBRATION
	<001	0.08	0.07
	20	2001	19.9
	100	99.5	99,3
	800	787	799

ESTCP: Technolog

monstration Plan

Perchlorate Destruction Using Jembrane Biofilm Reduction
ESTCP Project Number ER-200541
Orania REROKAFE

Da	ate: 10/26/1	11		Time: <u>४</u> :	45	· ·	ESTUP 1	Operator	BE 2	0KOF	F	<u>-</u> _	
L		,			Fiel	d Samples							
Calibration					Temp (Deg C): Standards					□0 □2	20 🗆 200	Yes □No □1000 □ : 0.4	J4000
Data	Lead Sample Lag Sample Lead Reactor: ☐ MfBR1 if MBfR1 in LEAD: SP-200B ☐ Sample Collection Time: ☐ MfBR2 SP-100A ☐ if MBfR2 in LEAD: SP-100B ☐							9:3	OAM		-		
	Parameter	Parameter Units		*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
	рН	(std units)	7.63	7.32	7.63	7.98	7.80		7.86				7.73
Dat	Temperature	(°C)	18.9	20.4	21.2	21.1	21.0		20,3				19.0
Sample	ORP	(mV)	95	-398	-453	-215	30		659				
Sa	Dissolved Oxygen	(mg/L)	9,0	0.15	0.10	7,0	\$ 4.0		5.5				
L	Nitrate + Nitrite	(mg/L-N)	9.0	5,25	0.3				0,4				
	Nitrite	(mg/L-N)	0	2.0	001				0				
	Sulfide	(mg/L)	0	0	0.7	0.4			0				
	Turbidity	(NTU)	0.15			1.78	0.36	· · .	0.38				
	Chlorine Residual * Signifies MBfR 1 of	(mg/L) or MBfR 2 de	pending on if re	actor is in the I	ead or lag positi	on - this changes	every 96 ho	1.75	105	Note: shar	ed hoxes are	e to remain blan	ık
			pononia on in		cas of lag poon	on uncontanged	0,0,000	, , , , , , , , , , , , , , , , , , ,		, vo.c. srieto	es Dunha are	i i i i i i i i i i i i i i i i i i i	

System	Post Finished Water System Inspection							
Collect while sump is ru	nning							
Bag Filter ∆P	Bag Filter ∆P psi							
GAC-1 Pressure	pslg	15						
GAC-2 Pressure	psig	1015						
IX-1 Pressure	psig	1.0						

Feed Tai	nk Additi	ons
	H3PO4	Sodium Hypo
Time	2:00	9:00 +1
Initial Tank Level (gal)	1.3	7
Stock Added	300m2	-O-
Type of Water Used For Dilution	124	
Volume Dilution Added (gat)	3.7	~
Total Volume Added (gal)	3.7	-
Final Tank Level	5.0	7

	Backwash R	ecord	igysteriote (* 11. e		
Backwash star			ure a		
Backwash dura	ation	min			
Initial Product	Γank Level	_∕ gal			
Final Product 1	ank Level	gal	,		
Time of sample	e collection;				
Location	Turbigity (NTU)	TSS Collected?			
Lead Purge 1	/	□Yec	□No		
Lead Purge 2		□Yes	No		
Lag Purge 1		□Yes	□N∂∕		
Lag Purge 2		□Yes	□No		
Media Filter		□Yes	□No		

	Inventory	
	Туре	Check
H3PO4	8	
Sodium	Hypo Stock (gal)	15
d?	Dissolved Oxygen	15
<u>\$</u> €	Nitrate + Nitrite	77
Z S	Nitrite	7
tion	Sulfide	¥
Additional Field Fest Kits Needed?	Chlorine	5
Te	o-Phosphate	3

NOTES:					
TOOK	WEEKL	I SAMPLES,	MONTHLY	INFLUGNCE	COMPLIANC
SAMPLE	S, AND	DUPLICATES			•
	,				

Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	66666600
Target Flow Rate	gpm	10
Internal Recycle Rate	gpm	180
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	- 410
MBfR 2 ORP	mV	-208
Nitrate Frequency	Hz	
Last N Feed	ppm (N)	8,10
Last N R1	ppm (N)	0.16
Last N R2	ppm (N)	2,63
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm % stroke	70
Phosphate Concentration at Strainer	mg/LPO4	1.7
Aeration Tank Air Flow	scim	3.2
Air Tank Pressure	psig	2,0
Target Media Filter Flow Rate	gpm	9.5
Media Filter Inlet Pressure	psig	9.0
Media Filter Outlet Pressure	psig	1.5
Sodium Hypo Pump	spm	40
Settings	% stroke	100
Coagulant Tank Level	gal	0
Coagulant Pump Settings		Ð
CO2 Cylinder Pressure	psi	88
H2 Cylinder Pressure	psi	88
N2 Pressure	psi	147
N2 Flow Rate	scfm	-

(gal)

Final Tank Level

Note: There are 3785 mL per gallon.

5

30

ESTCP: Technolog

emonstration Plan Perchlorate Destruction Usir. ...embrane Biofilm Reduction

ESTCP Project Number ER-200541

Time: 91304M Operator: BEROKOFF Date:__10/3 **Field Samples** pH calibration? PYes No Standards: P4 P1 P10 Standard Reading: 4: 4,00 7: 7,02 10: 10.08 ORP calibration? ⊠Yes □No Turbidity calibration? ☑Yes □No Temp (Deg C): Standards: □0 - □20 □200 □1000 □4000 Standard Reading: 200: SEE REVERSE ☐ MfBR1 Sample Collection Time: Lead Reactor: if MBfR1 in LEAD: SP-200B □ MIBR2 SP-100A II if MBfR2 in LEAD: SP-100B II Finished Water Permitted Outfall Aeration Effluent GAC 2 Effluent IX 1 Effluent Reactor *Lag Reactor Post Sodium *Lead Units 7.62 6.53 6.69 7.20 166 ag pH (std units) 21,5 21.8 19.5 22.0 21.0 Temperature 58 100 -144 427 ORP (mV) 7.0 9.0 0010 5.5 0.25 Dissolved Oxygen (mg/L) 3.3 0.4 001 9.0 Nitrate + Nitrite (mg/L-N) 0 001 2.0 Nitrite (mg/L-N) 0 0.4 0 0 Sulfide (mg/L) Dol 0,22 0.72 (NTU) Turbidity Chlorine Residual Chlorine Residual (mg/L)
Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours **Post Finished Water** Inventory **Backwash Record System Inspection** Backwash start time: Type Check H3PO4 Stock (gal) Collect while sump is running Backwash duration Sodium Hypo Stock (gal) Bag Filter ΔP psi nitial Product Tarik Level gal Additional Field Test Kits Needed? GAC-1 Pressure Dissolved Oxyge psiq 14 Final Product Tank Leve Nitrate + Nitrite Time of sample collection: 7 GAC-2 Pressure psig 10.5 IX-1 Pressure (NTU) TSS Collected? Nitrite 3.6 Location Sulfide □Yes ead Purge 1 Feed Tank Additions √Yes □No Chlorine ead Purge 2 □Yes □No o-Phosphate H3PO4 Sodium Hypo ag Purge 1 OMC □Yes Tìme 1:00 9:30 Am ag Purge 2 30 Media Filter □Yes Initial Tank Level (gal) Stock Added 240ml NOTES: Type of Water Used For INF MODULE OFF ON Volume Dilution Added 3 COM TURNED IT BACK WAS OFF WON ARRIVAL Total Volume Added 3

Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	6728000
Target Flow Rate	gpm	10
Internal Recycle Rate	gpm	150/180
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7,2
MBfR 1 ORP	mV	-413
MBfR 2 ORP	mV :	-243
Nitrate Frequency	Hz	
Last N Feed	ppm (N)	8:13
Last N R1	ppm (N)	0.12
Last N R2	ppm (N)	2.77
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm % stroke	30 30
Phosphate Concentration at Strainer	mg/LPO4	
Aeration Tank Air Flow	scfm	3,2
Air Tank Pressure	psig	೨.೦
Target Media Filter Flow Rate	gpm	9
Media Filter Inlet Pressure	psig	9.3
Media Filter Outlet Pressure	psig	1.5
Sodium Hypo Pump	spm	40
Settings	% stroke	100
Coagulant Tank Level	gal	0
Coagulant Pump Settings		
CO2 Cylinder Pressure	psi	88
H2 Cylinder Pressure	psi	88
N2 Pressure	psi	160
N2 Flow Rate	sctm	-

USING

ALL SAMPLE POINTS

METER BACKCHECK TEST

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

	Air Monitoring									
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area					
Time										
Carbon Monoxide (ppm)										
Oxugen (%)										
Methane (% LEL)										
Hydrogen Sulfide (ppm)										

2100 F 7	ORBIDIMESER.
STANDARD	NTU
800	හ ා
100	100
20	20.2
40.1	0.06

NOTES CONT.:										
PHG+ Field	meter, A	HACH SEUS	TON I ME	TER BORRE	ONED FROM	u cel	AND TH	E INLIHE	F PH DRE	 DBE
APT HAS 1	NSTACLED	ON THE	MBFR FO	R RZ.	RESULTS	ARE	SHOWN	IN THE	TABLE BE	ELOU
CDM TOOK S	AMPLES F	P DAILY 1	MONITORIN	G TESTS	AFTER	THE PH	Test	WAS PER	FORMED,	17
APPEARS THA	AT ALL P	H VALUES	WARE LOW	IER DUE	TO 746	00/2	POSSIBLY	OVERSHE	DOTING	70
COMBENSATE	FOR TH	IE PH TES	TING PERI	00.			· · · · · · · · · · · · · · · · · · ·			
		•	·						-	
							,		<u> </u>	
				:						
	-									-

PH TEST :

CDM: OAKTON PHG+ CCI: HACH SEISION I APT: INLINE PH ProBE R2

		O CACIBR		POST CA	LIBRATION	
SAMPLE	CDM FIELD PROBE	HACH (cci)	APT	CDM FIELD PROBE	HACH (cc)	APT
INFLUENT	7.76	7.12	7.7	7.73	7.67	7.4
LEAD	7.14	6.99	7.1	7.15	7.27	6.7
LAG	7.63	71.45	7.6	7.66	7.67	7.2
AERATION	7.97	7.70	7.9	7.93	7.93	7.5
FILTER	7.88	7.82	7.8	7.85	7.93	7.4
FINISHED	7.92	7.85	7.9	7.86	7.93	7.5
15.						
		B-(8	37 <u>)</u>			(

ESTCP: Technolor

emonstration Plan

			Leichiolate Destruction Osil Temptane Biotilm Heductio
	de la la		ESTCP Project Number ER-200541
Date:	11/2/11	Time: 7.6	6 Operator: ARUCAN
		7,1110.	Operator

_								opolato	· ——·				
					Fie	eld Sample	es						
Calibration	pH calibration? Standards: ☑4 Standard Readin	√Yes □N √7 √10 a: 4: 4.02		. <i>[e.10</i>	ORP calibration Temp (Deg Constant of Reference of Percentage of Percent): <u> </u>	5.1	Standards:	alibration? □0 □20 □	200 🗹 1	_□No 000) 000 1-7	. 0,519
	Lead Reactor:	☐ MfBR1 ☑ MfBR2	<u>Lead Sample</u>	Lag Sample	AD: SP-200B □ AD: SP-100B ☑	220		43	3 <i>6</i> [0.3	9	0.5	
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
ata	рН	(std units)	7.51	7.56	7.55	7.82	7.78		7.83				7.70
	Temperature	(°C)	19.0	20.5	20.9	20.4	20.7		20.5				21.0
ample	ORP	(mV)	90	-421	-491	-202	-5c		598		g z		新基础
\overline{\overline{\sigma}}	Dissolved Oxygen	(mg/L)	8	0.4	0. j	9	6.5		8				
	Nitrate + Nitrite	(mg/L-N)	8.5	1.2	0				Ó				
1	Nitrite	(mg/L-N)	0	0.6	0			7.00	0		4		and the second
1	Sulfide	(mg/L)	0	0	1.0	0.8			0				
1	Turbidity	(NTU)	0.273			1.22	. 189		,175				
	Chlorine Residual * Signifies MBfR 1 c	(mg/L)		and the second				2.0	2.0				

Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours

Note: shaded.	boxes are to	remain	blank

System	ished Wat Inspectio	
Collect while sump is ru	nning	
Bag Filter ∆P	psi	
GAC-1 Pressure	psig	
GAC-2 Pressure	psig	
IX-1 Pressure	psig	

Feed Ta	Feed Tank Additions						
	H3PO4	Sodium Hypo					
Time	e e						
Initial Tank Leyel (gal)	3.7	22					
Stock Added	0	0					
Type of Water Used For Dilution	NA	N/A					
Volume Dilution Added (gal)	0	0					
Total Volume Added (gal)	0	0					
Final Tank Level	3.7	22					

	Backwa	sh Recor	d .	//		Inventor	У
Backwash start time	:					Туре	Check
Backwash duration		min			H3PO4	Stock (gal)	10,
Initial Product Tank	Level	gal	· ·			Hypo Stock (gal)	4
Final Product Tank L	_evel	gal				Dissolved Oxyge	(0-
Time of sample colle	ection:				nal Field Needed?	Nitrate + Nitrite	7
Location	(NTU)	/ TS	3 Collected?		E B	Nitrite	7
Lead Purge 1			bs. □No		figur	Sulfide	4
Lead Purge 2		. □Y	es \QNo]	Additional Fest Kits Nee	Chlorine	3
Lag Purge 1		□Y	es □No		* p	o-Phosphate	7,
Lag Purge 2		Y	es ⊡No		NEES	TO PE-C	PLOCE
Vledia Filter		. DY	es □No	•	HACH	TUP, STAN	DAPO
<u> </u>	-			· ,		V.	
NOTES:		_		ě	-	· .	
VERY WIND	ONSIT	E. CDM	DES WA	LK A	ROUN	A TO CHECK.	FOR
DAMAGE FRO	no wi	D. CO	n lower	4E10	CHIL	FINE Pum	OT 0
30 STROKES	Buch	<i></i>	/ Missing	- :0	1000		A1 644

Treatment Sys	tem In	spection
Outlet Totalizer	gal	675670
Target Flow Rate	gpm	10
Internal Recycle Rate	gpm	R1= 150 R2=180
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-392
MBfR 2 ORP	mV	-377
Nitrate Frequency	Hz	
Last N Feed	ppm (N)	8.15
Last N R1	ppm (N)	0.40
Last N R2	ppm (N)	0.81
MBfR1 Sparge Rate	mm	24c
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm	20
Phosphate Concentration	% stroke mg/LPO4	30
at Strainer Aeration Tank Air Flow	scfm	3.2
Air Tank Pressure	psig	2.1
Target Media Filter Flow Rate	gpm	9.5
Media Filter Inlet Pressure	psig	4.1
Media Filter Outlet Pressure	psig	1.5
Sodium Hypo Pump	spm	30 40
Settings	% stroke	100
Coagulant Tank Level	gal	N/A
Coagulant Pump Settings		OFF
CO2 Cylinder Pressure	psi	ક્ષ
H2 Cylinder Pressure	psi	91
N2 Pressure	psi	153
N2 Flow Rate	scfm	

TUPBIDITY WETER 0.20

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

	Air	Monitorin	ng		
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area
Time					
Carbon Monoxide (ppm)					
Oxugen (%)					
Methane (% LEL)	į		·		
Hydrogen Sulfide (ppm)					

DUPLICATE Samples

DUPL-#1 - AGRATION

DUPL-#2 - OUTFAUL

DUPL. #3 - Grac #

NOTES CONT.:		
	<u> </u>	
	•	
	 1.	

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

	. 1. 1				8:00	Perchiorate	ESTCP Proje	ect Numbe Operator:	er ER-2005	41 CAN			w.*
Dat	e:\ I _4/_	11	1	Time:									
						ld Sample	S	Turbidity os	dibration?	Yes	LINo		
=1	pH calibration?	ZYes □No	0		ORP calibration		⊔No	Standards:	alibration? 20 220 22	200 7 110	00 2 40	ກາວ	
	Standards: 24 J Standard Reading	2 7 52 10			Temp (Deg	c): 15 .	· <u> </u>	Readinos:					
Calibration	Standard Reading	;; 7; 7.0 5	- _{10:} 10	.12	Standard Re	ading: 220:	212	0.136:	145 0.30	<u> </u>	<u>A</u>	0.50:	521
Ψ.	Lead Reactor:	□ MfBR1	Lead Sample	if MBfR1 in LEA	AD: SP-200B	;	Sample Collec	tion Time:				 	<u> </u>
		☐ MfBR2			AD: SP-100B	Ē	_ #	Εa	e e	<u>ب ت</u>	2 ti	e t	all ted
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
	Para	ٔ ر	드	* &	l				7.86		CEST SE	18.84	7.68
		(std units)	7.44	7.61	7.59	7.82	7.79			100 mg/m	- A-+ A-4		20.1
Data	pH		18.5	20.0	20.4	20.6	20.4	激素类	20.2				Street Williams
횬	Temperature	(°C)	130	-509	-540	-260	一54	y5+5745	620				
Sample	ORP	(mV)	130	0.4	0.2	-	6		7				
ഗ്	Dissolved Oxygen	(mg/L)		 	_	200000000000000000000000000000000000000	STATE OF THE PROPERTY.		0	4 7 E			
	Nitrate + Nitrite	(mg/L-N)	8.4	1.6	0				0		45.7	7.4	vision in the company of
			0	0.5					10				27 July 28 San
	Nitrite	(mg/L-N)	0	0	0.5	0.4		200 mm 100				2 20	
	Sulfide	(mg/L)				1.05	0.179		0.15	7	3		
	Turbidity	(NTU)	0.307	154 PM PM		#1 Top #4/11 48/11		11.2	1.0			2.32.5	
	Chlorine Residual	(mg/L)		Jan Jan Hoole	ad or lag positio	n - this changes	every 96 hours		<u> </u>	Note: sh		are to remail	
_	Chlorine Residual * Signifies MBfR 1	or MBfR 2 de	pending on if rea	actor is in the ie	ad of lag pooling			<u> </u>				rvento	
г	Doct Ei	inished W	ater	7		Back	wash Reco	rd			Туре		Check
1		m Inspecti			Backwash sta		:00				4 Stock (
1	System	iti itisheda						1		Sodiu	т нуро с	Stock (gal	/

		ash Rec	ord	
ackwash start ti	me: 【 し :【	<u> </u>		
ackwash durati		min		
itial Product Ta	nk Level	gal		
inal Product Ta		gal	L_	
ime of sample	collection:			
Location	(NTU)		TSS Col	
ead Purge 1	10.0		ZYes	□No
ead Purge 2	100		Yes	□No
	11 0		ZYes	□No
ag Purge 1	<u> </u>		Yes	□No
ag Purge 2	15,2		Yes	
Media Filter			1.06	₽Ño

	Inventor	y
	Туре	Check
H3PO4 S	Stock (gal)	_ 4-
Sodium	Hypo Stock (gal)	
	Dissolved Oxyge	10
Additional Field Fest Kits Needed?	Nitrate + Nitrite	
Nee	Nitrite	<u> </u>
its i	Sulfide	
불분	Chlorine	_5_
قة≻	o-Phosphate	
	pH OK	0/0/0
	ORP	OK
Calibration kits needad?	Turbidity	0/0/0

Feed Tank Additions						
H3P04	Sodium Hypo					
11:30						
2.2	20					
220 ml	0_					
INFL.	N/A					
2.8	0					
1.8	0					
5.0	2.0					
	H3P04 :30 :30 :20 INFL. 2.8 2.8					

psi

psig psig

psig

.0

Note: There are 3785 mL per gallon.

Collect while sump is running Bag Filter ∆P

GAC-1 Pressure

GAC-2 Pressure

IX-1 Pressure

viedia Filter		
NOTES:	TO ANTUST HYD	POSEN LEL SENSORS. IT
	-IN DAILING ONC	THE IS NO TWOSES.
		PIETES LEL ADJUSTMENT OR SYSTEM TO STARALIZE
(a) 9:30	B-90	

reatment Syst	Treatment System Inspection						
Outlet Totalizer	gal	785300					
Target Flow Rate	gpm	0					
internal Recycle Rate	gpm	21=150					
MBfR 1 pH	std units	7·Z					
MBfR 2 pH	std units	7.2					
MBfR 1 ORP	mV	-404					
MBIR 2 ORP	_mV	-398					
Nitrate Frequency	Hz						
Last N Feed	ppm (N)	8.10					
Last N R1	ppm (N)	0.28					
Last N R2	ppm (N)	0.95					
MBfR1 Sparge Rate	mm	240					
MBfR2 Sparge Rate	mm	240					
Phosphate Pump Settings	spm % stroke	30					
Phosphate Concentration	mg/LPO4						
at Strainer Aeration Tank Air Flow	scfm	3.1					
Air Tank Pressure	psig	2.0					
Target Media Filter Flow	gpm	9.0					
Rate Media Filter Inlet Pressure	psig	3.5					
Media Filter Outlet Pressure	psig	1.5					
Sodium Hypo Pump	spm	30					
Settings	% stroke	/00					
Coagulant Tank Level	gal	5					
Coagulant Pump Settings	ml/min	3					
CO2 Cylinder Pressure	psi	88					
H2 Cylinder Pressure	psi	91					
N2 Pressure	psi	127					
N2 Flow Rate	scfm						
Tubidity (Instrument)	NTU	.19					
Turbidity (OIT)	NTU	.19					

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

		N= 9412		
Air	Monitorir	ng 💮		
Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area
\				7
	" .			
				,
				5
				F 1
	Mixed Cylinder	Mixed Cylinder Aeration Tank	Mixed Cylinder Aeration Tank MBfR 1	Mixed Cylinder Aeration Tank MBfR 1 MBfR 2

* 4

PRIOR TO TAKING SAMPLES.	OTES CONT.:							ż	·	
	PRIOR	Tro	TAKING	SAMPLES.			··	*		.,
	· · · · · · · · · · · · · · · · · · ·						•			
						15.3	1.		· · · · · · · · · · · · · · · · · · ·	
			· -						<u> </u>	
	<u> </u>			· • · · ·						
			.	γ.		<u>*</u> .				
					·	*				· · ·
			~							
				Grand Grand		T		15 mg - 18 mg		

(gal) Total Volume Added

Note: There are 3785 mL per gallon.

14

(gal) Final Tank Level

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Da	ite: 1/7/1			Time: <u>93</u>	0	<u> </u>		Operator	BEROL	coff				Treatment Syst	tem Ins	spection
		/				ld Sample				/				Outlet Totalizer	gal	5827900
Calibration	pH calibration? Standards: 34		0		ORP calibration Temp (Deg		□No	Standards:	alibration? ☑0 ☑20 ☑	200 🗹 10	000 🗹 4			Target Flow Rate	gpm	10
Salibr	Standard Reading	g: 7: 7,02	10: <i>iO</i> .	08		OK	220	Readings:		_	SHIPP			Internal Recycle Rate	gpm	150/180
_	4: 9,00	7: 110 S	Lead Sample		Standard He	eading: 229: _	<u> </u>	0.136:	0.3):		0.50:		MBfR 1 pH	std units	7.2
	Lead Reactor:	☐ MfBR1 ☑ MfBR2	SP-100A □	if MBfR1 in LEA	AD: SP-200B □ AD: SP-100B 🖼		Sample Collec	ction Time:		10 A	И			MBfR 2 pH	std units	7,2
	ster	(n	nt	d or	J or	on	ra	T E O	ed	1 nt	2 nt	Ħ	<u> </u>	MBfR 1 ORP	mV	-390
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-427
	Pa		ul	* &	řĚ	Ae	2 - 2	- ŭ	這 >	о П	о П	E	Pe C	Nitrate Frequency	Hz	1700
ā	pН	(std units)	7,53	7.57	7.57	7.93	7.81		7.90				7.68	Last N Feed	ppm (N)	8,10
Dai	Temperature	(°C)	18:6	20.6	20.9	20.7	20,6		18.8				18,6	Last N R1	ppm (N)	0.21
Sample Data	ORP	(mV)	301	-610	-440	-214	50		641				79	Last N R2	ppm (N)	0.92
Sai	Dissolved Oxygen	(mg/L)	9	0,25	001	7	3.5		4.5					MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)	9 9	1.75	0				0					MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)	0	0.6	0				0					Phosphate Pump Settings	spm % stroke	え <u>の</u> るむ
	Sulfide	(mg/L)	0	0	1.0	0.8			0					Phosphate Concentration at Strainer	mg/LPO4	1.5
	Turbidity	(NTU)	0.075			1,20	0.132		0.144					Aeration Tank Air Flow	scfm	3.2
	Chlorine Residual	(mg/L)						2.0	1.75					Air Tank Pressure	psig	2.0
	* Signifies MBfR 1		ending on if read	ctor is in the lea	d or lag position	- this changes	every 96 hours			Note: shad	ded boxes a	re to remain l	olank	Target Media Filter Flow	gpm	9
	Poet Fin	ished Wa	tor					:				ventor		Rate Media Filter Inlet Pressure	psig	2,0
		Inspection					vash Reco	rd			Туре		Check		poig	α,υ
	llect while sump is ru	•	/II		Backwash start Backwash dura		T	1		-	Stock (ga	_	50+	Media Filter Outlet Pressure	psig	1.5
۳	Bag Filter ΔP	psi	2	1 1 1 1 1 1 1	Initial Product T		min gal	-				ed Oxyge	4/6	Sodium Hypo Pump	spm	30
⊢	GAC-1 Pressure	psig	14	-	Final Product T		gal			Additional Field Test Kits Needed?	Nitrate -		77	Settings	% stroke	100
_	GAC-2 Pressure	psig	9	1	Time of sample	_	gui	<i>x</i>		al F Nee	Nitrite	THILL	7	0 1 17 11 1	100	
Г	IX-1 Pressure	psig	1.4	1	Location	(NTU)	TS	S Collected	?	tion	Sulfide		3	Coagulant Tank Level	gal	0
					Lead Purge 1			Yes □N		ddi st K	Chlorine	,	5	Coagulant Pump Settings	ml/min	
Г	Feed Ta	nk Additio	ons		Lead Purge 2		D)	Yes □N	0	Te Te	o-Phosp	hate	3	Coagulatit Fullip Settings	1111/111111	
	lo	H3PO4	Sodium Hypo		Lag Purge 1			Yes □N		5	рН		_/_	CO2 Cylinder Pressure	psi	87
Tim	ne	11:00	11:00		Lag Purge 2			Yes QN		Calibration kits needed?	ORP				F	01
_	ial Tank Level (gal)	3	14		Media Pilter			Yes □N	0	Call kits nee	Turbidit	у	/	H2 Cylinder Pressure	psi	88
	ck Added	~	•		NOTES:			1								
Dilu	be of Water Used For ution	-	-		NOTES:)//->			2011	Tomas	N2 Pressure	psi	156
Vol	ume Dilution Added	-	_	1	GALLADE	CHEMICA	i Deive	RED G	<u>474(3)</u>	13gal	CAKE	eys	100AY	N2 Flow Rate	scfm	

OF 12.5% SODIUM HYPO. APT TO BE ON SITE THIS

AFTERNOON TO PERFORM WORK ON SYSTEM.

Turbidity (OIT)

Tubidity (Instrument)

NTU

NTU

0.19

0.26

_		
Data I	Oa	Sheet

ESTCP: Technolc

Temonstration Plan

Perchlorate Destruction Usi. ... Membrane Biofilm Reduction

ESTCP Project Number ER-200541

Time: 8:45 AM Operator: BEROKOFF **Treatment System Inspection** Date: 11/9/11 6855100 Outlet Totalizer **Field Samples** Turbidity calibration? _☑Yes □No **Target Flow Rate** gpm Standards: 10 120 1200 1200 1200 NOT DELIVERED Temp (Deg C):_ 12;

√ 0.136: 0.150 0.30: 0.317 0.50: YET (BACKOFMENT) 150/180 Standard Reading: Internal Recycle Rate Calibr 4.00 7: 7.00 10: 10:15 Standard Reading: 220: 221 MBfR 1 pH std units SP-100A
if MBfR1 in LEAD: SP-200B 9:30 ☐ MfBR1 Sample Collection Time: Lead Reactor: MBfR 2 pH std units MfBR2 if MBfR2 in LEAD: SP-100B 2 Permitted Outfall Finished Water IX 1 Effluent MBfR 1 ORP mV -601 Media Filter Effluent GAC 1 Effluent GAC 2 Effluent Post Sodium Hypo Aeration Reactor nfluent Reactor *Lead -534 MBfR 2 ORP Hz Nitrate Frequency 7.98 Last N Feed ppm (N) 8.12 7.69 7.84 7.63 Data Fd (std units) Last N R1 ppm (N) 0,23 19.6 21.1 21.0 Temperature (°C) Last N R2 ppm (N) 0,86 222 52 ORP (mV) MBfR1 Sparge Rate 740 3.5 0,10 9.0 Dissolved Oxygen (mg/L) 240 MBfR2 Sparge Rate 9.0 1060 Nitrate + Nitrite (mg/L-N) 20 spm Phosphate Pump Settings 0.6 % stroke 30 Nitrite (mg/L-N) Phosphate Concentration mg/LPO4 0.8 at Strainer Sulfide (mg/L) 3,2 Aeration Tank Air Flow * × scfm Turbidity (NTU) Air Tank Pressure 2,0 09 psig *Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours

DIDNT TAKE TURBIDITY DUE TO MEDIAFILTER UNDERGOING BACKWASH Target Media Filter Flow 9 Note: shaded boxes are to remain blank gpm Inventory Media Filter Inlet Pressure psia Post Finished Water **Backwash Record Check Type H3PO4 Stock (gal) Media Filter Outlet **System Inspection** Backwash start time: 1.5 psig Pressure Sodium Hypo Stock (gal) 50+ Backwash duration Collect while sump is running 30 Additional Field Test Kits Needed? 4/6 spm Dissolved Oxyge Sodium Hypo Pump 2 nitial Product Tank Level Bag Filter AP Settings % stroke 100 Nitrate + Nitrite Co gal **GAC-1 Pressure** inal Product Tank Level psia 13.6 Nitrite CO Time of sample collection: **GAC-2 Pressure** psig Coagulant Tank Level gal Sulfide TSS collected? Location (NTU) IX-1 Pressure psia Chlorine 5 **□**No ead Purge 1 □Yes ml/min Coagulant Pump Settings OFF □Yes o-Phosphate 3 Feed Tank Additions ead Purge 2 □Yes □No На H3PO4 Sodium Hypo ag Purge 1 Calibration CO2 Cylinder Pressure psi □Yes □No ORP ag Purge 2 1:00 Time :00 □Yes □No Media Filter Initial Tank Level (gal) 1.5 H2 Cylinder Pressure Stock Added 280 NOTES: N2 Pressure psi Type of Water Used For INF Dilution APT MISTALLED LARGER COAGULANT CONTAINER (~15ga) N2 Flow Rate Volume Dilution Added scfm 305 BUT THE PUMP WAS OFF, NOT FEEDING THE SYSTEM. (gal) 0,21 Tubidity (Instrument) NTU Total Volume Added 3,5 TURBIDITY WAS LOW ON BOTH APT INSTRUMENTS (gal) Turbidity (OIT) 0,21 Final Tank Level 5:0 (0.21) SO THERE DOES NOT APPEAR TO BE A NEED Note: There are 3785 mL per gallon.

COAGULANT DOSING AT HIMES POINT.

ESTCP: Technolo

emonstration Plan

Perchlorate Destruction Usi. Aembrane Biofilm Reduction

ESTCP Project Number ER-200541

8130 APUCAN Time: Operator: **Field Samples** Calibration Standards: 🗹 4 🗹 7 🗹 10 Standards: 🗹 0 🗁 20 🗗 200 🗁 1000 💆 4000 14,4 Temp (Deg C): Standard Reading: 4:4:01 Readings: 7.7.01 0.136:152 0.50: 0.536 Standard Reading: 220: Lead Sample Lag Sample ☐ MfBR1 Lead Reactor: if MBfR1 in LEAD: SP-200B □ Sample Collection Time: 10:20 SP-100A □ ☐ MfBR2 if MBfR2 in LEAD: SP-100B □ Finished Water Permitted Outfall *Lag Reactor Aeration Media Filter Effluent Post Sodium Hypo Influent Reactor GAC 1 Effluent GAC 2 Effluent *Lead IX 1 Effluent Units 7.83 7.34 7.44 7.65 7.95 7.87 Data (std units) 19.0 21.4 21.2 21.8 21.7 21.3 Temperature (°C) Sample <u>-254</u> -500 180 534 -20 530 ORP (mV) 9 8 0.25 Dissolved Oxygen (mg/L) 0 0 Nitrate + Nitrite (mg/L-N) 0 O Nitrite (mg/L-N) Ô 0 0.9 Sulfide (mg/L) 6.688 0.898 0.229 0.230 Turbidity (NTU) .2 1:0 Chlorine Residual (mg/L) Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Note: shaded boxes are to remain blank

Post Finished Water System Inspection						
Collect while sump is running						
Bag Filter ∆P	psi					
GAC-1 Pressure	psig					
GAC-2 Pressure	psig					
IX-1 Pressure	psig	,				

Feed Ta	nk Additi	ons
	H3PO4	Sodium Hypo
Time ,	11:30	11:00
Initial Tank Level (gal)	3.5	5
Stock Added	0	
Type of Water Used For Dilution	NA	FUT. EFF.
Volume Dilution Added (gal)	0	
Total Volume Added (gal)	0	
Final Tank Level	3.5	
Note: There are 3785 mL j	per gallon.	

Backwash start time: 11.50						
Backwash dura	tion	mir	1		35	•
Initial Product T	gal			,		
Finaj Product Ta	gal					
Time of sample	collection:				,	
Location	"(NTU)		TSS	Colle	ected?	
Lead Purge 1	19.4		ĮΖÝe	5	□No	
Lead Purge 2	18.8		ʻ į Z Ye	s .	□No	
Lag Purge 1	5.3		ZÍYe	s	□No	
Lag Purge 2	1000	6.0	₽ŶYe	s	□No	
Media Filter			ZYe	s	□No	

Inventory							
	Туре	Check					
H3PO4	Stock (gal)	ク !					
Sodium	Hypo Stock (gal)	45					
₽%	Dissolved Oxyge	# 12					
g iii	Nitrate + Nitrite	6					
Z S	Nitrite	Q					
Additional Field Test Kits Needed?	Sulfide	3					
st G	Chlorine	5					
Ψ e e	o-Phosphate	3					
E	pH 💪	I GAL GACH					
Calibration (its needed?	ORP	/					
Calibration kits needed?	Turbidity	RECRISER					

NOTES:

COM ONSITE, A SUGHT SMELL OF SUIFUR/SUIFIDE IN MEFR

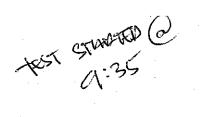
AEPATION AREA. COM PERFORMED A SPANGE @ 12:00. SHIMPLE

WERE TAKEN FOR TS. COM CLEANED WITHATE ANALYZER LENS

WITH AT WATER AND CHEM WIPE. THE WITHATE ANALYZER

Treatment Sys	tem In	
Outlet Totalizer	gal	6883900
Target Flow Rate	gpm	/0
Internal Recycle Rate	gpm	MAPR 1=15 MAPR 2= 11
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	m∨	(06
MBfR 2 ORP	m√	-542
Nitrate Frequency	Hz	
Last N Feed	ppm (N)	8:14
Last N R1	ppm (N)	0.28
Last N R2	ppm (N)	0.89
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm	20 30
Phosphate Concentration	% stroke mg/LPO4	11.1
at Strainer Aeration Tank Air Flow	scfm	3.2
Air Tank Pressure	psig	2.0
Target Media Filter Flow Rate	gpm	9.0
Media Filter Inlet Pressure	psig	9.5
Media Filter Outlet Pressure	psig	1.5
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	15 (Fu
Coagulant Pump Settings	mi/min	17
CO2 Cylinder Pressure	psi	88
H2 Cylinder Pressure	psi	91
N2 Pressure	psi	147
N2 Flow Rate	scfm	
Tubidity (Instrument)	NTU	, 22
Turbidity (OIT)	NTU	123

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541


Air Monitoring										
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area					
Time			<u>. </u>							
Carbon Monoxide (ppm)										
Oxugen (%)			7							
Methane (% LEL)										
Hydrogen Sulfide (ppm)										

NOTES CONT.:											•			
~ 	EED	lwes	FIAVE	BEEN	PE-	Rout	EP AS	PER APT'S	Direct	now. The	NITRATE	立心心	. WEER	
Numbers	WE	26-10	ren]	'BG	ore	AND	AFER	PE-FOUTE.	Com	PEFILED	CHIORINE	AND	CHIANGLED	
SETTWES	-10	40 €	SPM De	is le	eº/0 5	JAOKE	LENGITH	₹,						
				: .										
٠.														
	•								•					

ESTCP: Technolc `emonstration Plan
Perchlorate Destruction Using Membrane Biofilm Reduction

	n Aa Ai			Time:	100		ESTCP Pro	ject Numb Operator	er EH-200:	1641 1644			Treatment Syst	em Ins	pection
Da	te: 11/14/11	<u> </u>		1 ime:		d Camp	loo	Орогии			<u> </u>		Outlet Totalizer	gal	V
L	al Legibrotion?	⊔Yes ⊔N			ORP calibration	d Samp n? □Yes		Turbidity (calibration?	□Yes	□No		Target Flow Rate	gpm	lo
Calibration	pH calibration? Standards: □4 □ Standard Reading]7 □10	V		Temp (Deg (Standards: Readings:	□0 □20 □]200 □100	00 □4000		Internal Recycle Rate	gpm	R2=150
뻃		7 : _	10:		Standard Rea	ading: 220:		0.136:	0.3	30:	0.50):	MBfR 1 pH	std units	7-2
ľ	Lead Reactor:	□ MfBR1	Lead Sample	Lag Sample if MBfR1 in LEA	AD: SP-200B □		Sample Colle	ction Time	: [<u> </u>			MBfR 2 pH	std units	7.2
	Edda Houston	☐ MfBR2	SF-100A 🗆		AD: SP-100B 🗆		1	1 _	Т	1 =1		# 8 _	MBfR 1 ORP	mV	-611
	Parameter	<u>13</u>	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished	GAC 1 Effluent	GAC 2 Effluent IX 1	Effluent Permitted Outfall	MBfR 2 ORP	mV	-499
	ara l	Units	€	å å	4g	Aer		g Š ±	i i i	[광품]	હ ⊞	표 할 이	Nitrate Frequency	Hz	0
ŀ	<u> </u>	<u> </u>	├		 		+	n Salar y All					Last N Feed	ppm (N)	8,10
Data	pH	(std units)	<u> </u>		 			_					Last N R1	ppm (N)	0.16
l a	Temperature	(°C)				<u> </u>	 			ACCIAL COM			Last N R2	ppm (N)	1.75
Sample	ORP	(mV)		<u> </u>	<u> </u>	 _			<u>. </u>				MBfR1 Sparge Rate	mm	200
ပို့	Dissolved Oxygen	(mg/L)				and the second			<u> </u>				MBfR2 Sparge Rate	mm	40
	Nitrate + Nitrite	(mg/L-N)											Phosphate Pump Settings	spm	20
	Nitrite	(mg/L-N)							<u> </u>				Phosphate Concentration	% stroke	
		(mg/L)					13 1 3 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1		<u> </u>	المراهدة الحدا			at Strainer	mg/LPO4	
	Sulfide								A Al				Aeration Tank Air Flow	scfm	3.2
	Turbidity	(NTU)	14 No. 12 No.										Air Tank Pressure	psig	2.1
L	Chlorine Residual * Signifies MBfR 1	(mg/L) or MBfR 2 de	pending on if rea	actor is in the le	ad or lag position	- this change	es every 96 hour	3		Note: shade	ed boxes are to	remain blank	Target Media Filter Flow Rate	gpm	9
_				· ·						l	Inve	Check	Media Filter Inlet Pressure	psig	9.8
ľ		nished Wa			- h - h - h - h - h - h - h - h - h - h		kwash Reco	ora		H3PO4 5	Type Stock (gal)	Crieck	Media Filter Outlet	psig	8.9
L		Inspecti	OII	-	Backwash star Backwash dura		min			i	Hypo Stock	(gal)	Pressure	paig	
0	ollect while sump is ru Bag Filter ∆P	<i>inning</i> psi		┪	Initial Product		gal				Dissolved C		Sodium Hypo Pump	som	40
┝	GAC-1 Pressure	psig		-	Final Product 1		gal			Fiel	Nitrate + Ni	tri <u>te</u>	Settings	% stroke	/00
┝	GAC-2 Pressure	psig		1	Time of sample					la S. N	Nitrite Sulfide	_	Coagulant Tank Level	gal	
T.	IX-1 Pressure	psig		_1	Location	(NTU)		SS Collecte	a? No	- 漢호 -	Chlorine		C. Lut Burne Comings	ml/min	
_		. I : A al al !!	<u> </u>	-	Lead Purge 1 Lead Purge 2				No	1 🕺 👸	o-Phosphat	e	Coagulant Pump Settings	ml/min	
L	Feed Ta	H3PO4	Sodium Hypo	_	Lag Purge 1]Yes □	No	E	рН		CO2 Cylinder Pressure	psi	St. 8
Ļ	ime	1:30			Lag Purge 2			∃Yes □	No	Calibration kits needed?	ORP			 	
┡	uitial Tank Level (gal)	1.5	25		Media Filter			∃Yes □	No	rits Call	Turbidity		H2 Cylinder Pressure	psi	1
	tock Added W	240	O		NOTES.		<u> </u>	_					N2 Pressure	psi	1600
	ype of Water Used For illution	INFLL			NOTES:	LED BA	ICAI TECT	FOR	-toDay.	Com	vas	MSTRUCTE	N2 Flow Rate	scfm	100
Ī	olume Dilution Added	3.5	7 0					774191	· -70	(دربایاک	Puni	VALVE.		+	0 000
	gal) otal Volume Added	3.5	0		10 000		11:00	1000	ie Den		1742VK	LINE HAD	Tubidity (Instrument)	NTU	0,27
F	gal) inal Tank Level	5.0	25	₹.	MIP WE	1-116	WEE	(A) CE	No FRANCE	1- 12	NIZA	in.	Turbidity (OIT)	NTU	0.2
L	nal). Note: There are 3785 mL		1	_	pecome	MOGE!	TED NOT	<u> HUU</u>	v wei	· · · · ·	477	· <u>`</u>	_	•	

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

Air Monitoring										
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area					
Time										
Carbon Monoxide (ppm)										
Oxugen (%)										
Methane (% LEL)										
Hydrogen Sulfide (ppm)										

NOTES CON	ıT ·										
7110	i hu	3-fV	has Not	- BEEN	ABLE TO	SPANGE	Since Sa	TURBAY. CI	in croses	FILTER A	410 FEED
DUE	-10	LEAK	AT P	ump H	GAD . BATCH	1 TESTING	STARTED	@ 9:35.	Alakuns	FOUL HIGH	LEVEL_
tas	570	P THE	TEST.	com	PESTURETS	TEST @	10:30.				
<u> </u>											
											
				<u> </u>							
:	-										
		·	<u> </u>	-		·					
			<u>·</u> _				·				

	8944900
Notes: com onstre @ 8:00; System is	R1= 150
OPERATING NORMAL SINCE 11/15/11. Com To	12=186
CONDUCT BATCH TEST ON PEACTOR !	·
LEAD REACTOR IS CHERENTLY # 2. COM TO	lo Gpm
FOLLOW STEPS 38-11 ON BUTCH TEST PROTOCOL.	8./2
TESTING STURTED @ 9:29. A LEAK WAS FOUND	0.12
ON PECIFIC. PUMP #2. IT IS THE Source of a	1.60
FLOODING THE SITE. BUTCH TESTING ENDS @	
3:40. COM PETURNS ALL SETTWATS BACK AS DESCH	7.2
IN STEP 71. NITHATE ANALYZER LINES WERE PETURNETO THEIR NORMAL SUMPLING POPT. CDM SET	
- 10 Library AND THUMEN STELLY	- 434 580
MITATELL A CONLIGE. COM STAYED ON THE TO	-434
WION GOR SITE - COM ALSO PELNOVED FLOODED	7 NTER 7
WATER DUE TO LEAK. LEVEL ON REACTORS APPEAR	1.9
TO BE STUBLE AT 4-INCHES BELOW HIGH-LEVEL	15
ALARM.	9.0 apm
	•
	Sparae
	240.0
	70.0
TANK	AEVATION
NOTE: APT INFORMED ME THAT REJECT TANK	3.2
this Approx. 4 - 6 while of Fitter media on	•
THE BOTTOM. WE HAVE CLARCILITED THE TOTAL	2.1
Volume to be 2-4 cubic feet of media.	GUSES
THE FILTERS ONLY CONTAIN & CUFT OF WEDIN.	91
THE BACKFLUSH MAY BE CLAUSING THIS.	68
- ALSO CLAMERON WELDING ONSITE TO DEFIL	109
HITTANA	

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

Field Sampfiles	Di	ate: 11/18/11			Time:	tm	· 	ESTOP Pro	Operator	: <u>BCR-200</u>	041 10FF	-	-		Treatment Sys	tem Ins	spection
Searchard Press No. No		7-1	/		<u> </u>	Fie	eld Samole	es									
Secretary Secr	ration	Standards: ⊌4	2 17	0		ORP calibration	on? 🗷 Yes		Standards:	calibration? ☑0 ☑20 ☑	ØYes 200 ⊡n	□No 500 ⊠ 40	000		Target Flow Rate		10
Lead Recardor: MMRR1 MRR2 SP-100A MMRR1 MRR2 SP-100B MMR1 MRR2 SP-100B MMR1 MRR2 SP-100B MMR1 MRR2 SP-100B MMR1 MRR2 SP-100B MRR2 SP-100B MRR2 SP-100B MRR2 SP-100B MRR2 SP-100B MRR2 SP-100B MRR2 SP-10B	qiig		-					120			_				Internal Recycle Rate	gpm	150/180
Lead Reaction MBR2 SP-100A MBR2	۲	4: <u>4.00</u>	7: 7.00			Standard Re	eading: 220: <u>-</u>	230	0.136:	0.3	:0:		0.50:		MBfR 1 pH	std units	7.2
Backwash Record Freed Tank Additions Fr		Lead Reactor:		SP-100A □	if MBfR1 in LEA			Sample Colle	ction Time:		10H	m			MBfR 2 pH	std units	7.2
B		ater	Ø	Ħ	ρō	o.	uo	ır a	. ⊑ o	ed	÷ #	2 ti	Ę	ted ==	MBfR 1 ORP	mV	-472
B		ame	<u>Init</u>	flue	Lea	Lag	rati	ledi ilte	osi Vp	lish /ate	를 돌	A B	조활	utta	MBfR 2 ORP	mV	-440
Temperature		Par	_	<u> </u>	* #	* &	Ye	医中型	S T	i	S T	[5 표]	_ #	<u>т</u> О	Nitrate Frequency	Hz	-
Temperature	l es	На	(std units)	7,53	7,47	7.61	7,98	7.93	1000	7.98			100	7,60	Last N Feed	ppm (N)	8:15
Color Colo		Temperature	• "		20.0	-		20.1		18:00		15		18:4	Last N R1	ppm (N)	ව
Dissolved Covgen Grapt O O O O O O O O O	nple					-500		74		616	100.0				Last N R2	ppm (N)	1,35
Nitrate + Nitrate (mg/L+N) 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0 0 0.75 0 0 0 0.75 0 0 0.75 0 0 0 0.75 0 0 0 0.75 0 0 0 0.75 0 0 0 0.75 0 0 0 0.75 0 0 0 0 0.75 0 0 0 0 0.75 0 0 0 0 0 0 0 0 0	Sar		,			0.05	1.0					107247		1.5	MBfR1 Sparge Rate	mm	240
Nitrite (mg/L-N) O 0.75 O O O O O O O O O O O O O O O O O O O											173				MBfR2 Sparge Rate	mm	
Suffice (mg/L)												(10.443). (0.443).			Phosphate Pump Settings		
Sulfide (mg/L) C O O O O O O O O O O O O O O O O O O		Nitrite	(mg/L-N)				6)		r film miskliji (N.2. Tilki (J. 6.4.2.4.9.)	3							30
Chlorine Residual (mg/L) **Signifies MBIR 1 or MBIR 2 depending on if reactor is in the lead or leg position - this changes every 96 hours **Post Finished Water System Inspection **Post Finished Water System Inspection **Collect while 'sump is running **Backwash duration.** **Backwash du		Sulfide	(mg/L)			0.4		2 300		0					at Strainer	ٽ ا	21
Signifies MBIR 1 or MBIR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Post Finished Water System Inspection		Turbidity	(NTU)	0.061			1004	0.388									
Post Finished Water System Inspection Collect while sump is running Backwash duration. min Backwash duration. mi	L			anding on it roa	otor is in the les	d or lea position	- this changes	even 96 hours	1.5	1,25	Note: ehp	dad haves or	a to remain t	dank		psig	
System Inspection System Inspection System Inspection	· -	Olgrinies WibiA 1	n Wibin 2 dep	ending on it lead	- Clor 13 III line lea	a or lag position	- una changea	every 30 flours			Tyole: Shat		· .		I -	gpm	9
Backwash start time: Backwash duration. min Sodium Hypo Stock (gal) Sodium Hypo S							Back	wash Reco	rd				/entoi		Media Filter Inlet Pressure	psig	7.4
Bag Filter AP psi	Ŀ			on]	Backwash star	time:				H3PO4	Stock (ga	d) .			psia	, <
GAC-1 Pressure psig GAC-2 Pressure psig 1.0 Location (NTU) TSS Collected? IX-1 Pressure psig 1.3 Feed Tank Additions H3P04 Sodium Hypo Time 1:00 G1:30 Initial Tank Level (gal) 1.8 1/5 Stock Added Type of Water Used For Dilution Type of Water Used For Dilution Volume Dilution Added (gal) 3.2 Total Volume Added (gal) 3.2 Total Volume Added (gal) 3.2 Total Volume Added (gal) 3.2 Final Product Tank Level (gal) 4.5 Final Product Tank Level (gal) 4.5 Final Product Tank Level (gal) 1.5 F	C								/			1					117
H3PO4 Sodium Hypo Lag Purge					-	_		 			eld ded?				1 "	<u> </u>	<u> </u>
H3PO4 Sodium Hypo Lag Purge	┢				-			yaı yaı	L		a Fig		Nillite				110
H3PO4 Sodium Hypo Lag Purge		IX-1 Pressure									lition				Coagulant Tank Level	gai	<1.0
H3PO4 Sodium Hypo Lag Purge	_		-l- A -l-lia:		- 1		/_	-			Add est h	-	_		Coagulant Pump Settings	ml/min	17*
Time 100 G'30 Initial Tank Level (gal) 18 15 Stock Added Type of Water Used For Dilution Added (gal) 3.2 Total Volume Added (gal) 3.2 Final Tank Level 5.0 15 Lag Purge 2	_	Feed Ia											hate				
Stock Added Type of Water Used For INF Type of Water Used For INF Wolume Dilution Added (gal) Total Volume Added (gal) WAS RUNGING BUT NOT DOSING SYSTEM SO COM TRENS Final Tank Level Final Tank Level Turbidity (OIT) NTU OFF PUMP.	Tir	ne			1		<u> </u>				ation 3d?	÷		•	CO2 Cylinder Pressure	psi	88
Stock Added Type of Water Used For INF Type of Water Used For INF Wolume Dilution Added (gal) Total Volume Added (gal) WAS RUNGING BUT NOT DOSING SYSTEM SO COM TRENS Final Tank Level Final Tank Level Turbidity (OIT) NTU OFF PUMP.	\vdash	· · · · · · · · · · · · · · · · · · ·			1						Calibr kits reede		,		110 0 11-1-1 2 2 2 2 2		80
Dilution INF - Volume Dilution Added 3.2 - (gal)	\vdash		, <u>s</u>		1		<u> </u>								H2 Cylinder Pressure	psi	105
(gal) 3.2 Total Volume Added 3.2 Tubidity (Instrument) NTU 0.27 Final Tank Level 5.9 15 WAS RUNKING BUT NOT DOSING SYSTEM SO COM THENS! Tubidity (Instrument) NTU 0.27 Turbidity (OIT) NTU 0.35	Di	ution	INF	-]								(married A	N2 Pressure	psi	144	
Total Volume Added 3.2 - WAS RUNISIN'S BUT NOT DOSING SYSTEM SO COM TRENS (Instrument) NTU 0.27 Final Tank Level 5.0 15 WAS RUNISIN'S BUT NOT DOSING SYSTEM SO COM TRENS (Instrument) NTU 0.27 Turbidity (OIT) NTU 0.35			3.2	>=-	· .										N2 Flow Rate	scfm	-
Final Tank Level 5.0 15 OFF Paint. Turbidity (OIT) NTU 0, 35	To	tal Volume Added		~]		•							om French	Tubidity (Instrument)	NTU	
			5,0	15		OFF YO	int.					•			Turbidity (OIT)	NTU	0.35

ESTCP: Technolor emonstration Plan

		amples	
Date: 11/22/11	Time: (0.30)	Operator: ARU	CAN
2 / n n 1.	1	ESTCP Project Number ER-2005	41
-	Per	chlorate Destruction Usir 😞 🖯 embrane Bio	film Reduction

						eld Sample	es								
alloration	pH calibration? Standards: ☑4 Standard Readin	g:		,	ORP calibrati Temp (Deg		□No I	Turbidity calibration?							
Š	4: 4.04	7: 7.02	10: 0	.09	Standard Re	eading: 220: _	213	0.136:148 0.30: 0 326 0.50: 0.541							
	Lead Reactor:	□ MfBR1 □ MfBR2	Lead Sample SP-100A □		AD: SP-200B □ AD: SP-100B □	D: SP-200B ☐ Sample Collection Time: 2:30									
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall		
ta	pН	(std units)	7.56	7.57	7.66	7.98	7.85		7.91				7.58		
э Јата	Temperature	(°C)	18.8	19.3	20.5	20.4	20.3		17.8				20.1		
ampie	ORP	(mV)	80	-400	-530	-190	20		320						
S	Dissolved Oxygen	(mg/L)	9.0	0.8	0.1	5	Q		7.5						
	Nitrate + Nitrite	(mg/L-N)	ي ا	2,0	0				0						
	Nitrite :	(mg/L-N)	Ö	0.6	0				0						
ı	Sulfide	(mg/L)	G	0	0.1	0.1			0				15 N 16 15 1		
	Turbidity	(NTU)	0.103			1.78	0.201		0.197				"不是"的"我想 (在)是这种说		
	Chlorine Residual	(mg/L)		e talendaria	d or log position	the state		0.2	0-1				, y		

* Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours

Post Finished Wat	er
System Inspection	n
Collect while sump is running	

Pollect while sump is running								
Bag Filter ΔP	psi	3						
GAC-1 Pressure	psig	15						
GAC-2 Pressure	psig	70						
IX-1 Pressure	psig	1.5						

Feed Ta	Feed Tank Additions										
,	НЗРО4	Sodium Hypo									
ime	2:15	2:30									
nitial Tank Level (gal)	1.5	9.0									
tock Added	275	5									
ype of Water Used For illution	INF	mF									
olume Dilution Added jal)	3.5	16									
otal Volume Added jal)	3.5	伤公									
inal Tank Level	4150	30									

d or lag position -	this changes ev	very 96 hours		Note: shaded boxes are to remain blank				
				7 [Inventory	,	
•	Backwa	ash Recor	rd /] [Туре	Check	
Backwash start t	ime:			7 [H3PO4	Stock (gal)		
Backwash durați	on	· min		╗╒	Sodium	Hypo Stock (gal)		
nitial Product Ta	ınk Level	gal		71	# 5 E	Dissolved Oxyge		
Final Product Ta	nk Level	gal		71	al Field Needed?	Nitrate + Nitrite		
Time of sample	collection:]	E Se	Nitrite		
Location	Location (NTU) TSS Collected?					Sulfide		
_ead Purge 1		- Pi	∕es □No	╗╽	Additional est Kits Ne	Chlorine ,	*	
_ead Purge 2		7□	res □No	71	Ψ Đ.	o-Phosphate		
ag Purge 1		□Y	res □No	1 [ç	pН		
ag Purge 2		□ Y	/es □Ne		oratio Jed?	ORP .		
Media Filter		ΠY	res □No	\Box	Sits The Ex	ORP Turbidity		
				<u></u>	•		,	
NOTES:								
APT LOW	EPED IN	FLUENT	FICWPAT	E	10 1	B GAPM. CS		
440 CH	ANGE P	HOSP HIM	TTE DOSINGE	- 1	0 2	0 Spm /25	-c/o	
STROKE,	AUSO CH	LANGE	DUIZOR OFFIH	Î	10	30 Spm/ 1	06 °/0	
Gold V.E.	THE DE	ACT 012	cvei2Plow) \/	ALLE	TO THE		

Treatment System Inspection										
Outlet Totalizer	gal	7019400								
Target Flow Rate	gpm	10								
Internal Recycle Rate	gpm	150/180								
MBfR 1 pH	std units	7.2								
MBfR 2 pH	std units	7.2								
MBfR 1 ORP	m∨	-469								
MBfR 2 ORP	mV	-324								
Nitrate Frequency	Hz .									
Last N Feed	ppm (N)	8.12								
Last N R1	ppm (N)	0.04								
Last N R2	ppm (N)	2.33								
MBfR1 Sparge Rate	mm	240								
MBfR2 Sparge Rate	mm	240								
Phosphate Pump Settings	spm % strake	20								
Phosphate Concentration	% stroke mg/LPO4	30								
at Strainer Aeration Tank Air Flow	scfm	3.2								
Air Tank Pressure	psig									
Target Media Filter Flow Rate	gpm	9.0								
Media Filter Inlet Pressure	psig	11.3								
Media Filter Outlet Pressure	psig	1.5								
Sodium Hypo Pump	spm	40								
Settings	% stroke	100								
Coagulant Tank Level	gal	5								
Coagulant Pump Settings	ml/min	フ								
CO2 Cylinder Pressure	psi	87								
H2 Cylinder Pressure	psi	91								
N2 Pressure	psi	144								
N2 Flow Rate	scfm									
Tubidity (Instrument)	NTU	0.17								
Turbidity (OIT)	NTU	0.17								

Air Monitoring										
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area					
Time			٠.							
Carbon Monoxide (ppm)										
Oxugen (%)										
Methane (% LEL)					-					
Hydrogen Sulfide (ppm)										

NOTES CONT.:										•				
AEPATION	THNK	WAS	SING	THITLY	CLOSED	of-	Ctim	PENSATE	FOR	LOWER	tion	AND		
MAINTAIN	LEVE	الما ا	THE	mp(125,		i.	* •	٠					
			•											
											•			
			٠		· · · · · · · · · · · · · · · · · · ·									
								,					٠	
			-											

ESTCP: Technolo

emonstration Plan

Perchlorate Destruction Usis, Membrane Biofilm Reduction

ESTCP Project Number ER-200541

9:30 ARUCAN Time: Operator: **Field Samples** pH calibration?
Standards: □4
Standard Readil ORP calibration? ☐Yes ☐No ⊻Yes □No Standards: □4 □7 □10 18.8 Temp (Deg C): Standard Reading: Readings: 4:3.00 7.03 10: 10-09 211 0.136: 0.186 0.30: 0.353 0.50: 0.612 Standard Reading: 220: Lead Sample Lag Sample ☐ MfBR1 SP-100A ☑ if MBfR1 in LEAD: SP-200B □ Lead Reactor: Sample Collection Time: 12:00 ✓ MfBR2 if MBfR2 in LEAD: SP-100B Ø *Lead Reactor Media Filter Effluent Finished Water Aeration Post Sodium Hypo Influent *Lag Reactor IX 1 Effluent Units 7.98 7.35 7.38 7.57 7.86 8.02 (std units) 20.7 21.5 213 21.2 19.1 21.6 Temperature (°C) 340 -440 553 -20 585 ORP (mV) 0.3 8.5 0 Dissolved Oxyger (mg/L) 8.7 3.2 0. 0.1 Nitrate + Nitrite (mg/L-N) BO 0 0. Nitrite (mg/L-N) 0 0 0 0.1 0 Sulfide (mg/L) 0.139 0.897 0.204 0.279 (NTU) Turbidity 3.0 4.0 Chlorine Residual (mg/L)

Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Chlorine Residual Note: shaded boxes are to remain blank

Post Finished Water System Inspection										
Collect while sump is running										
Bag Filter ∆P	psi	3								
GAC-1 Pressure	psig	17.								
GAC-2 Pressure	psig	14								
IX-1 Pressure psig . 3										

Feed Tank Additions									
	H3PO4	Sodium Hypo							
Time	1:00	1:05							
Initial Tank Level (gal)	0.9								
Stock Added	250								
Type of Water Used For Dilution	INF								
Volume Dilution Added (gal)	4.0								
Total Volume Added (gal)	600+1								
Final Tank Level	5.0								

Note 7	Thora	ora	2725	ml	nor.	aallon.

Backwash Record									
Backwash start time:									
Backwash durati	on	min							
Initial Product Tank Level Final Product Tank Level		gal							
		gal							
Time of sample of	collection:								
Location	(NTU)	TS TS	S Col	lected?					
Lead Purge 1			⁄es	□No					
Lead Purge 2		7	res	□No					
Lag Purge 1		.ٰ 🗅	res \	_ □No ·					
Lag Purge 2		. 🗆 '	/es	DM6					
Media Filter		Π,	/es	□No					

] :		Туре	Check
] ;	H3PO4	Stock (gal)	4
	Sodium	Hypo Stock (gal)	30
]	d d?	Dissolved Oxyge	5+8
]	Additional Field Test Kits Needed?	Nitrate + Nitrite	6
]	ial i	Nitrite	6
	tior	Sulfide	3
]	st K	Chlorine	5
	eT	o-Phosphate	3
]	Ę	pН	OK
	Calibration kits needed?	ORP	reorder
]	Calli kits need	Turbidity	PEOPSER

Inventory

L	NOTES:
L	STEADY STATE PHASE SINCE WED. 11/29/11. COM PERFORMED
	TURBIDITY CLAL, ALL STANDARDS DO NOT READ WELL AND NEED
4	TO BE PEOPDERED. GOW HAS CHAMBED POST FINTERS ON
Ŀ	TOST TRANSMENT STATEM STANGE OCCUPED (0, 2:00.

Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	7088100
Target Flow Rate	gpm	8.0
Internal Recycle Rate	gpm	150/120
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-514
MBfR 2 ORP	mV	一387
Nitrate Frequency	Hz	-
Last N Feed	ppm (N)	8.22
Last N R1	ppm (N)	0.04
Last N R2	ppm (N)	2.28
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm	20
Phosphate Concentration	% stroke mg/LPO4	2.5
at Strainer Aeration Tank Air Flow	scfm	李3.7
Air Tank Pressure	psig	2.0
Target Media Filter Flow Rate	gpm	7.0
Media Filter Inlet Pressure	psig	9.9
Media Filter Outlet Pressure	psig	6.5*
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	4
Coagulant Pump Settings	ml/min	7
CO2 Cylinder Pressure	psi	88
H2 Cylinder Pressure	psi	91
N2 Pressure	psi	157
N2 Flow Rate	scfm	
Tubidity (Instrument)	NTU	0.15

0.29

NTU

APT INFORMED COM THEAT BAGE FINTERS WERE CHANGED ON 11

Air Monitoring									
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBIR 1	MBfR 2	OIT Area				
Time									
Carbon Monoxide (ppm)									
Oxugen (%)									
Methane (% LEL)									
Hydrogen Sulfide (ppm)									

OTES CONT.:															
CDM to	ORDER	mor	E FOS	st-Fun	EKS	(250 -	100)	. CDm	WSTAN	LEO	100-50	TYF	e futer	NEED	
to aused	MONITOR	JP.	APT	ONSITE	To	PEFILL	Fi	TER AU	DAND	-11	irvest.	2 =	pe fiber	-	
PEACTORS (
							1.								
					•	-		•						٠	
															
			- A ₃						. ··· · ·						
	. :							,	-						
	1.5			47.4	,			4.							

Data Log Sheet

ESTCP: Technolo	emonstration Plan
Perchlorate Destruction Using	√embrane Biofilm Reduction
ESTCP Project Nur	nber ER-200541
<u>-</u>	

	101						ESTOP Pro	ject Numb	er EH-2005	941			
Da	ıte: <u> 1/30/1</u>	<u>) </u>		Time: _/ <i>O</i> /	AM	· ·		Operator:	BERO	KOFF	:		
	Field Samples												
le le	pH calibration?	☑Yes □N	0		ORP calibrati	on? ⊡Yes	□No	Turbidity c	alibration?	⊿ Yes	_□No _		
Calibration	Standards: 124 Standard Readin				Temp (Deg	c): <u> </u>		Standards: Readings:	⊡ර ජ20 ජ	200 ⊡10	000 ⊡40	000	
ပ္ပ	4: 4:00	7: 7:04	10: <i>[0]</i> .	<u>10</u>	Standard Re	eading: 220: _	220	0.136:	0.3	0: -		0.50:	
	Lead Reactor: Lead Sample Lead Sample SP-100A MBR1 in LEAD SP-200B Sample Collection Time: MBR2 in LEAD: SP-100B MBR												
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
툡	pН	(std units)	7.55	7.60	7.41	7.84	7.72		7.90				7.45
∋ Data	Temperature	(°C)	19.2	20.1	21.3	21.2	21.2		21.0		1.00		20.8
Sample	ORP	(mV)	372	-453	-501	-156	<i>5</i> 5	TAKE	640				
Sa	Dissolved Oxygen	(mg/L)	9	0,35	0	7	5,5	12.7	7,0	A A A S	(*************************************		1000
	Nitrate + Nitrite	(mg/L-N)	9	2.2	0				0.4				
	Nitrite	(mg/L-N)	0	0.6	0				ට				
	Sulfide	(mg/L)	ච	O	0.3	001			0				
	Turbidity	(NTU)			Andrew State (1994) Andrew State (1994) Andrew State (1994)		0.211						
	Chlorine Residual	(mg/L)						2.0	1.5		(1.5 to) (1.		
	* Signifies MBfR 1	or MB1H 2 dep	ending on if rea	ctor is in the lea -	d or lag position	- this changes	every 96 hours			Note: shad	led boxes an	e to remain	

Post Finished Water System Inspection								
Collect while sump is running								
Bag Filter ΔP	psi	3						
GAC-1 Pressure	psig	14						
GAC-2 Pressure psig /O								
IX-1 Pressure	psia	13						

Feed Tank Additions								
	H3PO4	Sodium Hypo						
Time	12pm	12PY						
Initial Tank Level (gal)	35	M						
Stock Added	***	~=						
Type of Water Used For Dilution	/	ŧ						
Volume Dilution Added (gal)	-	ı						
Total Volume Added (gal)	1	_						
Final Tank Level	3.5	15						

Note: There are 3785 mL per gallon.

1		ash Reco	ra				
Backwash start t	ime: 3 (Shw					
Backwash durati	on ,	min					
Initial Product Ta	ink Level	gal					
Final Product Ta	nk Level	gal					
Time of sample	collection:		,				
Location	(NTU)	TSS Collected?/					
Lead Purge 1			/es	⊡No ∕			
Lead Purge 2		' <u></u>	/es	₽ Μoֻ			
Lag Purge 1			/es	₽ 1√0 /			
Lag Purge 2			/es	⊠ 100			
Media Filter			/es	⊒nNo			

٦	Inventory										
IJ		Туре	Check								
] }	H3PO4	Stock (gal)	U								
]	Sodium	Hypo Stock (gal)	30								
]	p çp	Dissolved Oxyge	548								
]	Additional Field Test Kits Needed?	Nitrate + Nitrite	6								
]	l a S	Nitrite	Ġ								
	₽ \$	Sulfide	3								
]	st di	Chlorine	5								
	e_	o-Phosphate	3								
]	Ę	pН									
]	alibration its reeded?	ORP	ORDER								
]	S S S	Turbidity	ORDER								

NOTES:										
INCRE	ASE	D P	405PH	ATE	D05)1VG	Pump	STRO	XE L	ength	Fizer
25%	To	30.	COAG	MANT	TANK	WAS	EMPTY	upow	ARRIV	7L,
CIDIM	TURI	JED	OFF	Dosin	JG Pur	10 AN	D ALE	TED	APT.	
CDM	TURA	ICD 1	ಶಲಸಿ	دنا	PuMP	102	Sapu	(Fr	ым 30°) Du

TO THE LOWER MEDIA FILTER RATE. B-10400

Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	7108600
Target Flow Rate	gpm	8
Internal Recycle Rate	gpm	156/18
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7,2
MBfR 1 ORP	mV	-309
MBfR 2 ORP	mν	-719
Nitrate Frequency	Hz	-
Last N Feed	ppm (N)	8.24
Last N R1	ppm (N)	1,73
Last N R2	ppm (N)	0
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm	20
Phosphate Concentration	% stroke	おち
at Strainer	mg/LPO4	
Aeration Tank Air Flow	scfm	3.2
Air Tank Pressure	psig	2.0
Target Media Filter Flow Rate	gpm	6
Media Filter Inlet Pressure	psig	2.9
Media Filter Outlet Pressure	psig	1.3
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	0
Coagulant Pump Settings	ml/min	7
CO2 Cylinder Pressure	psi	87
H2 Cylinder Pressure	· psi	88
N2 Pressure	psi	168
N2 Flow Rate	scfm	-
Tubidity (Instrument)	NTU	0.23
Turbidity (OIT)	NTU	0.40

Air Monitoring											
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area						
Time											
Carbon Monoxide (ppm)											
Oxugen (%)											
Methane (% LEL)											
Hydrogen Sulfide (ppm)											

NOTES CONT.:	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
COLLECTED IDGAL IN	FLUENT WELL	WATER + 5G	AL FLUSH (FURGE)	WATER -> OVERNIGHTE
THESE TO ASU, COM	HAD TO MANUF	YLLY INITIATE A	SPARGE ON MOS	TR AND ONLY
COLLECTE SAMPLE WATER	DURING THE	FIRST DRAIN/S	SCOND DRAIN FOR	- BOTH REACTORS.
	····	•		
	·			
	- 1			

Data Log Shee	rt .					e Destruction	Using Mer	mbrane Bi	ofilm Re	eduction	1				
Date: 12/2/	/11		Time: _ / :	oopen		ESTCP Pro	Operator:						Treatment Syst	em Ins	nection
				Fie	eld Sample	es							Outlet Totalizer	gal	peotion
□ IpH calibratio	n? □Yes □N	Ю		ORP calibration			Turbidity ca	alibration?	□Yes	□No					1.
Standards:	□4 □7 □10			Temp (Deg	C):		Standards:	□0 □20 □	200 🗆 10	000 🗆 4	000		Target Flow Rate	gpm	0
Standard Re	aumy.	10.		Otanada and Da			Readings:						Internal Recycle Rate	gpm	
8 4:	/:	10: Lead Sample	Lag Sample	Standard Re	eading: 220: _		0.136:	0.:	30:		_0.50:		MBfR 1 pH	std units	
Lead Reac	tor:	SP-100A 🗆		AD: SP-200B		Sample Colle	ction Time:		113	Opm]		MBfR 2 pH	std units	
ete	S.	i i	p p	5	ion	en tra	# E 0	per er	ant a	ent e	_ t	itted	MBfR 1 ORP	mV	
l E	i i	Į į	Lea	*Lag	erat	Med	Pos odit Hyp	nish Vate	GAC	AG	× E	EB	MBfR 2 ORP	mV	
Pai		=	* Œ	Œ	A	2 - m	S -	Ē >	2 =	0 11	<u>—</u>	Per	Nitrate Frequency	Hz	
rg pH	(std units)												Last N Feed	ppm (N)	
Temperature	(°C)												Last N R1	ppm (N)	
ORP	(mV)												Last N R2	ppm (N)	
Sa													MBfR1 Sparge Rate	mm	
Dissolved Oxy													MBfR2 Sparge Rate	mm	
Nitrate + Nitrite				5									Phosphate Pump Settings	spm % stroke	30
Nitrite	(mg/L-N)		/	2.5									Phosphate Concentration	% stroke mg/LPO4	CASTO CONSTRUCTION OF THE PARTY
Sulfide	(mg/L)										100		Aeration Tank Air Flow	scfm	
Turbidity	(NTU)							1.5		15.00			Air Tank Pressure	psig	
* Signifies MBf	fR 1 or MBfR 2 dep	ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours		1.0	Note: shad	ded boxes a	are to remain b	olank	Target Media Filter Flow	gpm	
	Einink and Ma		1							In	ventor	y	Media Filter Inlet Pressure	psig	
	Finished Wa					wash Reco	rd		H3PO4	Type Stock (s	(los)	Check	Media Filter Outlet	polg	
Collect while sump	tem Inspectio	711		Backwash star	THE RESIDENCE OF THE PARTY OF T	min	1		Commercial States		tock (gal)		Pressure	psig	
Bag Filter ΔP	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		1	Initial Product		gal			THE RESIDENCE OF THE PARTY OF T	NA PERSONAL PROPERTY.	ed Oxyge		Sodium Hypo Pump	spm	370
GAC-1 Pressur				Final Product 7		gal			Field seded?	Name and Publishers	+ Nitrite		Settings	% stroke	36 i
GAC-2 Pressur				Time of sample			0.0.11.10		onal s Ne	Nitrite			Coagulant Tank Level	gal	0
IX-1 Pressure	psig		J	Location	(NTU)	The second secon	S Collected? Yes □No			Sulfide					
Food	Tank Additi	ons	7	Lead Purge 1 Lead Purge 2			Yes □No		Ac	o-Phos			Coagulant Pump Settings	ml/min	0
1 ccu	НЗРО4	Sodium Hypo		Lag Purge 1			Yes □No		5	рН			CO2 Cylinder Pressure	psi	
Time	1:30 pm	1:30pm		Lag Purge 2			Yes □No		0 0	ORP			CO2 Cylinder r ressure	Poi	
Initial Tank Level (ga	DESCRIPTION OF PERSONS ASSESSMENT	12		Media Filter			Yes □No		Call	Turbidi	ty		H2 Cylinder Pressure	psi	70
Stock Added	130	M CONTRACTOR OF THE PARTY OF TH		NOTES:									NO Property	psi	
Type of Water Used Dilution Volume Dilution Add	INT	MEDIA F	KTER	STATE OF THE PARTY	PLING :	TODAY. C	DM ON	SITE	70 7	TOP O	F Haf	TOUR AND	N2 Pressure		
(gal)	300	17		40014m +			N. Carlotte Committee				GENER		IVE I IOW Flate	scfm	
(gal)	3.2	18		AND VE			Ha IN	G-PA			300 S S S S S S S S S S S S S S S S S S		Tubidity (Instrument)	NTU	
Final Tank Level	6	20		AND VE	KIT IED E	NOUGH	ila IN	OTA	CAID	(11)	1 17	-cuon	Turbidity (OIT)	NTU	

THE WEEKEND IF GENERATOR SHUTS DOWN AGAIN.

B-106

Turbidity (OIT)

Note: There are 3785 mL per gallon.

30

Sample Data

Air Monitoring									
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area				
Time									
Carbon Monoxide (ppm)									
Oxugen (%)									
Methane (% LEL)									
Hydrogen Sulfide (ppm)									

NOTES CONT.:			SPM					_			1
LVDIAGED	SODIUM HY	Po Pum	P SET	TING.	To 30	(FROM	255PI	n) AFT	ER fitt	NG TOPP	ING OFF T
TART	BE ON SITE	TUK	ACTERNO	מען דם	105457	BALL	VALVE	SETTIN	K ON P	1BFR ou	TEALL
A17 70	BE ON SITE	1119	THE TENT	Co	INLICATO	D FIRM	PATE	(6 GPM)			
(overflow	TO ACRATION	1) TO 1	CCOUNT	FOR	cowere	7000	in	-201)	11100	A SOME	KNOKING
COM ADJU	STED BALL UP	REVE (AP	T-TO	CHECK (ON WATE	R LEVEL	LATER	TODAY).	NOTICE	DEME	Minoching
on Pollech	CR SOUNDS	FROM	sump	Pump	(MIGHT	CONSIDER	2 SCRVIC	ING IT			
OK FOUGH	TE SOUND		2 . 3								
	NOT THE RESIDENCE										
				The State of the S							

B-107

st /st ump AP ssur ssure

evel (

lution #

me Ad

k Leve

ere are

Da	te: <u>12/5/1</u> 1			Time: <u>8:5</u>	10AM			Operator:	BERON	OFF				Treatment Sys	tem Ins	spection
	•	,	1			ld Sample								Outlet Totalizer	gal	7/53300
	pH calibration? Standards: □4	□7 □10	0		ORP calibration Temp (Deg		□No	Standards: [alibration? □0 □20 □			000		Target Flow Rate	gpm	6
Calibr	Standard Reading 4:	j: 7: <u>7</u> ,02	- 10:	- 1920 - 1920	Standard Re			Readings: 0.136:	0.3	0:		0.50:		Internal Recycle Rate	gpm	
		2000 660000000000	Lead Sample	Lag Sample	Otaliaala i io									MBfR 1 pH	std units	
	Lead Reactor:	☐ MfBR1 ☐ MfBR2		if MBfR1 in LEA if MBfR2 in LEA			Sample Collec	ction Time:		913	OAN	(MBfR 2 pH	std units	
	Parameter	Ω	i i	*Lead Reactor	g tor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 1 ORP	mV	
	. a	Units	Influent	Les	*Lag Reactor	erat	Alite Filte	[충혈화]	nisl Vat	AAC	AAC	×≞	E E	MBfR 2 ORP	mV	
	Paı	_	드	* Œ	ŭ	Ä	_ <u>_</u> _	σ –	正 _	0 11	0 11	ù	a O	Nitrate Frequency	Hz	
ŭ	pН	(std units)											7.37	Last N Feed	ppm (N)	
Data	Temperature	(°C)											17.5	Last N R1	ppm (N)	
nple	ORP	(mV)			-						2 (C-2)			Last N R2	ppm (N)	
Sar	Dissolved Oxygen	(mg/L)												MBfR1 Sparge Rate	mm	- 3
	Nitrate + Nitrite	(mg/L-N)												MBfR2 Sparge Rate	mm	
			44		Inter- of the second									Phosphate Pump Settings	spm	
	Nitrite	(mg/L-N)						Control of the		THE PROPERTY.				Phosphate Concentration	% stroke mg/LPO4	
	Sulfide	(mg/L)							116					at Strainer Aeration Tank Air Flow	scfm	
	Turbidity	(NTU)												Air Tank Pressure	psig	
	Chlorine Residual * Signifies MBfR 1 of	(mg/L) or MBfR 2 dep	ending on if read	ctor is in the lea	d or lag position	- this changes	every 96 hours			Note: shad	led boxes a	re to remain	blank	Target Media Filter Flow	-	
	1.7687						C. Service	100		: 4/-	In	ventor	v	Rate	gpm	
		ished Wa	100000000000000000000000000000000000000		TENT	Backw	vash Reco	rd	March 1		Туре	C US A	Check	Media Filter Inlet Pressure	psig	
_		Inspection	n		Backwash start						Stock (ga	_	407-4-1-1	Media Filter Outlet Pressure	psig	(.e.)
Col	lect while sump is ru				Backwash dura		min				Hypo Sto				anm	
_	Bag Filter ΔP GAC-1 Pressure	psi	<u>a</u>		Initial Product T		gal			Additional Field Test Kits Needed?	Nitrate -	ed Oxyge		Sodium Hypo Pump Settings	spm % stroke	
_	GAC-1 Pressure	psig psig			Final Product Table Time of sample		gal			F Fi	Nitrite	rivitite			78 SHOKE	
	IX-1 Pressure	psig)	Location	(NTU)	TS.	S Collected?		ions ts N	Sulfide			Coagulant Tank Level	gal	1000
	17. 1 1 1 1 0 0 0 d 1 0	poig			Lead Purge 1	(11.0)		res □No		ig di	Chlorine)				
	Feed Tai	nk Additi	ons		Lead Purge 2			Yes □No		∠ ĕ F	o-Phosp	hate		Coagulant Pump Settings	ml/min	
		H3PO4	Sodium Hypo		Lag Purge 1			Yes □No		С	рН			000 0 11 1 0		
Tim	е	10 AM			Lag Purge 2		<u></u>	Yes □No		Calibration kits needed?	ORP			CO2 Cylinder Pressure	psi	
Initi	al Tank Level (gal)	2.75			Media Filter			Yes □No		Calif kits need	Turbidit	y		H2 Cylinder Pressure	psi	
Sto	ck Added	100,01												The Cylinder i resourc	ры	
	e of Water Used For tion	INF			NOTES:			1						N2 Pressure	psi	
	ume Dilution Added	2.25			NO SAMPLING TODAY DUE TO RUNNING OUT OF HIL OVER							N2 Flow Rate	scfm			
	al Volume Added	2.25			THE WEEKENS, CAMERON TO DELIVER NEW GRACK LAT						,	Tubidity (Instrument)	NTU			
Fina	al Tank Level	5											/	Turbidity (OIT)	NTU	
Not	e: There are 3785 mL p			•	COM TO	COOPDINA	TE W/A	PT TO	SEE IF	RIC	H BU	DAY	WILL BE	G. PACK CAME	Paul	To DELLUE

ANOTHER G-PACK ON 12/9/108

Air Monitoring											
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area						
Time			doctor.								
Carbon Monoxide (ppm)			All and the second								
Oxugen (%)			edition .								
Methane (% LEL)											
Hydrogen Sulfide (ppm)	n nia		104 1 05								

TES CONT.:
THERE WAS A SIZABLE LEAK THAT OCCUPRED ON THE NO SPARGE LINE JUST PRIOR TO THE SOLONON
VALUES, COM FATTIGHTENED IT UP AND MINIMIZED LEAK-BUT REQUIRES FURTHER MAINTENANCE
AND POSSIBLE PEPAIR (COM ALERTED APT). CAMERON TO FILL NO DEWAR TODAY AS THE LEAK
IKELY CAUSED ATE US TO RUN OUT OF NO. COM CLOSED OFF VAINE ON NO DEWAR SO TO
PREVENT FURTHER COSS ON GAS UPON FILLING UP THE DEWAR TODAY (~12PM).

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

	1-1-10	1		i	2:00		ESTCP Pro	oject Numbe						<u> </u>		
D	ate: 12/9/1	<u> </u>		Time:	2:00 Operator: ARUCAN								Treatment Sys	Treatment System Inspection		
		1	,			eld Sampl					,			Outlet Totalizer	gal	7189400
uo	pH calibration? Standards: □4	□Yes ☑N	ЛО .		ORP calibrati	on? □Yes	✓No	Turbidity ca Standards: [alibration?	□Yes	DÎNO MO □4	IOOO		Target Flow Rate	gpm	6.0
Calibration	Standard Readin				Temp (Deg			Readings:			000 =			Internal Recycle Rate	gpm	150/120
۲	4:	<u>.7:</u>	10: Lead Sample	Lag Sample	Standard R	eading: 220: _		0.136:	0.	30:		0.50:	 -	MBfR 1 pH	std units	7.2
	Lead Reactor:	MfBR1	SP-100A □	if MBfR1 in LI	EAD: SP-200B 🗆 EAD: SP-100B 🗆		Sample Colle	ction Time:	. [12:0	6]		MBfR 2 pH	std units	7.2
	ate.	ø .	Ę	p ō	_ 5	. E	a T	T_	8 2	- <u>=</u>	2 II	Ę	<u> </u>	MBfR 1 ORP	mV	-332
	Paramete	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-698
	Par	1	2	* &	`#	₹	≥ □	S +	ਛੋ⋝	S #	(S) 型		P 0	Nitrate Frequency	Hz	
, CO	рН	(std units)											7.19	Last N Feed	ppm (N)	8.25
Data	Temperature	(°C)											20.3	Last N R1	ppm (N)	1.30
Sample	ORP	(mV)												Last N R2	ppm (N)	0.18
Sai	Dissolved Oxygen	(mg/L)						5.00 O.48						MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)												MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)							•			100		Phosphate Pump Settings	spm	20 30
	Sulfide													Phosphate Concentration	% stroke mg/LPO4	30
3.	Turbidity	(mg/L) (NTU)		THE REPORT OF THE PARTY OF THE					<u> </u>				-i	at Strainer Aeration Tank Air Flow	scfm	3.2
	Chlorine Residual		#65555E0V						-					Air Tank Pressure	psig	2.0
<u> </u>	* Signifies MBfR 1	(mg/L) or MBfR 2 dep	ending on if rea	ctor is in the le	ad or lag position	- this changes	every 96 hours	<u> </u>		Note: shad	led boxes a	re to remain	blank	Target Media Filter Flow		 -
_	Doot Fire	-!		T .			•				In	ventor	~	Rate	gpm	5
		nished Wa Inspection			Backwash Record Type Check							Check	Media Filter Inlet Pressure	psig	2.0	
Co	llect while sump is ru			-		Backwash start time: H3PO4 Stock (gal) Backwash duration min Sodium Hypo Stock (gal)							Media Filter Outlet Pressure	psig	4,9	
Н	Bag Filter ∆P	psi	12	1 .	Initial Product 1		min gal	1			Dissolve			Sodium Hypo Pump	spm	30
	GAC-1 Pressure	psig	14		Final Product T		gal			lield Ged	Nitrate -		1.	Settings	% stroke	100
	GAC-2 Pressure	psig	12		Time of sample					la Pa	Nitrite			Coagulant Tank Level	gal	0
	IX-1 Pressure	psig	1.1.5		Location	· (NTU)		S Collected?		K its	Sulfide			Coagaiant rank Level	yaı	
	Feed Ta	nk Additi	ons	1	Lead Purge 1 Lead Purge 2		□Y □Y			Additional Field Test Kits Needed?	Chlorine o-Phose		· <u>-</u>	Coagulant Pump Settings	ml/min	OFF
-		H3PO4	Sodium Hypo		Lag Purge 1						pH	ліціє		· · · · · ·		
Tim	ie	1:00	1:10		Lag Purge 2		□Y	′es □No		Calibration sits	ORP			CO2 Cylinder Pressure	psi	88
lnit	ial Tank Level (gal)	1.5	15		Media Filter		□Y	′es ⊡No		Calib kits need	Turbidity	/		H2 Cylinder Pressure	psi	90
		~ <i>YW</i>												Hz Cyllider Pressure	psi	76
Dili	pe of Water Used For ution	INFL.			NOTES:	M1/2 1		لار بسيس		2 4 . 4		-		N2 Pressure	psi	-
Vol (ga	ume Dilution Added I)	35					TAKE V			LIONE		Samp	1ES	N2 Flow Rate	scfm	123
	al Volume Added	3.5	0		PARGIE	e occupe	ed @	1:00 FM						Tubidity (Instrument)	NTU	0.25
	al Tank Level											Turbidity (OIT)	NTU	0.26		
Mar	to: Thoro are 0705 at a	or collen			I											

9:30 Time:

Operator: ARUCAN

	· · · · · · · · · · · · · · · · · · ·	` ,			Fie	eld Sample	9 S			1	11	-	7	
ibratio	Standard Readin	ØYes □N Ø7 Ø10 g: _{7:} 7.0]	١٨	.06	ORP calibration	c):	□No 17.1 216	Standards: Readings:	alibration? Pro	•	500 ⊡4		521	
9	Lead Reactor:	MfBR1	10: LD Lead Sample SP-100A □		AD: SP-200B □	ading. 220.	Sample Collec			11:4-5		0.50:0		
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeratlon	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	
ផ	pH	(std units)	7.27	7.62	7.49	7.88	7.75		7.82				7.20	,
Sample Data	Temperature	(°C)	17.7	19.2	19.8	19.8	19.5		18.4				18.7	7
mple	ORP	(mV)	70	-506	-541	-276	-160		500					
Sa	Dissolved Oxygen	(mg/L)	7	0.4	6	6	7		7.5					
	Nitrate + Nitrite	(mg/L-N)	8.2	2.4	0.4				0					
	Nitrité	(mg/L-N)	D	0.6	: O ;				.0					
	Sulfide	(mg/L)	0	0	0.5	0.3			0					
	Turbidity	(NTU)												
	Chlorine Residual * Signifies MBfR 1	(mg/L)	ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours	0.4	0.2	Note: shad	led boxes a	e to remain	blank	

	System Inspection 4										
Collect while sump is running											
Bag Filter ∆P	psi	4									
GAC-1 Pressure	psig	5.									
GAC-2 Pressure	psig	3									
IX-1 Pressure	psig										

Feed Tank Additions											
2	· H3PO4	Sodium Hypo									
Time	11:15	11:30									
Initial Tank Level (gal)	0.5	8									
Stock Added	220	0									
Type of Water Used For Dilution	INF	N/A									
Volume Dilution Added (gal)	4.5	٥									
Total Volume Added (gal)	9204.5	D									
Final Tank Level	5.0	\$4 8									

Note: There are 3785 mL per gallon.

*			_	$\overline{}$	′L	Inventory				
	Backw	ash Record	d				Туре	Chec	k	
Backwash start t	ime:	**		<i></i>	H	H3PO4 Stock (gal)				
Backwash durati	DNI_	min			Sc	dium	Hypo Stock (gal)	30		
Initial Product Ta	nk Level	gal			Γ,	d?	Dissolved Oxyge	10+	3	
Final Product Tai	nk Level	gal		,	1 7	ai rieid Needed?	Nitrate + Nitrite	6		
Time of sample of	collection:					E S	Nitrite	0.		
Location	(NTU)	TSS Collected?				Additional est Kits Ne	Sulfide	~ 1	Þ	
Lead Purge 1			ęs □N	0	3	Addition est Kits	Chlorine	<u> </u>		
Lead Purge 2		□Y∙	es □N	0	│	Ψ.	o-Phosphate	3		
Lag Purge 1		□Ye	es 🗅 N	Q I	۽		рН	3 EA	CH	
Lag Purge 2		. □Ye	es □N	0	/ Calibration	ded?	ORP	OK		
Media Filter		. □Y	es ⊡N	0	I	xits neec	Turbidity	970	TAL	

NOTES: COM ONSITE TO PUMP REMAINING WATER IN SECULDARY CONTAINMENT THE TURRIDITY WETER WAS UNPULSATED FROM 10:00 -11:00 TO USE

	•	
Treatment Sys	tem Ins	spection
Outlet Totalizer	gal	7226000
Target Flow Rate	gpm	6.0
Internal Recycle Rate	gpm	150/120
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7.2
MBfR 1 ORP	mV	-292
MBfR 2 ORP	mV	-661
Nitrate Frequency	Hz	•
Last N Feed	ppm (N)	8.03
Last N R1	ppm (N)	1.62
Last N R2	ppm (N)	0.24
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm	240
Phosphate Pump Settings	spm % stroke	20
Phosphate Concentration at Strainer	mg/LPO4	
Aeration Tank Air Flow	scfm	3.2.
Air Tank Pressure	psig	2
Target Media Filter Flow Rate	gpm	幸≈5.0
Media Filter Inlet Pressure	psig	2.5
Media Filter Outlet Pressure	psig	1.5
Sodium Hypo Pump	spm	30
Settings	% stroke	/80
Coagulant Tank Level	gal	17.
Coagulant Pump Settings	ml/min	5
CO2 Cylinder Pressure	psi	88
H2 Cylinder Pressure	psi	91
N2 Pressure	psi	123
N2 Flow Rate	scfm	
Tubidity (Instrument)	NTU	0.20
Turbidity (OIT)	NTU	0.20

Air Monitoring												
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area							
Time												
Carbon Monoxide (ppm)	•											
Oxugen (%)	• .											
Methane (% LEL)												
Hydrogen Sulfide (ppm)												

									•	
NOTES CON	Г.:									
Com	CHECKED	LEVEL AND	HEIGHT O	F SECONDARY	CONTAMMENT	SWITCH.	H WILL	ENGRAGE	AT APPRO	x . 5-6"
	BOTTOM			•						
										
	-	·			·					***
* 5	UMP PUN	1P PRESSU	126: 31 P	5I						
			• • •	•						
			*	and a second	•			,·· <u>.</u>		
			· · · · · · · · · · · · · · · · · · ·		• • •			:		

A,

ESTCP: Technolo monstration Plan Perchlorate Destruction Using Jembrane Biofilm Reduction

	1. 1. 1.			1.			ESTCP Pro	oject Numbe	er ER-200	541						
D	ate: 12/15/11			Time:	. 00			Operator:	 					Treatment Sys	tem In:	spection
						ld Samp								Outlet Totalizer	gal	
ation	pH calibration? Standards: □4	□7 □10	10	, <u>.</u>	ORP calibration Temp (Deg		i □No	Turbidity ca Standards: [000		Target Flow Rate	gpm	
Calibration	Standard Readin	g: 7:	10;		Standard Re			Readings:	0.4			0.50.		Internal Recycle Rate	gpm	· ·
F	4		Lead Sample	Lag Sample	j Standard Re	aumy. 220.	<u>· </u>	0.136:	0	30:		0.50:		MBfR 1 pH	std units	
	Lead Reactor:	☐ MfBR1 ☐ MfBR2	SP-100A □		AD: SP-200B □ AD: SP-100B □		Sample Colle	ction Time:	. [·				MBfR 2 pH	std units	,
	Parameter	ts	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	E T	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 1 ORP	mV	
l	raft	Units	=	*Lead	[‡] La	erat	HE HE	불혈취	nisl Nat	GAC 1 Effluent	Iğ∉I	×∉∣	E E	MBfR 2 ORP	mV	
l	- A			<u> </u>	_ =	<u> </u>	<u> </u>	S	<u> </u>	υ	0 4	ш	<u> </u>	Nitrate Frequency	Hz	
酉	рH	(std units)					<u> </u>							Last N Feed	ppm (N)	
Data	Temperature	(°C)			:					W 5 7 7				Last N R1	ppm (N)	
Sample	ORP	(mV)			l l									Last N R2	ppm (N)	· · ·
Sa	Dissolved Oxygen	(mg/L)							<u> </u>		3/51/3			MBfR1 Sparge Rate	mm	
	Nitrate + Nitrite	(mg/L-N)												MBfR2 Sparge Rate	mm	
	Nitrite	(mg/L-N)												Phosphate Pump Settings	spm	
l	Sulfide	(mg/L)								Angle makang				Phosphate Concentration	% stroke mg/LPO4	
	Turbidity	(NTU)					a Rose Samuel and Section 1							at Strainer Aeration Tank Air Flow	scfm	
	Chlorine Residual	(mg/L)												Air Tank Pressure	psig	
_	* Signifies MBfR 1 o	or MBfR 2 dep	ending on if rea	ctor is in the lea	d or lag position	this changes	every 96 hours	*	•	Note: sha	ded boxes are	e to remain b	lank	Target Media Filter Flow	gpm	
Г	Post Fin	ished Wa	ter	1								entory		Rate Media Filter Inlet Pressure		
		Inspection		,	No alivira alti atta itti		wash Reco	rd	$-\!\!\!/\!\!\!/$	UODO	Type		Check		psig	•
C	ollect while sump is ru				Backwash start i Backwash durat		min		-		Stock (ga Hypo Sto			Media Filter Outlet Pressure	psig	
厂	Bag Filter ΔP	psi	1 9		Initial Product Ta		gal				Dissolve			Sodium Hypo Pump	spm	
	GAC-1 Pressure	psig	6.5		Final Product Ta	nak Level	gal	1		nal Field Needed?	Nitrate +			Settings	% stroke	
┝	GAC-2 Pressure IX-1 Pressure	psig	4.5		Time of sample					la Ne	Nitrite			Coagulant Tank Level	gal	
Ļ	IX-1 Flessule	psig		į	Location Lead Purge 1	(OTO)	IS ON	S Collected? res □No		Additional Test Kits Ne	Sulfide Chlorine					
Г	Feed Tai	nk Additi	ons	1	Lead Purge 2		4>	/es □No		Ac	o-Phospi			Coagulant Pump Settings	ml/min	•
Ľ		H3PO4	Sodium Hypo		Lag Purge 1	$\overline{}$		′es □No		c .	pН	,,,,,,				
Tin	ne .				Lag Purge 2			^es □No	۶.	Calibration kits needed?	ORP			CO2 Cylinder Pressure	psi	
Init	ial Tank Level (gal)			• •	Media Filler			′es		S sta	Turbidity	. [HO O die day Brassons		
	ock Added				/									H2 Cylinder Pressure	psi	L.
Dili	oe of Water Used For ution				NOTES:	14	- D.2			· · ·			_	N2 Pressure	psi	
[Vol	ume Dilution Added			·			TO BYPA					REH		N2 Flow Rate	scfm	
	il) al Volume Added		<u>.</u>				LEAD RE							Tubidity (Instrument)	NTU	
From THE SYSTEM, PRESSURES BEFORE CHANGE ARE									<u></u>	Turbidity (OIT)	NTU					
No No	IN te: There are 3785 mL p	er gallon.		I	ON BACK	۲								randary (OIT)	NIQ	

Air Monitoring												
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBIR 1	, MBfR 2	OIT Area							
Time												
Carbon Monoxide (ppm)												
Oxugen (%)												
Methane (% LEL)												
Hydrogen Sulfide (ppm)												

Sam discharge: 31 Bag IP: 3 GAC 1: 5 GAC 2: 3 X 2:1

NOTES CONT.:	* * * * * * * * * * * * * * * * * * * *		
·			
			-
	· .		
	•		 · .
			-

ESTCP: Technolo emonstration Plan Perchlorate Destruction Usi. ___lembrane Biofilm Reduction

Da	nte: 12/16/11		, , , ,	Time:	:00:		ESTCP Pro	oject Numb Operator	er ER-200 : Δρι (541 AN		•		Treatment Sys	tem In:	spection
					Fie	eld Sample	es							Outlet Totalizer	gal	724410
등	pH calibration?	ZYes ⊔N	О	•	ORP calibration	on? ZYes	□No	Turbidity (alibration?	⊔Yes	No		<u></u>	Target Flow Rate	gpm	6
Calibration	Standards: 1/24 Standard Readin	Ø7 Ø10 g:			Temp (Deg	c): <u> </u>		Standards: Readings:	□0 □20 □	1200 ⊔1	000 ⊔40	000	·	Internal Recycle Rate	gpm	150/120
ਲਿੱ	4:	7:	10:		Standard Re	eading: 220: _	217	0.136:	0.3	30:		0.50:		<u> </u>		
Ţ.		D Micros	Lead Sample						·	10.0				MBfR 1 pH	std units	7.2
	Lead Reactor:	☐ MfBR1 ☐ MfBR2	SP-100A □		AD: SP-200B □ AD: SP-100B □		Sample Colle	ection Time:	L	12:0	0			MBfR 2 pH	std units	7.2
	eter	ø	Ĕ	ᅙᅙ	, ō	<u>6</u>	ع ير ق	ہ ≩ یہ ا	9 te	- Ĕ	2 E	_ <u> </u>	Permitted Outfall	MBfR 1 ORP	m∨	-z93
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	rm it	MBfR 2 ORP	mV	- 704
	Paı		트	*	Ä	Ae	2 - 5	- is -	E >	0 11	0 11	Ē	Pe	Nitrate Frequency	Hz	
雪	рН	(std units)	7.27	7.55	7.47	7.91	フ・フィ		7.81				7.58	Last N Feed	ppm (N)	8.03
) Data	Temperature	(°C)	17.7	18.8	19.6	19.3	9.0	100 To	17.8				17.5	Last N R1	ppm (N)	1.62
Sample	ORP	(mV)	50	-440	-490	-220	-140		510		22.00			Last N R2	ppm (N)	0.08
မွ	Dissolved Oxygen	(mg/L)	B	0.6	6 - 1	55	6		7					MBfR1 Sparge Rate	mm	246
	Nitrate + Nitrite	(mg/L-N)	8.2	1.7	0				.0				7 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)	0	0.	0	i falogoji likatija (ili ay). Na arasiki sidar sila			0					Phosphate Pump Settings	spm % stroke	26 30
	Sulfide	(mg/L)	0*	0*	0.8	0.6		Taray (azyr	0 1					Phosphate Concentration	mg/LPO4	
	Turbidity	(NTU)	***************************************			1.21					L TO SERVE			at Strainer Aeration Tank Air Flow	scfm	3.2
	Chlorine Residual	(mg/L)						大	0.6	2 20 10 20 C				Air Tank Pressure	psig	2
_	* Signifies MBfR 1		ending on if read	ctor is in the lea	d or lag position	- this changes	every 96 hours			Note: shad	ded boxes an	e to remain bl	ank	Target Media Filter Flow	gpm	3
Г	Poet Fir	ished Wa	ter								Inv	entory/	, ·	Rate Media Filter Inlet Pressure		1
			n Sump	- 12	Backwash Reco			rd	Type Check				Check		psig	2.7
Co.	llect while sump is ru		pump		Backwash stari Backwash dura		min	1			Stock (ga Hÿpo Sto			Media Filter Outlet Pressure	psig	1.3
F	Bag Filter ΔP	psi	4		Initial Product 7		gal	 			Dissolve		•	Sodium Hypo Pump	spm	30
\vdash	GAC-1 Pressure	psig	フ		Final Product T		gal	1		nal Field Needed?	Nitrate +			Settings	% stroke	106
	GAC-2 Pressure	psig	4-		Time of sample	collection:				la P	Nitrite			Coagulant Tank Level	gal	
L	IX-1 Pressure	psig	l l		Location	(NTU)	+	S Collected?		i i i	Sulfide			Ocagaiant Tank Ector	- yu	
Ė	Food Ta	nk Additio	one		Lead Purge 1 Lead Purge 2			Yes □Ne Yes □Ne		Additional Test Kits Ne	Chlorine			Coagulant Pump Settings	ml/miń	15 m/
⊢	· recura	H3PO4	Sodium Hýpo		Lag Purge 1			Yes □Ne		\vdash	o-Phosp pH	nate				
Tim	e ·	2:45	3:00		Lag Purge 2	-		Yes □N		Calibration kits needed?	ORP			CO2 Cylinder Pressure	psi	70
lniti	al Tank Level (gal)	4	3.5		Media Filter			Yes □No	, \	Salib rits reed		,				(A)
Sto	ck Added	3.25	0				'.,						. "	H2 Cylinder Pressure	psi	91
	e of Water Used For ution	MEDIA	NA		NOTES:									N2 Pressure	psi	125
Vol	ume Dilution Added	72.15	0			•	IT IS NO							N2 Flow Rate	scfm	
Tota	al Volume Added	26.0	0				kung v							Tubidity (Instrument)	NTU	0.56
Fin:	i) al Tank Level	30.0					dina = 0						MINCH	Turbidity (OIT)	NTU	0.57
Koal				I	chameron weight for order of CO2 Dewar &							- crossy (crit)	1110	<u> </u>		

* SAMPLE PORT ICHTHAMAGED, COMMOT SAMPLE

* PERDINGS AFTER INSIDENT PESCIPIBED ON BACK

			12 Jan 19	***	<u> 1884 (1</u>						
	Air Monitoring										
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area						
Time			-								
Carbon Monoxide (ppm)											
Oxugen (%)				-							
Methane (% LEL)		· ·			1						
Hydrogen Sulfide (ppm)											

NOTES CONT.:		MICEON	
BACKUED CY	JUNDER, COM INSPECTED AND REPLACED THE BAG FILTERS	. A 200/100 FILTED WAS INSTAI	ued,
			·
* MEFE 2 W	AS DRAINED AND OPERATED LIKE TO	the for 15-30 minutes	
APT BEFILLED	PEACTOR @ 2:00 AND WATCHED TOR OPERATING	NORMAL.	
	LINEL		
*			
·			

ESTCP: Technolc Perconstration Plan
Perchlorate Destruction Us. Jembrane Biofilm Reduction

ESTCP Project Number ER-200541

Dat	te: 2/19	7/11		Time: _ o :	30	<u> </u>		Operator:	APUCI	AN			
						ld Sample	s						
욅	pH calibration? Standards: Ø4 Standard Readin 4: 4.04	/Yes □No /7 /210 g: 7: 7-0	_{10:} [0.	12	ORP calibration Temp (Deg Standard Re	C):17		Turbidity constandards: Readings: 0.136:	Z 0 Z 20 Z 2	200 Z10 00.3.			.585
	Lead Reactor:	□ MfBR1 ■ MfBR2	SP-100A	Lag Sample if MBfR1 in LEA if MBfR2 in LEA	.D: SP-200B □ .D: SP-100B ☑	. :	Sample Collec	tion Time:		1:00		٠.	
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
	рH	(std units)	7.15	7.50	7.57	8.00	7.82	400	7.84				7.51
Sample Data	Temperature	(°C)	18.4	19.4	20.4	20.1	198		19.3				19.1
ag Be	ORP	(mV)	70	-440	-515	-230	-180		660				
Sal	Dissolved Oxygen	(mg/L)	B	0.5	0.1	5.5	6		7	7-20-01			
	Nitrate + Nitrite	(mg/L-N)	B.0	1.8	0.4				0				
	Nitrite	(mg/L-N)	0	0.5	0				0.				
	Sulfide	(mg/L)	0	0	1.0	0.5			0_		Vi i		
 .	Turbidity	(NTU)	0.223			1.46	0.694		0.512				
l	Chlorine Residual	(mg/L)				this oboness	ovony 96 hours	1.5	1.2	Note: sha	ded boxes a	re to remain	blank
	* Signifies MBfR 1	or MBfR 2 dep	ending on if rea	ctor is in the lea	o or lag position	i - inis changes	every 30 Hours			1,0.5, 5114		vonto	

	ished Wa Inspection	
Collect while sữmp is ru	nning	
Bag Filter ∆P	psi	4
GAC-1 Pressure	psig	·8
GAC-2 Pressure	psig	5
IX-1 Pressure	psig	1 1

Feed Ta	nk Additio	ns
	H3PO4	Sodium Hypo
Time	2:00	2:15
Initial Tank Level (gal)	1.0	27
Stock Added	200	0
Type of Water Used For Dilution	INFLHON	N/A
Valume Dilution Added (gal)	14/164	0
Total Volume Added	# 4	0
Final Tank Level	6.0	27

Note:	There	are 3785	mL per	gallon.

		<u> </u>		- 1		Invento	ʹϒ	
	Backy	ash Record	_	∕∐		Туре		Check
Backwash start				_	H3PO4	Stock (gal)	4	4
Backwash durat		min			Sodium	Hypo Stock (gal)	11	30
Initial Product To		gal	/		çp qç	Dissolved Oxyge		+3
Final Product Ta		gal			Additional Field est Kits Needed?	Nitrate + Nitrite		0
Time of sample				\Box		Nitrite		<u></u>
Location	(NTU)	TSS Co	ilected?		Additior Test Kits	Sulfide	_3	2, _
Lead Purge 1		ŲYes	□No	_	st G	Chlorine	ļ <u>.</u>	4
Lead Purge 2		□Yes	_ □No		۳,۳	o-Phosphate		2
Lag Purge 1		□Yes	□No		Ę	pН	3	Each
Lag Purge 2		□Yes	□No		ratic led?	ORP	8	¥_
Media Filter		□Yes	□No	▔₹	Calibration kits needed?	Turbidity	9	TOTA

CAMERON WEIDING ONSITE TO PEPLACE CO2 DEWAR.
COM DNITE TO THE WEEKY SUMPLES & DUPLICATES.
COM ADJUSTED/POSTPONED SPARGE, IT WILL BE RE-SET
AFTER SAMPLING IS COMPLETE.

Treatment System Inspection										
Outlet Totalizer	gal									
Target Flow Rate	gpm	6:0								
Internal Recycle Rate	gpm	150/120								
MBfR 1 pH	std units	7.2								
MBfR 2 pH	std units	7.2								
MBfR 1 ORP	mV	-487								
MBfR 2 ORP	mV	-1000								
Nitrate Frequency	Hz									
Last N Feed	ppm (N)	8.31								
Last N R1	ppm (N)	0.42								
Last N R2	ppm (N)	1.65								
MBfR1 Sparge Rate	mm	240								
MBfR2 Sparge Rate	mm	240								
Phosphate Pump Settings	spm 0/ strate	20								
Phosphate Concentration	% stroke mg/LPO4	2								
at Strainer Aeration Tank Air Flow	scfm	3.2								
Air Tank Pressure	psig	2.0								
Target Media Filter Flow Rate	gpm	5.0								
Media Filter Inlet Pressure	psig	7.1								
Media Filter Outlet Pressure	psig	1.5								
Sodium Hypo Pump	spm	30								
Settings	% stroke	100								
Coagulant Tank Level	gal	4								
Coagulant Pump Settings	ml/min	7								
CO2 Cylinder Pressure	psi	83								
H2 Cylinder Pressure	psi	91								
N2 Pressure	psi	127								
N2 Flow Rate	scfm									
Tubidity (Instrument)	NTU	0.63								
Turbidity (OIT)	NTU	0.00								

<u> </u>			a was a second							
	Air Monitoring									
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area					
Time										
Carbon Monoxide (ppm)				 	<u> </u>					
Oxugen (%)				 						
Methane (% LEL)		-		-						
lydrogen Sulfide (ppm)					-					
Methane (% LEL)										

OTES CONT.:													
· outlet	TOTALIZER	- IS	STUNKED	чp	AND	HEAD	2AH	moss	GROW ING	INSUE	17.	 -	.
			•							-	·	. . '	· -
												- .	
. ·					_				<u> </u>			<u> </u>	
·									-				
					· * *			-					
			M.,					÷.					 -
	. 4_ *			· ·				٠,		<u> </u>			::
		:						4. h				<u> </u>	
		2.4			· . · · . ·			* :	· · · · · · · · · · · · · · · · · · ·				
, <u> </u>	¥	- 1		,	f 1 - 3	, ,	-	-	· · · · · · · · · · · · · · · · · · ·				·

ESTCP: Tec'
Perchlorate Destruction

gy Demonstration Plan

Jing Membrane Biofilm Reduction

ESTCP Project Number ER-200541

pH calibration? Layes No Standards: 24 17 10 Standard Reading: Time: 8 Aim Operator: BEROKOFF **Treatment System Inspection Outlet Totalizer** 7285800 **Field Samples** Turbidity calibration? LuYes □No. ORP calibration? Types IINo Target Flow Rate 6 gpm Standards: 20 220 2200 21000 24000 Temp (Deg C): Readings: Internal Recycle-Rate 150 0.136: 0.160 0.30: 0.302 0.50: 0.562 10: 10.21 221 Standard Reading: 220: std units MBfR 1 pH MIBR1 Lead Sample Lag Sample 9AM Sample Collection Time: if MBfR1 in LEAD: SP-200B □ std units 7.2 Lead Reactor: MBfR 2 pH SP-100A □ (□/MfBR2 if MBfR2 in LEAD: SP-100B 🖼 -465 Permitted Outfall MBfR 1 ORP GAC 1 Effluent Effluent IX 1 Effluent mV Aeration Finished Sodium Influent *Lag Reactor Reactor Hypo Water *Lead Media Filter Post Units GAC MBfR 2 ORP m٧ -339 Nitrate Frequency Hz 8:29 ast N Feed ppm (N) 7.66 8 8 01 7.97 7.71 6 Data Data (std units) 19.0 ast N R1 ppm (N) 0.04 18.2 18,1 19.8 Temperature (°C) Sample Last N R2 ppm (N) 1.77 88 665 274 -643 -10 -511 ORP (mV) MBfR1 Sparge Rate 0.05 5.5 mm 240 7.0 0 0.25 Dissolved Oxygen (mg/L) 240 0.05 MBfR2 Sparge Rate ጽ ۵ 2.0 Nitrate + Nitrite (mg/L-N) 30 30 spm Phosphate Pump Settings 0.75 ٧ 9 6 strake Nitrite (mg/L-N) Phosphate Concentration mg/LPO4 0.6 0 0.0 001 Sulfide (mg/L) 0-132 Aeration Tank Air Flow 3. (scfm 0.065 Turbidity (NTU) Air Tank Pressure psig 2.5 مک Chlorine Residual (mg/L) larget Media Filter Flow Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Note: shaded boxes are to remain blank 5 Inventory Media Filter Inlet Pressure psig 5.4 **Post Finished Water Backwash Record** Check Type System Inspection Media Filter Outlet H3PO4 Stock (gal) Backwash Start time: 1.6 psig 20 Pressure Sodium Hypo Stock (gal) Collect while sump is running Backwash duration min 30 Additional Field Test Kits Needed? Dissolved Oxyge 10/3 Sodium Hypo Pump spm Initial Product Tank Level gal Sump Pump dischig psi 100 Settings % stroke S Nitrate + Nitrite Final Product Tank Level 4 Bag Filter AP psi Nitrite *(*2 Time of sample collection: 11 GAC-1 Pressure psig 2 Coagulant Tank Level gal Sulfide (NTU) ISS Collected? **GAC-2 Pressure** psig Location □Yes □No Chlorine 5 0.3 Lead Purge 1 IX-1 Pressure psig ml/min 6 Coagulant Pump Settings □Yes ⊠No o-Phosphate Feed Tank Additions Lead Purge 2 □Yes H3PO4 ار Lag Purge Sodium Hypo 95 Calibration kits needed? CO2 Cylinder Pressure psi ∐Yes □No 10AM Lag Purge 2 ORP 1 CAM □No □Yes 25 Media Filter Initial Tank Level (gal) **ሜ**"ት Turbidity H2 Cylinder Pressure 90 Stock Added -NOTES: Type of Water Used For N2 Pressure psi -Dilution HYDIZOGEN ODOR Volume Dilution Added N2 Flow Rate scfm THE AERATION LID Total Volume Added Tubidity (Instrument) NTU . Note: There are LAG/AERATION 3785 ml_ per QUICKLY Turbidity (OIT) NTU 25 Final Tank Level MONDAYS OUTH LEVELS 40W62 CAME ON SITE TO OFF FILTER AID.

Data Log Sh

ESTCP: Tec' pgy Demonstration Plan
Perchlorate Destruction. Sing Membrane Biofilm Reduction
ESTCP Project Number ER-200541

Date: 10/23/1	1		Time: <u>9:</u>	30 AM	30 AM Operator: BCROKOFF							Treatment System Inspection			
					eld Sample							Outlet Totalizer	gal	73040 cc	
□ pH calibration? Standards: ☑4	L£Yes Lin ☑7 ☑10	10		ORP calibrati	on? ⊡Yes C): / O ⊳		Turbidity of Standards:	calibration? ⊠0 ⊡20 ☑	⊡Yes □No 1200 ⊠1000 ⊡7	1000		Target Flow Rate	gpm	Q	
1=1000000000000000000000000000000000000	a .	10	. •				Readings:	,				Internal Recycle Rate	gpm	150/120	
Ö 4: 4.01	7: 7,00	10: <u>/0.</u> Lead Sample	Lag Sample	Standard Ro	eading: 220: _s	يلاعلا!	0.136:	0.3	30:	0.50:		MBfR 1 pH	std units	7.2	
Lead Reactor:	Ø MIBR1 □ MIBR2		if MBfR1 in LE/	AD: SP-200B 🗗 AD: SP-100B 🖸		Sample Colle	ction Time:	. [10:30AM] `		MBfR 2 pH	std units	7.2	
je je	v	ŧ	פֿס	, i	6	a _ t	+ E ∘	pa L	- # 2 #	_ ti	ted	MBfR 1 ORP	mV	-267	
	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	m∨	-621	
<u> </u>	· .				` .		trial desired	,				Nitrate Frequency	Hz .	2 3 0	
pH pH	(std units)	7.64	7.77	7.54	8,02	7.88		7.97			7.83	Last N Feed	ppm (N)	8.32	
Temperature	(°C)	18,6	19.1	19.9	19.6	19.5		18,3	and the second		17.5	Last N R1	ppm (N)	1.58	
ORP ORP	(mV)	184	-501	-514	-205	- 49		630				Last N R2	ppm (N)	0.13	
Dissolved Oxygen	(mg/L)	9.0	0.35	0.10	7.0	4.5		5.5				MBfR1 Sparge Rate	mm	240	
Nitrate + Nitrite	(mg/L-N)	9.0	2.0	0	100000		9.0	001			us operation	MBfR2 Sparge Rate	mm .	240	
Nitrite	(mg/L-N)	0	0.8	0				0				Phosphate Pump Settings	spm % stroke	- 30 - 30	
Sulfide	(mg/L)	ð	0	0.6	0.25			0				Phosphate Concentration	mg/LPO4	0.15	
Turbidity	(NTU)	0.069			CENT 1.6	0.111		0.134				Aeration Tank Air Flow	scfm	3,2	
Chlorine Residual	(mg/L)						4,25					Air Tank Pressure	psig	٥ ن	
* Signifies MBfR 1	or MBfR 2 dep	ending on if res	ctor is in the lea	d or lag position	- this changes o	every 96 hours			Note: shaded boxes a	re to remain b	lank	Target Media Filter Flow Rate	gpm	5	
Post Fin	nished Wa	ter]		Backw	rash Reco	rd		In Type	ventor	y Check	Media Filter Inlet Pressure	psig	٥	
System	Inspection	on		Backwash start					H3PO4 Stock (gal)			Media Filter Outlet	psig	0.4	
Collect while sump is ru	ınning			Backwash dura	~	min			Sodium Hypo St			Pressure		•	
Sump Pump disching	psi			Initial Product		gal			를 를 Dissolv	ed Oxyge		Sodium Hypo Pump	. spm	30	
Bag Filter ∆P GAC-1 Pressure	psi	13	-[Final Product T		gal	1		Nitrate + Nitrite Settings			136till 145	% stroke	100	
GAC-1 Pressure	psig	1.5	ı	Time of sample collection:				L 0 Nitrite				70 011 0110			
	psia	1	1.	•		TS	S Collected?	,	R S Sulfide		-	Coagulant Tank Level	gal	20	
IX-1 Pressure	psig psig			Location Lead Purge 1	(NTU)		S Collected? /es □No		Nitrite Sulfide Chlorin				gai		
IX-1 Pressure				Location			res ⊡No res ⊡No	o ·	Ritrite Sulfide	e		Coagulant Tank Level Coagulant Pump Settings	٠.	20 E	
IX-1 Pressure	psig			Location Lead Purge 1		0	res □No res □No	o ·	1.1	e		Coagulant Pump Settings	gal ml/min	É	
IX-1 Pressure	_{psig} nk Additi	Sodium Hypo		Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 2		0	res ⊡No res ⊡No	o ·	1.1	e	/		gai		
IX-1 Pressure Feed Tai	psig nk Additi H3P04 10AM 2.7	ONS Sodium Hypo		Location Lead Purge 1 Lead Purge 2 Lag Purge 1			res □No res □No	o ·	ξ pH	e phate	1	Coagulant Pump Settings CO2 Cylinder Pressure	gal ml/min psi	89	
IX-1 Pressure Feed Tar	psig nk Additi H3P04 10AM 2.7	Sodium Hypo		Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 1 Lag Purge 2 Media Filter			/es □No /es □No /es □No /es □No	o ·	1.1	e phate	/	Coagulant Pump Settings	gal ml/min	É	
IX-1 Pressure Feed Tal Time Initial Tank Level (gal) Stock Added Type of Water Used For	psig nk Additi H3P04 10AM 2.7	Sodium Hypo	C.T.	Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 2			/es □No /es □No /es □No /es □No	o ·	1.1	e phate	1	Coagulant Pump Settings CO2 Cylinder Pressure	gal ml/min psi	6 89 89	
IX-1 Pressure Feed Tal Fime Initial Tank Level (gal) Stock Added Type of Water Used For Dilution Volume Dilution Added	psig nk Additi H3P04 10AM 2.7 300	ONS Sodium Hypo IOAM IS MED F	L.T.	Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 2 Media Filter	(NTU)		Yes No Yes No Yes No Yes No Yes No		1.1	e phate		Coagulant Pump Settings CO2 Cylinder Pressure H2 Cylinder Pressure	gal ml/min psi psi	89	
IX-1 Pressure Feed Tal Time Initial Tank Level (gal) Stock Added Type of Water Used For Dilution Volume Dilution Added (gal) Total Volume Added	psig nk Additi H3P04 10AM 2.7 300 INF 2.3	ons Sodium Hypo IOAM IS MED FI	C.T. Note: There are	Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 2 Media Filter NOTES: MEDIA F	INTU) INTER TR	IGGERED COLLECT	(es No (es No (es No (es No (es No (es No A BACK BACK BACK COM COM COM COM COM COM COM C	WASH 3	UST PRIOR	e phate y SITE TO AR	REIVAL.	Coagulant Pump Settings CO2 Cylinder Pressure H2 Cylinder Pressure N2 Pressure	gal ml/min psi psi	6 89 89 143	
IX-1 Pressure Feed Tal Time Initial Tank Level (gal) Stock Added Type of Water Used For Dilution Volume Dilution Added (gal) Total Volume Added (gal) Final Tank Level	psig nk Additi H3P04 10AM 2.7 300	ONS Sodium Hypo IOAM IS ONED FI	Note: There are 3785 ml. per	Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 1 Lag Purge 2 Media Filter NOTES: MEDIA F CDM UN APT DN	(NTU) CILTER TR PABLE TO SITE TO	IGGERED COLLECT TOP OFF	(es No. (es No. (es No. (es No. (es No. (es A. Backu. © Backu.	WASH 3 ASH SAI	UST PRIOR WILE FOR TANK A	STTE MEDIA PT CEI	EFIVAL. FILTER. WEFED	Coagulant Pump Settings CO2 Cylinder Pressure H2 Cylinder Pressure N2 Pressure N2 Flow Rate Tubidity (Instrument) Turbidity (OIT)	gai ml/min psi psi psi	6 89 89 143 0.08	
IX-1 Pressure Feed Tar Time Initial Tank Level (gal) Stock Added Type of Water Used For Dilution Volume Dilution Added (gal) Total Volume Added (gal)	psig nk Additi H3P04 10AM 2.7 300 1NF 2.3	ons Sodium Hypo IOAM IS MED FI	Note: There are 3785 ml. per	Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 1 Lag Purge 2 Media Filter NOTES: MEDIA F CDM UN APT 2N CAGULAN 1	INTU) INTER TR IABLE TO SITE TO FROM PA	IGGERED COLLECT TOP OFF	(es No (es	ASH SAI ULANT (FRO	UST PRIOR WST PRIOR MRKE FOR TANK, A	SITE TO AR MEDIA PT COI	SEIVAL. FILTER. JEFED JE RESID	Coagulant Pump Settings CO2 Cylinder Pressure H2 Cylinder Pressure N2 Pressure N2 Flow Rate Tubidity (Instrument) Turbidity (OIT)	gai ml/min psi psi psi scfm	6 89 89 143	
IX-1 Pressure Feed Tal Time Initial Tank Level (gal) Stock Added Type of Water Used For Dilution Volume Dilution Added (gal) Total Volume Added (gal) Final Tank Level	psig nk Additi H3P04 10AM 2.7 300 1NF 2.3	ONS Sodium Hypo IOAM IS ONED FI	Note: There are 3785 ml. per	Location Lead Purge 1 Lead Purge 2 Lag Purge 1 Lag Purge 1 Lag Purge 2 Media Filter NOTES: MEDIA F CDM UN APT 2N CAGULAN 1	INTU) INTER TR IABLE TO SITE TO FROM PA	IGGERED COLLECT TOP OFF	(es No (es	ASH SAI ULANT (FRO	UST PRIOR WILE FOR TANK A	SITE TO AR MEDIA PT COI	SEIVAL. FILTER. JEFED JE RESID	Coagulant Pump Settings CO2 Cylinder Pressure H2 Cylinder Pressure N2 Pressure N2 Flow Rate Tubidity (Instrument) Turbidity (OIT)	gai ml/min psi psi psi scfm	6 89 89 143 0.08	

ESTCP: Tec' Perchlorate Destruction gy Demonstration Plan

Jing Membrane Biofilm Reduction

ESTCP Project Number ER-200541

Time: 845 Am Operator: BEROKOFF **Treatment System Inspection Field Samples** Outlet Totalizer 33940c pH calibration? Standards: ☑4 Standard Readi U 4: 4,01 ☑Yes □No ORP calibration? Wes LINo Turbidity calibration? LiYes LINo Target Flow Rate gpm Standards: 24 27 210 Standards: 전 0 대20 년200 년1000 년4000 6 Temp (Deg C): Standard Reading: Readinos: Internal Recycle Rate 50 120 4 4.01 7: 7.07 10: 10018 Standard Reading: 220: 0.136: 0.30; 0.50: MBfR 1 pH std units 7.2 Lead Sample Lag Sample □ MfBR1 Lead Reactor: if MBfR1 in LEAD: SP-200B □ Sample Collection Time: 9:304M SP-100A [] MfBR2 MBfR 2 pH std units if MBfR2 in LEAD: SP-100B 🖼 Finished Water Influent GAC 2 Effluent Effluent MBfR 1 ORP Media Filter Effluent Post Sodium GAC 1 Effluent mV 446 Reactor Reactor *Lead Outfall MBfR 2 ORP -865 \succeq mV Ηz Nitrate Frequency 8,09 7.90 7.96 7,58 7.63 7.68 Last N Feed ppm (N) 8,32 Data (std units) 18.4 20.0 20.0 20,4 19.4 18.5 Last N R1 ppm (N) 0.00 Temperature (°C) -533 402 -52 -182 -17 630 Last N R2 ORP ppm (N) 1.63 (mV) 0.25 5,5 5.5 0.10 . 0 MBfR1 Sparge Rate 240 ۵. Dissolved Oxygen (mg/L) 2.25 0 20,0 0.4 MBfR2 Sparge Rate mm Nitrate + Nitrite (mg/L-N) ೫೮ spm 0.85 0 0 0 Phosphate Pump Settings Nitrite (mg/L-N) 95 6 stroke D Phosphate Concentration 0.60 mg/LPO4 1,5 Sulfide (mg/L) at Strainer 0.087 0.175 00175 3,2 Aeration Tank Air Flow Turbidity (NTU) .0 Air Tank Pressure psig Chlorine Residual Chlorine Residual | (mg/L) | *Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours 2.0 Note: shaded boxes are to remain blank Target Media Filter Flow Inventory Post Finished Water Media Filter Inlet Pressure psig **Backwash Record** Type Check System Inspection Backwash start time: H3PO4 Stock (gal) Media Filter Outlet 1.6 psig Collect while sump is running Pressure Backwash duration min Sodium Hypo Stock (gal) Sump Pump dischrg nitial Product Tank Dayel 30 gal Dissolved Oxyge Sodium Hypo Pump spm Additional Field Test Kits Needed? Bag Filter AP Settinas psi 2 inal Product Tank Level Nitrate + Nitrite % stroke 100 GAC INFLUENT 12 ime of sample collection: psig Nitrite Coaquiant Tank Level gal GAC EFFLUENT psig Location (NTU) TSS Collected? Sulfide IX-1 Pressure 0.4 □Yes psig ead Purge 1 □No Chlorine 3 Coagulant Pump Settings ml/min Feed Tank Additions ead Purge 2 □No o-Phosphate H3PO4 Lag Purge 1 □Yec □No Sodium Hypo Нα CO2 Cylinder Pressure psi 10 12:30 Time 9:30 □Yes ŪNo Lag Purge 2 ORP initial Tank Level (gal) 1.8 □N∂ Media Filter □Yes 23 Turbidity 8 8 H2 Cylinder Pressure Stock Added 100 Type of Water Used For NOTES: INF N2 Pressure DŞİ Dilution 48 MYMIN (From 4) Volume Dilution Added CEAGULANT PUMP TO DOSE AT 3,2 N2 Flow Rate scfm (gal) SUMP PUMP Total Volume Added LOUDLY. MEASURED AIR VERY 3.7 Note: There are ubidity (instrument) NTU 0.14 (gal) 3785 mL per TOOK MEASUREMENTS QUALITY METER. Final Tank Level 23 Turbidity (OIT) NTU 0.47 AER ATION BOTH OPEN AND CLOSED.

Air Monitoring									
Zero Calibration? ©Yes □No	Mixed Cylinder	Aeration Tank	AERATION OPEN LID	MBIR 2	OIT Area				
Time	11:45	12:15	12:20		12:50				
Carbon Monoxide (ppm)	48	3	ક		0				
Oxugen (%)		21.9	21.9		21.7				
Methane (% LEL)	49	0	0		0				
Hydrogen Sulfide (ppm)	25	0	0		ರಿ				

NOTES	CONT.:				• •	MONITURIN	G			
AT	ALL	LACATIONS	e where it	LEFT	METER			FOR	APPROXIMATELY	1.5 HOURS.
							· · · · · · · · · · · · · · · · · · ·	•		
							,			
			•	-				1		
		•		·				* - 2		
		•								

ESTCP: Tec' gy Demonstration Plan sing Membrane Biofilm Reduction Perchlorate Destruction

						1 Oromorae	ESTCP Pro				54454				• •	
Da	ate: <u>/2/28/1</u>	<u>1 </u>		Time: <u>9</u> A	m			Operator	BERE	OKOF	F			Treatment Sys	tem in:	spection
Γ					Fie	eld Sample	es				100		· 	Outlet Totalizer	gal	7348300
Calibration	pH calibration? Standards: ☑4	PM 1240	No		ORP calibration	on? □Yes C): 15.		Standards:	alibration? ≝0 ≝20 ≝		□No 000 □	1000		Target Flow Rate	gpm	6
alib Talib	Standard Readin	g: 7: 7:03			' '	,		Readings:	. 45.7		つつつ			Internal Recycle Rate	gpm.	150/120
۳	4: 4.00	7: 1105		Lag Sample	Standard Re	eading: 220:	221	0.136: C	<u> </u>	30: <i>() 6</i> .	35 pl	- 0.50:	0,562	MBfR 1 pH	std units	7.2
	Lead Reactor:	□ MfBR1 ☑ MfBR2	SP-100A □	If MBfR1 in LE	AD: SP-200B 디 AD: SP-100B 년		Sample Colle	ction Time:		9:0	10]		MBfR 2 pH	std units	7,2
	ter .	<i>(</i>)	Ħ			ПО	a _ t	E o	р <u>.</u>	1 ±	~ E	별	led iii	MBfR 1 ORP	mV	-442
	Paramete	Unifs	influent	*Lead	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	m∨	-951
1.	Раг	ر	Ξ.	# &	* &	\	2 L T	L & T	F Z	o #	O T	_ ഈ	90	Nitrate Frequency	Hz	
١.	рH	(std units)	7, 55	7.47	7.58	8,04	7.80		7.89				7.70	Last N Feed	ppm (N)	8,33
Data	Temperature	(°C)	18.9	20.2	21.3	21,0	21.0	21.402	20.6				20.6	Last N R1	ppm (N)	0.1
Sample	ORP	(mV)	188	-493	-491	-200	-20		596			X		Last N R2	ppm (N)	1.53
San	Dissolved Oxygen	(mg/L)	9.0	0.20	0.1	7.0	5.5		7.0					MBfR1 Sparge Rate	mm	240
			9.0	2.1	ව <u>ි</u>				0.5					MBfR2 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)	0	0,85	٥									Phosphate Pump Settings	spm	20
	Nitrite	(mg/L-N)							Ŏ					Phosphate Concentration	% stroke	30
	Sulfide	(mg/L)	0	0	0.6	0.2			0	100				at Strainer	mg/LPO4	₩ 2 + 5
1	Turbidity	(NTU)	0.069			**************************************	O0116	1						Aeration Tank Air Flow	scfm	3.1
	Chlorine Residual	(mg/L)				Al-	06 5	1,0	100.			re to remain		Air Tank Pressure	psig	2.0
	* Signifies MBfR 1	or WibiR 2 dep	ending on it rea	actor is in the lea _	u or lag position	- uns changes	every so nours			Note: sna			·· · · · · · · · · · · · · · · · · · ·	Target Media Filter Flow Rate	gpm	5
	Post Fir	nished Wa	ter			Backv	vash Reco	rd			Type	vento	Check	Media Filter Inlet Pressure	psig	l i.e
	System	ı Inspectio	on .		Backwash start					Н3РО4	Stock (g	al)	3,5	Media Filter Outlet	1-	
Co	llect while sump is n	ınning] .	Backwash dura	tion	min		The Walter of the State of the	Sodium	Hypo St	ock (gal)	30+	Pressure	psig	1.6
S	ump Pump dischrg	psi			Initial Product	aqk Level	gal			90	Dissolv	ed Oxyge		Sodium Hypo Pump	spm	30
\perp	Bag Filter ∆P	psi	# ₹ 2	₫ .	Final Product T		gal	4	:	g Ei	-	+ Nitrite	S	Settings	% stroke	100
_	GAC-1 Pressure	psig	13	4	Time of sample					혈호	Nitrite		<u> </u>	Coagulant Tank Level	gal	14
\vdash	GAC-2 Pressure	psig	0	4	Location	(NTU)		S Collected?		異る	Sulfide Chlorin		2 4		ļ	
\vdash		psig nk Additi	One	-	Lead Purge 1 Lead Purge 2		<u> </u>	Kes ∐No		Additional Field Test Kits Needed?	o-Phos		3	Coagulant Pump Settings	ml/min	3
\vdash		H3PO4	Socium Hypo	╡ .	Lag Purge 1		J	res DNc		-	pH	pricate.		. ,		
Tim	19	9:00 AM			Lag Purge 2		(1	Yes □No		rration led?	ORP		سر:	CO2 Cylinder Pressure	psi	110
Initi	ial Tank Level (gal)	4.3	21] '	Media Filter	1 N	□ \	res □No	·	Signal Si	Turbidit	у		H2 Cylinder Pressure	psi	90
l	ck Added	þ	0].							:			· ·		70
	on of Water Used For ation	_	MED FIL	┩.	NOTES:		f	· _		-7				N2 Pressure	psi	143
	ume Dilution Added		9901	1	INLINE	TURBIDIA			rumen?	,			~2.2.	N2 Flow Rate	scim	-
	al Volume Added		9001	Note: There are			a negat							Tubidity (instrument)	NTU	0.07
	al Tank Level	4.3	.30	3785 mL per gallon.	SCOM N	OTIFIED	APT - I	RICH P	NOAY C	AME	To S	iTE	to work	Turbidity (OIT)	NTU	0.46

TEPPED OFF CLA TANK DUE TO RESIDUAL

	Aiı	. Monitorir	ıg		
Zero Calibration	Mixed Cylinder	Aeration Tank	AGRATION LID OPEN	MBfR 2	OIT Area
Time		9:30	9:45		
Carbon Monoxide (ppm)		0	10	,	
Oxugen (%)		20.9	20.9		
Methane (% LEL)		0	0		
Hydragen Sulfide (ppm)		0	0		

NOTES CON	Т,:	
ON	FINISHED	EFFLUENTO APT WAS ABLE TO FIX HIGH TURBIDITY ISSUE (THERE WAS NO FLOW
GOIN	G INTE	THE METER). TURBIDITY NEW PEA STABILIZED AT 0.09 NTU.
	,	

Da	te: 12/30/1	i <u>l</u>		Time:	7:00	<u> </u>	20101110	Operator:	APuc	LA			
Γ.			:	\ -	Fie	eld Sample							•
oration	pH calibration? Standards: □4 Standard Readin 4: 牛・クブ	_ZYes ⊔N ⊡7 ⊡10 g:	0			on? Yes C): (4	□No .5	Turbidity of Standards:	alibration? 対 対20 点:		·	•	•
Cali	4: 4.07	7: 7.05	10:lo	11	Standard Re	eading: 220:	217	0.136: 0	151 0.30	n. <i>0 -</i>	321	0.50:_0	463
	Lead Sample Lag Sample Lead Reactor: MfBR1 SP-100A F if MBfR1 in LEAD: SP-200B Sample Collection Time: Will CO. If MfBR2 if MBfR2 in LEAD: SP-100B III Sample Collection Time:												
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall
ī5	pН	(std units)	7:39	7:55	7.46	7.92	7.67		7.44		1		7.38
Da	Temperature	(°C)	18.1	20.3	21.3	21.0	21.1		20.9				20.7
Sample Data	ORP	(mV)	80	-440	-540	-235	100		120				
Sa	Dissolved Oxygen	(mg/L)	B	0.3	0.05	Ó	6		7				
	Nitrate + Nitrite	(mg/L-N)	8.75	180	0.4				0.4				10 mg (10 mg)
	Nitrite	(mg/L-N)	Ö	0.6	0				0				
	Sulfide	(mg/L)	0	0	2.0	1.5			0				
	Turbidity	(NTU)	0.264			1.89	0.207		0.216				
_	Chlorine Residual : * Signifies MBfR 1 :	(mg/L) or MBfR 2 depo	ending on if read	tor is in the lea	d or lag position	- this changes e	every 96 hours	to	0	Note: shap	ed boxes an	to remain l	lank

Backwash start time:

			-						
	nished Wa n Inspectio								
Collect while sump is n	unning								
Sump Pump dischrg	psi	17	1						
Bag Filter ∆P	psi	5	1						
GAC INFLUENT	psig	0	· .						
GAC EFFLUENT	psig].						
IX-1 Pressure	psig		1						
Feed Ta	odischrg psi prid psi								
	H3PO4	Sodium Hypo							
Time ·	1:00	1:15							
Initial Tank Level (gal)	Ì5	20	1						
Stock Added	250	0]						
Type of Water Used For Dilution	INF	12/14							
Volume Dilution Added (gal)	3.5	NA							
Total Volume Added (gal)	3.5	NA	Note: There are						
Final Tank Level (gal)	5	20	3785 mL per gallon.						

Backwash durat	tion	min					
Initial Product T	ank Levei	gal					
Final Product Ta	ank Level	gal					
Time of sample	collection:						
Location	(NŢU) .	TSS Collected?					
Lead Purge 1	101.0	⊠X.	es 🗆 No				
Lead Purge 2	10.1	الالعا	es □No				
Lag Purge 1	18.9	- 1249	es □No				
Lag Purge 2	9.4	DP/	es □No				
Media Filter	77	- BAN	E OHO				

Backwash Record

		Inventor	y	
	*	Туре	Check	
	H3P04	Stock (gal)	3	
	Sodium	Hypo Stock (gal)	30	
	7.5	Dissolved Oxyge	16+3	
	Additional Field Test Kits Needed?	Nitrate + Nitrite	5	
	S S	Nitrite	5	
	ific Cits	Sulfide	2.	
	St di	Chlorine		
	eT Fe	o-Phosphate	3	
Į	5	рH	3	
١	Calibration kits needed?	ORP		
	Calii kits need	Turbidity		

NOTES:
CDM PETHCED COL STEED PRESSURE FROM 106 TO 89
PSI. COM WILL ALSO BE CONDUCTING AIR SAMPLING.
PESULTS ON BACK. COM WCREASED HYFO PUMP RATE TO
40 SPM @ 100% DUE TO LOW CHEORING RESIDUAL

Treatment Sys	tem in	spection
Outlet Totalizer	gal	73669
Target Flow Rate	gpm	6
Internal Recycle Rate	gpm	150/12
MBfR 1 pH	std units	7.2
MBfR 2 pH	std units	7-1
MBfR 1 ORP	mV	-245
MBfR 2 ORP	mV	-641
Nitrate Frequency	Hz	
Last N Feed	ppm (N)	8.35
Last N R1	·ppm (N)	1:38
Last N R2	ppm (N)	0.64
MBfR1 Sparge Rate	mm	240
MBfR2 Sparge Rate	mm ·	240
Phosphate Pump Settings	spm	20
Phosphate Concentration	% stroke	1.2 30
at Strainer	mg/LPO4	
Aeration Tank Air Flow	scfm 3	2 ====
Air Tank Pressure	psig	2.0
Target Media Filter Flow Rate	gpm	5,0
Media Filter Inlet Pressure	psig	5.2
Media Filter Outlet Pressure	psig	2.3
Sodium Hypo Pump	spm	30
Settings	% stroke	100
Coagulant Tank Level	gal	//
Coagulant Pump Settings	ml/min	4
CO2 Cylinder Pressure	psi	106
H2 Cylinder Pressure	psi	77
N2 Pressure	psi	146
N2 Flow Rate	scfm	
Tubidity (Instrument)	NTU	0-17
Turbidity (OIT)	NTU	0-1-

:		•						
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area	FRESH	MIX CYL	NOCK
Time	9:15	923	7:30	9:30	9:35	9:10		†
Carbon Monoxide (ppm)	47	31	5	12	0	0	50	† .
Oxugen (%)	11.8	20.9	20.2	20.3	20.9	20.9	12	
Methane (% LEL)	490/0	0	0	0	0	0	50	•
Hydrogen Sulfide (ppm)	23	2	0	0	0	0.	125	1

NOTES CONT.:				
COM DID BAG F	FILTER CHANGE	- OUT, COM DETERN	WED THAT GAC-2 PRESSURE	ш
Grange is NOT	FUNCTIONAL. A	NEW ONE NEEDS TO E	se ordered, ix pressure 16045	
- to BE NORMAL.	SPARGE WAS	MANUALLY INITIATED @	12:10. PHOSPHATE AFTER ADDITION	
= 1.4 ppm.				-

ESTCP: Tec'

ngy Demonstration Plan

Perchlorate Destructio, sing Membrane Biofilm Reduction

ESTCP Project Number ER-200541

10:00 Operator: ARUCAN **Treatment System Inspection** Field Samples Outlet Totalizer gai ZÍYes □No ORP calibration? ZYes □No furbidity calibration? pH calibration? Target Flow Rate Standards: 20 220 2200 21000 24000 gpm Standards: □4 □7 □10 Temp (Deg C) Standard Reading: Readinos Internal Recycle Rate gpm 7.07 10.09 Standard Reading: 220: MBfR 1 pH std units Lead Sample Lag Sample □ MfBR1 Lead Reactor: if MBfR1 in LEAD: \$P-200B □ Sample Collection Time: 7. 2. SP-100A MBfR 2 pH std units MfBR2 if MBfR2 in LEAD: SP-100B Z Finished Permitted Outfall Filter Effluent MBfR 1 ORP Aeration GAC 1 Effluent m٧ 452 *Lead Reactor Sodium Hypo GAC 2 Effluent IX 1 Effluent Reactor Media Water *Lag Post MBfR 2 ORP mV Nitrate Frequency Hz 7.603 Last N Feed ppm (N) Hq gg (std units) 18.2 *20*.9 Last N R1 ppm (N) ·a Temperature (°C) 90 Last N R2 ppm (N) ORP (mV) 240 8.5 2 MBfR1 Sparge Rate O. D Dissolved Oxygen (ma/L) 240 0.4 0.6 MBfR2 Sparge Rate mm Nitrate + Nitrite (mg/L-N) spm ٥ 0.75 0 O Phosphate Pump Settings 30 % stroke Nitrite (mg/L-N) Phosphate Concentration 0 Ð mg/LPO4 Sulfide (mg/L) 0 242 0.192 10.207 Aeration Tank Air Flow scfm Turbidity (NTU) Air Tank Pressure Chlorine Residual (mg/L) **Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Target Media Filter Flow Note: shaded bexes are to remain blank **5**, 0 gpm Inventory 2.1 **Post Finished Water** Media Filter Inlet Pressure psig **Backwash Record** Туре Check System Inspection 45 H3PO4 Stock (gal) Media Filter Outlet Backwach start time: 2.3 psig Pressure 30 Collect while sump is running Backwash duration Sodium Hypo Stock (gal) min ゆょる Sump Pump dischra nitial Product Tank Level Dissolved Oxyge Sodium Hypo Pump spm osi gal % stroke Bag Filter ∆P inal Product Tank Level Nitrate + Nitrite įzg gal Additional F Test Kits Ner SAC IN Time of sample collections Nitrite psig Coagulant Tank Level gal GAC-2 TSS Collected? Sulfide psig SAL OUT Location IX-1 Pressure ead Purge 1 □Yes □No Chlorine Coagulant Pump Settings ml/min Feed Tank Additions □Yes □No Lead Purge 2 o-Phosphate 3 H3PO4 Lag Purge 1 □Yes рΗ Sodium Hypo CO2 Cylinder Pressure psi 2:15 □Yes ∐No Time Lag Purge 2 ORP □No □Yes Initial Tank Level (gal) 10 Media Filter Turbidity H2 Cylinder Pressure psi 2.0 Stock Added Type of Water Used For MF N2 Pressure psi Dilution COM CHUNKED GIAC- 2 PRESSURE GRUGE, COM Volume Dilution Added 18.0 N2 Flow Rate scfm CONDUCTED AIR MONITORING. RESULTS ARE ON NEXT Total Volume Added 20 Tubidity (Instrument) .2 Note: There are 3785 ml. per MAGE Final Tank Level Turbidity (OIT) NTU CHOKING ADUTION:

15 WHS. APTER

	Air Monitoring								
Zero Calibration? Yes 🗆 No	Mixed Cylinder	Aeration Tank	MBfR 1	MBIR 2	OIT Area	FOESH AR			
Time	4:55	10:20	10:10	(0:11	10:15	10:05			
Carbon Monoxide (ppm)	43	24	200	75	0	6			
Oxugen (%)	12.1	20.9	20.9	20.8	20.9	20.7			
Methane (% LEL)	35	0	0	0	0	0			
Hydrogen Sulfide (ppm)	20	1	0	0	10	0			

NOTES CONT.:	the state of the s	
	NOTES CONT.:	

ESTCP: Technol emonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

Picket Samples Picket No Standard Readon: 200 20 20 20 20 20 20 20	Da	te: 1/4/12	<u>. </u>		Time: 9:2	30	· .	ESTCP Pro		: <u>13e ro</u>		F	•		Treatment Sys	tem Ins	spection
B Flat Fla						Fie	ld Sample	es	·						Outlet Totalizer	gal	7409800
Laad Reactor	fion			О		ORP calibration	n? DZYes	□No	Turbidity of Standards:	calibration? ☑0 ☑20 ☑		□Nó 000 ② 41	000		Target Flow Rate	gpm	6
Laad Reactor	libra	Standard Reading	g:							-				n = / 1	Internal Recycle Rate	gpm	150/20
Lead Reactor: Digital English SP-100A Milera LEAD SP-100B Sample Collection Time: District D	<u> ප</u>	4: 4.01	7: 7,02			Standard Re	eading: 220: _	219	0.136: చి.	157_0.3	o: O. 3	347	0.50:	0.5 <u>61</u>	MBfR 1 pH		7.2
Main CAP Mai		Lead Reactor:	☐ MfBR1		if MBfR1 in LEA	\D: SP-200B □		Sample Collec	tion Time:		10:1	5-			MBfR 2 pH	std units	6.3*
Bank		ā T							· 	٠ و ا	_ =	, ±	¥		MBfR 1 ORP	· mV	-245
B		amet	Inits	Je J	Lead	'Lag	ratio	Nedia illter fluen	Post odiun typo	nishe Vater	AC 1	AC ?	IX 1	rmitta Cutfal	MBfR 2 ORP	mV	+
Temperature C		Par	. د	ੋਂ	* &	" &	Ae	Ef	_ % _	<u></u>	0 11	о <u>п</u>	Ш		Nitrate Frequency	Hz ,	
Temperature	"	рН	(std units)	7,54	7.33	7.48	7,97	7.73	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.76	1		97.30	7.42	Last N Feed	ppm (N)	8.38
Collect while sump is running Collect while sump is runnin	Dat D				20.9	21.9		21,8		220	24 SE SE	Ş. 1	12.00	22.7	Last N R1	ppm (N)	0,57
Nitrate + Nitrite (mgL+N)	量				 				7.56		422	Sell de la constant			Last N R2	ppm (N)	1.33
Nitrate + Nitrite (mgilN) 9.0 1.6 0 0 0.8 5 0 0 0 0.7 1	San	1.	• •		 	· · · · ·			1100		1000	interé			MBfR1 Sparge Rate	mm	240
Nitrite (mg/LN) 0 0,85 0 0 0 2,5 /. 0 5 0 0 0 0 2,5 /. 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7.7			† . ·						V. 20 00				MBfR2 Sparge Rate	mm	240
Sulfide (mgt.) O 0 2.5 /. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					+ · · · · · · · · · · · · · · · · · · ·				- W	· · · · · · · · · · · · · · · · · · ·					Phosphate Pump Settings		20
Turbidity (INTU) 0.65 1.86 0.295 0.410 Turbidity (INTU) 0.65 1.86 0.295 0.410 *Signifies MBR1 to MBR2 depending on if reactor is in the lead or lag position - this changes every 86 hours *Post Finished Water System Inspection Collect write sump is running Backwash Record Backwash Record Backwash Record Backwash Record Backwash Record Backwash duration min Backwash duration minime of ammin blank Backwash duration minime of ammin bla		Nitrite	(mg/L-N)	1			1 0	enterior			5, 07 % (4)	Marian S					
Chlorine Residual (mgL)		Sulfide	(mg/L)			2.5		2. 1 - 32. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.				77 (124)	1 x 1 2 2 3				
* Signifies MBR or MBR 2 depending on if reactor is in the lead or lag position - this changes every 98 hours Post Finished Water System Inspection Collect while sump is running Sump Pump dischig psi Bag Filter AP psi		Turbidity	(NTU)	0.102		ENERGY CO	7.00	0, 275	力を			Single Co.	64490a 1145a A		·	ļ	-
Post Finished Water System Inspection Collect while sump is running Sump Pump disching psi Backwash duration min sodium Hypo Stock (gal) Backwash duration min		Chlorine Residual * Signifies MBfR 1 c	(mg/L) or MBfR 2 dep	ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours	12	2,0	Note: shed	ded boxes ar	re to remain l	olank			+
Post Finished Water System Inspection Collect while sump is running Backwash start time: 12:08 Backwash start t	_				1	 			·			Inv	ventor	v			
Solium Hypo Stock (gal) Solium Hypo Pump Spm 30 Solium Hypo Pump Spm 30 Stock Added Solium Hypo Stock (gal) Solium Hypo Stock (gal) Solium Hypo Pump Spm 30 Stock Added Stoc	'								ď					-	Media Filter Inlet Pressure	psig	5,7
Sump Pump disching psi Sumining Sump Pump disching psi Sump Pump Sump Pump Pump Sump Pump Pump Sump Pump Sump Pump Sump Pump Pump Sump Pump Pump Sump Pump	L	_		on	77	Backwash start	time: / 2 🚶	r				,,				psig	2.2
Bag Filter ΔP psi 2 Ink infect psi 2 9.1 Ink infect	\vdash	· · · · · · · · · · · · · · · · · · ·		T	/						-	T. **				spm	_
GAC EFFLUENT psig 5.5 Brund Proceeding St. St.	S			-					 		eld ded				l I		
GAC EFFLUENT psig 5.5 Brund Proceeding St. St.	-		-	001	INKINIED.			l gai		-	Nee E		. 1410100		Consulant Took Lovel	nal	
H3PO4 Sodium Hypo Lag Purge 1 - Yes Ino Initial Tank Level (gal) Initial Tank Level Initial	ı				BACKWAS	Location		TS	S Collected	?	figur	Sulfide			Coagulant fank Level	yaı	<u> </u>
H3PO4 Sodium Hypo Lag Purge 1 - Yes INO Initial Tank Level (gal) Initial Tank Level Initial				1,2	WHEN AT	Lead Purge 1		□Y			l B ts	Chlorine	3		Coagulant Pump Settings	ml/min	5
Time 12 pm 11 Am Lag Purge 2 Tyes TNO Tyes Turbidity Turbidity H2 Cylinder Pressure psi 90 Stock Added Type of Water Used For Dilution Total Volume Added Gall Total Volume Added Tota		Feed Tai	nk Additi	ons	112 251	Lead Purge 2	. ~		,	1	<u> </u>	o-Phosp	hate				
Stock Added Type of Water Used For Dilution NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. COM (gal) Total Volume Added (gal) Finat Tank Level Finat Tank Level NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. COM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TOM NOTES:			H3PO4	Sodium Hypo		Lag Purge 1					ے ق	рН			CO2 Cylinder Pressure	psi	an
Stock Added Type of Water Used For Dilution NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. COM (gal) Total Volume Added (gal) Finat Tank Level Finat Tank Level NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. COM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TO SWITCH OUT CAMERA DVR SYSTEM. TOM NOTES: APT ON SITE TOM NOTES:	Tim	e ·	12pm	IIAM_		Lag Purge 2	*			0	bat.					<u> </u>	1 70 -
Type of Water Used For Dilution — MED. FILT. Volume Dilution Added (gal) Total Volume Added — 3 Note: There are Gall Final Tank Level Final Tank Level NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM NOTES: APT ON SETE TO SHITCH OUT CAMERA DVR SYSTEM NOTES: APT ON SETE TO SHITCH OUT CAMERA NOTES: APT ON SETE TO SHITCH OUT CAMERA NOTES: APT ON SETE T	Initi	al Tank Level (gal)	曲什	28	<u> </u>	Media Filter	43.1	I I I I I I I I I I	′es □N	0	S S S	Turbidity	у		H2 Cylinder Pressure	psi	89
Volume Dilution Added (gal) Finat Tank Level APT ON SITE TO SHITCH OUT CAMERA DVR SYSTEM, COM NOTICED LOW PH ON MBFR 2 AND ALEPTED APT TURNED OUT THE METER WAS NOT RECEIVING FLOW. UPON Turbidity (Instrument) NTU 0,89		· .	_							· · · · · · · · · · · · · · · · · · ·		· · ·			,		
(gal) - 2 Total Volume Added - 3 Note: There are (gal) Final Tank Level U 30 Note: There are out THE METER WAS NOT RECEIVING FLOW. UPON Turbidity (Instrument) NTU 0.52 Turbidity (OIT) NTU 0.89	Dilu	ition	-	MED, FILT.			SITE TO	£ 6.33 9 12	AS LOT	~ (Lad AIT A.	110	0 5	KTEL	1. *Com		<u> </u>	138
Total Volume Added - 3 Note: There are (gal) - 3 Note: There are Final Tank Level U 30 3785 mL per 500 THE METER WAS NOT RECEIVING FLOW. UPON Turbidity (Instrument) NTU 0.89				_ع									1 1	├	<u> </u>		
Final Tank Level U 30 3785 mL per 600 THE METER WAS NOT RECEIVED FLOW. (500 Turbidity (OIT) NTU 0,89	Tot	al Volume Added	-	1											+		
	Fin	at Tank Level	Ч											<u>}' </u>	Turbidity (OIT)	NTU	0.89

Air Monitoring									
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area				
Time									
Carbon Monoxide (ppm)									
Oxugen (%)									
Methane (% LEL)									
Hydrogen Sulfide (ppm)									

NOTES CONT.:

DECREASED FLOW RATE OF CL2 PUMP TO 20 SPM (FROM 30) AND TOPPED OFF CL2 TANK
TO DILLTE CHLOPING CONCENTRATION. WAITED \$\frac{1}{2}\text{Hour and took Filter effluent residual = 1.1ppm.

WAITED 2 HES AND TOOK PRODUCT TANK RESIDUAL = 1.1ppm \rightarrow Headed in the right direction.

SWITCHED OUT PRESSURE GAUGES BY GAC 2 EFFLUENT W/CHUGE LOCATED DIRECTLY DOWNSTRAM OF
THE BAG FILTERS. NO AIR MONITORING TAKEN TODAY DUE TO ATTEMPTING TO UPLOAD ALL THE PREVIOUS
DATA TO THE COMPUTER. HOWER.

ESTCP: Technolog monstration Plan Perchlorate Destruction Usin embrane Biofilm Reduction

Data Log Sheet

Date: 1/6/12 ESTCP Project Number ER-200541 Time: 9:30AM Operator: BEROKOFF

_	<u> </u>							•					
L		/			Fie	eld Sample	es						
<u>6</u>	pH calibration?	☑Ýes □N	0		ORP calibration		□No		alibration?	☑Yes □No □200 □1000 □4000			
Calibration	Standards: ⊡4 Standard Readin	년/ 년10 a:			Temp (Deg	Standards: Readings:	110 L120 L1	200 🗀 1	UUU L149	000			
景	4: 4,00	7: 7.05	40 (1)	10				ı	166		7-4-7	_	
١	4: _7; 0 0	7: <u>7</u> (-3	10: 10 v Lead Sample		Standard He	eading: 220: _	220	0.136: Q •	100 0.3	ر <u>د ل :</u> 0:	211	0.50: <u></u>	0.589
	Lead Reactor:	☐ MfBR1 ☑ MfBR2	SP-100A □	if MBfR1 in LEA	AD: SP-200B □ AD: SP-100B ☑		Sample Collec	tion Time:		10:3	30		
	ster	(A)	nt	d or	J or	on	a r nt	T E V	r ed	뉴 달	2 E	Ħ	<u>8</u> =
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	mitt utfa
l	Par	<u> </u>	Ξ	.t	* &	Ae	医下型	S H	Fin	© #	<u>o</u> #	I Eff	Permitted Outfall
酉	рН	(std units)	7.63	7.52	7.60	8,04	7.87		7.95				7.63
e Data	Temperature	(°C)	19.2	20,3	21.3	2111	21.1		20,6				20.8
Sample	ORP	(mV)	90	-402	-485	-160	30	A Park	673				
ď	Dissolved Oxygen	(mg/L)	9.0	0,3	0015	7.0	5,5		7.0				
	Nitrate + Nitrite	(mg/L-N)	9,0	2.25	0				Oct				
	Nitrite	(mg/L-N)	0	0.9	٥				0				Water State of State
	Sulfide	(mg/L)	O	6	0,3	0.05			O				
	Turbidity	(NTU)	0.120			1.72	0.178		0.145				Name of the last o
	Chlorine Residual	(mg/L)						1.5	102				
	* Signifies MBfR 1	огивтн 2 dep	ending on it rea	ctor is in the lea	d or lag position	 this changes e 	every 96 hours			Note: shad	fed boxes ar	e to remain .	blank

1	Post Finished Water System Inspection										
Collect while sump is re	ınning										
Sump Pump dischrg	psi										
Bag Filter ∆P	psi	2									
GAC INFLUENT	psig	TO									
GAC EFFLUENT	psig	4.5									
IX-1 Pressure	psig	1.2									
Feed Ta	nk Additi	ons									
	H3PO4	Sodium Hypo									
Time	12:00	12:00									
Initial Талк Level (gal)	2.5	28									
Stock Added	150	€									
Type of Water Used For Dilution	INF	MEA, FILT.									
Volume Dilution Added (gal)	2.5	Z									
Total Volume Added (gal)	2.5	ā	Note: There are								
Final Tank Level	5	330	3785 mL per galion.								

	Backw	ash Reco	ra	
Backwash start t	ime:			
Backwash durati	on	min		
Initial Product Ta	nk Level	gal		
Final Product Ta	nk Level	gal		
Time of sample	collection:			
Location	(NTU)	➤ TS	S Coll	ected?
Lead Purge 1			/es	□No
Lead Purge 2			res	□No
Lag Purge 1		□ `	es `	UNo
Lag Purge 2		' '	/es	□No
Media Fliter			es .	□No

	Inventor	у.	
	Туре	Check	
НЗРО4	Stock (gal)	3,5	
Sodium	Hypo Stock (gai)	30+	
d? d?	Dissolved Oxyge	5/3	
Additional Field Test Kits Needed?	Nitrate + Nitrite	5	
를 N	Nitrite	5	
tion Sis	Sulfide	1	
st A	Chlorine	4	
Ψ ie γ	o-Phosphate	3	
Ę	pH	,/	
Calibration its reeded?	ORP	1 /	
Calibratik kits needed?	Turbidity	/	

-	NOTES:											
	Low	irop	CH	URIN	€ Dosi	NG PK	MP T	0 17	SPM	@ 16	.40AN	DUE
	TO	Resi	DUAL	12	Produ	et S T	ill R	EADIN	G AL	36 VE	1.00	AFTER
											50 /	
	TOP	PED_	OFF	THE	CLZ	TANK	AND	Lower	0ED T.	HE F	ZIMP TO	ع 15 ع

Treatment System Inspection									
Outlet Totalizer	gal	742500c							
Target Flow Rate	gpm	6							
Internal Recycle Rate	gpm	150/120							
MBfR 1 pH	std units	7.2							
MBfR 2 pH	std units	7.2							
MBfR 1 ORP	mV	-408							
MBfR 2 ORP	mV	-313							
Nitrate Frequency	Hz	-							
Last N Feed	ppm (N)	3,38							
Last N R1	ppm (N)	S							
Last N R2	ppm (N)	1.5€							
MBfR1 Sparge Rate	mm	240							
MBfR2 Sparge Rate	mm	240							
Phosphate Pump Settings	spm	30							
Phosphate Concentration	% stroke mg/LPO4	3 5							
at Strainer Aeration Tank Air Flow	scfm	<i>⊋.5</i> 3,1							
Air Tank Pressure	psig	2.2							
Target Media Filter Flow Rate	gpm	5							
Media Filter Inlet Pressure	psig	3.7							
Media Filter Outlet Pressure	psig	2,5							
Sodium Hypo Pump	spm	3 0							
Settings	% stroke	100							
Coagulant Tank Level	gal	9							
Coagulant Pump Settings	ml/min	5							
CO2 Cylinder Pressure	psi	88							
H2 Cylinder Pressure	psi	89							
N2 Pressure	psi	149							
N2 Flow Rate	scfm	.=							
Tubidity (Instrument)	NTU	0.13							
Turbidity (OIT)	NTU	0.44							

	Air Monitoring										
Zero Calibration? ∰Yes □No	Mixed Cylinder	Aeration Tank	AERATION MORE LID OPEN	AERATION TOTAL LID CLOSED	OIT Area						
Time	9:45	10:07	10:27	10:47							
Carbon Monoxide (ppm)	49	12	53	2							
Oxugen (%)	12	21.3	21.2	21.3							
Methane (% LEL)	49	0	0	0							
Hydrogen Sulfide (ppm)	25	0	0	ପ -							

NOTES CONT.:			
	•		
			·
		·	

	1/2/10			_	7:00		ESTCP Pro	-		541						
Date: 1/9/1/2 Time:			Time:	7:00 Operator: ARUCAN							Treatment System Inspection					
Field Samples												Outlet Totalizer	gal	7451400		
ation	pH calibration? Standards: □4	Standards: □4 □7 □10			ORP calibration? ∠Yes □No Temp (Deg C): 19.1		Turbidity calibration? 🗹 Yes 🗆 No Standards: 🗹 0 🖊 20 🗸 200 🗷 1000 🗸 4000						Target Flow Rate	gpm	6	
Calibrati	Standard Readin	g: 7: 7:04	_{10:} [D	.12	Standard Re	•	2260	Readings: 0.136: 	. 154	n 0.1	337	0.50: 0	.542	Internal Recycle Rate	gpm	150/120
Sample Data			Lead Sample		-			10.100				_ 0.00		MBfR 1 pH	std units	7.2
	Lead Reactor:	Ø MfBR1 □ MfBR2	SP-100A 🗷	if MBfR1 in LE/ if MBfR2 in LE/	AD: SP-200B 🗹 AD: SP-100B 🗆	,	Sample Colle	ction Time:		12:00)]		MBfR 2 pH	std units	7.2
	eter	क	ent	B 5	gitor	ion	er er	# 를 S	hed	E T	en 2	1 ent	tted	MBfR 1 ORP	mV	-247
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	688
	<u>ā</u>							2000 CONTRACTOR			Constant and the	SS or the discount of the		Nitrate Frequency	Hz	
	pН	(std units)	7.44	7.52	7.64	7.86	7.82		7.85				7.49	Last N Feed	ppm (N)	8.40
	Temperature	(°C)	18.8	20.4	21.6	21.4	21.3		21.1			* 74 NAMES	21.6	Last N R1	ppm (N)	1.41
	ORP	(mV)	140	-353	-528	-182	-40		385					Last N R2	ppm (N)	0.07
	Dissolved Oxygen	(mg/L)	8.5	0.3	0.1	5.5	6		7					MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)	8.75	1.5	0				0.4					MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)	0	0.3	0				٥		64 647			Phosphate Pump Settings	spm % stroke	20
	Sulfide	(mg/L)	0	0	1.0	0.4			O		200			Phosphate Concentration	mg/LPO4	1.5
	Turbidity	(NTU)	0.199			1.76	0-163		0.341				20,504	Aeration Tank Air Flow	scfm	3.2.
	Chlorine Residual	(mg/L)						1.5	1.0		Mark Inc.			Air Tank Pressure	psig	2.1
* Signifies MBfR 1 or MBfR 2 depending on if rea			ctor is in the lea	d or lag position	- this changes	every 96 hours		780	Note: shad	led boxes a	re to remain	blank	Target Media Filter Flow	gpm	5.0	
Post Finished Water] {	Backwash Record				Inventory				Rate / Media Filter Inlet Pressure	psig	5.5		
System Inspection			Backwash start time:		<u>'u</u> /≿	Type Check H3PO4 Stock (gal) 2.5			2.5		poig					
Collect while sump is running			1	Backwash doca					Sodium Hypo Stock (gal)				Media Filter Outlet Pressure	psig	2.4	
Sump Pump dischrg psi 7]	Initial Product leagh Level gal						5/3	Sodium Hypo Pump	spm	15				
Bag Filter ∆P psi 2				nal Product Tank				Dissolved Oxyge 5/3 Nitrate + Nitrite 5			5_	Settings	% stroke	100		
⊢	GAC Influent GAC Effluent	psig psig	160 5				C Collected?	™ Nitrite 5					Coagulant Tank Level	gal	4	
H	IX-1 Pressure	psig	1.5	† `	Lead Purge 1				\(\frac{2}{2}\)	Sulfide Chlorine	·	4				
Feed Tank Additions				Lead Purge 2		TUN I			Tes Ac	o-Phosp		2	Coagulant Pump Settings	ml/min	5	
		H3PO4	Sodium Hypo		Lag Purge 1		7			8 ~	рН			CO2 Cylinder Pressure	psi	92
Tim		1:30	1:45		Lag Purge 2	ag Purge				DRP Callbration Nits ORP ORP Turbidity				ODE Cymruch / rocoure	μοι	
_	ial Tank Level (gal)	2-2	224	l ,	Moderfilter	÷	Y	′es □Ño		요푢	Turbidit			H2 Cylinder Pressure	psi	91
	ock Added be of Water Used For			1	NOTES: WINDY - TODAY. C.D. PERFORMAGE AIR MONOTORING TODAY.											1,1,-
Dilu	ution ume Dilution Added	INFL		-									DAY	N2 Pressure	psi	143
(gal	gal) 144-7								N2 Flow Rate	scfm .						
(gal	(gal) L. Z Note: There are								Tubidity (Instrument)	NTU	0.13					
(ca		4.5	24	gallon.	<u> </u>									Turbidity (QIT)	NTU	0.12

Data Log Sheet

ESTCP: Technolog	⇒monstration Plan
Perchlorate Destruction Using	Jembrane Biofilm Reduction
ESTCP Project Nu	mber ER-200541

Da	ite: <u> 1/11/12</u>			Time: <u>9:75</u>	SAM			Operator	: <u>Bero</u>	KOF	<u>t.</u>			Treatment Sys	tem In:	spection
						ld Sample			-	aure .				Outlet Totalizer	gal	7468600
Calibration	pH calibration? Standards: ☑4		lo		ORP calibration	on?	□No	Standards:	calibration? : 図0	_∐Yes 200 -⊠1	□No 000 ⊠ 40			Target Flow Rate	gpm	6
alib	Standard Reading 4: イ, 00	-	2_10:_ <i>[0</i>	K		eading: 220: _	000	Readings:	178 0.3	- A -	, 25		المن المناس	Internal Recycle Rate	gpm	150/120
۲	4: 1100		Lead Samplet	Lag Sample		1	660	[0.136 <u>; </u>	<u> 7 7 0.3</u>			0.50:	196-1	MBfR 1 pH	std units	7,2
	Lead Reactor:	☐ MfBR1 ☐ MfBR2	SP-100A	if MBfR1 in LEA if MBfR2 in LEA	AD: SP-200B	λ 5	Sample Collec	tion Time:		10,	g m		*	MBfR 2 pH	std units	7,0
	eter	S	ant /	nd tor	g tor	Aeration	en t	# E 0	Finished Water	tue	: 2 ent	l ent	Permitted Outfall	MBfR 1 ORP	mV	-476
	Parameter	Units	Influent	*Lead Reactor	*Lag Reacto	erat	Media Filter Effluent	Post Sodium Hypo	nisf Nat	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	i i ii	MBfR 2 ORP	mV	-193
	Pa		트	* Œ	Č	Ac		<u> </u>				Ш	a 0	Nitrate Frequency	Hz	s
超	рН	(std units)	7,60	7.43	7.55	8,02	7.89		7.94				7,67	Last N Feed	ppm (N)	8:39
g	Temperature	(°C)	18.6	19.3	21.1	20,8	20.7		20.3				19,8	Last N R1	ppm (N)	0,06
Sample Data	ORP	(mV)	167	8	-124	-31	103		543				er green er	Last N R2	ppm (N)	3,08
Sal	Dissolved Oxygen	(mg/L)	9.0	0.3	0.15	7.0	7003	in agreement	7.0				i de la companya da l Esta da la companya d	MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)	8,5	1.40	0.25				0,25					MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)	0	32.0	0.25		11.0		0				en e	Phosphate Pump Settings	spm % stroke	20
	Sulfide	(mg/L)	0	0	0.05	0			0	100	1970 P. S.	***	espesa (file)	Phosphate Concentration	mg/LPO4	-
	Turbidity	(NTU)	0.120	_		1.26	40111		0.126					at Strainer Aeration Tank Air Flow	scfm	30
	Chlorine Residual	(mg/L)		e to				1.1	0.9	245				Air Tank Pressure	psig	Z-1
<u> </u>	* Signifies MBfR 1 o		ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours			Note: sha	ded boxes a	re to remain	blank	Target Media Filter Flow Rate	gpm	5
	Post Fin	ished Wa	ter	1		Dooles	b Daaaa					ventor	4	Media Filter Inlet Pressure	psig	2.6
		Inspection			Backwash start		vash Recoi 57 AM	:a		H2POA	Type Stock (ga	al\	Check	Media Filter Outlet		+
Co	llect while sump is ru	<u> </u>		1	Backwash dura		min			-	Hypo Sto			Pressure	psig	2.3
s	ump Pump dischrg	psi .		1	Initial Product T		gal				T ''	ed Oxyge		Sodium Hypo Pump	spm	15
	Bag Filter ∆P	psi		1	Final Product T	ank Level	gal			Field	Nitrate 4	- Nitrite		Settings	% stroke	100
	GAC Influent	psig			Time of sample		2100-12			la la	Nitrite			Coagulant Tank Level	gal	8
<u> </u>	GAC Effluent	psig			Location	(NTU)	TS,	S Collected ^e		종 조	Sulfide Chlorine				ļ -	
-	IX-1 Pressure Feed Tai	psig nk ∆dditi	ons		Lead Purge 1 Lead Purge 2	3 34				Additional Field Test Kits Needed?	o-Phosp			Coagulant Pump Settings	ml/min	5
\vdash	1000 10	H3PO4	Sodium Hypo	-	Lag Purge 1	44					pH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	
Tin	ne	10:00	10:00		Lag Purge 2	19	仚	res □N	lo lo	Calibration kits needed?	ORP			CO2 Cylinder Pressure	psi	90
Init	ial Tank Level (gal)	3.1	25]	Media Filter	~_		∕es ⊠N	lo	Sall kits	Turbidit	у		H2 Cylinder Pressure	psi	C1. C2
	ck Added		حن												1	87
Dil	be of Water Used For Lition	·æ-	~		NOTES:		Copp. Acres			17	۲.00			N2 Pressure	psi	136
Vo (ga	lume Dilution Added II)	.=	-]	FINAL I	DAY OF .	STEADY	STAT€	MUNIT	er/L	ict .	•		N2 Flow Rate	scfm	L-Tay
	al Volume Added	,	-	Note: There are										Tubidity (Instrument)	NTU	0.07
	al Tank Level	3.1	25	3785 mL per gallon.			· · · · · ·	<u>.</u>					.	Turbidity (OIT)	NTU	0.45

Data

ESTCP: Technolo monstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction ESTCP Project Number ER-200541

8:30AM Date: 1/13-/12 Time: 5Am 8:30Am Operator: BEROKCFF Treatment System Inspection Field Samples Outlet Totalizer 7477200 ORP calibration?

☐Yes ☐No Turbidity calibration? □Yes □No Target Flow Rate Standards: □0 □20 □200 □1000 □4000 Temp (Dea C): Readings: Internal Recycle Rate apm Standard Reading: 220: 0.136: 0.30:_ 0.50: MBfR 1 pH 6,6 std units Lead Sample Lag Sample ☐ MfBR1 Lead Reactor: if MBfR1 in LEAD: SP-200B □ Sample Collection Time: SP-100A □ 6.8 MBfR 2 pH std units MfBR2 if MBfR2 in LEAD; SP-100B Aeration Finished Water Permitted Outfall Media Filter Effluent Post Sodium Hypo Effluent Effluent MBfR 1 ORP -189 Influent *Lead Reactor *Lag Reactor m٧ Effluent GAC 2 GAC ≚ MBfR 2 ORP mV -37 Nitrate Frequency Hz 8:36 Last N Feed ppm (N) рΗ (std units) Last N R1 5.36 ppm (N) Temperature Last N R2 ppm (N) 7.49 ORP (mV) MBfR1 Sparge Rate mm 240 Dissolved Oxygen (mg/L) MBfR2 Sparge Rate 240 Nitrate + Nitrite (mg/L-N) 20 spm Phosphate Pump Settings Nitrite (mg/L-N) % stroke 30 Phosphate Concentration mg/LPO4 1.5 Sulfide (mg/L) Aeration Tank Air Flow scim Turbidity (NTU) 0.9 Air Tank Pressure psig 2.0 Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Note: shaded boxes are to remain blank Target Media Filter Flow 5 gpm Inventory **Post Finished Water** 7,5 Media Filter Inlet Pressure psig **Backwash Record** Type Check **System Inspection** Backwash start time: 10:10 H3PO4 Stock (gal) Media Filter Outlet 2.3 psia Collect while sump is running Pressure Sodium Hypo Stock (gal) Backwash duration min Additional Field Test Kits Needed? Sump Pump dischra psi nitial Product Tank Level Dissolved Oxyge 15 gal Sodium Hypo Pump spm Settinas Bag Filter AP psi Final Product Tank Level Nitrate + Nitrite % stroke gal 100 **GAC Influent** Time of sample collection: Nitrite 10112 psig Coagulant Tank Level gal GAC Effluent Sulfide ري psig Location (NTU) TSS Collected? IX-1 Pressure Lead Purge 1 □Yes ⊠Ñρ Chlorine psig -5 Coagulant Pump Settings ml/min Feed Tank Additions **E**No □Yes ead Purge 2 o-Phosphate Z No. H3PO4 Sodium Hypo ag Purge 1 □Yes CO2 Cylinder Pressure 90 ΡΊΝο Time Lag Purge 2 □Yes ORP ☑Yes □No Initial Tank Level (gal) Media Filter Turbidity 23 H2 Cylinder Pressure Stock Added NOTES: Type of Water Used For 139 N2 Pressure Dilution CHALLENGE PHASE: AFT THENE OFF CASES AT YAM Volume Dilution Added N2 Flow Rate scfm TURNED THEM ON AT SAM. TOOK PH READINGS ON LEAD Total Volume Added Tubidity (Instrument) NTU 0.15 Note: There are (gai) AND LAG @ 8:15AM , LEAD DH = 7.07 @ 19.3° LAG DH = 7.12 3785 mL per Final Tank Level Turbidity (OIT) NTU O.5"4 gallon.

Air Monitoring							
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area		
Time							
Carbon Monoxide (ppm)							
Oxugen (%)							
Methane (% LEL)							
Hydrogen Sulfide (ppm)							

NOTES CO													
TOOK	рH	ON	LAGE	10:15AM	= 7.81 @	20.7°C	OIT =	7.2)	Aτ	10:25AM	PH ON	LEAD = 7.49	@ 13.6°c.
	_										,		
						•							

ESTCP: Technolo

emonstration Plan

ESTCP Project Number ER-200541

Time: 12:00 ARUCAN Operator: **Treatment System Inspection** Field Samples Outlet Totalizer 748740 pH calibration? □Yes □No ORP calibration? □Yes □No Turbidity calibration? □Yes □No. Target Flow Rate apm Standards: □4 □7 □10 Standards: □0 □20 □200 □1000 □4000 Temp (Deg C): Standard Reading: Readings: 150 Internal Recycle Rate gpm 120 Standard Reading: 220: 10: 0.136: 0.30: 0.50: MBfR 1 pH std units Lead Sample Lag Sample 7.2 ☐ MfBR1 Lead Reactor: 12:30 if MBfR1 in LEAD: SP-200B □ Sample Collection Time: SP-100A 🗹 MBfR 2 pH std units MfBR2 7.2 if MBfR2 in LEAD; SP-100B ☑ Finished Water Permitted Outfall Influent Aeration IX 1 Effluent MBfR 1 ORP -410 Reactor Media Filter Effluent Post Sodium Hypo GAC 2 Effluent *Lead Reactor Effluent GAC 1 Units MBfR 2 ORP 315 mV Nitrate Frequency Ηz Last N Feed ppm (N) 8.36 рΗ (std units) Last N R1 ppm (N) 0.04 Temperature (°C) Last N R2 2.21 ppm (N) ORP (mV) 240 MBfR1 Sparge Rate Dissolved Oxygen (mg/L) MBfR2 Sparge Rate mm 240 Nitrate + Nitrite (mg/L-N) spm Phosphate Pump Settings Nitrite (mg/L-N) % stroke Phosphate Concentration ma/LPO4 .2 Sulfide (mg/L) at Strainer 4.2 Aeration Tank Air Flow scfm Turbidity (NTU) 0.9 Air Tank Pressure 2. psig Chlorine Residual (mg/L) Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Note: shaded boxes are to remain blank Farget Media Filter Flow 5 gpm Inventory **Post Finished Water** 6.3 Media Filter Inlet Pressure psig **Backwash Record** Type Check System Inspection Backwash start time: 13PO4 Stock (gal) Media Filter Outlet 2.3 psig Pressure ollect while sump is running Backwash duration Sodium Hypo Stock (gal) min Additional Field Test Kits Needed? Sump Pump dischra ماا psi nitial Product Tank Level Dissolved Oxyge ี 5 gal Sodium Hypo Pump som Bag Filter ΔP Settings 100 psi Final Product Tank Leve gal Nitrate + Nitrite % stroke **GAC** Influent Time of sample collection: Nitrite psig 5 Coagulant Tank Level gai GAC Effluent (NTU) TSS Collected? Sulfide psig Location IX-1 Pressure □Yes □No Chlorine psig Lead Purge 1 Coagulant Pump Settings ml/min Feed Tank Additions □No Lead Purge 2 o-Phosphate H3PO4 Sodium Hypo Lag Purge 1 □Yes ΠNo pΗ 92 CO2 Cylinder Pressure psi 1:00 1:15 □Yes □No ھےag Purg ORP 1.5 tial Tank Level (cal) 20 □Yes □No Media Filter Turbidity 91 H2 Cylinder Pressure psi 150~1 ock Added AND DUPLICATE NOTES: pe of Water Used For INFL N2 Pressure psi ution COM ONSITE TO THE SAUMIE 12:30 ZDALLY lume Dilution Added 3.5 N2 Flow Rate scfm tal Volume Added NTU Tubidity (Instrument) Note: There are 3785 mL per nal Tank Level 5.0 Turbidity (OIT) NTU 20 gallon.

Total Volume Added

Final Tank Level

2.5

5.0

18

Note: There are

3785 mL per

ESTCP: Technolo

emonstration Plan

Perchlorate Destruction Using-Membrane Biofilm Reduction

TAKEN @ 8:20 ESTCP Project Number ER-200541 Date: 01/16/12 8:15 Operator: ARUCAN Time: **Treatment System Inspection Field Samples** Outlet Totalizer gal 751360 Turbidity calibration? □Yes ☑No
Standards: □0 □20 □200 □1000 □4000 pH calibration? □Yes ☑No Calibration Target Flow Rate qpm Standards: □4 □7 □10 Temp (Deg C):_ Standard Reading: Readings: Internal Recycle Rate 90 gpm Standard Reading: 220: 0.136: 10: 0.30: 0.50: MBfR 1 pH std units 6.5 Lead Sample Lag Sample Lead Reactor: MfBR1 SP-100A / if MBfR1 in LEAD: SP-200B / Sample Collection Time: 6.4 MBfR 2 pH std units if MBfR2 in LEAD: SP-1008 ... Finished Water Permitted Outfall Media Filter Effluent Post Sodium GAC 1 Effluent IX 1 Effluent MBfR 1 ORP -46 *Lead Reactor *Lag Reactor Aeration GAC 2 Effluent mV nfluent Units MBfR 2 ORP mV 22 Nitrate Frequency Hz 7.58 8.30 Last N Feed ppm (N) pН (std units) 20.0 8.20 Last N R1 ppm (N) Temperature (°C) Last N R2 ppm (N) フロス ORP (mV) 240 MBfR1 Sparge Rate Dissolved Oxygen (mg/L) 240 MBfR2 Sparge Rate mm Nitrate + Nitrite (mg/L-N) spm Phosphate Pump Settings Nitrite (mg/L-N) 6 stroke 'ዕሱ Phosphate Concentration ma/LPO4 Sulfide (mo/L) Aeration Tank Air Flow 3.2 scfm Turbidity (NTU) Air Tank Pressure 2. psig Chlorine Residual Signifies MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours Target Media Filter Flow Note: shaded boxes are to remain blank gpm Inventory 4.4 Post Finished Water Media Filter Inlet Pressure psig **Backwash Record** Check Type System Inspection H3PO4 Stock (gal) Backwash start time: Media Filter Outlet 2.7 psia Pressure Collect while sump is running Backwash duration min Sodium Hypo Stock (gal) 15 Sump Pump dischrg 6 Initial Product Tank Level-Dissolved Oxyge Sodium Hypo Pump spm gal Additional Field Test Kits Needed? Settings 100 Bag Filter AP psi Final Product Tank Level Nitrate + Nitrite % stroke gal **GAC Influent** psig Time of sample collection: Nitrite Coagulant Tank Level 0 gal **GAC Effluent** (NTU) TSS Collected? psig Location Sulfide IX-1 Pressure psig Lead Purge 1 □No Chlorine Coagulant Pump Settings OFF ml/min Feed Tank Additions □Yes □No Lead Purge 2 o-Phosphate H3PO4 Lag Purge 1 □Yes ONC Sodium Hypo 91 alibration CO2 Cylinder Pressure psi 2.45 1:30 □Yes LINO Lag Purge 2 Time ORP 2.5 18 □Yes Media Filter FINO Initial Tank Level (gal) 92 H2 Cylinder Pressure osi 150 ml Stock Added NOTES: Type of Water Used For INF. N2 Pressure psi COM ONSITE @ 8:15. APT TURNED H2, N2 & CO2 Volume Dilution Added 2.5 N2 Flow Rate scfm (gal) EDIENDIDS IN THE "ON" POSITION TO START FEEDING THE SYSTEM.

FIRST SAMPLE TAKEN @ 8:32. CDM ALSO TOOK SAMPLES

AT MEDIA FILTER AND ALSO TO DUPLICATE SAMPLES

6.06

0.06

NTU

Tubidity (Instrument)

Turbidity (Off)

· · · · · · · · · · · · · · · · · · ·			2.36	1.						
	Air Monitoring									
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area					
Time										
Carbon Monoxide (ppm)										
Oxugen (%)	, -									
Methane (% LEL)										
Hydrogen Sulfide (ppm)										

Samples	The	TO THE STATE OF TH	
FINISH-2-1 1-2-2 -2-3 -2-4 -2-5 -2-6 -2-8 -2-9 -2-10	8:32 16:32 11:32 12:32 1:32 1:32 1:32 4:5:32	MEDIA FILTER-2 MEDIA FILTER- DUPLICATE DUP. 2 DUP. 3 DUP 4	

NOTES CONT.	:												
FILTER	AID.	is	Empty	Δ_{ND}	APT	NAS	CONTA	CLED :	FOR.	PEFILL		 	
			·										
											-		
. 147 - 1	÷												
i '													
·					٠								
	·												
									-				

DUPLICATE	LOCATION	-time
1	FINISH	3:30
ι <i>D</i>	FINISH	4:32
23	MEDIA FILTER	4:32
4	MEDIA FILTER	5:32

NITEATIO	- REAL	ina s
time	LEAD	LAG
8130 10130 11:30	8.20	7:93 3:99 2:40
12:30	6.48 4.23 3.15	0.66
3:30 4:30	2.08	0.04

ESTCP: Technolo amonstration Plan Perchlorate Destruction Using Jembrane Biofilm Reduction

Da	te: 01/17/12	2		Time:	1:30		ESTCP Pro	oject Numb Operator:		1541 UCAN	<u> </u>			Treatment Sys	tem in	spection
					Fi	eld Sample	 es .							Outlet Totalizer	gal	752120
Calibration	pH calibration? Standards: ☑4 Standard Readin	Z Yes	lo			on? □Yes		Standards:	alibration? □0 □20 □	□Yes ⊒200 □1	ZNo 000 □4	000		Target Flow Rate	gpm	6
Salib			7 10: 10	. 1/0	1	eading: 220: _		Readings:		00.		0.50		Internal Recycle Rate	gpm	150/90
Ĕ	4.	7	Lead Sample		Standard N	eaulily. 220		0.136:	0	30:		_ 0.50:		MBfR 1 pH	std units	7.9
	Lead Reactor:	☐ MfBR1 ☐ MfBR2		if MBfR1 in LE	AD: SP-200B □ AD: SP-100B □		Sample Collec	ction Time:		2:0	Ò]		MBfR 2 pH	std units	7.2
	eter	S	T T	ā Tor	l g	ion	ir in	it Im o	ned er	- i	2 int	ınt	Permitted Outfall	MBfR 1 ORP	mV	-217
	Parametei	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	rmit	MBfR 2 ORP	mV	-640
	Pa	1	드	* Œ	_ ~~	Å	2-2	- ŭ	FI	0 0	0 11	Ш) Be	Nitrate Frequency	Hz	
<u>100</u>	pН	(std units)								1,11			7.51	Last N Feed	ppm (N)	8.33
Data	Temperature	(°C)											20.1	Last N R1	ppm (N)	1.67
Sample	ORP	(mV)						240 C						Last N R2	ppm (N)	0.02
Sal	Dissolved Oxygen	(mg/L)			ĺ					143				MBfR1 Sparge Rate	mm	4240
	Nitrate + Nitrite	(mg/L-Ni)								100	, i			MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)												Phosphate Pump Settings	spm	20
	Sulfide	,		1	<u> </u>	A STATE OF THE STA								Phosphate Concentration	% stroke mg/LPO4	2.0
	Turbidity	(mg/L) (NTU)					No. 11 11. 2012 17. 2020 175-2010			19 005				at Strainer Aeration Tank Air Flow	scfm	3.2.
	Chlorine Residual	(MTO) (mg/L)						0.4	0.1			26.00		Air Tank Pressure	psig	2.1
l	* Signifies MBfR 1 o		ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours		,	Note: sha	ded boxes a	re to remain	blank	Target Media Filter Flow	gpm	5
	Poet Fin	ished Wa	ter	1 \				_	-			ventor	′y	Rate Media Filter Inlet Pressure	psig	6.4
		Inspection		Ì	Backwash star		ash Recor	'd		Hanor	Type Steels (s.	-1)	Check		paig	
Col	lect while sump is ru			1	Backwash duka		min	$\overline{}$			Stock (g.			Media Filter Outlet Pressure	psig	2.2
	ımp Pump dischrg	psi		1	Initial Product	_	gal				T	ed Oxyge		Sodium Hypo Pump	spm	/5'
	Bag Filter ∆P	psi		1	Final Product 1	ank Level	gal /			Additional Field Test Kits Needed?	Nitrate -	⊦ Nitrite		Settings	% stroke	700
	GAC Influent	psig		1	Time of sample					na l	Nitrite			Coagulant Tank Level	gal	10
H	GAC Effluent IX-1 Pressure	psig psig		-	Location Lead Purge 1	(NTU)	IS:	S Collected? ′es □No		五葉	Sulfide Chlorine	3			ļ <u>.</u>	
	Feed Tai		ons	1	Lead Purge 2		Y			Ac Tes	o-Phosp			Coagulant Pump Settings	ml/min	5
		НЗРО4	Sodium Hypo		Lag Purge		□Y	es \□No		5	pН			000 0 11 1 1		9-
Tim	e			1	Lag Purge 2		□Y	′es ⊡Ne		Calibration cits	ORP			CO2 Cylinder Pressure	psi	92
⊢	al Tank Level (gal)	4.5	17] ~	Media Filter			′es □No		Calibratio kits needed?	Turbidit	y		H2 Cylinder Pressure	psi	90
	x Added e of Water Used For			_	NOTES:											1
Dilu						THANGED	BACKWA	SH 75P	VALLE -	10 lo	To I	ELAY	FOR	N2 Pressure	psi	132
(gal))			_		NG. CE							• •	N2 Flow Rate	scfm	
(gal				Note: There are 3785 mL per		BACKIN					****	9 14	· . /~	Tubidity (Instrument)	NTU	0.12
Fina (cal)	l Tank Level	4.5	17	gallon.	SAR FILLEY	- PHCA-VO	SHI WAS	5 [NIII]	MED A	1.	. ⊘			Turbidity (OIT)	NTU	0.12

Air Monitoring							
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area		
Time							
Carbon Monoxide (ppm)					•		
Oxugen (%)							
Methane (% LEL)							
Hydrogen Sulfide (ppm)							

NOTES CONT.:	
<i>2</i>	
	"
	· "

Data Log Sheet

D	ate: 1/18/12	<u>-</u>		Time:	:45		ESTOP PRO	Operator	BER	OKOF	F			Treatment Sys	tem In	spection
					Fi	eld Sampl	es,					-		Outlet Totalizer	gal	7530200
ration	pH calibration? Standards: □4 Standard Readir		No		ORP calibrati Temp (Deg	on? □Yes C):	ĭNo	Standards:	calibration? □0 □20 I		_	1000		Target Flow Rate	gpm	6
Calibr	4:	•	10.		Oten de ud D			Readings:						Internal Recycle Rate	gpm	150/90
ř	4	_7:	10: Lead Sample	Lag Sample	Standard H	eading: 220: _		0.136:	0.	30:		_ 0.50:		MBfR 1 pH	std units	7.2
	Lead Reactor:	☑ MfBR1 □ MfBR2	SP-100A □		AD: SP-200B □ AD: SP-100B □		Sample Collec	ction Time:	. [۱۹۱	~]		MBfR 2 pH	std units	7,2
	eter	<u> </u>	t E	हूं दू	g tor	ion	ia er	# E 0	ped er	- <u>t</u>	2 m	_ <u>t</u>	ted	MBfR 1 ORP	mV	-290
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 2 ORP	mV	-628
	<u>~</u>		-	<u> </u>	Т.	< _	_ ш	S	ii.	О Ш	ОШ	Ü	<u> </u>	Nitrate Frequency	Hz	-
Data	рН	(std units)											7.68	Last N Feed	ppm (N)	8,34
٥	Temperature	(°C)					L	Sec.			ar.	1,044	19.7	Last N R1	ppm (N)	1,28
ď	ORP	(mV)	,								sylva, k			Last N R2	ppm (N)	0.11
Sa	Dissolved Oxygen	(mg/L)						441						MBfR1 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)										40.1	(t)	MBfR2 Sparge Rate	mm	240
	Nitrite	(mg/L-N)												Phosphate Pump Settings	spm % stroke	20 30
	Sulfide	(mg/L)				Account to the same to the sam		No.				1		Phosphate Concentration	mg/LPO4	1.3
	Turbidity	(NTU)					35000 1000 1000 1000 1000 1000				100			at Strainer Aeration Tank Air Flow	scfm	3.1
	Chlorine Residual	(mg/L)					dia .		0.7			1		Air Tank Pressure	psig	2,0
	* Signifies MBfR 1	or MBfR 2 der	ending on if rea	ictor is in the lea	d or lag position	- this changes	every 96 hours			Note: shad	ted boxes a	re to remain	blank	Target Media Filter Flow	gpm	5
	Post Fir	nished Wa	ıter	1		D1						vento		Rate Media Filter Inlet Pressure	psig	2.1
	Systen	n Inspectio	on		Backwash star		vash Recor	a		H3BO4	Type Stock (ga	nl\	Check		paig	
Co	llect while sump is r	unning		1	Backwash dura		min				Hypo St			Media Filter Outlet Pressure	psig	2,8
S	ump Pump dischrg	psi] .	Initial Product	Tank Level	gal					ed Oxyge		Sodium Hypo Pump	spm	15
L	Bag Filter ∆P	psi]	Final Product T		gal			nal Field Needed?	Nitrate -	+ Nitrite		Settings	% stroke	100
 -	GAC Influent	psig		4	Time of sample	•	· · · · · ·			Additional I Test Kits Ne	Nitrite			Coagulant Tank Level	gal	3
\vdash	GAC Effluent IX-1 Pressure	psig		4	Location	(NTU)		S Collected		iể iặ	Sulfide			· · · · · · · · · · · · · · · · · · ·	9	
\vdash		psig nk Additi	lone	4	Lead Purge 1		Y			Add est	Chlorine			Coagulant Pump Settings	ml/min	5
-	i ceu ia	H3PO4	Sodium Hypo	_	Lead Purge 2 Lag Purge 1		DY				o-Phosp pH	ohate				
Tìn	ne				Lag Purge 2					Calibration kits needed?	ORP			CO2 Cylinder Pressure	psi	90
Init	ial Tank Level (gal)			_	Media Filter		□Y	′es □N	۰ د	Caffb kits need	Turbidit	у		HO O Kartan Buran		88
	ck Added													H2 Cylinder Pressure	psi	82
	e of Water Used For ution				NOTES:				-					N2 Pressure	psi	132
Vo (ga	ume Dilution Added				1		US THE							N2 Flow Rate	scfm	
	al Volume Added			Note: There are	AID Pu	MP - R	ESTART	ED P	ump	APON	SIT	E AF	CRIVALS	Tubidity (Instrument)	NTU	0.8G
	al Tank Level			.3785 mL per gallon.			ON THE							Turbidity (OIT)	NTU	0.87
11112		•		-	ADDITION	1) WHS	READING	, 0.46								L W 1
					DROSPES) Pown	TO CIC	B-142	on Res	TARTI	ا ب	Pum f	?			

Volume Dilution Added

2.4

Total Volume Added

Final Tank Level

8:30AM Perchlorate Destruction Using viembrane Biofilm Reduction ESTCP Project Number ER-200541 Time: 8AM Operator: BEROKOFF **Treatment System Inspection** Field Samples Outlet Totalizer gal 7535700 pH calibration?

Yes

No ORP calibration? □Yes □No Turbidity calibration? □Yes □No Calibration Target Flow Rate Standards: □4 □7 □10 Standards: □0 □20 □200 □1000 □4000 Temp (Deg C):_ Standard Reading: Readings: 150/90 Internal Recycle Rate gpm 4: 10: Standard Reading: 220; 0.136: 0.30: 0.50: MBfR 1 pH std units Lead Sample Lag Sample □ MfBR1 Lead Reactor: if MBfR1 in LEAD: SP-200B □ Sample Collection Time: SP-100A □ MiBR2 MBfR 2 pH std units 7.2 if MBfR2 in LEAD; SP-100B □ Finished Water Permitted Outfall Paramete Influent Aeration Reactor Media Filter Effluent Sodium Hypo Effluent Effluent MBfR 1 ORP Reactor m۷ -563 *Lead GAC 2 Post GAC ≚ MBfR 2 ORP m۷ 189 Nitrate Frequency Hz 8,35 Last N Feed ppm (N) (std units) Sample Data Last N R1 ppm (N) Temperature (°C) 0,06 Last N R2 ORP ppm (N) 3.33 (mV) MBfR1 Sparge Rate mm 240 Dissolved Oxygen (mg/L) 2004/ MBfR2 Sparge Rate 240 Nitrate + Nitrite (mg/L-N) spm 20 Phosphate Pump Settings Nitrite-(mg/L-N) % stroke 30 Phosphate Concentration 2.0 mg/LPO4 Sulfide (ma/L) Aeration Tank Air Flow scfm Turbidity (NTU) D. 4 Air Tank Pressure 2,1 Chlorine Residual Chlorine Residual (mg/L) Properties MBfR 1 or MBfR 2 depending on if reactor is in the lead or lag position - this changes every 96 hours psig Note: shaded boxes are to remain blank Target Media Filter Flow 15px apm Inventory **Post Finished Water** Media Filter Inlet Pressure psig **Backwash Record** Туре Check System Inspection Backwash start time: H3PO4 Stock (gal) Media Filter Outlet 2.6 psig Collect while sump is running Pressure Backwash duration Sodium Hypo Stock (gal) min Sump Pump dischra Additional Field Test Kits Needed? psi Initial Product Tank Level Dissolved Oxyge gal Sodium Hypo Pump spm Bag Filter ΔP Settinas 2 Final Product Tank Level Nitrate + Nitrite 100 gal % stroke GAC Influent psig 12 ime of sample collection: Nitrite Coagulant Tank Level gal **GAC Effluent** psig 4.5 TSS Collected? (NTU) Sulfide Location IX-1 Pressure psig ead Purge 1 □Yes □No Chlorine Coagulant Pump Settings ml/min **Feed Tank Additions** □No ead Purge 2 □Yes o-Phosphate H3PO4 □Yes □No Sodium Hypo ag Purge 1 90 CO2 Cylinder Pressure psi Time 1145 aq Purqe 2 □Yes □No ORP nitial Tank Level (gal) Media Filter □Yes □No H2 Cylinder Pressure Stock Added NOTES: Type of Water Used For N2 Pressure psi 138 Dilution

Note: There are 3785 mL per

gallon.

EQUALIZATION TUBE LINES

LOOSE FROM ITS FASTENED POSITION

CHALLENGE TEST #3. SPILL OCCUPRED FROM ONE OF THE

(IN-LINE W/PH PRORES)

ATOP

THE REACTORS

COM SMITH TOOK

N2 Flow Rate

Turbidity (OIT)

Tubidity (Instrument)

scfm

NTU

NTU

0.60

NITEATE	readings	(017)

TIME	LEAD	LAGO
	7 61 17	77167
9:57 AM	- 1.4	1.40-0.05
10:57 AM	3,48	0,05
11:57AM	3.46	0,10
12:57 pm	3.36	0,10
1:57pm	3,33	0.05
2:57pm	2.82	9.06
3:57 pm	2.84	0.01
4:57 pm	-	-
5:57pm	2.82	0:00
6:57pm	2.90	0.00

	Air	Monitorin	ıg		
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area
Time					
Carbon Monoxide (ppm)					
Oxugen (%)					
Methane (% LEL)					
Hydrogen Sulfide (ppm)					

NOTES CONT:

THE FORM BOTH THE SOIL AND THE PUDDED WATER ON THE GROUND AND WILL SUBMIT IT

FOR 24 TAT FOR REFCHUPATE. BAILY SPARGE SEQUENCE BEGAN @ 2pm - HOWEVER APT CAUGHT IT

IN TIME BEFORE IT SPARGED, THE LAG REACTOR DID DRAIN POWN WHICH WAS THE ONLY

SNAG, APT RESTARTED NORMAL OPERATION AND FILLED REACTORS BACK UP, THIS ALL

OCCUPPED JUST AFTER TAKING THE 1.57pm SAMPLE.

DUPLICATES MATRIX	5	CATES	MATRIX
-------------------	---	-------	--------

_		
DUPLICATE # 4 3 2 10 9 8 7 6 5	SAMPLE # 3-1 3-2 3-3 3-4 3-5 3-7 3-8 3-9 3-10	TIME 9:57 10:57 11:57 12:57 12:57 2:57 3:57 4:57 6:57
		1

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

	, I						ESTCP Pro						-	•		
Da	ate: 1/2 0/1	<u> </u>	•	Time: 12:	30 PM		•	Operator	BERDI	KOFF	· 			Treatment Syst	tem ins	spection
					Fie	ld Sample	es							Outlet Totalizer	gal	15456°°
lo	pH calibration?		0		ORP calibration				alibration?			200		Target Flow Rate	gpm	6
Calibration	Standards: □4 □ Standard Reading				Temp (Deg	C):	* * * * * * * * * * * * * * * * * * * *	Readings:	□0 □20 □	1500 DI	υυυ ⊔40	<i>7</i> 00		Internal Recycle Rate	gpm	150/90
ర	4:	7: <u> </u>	10:		Standard Re	ading: 220: _	<u> </u>	0.136:	0.:	30:		0.50:		MBfR 1 pH	std units	7.2
	Lead Reactor:	□ MfBR1	<u>Lead Sample</u>	Lag Sample if MBfR1 in LEA	D. OD 2000	-	Sample Collec	ction Time:				٠.				
	Leau Heacioi.	☐ MfBR2	SP-100A □	if MBfR2 in LEA			oample collec	· ·	<u></u>					MBfR 2 pH	std units	7,2
	eter	S	ent	tor	g tor	<u>io</u>	Media Filter Effluent	t E o	Finished Water	:1	ent	IX.1 Effluent	Permitted Outfall	MBfR 1 ORP	mV	-455
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	# Filt	Post Sodium Hypo	nisl Nat	GAC 1 Effluent	GAC 2 Effluent	T X	out Tu	MBfR 2 ORP	mV	-230
	Pa		uı	* Œ	Č	ă	<u> n</u>	<u> </u>	<u></u>	Ош	<u>С п</u>	Ш	- B	Nitrate Frequency	Hz	
e e	рН	(std units)									distr			Last N Feed	ppm (N)	8,36
Data	Tomogratura	(°C)								表现在				Last N R1	ppm (N)	0
Sample	ORP	(mV)												Last N R2	ppm (N)	2.76
San	Dissolved Oxygen	(mg/L)						146 340						MBfR1 Sparge Rate	mm	240
											17.0			MBfR2 Sparge Rate	mm	240
	Nitrate + Nitrite	(mg/L-N)						No.	- '	(f) (c) (d)			A C	Phosphate Pump Settings	spm	20 ·
	Nitrite	(mg/L-N)				554 (in as divisi			riasiyat Marika			Phosphate Concentration	% stroke mg/LPO4	18
	Sulfide	(mg/L)					2.46.25.24.40							at Strainer Aeration Tank Air Flow	scfm	3,1
	Turbidity	(NTU)				The State of the S	n jagornako (5.00) Milania		0.7					Air Tank Pressure	psig	20
_	Chlorine Residual * Signifies MBfR 1	(mg/L) or MBfR 2 dep	ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours	Į.	100,7	Note: shad	ded boxes ar	e to remain b	lank	Target Media Filter Flow	gpm	5
_				1	<u> </u>						ln۱	ventor	y	Rate		
		ished Wa	*			Backy	vash Reco	rd			Туре		Check	Media Filter Inlet Pressure	psig	4.5
		Inspection	•n		Backwash start			1	· · · · · · · · · · · · · · · · · · ·		Stock (ga		,	Media Filter Outlet Pressure	psig	2.8
—	ullect while sump is ru ump Pump dischrg	<i>inning</i> psi	<u> </u>		Backwash dura Initial Product T	•	min gal	+			Hypo Sto Dissolve			Sodium Hypo Pump	spm	/5
F	Bag Filter ∆P	psi			Final Product T		gal	+		Additional Field est Kits Needed?	Nitrate +	7.17		Settings	% stroke	100
\vdash	GAC Influent	psig		1	Time of sample		gui	<u></u>		Nee Nee	Nitrite			Coagulant Tank Level	gal	T .
Г	GAC Effluent	psig]	Location	(NTU)		S Callected		Kits	Sulfide			Coagulatic Fatik Level	yaı	0
	IX-1 Pressure	psig]	Lead Purge 1			Yes □N		Add	Chlorine			Coagulant Pump Settings	ml/min	5
L	Feed Ta	nk Additi	ons]	Lead Purge 2			Yes □N		, i	o-Phosp	hate				
L		H3PO4	Sodium Hypo	-	Lag Purge 1			Yes ⊡N		rigio 25	pH	,		CO2 Cylinder Pressure	psi	90
┡	ne	1.00	1:00	1	Lag Purge 2 Media Filter			Yes □N Yes □N		Calibration kits needed?	ORP					
-	tial Tank Level (gal)	1.7	15	-	iviedia riiter		1		<u> </u>	OSS	Turbidity	<u>y 1</u>		H2 Cylinder Pressure	psi	90
	pe of Water Used For				NOTES:								·····	N2 Pressure	psi	133
	ution lume Dilution Added	INF	•	.	FILTER AID WAS ETANK WAS EMPTY WOON ARRIVAL SO					So 1	N2 Flow Rate	scfm	1111			
(ga	al) ital Volume Added	3,3		4		TURNED OFF DOSING PUMP.							Tubidity (Instrument)			
(g	al)	3.3		Note: There are 3785 mL per	1801-14 (5)	- 1 1 2 22	VE								NTU	- ســــــــــــــــــــــــــــــــــــ
	nal Tank Level	5	15	gallon.					•					Turbidity (OIT)	NTU	0.63

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

Date: 1/23/	lo .	•		<i></i>	·	ESTCP Pr	roject Numl	embrane E ber ER-200	9107111111 1 19541	teduction				
Date: 1/23/	12		Time:	7:06		<u> </u>	Operator	:_AR	ucur]		Treatments	etom In	one et e
⊆ pH calibration?	- Contract	<u> </u>		Fi	eld Samp	les /				-/		Outlet Totalizer		Spection
≦ Standards: □4	Yes\\\	NO	•		ion? □Yes	No	Turbidity of	calibration?	□Ye	s No	<u> </u>	┨┝━━━━	gal	
Standard Readi	ng:	7		Temp (Deg	J C):		Readings:	Ü0 ∐20 !	J200 ∐	1900 □4000	0	Target Flow Rate	gpm	
Ö 4:	7:	10:		Standard R	eading: 220:	<u> </u>	0.136:,	0.	30:	0.8	50:_	Internal Recycle Rate	gpm	
Lead Reactor:	☐ MfBR1		Lag Sample	AD: SP-200B □		0		·				MBfR 1 pH	std units	
b	☐ MfBR2	SP-100A □	if MBfR2 in.LE	AD: SP-100B □	r	Sample Colle		· -	43	00		MBfR 2 pH	std units	
Paramete	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1	GAC 2 Effluent	Effluent Permitted Outfall	MBfR 1 ORP	m∨	
]]] ≧	Pe +	Re .	Aer		JA SS E	iii w	8 €	GAC Hille	€ ∄ § §	MBfR 2 ORP	mV	
st pH	(otel unita)			 	<u> </u>						Service C	Nitrate Frequency	Hz	
l g	(std units)	 	- -	 	<u> </u>				5000		7.58	Last N Feed	ppm (N)	
4 Temperature	(°C)	 	 	 		<u> </u>		_		1000000	19.5	Last N R1	ppm (N)	
ORP ORP	(mV)		 	<u> </u>	<u> </u>							Cast N-R2	ppm (N)	
Dissolved Oxygen	(mg/L)	_	<u> </u>	<u> </u>								MBfR1 Sparge Rate	mm	
Nitrate + Nitrite	(mg/L-N)		 									MBfR2 Sparge Rate	mm	
Nitrite	(mg/L-N)								(4) 5/0			Phosphate Pump Settings	spm % stroke	
Sulfide	(mg/L)		<u>.</u>							C 21		Phosphate Concentration	mg/LPO4	
Turbidity	(NTU)											at Strainer Aeration Tank Air Flow	scfm	
Chlorine Residual	(mg/L)		Tests Related to									Air Tank Pressure	psig	
* Signifies MBfR 1	or MBfR 2 dep	ending on if rea	ctor is in the lea	d or lag position	- this changes	every 96 hours	<u> </u>		Note: sha	ded boxes are to r	remain blank	Target Media Filter Flow	- 	<u> </u>
Post Fir	nished Wa	ter	1 `						1	Inve	ntorv	Rate	. gpm	
1 .	Inspection					vash Reco	rd			Туре	Check	Media Filter Inlet Pressure	psig	
Collect while sump is re	•	·	-	Backwash start Backwash dura		min				Stock (gal)		Media Filter Outlet	psig	
Sump Pump dischrg	psi		-	Initial Product T		gal	 			Hypo Stock Dissolved O		Pressure		<u> </u>
Bag Filter ∆P	psi			Final Product Ta		gal	/		Field seded?	Nitrate + Nit		Sodium Hypo Pump Settings	spm % stroke	
GAC Influent GAC Effluent	psig			Time of sample					nal F Nee	Nitrite		Coagulant Tank Level		
IX-1 Pressure	psig psig		-	Location Lead Purge 1	(NTU)	TS D	S Collected? Kes □No		ditio	Sulfide Chlorine		Coagulant Tank Level	gal	
Feed Ta	nk Additi	ons .	1	Lead Purge 2					Additional F Test Kits Ner	o-Phosphate		Coagulant Pump Settings	ml/min	ļ ·
	H3PO4	Sodium Hypo		Lag Purge 1		□Y	∕es □No			рН	* 		<u> </u>	
Time	<u>.</u>			Lag Purge 2			∕es □No		Salibration its reeded?	ORP		CO2 Cylinder Pressure	psi	·
Initial Tank Level (gal)				Media Filter		□Y	′es ⊟No		Calit kits need	Turbidity		H2 Odinder Pressure		
Stock Added Type of Water Used For				NOTES.	1							H2 Cylinder Pressure	psi	·
Dilution]	NOTES:	· 4 1	= Out	ENIL					N2 Pressure	psi	
Volume Dilution Added (gal)]	Dupul		FLUENT						N2 Flow Rate	scfm	
Total Volume Added (gal)			Note: There are	1 mr 2	- 10	i cher	<u>' </u>				 	Tubidity (Instrument)	NTU	: -
Final Tank Level			3785 mL per gallon	2. len				<u> </u>				Turbidity (OIT)	NTU	<u> </u>
				i Sys	TEM V	as tur	NED O	FF(a)	01:4	5				

D,	ite: # 01/2	4/12			7:30	· oronioral	ESTCP Pr	oject Numb	er ER-20	0541	eauctio	n				
	ille	710		Time:			8 ,	Operator	- ARU	CAN				Treatment Sys	stem Ins	pection
_	IpH calibration?	✓Yes □	No		Fi	eld Sampl	es				1			Outlet Totalizer	gal	
bratio	pH calibration? Standards: □4 Standard Readir 4:				Temp (Deg	on? □Yes C):	No	Standards:	alibration? □0 □20	□Yes □200 □1	000 □	1000		Target Flow Rate	gpm	
Cali	4:	_7:	10:		Standard B	eading: 220: _	7 19	Readings:		••				Internal Recycle Rate	gpm	
	Lead Reactor:	MfBR1	Lead Sample	Lag Sample	9			0.136:	0.	30:		_ 0.50:		MBfR 1 pH	std units	
		☐ MfBR2		II IVIBIR2 IN L	EAD: SP-200B		Sample Colle	ction Time:]		MBfR 2 pH	std units	
	Parameter	Units	Influent	*Lead Reactor	*Lag Reactor	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished Water	GAC 1 Effluent	GAC 2 Effluent	IX 1 Effluent	Permitted Outfall	MBfR 1 ORP	mV	•
1	ara	ן בֿ	<u> </u>	*Le	, L. L.	era	Me High	F S B	inis Wat	¥ #	βg	×₫	of the second	MBfR 2 ORP	mV	
	ь.				+ -	٩	ш	. 0	Œ _	О Ш	О Ш	ш	- B-O	Nitrate Frequency	Hz	
Data	pH	(std units)					4						7.64	Last N Feed	ppm (N)	
le D	Temperature	(°C)							5 5				19.5	Last N R1	ppm (N)	
Sample	ORP	(mV)	0.										12 (10 mm)	Last N R2	ppm (N)	
Ś	Dissolved Oxygen	(mg/L)							1.72					MBfR1 Sparge Rate	mm	
	Nitrate + Nitrite	(mg/L-N)			P									MBfR2 Sparge Rate	mm	
	Nitrite	(mg/L-N)	w.						140					Phosphate Pump Settings	spm	
	Sulfide	(mg/L)												Phosphate Concentration	% stroke mg/LPO4	
	Turbidity	(NTU)												at Strainer		
1				The Local Advantages				0.5	0					Aeration Tank Air Flow	scfm	
_	Chlorine Residual * Signifies MBfR 1	(mg/L) or MBfR 2 dep	ending on if rea	actor is in the le	ead or lag position	- this changes	every 96 hours	0.5	\mathcal{O}	Note: shad	od bayes a	re to remain	H1	Air Tank Pressure	psig	
				7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		overy comount			Note. Shad	3.			Target Media Filter Flow Rate	gpm	
		nished Wa			25	Backw	ash Recor	ď		-	Type	ventor	Check	Media Filter Inlet Pressure	psig	
_		Inspection	on		Backwash start	time:				H3PO4 S		al)	Oricon	Media Filter Outlet		
$\overline{}$	ect while sump is rump is rump Pump dischro			4	Backwash dura		min			Sodium	Hypo Sto	ck (gal)		Pressure	psig	
- 30	Bag Filter ΔP	psi psi		-	Initial Product T		gal			pi pa		d Oxyge		Sodium Hypo Pump	spm	
	GAC Influent	psig		-	Final Product To Time of sample		gal				Nitrate +	Nitrite		Settings	% stroke	
	GAC Effluent	psig		1	Location	(NTU)	TS	S Collected?		s N	Nitrite Sulfide			Coagulant Tank Level	gal	
-	IX-1 Pressure	psig		1	Lead Purge 1	(*****)	□Y			養素	Chlorine					
	Feed Ta	nk Additi	ons		Lead Purge 2		□Y			Ac	o-Phosp			Coagulant Pump Settings	ml/min	
		H3PO4	Sodium Hypo		Lag Purge 1		□Y	'es □No		$\overline{}$	pH					
Time					Lag Purge 2		□Y			Calibration kits needed?	ORP			CO2 Cylinder Pressure	psi	
	Tank Level (gal)			4	Media Filter		□Y	'es □No		Cali kits nee	Turbidity	,		H2 Cylinder Pressure	psi	
	of Water Used For			4	NOTES:									- 12 Gymraer i ressare	μsi	
Dilut			-			y 26-5	TARIED	(a) a	4-	247	+110-+	-11D	11ceV	N2 Pressure	psi	
(gal)					STRONG	- SMEL	1. 0= 3	SULTID	101	200	1-2		VET	N2 Flow Rate	scfm	
(gal)	Tank Level			Note: There are 3785 mL per	7		-, -,		/ July	シピ				Tubidity (Instrument)	NTU	
(nal)	Tail Level			gallon.										Turbidity (OIT)	NTU	
															-	

	Air Monitoring						
Zero Calibration? □Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBfR 2	OIT Area		
Time							
Carbon Monoxide (ppm)							
Oxugen (%)							
Methane (% LEL)	_						
Hydrogen Sulfide (ppm)							

			NUTRATE
٦.,	_	4	NUMBE

			MASSAGE LEAD WAG
OTES CONT.:			
DUPLICATE	TIME	COLATION	9:45 8:32 8:12 6:28
1	11:45	FINISH	\$1e:00 8.32 5.30 0.50
2	1:45	FINISH	10:15 8.30 5.24 4.68
3	2:45	FINISH	10:45 8.30 5.28 2.69
4	5:45	FINISH	11:45 8.32 1.77 —
969			12:45 8.32 1.89 0.55
let-			1:45 8.32 91 0:29
			2:45 8.32 1.59 6.06
ten se pala e a refr			3:45
3 1 1 - 2			4:45
			+ 11-

ESTCP: Technology Demonstration Plan Perchlorate Destruction Using Membrane Biofilm Reduction

ation	pH calibration	n? Ayes	INo 10		IORP calil	Field Sam	ples						Treatment	System I	nspection
alibra	Standards: Standard			:	Temp /	Deg C):	es No	Turbidit	y calibration	on? ∐Yes	ZNo		Outlet Totalizer	gal	75794
۴	4.4.08	7: 7	103 10	90,10	.12			Readings	3: 3:	20 □200 □1	10250 □4	000	Target Flow Rate	gpm	6
	Lead Reac	tor: MfE	<u>eao </u>	Sample Lag San	nple in LEAD: SP-200E	d Reading: 220):	0.136:		0.30:	= <u></u> -	0.50:	Internal Recycle Rate	gpm	150/90
		100		If MBfR2	in LEAD: SP-200E	M.	Sample Coll	ection Time	€:	[a:	16		MBfR 1 pH	std units	
	Parameter	Units	Influent	*Lead	i i i	io	. t	TE	Te			·	MBfR 2 pH	std units	 -
1				1 4 5	*Lag	Aeration	Media Filter Effluent	Post Sodium Hypo	Finished	GAC 1 Effluent	GAC 2 Effluent	Effluent Permitted Outfall	MBfR 1 ORP	mV	-201
	Н	(sto uni	ts)			-	- 	1 8 T	_ iË ≥	5 ≣	S ∰		MBfR 2 ORP	mV	-483
	emperature	(°C)				+					4.46		Nitrate Frequency	Hz	103
	RP	(mV)					<u> </u>					7.60	Last N Feed	ppm (N)	8.39
٥	issolved Oxyge				- 							14.1	Last N R1	ppm (N)	0.84
- 1	trate + Nitrite	(mg/L-N											Last N R2	ppm (N)	0.45
1	trite		<u> </u>										MBfR1 Sparge Rate	mm	240
Г	lfide	(mg/L-N)											MBfR2 Sparge Rate	mm	240
Γ	rbidity	(mg/L)		NAME AND THE PERSONS									Phosphate Pump Settin	as spm	20
Γ	orine Residua	(NTU)											Phosphate Concentration		35
S	gnifies MBfR	or MBfR 2 d	epending on it					0.2					at Strainer Aeration Tank Air Flow	┷┼┷┷┷┼	1.8
	Post F	<u></u>	· · · ·	reactor is in the	lead or lag position	- this changes	every 96 hours	0.2	<u>-0 </u>				Air Tank Pressure	scfm	3.2
	, ASI LI	nished W n Inspect	ater.					<u> </u>	<u>. </u>	Note: shaded b			Target Media Filter Flow	psig	20
lect:	vhile sump is r	inspect			Backwash start	Backw	ash Record	<u></u>	<u>. </u>	1 T	Inver		Hate	gpm	4
mp	ump dischrg	psi	T		Backwash dura	tion	miň	***		H3PO4 Stoc		Check	Media Filter Inlet Pressure	€ psig	1.6
	Filter ΔP	psi	 		Initial Product T	ank Level	gal			Sodium Hyp	o Stock (c	jai)	Media Filter Outlet Pressure	psig	2.3
GA	C Influent C Effluent	psig		_	Final Product Ta Time of sample	ank Level	gal				solved Ox		Sodium Hypo Pump	-├	
	Pressure	psig psig	 	_	Location	(NTU)				Nitri	ate + Nitri	te	Settings	spm % stroke	15
	Feed Tai	nk Additi	ons	-	Lead Purge 1		TSS (ollected? □No		ig # Suffi		 -	Coagulant Tank Level		100
		H3PO4	Sodium Hype	\dashv	Lead Purge 2		□Yes		;	A PR CHIO			 	gal	
			 	7	Lag Purge 1		□Yes	□No	 -		osphate		Coagulant Pump Settings	ml/min	4
	Level (gal)			┥.	Lag Purge 2		□Yes	□No		Pration ORP ORP			CO2 0 11 -	┝╼╼┾╼	
Adde				4	Media Filter		□Yes	□No		ORP Judice		- -	CO2 Cylinder Pressure	psi 🤇	7,
1	ter Used For			1	NOTES:					OB 5 Linupy	dity	ـــــا	H2 Cylinder Pressure	f	
Difu	tion Added		-	4		C MALL	79.44							psi <	70
olum	Added		 _	4	2.00	C WOK	PUACE (<u> </u>	30.	Sample	= (141	646	N2 Pressure		
ank L	evel			Note: There are 3785 mL per	LIMPEN (~, a:::	. AD-	-					N2 Flow Rate		32
	L			gallon.	BOTH ME	ACTIVIT	TERS A	IL IN	LIDE	<u>, 512.</u>	TEM	a	Tubidity (Instrument)	scfm	
						_				T-40/1/			i	NTU -	

	Air	Monitoring	<u> </u>		· ·
Zero Calibration? ∐Yes □No	Mixed Cylinder	Aeration Tank	MBfR 1	MBIR 2	OIT Area
					·
Time		┞┈──┤			
Carbon Monoxide (ppm)		 			
Oxugen (%)	<u> </u>	 		<u> </u>	
Methane (% LEL)					├
Hydrogen Sulfide (ppm)				<u> </u>	<u> </u>

ES CONT: GRUSSES. SWAGTEVOCK VALVES AT THE GOT GAS CONTROLLER BOX WERE SHUT CLOSES GRUSSES. SWAGTEVOCK VALVES AT THE GOT GAS CONTROLLER BOX WERE SHUT CLOSES
GUSSES. SWAGELOCK VALVES AT THE GOVE OF THE GOVERNES WERE SEED DISCONNECTED AND TO KOLATE FROM SYSTEM. GUS CYLINDERS WERE FLOW PATE WAS PAISED TO
PEADY FOR PICK-UP ON 1/26/12. THE STORM AND TRIGGERED THEH LEVEL
an Gom. THE Sump JANN - THE LIE WE W/ 20 GBM.
THE KYSTEM FLOW PLATE WAS CITATION TO
SHUT OFF AT 5:00 PM.

APPENDIX C FIELD NOTES AND MONITORING DATA

- Field Notes
- Monitoring System Measurements
- Field Sample Analytical Results

FIELD NOTES

Date	Day	Operator	Lead Reactor	Notes
4/20/11			-	Yesterday (4/20/11) APT & CDM worked on getting MBfR & associated system hydraulics up and running.
4/21/11			1	At end of day, the aeration tank & product tank were dosed with ~65ppm of chlorine (1.42gal of 6.15% concentration in 1300gal). At 9am (4/21/11), took Cl2 residuals on both aeration and product tanks and both recorded levels over 5 mg/L. Calibrated pH/ORP meters and turbidimeter. Did not take lab samples today as the GAC disposorb units were not operating properly - the pressure was building up in the vessel to the point where it was restricting flow. APT left MBfR on recirculation so it can begin to inoculate. Added 1 ppm H3PO4 to each reactor. Working toward getting new GAC unit in system in order to solve pressure build-up issue.
4/22/11			-	MBfR had no issues operating over night in recirculation mode. pH meter check: dipped into buffer 4 solution, read 4.01. Buffer 7 solution, read 7.00. Buffer 10 solution read 219mV against standard solution. Calibrated APT's pH meters for both MBfR 1 & MBfR 2.
4/25/11			-	Water level in MBfR 1 decreased by roughly 10% over the weekend. Also noticed that 4 modules were turned off on MBfR 2. Spoke to Ryan (APT) who knew about this and then had me turn them back on around 11:20 am. Took daily reading prior to turning on the 4 reactors that were previously off.
4/27/11			-	Carbon Supply Inc (CSI) came to site and switched out carbon media from Calgon disposorbs to their steel vessels.
4/28/11	0			Official startup date
4/29/11	1		MBfR 2	System ran overnight without any mishaps. Took monthly/annual grab samples today. After taking all grab samples for lab, APT shut off H2 feed to system for ~1.5 hours in order to calibrate LEL sensors - meaning today's analytical field tests may not be accurate. Was unable to perform field tests on multimedia filter due to APT running backwashes on both MBfR & Filter.
5/2/11	4		MBfR 1	System appears to be stable over it's first weekend in operation (no major issues/leaks). pH meter read 4.02, 7.01, 10.11 against buffer solutions. ORP read 218mV against standard solution.
5/4/11	6		MBfR 2	pH meter was tested against buffer solutions, readings were 4.02, 7.02 & 10.07 respectively. ORP meter was tested against buffer solutions with reading of 217. APT informed CDM that MBfR feed pump was malfunctioning and was shut down due to air in the system. APT had also told CDM that NO2 & NO3 readings may be misleading. Turbidity meter was calibrated using solutions. APT worked towards filling Hypochlorite tank and determined pump flow rate based on concentration. Topped of Phosphate tank; added 3.8 gallons of water and 42.3 ml of 85% H3PO4

Date	Day	Operator	Lead Reactor	Notes
5/6/11	8		MBfR 2	Aeration tank has slight smell of Sulfur. MBfR feed pump = 1 gpm due to problems with air in the system. APT had informed CDM that the feed pump had lost its prime and was set at a lower flow-rate. To alleviate the problem, CDM raised 18" the low level switch in the feed tank. After raising it, the flow on the feed pump was increased to 10 gpm. Nitrate laboratory sample was taken from the effluent of the Nitrate analyzer. The hertz reading was also recorded to help calibrate the Nitrate sensor. Laboratory samples were taken at 12:00, and test America picked up at 1:00. One sample, Aeration XX was not picked up by the courier. CDM replaced the air release valve on GAC vessel 2.
5/9/11	11		MBfR 1	Topped off phosphate tank: added 48.2ml H3PO4 & 3.6 gal water.
5/11/11	13		MBfR 2	David informed CDM that feed pump had malfunctioned last night and readings from the MBfR 1&2 reactors will have to be postponed because they will not be representative. The pump will require some troubleshooting in order for it to run properly. Laboratory samples we postponed to 12:00 on the MBfR reactors. The MBfR samples were taken from the nitrate effluent line at the top of the reactors. Samples for Perchlorate and Nitrate from the MBfR 1&2 were sent to the lab with a 24 hour TAT. Clyde had tried to trouble shoot pump problem. An air leak may be present which causes the loss of prime at higher flow rates. Clyde had taken apart the feed pump piping. No damage or missing parts were observed. Clyde reinstalled the feed piping using new Teflon on the pipe fittings and realigning the pump so that the pipe experiences no "springing" force. Feed flow increased from 5 to 8gpm at 17:50. R2 H2 P increased from 6 to 8psig at 20:05.
5/13/11	15		MBfR 2	APT was on site yesterday fixing prime problem in feed pump. Pipe shavings were found lodged into the impellor. APT increased feed rate to 8 gpm. APT installed new sample location taps for SP-100 & SP-200 to mitigate high D.O. level readings for field analysis kits. Inspected feed tank for any additional pipe shavings but nothing was visible. APT set up chlorine dose pump to begin feeding media filter yesterday. Measured flow rate on Cl2 pump; pump set @ 131 spm & 25% stroke length. This yielded 30 ml in 14 minutes (or 2.1 ml/min - 12.5% Sodium Hypochlorite). Added 3.7 gallons of water * 36 ml H3PO4 to phosphate tank. R2 H2 P increased from 8 to 14psig during the day. CO2 lumen ratio for reactors changed from 0.05 to 0.15 at 23:00.
5/14/11	16	NA	NA	pH set points changed from 7.5 to 7.2 at 16:30. Feed flow changed from 8 to 10 gpm at 17:15. Filter from changed from 5 gpm to 8 gpm 22:45.
5/16/11	18		MBfR 1	APT increased target flow rate from 8 gpm to 10 gpm on 5/15/11. Checked pH probe against buffer solutions and got the following: 4.00, 7.05, 10.14. Checked ORP probe against buffer, read 218 mV.

Date	Day	Operator	Lead Reactor	Notes
5/18/11	20		MBfR 1	Topped off phosphate tank: added 37.5 ml H3PO4 & 2.8 gal water. APT had me measure the fiber purge rate on each reactor then drain each purge line of any moisture. R1 bubbled at 2 bubbles per second & R2 at ~8 bubbles per second. R1 did not discharge any moisture & R2 discharged ~0.5 ml of moisture (these fibers were drained at 12:40pm). At 1:40pm APT had me increase purge rate on R1 to equal that of R2 as best as possible. Both purging @ ~8 bubbles/second. Fiber drains venting test around 12:00pm.
5/19/11	21	NA	NA	At 11:30am, R2 CO2 lumen flow ratio was changed from 0.15 to 0.05 and R2 H2 Pressure was adjusted (from 14 psig to 11.5 psig) accordingly to keep the same R2 H2 flow as before. This was done in order to determine the effect of CO2 lumen flow on nitrate reduction. R2 H2 P was increased to 15 psig at 16:10. R1 H2 P was increased from 6 to 8 psig at 22:46. R2 H2 P was increased to 18 psig at 22:50.
5/20/11	22	CA	MBfR 2	All influent readings//samples were taken after the nutrient injection point at the skid system. Phosphate tank was emptied and filled with new solution. The new Phosphate solution contains .52 mg/L-P. APT onsite. APT has shut down the system between 10:00 -11:300 to calibrate the pH and ORP meter on reactors 1 and 2. Test America onsite to pick up samples. APT restarts the system and has to manually turn on the Hydrogen generator. At 7:40am, pH set points for R1 and R2 increased to 7.5. At 10:00 am, system was shut down by Richard (Temp-R1 and R2 ORP fixed). At 12:20 system started again. At 18:45 Hydrogen leak detected in H2 generator (E-13 error), unable to restart H2 generator. System running with H2 cylinders.
5/21/11	23	NA	NA	Feed flow decreased from 10 to 8 gpm and R2 H2 P from 18 to 12 psig at 11:00. R1 H2 P decreased from 8 to 6 psig at 17:05 (we want some operating conditions as before to replicate previous results). pH set points changed from 7.5 to 7.2 at 17:13 because we don't want to precipitate hardness in modules.
5/23/11	25	DB	MBfR 1	When phosphate tank was filled last time out, the valve leading to the dosing pump was not opened back up so no phosphate was being dosed to system. MBfR flow rate was lowered on 5/21/11 to 8 gpm (from 10 gpm) due to lack of nitrate removal (this may be due to no H2PO4). Increased stroke length on Cl2 pump to 40 and decreased stokes per minute to 80 (from 131), due to pump losing its prime upon each site visit - pump should be operating in mid to high range. H2 generator stopped working on 5/20/11. Only had 700 lbs remaining in backup 6-pack so that ran dry - however, APT verified that system was still being dosed with H2 Monday morning so it likely ran out around the time I arrived. Switched hose over to alternate 6-pack. New set of H2 cylinders connected at 10:40. Filter flow changed to 7.5 gpm at 14:30.

Date	Day	Operator	Lead Reactor	Notes
5/25/11	27	CA	MD#D1	Richard with APT is onsite to repair and clean the Nitrate analyzer located in the reactor skid. He has removed all tubing, but the system is still operational. No Nitrate analyzer readings were taken today at the HMI. Dave Musico and Jonathan Roberts with NALCO visit the site. They NALCO representatives will investigate alternate applications that can be installed at the site to reduce turbidity. The treatment process was reviewed and NALCO requested information regarding discharge limits and water quality data. Cole with CDM is onsite at the request of APT to pick up all of the debris onsite and do general house clean for tomorrow's site tour. Nitrate analyzer leaking this morning because the SS tubing coming out from the analyzer was plugged. System shut down for a while. New cell stack installed and H2 generator started at 15:00.
5/26/11	28	NA	NA	R1 H2 P increased from 6 to 7 psig at 9:53.
5/27/11	29	DB	MBfR2	Injection valve for phosphate line was closed upon site arrival. Immediately opened and reinstated chemical flow to MBfR. Ran flow test on phosphate dosing pump: 1) 480 ml = Time zero. 2) 460 ml = Time 10 minutes. Phosphate pump successfully flowing @ 2 ml/min. Phosphate addition restarted at 12:45 which caused the feed flow meter to fluctuate from 6.5 to 9.5 gpm therefore phosphate is being pumped to the top of lead reactor R2.
5/28/11	30	NA	NA	R2 H2 P increased from 12 to 14 psig and R2 CO2 lumen ratio from 0.05 to 0.10 at 16:49. R2 H2 P increased from 14 to 16psig at 18:44.
5/30/11	32	NA	NA	Rialto R2 water flow LO-LO alarm at 12:27.
5/31/11	33	NA	NA	Feed flow increased from 8 to 10 gpm at 12:33. R1 H2 P increased from 7 to 8 psig at 15:50.
6/1/11	34	DB	MBfR1	On 5/31/11, APT remotely increased feed to system from 8 gpm to 10 gpm. Took perchlorate samples prior to the increase and submitted to lab on 6/1/11. Checked pH probe against buffers - results were as follows: 4.00, 7.02 & 10.17. ORP probe read 218 mV against standard solution. On 5/31/11 the phosphate feed line was moved to the lead reactor (R1). Operator made sure that chemical was being fed into tank, however sometime over the night air built up at the high point which prevented any phosphate to be dosed to system. I immediately bled out air bubble and increased feed rate on pump from a 25 stroke length to 35 in order to over-compensate for the missed time, then turned it back down to 25 after a few hours. Over the span from 5/31 @ 12pm to 6/1 @ 8:30am, there was a total of 0.4 gal of H3PO4 solution added to system. Yesterday, operator added 2.5 gal of water and 200 ml 85% H3PO4. Today I did a test to see what concentration was in the Cl2 tank - did a 4000:1 dilution which yielded a 3.0 ppm reading, thus overall concentration in tank = 12,000ppm. Drained R1 & R2 fiber drains at 13:10. R1 H2 P increased from 8 to 10psig at 21:36 and R2 H2 P from 16 to 18 psig at 22:26.
6/2/11	35	NA	NA	Sparge cycle at 13:45.

Date	Day	Operator	Lead Reactor	Notes
6/3/11	36	CA	MBfR1	Cameron Welding onsite to check chemical gas supply. Richard with APT Water onsite to repair the chlorine dosing pump, install a pressure gauge on the nitrate analyzer feed. Richard has also tapped a new phosphate injection point downstream of the MBfR flow meter. Daniel is onsite working on troubleshooting the chlorine feed pump. Daniel has mixed a new chlorine solution with a 4:1 concentration. 4 gallons of 12.5% Cl2 and 8 gallons of water from the media filter effluent. Clyde has added 4 gallons of phosphate solution to the feed tank. The 4 gallon solution consisted of 320 mg of phosphoric acid and 4 gallons of water. The phosphate feed pump was reinstalled at the new injection point and flow was verified to be injected. Weekly as well as Monthly samples were taken and was picked up by Test America @ 12:30. Richard tapped in a new port for phosphate injection at 13:15. Sparge cycle at 15:48.
6/4/11	37	NA	NA	R2 modules flushed at 11:35. R1 modules flushed at 11:45 (50 gpm through each module for a couple of minutes). Feed flow increased from 10 to 12 gpm at 13:40.
6/5/11	38	NA	NA	R1 modules flushed.
6/6/11	39	CA		Clyde will also measure the purge rate on 1/8 tube. Phosphate pump lost its prime over the weekend. A flow test will be conducted on phosphate feed pump. APT instructed to open product tank feed valve to allow 11 gpm of flow, Clyde has switched bag filters on outfall system due to a 5 psi change in pressure reading. Clyde set the phosphate pump to 65 strength length @ 10% strokes. Chlorine pump set at 100 frequency to achieve 1 ppm chlorine, possibly due to nitrate demand. Adjusted the flow rate of the pump back to original setting because the chlorine storage tank did not have enough storage capacity to pump at that rate. Chlorine residual detected after this adjustment at the addition point was ND. Fiber venting for R1 &R2 at 9:00. Valve to the filter media was opened more (it was partially opened before) which allowed for a higher filter flow and a decrease in the inlet and outlet pressures. Filter flow increased from 7.5 to 11 gpm at 10:22.
6/7/11	40	NA	NA	Gap in the data due to power being out between 9:30 and 13:45.
6/8/11	41	NA	NA	Sparge cycle at 4 am. David worked on system later that day. He did the following: 1) He replaced the phosphate dosing pump. 2) He put in two new valves for polymer injection: one into media filter feed pump suction line and one after the media filter feed pump. 3) He also put in continuous module purge lines to each pump's suction and also a mechanism to measure that flow or to potentially take a sample.
6/9/11	42	NA	NA	R1 H2 P increased from 10 to 12psig at 20:20.

Date	Day	Operator	Lead Reactor	Notes
6/10/11	43	DB	MBfR1	Cameron welding filled N2 micro bulk. Began recording membrane purge rate today as APT installed a rotameter on 6/8/11. Nitrate analyzer went down around 9:15 am due to Daniel pressing the wrong key on the analyzer. Daniel reset the analyzers per request from APT; the reading was fixed at approximately 1:30 pm. Added 4 gallons of sodium hypochlorite (12.5% sodium hypo) and 8 gallons of media filter effluent. Set the pump at 100% stroke length and 40 gpm. Added 330 ml of 85% H3PO4 and 3.7 gallons of feed water to phosphate tank.
6/11/11	44	NA	NA	The N analyzer was thought to have failed at 15:28 so we closed the sample valves in response in case it may be leaking and no water was getting to the sensor. Sparge process initiated at 23:00
6/12/11	45	NA	NA	Sparge cycle at 4am.
6/13/11	46	DB	MBfR2	Phosphate dosing pump was leaking upon arrival. The leak caused by the discharge compression fitting connection on dosing pump not being tightened. Fitting was tightened to stop the leak. Nitrate analyzer was off upon arrival. Aeration compressor was off upon arrival. Over the weekend the GFI switched off causing nitrate analyzer and aeration compressor to shut off, as they are tied to the same receptacle. Reset GFI and both aeration/N2 analyzer came back on. Had to increase sodium hypochlorite pump to 140 spm from 40 spm to obtain a 2.5 ppm chlorine residual on post filtration. Sodium hypochlorite appears to be degrading.
6/13/11	46	NA	NA	The GFI receptacle that supplies power to the N Analyzer and Aeration Blower was reset at 10:10; this fixed the N Analyzer and Aeration blower problem. Sample valves were immediately set back in auto.
6/15/11	48	DB	MBfR2	Pat Evans and Jen Smith visited the site to go over system with Jen. Phosphate suction line accumulated air bubbles causing no phosphate being dosed to the system. Visually inspected tops of reactors and saw foam accumulation in the lag reactor which is a sign of biological activity. Also on R1 the center module was more brown in appearance compared to the outer modules. Took weekly permit samples on effluent. Calibrated phosphate pump, see notes for settings and flow rates achieved.
6/15/11	48	NA	NA	Calibration of turbidity meter in the afternoon around 4 pm. They were working with N Analyzer too.
6/16/11	49	DB	MBfR1	Checked pH meter against buffers, they read 4.02, 7.01, and 10.11. Noticed very small air bubbles coming through SP-100A tubing. This may be due air entrainment from water flowing from the lead reactor on its way to the lag reactor from the over the over-flow drain. JS checked turbidity standards, and measured 0.0, 20.6, and 104 NTU. DI water read 0.16 and <1 NTU standard read 0.20 when checked a second time. Collected a sample at 12:50 after the phosphate feed for o-phosphate analysis, sample was called Influent-Post Nutrient. Collected samples at 15:15 from the effluent of the lead (SP-100A) and lag (SP-200B) for perchlorate, nitrate, and nitrite analysis samples were called Lead Reactor and Lab Reactor. Also collected a second round of field data monitoring at SP-100A, SP-100B, and SP-200B. At 15:35 added 90 ml of H3PO4 and 1 gallon of feed water to the phosphate tank, final tank level was 5 gallons. Performed chlorine demand testing.
6/16/11	49	NA	NA	Sparge at 4 am. High Sump Level by accident at 12:45.

Date	Day	Operator	Lead Reactor	Notes
6/20/11	53	DB	MBfR2	Added 16 gal 12.5% sodium hypo and 14 gal filter effluent. Began dosing post media effluent at 12:30 pm, pump setting set to 100% stroke length and 50 gpm for an injection volume of ~10.6 ml/min. At 2:30pm measured residual on finished water, it read well over 5 ppm. Before leaving site I turned down metering pump to 100 % and 30 gpm for an injection volume of ~5.9 ml/min. APT had me conduct a nitrate analyzer test between 1:15 pm-2 pm all while shutting off feed. This was done prior to taking daily data. This caused us to not be able to take any further data. Took weekly samples for permit compliance. Covered sod. hypo tank w/ black bags. Covered online turbidimeter and R2 orp probe with black trash bags.
6/20/11	53	NA	NA	Sparge at 4 am. Rialto R2 water flow LO-LO alarm at 5:05. R2 restarted at 8:48am. N analyzer calibration
6/21/11	54	NA	NA	Scatter data because the N analyzer is taking more than 15 minutes (>35 min) to stabilize to a new number after stream switching from R1 to R2.
6/22/11	55	NA	NA	Ryan working on system during the day (check his email on 06/23/11 for more details). Data missing from 21:12 (06/22) to 14:11 (06/23).
6/23/11	56	NA	NA	OIT connection problem fixed at 14:11.
6/26/11	59	NA	NA	Sparge at 16:00.

Date	Day	Operator	Lead Reactor	Notes
6/27/11	60	CA	MBfR1	At 07:30 measured chlorine residual at the filter effluent as 7.5 ppm, chlorine residual for the product water was 6.0 ppm. Added 15 gallons of water from he filter effluent to the sodium hypo tank, no hypochlorite was added. Since the residual was so high, it was decided that the tank could be diluted further. Collected field samples at 08:00. pH and ORP probes were calibrated and tested against the standards. Shipment of hypochlorite was received at 09:45, contained 4 drums of 15 gallon containers. Nitrate and nitrite field samples were collected and run in parallel with nitrate and nitrite standards. Nitrate and nitrite standards were initially 10.0 mg/L and were diluted 1:5 using DI water to read in range of the nitrate+nitrite test kit. The concentration read for the diluted standard was 2 mg/L, the reading for the standard sample was therefore 10 mg/L. DI water read 0 mg/L. At 10:35 the Chemetrics phosphate test kit was received. The phosphate tank solution was diluted 1:10 three times. The 1:1,000, 1:10,000, and 1:100,000 was diluted again at 1:2. The expected phosphate concentrations for those dilutions were 35.8, 3.58, and 0.36 mg/L-PO4; the test kit readings were >10, 5, and 1.5 mg/L-PO4. Samples were also collected from the lead influent (after phosphate addition), lead effluent, and lag effluent. The readings were 3.5, 3.5, and 1.5 mg/L-PO4, which are equivalent to 1.14, 1.14, and 0.49 mg/L-P. A sample was collected from the lead influent at 12:00 and sent to Test America for analysis; the concentration was 1.2 mg/L. CDM contacted APT and learned that a higher concentration of Phosphate was added to the tank last Wednesday by Ryan. He added 900 ml in 5 gallons, for a final estimated concentration of 1.03 mg/L-P. During the conference call, it was decided to continue feeding the phosphate tank with a similar concentration of phosphate. Added 570 ml phosphate and 3 gallons to the tank. A leak is present between the GAC vessels, and only occurs when the sump is running. The leak was not observed the pr
6/27/11	60	NA	NA	Richard cleaned and removed the Nitrate analyzer and restarted the H2 generator. We ran out of H2 from the cylinders between 14:55 and 16:35.
6/29/11	62	NA	NA	Richard replaced and calibrated N analyzer.
6/30/11	63	NA	NA	Feed increased to 14 gpm at 12:17. Sparge at 16:00.
7/1/11	64	CA		Feed flow was at 14 gpm. Added 500 ml of 12.5% phosphate and 2 gallons of influent water to phosphate feed tank. The flow rate on the side reactors was reduced from 3 to 2.5 gpm.
7/1/11	64	NA	NA	Feed increased from 14 to 16 gpm at 13:55.
7/2/11	65	NA	NA	Reactors swapped positions at 12 am this morning. R1 is currently the lead reactor.

Date	Day	Operator	Lead Reactor	Notes
7/3/11	66	NA		Sparge at 21:53 (Sparge process interval changed from 96hr to 24hr interval). After sparge, we got the Rialto R1 High Level and Rialto R2 High Level alarm at 23:13 and system shut down which led to hydrogen generator shutting down and therefore we are running on H2 cylinders.
7/4/11	67	NA	NA	David restarted the system at 8am. Sparge at 21:00.
7/5/11	68	CA	MBfR1	Nitrate standard was tested. Solution required a 1:10 dilution to be performed 3 times, to a concentration of 0.25. Results showed 0.25 on colorimeter. Lab samples will include monthly samples per line item 24. APT instructed CDM to open media filter flow valve to increase flow from 13 gpm to 15 gpm. CDM also restarted hydrogen generator at 10:30. The hydrogen generator had shut off on Monday. Chlorine and phosphate tanks have been refilled. CDM added additional clamp between GAC vessels to help stop the small leak there. No leak appears to be forming. The large CO2 tank has low pressure (10 psi). System currently running on small cylinder.
7/5/11	68	NA	NA	R2 H2 P increased from 18 to 21 psig at 16:15. Regular Sparge was initiated at 21:00. Feed pump tripped after the sparge process; therefore, there was no feed flow to the system.
7/6/11	69	NA	NA	Reactors swapped positions at 12am (R2 is lead). Richard worked on system: He restarted the system (he got the feed pump working again), calibrated the pH and ORP probes, and calibrated the Nitrate Analyzer. Regular Sparge initiated at 21:00.
7/7/11	70	CA		CDM onsite to fill phosphate tank with 2.3 gallons of influent water only. Check chlorine residual in media filter effluent (2.0 ppm) and in the product tank (<1.0 ppm, but did show a faint pink color). Also swapped gauges on GAC and IX systems. GAC gauge range is now 0-60 psi and IX ranges from 0-15 psi.
7/7/11	70	NA	NA	At 15:15, R2 H2 P was increased from 21 to 24 psig. Regular Sparge at 21:00.
7/8/11	71	NA		We initiated the sparge process to measure the Nitrogen consumption before and after the new regulator was installed: 1scfm/module (old regulator), 12 scfm/module (new regulator). Richard had to replace the feed flow meter with the flow meter on the media filter. The media filter will be shut down over the weekend.
7/10/11	73	NA	NA	Reactors swapped position at 12 am (R1 is lead). R1 H2 P was increased from 12 to 14 psig at about 21:30.
7/11/11	74	CA	MBIRI	APT had informed CDM that media filters are not operating and water from aeration tank is bypassed to sump. No samples will be collected for the media filter or product tank. Cameron weld had been notified of low CO2 levels; they will be onsite 7/12 for replacement. APT had instructed CDM to take the pH and ORP readings at the reactor's overflow. Sample results summarized as: R1 overflow - pH: 7.64, ORP: -220, temperature: 20.2; R2 overflow - pH: 7.56, ORP: -420, temperature: 20.4. CDM changed bag filters for GAC/IX system since it was reading a 10 psi differential pressure.
7/11/11		NA	NA	Accidental Rialto High Sump Level alarm at 10:24. System was restarted at 10:48. Regular sparge initiated at 15:45. Feed flow increased from 16 to 18 gpm at 22:38.
7/13/11	76	NA	NA	Regular sparge at 15:00.

Date	Day	Operator	Lead Reactor	Notes
7/14/11	77	NA	NA	Reactors swapped position at 12 am (R2 is the lead). Ryan and Renato worked on system: we connected CO2 dewar and new CO2 cylinder to system, replaced N analyzer and calibrated it, changed clear tubing for black tubing going to lab reactors, installed filter flow meter (we realized filter inlet pressure transmitter was not working, therefore, we set zero flow through filter), clean and calibrated pH/ORP probes, ran sparge process at 21:00, and added line to allow more flow through pH/ORP probes bypassing lab reactors. Sparge process Interval set to 48 hr.
7/16/11	79	NA	NA	Regular sparge initiated at 21:00. At 23:00 we got a Rialto High Sump Level alarm.
7/17/11	80	NA	NA	Rialto High Sump Level alarm came at 1:00, 1:52, and 9:27. Feed Flow was decreased to 16 gpm, 14 gpm (R1 H2 P from 14 to 11 psig and R2 H2 P from 24 to 20 psig) and 10 gpm (R1 H2 P from 11 to 9 psig and R2 H2 P from 20 to 12 psig) at 8:45, 14:46, and 22:48 respectively. Hydrogen pressure decreased to prevent overreducction.
7/18/11	81	DB		Flow rate read 10 gpm upon arrival. APT lowered feed rate on 7/17/11 due to high sump level alarm. Bag filter was full of slimy biomass and preventing adequate flow. This caused the sump to back up. CDM changed out the bag filter and set the valve configuration to run in parallel. Did not collect daily field sampling or weekly lab sampling. Sampled for weekly permit compliance in addition the VOCs on GAC-1 for backup data. Sampled MBfR backwash water for TSS, for a total of 4 composite backwash samples. The target flow rate was set to 18 gpm. Briefly stopped influent feed pump to repair-tighten a slow lead on the pump discharge plumbing. Added 500 ml of phosphoric acid and 2.7 gallons of feed water. Phosphate was read using the field test kit from the influent strainer (post injection) as 5 ppm-PO4 prior to addition of phosphoric acid. A second reading was taken 30 minutes after adding phosphate and the reading was 5 ppm-PO4. Feed flow was increased to 18gpm at 8:36. R1 H2 P was increased from 9 to 14 psig and R2 H2 P from 12 to 24 psig at 10:05. Daniel initiated sparge process at 12:05.
7/19/11	82	NA	NA	18:45 - Turned up H2 on the Lead, R1 from 14 to 16 psig.
7/20/11	83	NA	NA	At 9:51 we got a Stage 2 Pump Fail alarm. Rialto R2 Water Flow LO-LO alarm at 10:16. R2 was down until 17:52. Sparge Process initiated at 21:00.
7/21/11	84	NA	NA	R1 H2 P was increased from 16 to 20 psig at 9:20. Feed was increased from 18 to 20 gpm at 13:04.
7/22/11	85	NA	NA	Reactor swapped position at 12:00am (R2 is lead). Richard and Renato worked on system. Regular Sparge Process at 21:21.
7/24/11	87	NA	NA	R2 H2 P was increased from 24 to 28 psig at 20:10. Regular Sparge Process at 21:00, however, R1 NOx wouldn't go below 0.6 because no flow from R1 (Lag Reactor) was going to the N analyzer and therefore Sparge process never ended.

Date	Day	Operator	Lead Reactor	Notes
7/25/11	88	CA	MBfR2	Influent flow to MBfR reactors was 0.0 gpm upon arrival at the site. The recirculation pumps were operating at 210 gpm. CDM contacted ATP to determine cause. APT instructed CDM to hold off on water sampling until the afternoon. CDM called Test America to change pick up time. Inspected the phosphate tank and discovered the tank was empty. Upon filling the tank, there was a leak at the fitting that connects the tank to the pump intake line. CDM removed tubing and repaired the leak, then primed the pump and restarted the phosphate injection pump. CDM changed both bag filters, 100/50 in one and 200/100 in the other, and placed them both online in parallel configuration. The differential pressure prior to change out was 12 psi, after change out it was 3 psi. APT confirmed that the MBfR configuration changed to MBfR 2 in the lead. Samples were collected from SP-100A and SP-200B. APT informed CDM that sampling SP-100B and SP-200A will require shutting nitrate analyzer feed before opening the sample port. This will prevent draining the analyzer. APT instructed CDM on how to remove airpockets from the lines if this occurs. CDM needs to also check the nitrate analyzer discharge at the aeration tank for steady flow. APT installed a new nitrate analyzer, and CDM was not able to locate the frequency for the analyzer on the HMI display. At 09:19 we got system running at 20gpm again.
7/26/11	89	NA	NA	Reactors swapped positions at 12am (R1 is lead). No constant flow through N analyzer during the day because there is low pressure (purely hydrostatic pressure exerted by the height of the water in the tanks) at new sample locations going to the N analyzer installed on 7/22/11. Regular Sparge was initiated at 21:00.
7/27/11	90	NA	NA	R1 (LEAD) Sample Valve was positioned in "hand" at 10:34. We sparged Nitrogen in Feed Tank from 13:15-17:11 and NOx in R1 dropped significantly. Manual Sparge was initiated at 23:00.
7/29/11	92	CA		CDM on site to refill phosphate feed tank. Checked chemical levels. APT on site and system is off. APT is upsizing MBfR effluent from 2" to 3" and is adding a valve. CDM determined phosphate feed pump has lost prime during the week and was not operating correctly. Current level of tank is 4.25 gallons. Cameron Welding was on site to refill N2 tank. Work order will be scanned and sent out to Jen. Sodium-Hypo tank was not refilled due to system not in operation. Richard worked on system, he did the following: 1) He changed the overflow line from 2" to 3" to get higher feed flow capability. 2) He rerouted samples lines so it wouldn't vapor lock. We started another Feed Tank N2 Sparge experiment at 16:00 (N2 flow =3cf/min) to remove the dissolved oxygen (DO) in the feed. Filter flow increased from 15 to 18 gpm at 22:00.
7/30/11	93	NA	NA	Reactors swapped position at 12 am (R2 is lead). Regular sparge process at 21:00.

Date	Day	Operator	Lead Reactor	Notes
8/1/11	95	CA	MBtR2	Observed icing on nitrogen tank. Contacted Cameron Welding - they will be on site today to check N2 tank and replace CO2 Dewar. Phosphate injection tank feed line requires replacement. Phosphate not injecting at this point. APT has instructed CDM to increase pressure for CO2 feed by adjusting regulator. Feed pressure for CO2 is now at 60-65 psi. Cameron Welding delivered CO2 cylinder and will bring the Dewar tomorrow. Cameron Welding instructed CDM to de-ice N2 tank and feed line. Pressure builder valve has been opened to increase pressure in the nitrogen. CDM to confirm in few hours if pressure has gone up. Current N tank pressure is 105. Pressure did not increase as of 5:00 pm and remains at 105 psi. We ran out of CO2 around 4 am. CO2 flow was restarted at 10:12.
8/2/11	96	CA	MBfR2	CDM made site visit to close nitrogen sparge valve on product tank. Cameron welding refilled nitrogen tank and delivered CO2 Dewar. CDM requested to perform a backwash on the media filters. APT instructed CDM to empty reject tank. In order to drain tank completely, the floats in the sump tank had to be manually tripped. This allowed the sump tank to drain enough so the reject tank float valve would drop enough to allow flow from the reject tank. CDM informed APT about lowering the level of the float switch so this will not occur at the next backwash. APT conducted the backwash and CDM collected a composite sample from TSS. Feed tank N2 sparge was turned off at 11:30. We got a Rialto High Sump Level at 13:08 by accident. Filter Backwash was initiated by Clyde from 14:48-15:10. Feed flow was decreased from 22 gpm to 20 gpm at 16:48.
8/3/11	97	NA	NA	Reactors swapped positions at 12:00 am (R1 is the lead). Regular Sparge Process at 21:00.
8/4/11	98	NA		Richard worked on system. He did the following: 1) Installed new feed control valve. 2) Cleaned sump pump. 3) Calibrated H2 sensors on H2 generator and MBfR skid. 4) Changed air filter on H2 generator. 5) Calibrated pH probes.
8/5/11	99	CA		CDM on site to top off phosphate feed tank. Batch reaction experiment in lead reactor from 17:08 - 18:16.
8/6/11	100	NA	NA	Regular sparge was initiated at 12:00.
8/7/11	101	NA	NA	Reactors swapped positions at 12:00am (R2 is the lead).
8/8/11	102	CA	MBfR2	Chlorinator feed pump has minor leak at discharge connection. It has been repaired. The post finish water system has a larger discharge pressure (19-20 psi). A larger differential pressure across the system is recorded. CDM and APT have coordinated a sparge at 12:00 pm. CDM has taken TSS samples throughout the sparge process. Regular sparge was initiated at 12:00 pm (Clyde collected samples from Sparge process for TSS and turbidity analysis).
8/10/11	104	NA	NA	Regular sparge was initiated at 12:00.

Date	Day	Operator	Lead Reactor	Notes
8/11/11	105	DB	MBfR1	CDM onsite to perform conductivity tracer test on lag reactor (R2). Mixed 14 pounds of Mortons salt with 1.7 gallons of DI water in carboy. The salt never fully dissolved. Carboy sat in the sun for 3 hours while occasionally stirring but solution never dissolved. It was determined the solution was above the saturation limit of salt in water. CDM abandoned experiment and updated mixing calculations for run tracer experiment later. Conductivity of DI water was $2.25~\mu\text{S/cm}$, baseline conductivity on lag reactor was $392~\mu\text{S/cm}$. Reactors swapped positions at $12:00$ am (R1 is the lead). Rialto Secondary Containment Level High alarm at $19:26$ caused by a barb hose fitting popping loose.
8/12/11	106	NA	NA	Richard and Rich working on the system, they did the following: 1) Repaired the leak 2) Measured NOx at different spots in the tanks 3) calibrated pH probes. System was restarted ~9:30. Manual sparge was initiated at 14:43. Feed flow was decreased from 20 to 18 gpm at 16:34 to make sure we are removing all the Perchlorate.
8/14/11	108	NA	NA	Regular sparge was initiated at 14:00.
8/15/11	109	CA	MBfR2	Conducted tracer test using 1.7 gallons of DI water and 4 pounds 112 ounces of salt. Placed mixture in carboy and placed outside in the sun to increase speed of dissolving; mixed and stirred vigorously as well. Tracer test initiated at 12:00 pm. Baseline readings were approximately 400 µS/cm. Concentration was 1548 µS/cm after first 15 minutes, subsequent readings tailed off fairly quickly (within 1.5 hours). The CO2 Dewar is empty. CDM contacted Cameron for refill. DP gauge is assumed to be malfunctioning due to air in the tubing caused by cycling of the sump pump. CDM and APT to investigate. Reactors swapped positions at 12:00am (R2 is the lead). We tuned the feed flow PID controller to get rid of noise in feed flow.
8/16/11	110	NA	NA	Regular sparge was initiated at 14:00.
8/17/11	111	CA	MBfR2	Cameron Welding onsite to replaced CO2 Dewar and cylinders. Upon reinstall of the CO2 Dewar, the pressure regulator read 0 psi, but it is full. Adjusted the knob on the regulator but the reading was not affected. The regulator may need replacement. Level on tank reads full. The CO2 pressure to the system is 88 psi.
8/18/11	112	NA	NA	Regular sparge was initiated at 14:00. Rich worked on system: He did the following: 1) Harvested 2 sample reactors (one from each side) and shipped them in a cooler overnight to ASU. 2) Calibrated pH probes.

Date	Day	Operator	Lead Reactor	Notes
8/19/11	113	DB	MBfR1	Calgon on site at 8:45 am to pick up disposorbs and spend GAC/IX in supersacks. APT on site to perform maintenance duties on the system. CDM did not replace bag filters since we agreed to wait until the sump pumping frequency increases. Performed a backwash on the media filter. A composite sample was collected and sent for TSS analysis. The composite turbidity was 48.0 NTU and the purge turbidity was 0.6 NTU. Sampled from the product tank (finished water) for threshold odor number, HAAs, and THMs. Optimization started today. The phosphate reading at the strainer was 2.0 ppm. Reactors swapped positions at 12:00am (R1 is the lead). Rich worked on the system. He did the following: 1) Calibrated ORP probes. Daniel initiated manual filter backwash at 12:40 to collect samples for TSS analysis. The operating conditions were changed to the following: Feed flow = 15gpm, R1&R2 recirc = 280 gpm, R1 H2 P from 20 to 17 and R2 H2 P from 28 to 25 psig to keep the H2 Suppy:H2 demand ratio constant.
8/20/11	114	NA	NA	Regular sparge was initiated at 14:00.
8/21/11	115	NA	NA	We got the Rialto High Sump Level alarm at 10:40. The leak came from one of our sample reactors on the Reactor 2 side due to a hose feeding popping off its hose barb. The containment area got completely full because the Secondary Containment Level High alarm was disabled (presumably it was left disabled the time we had the leak on August 11-12) in order to run the system while the earlier-contained water was to be evaporated.
8/22/11	116	СВ	NA	System offline due to leak. Containment area was completely full with many pumps and other equipment partially underwater. Area around the containment area was saturated due to either overflow or a leak in the containment walls. The well was in the "AUTO" position (normally in AUTO), but was not operating because the "hi level" alarm indicator was illuminated, most likely triggered by the secondary containment high level alarm. The feed tank and product tanks were full. The Aeration tank was 90% full, the sump was 75% full, the reject tank was 10-25% full, and the two MBfR reactors were 75% full. The IX and GAC containment was empty. There were no obvious leaks when the system was off. The valves and sample ports were in their normal position. The leaves in the tanks were steady. A water sample was collected from the secondary containment for perchlorate analysis. The area of soil saturated on the outside of the containment area was delineated using spray paint, and photos were collected. Rich used pump to remove water from the containment.
8/23/11	117	NA	NA	Richard and Rich checked pumps and other equipment for water damage (sump pump was damaged). Added a total of 72 clamps to secure hoses onto barb.

Date	Day	Operator	Lead Reactor	Notes
8/24/11	118	NA	NA	Prior to restart, Rich did the following: 1) Installed a replacement sump pump. 2) Modified both of CDM's level switches to trigger at a lower level (main containment area and conex trailer). 3) Added an additional, redundant level switch into APT's circuit that will shutdown the skid. And Ryan loaded a modified program so that if any shutdown alarm is disabled, it will send an email after 1 hour to remind us that it is disabled. If that alarm is not acknowledged within 1 hr, then the shutdown alarms will automatically be re-enable. System was restarted around 16:00.
8/26/11	120	DB	MBfR2	Collected weekly and monthly samples for permit compliance at 13:00. APT was onsite and finished cleaning up the site from the leak. The aeration tank compressor was not pumping as much air (SCFM) as was typical. APT inspected the compressor and removed a clog in the line. APT confirmed that the compressor was under water during the overflow incident. Lower DO values were seen across the media filter and finished water. The compressor readings were back to 2.1 psi and 3.1 SCFM after the block was removed. Turbidity was higher on the finished water compared to the filter effluent. A duplicate finished water sample was collected and the turbidity results were similar. The phosphate tank level did not change throughout the day because the pump was off. The reset button on the GFCI outlet was not punctuated. Pump started upon resetting the outlet. CDM primed the pump and verified flow. We got a power outage between 16:19-16:35. Regular sparge process was initiated at 20:00.
8/28/11	122	NA	NA	Regular sparge process was initiated at 20:00. We got the Rialto LEL Detector alarm at 23:21 which shut down the system.
8/29/11	123	DB	NA	System offline due to hydrogen LEL sensor being triggered at approximately 10 pm on 8/28. CDM notified APT immediately and then restarted the MBfR. The LEL 2 sensor was reading 5 to 6 % so the lines were checked for leaks by using soapy water. CDM located and tightened 4 leaks on the sample reactor hydrogen connections. The LEL sensor primarily displayed 0 % but periodically jumped back to 5-6 %. APT to arrive on site in the afternoon to investigate further. No samples were collected due to system being offline. On 8/27 the hydrogen generator was down for a period in the morning, and was manually restarted by APT. Daniel restarted the system at 9:00. Rich onsite to calibrate LEL sensors and to bubble-check all H2 fittings for external leaks (Daniel has started this and found a couple leaks on fittings on the Sample reactors). Rialto LEL detector alarm at 23:13.
8/30/11	124	NA	NA	APT started system at 8:34. We dropped the R2 H2 pressure from 25 to 21 psi to match the previous ratio (the ratio that we want). We noticed that R2 (lag) has some exposed fiber now that we are running at a lower feed flow rate. This is a consequence of lowering the overflow line to accommodate the higher flows (~23 gpm). We throttled the 3" valve on the overflow line in order to bring the level over the fibers. These exposed fibers could be contributing to our higher H2 flows in the Lag reactor and the LEL detector tripping. Filter backwash was initiated by Rich at 11:44. Regular sparge at 20:00.

Date	Day	Operator	Lead Reactor	Notes
8/31/11	125	CA	MBfR2	Sodium hypochlorite pump was off in the morning. CDM plugged it back in. APT has explained that a leak was detected at the sodium hypochlorite injection point and was closed yesterday before he left. Kamron (RWQCB) on site at 10:00. CDM gave him a tour and walked through the process. Kamron took photos of the system. Rich was on site to test and install the filter aid pump. Rich started the filter aid pump at 1:55 pm, dosing rate is 3 ml/min at 0.5 mg/L and a feed concentration of 0.1 %. CDM and APT tested the new level that the secondary containment switch float is triggered. CDM determined the rope on the float switch will not engage when inverted due to the size of the float (3" round cylinder). The rope must be lengthened for it to be engaged. CDM/APT has lengthened the rope and lowered the pivot/connection point. Float now engages at approx 7 to 8 inches of standing water. APT will install another level switch that will engage at 4 to 5 inches. Reactors swapped positions at midnight (R2 is in the lead). Richard calibrated pH and ORP probes. We got the Rialto Secondary Containment Level High alarm at 12:58 by accident because the well pump was left in hand. Water was removed and system was restarted at 13:22. Initiated manual sparge at 16:35.
9/2/11	127	DB	MBfR2	APT onsite to refill filter aid and adjust pump settings. CDM performed backwash on MBfR and took turbidity measurements. Test America did not organize a courier pick-up today. They will send someone from the lab to pick up at the CDM Rancho Office later today or Tuesday morning. Rich tripled the filter aid concentration addition as compared to the original value (conc.=3 g/L, flow rate=3 ml/min) around 11:30. Manual sparge was initiated at 12:28.
9/4/11	129	NA	NA	Reactors swapped positions at 12 am (R1 is the lead). Regular sparge at 13:00.
9/6/11	131	NA	NA	Decreased R1 H2 pressure from 17 to 15 psig at 11:48 to keep same H2 ratio; on Sep 4 reactors swapped positions and R1 (lead) and H2 ratio went from 1.2 to 1.4. Rich initiated backwash at 12:55. Regular sparge at 15:00.
9/7/11	132	CA		Richard and Rich (APT) onsite to check performance of the coagulant pump. Media filter has a differential pressure of 4.5 psi (normally 2 - 2.5 psi). APT requested that the CO2 Dewar delivery pressure be lowered to 75 psi from 105 psi; CDM changed it to 75 psi. APT off site at 11:30. At 13:50 APT instructed CDM to lower feed flow rate from 15 to 10 gpm. This was the first day of new test conditions with the influent flow at 10 gpm and the MBfR recycle flow at 280 gpm. CDM adjusted the feed flow at 13:53 the OIT and adjusted the overflow valve between the MBfR and Aeration tank. CDM also reduced the media filter flow rate to 9.0 gpm by throttling the valve between the media filter and product tank. Richard (APT) changed lines to nitrate analyzer from 1/4" to 3/8". Media filter feed was decreased from 14 to 7 gpm at15:28. R1 H2 P was decreased from 15 to 12 psig and R2 H2 P from 19 to 15 psig at 15:40 to adjust the H2 supply/H2 demand ratios after feed to MBfR was dropped. Manual sparge was initiated at 16:00.

Date	Day	Operator	Lead Reactor	Notes
9/8/11	133	NA	NA	There was an accidental filter backwash at 9:40. Rich was onsite, he did the following: 1) Measured the flow of the Nitrate analyzer effluent (R1 = 144 ml/min, R2= 208 ml/min, feed= 5530 ml/min). 2) Cleaned the Nitrate Analyzer (we will do this in a weekly basis). 3) Fixed the position of the throttled valve in the media filter. Increased R1 H2 P from 12 to 13 psi at 13:52 to adjust R1 H2 supply/demand ratio. Rich and Ryan onsite: Rich increased the filter aid dosing (conc.= 8 g/L, flow rate=3 ml/min) around 19:00. Ryan turned the bypass flow in the pH loop OFF.
9/9/11	134	CA	MBfR2	CDM onsite at 8:00 to install sunshade on gas pad. APT instructed CDM to close media filter valve just enough to maintain 30 psi when backwashing. APT informed CDM not to perform the backwash due to the recent backwash yesterday. During the sparge process, the H2 LEL alarm had gone on and was at 37% during step 2, for the lag sparge. Aeration tank level was lower and CDM noticed white film inside of the tank and collected photos. CDM collected samples (bypass flow OFF, lab reactors flow ON). Clyde manually initiated sparge at 12:08 and collected MBfR sparge samples. Rich changed the injection point of the filter aid to the pump discharge around 16:00.
9/11/11	136	NA	NA	Regular sparge at 12:00.
9/12/11	137	CA	MBfR1	Reactors swapped positions at 12 am (R1 is the lead). Filter backwash was initiated at 04:20 because dP got higher than set point of 10psig. CDM noted that the coagulant pump was empty when arriving to site. CDM accidently engaged the secondary containment switch when trying to install a new level switch. Replaced old level switch; will have CCI help to install. The system was shut-off; CDM restarted the system shortly thereafter. CDM changed the chlorine feed to 40 strokes per minute and 100% stroke length for an approximate flow rate of 7.5 ml/min and dose of 2.7 mg/L of chlorine. A light yellow ppt was accumulating on the aeration tank and smelled of hydrogen sulfide. The film was also slimy. The H2S smell has been evident for about a week. The differential pressure has been increasing since filter aid was added, backflushed after 4 days online. APT will do a jar test and work with filter aid contractor to understand type and dosing requirements.
9/13/11	138	NA	NA	Rich cleaned mag flow meters, cleaned and calibrated on pH and ORP probes between 16:35-17:03.

Date	Day	Operator	Lead Reactor	Notes
9/14/11	139	DB	MBfR1	CCI attempted to install a new level switch for secondary containment but could not get the relays to work. APT was onsite to install a tarp to shade the sunny side (northern end) of the MBfRs. Did not perform a backwash because differential pressure on filter was less than 1 psi. APT tried to sparge the MBfR reactors, but the sparge did not complete properly because lag reactor (R2) wouldn't pump out. APT found water in a conduit - there was an open circuit on the neutral return leg that left 4 valves non-functional (stuck in their last position, XV-205,6,7 and the pullout valve, BV-210). The conduit was dried by sweeping n2 for an hour until no mist was coming out any more. The LSI was calculated for the lag reactor effluent, and calcium carbonate scaling was likely to occur, the yellow-ish ppt may have been calcium carbonate and some sulfur accumulation. The tarp covering the chlorine tank was not in place, which could lead to degradation of chlorine. The tarp was replaced. Increased sodium hypo pump settings to 60 spm and 100 % stroke length from 40 spm to increase the dose. Measured chlorine residual directly after media filter when these modifications were made, reading was 1.2 mg/L. CCI still on site when CDM left, troubleshooting the relays for the secondary containment high level switch. APT doubled the filter aid dosing (filter aid=16 g/L at 6 ml/min) at 12:30.
9/15/11	140	NA	NA	CCI on site, replaced CDM's level switch for secondary containment; tested that it functioned properly. APT increased flow to 18 gpm. APT onsite to inspect and troubleshoot the leak at the bottom of reactors problem and to finish drying the conduit. The stock solution for filter aid was doubled (32 g/L,6 ml/min) in the afternoon. Nitrate analyzer influent and effluent lines were modified (from bottom of tanks to discharge of recycle pumps) and operating conditions (feed = 10 -> 20gpm, R1 H2 P = 13 -> 20, R2 H2 P = 15 -> 28psig) were changed in preparation for batch experiment.
9/16/11	141	DB	MBfR2	Reactors swapped positions at midnight (R2 is in the lead). CDM performed batch experiment. Batch test consisted of shutting off influent to MBfR and waiting to take perchlorate samples based on monitoring of nitrate levels on OIT screen. This was conducted for R2 and then R1. The o-rings securing the modules slipped and they are getting bypass. APT will remove the modules and replace the o-ring seal with a threaded seal next week. APT performed maintenance tasks and met with visitors interested in the technology. Flow changed to 5 gpm after field activities were complete. Water flowed through the lag reactor but the recycle and H2 was off to keep the reactor from stagnating. On Sunday APT will do a reactor sparge and then bypass the lag reactor. After sampling on Monday they will return to flow through the lag reactor. Sodium hypochlorite concentrations were lower than expected in the product tank, concentration of sodium hypo in the stock tank was doubled. Media filter backwash at 13:57. Sparge process at 14:00. After batch experiment, we started running on one reactor (R2, the lead) with the following conditions: Feed = 5 gpm, R2 H 2P = 10psig. Filter feed = 4.5 gpm. Filter aid (64 g/L, 3 ml/min).
9/17/11	142	NA	NA	Increased R2 H2 P from 10 to 13psig at 10:29.

Date	Day	Operator	Lead Reactor	Notes
9/18/11	143	NA	NA	Regular sparge at 14:00. Made effluent of lead reactor (R2) go straight to aeration tank and R1 recirc pump was turned off around 19:20.
9/19/11	144	DB	MBfR2	Only R2 is in operation today (intentionally). As such, samples were not collected from the lag reactor. The chlorine pump settings were accidently left at 60spm on 9/16, so chlorine residual was high (>5) at the product tank - the ORP was 733 mV. The settings were reduced to 20 spm and 100% stoke length (4.3 ml/min); residual was 4 ppm 3 hours after this change was made. A sample was collected of the backwash water on Friday 9/16, and the differential pressure on the media filter was 9 psi today. This was likely due to increasing the dose of filter aid. The turbidimeter was calibrated on Friday 9/16 but was not compared to the low level standards. The online turbidimeter has a reading of 0 after backwashing - this is likely an artifact of the operation of the backwash pump interfering with the turbidity measurement rather than actual changes in turbidity. APT is still planning on replacing the reactor o-rings on Wednesday.
9/20/11	145	NA	MBfR1	Reactors swapped positions at 12am (R1 is the lead). Regular sparge at 14:00.
9/21/11	146	NA	NA	System was shutdown and the tanks were drained at 12:22am so that the modules can partially drip-dry by morning. APT onsite to work on fixing leak at the bottom of modules. System was restarted at 18:58. Sparge process was initiated at 19:43. Then system operating at the following conditions: Feed = 15 gpm, R1 recirc = 210 gpm, R2 recirc = 180gpm, R1 H2 P = 10, R2 H2 P=15psig, Filter feed = 4.5gpm.
9/22/11	147	NA	NA	APT onsite to work on the filter: They initiated media filter backwash to see how much flow they were getting. Piping on the filter will be modified to get correct flow when it backwashes. R1 H2 P was changed from 10 to 15psig at 09:56. Sparge process was initiated at 13:02. Filter feed flow set point changed to 9gpm. Sparge interval was set to 6hr. Regular Sparge process at 18:07.
9/23/11	148	NA	NA	Regular Sparge process at 12am. Regular Sparge process at 6:00. APT onsite to do the following: 1) Dried CO2 lumen MFC. 2) Changed bag filter to make sure it didn't trigger during the weekend. 3) Changed air filter on the H2 generator. Regular Sparge process at 12:00. Regular Sparge process at 18:00. R2 recirculation changed from 180 to 210 gpm at 20:47. Manual Sparge process at 20:55.
9/24/11	149	NA	NA	Regular Sparge process at 12 am, 6:00, 12:00 and 18:00.
9/25/11	150	NA	NA	Regular Sparge process at 12 am. Regular Sparge process at 6:00. Regular Sparge process at 12:00. Regular Sparge process at 18:00. R1&R2 recirculation changed to 280 gpm at 22:03. Manual Sparge process at 22:06. R2 H2 Flow rose steadily after the sparge which caused a Rialto LEL detector at 23:32.
9/26/11	151	NA	NA	Rich onsite to look for the H2 leak. System was restarted at 14:26. He was unable to find the leak. Feed dropped from 15 to 10 gpm at 17:00. R2 H2 P dropped from 15 to 13psig at 17:26. Regular sparge at 18:00. System shut down due to a Rialto LEL detector at 21:55.

Date	Day	Operator	Lead Reactor	Notes
9/27/11	152	NA	NA	Rich onsite to look for the H2 leak. System was restarted at 09:56. Rich found the problem. There is a large leak emanating from underneath R-206. We restarted the system with 6 of the 7 modules operating and will plan to pull R-206 from the tank tomorrow and fix it. R-206 H2 flow turned off. Regular sparge at 12:00 and 18:00.
9/28/11	153	NA	NA	The hydrogen leak that caused the most recent LEL alarm was caused by a mechanical failure on one of the lag modules. The epoxy head was delaminated from the core such that it was no longer connected. The reactor is being removed today, and another reactor from the lead MBfR will be removed. Samples of the membrane are being sent to ASU for analysis. Reactors swapped positions at 12am (R1 is the lead). Sparge at 12am and 6:00. APT onsite to remove leaky module on R2 (R2-206) and module on R1 (R1-103)MBfR down from 8:51-18:51.
9/29/11	154	NA	NA	Sparge at 12am, 6:00, 12:00, and 18:00. APT onsite to install a 3-way directional valve and flow meter on the media filter to direct all the backwash to the media filter and eliminate any need for a throttled manual valve. NaOCl injection valve was plugged solid with precipitate.
9/30/11	155	NA	NA	Sparge at 12 am, 6:00 (Sparge Interval changed to 12 hr). Sparge at 18:00. APT to continue working on media filter. All four CO2 meters got wet yesterday in the CO2 supply change-out and one of the CO2 mass flow meters could not be dried and restarted to run stably afterwards. So, we borrowed the CO2 mass flow controller from the "R1 Lumen flow" and are using it for the bulk CO2 input for R1 pH control (thus the lumen CO2 flow is zero for R1). Current operating conditions: Feed=10gpm, R1 H2 P=15psig, R2 H2 P=13psig, R1&R2 recirculation = 180gpm, Filter flow = 9gpm.
10/1/11		NA	NA	Sparge at 6:00 and 18:00.
10/2/11	157	NA	NA	Reactors swapped positions at 12 am (R2 is the lead). Sparge at 6:00 and 18:00.
10/3/11	158	CA	MBfR2	Sparge at 6 am. Sparge interval changed to 24 hr. Backwash at 14:40 because dP got to set point of 10 psig. Valve XV-103 on MBfR 1 was unplugged. Leak on phosphate pump/tank was identified. Recirculation pump P-200 was operating very loudly. The chlorine pump injection valve was closed, CDM opened the valve.
10/4/11	159	NA	NA	Sparge at 6am. Rich onsite: Manual Backwash at 11:52. Rialto High Sump Level by accident at 12:28. Manual Backwash at 12:43. Rich vented the fibers at 13:54 which improved the performance (NOx in the lead dropped significantly). New Filter aid addition around 20:45: "950S" 3.4 g/L at 3 ml/min.

Date	Day	Operator	Lead Reactor	Notes
10/5/11	160	DB	MBfR2	Sparge at 6 am. Rich vented fibers at 8:05 which improved the performance (NOx in the lead dropped significantly). APT filled filter aid tank. System shut down at 14:35 because rain water tripped CDM's secondary containment level switch. The switched triggers at 2 inches of water. CDM pumped water out of secondary containment and discharged it to the ground (rain water only). CDM elevated this secondary containment switch to 4 inches temporarily to prevent another system shut down. CDM restarted the system at 15:44. To mitigate accumulation of rainwater into secondary containment, the southern secondary containment wall was temporarily wedged inward slightly to break the connection between the conex box and the inside of secondary containment. Water had been flowing down the side of the conex box during heavy rain and flowed directly into containment. A significant leak from the sodium hypochlorite pump discharge was emanating from a crack on the fitting connection. CDM placed epoxy on the fitting and allowed it to dry. Tested it after several hours and the fitting continued to leak. Rich ordered the part to be replaced. Replaced bag filter with 100/50 bags since dP was 13 psi.
10/6/11	161	CA	NA	Reactors swapped positions at 12 am (R1 is the lead). Sparge at 6 am. CDM onsite to install gutters on southern side of MBfR skid.
10/6/11	161	NA	NA	Reactors swapped positions at 12 am (R1 is the lead). Sparge at 6 am. Manual backwash at 12:16. Filter aid dose changed: 6.8 g/L at 1 ml/min.
10/7/11	162	CA	MBfR1	APT on site to vent moisture for gas lines. May affect gas pressure readings. CDM to collect turbidity sample and send to lab. CDM & APT noticed well PVC piping has moved, we have addressed issue w/placing sandbags. CDM conducted gas readings at points onsite. CDM to discuss sample installation on product tank line to sump. APT has reduced flow to 5 gpm. APT has refilled the filter aid solution. CDM unable to calibrate turbidimeter.
10/7/11	162	NA	NA	(Sparge Interval changed to 22hr). Sparge at 4am. Rich vented fiber drains at 9 am. Chlorine pump was turned on at 9:20. Manual backwash at 11:51. Rich installed R1 CO2 lumen MFC. Feed dropped from 10 to 5 gpm at 16:10 (Filter flow dropped to 4.5 gpm). Rialto R1 High Level alarm at 17:06. System restarted at 18:55.
10/8/11	163	NA	NA	Sparge at 2 am.
10/9/11	164	NA	NA	Sparge at 12 am. Backwash at 12:45 because dP got to setpoint of 10 psig. Sparge at 22:00.
10/10/11	165	CA	MBfR2	CDM noticed filter aid tank is empty. Alerted APT and shut off coagulant pump. CDM unable to take ORP at locations, probe needs to be replaced. CDM has measured gas - elevated CO levels were detected (~120ppm). CDM changed chlorine injection pump setting to 20 strokes per min w/100 % stroke length. Then change was made due to the high chlorine residual in the product tank (this was due to media filter flow rate being decreased to 4.5 gpm from 9 gpm).
10/10/11	165	NA	NA	Reactors swapped positions at 12 am (R2 is the lead).

Date	Day	Operator	Lead Reactor	Notes
10/11/11	166	NA	NA	Rich onsite: H2 initiated manual backwash at 10:30am. Rich did pH probe experiment but the data got lost (MBfR down from 10:55-14:07). Manual filter backwash initiated at 14:12 and 14:33. Sparge at 18:00. Ryan was onsite to add the turbidity wiring for new turbidimeter. The Turbidity is now displayed from both analyzers on the filtration page. Ryan turned the filter feed flow from 4.5 to 4gpm.
10/12/11	167	CA	MBfR2	CDM observed that new online turbidity meter was installed - however OIT and instrument readings do not match. Meter samples water from media filter effluent. A filter backwash was performed yesterday (10/11). A sparge was done at 12:15 pm and samples were taken. The system was shut down at 1:30pm. The pH meters were removed and tested against CDM handheld meter. CDM reset hydrogen generator. After taking chlorine residual (0.1 in product tank), CDM increased injection rate to 30 strokes per minute w/100% stroke length.
10/12/11	167	NA	NA	Clyde initiated sparge process at 12:21 to collect sparge samples. Clyde did pH probe experiment between 13:43-15:36. Regular sparge at 16:00. Sparge interval was changed to 24hrs. pH loop for both reactors was left closed.
10/13/11	168	NA	NA	Filter backwash on its own at 8:10 because dP got to setpoint of 10psig. Manual backwash at 17:00 and 17:30. System down from 14:32-17:39 (but R1&R2 recirc were turned on with R1&R2 water level low and blowing air to kill sulfate reducers). Manual sparge with air at 22:00. We forced R2 to be in the lead and R1 in the lag so we can compare tomorrow's samples to Monday's and Wednesday's.
10/14/11	169	DB	MBfR2	Sodium hypochlorite tank was left uncovered exposing it to light. CDM covered w/black trash bag and secured it to tank. Increased strokes per minute on chlorine pump to 40 (from 30). This elevated post media filter chlorine concentration to 4.5 ppm. CDM used silicon solution to prep sample vials during turbidimeter calibration and during sample analysis. New sample vials were used during today's analysis. Turbidimeter requires factory calibration and repair.
10/14/11	169	NA	NA	Regular sparge with air at 16:00. R2 & R1 were forced to stay in the lead and lag position respectively (program was modified). Feed was increased from 5 to 10gpm around 17:00. One of the modules in R-1 would not contain hydrogen so it was valved off and taken out of service and R1 recirc flow was dropped from 180 to 150gpm around 20:00.
10/15/11	170	NA	NA	Regular sparge with air at 16:00.
10/17/11	172	DB	MBfR2	Reactor 1 has two modules offline, Reactor 2 has one module offline (APT indicated that one of the R1 modules failed over the weekend so they shut it down). Sending turbidimeter in for factory service. Used 2100p model instead for todays analyses. Upon topping off chlorine tank, CDM reduced strokes per minute on pump to 30 (from 40). Covered tank w/black tarp after filling. Increased media filter flow rate to 9gpm (from 4).

Date	Day	Operator	Lead Reactor	Notes
10/19/11	174	CA	MBfR2	APT onsite to drain fibers on MBfR 1&2. APT also refilled filter aid. APT explained that N2 is no longer used in sparge and air compressor was installed in-line. APT was successful in repairing the leaky module from MBfR 1. The failure was not due to epoxy, it was found that the top nut was loose. APT reapplied o-ring and tightened the top nut. CDM and APT observed that site does have less pungent H2S smell. APT shut down filter aid at 12:30 - initial turbidity reading on in-line probe = 0.29. At 1:30, turbidity - 0.66 NTU. CDM monitored 4 gases (O2, H2S, CO, LEL). APT decided to try a new filter aid. Readings will be relayed from APT.
10/20/11	175	NA	NA	Rich onsite: filter backwash at 8:56. Rich vented fiber drains at 10:42. Sparge at 16:00. Manual Sparge at 18:00.
10/21/11	176	DB	MBfR2	Coagulant tank was empty upon arrival. CDM turned off coagulant metering pump, increased sodium hypo settings to 40 spm from 30 spm. Post sodium hypo injection residual was 1.5 ppm. Took 4-gas meter readings today, all gas readings were zero except oxygen (20.9). Conducted a sparge and collected TSS and turbidity samples.
10/22/11	177	NA	NA	Sparge at 16:00.
10/23/11	178	NA	NA	Increased R2 H2 P from 11.1 to 15psig at 14:53. Sparge at 16:00. R2 H2 shot up after the sparge.
10/24/11	179	NA	NA	APT repaired a loose nut connection on the top of an R2 module. H2 leak disappeared after tightening it up. APT installed a solenoid valves to be used for fiber purging. APT troubleshot new turbidimeter. Changed sparge interval to 12hr (from 24). APT successfully vented fiber drains using solenoid valves.
10/25/11	180	NA	NA	Sparge at 03:00. R2 fibers' venting using solenoid valve at 13:30 (SV opened for 1 min). Sparge at 15:00.
10/26/11	181	DB	MBfR2	Took weekly samples, monthly influent compliance samples and duplicates.
10/27/11	182	NA	NA	Filter backwash at 12:18 because dP got to setpoint of 10psig. Sparge at 03:00. Manual Sparge at 08:05. We got a R2 High Level at 9:57. System restarted at 16:20. R1 H2 is not able to maintain the H2 pressure. At 20:27-20:44, R-105 was taken offline (R1 recirc dropped from 180 to 150gpm) because R-105 bottom H2 seal/o-ring/or core tube failed. At 22:15 Ryan corrected the (No Suggestions).
10/28/11	183	DB	MBfR2	APT onsite to rebuild recirc pump on R2. R1 valve leading to nitrate analyzer was left close since 10/27 causing a high nitrate analyzer reading. Upon opening, the nitrate analyzer stabilized at 0.23 ppm. CDM lowered secondary containment level switch back to 2" above containment floor (from 4").
10/28/11	183	NA	NA	Fiber drains venting was programmed into PLC: 1) The Fibers drains will currently open for 90 seconds. 2) R1 will open on the hour on every odd hour. 3) R2 will open on the hour on every even hour. 4) Neither will open if the sparge has been triggered or is in progress (to prevent losing out level indication / transmitter flow). R1 sample valve to N. Analyzer opened at 9:48. Richard replaced P200 between 11:53-17:48.

Date	Day	Operator	Lead Reactor	Notes
10/29/11	184	NA	NA	Sparge at 16:00. R1 fiber drain vented automatically at 19:00 for the first time.
10/30/11	185	NA	NA	Sparge at 03:00 and 15:00.
10/31/11	186	DB	MBfR2	Two modules were off on R1 and 1 module off on R2. Sodium hypo pump was off upon arrival (CDM turned it back on right away). Performed pH meter backcheck test today on all sample points using CDM's Oakton pH6+ field meter, A HACH Sension1 meter borrowed from CCI, and the inline pH probe APT has installed on the MBfR for R2. Results are shown in the table on the data log sheet. CDM took samples for daily monitoring tests after the pH test was performed, it appears that all pH values are lower due to the CO2 overshooting to compensate for the pH testing period. CDM confirmed with APT that during future pH tests using the inline probe, it is necessary to place the CO2 flow in 'hand' mode so that the CO2 does not overcompensate.
10/31/11	186	NA	NA	Sparge at 03:00. R2 fiber drain vented automatically at 10:00 for the first time because before that there was a mistake on the program.
11/1/11	187	NA	NA	APT opened R1 valve leading to nitrate analyzer (this was accidentally left closed upon sampling on 10/31/11). Regular Sparge process was initiated at 3:00 and 15:00. R1 sample valve at the bottom of the tank was opened around 18:30
11/2/11	188	CA	MBfR2	Very windy onsite. CDM does walk around to check for damage from wind. CDM lowered chlorine pump to 30 spm and 100 stroke length. CDM completed weekly sampling event to include duplicate samples. Regular sparge process was initiated at 03:00 and 15:00.
11/3/11	189	NA	NA	Regular sparge process was initiated at 03:00. Rich was onsite: He initiated a filter backwash at 8:38. After the backwash, Rich started dosing filter aid: SWT 2000. 3.25 g/L running at 17 ml/min. Regular sparge process was initiated at 15:00. Sparge interval was changed from 12 to 24 hr.
11/4/11	190	CA	MBfR2	APT onsite to adjust hydrogen LEL sensor. It is currently raining onsite and site is not flooded. CDM to monitor rain. APT complete LEL adjustment at 9:30, CDM will wait to for the system to stabilize prior to taking samples. APT increased filter aid dose: 6.5 g/L at 17 ml/min. LEL sensors in hydrogen generator were calibrated at 8:55. Clyde initiated the sparge process at 12:03. Regular sparge process was initiated at 15:00. Sparge interval was changed from 24 to 12 hr.
11/5/11	191	NA	NA	Regular sparge process was initiated at 03:00. R2 CO2 lumen valve was opened at 10:31 (ratio was set at 0.1). R2 H2 P was increased from 15 to 17 psig at 13:12 and from 17 to 17.5psig at 13:52 to keep R2 H2 flow the same. Regular sparge process was initiated at 15:00.
11/6/11	192	NA	NA	Due to Daylight Saving: R1 opens on the hour on every even hour. Nitrate analyzer samples R1 on every even hour. R2 opens on the hour on every odd hour. Nitrate analyzer samples R2 on every odd hour. Regular sparge process was initiated at 2:00 and 14:00 (an hour before scheduled time due to daylight savings). Filter backwash at 20:02 because dP got to 10 psig.

Date	Day	Operator	Lead Reactor	Notes
11/7/11	193	DB	MBfR2	Gallade chemical delivered 3 - 15 gallon carboys today of 12.5% sodium hypochlorite. APT to be onsite this afternoon to perform work on system. Regular sparge process was initiated at 02:00. PLC and OIT times were changed at 9:19 to correct for daylight savings: Fiber venting and Nitrate analyzer samples went back to their original time. Rich was onsite: 1) Started filter aid at 12:44 (it was under dosing), 2) Installed diffuser for turbidimeter around 14:15 3) Performed a manual sparge on R2 (one module at a time) between 15:53-17:16.
11/8/11	194	NA	NA	Rich was onsite: 1) Calibrated pH and ORP probes between 08:30-09:00. 2) Filter aid increased at 11:10 (6.5 g/L at 17 ml/min). Regular sparge process was initiated at 13:00.
11/9/11	195	DB	MBfR2	APT installed larger coagulation container (~15 gallons) but the pump was off, not feeding the system. Turbidity was low on both APT instrument (0,21). So there does not appear to be a need for coagulation dosing at this point. Regular sparge process was initiated at 01:00. Filter backwash at 9:46 because dP got to 10 psig. Regular sparge process was initiated at 13:00.
11/10/11	196	NA	NA	Regular sparge process was initiated at 01:00. Filter backwash at 9:46 because dP got to 10 psig. Regular sparge process was initiated at 13:00.
11/11/11	197	CA	MBfR2	CDM onsite, a slight smell of sulfur/sulfide in MBfR and aeration area. CDM performed sparge at12:00. Samples were taken for TSS. CDM cleaned nitrate analyzer lens with DI water and chem wipe. The Nitrate analyzer feed lines have been re-routed as per APT's direction. The nitrate analyzer numbers were taken before and after re-route. CDM refilled chlorine and change settings to 40 strokes per minute with 100% stroke length. Regular sparge process was initiated at 01:00. Rich opened the R1 sample valve at the bottom of the tank around 7 am. Clyde initiated manual sparge at 11:50. Clyde modified Nit. Analyzer influent lines in preparation for next week's batch test. Renato manually did a sparge on R2 (first decreased R2 recirc rate to 70 gpm and R2 H2 P to 14 psig) at 16:50. Sparge interval was changed to 4hr. Filter did a backwash on its own at 19:15 because dP got to 10 psig. Regular sparge process was initiated at 21:00.
11/12/11	198	NA	NA	Regular sparge process was initiated at 00:00, 04:00, 08:00, 12:00, 16:00, 20:00. David did a manual sparge on R2 around 10:45.
11/13/11	199	NA	NA	Regular sparge process was initiated at 00:00, 04:00. No more sparges after that because "Reject tank is NOT ready to receive." (Water is not flowing from the Reject tank to the Sump tank). R2 recirc was changed back to its original setpoint of 180gpm at 08:20. R2 H2 P was changed back to its original setpoint of 17.5 psig at 14:58.

Date	Day	Operator	Lead Reactor	Notes
11/14/11	200	CA	MBfR2	Schedule batch test for today. CDM was instructed to close the reject tank sump pump valve. During the weekend the reject line had become clogged not allowing it to drain. The MBfR has not been able to sparge since Saturday. CDM closed filter aid feed due to leak at the pump head. Batch testing started @ 9:35. Alarms for high level has stopped the test. CDM restarts test @ 10:30. First day of the batch experiment on R2. Filter aid was leaking at the head so Clyde decided to turn it off. High Sump Level alarm at 16:07. Rich was onsite at night: He found the Sump Tank level switch outside the sump tank and the sump pump never turned on which caused the High Sump Level. Apparently what happened is that Inventory water from the MBfR flowed into the sump tank and overflooded into the secondary containment which caused a level switch on the secondary containment to trip shutting down the well pump. Rich restarted the system at 21:12 but the well pump alarm was never cleared; therefore, the water going to the MBfR after being restarted was the remaining water in the feed tank.
11/15/11	201	NA	NA	Regular sparge process was initiated at 00:00 but it never finished because there was not enough water in the feed tank to refill the MBfR completely. The system was still running with no incoming water. A decision was made to not do the second day of the batch experiment. Rich was onsite: 1) Cleared the Well pump alarm and got water flowing back into the MBfR at 9:12. 2) Did a manual sparge on R2. The result was that R2 dP dropped from ~38-39 psig to ~25-26 psig. 3) Replaced the tubing on the filter aid pump and restarted it. Filter did a backwash on its own at 21:39 because dP got to setpoint of 10 psig. Went back to sparging with nitrogen.
11/16/11	202	CA	MBfR2	CDM onsite at 8:00am. The system is operating normal since 11/15/11. CDM to conduct batch test on reactor 1. Lead reactor is currently #2. CDM to follow steps 38-71 on Batch test protocol. Testing started @9:29. A leak was found on recirculation pump#2. It is the source of flooding the site. Batch testing ends @ 3:40. CDM returns all settings back as described in step 71. Nitrate analyzer lines were returned to their normal sampling port. CDM set sparge back to 12 hour interval and immediately initiated a sparge. CDM stayed onsite to monitor. CDM also removed flooded water. Level on reactors appear to be stable at 4-inches below the high level alarm. Cameron Welding onsite to refill nitrogen dewar. Note: APT informed me that the reject tank has approximately 4 to 6-inches of filter media in the bottom. We have calculated the total volume to be 2-4 cubic feet of media. The filters only contain 8 cu-ft of media. The backwash may be causing this. Second day of the batch experiment on R1. Clyde informed that P200 is leaking. Richard Rossi will be onsite on Saturday to replace the seal on the pump. Sparge process at 16:33.
11/17/11	203	NA	NA	Sparge at 04:00 (with Nitrogen instead of air since 11/15/11). Rich calibrated the pH and ORP probes for both reactors. Sparge at 16:10.

Date	Day	Operator	Lead Reactor	Notes
11/18/11	204	DB	MBfR2	Coagulant tank was empty upon arrival. Coagulant pump was running but not dosing system so CDM turned off pump. Sparge at 04:00. Sparge at 16:00. R2 H2 P was changed from 17.5 to 15.5psig at 21:49 to keep the same H2 flow was as before.
11/19/11	205	NA	NA	Sparge at 04:00. Richard was onsite: He worked on the P-200 from 9:36-13:00 (all was well for one hour then the new seal began to leak). Sparge at 16:00 but it didn't finish (Sparge timeout at 16:39) because it couldn't complete all the steps for R2. R2 H2 P couldn't maintain pressure so H2 flow to R2 was shut down.
11/20/11	206	NA	NA	Richard onsite: Worked on the P-200 from 8:55-10:30 (the seal leak appears to be resolved). He replaced the H2 generator filter.
11/21/11	207	NA	NA	System shut down on a R2 High Level at 01:27. Rich was onsite, he did the following: Restarted system at 12:03. Filter aid started around 13:30 (SWT2000). Sparge at 16:00
11/22/11	208	CA	MBfR2	APT lowered influent flow rate to 8 gpm. CDM changed phosphate dosing to 20 strokes per minute / 25% stroke rate. Changed sodium hypo dosing to 30 spm / 100 %. The reactor overflow valve to the aeration tank was slightly closed to compensate for lower flow and maintain water level in the reactors. Feed flow changed from 10 to 8 gpm in preparation for the 4 weeks of steady state starting Monday November 28. Filter flow was also dropped from 9 to 7.5 gpm.
11/23/11	209	NA	NA	Rich was onsite, he did the following: Rich found a leak from the bottom of R2 207. R-207 was taken offline at 7:48. R2 recirc dropped from 180 to 150gpm at 10:09. Calibrated turbidity meter ((No Suggestions)). Rich did a filter backwash at 12:32. At 14:45, R-204 was taken offline due to a leak coming from the top of the module. It delaminated. R2 recirc dropped from 150 to 120 gpm. Filter flow dropped from 7.5 to 7 gpm.
11/24/11	210	NA	NA	Sparge at 00:16 and 2:55 and 14:00. Sparge interval set at 12 hrs interval.
11/25/11	211	NA	NA	Sparge at 2:00 and 14:00.
11/26/11	212	NA	NA	Sparge at 2:00. Around 10:00, R2 H2 P changed from 15.5 to 18 psig. Sparge at 14:00.
11/27/11	213	NA CA	NA MBfR2	Sparge at 2:00 and 14:00. CDM performed turbidity calibration, all standards do not read well and need to be reordered. APT informed CDM that bag filters were changed on 11/23/11. Sparge occurred at 2:00 pm. CDM to order more post-filters (250-100). CDM installed 100-50 type bag filters. Need to closely monitor DP. APT onsite to refill filter aid and harvest 2 fiber reactors (1 from each MBfR). Sparge at 2:00. Filter backwash at 12:04 because dP got to setpoint of 10 psig. Sparge at 14:00. Rich onsite: Rich sent two lab reactors to ASU. At 15:43 feed flow was dropped from 8 to 7gpm and filter flow from 7 to 6 gpm. Manually made reactors swap positions at 15:53 (R1 is in the lead)
11/29/11	215	NA	NA	Sparge at 02:00. Sparge at 14:00. Around 17:00, we set R1&R2 CO2 in the lumen to 0.05 of the H2 flow and changed R1 H2 P from 15 to 16.5 psig and R2 H2 P from 18 to 16.5 psig to keep the same H2 flows.

Date	Day	Operator	Lead Reactor	Notes
11/30/11	216	DB	MBfR2	Increased phosphate dosing pump stroke length from 25% to 30. Coagulant tank was empty upon arrival, CDM turned off dosing pump and alerted APT. CDM turned down CL2 pump to 25spm (from 30) due to the lower media filter flow rate. Collected 10 gallons influent well water and 5 gallons flush (purge) water and sent them to ASU for overnight delivery. CDM had to manually initiate a sparge on MBfR and only collect sample water during the first drain/second drain for both reactors. Sparge at 02:00. Daniel collected well water (2x5 gal). Daniel manually initiated the sparge process at 13:10 to collect sparge water (5 gal) and sent it to ASU.
12/1/11	217	NA	NA	Sparge at 2:00. No feed water at 06:52 (no water in the feed tank) but system was still running so we started overreducing. Stopped system at 08:42 until Rich gets there. Rich onsite: Well pump had a high sump level alarm. The weather conditions triggered the level switch in the secondary containment (high winds)?. There was no water in the secondary containment. Alarm was cleared and water started flowing into the feed tank. System restarted at 9:18. Sparge at 14:00. Feed was dropped from 7 to 6gpm at 16:55. H2 generator shut down at 18:09
12/2/11	218	DB	NA	No sampling today as Wednesday's perchlorate lag samples did not show complete removal. CDM on site to top of phosphate and sodium hypo tanks. CDM restarted H2 generator and verified enough H2 in 6-pack to last through the weekend if generator shuts down again. Increased sodium hypo pump (spm) setting to 30 (from 25spm) after topping off tank. APT to be on site this afternoon to adjust ball valve setting on MBfR outfall (overflow to aeration) to account for lowered flow rate (6 gpm). CDM adjusted ball valve (APT to check on water level later today). Noticed some knocking or rougher sounds from sump pump (might consider servicing it). Reactors swapped positions at 12 am (R2 is in the lead). Sparge at 02:00. Daniel adjusted the overflow valve and restarted the H2 generator around 13:00. Sparge at 14:00. H2 generator shut down at 16:04.
12/3/11	219	NA	NA	Sparge at 02:00. Sparge at 14:00.
12/4/11	220	NA	NA	Sparge at 02:00. We ran out of H2 in the cylinders around 11:00. Sparge at 14:00 but we got a Sparge timeout alarm at 15:48 because the sparge process was stuck in the very last step because since there was no H2, the NOx numbers couldn't get below 0.6mg/L to complete the sparge cycle.

Date	Day	Operator	Lead Reactor	Notes
12/5/11	221	DB	NA	No sampling today due to running out of H2 over the weekend. Cameron Welding to deliver new 6 pack later today. Currently only running on one cylinder (400 psi). CDM to coordinate w/APT to see if Rich Buday will be on site later today and switch out regulator to new 6 pack. Cameron to deliver another 6 pack on 12/7/11. There was a sizable leak that occurred on the N2 sparge line just prior to the second valves. CDM tightened it up and minimized leak but required further maintenance and possible repair (CDM alerted APT). Cameron to fill N2 dewar today as the leak likely caused us to run out of N2. CDM closed off valve on N2 dewar to prevent further loss on gas upon filling up the dewar today (~12pm). N2 line pressure low alarm at 00:27. H2 back at around 09:30 (from one cylinder). Rich was onsite: H2 generator restarted at 13:10. Fixed N2 leak. Sparge at 14:00. H2 generator shut down at 16:39. At 18:24, R1&R2 H2 P were changed from 16.5 to 8.25psig so we don't run out of H2 from the one H2 cylinder left until it gets fixed next morning.
12/6/11	222	NA	NΑ	Reactors swapped positions at 12am (R1 is in the lead). Sparge at 02:00. Rich onsite: Restarted H2 generator and put R1&R2 H2 pressures back to 16.5psig (their original values) at 08:38. Filter B (the one on the right) was turned off at 08:45. At 10:06 filter A (the one on the left) started. Filter A backwash at 10:12. Sparge at 14:00. Rich onsite: Around 16:00, Rich calibrated the pH, ORP probes. Also, to see how quickly turbidity recovers, he dosed 13g/L of filter aid (SWT2000) at 35ml/min for 5 min and turbidity dropped significantly from ~0.9 to 0.17NTU. Manual Filter A backwash at 19:52.
12/7/11	223	NA	NA	No sampling today. Plant is not yet at steady state. Filter aid not yet implemented. Sparge at 02:00. Rich onsite: Filter aid (SWT2500, 13g/L at 7ml/min) from 11:52 to 13:45. Turbidity dropped from 0.55 to 0.12NTU.Filter aid was delivered to the wrong location. Manual Sparge at 13:35.
12/8/11	224	NA	NA	Sparge at 01:00. Rich was onsite: At 11:00, he secured all fiberglass heads using wood screws. At 12:30, he cleaned recirc flow meters. Sparge at 13:22.
12/9/11	225	CA		No sampling today as filter aid was not delivered to the proper address. Filter aid to arrive at CDM Rancho Office on 12/12/11. CDM onsite to take weekly compliance samples. Sparge 01:00. Sparge 13:00. CDM collected weekly compliance samples only.
12/10/11		NA		Reactors swapped positions at 12am (R2 is in the lead). Sparge 01:00. Sparge 13:00.
12/11/11	227	NA	NA	Sparge 01:00. Sparge 13:00.

ъ.	_	0 1	Lead	
Date	Day	Operator	Reactor	Notes
12/12/11	228	NA	NA	No sampling today. Filter aid delivered to CDM office this morning. APT picked it up and filled filter aid tank so system can officially be set at steady state conditions. Sparge 01:00. Sump pump discharge pressure dropped significantly from 30 to 5 psig at 11:13. Sparge 13:00. Rich was onsite around 15:00:Filter aid started (26g/L at 4ml/min). Leak in the convex trailer. The secondary containment switch triggered an automatic shut down of influent well water but the MBfR system kept running. The cause of the leak was a hose connection coming lose from the charlock fitting at the influent of the lead GAC vessel. Some quantity of water was discharged to soil surrounding the southern conex box secondary containment area. Rich fixed the leak. System was shut down at 16:36 while Daniel and Clyde processed the water from secondary containment to the sump tank. Collected water sample and soil sample for perchlorate analysis. Soil sample collected from impacted area.
12/13/11	229	NA	NA	System restarted at 11:20. Sparge at 13:00.
12/14/11	230	NA	NΙΛ	CDM onsite. Pumped remaining standing water in secondary containment into the sump tank. The turbidity meter was unplugged from 10 - 11 am so that the power strip could be used to pump water out from secondary containment. CDM installed hose clamps on GAC vessel and IX vessel connections that did not have them. Turbidity samples were not collected due to a sparge initiation prior to sampling. CDM checked level and height of the secondary containment switch: it engages at approximately 5 to 6 inches. The sump pump pressure was 31 psi. The lead GAC vessel had a high differential pressure (20 psi). Reactors swapped positions at 12am (R1 is in the lead). Sparge at 01:00. Steady state started today. Sparge at 13:00.
12/15/11	231	NA	NA	Sparge at 01:00. Sparge at 13:00. CDM on site to bypass GAC-1 (lead vessel) and rehose GAC-2 as the only inline GAC vessel. GAC-1 was isolated from the system. Collected pressure readings prior to removal of the GAC-1 vessel.
12/16/11	232	NA	NA	CDM onsite. Weather is very windy but the canopy is holding in place. APT and Sterling Water onsite to troubleshoot filter aid. The reading was 0.55 NTU on the turbidimeter. CDM contacted Cameron Welding to refill the CO2 dewar and backup cylinders. CDM inspected and replaced the bag filters. A 200/100 micron filter was installed. The heel drain pump on R2 was accidently left in the afternoon; the valve was opened and then closed but did not actuate. This resulted in the lag vessel completely draining to the reject tank over a period of about 15-20 minutes and having to be refilled at 1:30. Sparge at 01:00. Rich and Kevin onsite: Due to a low MBfR flow rate (6gpm) we are generating sulfides which we believe is the cause of higher turbidity. They were trying to figure out what the correct type and concentration of filter aid is to remove sulfide. Working doing jar test to optimize turbidity. Sparge at 15:32.
12/17/11	233	NA	NA	Sparge at 03:00. Sparge at 15:00.

Date	Day	Operator	Lead Reactor	Notes
12/18/11	234	NA	NA	Reactors swapped positions at 12am (R2 is in the lead). Sparge at 03:00. Sparge at 15:00.
12/19/11	235	NA	NA	Cameron Welding onsite to replace CO2 dewar. CDM onsite to collect weekly samples and field duplicates. CDM adjusted/postponed the sparge. It will be reset after sampling is complete. Outlet totalizer is gunked up and the head has moss growing inside it. The unit needs servicing. Sparge at 03:00. R1 Sample valve left closed around 13:30. Sparge at 16:00. Rich onsite: Jar testing with ferric chloride. At 19:25, turned pump down from 7 to 2ml/min. At 21:00, initiated manual backwash. After turbidity recovered, it dropped to ~0.25NTU.
12/20/11	236	NA	NA	Sparge at 03:00. Rich onsite: Increased filter aid pump from 2 to 3ml/min around 11:45. Increased filter aid pump from 3 to 4ml/min around 12:30. Opened R1 sample valve to Nit. Analyzer around 12:30. Increased filter aid pump from 4 to 5ml/min around 13:00. Rich calibrated pH and ORP probes from 12:50-13:40. Sparge at 15:00.
12/21/11	237	NA	NA	Hydrogen sulfide odor was not strong today, even when removing the aeration lid, the smell dissipated quickly. Lag/aeration sulfide levels were lower than on Monday. APT onsite to top off filter aid. Sparge at 03:00. Rich initiated manual backwash at 10:50 and change dP set point to 7.5. Sparge at 15:00.
12/22/11	238	NA	NA	Reactors swapped positions at 12am (R1 is in the lead). Sparge at 03:00. Sparge at 15:00.
12/23/11	239	DB	MBfR1	Media filter triggered a backwash just prior to site arrival. CDM unable to collect a media filter backwash sample. APT on site to top off the coagulant tank and lower coagulant flow rate from 6 to 4 ml/min. Chlorine residual on product water was high so the tank was topped off with media filter effluent water (no sodium hypo was added). The target residual is 0.2 mg/L at a flow of 5 gpm and the measured residual was 1 mg/L. Sparge at 03:00. Filter backwash at 09:07. Sparge at 15:00.
12/24/11	240	NA	NA	Sparge at 03:00. Sparge at 15:00.
12/25/11	241	NA	NA	Filter backwash at 00:30. Sparge at 03:00. Sparge at 15:00.
12/26/11	242	NA	NA	Reactors swapped positions at 12am (R2 is in the lead). Sparge at 03:00. Sparge at 15:00. Filter backwash at 20:06.
12/27/11	243	DB	MBfR2	APT lowered the coagulant tank flow rate from 4 ml/min to 3 ml/min. The sump pump is making an audible whining noise. Air quality monitoring shows no hydrogen sulfide near the aeration tank or inside the tank. The meter was allowed to collect continuous data over a duration of 1.5 hours. Sparge at 03:00. Sparge at 15:00.
12/28/11	244	DB	MBfR2	The inline turbidimeter was reading 2.2 NTU. There was a negative differential pressure on the media filter. CDM notified APT and Rich Buday came to do maintenance. The chlorine residual at the finished water was high (1 mg/L) so media filter effluent water was used to fill the rest of the tank and dilute the dose. APT fixed the high turbidity readings - the discrepancy was due to no flow going through the meter. Turbidity stabilized at 0.09 NTU. Sparge at 03:00. Filter backwash at 07:25 (dP to trigger backwash had been changed to 5psi). Sparge at 15:00.

Date	Day	Operator	Lead Reactor	Notes
12/29/11	245	NA	NA	CDM onsite for sampling and monitoring. Air quality monitoring showed no hydrogen sulfide near the aeration tank or inside the tank. Sulfide odor was not noticeable. APT installed a new level switch for the secondary containment in the south conex trailer that triggers if approximately 4 inches of standing water are present and shuts down the MBfR treatment system. Sparge at 03:00. Rich installed the additional float switch. Filter backwash around 12:00. Sparge at 15:00.
12/30/11	246	CA		CDM reduced CO2 feed pressure from 106 to 89 psi. CDM will also be conducting air sampling. Increased sodium hypo pump rate to 40 spm and 100 percent stroke length to increase chlorine dose. Changed out bag filter. Determined that GAC-2 pressure gauge is not functioning properly. A replacement gauge should be ordered. Sparge was manually initiated at 12:10. Phosphate concentration after increasing tank level reading was 1.4 ppm-PO4. Reactors swapped positions at 12am (R1 is in the lead). Sparge at 03:00. Sparge at 12:10. Filter backwash at 17:28.
12/31/11	247	NA	NA	Sparge at 00:00. Sparge at 12:00. Filter backwash at 21:23.
1/1/12	248	NA	NA	Sparge at 00:00. Sparge at 12:00.
1/2/12	249	NA	NA	Sparge at 00:00. Filter backwash at 04:11. Sparge at 12:00.
1/3/12	250	CA	MBfR2	CDM changed GAC-2 pressure gauge. Conducted air monitoring. Chlorine residual was 0 ppm at the finished water; after increasing tank level reading was 1.5 mg/L at the media filter effluent. Media filter backwash trigger is 5 psi differential pressure. Reactors swapped positions at 12am (R2 is in the lead). Sparge at 00:00. Filter backwash at 07:37. Sparge at 15:50. We lost feed flow because the well was off due to containment alarm being engaged. One of the CDM-installed switches had a false-trip (it was from a very high wind that blew the secondary containment level switch). System back up and running at around 19:20
1/4/12	251	DB	MBfR2	APT on site to switch out camera security system. CDM noticed low pH on MBfR2 and alerted APT. The meter was not receiving flow. Upon reinstating flow, the pH stabilized at 7.1. The chlorine residual was 2 ppm at the finished water, so at 10:00 am, the sodium hypo dosing pump flow rate was decreased to 20 spm from 30 spm (from 5.9 to 4.3 ml/min) and the tank was topped using media filter effluent water to dilute the dosing. After 1 hour the chlorine residual was 1.1 ppm at the media filter effluent and after 2 hours was 1.1 ppm at the finished water. CDM switched the GAC-2 pressure gauge because the range was not sensitive. No air monitoring collected today as the instrument is in the office for data download. System automatically shut down when secondary containment level switch was accidently triggered by high winds. This shut down the influent well and the influent tank went dry. System was down for approximately 0.5 hours. Sparge at 03:00. System down due to a High Level on R2 (the reactor level instrument was lagging the actual level and it filled at 30-35gpm versus the 6gpm the overflow manual valve is throttled to manage). System back up and running at around 7:30. Filter backwash at 12:08. Sparge at 15:00. System down due to a High Level on R2. System back up and running at around 22:45.

Date	Day	Operator	Lead	Notes
	- J	· · · · ·	Reactor	
1/5/12	252	NA	MBfR2	System was shut down intermittently due to high level switch on MBfR triggering while refilling. System was down for 0.5 to 1 hour. Sparge at 03:00. System down due to a High Level on R2. System back and running at around 6:40. Sparge at 15:00. Filter backwash at 23:02.
1/6/12	253	DB	MBfR2	The chlorine residual was 1.2 ppm at the finished water (target was 0.2 ppm). Lowered the chlorine dosing pump to 17 spm at 10:40 am. After two hours the finished water still read above 1 ppm so the tank was topped off using media filter effluent water and the pump was lowered to 15 spm (3.3 ml/min). Sparge at 03:00. Sparge at 15:00.
1/7/12	254	NA	NA	Reactors swapped positions at 12am (R1 is in the lead). Filter backwash at 00:54. Sparge at 03:00. Sparge at 15:00.
1/8/12	255	NA	NA	Sparge at 03:00. Filter backwash at 13:54. Sparge at 15:00.
1/9/12	256	CA	MBIKI	Windy today. CDM performed air monitoring today. Weekly and duplicate samples were collected. Air monitoring has shown very little H2S. CO has had some readings as high as 35 ppm, but interference from hydrogen could be inflating readings. HAAs bottles received at the lab for finished water only. Sparge at 03:00. Sparge at 15:00. Filter backwash at 18:37.
1/10/12	257	NA	NA	Sparge at 03:00. Sparge at 15:00.
1/11/12	258	DB		Final day of steady state monitoring. Sparge sample was collected, but media filter backwash sample was not collected. The differential pressure was only 0.4 psi as it was backwashed last night. APT on site to clean and calibrate the pH and ORP probes, clean nitrogen analyzer. Collected 4 side- reactors and shipped to ASU. Reactors swapped positions at 12am (R2 is in the lead). Filter backwash at 02:06. Sparge at 03:00. Sparge at 11:56. Four remaining lab reactors were harvested and shipped to ASU.
1/12/12	259	DB		First day of Challenge testing, Test 1. Turned off hydrogen and CO2 at 4 am and turned them back on at 8 am. Took pH readings on lead and lag at 08:15 because online readings were low. Lead sample - 7.07 SU online - 6.8 SU; Lag sample - 7.12 SU online 6.6 SU. Temperature was 19.3 and 20.3 deg C at the lead and lag, respectively. The lag sample at 10:15 was 7.81 and online reading was 7.2 SU. Collected media filter backwash sample at 10:12. Sparge at 03:00. Filter backwash 10:10.
1/13/12	260	CA	MBfR2	CDM collected sample at 12:30. Nitrate and nitrite holding times were exceeded for Duplicate 1 and Finished water samples. Sparge at 03:00. Filter backwash at 16:40.
1/14/12	261	NA	NA	Sparge at 03:00.
1/15/12	262	NA	NA	Reactors swapped positions at 12am (R1 is in the lead). Sparge at 03:00. Filter backwash at 06:42. Test 2 of the Challenge Phase: Hydrogen shutoff for 24 hours Shut off hydrogen and CO2 from 8am to 8am the next day). Sparge at 22:07.

Date	Day	Operator	Lead Reactor	Notes
1/16/12	263	CA	MBfR1	Test 2 initiated on 1/15 at 8:00; hydrogen, nitrogen, and carbon dioxide were shut off for 24 hours. First sample collected after reactor was restarted at 8:32. CDM Smith collected samples for testing as well as at the media filter effluent and duplicate samples. Filter aid is empty, APT was contacted for a refill. Sparge at 09:06.
1/17/12	264	CA		CDM Smith changed the backwash differential trigger level today to 10 psi to delay backwash for sampling. Changed back to 5 psi after sampling was completed. A media filter backwash was initiated at 13:08. Collected weekly permit compliance samples from the outfall and GAC effluent for VOCs at 12:00. Sparge at 16:57.
1/18/12	265	DB	MBfR1	APT forgot to start the filter aid pump so the pump was restarted by CDM Smith upon arrival at the site. After the filter aid was turned on, the online turbidity went from 0.46 NTU to 0.09 NTU. Collected weekly permit compliance sample from the outfall for perchlorate at 13:00. Sparge at 04:00. Filter backwash at 07:26. Sparge at
1/19/12	266	DB	MBfR2	Test 3 initiated at 4 am, shut off entire system. At 8 am CDM Smith on site, found leak from lag side-reactor to outside of secondary containment. The leak from secondary containment that started in the middle of the night. One of the tubes that fed the lag side reactor was routed to discharge into the reactor using a zip-tie. The zip-tie came loose and water was discharged out of secondary containment. Received approval from RWQCB, restarted system around 09:00. R2 (lag) was 10 to 20% full, R1 (lead) was 5% empty. MBfR reactors switched positions upon restart so R2 was in lead - this would allow it to fill up first. First sample for Test 3 collected at 09:57, had to refill MBfR, media filter, product tank etc prior to collecting sample. CDM Smith collected a sample from impacted soil and puddled water on the ground. Sample was collected form finished water at 13:57, then a daily sparge sequence initiated at 14:00. However, APT caught the sparge in time to stop the process. The lag reactor did drain down. APT restarted normal operation and filled reactors back up. Duplicate samples were collected. Reactors swapped positions at 12am (R2 is in the lead). Sparge at 02:00. Turbidity analyzer taken offline at 12:37. Sparge at 20:34. Filter backwash at 23:42.
1/20/12	267	DB	MBfR2	Filter aid tank was empty upon arrival so CDM Smith turned off the dosing pump upon arrival. Sparge at 08:00. Sparge at 20:00.
1/21/12	268	NA	NA	Sparge at 08:00. Sparge at 20:00.
1/22/12	269	NA	NA	Sparge at 08:00. Sparge at 20:00.
1/23/12	270	CA		Test 4 initiated at 09:44, entire system was shut down. Duplicate samples collected from the influent and outfall for VOCs. Monthly permit compliance samples collected at 09:00. Reactors swapped positions at 12am (R1 is in the lead). Filter backwash at 03:10. Sparge at 08:00.
1/24/12	271	CA		System restarted at 09:45. Samples and duplicates were collected. Sparge at 20:00. Manual filter A backwash at 22:56.

Date	Day	Operator	Lead Reactor	Notes
1/25/12	272	CA		Last day for system monitoring. Sparge at 08:00. Samples were collected at 09:15. APT shut down the system at 09:58 and CDM Smith disconnected the gas cylinders. At 10:15 the system was restarted at 20 gpm for a system flush; at 10:25 flow was reduced to 10 gpm. Both media filters were backwashed at 10:06 (Filter A) and 10:25 (Filter B). There are two hydrogen 6-packs on site, one is empty and the other is partially full. CDM Smith dropped off samples at Test America because currier was not present for pick up (they forgot). Chlorine residual at the media filter effluent was 0.2 mg/L but the finished water was 0 mg/L. Feed flow changed to 5gpm around 11:45 and then to 10gpm around 12:30. Manual filter B backwash at 16:11. Shut entire system off at 17:00.

SYSTEM MONITORING DATA

Manual Data Collection																	
			Target	Media							R1	R2					
	Inlet	Outlet	Flow	Filter	R1 Internal	R2 Internal	MBfR 1	MBfR 2	MBfR 1	MBfR 2	Sparge	Sparge	Last N	Last N	Last N	Air	Air Tank
	Totalizer	Totalizer	Rate	Flow Rate	Recycle Rate	Recycle Rate	pН	pН	ORP	ORP	Rate	Rate	Feed	(R1)	(R2)	Flow	Press
Date and Time	gal	gal	gpm	gpm	gpm	gpm	std units	std units	mV	mV	mm	mm	ppm (N)	mg/L-N	mg/L-N	scfm	psig
4/20/11 18:00		3791700	-				-	-	-	-			-	-	-	-	-
4/22/11 8:00		-	-				5.8	7.8	-	-			-	-	-	-	-
4/25/11 10:00		-	-				8.5	7.6	ı	-			-	-	-	-	-
4/28/11 18:40		3799700	-				-	-	-	-			-	-	-	-	-
4/29/11 11:00		-	5						-	-			-	-	-	-	-
5/2/11 9:00		3825300	5				7.5	7.5	-	-			-	-	-	-	-
5/4/11 9:30		3837600	5				6.7	7.5	-	-			-	-	-	1.8	3.6
5/6/11 9:00		3847400	5				6.4	7.5	-	-			-	-	-	1.7	3.7
5/9/11 10:00		3867600	5				7.6	7.5	-	-			8.73	0.43	0.43	1.8	3.5
5/11/11 11:00		3880500	5				6.4	7.5	-	-			3.33			1.7	3.5
5/13/11 9:00		3896800	8				7.5	7.6	-557	67			8.76	0.07	6.42	1.7	3.7
5/16/11 9:30		3933800	10				7.2	7.2	-53	-655			8.45	6.14	3.26	1.7	3.6
5/18/11 9:00		3960400	10				7.2	7.2	-23	-642			8.29	6.31	3.66	1.6	3.6
5/20/11 8:30		3987200	10				7.5	7.5	-685	-565			8.23	3.44	4.49	1.6	3.6
5/23/11 0:00		4021400	8				7.2	7.2	-239	-590			8.37	5.13	1.49	1.6	3.5
5/25/11 9:00		4044400	8				7.2	7.2	-103	-590			-			1.7	3.5
5/27/11 10:00		4064700	8				7.2	7.2	-558	-272			8.4	0.07	6.2	1.6	3.6
6/1/11 12:00		4120700	10				7.2	7.2	5	-691			8.34	6.3	2.23	1.6	3.6
6/3/11 9:00		4141000	10				7.2	7.2	-59	-700			8.31	5.01	0.98	1.6	3.6
6/6/11 8:30		4193300	12	11.5			7.2	7.2	-512	-302			8.33	1.85	6.48	1.7	3.6
6/10/11 9:30		4253100	12	11.5			7.2	7.2	-252	-662	41	40	7.79	4.84	1.06	1.7	3.6
6/13/11 9:30		4301300	12	11.5			7.2	7.2	-611	-228	39	41	7.81	-1.5	-1.5	1.6	3.5
6/15/11 10:00	534393		12	11.5			7.2	7.2	-611	-188			8.26	0.79	6.12	1.7	3.8
6/16/11 8:30		4348200	12	11.5			7.2	7.2	-303	-663			7.95	5.42	0.69	1.7	3.8
6/20/11 13:10	614854	4414200	12	11.5			7.2	7.2	-613	-162	38	42	7.81	0.06	4.84	1.8	3.9
6/22/11 10:00			12	11.5													
6/27/11 7:30			12	11.5			7.2	7.2	-65	-570			9.1	5.49	0.06	1.7	4
7/1/11 0:00			12														
7/5/2011 7:45		4664100	16	16			7.2	7.2	8	-261	210	210	8.13	6.36	0.68	1.7	3.9
7/7/11 0:00			16														
7/11/11 8:30		4774800	16	bypass			7.2	7.2	153	-565	210	210	7.82	6.09	0.08	1.5	3.9
7/18/11 8:00		4925400	10														
7/25/11 8:30		5086600	20	15			7.21	7.2	-387	-65	210	210	8.07	0.44	2.06	1.6	4
7/29/11 8:00			20														
8/1/11 9:45		5277200	22	18			7.2	7.2	-548	-544	210	210	7.7	6.21	1.92	1.6	3.9
8/2/11 11:15			22														
8/5/11 9:00			21														

Manual Data Collection																	
			Target	Media							R1	R2					
	Inlet	Outlet	Flow	Filter	R1 Internal	R2 Internal	MBfR 1	MBfR 2	MBfR 1	MBfR 2	Sparge	Sparge	Last N	Last N	Last N	Air	Air Tank
	Totalizer	Totalizer	Rate	Flow Rate	Recycle Rate	Recycle Rate	pН	pН	ORP	ORP	Rate	Rate	Feed	(R1)	(R2)	Flow	Press
Date and Time	gal	gal	gpm	gpm	gpm	gpm	std units	std units	mV	mV	mm	mm	ppm (N)	mg/L-N	mg/L-N	scfm	psig
8/8/11 8:30	U	5459700	20	18	31	<u> </u>	7.2	7.2	-564	210	210	210	7.57	0.1	3.62	1.7	3.9
8/15/11 7:45		5629100	18	18			7.2	7.2	-585	-46	280	280	6.61	0.07	2.49	1.6	3.9
8/17/11 8:30		5680800	18	16			7.2	7.2	-587	-43	280	280	3.76	0.23	2.92	1.6	4
8/19/11 9:00		5731200	18	16			7.2	7.2	-378	-537	280	280	2.93	2.8	0.31	1.6	3.9
8/26/11 8:20		5812300	15	14			7.2	7.2	-340	-91	280	280	3.08	0.13	2.17	0.5	5.3
8/29/11 12:15		5869600	15	14			7.2	7.2	-7	-350	280	280	2.25	3.52	3.4	3.3	2.2
8/31/11 9:00		5899900	15	14			7.2	7.2	-348	-105	280	280	7.82	0.19	1.65	3.3	2.2
9/2/11 13:30		5942400	15	14			7.2	7.2	-331	-51	280	280	7.78	0.25	2.72	3.2	2.2
9/7/11 13:45		6048200	15	14			7.2	7.2	102	-472	280	280	7.71	3.82	0.66	3.2	2.2
9/9/11 10:00		6078500	10	9			7.2	7.2	-288	-50	280	280	7.93	0.33	2.18	3.3	2.2
9/12/11 13:30		6121600	10	9			7.2	7.2	-272	-452	280	280	7.93	1.2	0.91	3.3	2.2
9/14/11 10:30		6150600	10	9	280	280	7.2	7.2	-81	-324	280	280	7.95	2.26	0.47	3.2	2.2
9/16/11 9:00		6184300	20	9	280	280	7.2	7.2	-247	-81	280	280	7.78	0.8	3.63	3.2	2.2
9/19/11 9:15		6209200	5	4.5	280	280		7.2		-221	280	280	7.98		0.31	3.3	2.1
10/3/11 7:00		6389700	10	9	180	180	7.2	7.2	-614	-65	240	240	7.98	0.03	2.64	3.4	2.1
10/5/11 8:30		6418800	10	9	180	180	7.2	7.2	-630	-90	240	240	7.99	0	2.24	3.2	2
10/7/11 9:00		6446800	10	9	180	180	7.2	7.2	-224	-422	240	240	8.03	1.81	0	3.2	2.1
10/10/11 9:15		6470800	5	4.5	180	180	7.1	7.2	-638	-655	240	240	8.13	1.56	0.03	3.4	2
10/12/11 9:00		6484400	5	4.5	180	180	7.2	7.2	-438	-245	240	240	8.2	0.52	0.15	3.3	2.2
10/14/11 9:00		6498800	5	4.5	180	180	7.2	7.2	-440	-240	240	240	8.17	1.26	0.05	3.4	2
10/17/11 9:00		6539000	10	4	150	180	7.2	7.2	-393	-22	240	240	8.08	0.26	5.5	3.2	2.2
10/19/11 9:00		6567400	10	9	180	180	7.2	7.2	-395	-47	200	240	8.08	0.02	3.07	3.2	2
10/21/11 9:00		6596100	10	9	180	180	7.2	7.2	-444	23	240	240	8.09	0.23	6.17	3.2	2
10/26/11 8:45		6666600	10	9.5	180	180	7.2	7.2	-410	-208	240	240	8.1	0.16	2.63	3.2	2
10/28/11 9:00		6688500	10	9	150	180	7.2	7.2	-465	-134	240	240	8.11	0.23	4.29	3.2	2
10/31/11 9:30		6728000	10	9	150	180	7.2	7.2	-413	-243	240	240	8.13	0.12	2.77	3.2	2
11/2/11 9:00		6756700	10	9.5	150	180	7.2	7.2	-392	-377	240	240	8.15	0.4	0.81	3.2	2.1
11/4/11 8:00		6785300	10	9	150	180	7.2	7.2	-404	-398	240	240	8.1	0.28	0.95	3.1	2
11/7/11 9:30		6827900	10	9	150	180	7.2	7.2	-390	-427	240	240	8.1	0.21	0.92	3.2	2
11/9/11 8:45		6855100	10	9	150	180	7.2	7.2	-601	-534	240	240	8.12	0.23	0.86	3.2	2
11/11/11 8:30		6883900	10	9	150	180	7.2	7.2	-606	-542	240	240	8.14	0.28	0.89	3.2	2
11/14/11 8:00		-	10	9	100	150	7.2	7.2	-611	-499	240	40	8.1	0.16	1.75	3.2	2.1
11/16/11 8:00		6944900	10	9	150	180	7.2	7.2	-580	-434	240	70	8.12	0.12	1.6	3.2	2.1
11/18/11 9:00		6972300	10	9	150	180	7.2	7.2	-472	-440	240	240	8.15	0	1.35	3.2	2
11/22/11 10:30		7019400	10	9	150	180	7.2	7.2	-469	-324	240	240	8.12	0.04	2.35	3.2	2
11/28/11 9:30		7088100	8	7	120	150	7.2	7.2	-514	-387	240	240	8.22	0.04	2.28	3.2	2
11/30/11 10:00		7108600	8	6	150	180	7.2	7.2	-309	-719	240	240	8.24	1.73	0	3.2	2

	Manual Data Collection																
	Inlet Totalizer	Outlet Totalizer	Target Flow Rate	Media Filter Flow Rate	R1 Internal	R2 Internal Recycle Rate		MBfR 2	MBfR 1 ORP	MBfR 2 ORP	R1 Sparge Rate	R2 Sparge Rate	Last N Feed	Last N (R1)	Last N (R2)	Air Flow	Air Tank Press
Date and Time	gal	gal	gpm	gpm	gpm	gpm	std units	std units	mV	mV	mm	mm	ppm (N)	()	mg/L-N	scfm	psig
12/2/11 1:00	8	8***	6	5	Sp	Sp	300 01110	500 011105	111				PP (1 ()			3 4 1 1 1	Pas
12/5/11 8:40		7153300	6	5													
12/9/11 12:00		7189400	6	5	120	150	7.2	7.2	-332	-698	240	240	8.25	1.3	0.18	3.2	2
12/14/11 9:30		7226000	6	5	120	150	7.2	7.2	-292	-661	240	240	8.03	1.62	0.24	3.2	2
12/16/11 9:00		7244100	6	3	120	150	7.2	7.2	-293	-704	240	240	8.03	1.62	0.08	3.2	2
12/19/11 10:30			6	5	120	150	7.2	7.2	-487	-1000	240	240	8.31	0.42	0.165	3.2	2
12/21/11 8:00		7285800	6	5	120	150	7.2	7.2	-465	-389	240	240	8.29	0.04	1.77	3.1	2
12/23/11 9:30		7304000	6	5	120	150	7.2	7.2	-267	-621	240	240	8.32	1.58	0.13	3.2	2
12/27/11 8:45		7339400	6	5	120	150	7.2	7.2	-446	-865	240	240	8.32	0.06	1.68	3.2	2
12/28/11 9:00		7348300	6	5	120	150	7.2	7.2	-442	-951	240	240	8.33	0.1	1.53	3.1	2
12/30/11 9:00		7366900	6	5	120	150	7.2	7.2	-245	-641	240	240	8.3	1.38	0.64	3.2	2
1/3/12 10:00		7405200	6	5	120	150	7.2	7.2	-452	-901	240	240	8.38	0.35	1.5	3.2	2
1/4/12 9:30		7409800	6	5	120	150	7.2	7.2	-245	-838	240	240	8.38	0.57	1.33	3.2	2
1/6/12 9:30		7425000	6	5	120	150	7.2	7.2	-408	-323	240	240	8.38	0	1.56	3.1	2.2
1/9/12 9:00		7451400	6	5	120	150	7.2	7.2	-247	-688	240	240	8.4	1.41	0.07	3.2	2.1
1/11/12 9:15		7468600	6	5	120	150	7.2	7.2	-476	-193	240	240	8.39	0.06	3.08	3	2.1
1/12/12 8:30		7477200	6	5	90	150	6.6	6.8	-189	-37	240	240	8.36	5.36	7.49	3.1	2
1/13/12 12:00		7487400	6	5	120	150	7.2	7.2	-410	-315	240	240	8.36	0.04	2.21	3.2	2.1
1/16/12 8:20		7513600	6	5	90	150	6.5	6.4	-46	-22	240	240	8.3	8.2	7.93	3.2	2.1
1/17/12 11:30		7521200	6	5	90	150	7.9	7.2	-217	-640	240	240	8.33	1.67	0.02	3.2	2.1
1/18/12 12:45		7530200	6	5	90	150	7.2	7.2	-290	-628	240	240	8.34	1.28	0.11	3.1	2
1/19/12 8:00		7535700	6	5	90	150	7.2	7.2	-563	-189	240	240	8.35	0.06	3.33	3.2	2.1
1/20/12 12:30		7545600	6	5	90	150	7.2	7.2	-455	-230	240	240	8.36	0	2.76	3.1	2
1/23/12 9:00		system mor	nitoring d	ata not collec	cted to shut dov	wn system for T	Γest 4 as ea	rly as possi	ble								
1/25/12 9:15		7579400	6	5	90	150	7.1	7.2	-201	-483	240	240	8.39	0.84	0.45	3.2	2

Manual Data Collection													
	Initial NaOCl Tank Level	Desired NaOCl Feed Rate	NaOCl Stock Added	Volume Water Added	Final NaOCl Tank Level	NaOCl Concentration in Tank	NaOCl Dose						
Date and Time	gal	ml/min	gal	gal	gal	mg/L-Cl	mg/L-Cl						
5/2/11 9:00	_		J	J	J	Ü							
5/4/11 9:30	0												
5/6/11 9:00	0												
5/9/11 10:00	12.5												
5/11/11 11:00	12.5												
5/13/11 9:00	12.5												
5/16/11 9:30	12												
5/18/11 9:00	11.5												
5/20/11 8:30	10.5												
5/23/11 0:00	10.5												
5/25/11 9:00													
5/27/11 10:00	9												
6/1/11 12:00	7.5												
6/3/11 9:00	18												
6/6/11 8:30	15.5												
6/10/11 9:30	6												
6/13/11 9:30	10												
6/15/11 10:00	0		0										
6/16/11 8:30	0		0		0								
6/20/11 13:10	0	5.9	16	14	30	31,810	4.31						
6/27/11 7:30	15	5.9	0	15	30	15,905	2.16						
7/5/2011 8:00	16	5.9	6	2.3	30	20,406	2.71						
7/11/2011 9:00	tank off	tank off	tank off	tank off	tank off	tank off	tank off						
7/18/2011 13:00	tank off	tank off	tank off	tank off	28	tank off	tank off						
7/25/2011 11:00	14	5.9	0	0	14	20,406	2.12						
7/29/2011 10:00	12.5	5.9	0	0	12.5	20,406	2.12						
8/1/2011 16:30	9	5.9	14	6	29	35,129	3.04						
8/8/2011 9:45	19	5.9	0	0	19	35,129	3.04						
8/15/2011 8:00	12	5.9	6	12	30	25,975	2.25						
8/17/2011 9:15		5.9	0	0	27	25,975	2.25						
8/19/2011 13:00	25	5.9	0	0	25	25,975	2.25						
8/26/2011 14:00		5.9	0	0	16	25,975	2.25						
8/29/2011 12:15	9	5.9	5.5	15.5	30	18,823	2.1						
9/2/2011 10:00		5.9	0	0	25	18,823	2.1						
9/7/2011 10:30	15	5.9	0	0	15	18,823	2.1						
9/9/2011 14:30		5.9	2.5	16.5	30	12,154	2.11						
9/12/2011 13:30	25	7.5	0	0	27	12,154	2.7						

	Manual Data Collection													
						NaOCl								
	Initial NaOCl	Desired NaOCl	NaOCl Stock	Volume Water	Final NaOCl	Concentration	NaOCl							
	Tank Level	Feed Rate	Added	Added	Tank Level	in Tank	Dose							
Date and Time	gal	ml/min	gal	gal	gal	mg/L-Cl	mg/L-Cl							
9/14/2011	J		3	J	J	12,154	2.7							
9/16/2011 14:45	12	7.5	3	15	30	10,902	4.8							
9/19/2011 11:00	22	4.3	0	0	22	10,902	2.8							
10/7/2011 3:00	6	7.5	8	16	30	18,149	4.00							
10/12/2011 1:00	20				20	18,149	4.00							
10/14/2011 12:15	18				18	18,149	4.00							
10/17/2011 2:00	8	5.9	7	15	30	18,759	3.25							
10/19/2011 9:30	25				25	18,759	3.25							
10/21/2011 10:30			0	0	20	18,759	3.25							
10/26/2011 9:00			0	0	7	18,759	3.25							
10/28/2011 11:30		7.5	7	21	30	15,170	3.34							
10/31/2011 9:00					30	15,170	3.34							
11/2/2011 9:00		7.5	0	0	22	15,170	3.34							
11/4/2011 11:30		7.5	0	0	20	15,170	3.34							
11/7/2011 9:30		7.5	0	0	14	15,170	3.34							
11/9/2011 8:45		7.5	0	0	7	15,170	3.34							
11/11/2011 8:30		7.5	6	19	30	14,452	3.18							
11/14/2011 8:00		7.5	0	0	25	14,452	3.18							
11/16/2011 8:00		-	-	-	-	14,452	3.18							
11/18/2011 9:30		-	-	-	15	14,452	3.18							
11/22/2011 10:30		5.9	5	16	30	14,513	3.23							
11/28/2011 1:05		-	-	-	-	14,513	3.23							
11/30/2011 12:00		5.9	-	-	15	14,531	3.78							
12/2/2011 1:30		5.9	1	17	30	7,848	2.45							
12/9/2011 12:00		5.9	-	-	15	7,848	2.45							
12/14/2011 11:30	_	5.9	-	-	8	7,848	2.45							
12/16/2011 3:00		5.9	3.25	22.75	30	7,661	2.39							
12/19/2011 2:15		5.9	-	-	27	7,661	2.39							
12/21/2011 10:00		5.9	-	_	25	7,661	2.39							
12/23/2011 10:00	_	5.9	-	12	30	4,597	1.43							
12/27/2011 9:30		5.9	-	_	23	4,597	1.43							
12/29/2011 10:00		5.9	-	9	30	3,218	1							
12/30/2011 13:15		7.5	-	-	20	3,218	1							
1/3/2012 14:15		5.9	2	18	30	5,143	1.6							
1/4/2012 11:00		5.9	-	2	30	4,801	1.1							
1/6/2012 12:00		4.3	-	2	30	4,480	0.78							
1/9/2012 13:45	24	3.3	-	-	24	4,480	0.78							

		M	Ianual Data Co	llection			
						NaOCl	
	Initial NaOCl	Desired NaOCl	NaOCl Stock	Volume Water	Final NaOCl	Concentration	NaOCl
	Tank Level	Feed Rate	Added	Added	Tank Level	in Tank	Dose
Date and Time	gal	ml/min	gal	gal	gal	mg/L-Cl	mg/L-Cl
1/11/2012 10:00	24	3.3	-	ı	24	4,480	0.78
1/12/12 8:30	-	ı	-	ı	ı	4,480	0.78
1/13/2012 13:15	20	3.3	-	ı	20	4,480	0.78
1/16/2012 13:30	18	3.3	-	1	18	4,480	0.78
1/17/2012	17	3.3	-	1	17	4,480	0.78
1/18/12 12:45	-	-	-	-	-	4,480	0.78
1/19/12 8:00	-	-	-	-	-	4,480	0.78
1/20/2012 13:00	15	-	-	-	15	4,480	0.78
1/25/12 9:15	-	-	-	-	_	4,480	0.78

	Manual Data Collection Initial Desired Phosphate Volume Final Media Filter Cylinder CO ₂ Phosphate Phosphate Stark Water Phosphate Media Filter Could Phosphate CAC 1 CAC 2 W Toubility Toubility															
	Phosphate	Phosphate	Stock	Volume Water Added	Phosphate		Media Filter Outlet	Bag Filter dP	Pressure	N_2	Cylinder		GAC-2 Pressure	IX Pressure	•	Turbidity (in field)
Date and Time	gal	ml/min	ml	gal	gal	psi	psi	psi	psig	psig	psi	psi	psi	psi	NTU	NTU
4/28/11 18:40	5	2	-	-	5	·	•	-	-	-				1		
4/29/11 11:00	-	2	-	-				-	-	-						
5/2/11 9:00	3	2	-	-	3			-	1000	-						
5/4/11 9:30	1.8	2	42.3	3.8	5.6			0	700	175						
5/6/11 9:00	3.5	2	-	-	3.5			0	700	175						
5/9/11 10:00	1.4	2	48.2	3.6	5			0	700	175						
5/11/11 11:00	3.2	2	-	-	3.2			0	700	175						
5/13/11 9:00	2.3	2	36	3.7	6			0	700	175						
5/16/11 9:30	3.4	2	-	-	3.4			0	700	175						
5/18/11 9:00	2.2	2	37.5	2.8	5			0	700	175						
5/20/11 8:30	5	2	-	-	5			0	700	175						
5/23/11 0:00	5	2	-	-	5			0	2200	175						
5/25/11 9:00	4.5	2	-	-	4.5			0	1700	175						
5/27/11 10:00	4.5	2	-	-	4.5			0	1700	175						
5/31/11 12:00	0.3	2	-	-	2.8											
6/1/11 12:00	3.2	2	-	-	3.2			0	1700	175						
6/3/11 9:00	1.1	2	-	-	5			2	1700	-						
6/6/11 8:30	4.7	2	400	5	4.7			5	1700	-						
6/10/11 9:30	1.5	2	450	5	4.9			0	1400	-						
6/13/11 9:30	2.4	2			4.9			0	1400							
6/15/11 10:00	3.7	2	-	-	5			6				11.2				
6/16/11 8:30	4.3	2	63	0.7	5.0			6	1400		800					
6/20/11 13:10		2	0	0	2.2				1500							
6/22/11 10:00		2	900	4.5	5.6											
6/27/11 7:30	2.1	2	570	3	5.3		5.00									
7/1/11 9:00	2	2	500	2.5	4.6											
7/5/2011 8:05	2.5	2	800	2.3	5.0											
7/7/11 9:00	3.2	2	0	2.3	5.5	19.00	17.50		1700	160	90					
7/11/11 9:00	2.6	2	130	2.5	5.1	bypass	bypass	3	92	169	34	14	14	3.5		
7/18/2011 13:00	2.3	2	500	2.7	5.1	_		7						_		
7/25/2011 9:00	0	2	500	5	5.1	7.6	5.6	2	92	192	82	6	4	2.2		
7/29/2011 9:30	4	2	400	1	5.1				93	168	83			_		
8/1/2011 17:00	0	2	900	5	5.2	10.7	7.5	2	91	95	63	10	7	2.5		
8/5/2011 9:00		2	325	2.3	5.1			_								
8/8/2011 9:30	2.8	2	340	2.2	5.1	10.2	7.5	2	92	169	90	17	16	4		
8/15/2011 8:30		2	250	2.1	5	11.9	7.5		92	177	89	18	14	6		
8/17/2011 9:15	2	2	520	3	5.1	11.8	6.2	2	91	182	33	16	12	6		

						Manu	al Data Collect	ion								
	Initial	Desired	Phosphate	Volume	Final		Media Filter		Cylinder		CO ₂					
	Phosphate	Phosphate	Stock	Water	Phosphate	Media Filter	Outlet	Bag	Pressure	N_2	Cylinder	GAC-1	GAC-2	IX	Turbidity	Turbidity
	Tank Level	Feed Rate	Added	Added	Tank Level	Inlet Pressure	Pressure	Filter dP	1	Pressure	Pressure	Pressure	Pressure	Pressure	(on line)	(in field)
Date and Time	gal	ml/min	ml	gal	gal	psi	psi	psi	psig	psig	psi	psi	psi	psi	NTU	NTU
8/19/2011 14:00	2	2	520	3	5.1	13.8	6.3	2	90	175	80	16	11	4.2		
8/26/2011 8:30	3.9	2	0	0	3.9	9	5	4	90	172	82	18	14	3.2		
8/29/2011 12:15	2	2	350	3	5.1	10	5.1		60		60					
8/31/2011 9:00		2	0	0		7.1	5.1	3	91	172	59	16	14	4		
9/2/2011 13:30	2.8	2	250	2.2	5	7.5	5	3	90	175	80	16	11	2.3		
9/7/2011 13:45	1.8	2	150	3.2	5	9.5	5	4	91	175	105	17	12	3		
9/9/2011 14:45	3.5	2	120	1.5	5	5.7	2.1	3	91	175	73	15	14	3		
9/12/11 13:45	3	2	160	2	5	2.6	2.1	4	91	175	72	16	14	3		
9/14/2011						3	2.2	4	90	175	75	16	14	3		
9/16/2011 14:45	2.4	2	160	2.6	5	7.5	2.2	3	90	161	75	14	9	1.1		
9/19/2011 11:00	2.2	2	25	2.8	5	10.9	1.7	3	90	179	70	15	11	1.8		
10/3/2011 7:30	0	2	400	5	5	10.2	1.5	2	91	143	91	16	12	3		
10/5/11 8:30						2.6	1.5	13	90	144	90	10	5	0		
10/7/2011 3:00	2	2	250	3	5	2.3	1.5	2	90	142	90	17	13	2.5		
10/10/2011 9:30	3	2	0	2	5	2.7	1.3	2	91	184	89	16	13	3		
10/12/2011 1:00	4	-	-	-	4	4.4	1.3	2	89	180	89	17.5	14	2		
10/14/2011 2:30	3	2	50	2	5	3.5	1.3	2	90	153	88	14	9.5	1.2		
10/17/2011 1:40	2.7	2	275	2.3	5	8	1.3	2	88	141	87	14	10	1.4		
10/19/2011 9:30	3.5	-	-	-	3.5	1.6	1.5	2	91	149	88	20.5	14	1.5	0.56	0.21
10/21/2011 13:00	2	-	240	3	5	4.7	1.5	2	89	142	87	15	11	1.1	0.51	
10/26/2011 2:00	1.3	2	300	3.7	5	9	1.5	2	88	147	88	15	10.5	1		
10/28/2011 9:00	4	2	-	-	4	3.2	1.6	2	88	137	88	15	10.5	1		
10/31/2011 1:00	2	2	240	3	5	9.3	1.5	2	88	160	88	14	10.5	3.6		
11/2/2011 11:30	3.7	2	0	0	3.7	4.1	1.5		91	153	88				0.2	
11/4/2011 11:30	2.2	2	220	2.8	5	3.5	1.5	2	91	127	88	15	11	1	0.19	0.19
11/7/2011 9:30	3	2	0	0	3	2	1.5	2	88	156	87	14	9	1.4	0.19	0.26
11/9/2011 8:45	1.5	2	280	3.5	5	11	1.5	2	88	155	87	13.6	9	1.4	0.21	0.21
11/11/2011 8:30	3.5	2	0	0	3.5	9.5	1.5		91	147	88				0.22	0.23
11/14/2011 8:00		2	240	3.5	5	9.8	8.9		91	160	89				0.27	0.27
11/16/2011 9:00		-	-	-	-	-	-	-	88	169	91	-	-	-		
11/18/2011 1:00		2	250	3.2	5	9	7.4	2	88	144	88	6	1	1.3	0.27	0.35
11/22/2011 2:15	1.5	2	275	3.5	5	11.3	1.5	3	91	144	87	15	10	1.5	0.17	0.19
11/28/2011 1:00	0.9	2	250	4	5	9.9	6.5	3	91	157	88	17	14	1.3	0.15	0.29
11/30/2011 12:00	3.5	2	-	-	3.5	2.9	1.3	3	88	168	87	14	10	1.3	0.23	0.4
12/2/2011 1:30	1.8	2	120	3.2	5											
12/5/2011 8:40	2.75	2	100	2.25	5			2								
12/9/2011 12:00	1.5	2	175	3.5	5	2	4.9	2	90		88	14	12	1.5	0.25	0.26

						Manu	al Data Collect	ion								
	Initial	Desired	Phosphate	Volume	Final		Media Filter		Cylinder		CO ₂					
	Phosphate	Phosphate		Water	Phosphate	Media Filter	Outlet	Bag	Pressure		Cylinder		GAC-2	IX	Turbidity	·
	Tank Level	Feed Rate	Added	Added		Inlet Pressure	Pressure	Filter dP	<u> </u>						(on line)	(in field)
Date and Time	gal	ml/min	ml	gal	gal	psi	psi	psi	psig	psig	psi	psi	psi	psi	NTU	NTU
12/14/2011 11:30	0.5	2	220	4.5	5	2.5	1.5	4	91	123	88	5	3	1	0.2	0.2
12/15/11 10:00								3				6.5	4.5	1		
12/16/2011 2:45	3.5	2	-	-	3.5	2.9	1.3	4	91	123	70		4	1	0.56	0.57
12/19/2011 2:00	1	2	200	4	5	7.1	1.5	4	8	127	83		5	1	0.63	0.66
12/21/2011 10:00	3.4	2	-	-	3.4	5.4	1.6	2	90	138	95		1	0.3	0.12	0.39
12/23/2011 10:00	2.7	2	300	2.3	5	0	0.4	2	89	143	89		1	0.5	0.43	0.08
12/27/2011 12:30	1.8	2	100	3.2	5	2.9	1.6	2	88	148	110		1	0.8	0.44	0.14
12/28/2011 9:00	4.3	2	-	-	4.3	1.1	1.6	2	90	143	110		0	0.8	0.46	0.09
12/30/2011 13:00	1.5	2	250	3.5	5	5.2	2.3	5	91	146	106		10	1	0.17	0.17
1/3/2012 13:45	1.25	2	325	3.75	5	2.1	2.3	4	91	142	93		11	1.3	0.22	0.21
1/4/2012 12:00	4	2	-	-	4	5.7	2.2	2	89	138	90		9.1	1.2	0.89	0.52
1/6/2012 12:00	2.5	2	150	2.5	5	3.7	2.5	2	89	149	88		10	1.2	0.44	0.13
1/9/2012 13:30	2.2	2	150	2.3	4.5	5.5	2.4	2	91	143	92		10	1.5	0.12	0.13
1/11/2012 10:00	3.1	2	-	-	3.1	2.6	2.3		88	136	90				0.45	0.07
1/12/12 8:30	-	-	-	-	-	7.5	2.3		88	139	90				0.54	0.15
1/13/2012 13:00	1.5	2	150	3.5	5	6.3	2.3	4	91	133	92		11	1.6	0.13	0.14
1/16/2012 14:45	2.5	2	150	2.5	5	4.4	2.2	4	92	134	91		12	1.7	0.06	0.06
1/17/2012 12:00	4.5	2	-	-	4.5	6.4	2.2		90	132	92				0.12	0.12
1/18/12 12:45	-	-	-	-	-	2.2	2.8		88	132	90				0.87	0.09
1/19/2012 13:45	2.4	2	-	-	2.4	6.4	2.6	2	90	138	90		12	1.1	0.66	0.23
1/20/2012 13:00	1.7	2	100	3.3	2.4	4.5	2.8		90	133	90				0.63	
1/25/12 9:15	-	-	-	-	-	1.6	2.3		90	132	91					

FIELD SAMPLE RESULTS

	Time	Target Flow					MBfR Influent	t			
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Sulfide	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L	NTU
4/20/2011			-	-	-	-	-	-	-	-	-
4/21/2011			-	-	-	-	-	-	-	-	-
4/22/2011			-	-	-	7	8	0	8	-	-
4/25/2011			-	-	-	-	-	-	-	-	-
4/28/2011											
4/29/2011	1	5	7.43	19.5	90	11	8	0	8		
5/2/2011	4	5	7.55	18.7	108	11	8	0	8	0	Н
5/4/2011	6	5	7.48	19.0	100	9	8	0	8	0	Н
5/6/2011	8	5	7.42	19.2	120	9	8	0	8	0	Н
5/9/2011	11	5	7.28	17.4	102	8	8	0	8	0	Н
5/11/2011	13	5	7.47	18.7	90	9	7	0	7	0	Н
5/13/2011	15	8	7.31	18.9	96	9	8	0	8	0	Н 0.18
5/16/2011	18	10	7.47	17.3	452	9	8	0	8	0	Н
5/18/2011	20	10	7.45	17.6	80	9	8	0	8	0	Н
5/20/2011	22	10	7.47	19	60	9	8	0	8	0	Н 0.43
5/23/2011	25	8	7.58	18	100	9	8	0	8	0	Н
5/25/2011	27	8	7.54	18.9	120	9	7	0	7	0	Н
5/27/2011	29	8	7.53	19.2	125	9	7	0	7	0	Н
6/1/2011	34	10	7.53	18	166	9	8	0	8		Н 0.19
6/3/2011	36	10	7.54	18.8	220	9	8.5	0	8.5	0	Н 0.25
6/6/2011	39	12	7.52	18.7	60	10	7	0	7	0	Н 0.25
6/10/2011	43	12	7.53	18.2	12.3	9	7.6	0	7.6	0	Н
6/13/2011	46	12	7.52	18.8	85	9	9	0	9	0	Н 0.45
6/16/2011	49	12	7.66	19	161	9	9	0	9	0	Н 0.97
6/20/2011	53	12	7.66	19.9	120						
6/27/2011	60	12	7.52	18.8	201	9	8.75	0	8.75	0	Н 0.43
7/5/2011	68	16	7.52	18.9	90	9	8.5	0	8.5	0	Н 0.45
7/11/2011	74	16	7.58	19	90	9	8	0	8	0	Н 0.51
7/18/2011	81	10									
7/25/2011	88	20	7.56	20	135	9	8.5	0	8.5	0	0.49
7/29/2011	92										
8/1/2011	95	22	7.6	19	-120	9	9.5	0	9.5	0	0.5
8/2/2011	96			-		-		-		-	
8/5/2011	99										
8/8/2011	102	20	7.57	18.8	110	9	8	0	8	0	0.29
8/15/2011	109	18	7.56	18.8	115	9	7.5	0	7.5	0	
8/17/2011	111	18	7.57	19	90	10	6.5	0	6.5	0	0.51
8/19/2011	113	18	7.64	19.6	99	9	9	0	9	0	

D. A	Time	Target Flow					MBfR Influent	ţ			
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Sulfide	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L	NTU
8/26/2011	120	15	7.65	19.6	433	9	9	0	9	0	0.15
8/31/2011	125	15	7.52	19.9	175	9	8.2	0	8.2	0	0.469
9/2/2011	127	15	7.64	19.9	454	9	6	0	6	0	
9/7/2011	132	15	7.59	19.2	60	9	7.5	0	7.5	0	0.351
9/9/2011	134	10	7.54	19	135	9	8.5	0	8.5	0	0.297
9/12/2011	137	10	7.5	19	110	9	8.5	0	8.5	0	0.368
9/14/2011	139	10	7.64	19.8	-20	9	9	0	9	0	0.107
9/16/2011	141	20	7.63	18.9	130	9	9	0	9	0	
9/19/2011	144	5	7.67	24	86	9	8	0	8	0	0.12
10/3/2011	158	10	7.48	18.6	130	9	8.2	0	8.2	0	0.441
10/5/2011	160	10	7.67	18.6	179	9	9	0	9	0	
10/7/2011	162	10	7.35	19.1	135	9	8.75	0	8.75	0	
10/10/2011	165	5	7.42	19.9	140	9	8.7	0	8.7	0	0.295
10/12/2011	167	5	7.69	20.1	70	9	8.75	0	8.75	0	0.631
10/14/2011	169	5	7.6	20		9	8	0	8	0	
10/17/2011	172	10	7.57	19.3		9	10	0	10	0	0.29
10/19/2011	174	10	7.38	18.9	171	8	8.5	0	8.5	0	0.35
10/21/2011	176	10	7.57	18.8		9	9	0	9	0	0.24
10/26/2011	181	10	7.63	18.9	95	9	9	0	9	0	0.15
10/28/2011	183	10	7.65	19.3	246	9	9	0	9	0	0.13
10/31/2011	186	10	7.73	19.5	100	9	9	0	9	0	0.22
11/2/2011	188	10	7.51	19	90	8	8.5	0	8.5	0	0.273
11/4/2011	190	10	7.44	18.5	130	8	8.4	0	8.4	0	0.307
11/7/2011	193	10	7.53	18.6	301	9	9	0	9	0	0.075
11/9/2011	195	10	7.62	18.8	432	9	9	0	9	0	
11/11/2011	197	10	7.34	19	180	9	8.5	0	8.5	0	0.688
11/14/2011	200	10									
11/16/2011	202	10									
11/18/2011	204	10	7.53	18.5	120	9	9	0	9	0	0.067
11/22/2011	208	10	7.56	18.8	80	9	8.5	0	8.5	0	0.103
11/28/2011	214	8	7.35	19.1	340	8.5	8.7	0	8.7	0	0.139
11/30/2011	216	8	7.55	19.2	372	9	9	0	9	0	
12/2/2011	218	6									
12/5/2011	221	6									
12/9/2011	226	6									
12/14/2011	230	6	7.29	17.9	70	9	8.2	0	8.2	0	
12/16/2011	232	6	7.27	17.7	50	8	8.2	0	8.2	0	
12/19/2011	235	6	7.15	18.4	70	8	8	0	8	0	0.223

Doto	Time	Target Flow Rate					MBfR Influent				
Date		Kate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Sulfide	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L	NTU
12/21/2011	237	6	7.61	18.2	374	9	8	0	8	0	0.065
12/23/2011	239	6	7.64	18.6	184	9	9	0	9	0	0.069
12/27/2011	243	6	7.58	18.4	402	9	9	0	9	0	0.087
12/28/2011	244	6	7.55	18.9	188	9	9	0	9	0	0.069
12/30/2011	246	6	7.39	18.1	80	8	8.75	0	8.75	0	0.264
1/3/2012	250	6	7.49	18.3	90	8.5	8.7	0	8.7	0	0.192
1/4/2012	251	6	7.54	19.6	368	9	9	0	9	0	0.105
1/6/2012	253	6	7.63	19.2	90	9	9	0	9	0	0.12
1/9/2012	256	6	7.44	18.8	140	8.5	8.75	0	8.75	0	0.199
1/11/2012	258	6	7.6	18.6	167	9	8.5	0	8.5	0	0.12
1/12/2012	259	6									
1/13/2012	260	6									
1/16/2012	263	6									
1/17/2012	264	6									
1/18/2012	265	6									
1/19/2012	266	6									
1/20/2012	267	6									
1/23/2012	270	6									
1/24/2012	271	6									
1/25/2012	272	6									

D	Time	Target Flow	Post Phosphate Injection				L	ead Reactor (SP-10	00)				
Date		Rate	Phosphate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Phosphate	Sulf	ide
	Days	gpm	mg/L - PO4	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	Phosphate mg/L - PO4	mg	/L
4/20/2011	•			-	-	-	-	-	-	-		-	
4/21/2011				=	-	-	-	-	-	-		-	
4/22/2011				6.21	20.5	-424	2	7.5	0	7.5		-	
4/25/2011				8.39	23.6	-618	0.35	0	0	0		-	
4/28/2011													
4/29/2011	1	5		7.68	21.2	-17	3	7	0	7			
5/2/2011	4	5		7.38	19.7	-170	0.9	6	0.6	5.4		0	Н
5/4/2011	6	5		6.58	24.4	88	0	2.4	0	2.4		0	Н
5/6/2011	8	5		6.3	18.9	-260	0.2	1	0.1	0.9		0	Н
5/9/2011	11	5		7.38	18.9	-235	0.7	0.3	0.4	-0.1		0	Н
5/11/2011	13	5		6.38	18.6	-70	0	1.2	0	1.2		0	Н
5/13/2011	15	8		7.8	20	-261	0.2	6.25	3	3.25		0	Н
5/16/2011	18	10		7.38	18.6	-370	0.15	7	3	4		0	Н
5/18/2011	20	10		7.39	18.6	-280	0.15	7	3	4		0	Н
5/20/2011	22	10		7.7	19.6	-186	5.5	6.5	1.75	4.75		0	Н
5/23/2011	25	8		7.48	19	-417	0.15	6	3	3		0	Н
5/25/2011	27	8		7.46	18.8	-280	0.15	5	1.2	3.8		0	Н
5/27/2011	29	8		7.58	20.3	-440	0.15	6	3	3		0	Н
6/1/2011	34	10		7.41	19.6	-331	0.15	7	0.8	6.2		0	Н
6/3/2011	36	10		7.42	19.4	-460	0.1	5	0.75	4.25		0	Н
6/6/2011	39	12		7.54	18.5	-376	0.15	5.6	1	4.6		0	Н
6/10/2011	43	12		7.5	19.5	-320	0.15	6	1.5	4.5		0	Н
6/13/2011	46	12		7.53	19.7	-335	0.15	8	2.2	5.8		0	Н
6/16/2011	49	12		7.52	19.9	-282	0.5	8	1.5	6.5		0	Н
6/20/2011	53	12		7.49	22.7								
6/27/2011	60	12	3.5	7.71	20.6	-120	0.4	6	1.7	4.3	3.5	0	Н
7/5/2011	68	16	0.8	7.78	20.2	-150	0.5	7.5	1.6	5.9	0.3	0	Н
7/11/2011	74	16	0.8	7.62	19.8	-160	0.35	7.5	1.1	6.4		0	Н
7/18/2011	81	10	1.63										
7/25/2011	88	20		7.65	21.7	-290	0.35	3	0.6	2.4		0	
7/29/2011	92												
8/1/2011	95	22		7.7	21	-301	0.15	2.6	0.8	1.8		0	\Box
8/2/2011	96		1.5										
8/5/2011	99												
8/8/2011	102	20		7.51	20.1	-190	0.9	4.2	0.8	3.4		0	
8/15/2011	109	18		7.63	19.9	-350	0.8	3.3	0.6	2.7		0	
8/17/2011	111	18		7.62	20.7	-360	1.5	3.2	0.5	2.7		0	
8/19/2011	113	18	2	7.78	20.4	-322	0.8	4	1	3		0	\square

D .	Time	Target Flow	Post Phosphate Injection				L	ead Reactor (SP-10	00)			
Date		Rate	Phosphate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Phosphate	Sulfide
	Days	gpm	mg/L - PO4	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L - PO4	mg/L
8/26/2011	120	15	2.5	7.47	21.6	-403	0.9	3.3	0.75	2.55		0
8/31/2011	125	15	1.4	7.46	20.7	-370	1.5	2.2	0.4	1.8		0
9/2/2011	127	15	2	7.56	21.5	-380	1.5	3	0.6	2.4		0
9/7/2011	132	15	1.4	7.65	21.8	-270	0.9	4.1	0.6	3.5		0
9/9/2011	134	10		7.43	22.3	-435	2.5	2.8	0.4	2.4		0
9/12/2011	137	10	1.1	7.65	21.9	-315	0.7	1.6	0.2	1.4		0
9/14/2011	139	10	2	7.48	22.2	-192	0.9	3	0.75	2.25		0
9/16/2011	141	20		7.42	20	-285	1.5	4.5	0.75	3.75		0
9/19/2011	144	5	3.5	7.40	25.1	-293	0.25	0.5	0.1	0.4		0.1
10/3/2011	158	10		7.4	19.8	-255	0.2	3.8	0.8	3		0
10/5/2011	160	10	1.5	7.58	19.6	-428	0.15	2.1	0.75	1.35		0
10/7/2011	162	10		7.6	19.5	-410	0.2	2.8	0.75	2.05		0
10/10/2011	165	5		7.59	21.5		0.3	2.2	0.25	1.95		0
10/12/2011	167	5	0.6	7.42	22.4	-210	0.2	0.8	0.25	0.55		0
10/14/2011	169	5	1.5	7.2	22.5		0.25	0.4	0.2	0.2		0
10/17/2011	172	10		7.16	21.1		0.4	7.5	1.8	5.7		0
10/19/2011	174	10		7.27	20.9		0.3	2.8	0.25	2.55		0
10/21/2011	176	10		7.23	20.4		0.5	7	2	5		0
10/26/2011	181	10	1.7	7.32	20.4	-398	0.15	5.25	2	3.25		0
10/28/2011	183	10		7.27	20.9	-405	0.2	6	4	2		0
10/31/2011	186	10		7.15	21.5	-354	0.25	3.3	2	1.3		0
11/2/2011	188	10		7.56	20.5	-421	0.4	1.2	0.6	0.6		0
11/4/2011	190	10		7.61	20	-509	0.4	1.6	0.5	1.1		0
11/7/2011	193	10	1.5	7.57	20.6	-610	0.25	1.75	0.6	1.15		0
11/9/2011	195	10		7.36	20.9	-482	0.15	1.6	0.6	1		0
11/11/2011	197	10	1.1	7.44	21.2	-500	0.4	1.4	0.6	0.8		0
11/14/2011	200	10										
11/16/2011	202	10										
11/18/2011	204	10		7.47	20	-477	0.3	1.75	0.75	1		0
11/22/2011	208	10		7.57	19.3	-400	0.8	2	0.6	1.4		0
11/28/2011	214	8		7.38	20.7	-440	0.3	3.2	1.1	2.1		0
11/30/2011	216	8		7.6	20.1	-453	0.35	2.2	0.6	1.6		0
12/2/2011	218	6										
12/5/2011	221	6										
12/9/2011	226	6										
12/14/2011	230	6		7.62	19.2	-506	0.4	2.4	0.6	1.8		0
12/16/2011	232	6	0.3	7.55	18.8	-440	0.6	1.7	0	1.7		0
12/19/2011	235	6		7.5	19.4	-440	0.5	1.8	0.5	1.3		0

Date	Time	Target Flow Rate	Post Phosphate Injection				L	ead Reactor (SP-10	00)			
Date		Kate	Phosphate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Phosphate	Sulfide
	Days	gpm	mg/L - PO4	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L - PO4	mg/L
12/21/2011	237	6		7.66	19	-511	0.25	2	0.75	1.25		0
12/23/2011	239	6	0.15	7.77	19.1	-514	0.35	2	0.8	1.2		0.6
12/27/2011	243	6	1.5	7.63	19.4	-521	0.25	2.25	0.85	1.4		0
12/28/2011	244	6	1.4	7.47	20.2	-493	0.2	2.1	0.85	1.25		0
12/30/2011	246	6	1.2	7.55	20.3	-490	0.3	1.8	0.6	1.2		0
1/3/2012	250	6	1.3	7.63	21.1	-440	0.1	2.1	0.75	1.35		0
1/4/2012	251	6	1.3	7.33	20.9	-487	0.15	1.6	0.85	0.75		0
1/6/2012	253	6	2.5	7.52	20.3	-402	0.3	2.25	0.9	1.35		0
1/9/2012	256	6	1.5	7.52	20.4	-353	0.3	1.5	0.3	1.2		0
1/11/2012	258	6	1.5	7.43	19.8	8	0.3	1.4	2	-0.6		0
1/12/2012	259	6	1.5									
1/13/2012	260	6	1.2									
1/16/2012	263	6	1.7									
1/17/2012	264	6	2									
1/18/2012	265	6	1.2									
1/19/2012	266	6	2									
1/20/2012	267	6	1.8									
1/23/2012	270	6		_								
1/24/2012	271	6										
1/25/2012	272	6	1.8	_								

D. /	Time	Target Flow					Lag Reactor (SP-	-200)					MBfR Solids Lead 1st	MBfR Solids LEAD 2nd	MBfR Solids Lag 1st	MBfR Solids Lag 2nd
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Phosphate	Sulfid	le	Turbidity	Turbidity	Turbidity	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L - PO4	mg/I	.1	NTU	NTU	NTU	NTU
4/20/2011			-	-	-	-	-	-	-		-					-
4/21/2011			-	-	-	ı	-	ı	=		-					-
4/22/2011			5.83	19.7	-453	0.8	7.5	0	7.5		-					-
4/25/2011			8.73	23.5	-565	0.25	3.2	2	1.2		-					-
4/28/2011																-
4/29/2011	1	5	7.65	20.9	-127	3	6	0	6							-
5/2/2011	4	5	6.58	20.3	-103	3	2.4	0	2.4		0	Н				-
5/4/2011	6	5	6.75	23.5	-210	3	2.4	0	2.4		0	Н				-
5/6/2011	8	5	6.73	21.3	-205	3.5	0	0	0		0	Н				-
5/9/2011	11	5	6.25	19	-190	3	0	0	0		0	Н				-
5/11/2011	13	5	6.42	18.8	-170	1.5	0	0	0		0	Н	-	-	-	-
5/13/2011	15	8	7.65	20.3	-565	0.02	0.5	0.3	0.2		0	Н	-	-	_	-
5/16/2011	18	10	7.41	19	-552	0.05	5	3.5	1.5		0	Н	-	-	-	-
5/18/2011	20	10	7.33	19	-530	0.1	6	3.5	2.5		0	Н	-	-	-	-
5/20/2011	22	10	7.74	19.3	-375	2.5	7	1.6	5.4		0	Н	-	-	-	-
5/23/2011	25	8	7.58	19.5	-560	0.05	3	3	0		0	Н	-	-	-	-
5/25/2011	27	8	7.52	20	-452	0.05	2.5	1.5	1		0	Н	-	-	-	-
5/27/2011	29	8	7.47	20.9	-583	0	1.5	1.5	0		0	Н	-	-	-	-
6/1/2011	34	10	7.56	20.2	-495	0	3.75	3	0.75		0	Н	-	-	-	-
6/3/2011	36	10	7.55	20.4	-570	0.05	1.5	1.3	0.2		0	Н	-	-	-	-
6/6/2011	39	12	7.47	20.3	-545	0	2.2	1.7	0.5		0	Н	-	-	_	-
6/10/2011	43	12	7.54	20.3	-540	0	5	3	2		0	Н				
6/13/2011	46	12	7.51	20.5	-570	0	3.5	2.4	1.1		0	Н				
6/16/2011	49	12	7.53	20.6	-526	0	4	3	1		0	Н				
6/20/2011	53	12	7.47	23		-					-					
6/27/2011	60	12	7.58	21.5	-610	0	0.4	0	0.4	1.5	0	Н				
7/5/2011	68	16	7.62	21.1	-355	0	1.8	1.2	0.6		0	Н				
7/11/2011	74	16	7.5	20.5	-515	0	0.5	0.3	0.2		0	Н				
7/18/2011	81	10														
7/25/2011	88	20	7.67	21.9	-540	0	0.4	0	0.4		0.2					
7/29/2011	92	-				-		-								
8/1/2011	95	22	7.71	21.7	-560	0	0.4	0	0.4		0					
8/2/2011	96		, -													
8/5/2011	99															
8/8/2011	102	20	7.46	20.9	-505	0	0	0	0		0					
8/15/2011	109	18	7.7	20.7	-560	0.25	0.2	0	0.2		0					
8/17/2011	111	18	7.71	21.2	-550	0.1	0.3	0	0.3		0					
8/19/2011	113	18	7.71	21.2	-511	0.1	0.6	0.4	0.2		0.1					

Dete	Time	Target Flow					Lag Reactor (SP-	-200)				MBfR Solids Lead 1st	MBfR Solids LEAD 2nd	MBfR Solids Lag 1st	MBfR Solids Lag 2nd
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Phosphate	Sulfide	Turbidity	Turbidity	Turbidity	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L - PO4	mg/L	NTU	NTU	NTU	NTU
8/26/2011	120	15	7.86	23	-540	0.15	0.1	0	0.1		0.4				
8/31/2011	125	15	7.81	22	-540	0.1	0.4	0	0.4		0				
9/2/2011	127	15	7.7	22.7	-550	0.1	0	0.05	0		0.6	3.4	7.11	12.6	14.6
9/7/2011	132	15	7.6	23.5	-515	0.1	0.8	0.1	0.7		0.3			-	
9/9/2011	134	10	7.65	24.2	-520	0.15	0.1	0	0.1		0.8	3.92	6.52	15.7	17.2
9/12/2011	137	10	7.38	23.9	-390	0.2	0	0	0		2				
9/14/2011	139	10	7.37	24.2	-293	0.1	0	0.1	-0.1		1				
9/16/2011	141	20	7.53	21.1	-430	0.2	0.8	0.4	0.4		0.05				
9/19/2011	144	5													
10/3/2011	158	10	7.46	20.7	-566	0	0.4	0	0.4		0				
10/5/2011	160	10	7.48	20.6	-547	0.05	0	0	0		1.5				
10/7/2011	162	10	7.5	20.4	-530	0.05	0.2	0	0.2		0.2				
10/10/2011	165	5	7.52	21.5		0	0	0	0		3.5				
10/12/2011	167	5	7.6	23.6	-480	0.05	0	0	0		4.5				
10/14/2011	169	5	7.52	24		0.05	0	0	0		6				
10/17/2011	172	10	7.59	21.8		0.1	0.7	0.4	0.3		0				
10/19/2011	174	10	7.52	21.1		0.1	0	0	0		0.4				
10/21/2011	176	10	7.58	21.3		0.1	0.6	0.4	0.2		0.1	3.39	5.14	83.4	37.9
10/26/2011	181	10	7.63	21.2	-453	0.1	0.3	0.1	0.2		0.7				
10/28/2011	183	10	7.67	21.5	-506	0.1	0.5	0.5	0		0.1				
10/31/2011	186	10	7.66	22	-427	0.1	0.1	0.1	0		0.4				
11/2/2011	188	10	7.55	20.9	-491	0.1	0	0	0		1				
11/4/2011	190	10	7.59	20.4	-540	0.2	0	0	0		0.5	18.9	19.9	16.9	15.2
11/7/2011	193	10	7.57	20.9	-440	0.1	0	0	0		1				
11/9/2011	195	10	7.63	21.3	-487	0.1	0	0	0		1.3				
11/11/2011	197	10	7.65	21.8	-536	0.25	0	0	0		1.2				
11/14/2011	200	10													
11/16/2011	202	10													
11/18/2011	204	10	7.61	20.5	-500	0.05	0	0	0		0.4				
11/22/2011	208	10	7.66	20.5	-530	0.1	0	0	0		0.1				
11/28/2011	214	8	7.57	21.5	-553	0	0.1	0.1	0		0.1				
11/30/2011	216	8	7.41	21.3	-501	0	0	0	0		0.3				
12/2/2011	218	6			-	-	-	-			2.5				
12/5/2011	221	6													
12/9/2011	226	6													
12/14/2011	230	6	7.49	19.8	-547	0	0.4	0	0.4		0.5				
12/16/2011	232	6	7.47	19.6	-490	0.1	0	0	0		0.8				
12/19/2011	235	6	7.57	20.4	-515	0.1	0.4	0	0.4		1				

Data	Time	Target Flow					Lag Reactor (SP-	200)				MBfR Solids Lead 1st	MBfR Solids LEAD 2nd	MBfR Solids Lag 1st	MBfR Solids Lag 2nd
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Phosphate	Sulfide	Turbidity	Turbidity	Turbidity	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L - PO4	mg/L	NTU	NTU	NTU	NTU
12/21/2011	237	6	7.71	19.8	-543	0.05	0	0	0		0.6				
12/23/2011	239	6	7.54	19.9	-514	0.1	0	0	0		0.6				
12/27/2011	243	6	7.68	20.4	-533	0.1	0	0	0		0.6				
12/28/2011	244	6	7.58	21.3	-491	0.1	0	0	0		0.6				
12/30/2011	246	6	7.46	21.3	-540	0.05	0.4	0	0.4		2	19.6	10.1	18.9	9.4
1/3/2012	250	6	7.54	21.9	-570	0	0.4	0	0.4		1.4				
1/4/2012	251	6	7.48	21.9	-484	0.1	0	0	0		2.5				
1/6/2012	253	6	7.6	21.3	-485	0.15	0	0	0		0.3				
1/9/2012	256	6	7.64	21.6	-528	0.1	0	0	0		1				
1/11/2012	258	6	7.55	21.1	-424	0.15	0.25	0.25	0		0.05	34	18	44	19
1/12/2012	259	6													
1/13/2012	260	6													
1/16/2012	263	6													
1/17/2012	264	6													
1/18/2012	265	6													
1/19/2012	266	6													
1/20/2012	267	6													
1/23/2012	270	6													
1/24/2012	271	6													
1/25/2012	272	6													

Doto	Time	Target Flow			Aera	ation				Med	ia Filter Eff	luent		Post Media Filter	Filter Backwash
Date		Rate	pН	Temp	ORP	DO	Sulfide	Turbidity	pН	Temp	ORP	DO	Turbidity	Cl Residual	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L	NTU	std unit	°C	mV	mV	NTU	mg/L	NTU
4/20/2011			-	-	-	1	-	-	-	1	-	-	-	-	-
4/21/2011			-	-	-	1	-	-	-	1	-	-	-	-	-
4/22/2011			-	-	-	1	-	-	-	1	-	-	-	-	-
4/25/2011			-	-	-	-	-	-	-	-	-	-	-	-	-
4/28/2011														-	-
4/29/2011	1	5	7.87	20.4	6	8								-	-
5/2/2011	4	5	7.13	20.1	20	7	0	0.99	7.24	20.4	136		0.36	-	-
5/4/2011	6	5	7.44	22.6	65	7	0	4.35	7.68	23.1	162		1.32	-	-
5/6/2011	8	5	7.91	20.5	90	7	0		-	-	-			-	-
5/9/2011	11	5	6.86	18.6	-35	7	0	2.01	6.98	17.8	85		0.76	-	-
5/11/2011	13	5	6.85	19.4	-5	3.5	0	2.46	6.83	19.5	50		1.05	-	-
5/13/2011	15	8	8.01	20.2	-57	7	0	1.01	7.94	20.4	143	6	1.09	0.15	-
5/16/2011	18	10	7.79	18.9	-117	7	0	0.62	7.79	18.7	117	5.5	0.42	0	-
5/18/2011	20	10	7.77	18.9	-80	7	0	1.16	7.77	18.6	110	5.5	0.64	0	-
5/20/2011	22	10	7.98	19.5	-70	7	0	0.31	7.93	19.6	80	7	0.35	0	_
5/23/2011	25	8	8	19.4	-80	7	0	1.04	7.96	19.3	140	6	0.3	0	-
5/25/2011	27	8	7.97	19.9	-60	5.5	0	0.51	7.93	20	68	6	0.47	0	-
5/27/2011	29	8	7.92	20.7	-90	7	0	1.22	7.85	20.9	110	7	0.38	0	_
6/1/2011	34	10	7.91	20.1	-114	7	0	0.81	7.87	20.1	127	7	0.39	0	-
6/3/2011	36	10	7.94	20.0	-80	4.5	0	0.61	7.88	20.3	90	7	0.53	5	-
6/6/2011	39	12	7.83	20.3	-100	4.5	0	0.72	7.79	20.3	15	5.5	0.46	0	-
6/10/2011	43	12	7.85	20.2	-110	6	0	0.6	7.83	20.2	80	6	0.44	3	-
6/13/2011	46	12	7.8	20.4	-90	6	0	0.86	7.73	20.5	100	6	0.56	2.5	-
6/16/2011	49	12	7.84	20.6	-75	7	0	1.31	7.76	19.6	151	6	0.38	0	-
6/20/2011	53	12												>5	
6/27/2011	60	12	7.86	21.4	-130	6.5	0	0.69	7.81	21.6	90	7	0.34	7.5	-
7/5/2011	68	16	7.87	211.1	-65.4	3.5	0	0.74	7.78	21.3	95	5	0.6	0	-
7/11/2011	74	16	7.76	20.3	-70	7	0	0.8						off	
7/18/2011	81	10													
7/25/2011	88	20	7.85	21.9	-244	6	0.4	0.6	7.82	23.1	-90	7	0.31	1.25	
7/29/2011	92														
8/1/2011	95	22	7.88	21.7	-206	5.5	0.2	0.62	8.01	22.1	-73	6	0.51	0.3	
8/2/2011	96														
8/5/2011	99														
8/8/2011	102	20	7.68	20.8	-220	6	0.1	0.422	7.65	21.0	10	6	0.304	1.0	
8/15/2011	109	18	7.91	20.6	-290	6	0		7.87	2.7	-110	6	1	1.1	
8/17/2011	111	18	7.85	21	-320	6	0.1	0.383	7.84	21.2	-120	7	0.264	1.25	
8/19/2011	113	18	7.65	21.1	-272	5.5	0.05	0.79	7.63	21.4	-134	3.5	0.32	1	48

D-4-	Time	Target Flow			Aera	ation				Med	ia Filter Eff	luent		Post Media Filter	Filter Backwash
Date		Rate	pН	Temp	ORP	DO	Sulfide	Turbidity	pН	Temp	ORP	DO	Turbidity	Cl Residual	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L	NTU	std unit	°C	mV	mV	NTU	mg/L	NTU
8/26/2011	120	15	7.99	22.9	-293	5	0.2	1.3	7.92	23.5	-69	2.5	0.3	1	
8/31/2011	125	15	8.01	22	-285	5.5	0	1.3	7.95	22.1	-20	6	0.503	2.6	
9/2/2011	127	15	8	22.6	-250	6	0.3	1.17	7.88	22.9	38	5	0.257	3.75	
9/7/2011	132	15	7.9	23	-245	4.5	0.1	0.924	7.82	23.6	-90	6	0.409	0.9	
9/9/2011	134	10	7.99	24.1	-231	6.5	0.6	1.13	7.84	24.3	-80	7	0.306	0.6	0.489
9/12/2011	137	10	7.82	23.7	-275	5.5	1.1	1.78	7.65	23.8	-232	6	0.385	0.5	
9/14/2011	139	10	7.82	24	-247	7	0.5	1.88	7.66	24.1	-134	2.5	0.39	0.6	
9/16/2011	141	20	7.83	21.1	-195	5.5	0		7.73	21.1	-88	4.5		0.4	17.7
9/19/2011	144	5	8.02	24.8	-107	6.5	0	2.87	7.76	25.2	-102	4.5	0.45	>5	
10/3/2011	158	10	7.94	20.8	-120	5	0.3	2.96	7.85	20.8	50	7	0.679	0.3	
10/5/2011	160	10	7.89	20.5	-237	7	0.9		7.82	20.3	30	4.5		0*	
10/7/2011	162	10	7.88	20.5	-232	5	0.8				-140	6		0.6	
10/10/2011	165	5	8.01	22		4	4	2.67		21.8		5	1.59	>5	
10/12/2011	167	5	8.12	24.2	-305	5	3	2.8	8.01	24.5	-270	6	1.68	0.2	
10/14/2011	169	5	8.06	23.9		7	4		7.88	24.2		0.05		2.5	
10/17/2011	172	10	7.94	21.7		7	0	2.99	7.76	21.8		4.5	1.5	2	27.4
10/19/2011	174	10	7.86	21.6		5	0.1	2.5	7.77	21.6		6	0.9	1	
10/21/2011	176	10	7.93	21.2		5.5	0	3.01	7.83	21.1		5.5	1.66	1	
10/26/2011	181	10	7.98	21.1	-215	7	0.4	1.78	7.8	21	30	4	0.36	1.75	
10/28/2011	183	10	7.98	21.4	-153	7	0.05	2.28	7.85	21.4	85	5.5	0.39	1.75	
10/31/2011	186	10	7.93	21.8	-144	7	0.15	1.69	7.85	22	58	4.5	0.22	3.5	
11/2/2011	188	10	7.82	20.6	-202	6	0.8	1.22	7.78	20.7	-50	6.5	0.189	2	
11/4/2011	190	10	7.82	20.6	-260	5	0.4	1.05	7.79	20.4	-54	6	0.179	1.2	
11/7/2011	193	10	7.93	20.7	-214	7	0.8	1.2	7.81	20.6	50	3.5	0.132	2	
11/9/2011	195	10	7.98	21.1	-222	7	0.8		7.84	21	52	3.5		1.9	
11/11/2011	197	10	7.95	21.7	-254	6	0.8	0.898	7.83	21.3	-20	6.5	0.229	1.2	
11/14/2011	200	10													
11/16/2011	202	10													
11/18/2011	204	10	7.98	20.3	-173	7	0.1	1.24	7.93	20.1	74	5.5	0.288	1.5	
11/22/2011	208	10	7.98	20.4	-190	5	0.1	1.78	7.85	20.3	20	6	0.201	0.2	
11/28/2011	214	8	7.98	21.3	-230	5.5	0	0.897	7.86	21.6	-20	6	0.204	4	
11/30/2011	216	8	7.89	21.2	-156	7	0.1		7.72	21.2	55	5.5	0.211	2	
12/2/2011	218	6													
12/5/2011	221	6													
12/9/2011	226	6													
12/14/2011	230	6	7.88	19.8	-276	6	0.3		7.75	19.5	-160	7		0.4	
12/16/2011	232	6	7.91	19.3	-220	5.5	0.6	1.21	7.71	19	-140	6		<u> </u>	
12/19/2011	235	6	8	20.1	-230	5.5	0.5	1.46	7.82	19.8	-180	6	0.694	1.5	

Data	Time	Target Flow			Aera	ation				Medi	ia Filter Eff	luent		Post Media Filter	Filter Backwash
Date		Rate	pН	Temp	ORP	DO	Sulfide	Turbidity	pН	Temp	ORP	DO	Turbidity	Cl Residual	Turbidity
	Days	gpm	std unit	°C	mV	mg/L	mg/L	NTU	std unit	°C	mV	mV	NTU	mg/L	NTU
12/21/2011	237	6	8.12	19.4	-188	7	0.1	1.4	7.97	19.3	-10	5.5	0.132	2.5	
12/23/2011	239	6	8.02	19.6	-205	7	0.25	1.6	7.88	19.5	-49	4.5	0.111	2.5	
12/27/2011	243	6	8.09	20	-182	5.5	0.2	1.3	7.9	20	-17	5.5	0.175	2	
12/28/2011	244	6	8.04	21	-200	7	0.2		7.8	21	-20	5.5	0.116	1.6	
12/30/2011	246	6	7.92	21	-235	6	1.5	1.89	7.67	21.1	-180	6	0.207	0	
1/3/2012	250	6	7.99	21.4	-210	7	1.1	1.69	7.71	21.3	-145	7.5	0.207	0	
1/4/2012	251	6	7.97	21.6	-211	7	1	1.86	7.73	21.8	-132	3.5	0.295	2.5	43.1
1/6/2012	253	6	8.04	21.1	-160	7	0.05	1.72	7.87	21.1	30	5.5	0.178	1.5	
1/9/2012	256	6	7.86	21.4	-182	5.5	0.4	1.76	7.82	21.3	-40	6	0.163	1.5	
1/11/2012	258	6	8.02	20.8	-31	7	0	1.26	7.89	20.7	103	7	0.111	1.1	
1/12/2012	259	6													
1/13/2012	260	6													
1/16/2012	263	6												0.4	
1/17/2012	264	6												0.4	
1/18/2012	265	6													
1/19/2012	266	6													
1/20/2012	267	6													
1/23/2012	270	6													
1/24/2012	271	6												0.5	
1/25/2012	272	6												0.2	

_	Time	Target Flow					Finished Wa	ter (Product)					0	utfall
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Sulfide	Turbidity	Cl Residual	pН	Temperature
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L	NTU	mg/L	std unit	°C
4/20/2011			-	-	-	-	-	-	-	-	-	_		
4/21/2011			-	-	-	-	-	-	-	-	-	-		
4/22/2011			-	-	-	-	-	-	-	-	-	-		
4/25/2011			-	-	-	-	-	-	-	-	-	-		
4/28/2011												-		
4/29/2011	1	5										-		
5/2/2011	4	5	7.47	20.4	133	7	2	0	2	0	0.79	-		
5/4/2011	6	5	7.58	22.8	176	5.5	1.2	0	1.2	0	0.75	-		
5/6/2011	8	5	7.14	21.4	120	5.5	0	0	0	0		-		
5/9/2011	11	5	6.93	17.1	108	7	0	0	0	0	0.66	-		
5/11/2011	13	5	7.10	19.2	90	3.5	0	0	0	0	1.31	-		
5/13/2011	15	8	7.94	20.6	300	8	0.5	0.15	0.35	0	1.01	-		
5/16/2011	18	10	7.85	17.7	180	7	3.5	3.5	0	0	0.48	-		
5/18/2011	20	10	7.82	17.7	300	6	6	3.5	2.5	0	0.39	-		
5/20/2011	22	10	7.85	19.3	100	8	6.5	1.75	4.75	0	0.21	-		
5/23/2011	25	8	7.98	18.4	177	6	3	3	0	0	0.22	-		
5/25/2011	27	8	7.92	19.8	320	7	1.75	1.6	0.15	0	0.51	-		
5/27/2011	29	8	7.91	19.9	143	7	2	2	0	0	0.51	-		
6/1/2011	34	10	7.93	19.6	229	7	3.75	3	0.75	0	0.27	-		
6/3/2011	36	10	7.89	20	33	7.5	1.6	1.5	0.1	0	0.47	-		
6/6/2011	39	12	7.93	19.3	250	7	3.4	1.4	2	0	0.42	0		
6/10/2011	43	12	7.88	19.4	305	5.5	4.5	2.4	2.1	0	0.36	0		
6/13/2011	46	12	7.68	20.2	150	5.5	3	1.7	1.3	0	0.38	0		
6/16/2011	49	12	7.87	20.4	65	6	4	3	0	0	0.77	0		
6/20/2011	53	12												
6/27/2011	60	12	7.95	21.5	255	7	0	0	0	0	0.38	6		
7/5/2011	68	16	7.8	21.3	240	6	1.6	1	0.6	0	1.2	0	7.69	23.1
7/11/2011	74	16										off	7.64	21.8
7/18/2011	81	10											7.51	21.9
7/25/2011	88	20	7.8	22.8	100	8	0	0	0	0	0.23	0.4	7.56	24.3
7/29/2011	92													
8/1/2011	95	22	8.3	21.9	90	6	0	0	0	0	0.49	0	7.79	22.4
8/2/2011	96													
8/5/2011	99													
8/8/2011	102	20	7.68	20.9	264	7	0	0	0	0	0.147	0.2	7.6	20.9
8/15/2011	109	18	7.89	20.8	230	7	0	0	0	0		0.03	7.69	20.7
8/17/2011	111	18	7.87	21	250	8	0.2	0	0.2	0	0.211	0.9	7.66	21.2
8/19/2011	113	18	7.7	21.7	590	4	0.8	0	0.8	0	0.214	0.7		

D. (Time	Target Flow					Finished Wa	ter (Product)					O	utfall
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Sulfide	Turbidity	Cl Residual	pН	Temperature
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L	NTU	mg/L	std unit	°C
8/26/2011	120	15	7.92	24.4	639	3	0	0	0	0	0.375	2	7.75	24
8/31/2011	125	15	7.89	21.9	224	8	0.2	0	0.2	0	0.429	1.1	7.6	22.3
9/2/2011	127	15	7.97	23.4	681	5.5	0.25	0	0.25	0	0.251	1.75	7.87	22.9
9/7/2011	132	15	7.72	23.2	120	8	0.6	0	0.6	0	0.311	0.4	7.64	23.5
9/9/2011	134	10	7.83	24.1	290	8	0	0	0	0	0.276	0.2	7.48	24.2
9/12/2011	137	10	7.68	23.7	355	7	0	0	0	0	0.343	0.2	7.6	23.2
9/14/2011	139	10	7.73	24	318	3	0.2	0	0.2	0	0.29	0.2	7.67	24.1
9/16/2011	141	20	7.78	20.9	379	4.5	0.7	0	0.7	0	0.45	0.05	7.86	20.8
9/19/2011	144	5	7.88	25.4	733	6.5	0.5	0	0.5	0	0.37	>5	7.55	24.8
10/3/2011	158	10	7.84	21.1	90	8	0.4	0	0.4	0	0.503	0	7.59	21.1
10/5/2011	160	10	7.89	18.6	59	6.5	0.5	0	0.5	0	0.44	0*	7.70	18.8
10/7/2011	162	10			90	7	0.2	0	0.2	0		0.1		
10/10/2011	165	5	7.89	21.2		6.5	0.2	0	0.2	0	1.26	5	7.52	21.3
10/12/2011	167	5	7.91	24.4	-130	7.5	0	0	0	0	12.1	0.1	7.6	25.1
10/14/2011	169	5	7.91	24.3		1	0	0	0	0	8.58	0.4	7.48	24.1
10/17/2011	172	10	7.77	22		5.5	0.6	0	0.6	0	0.85	1.25	7.88	22
10/19/2011	174	10	7.79	21.3		7	0.2	0	0.2	0	0.8	0.4	7.67	21.1
10/21/2011	176	10	7.85	20.5		7	0.6	0	0.6	0	0.94	0.3	7.66	20.5
10/26/2011	181	10	7.86	20.3	659	5.5	0.4	0	0.4	0	0.38	1.5	7.73	19
10/28/2011	183	10	7.89	21.5	639	7	0.5	0	0.5	0	0.3	1.25	7.65	21.3
10/31/2011	186	10	7.86	22.1	703	5.5	0.4	0	0.4	0	0.11	1.75	7.66	22.1
11/2/2011	188	10	7.83	20.5	598	8	0	0	0	0	0.175	2	7.70	21
11/4/2011	190	10	7.86	20.2	620	7	0	0	0	0	0.157	1	7.68	20.1
11/7/2011	193	10	7.90	18.8	641	4.5	0	0	0	0	0.144	1.75	7.68	18.6
11/9/2011	195	10	7.92	19.4	655	4.5	0	0	0	0		1.6	7.69	19.6
11/11/2011	197	10	7.87	21.4	530	8	0	0	0	0	0.238	1		
11/14/2011	200	10												
11/16/2011	202	10												
11/18/2011	204	10	7.98	18.6	616	5.5	0	0	0	0	0.268	1.25	7.6	18.4
11/22/2011	208	10	7.91	19.8	320	7.5	0	0	0	0	0.197	0.1	7.58	20.1
11/28/2011	214	8	8.02	21.2	585	7	0.1	0	0.1	0	0.279	3	7.49	21.9
11/30/2011	216	8	7.9	21	640	7	0.4	0	0.4	0		1.5	7.45	20.8
12/2/2011	218	6			•							1.5	-	
12/5/2011	221	6											7.37	17.5
12/9/2011	226	6											7.19	20.3
12/14/2011	230	6	7.82	18.6	500	7.5	0	0	0	0		0.2	7.26	18.7
12/16/2011	232	6	7.81	17.8	510	7	0	0	0	0		0.6	7.58	17.5
12/19/2011	235	6	7.84	19.3	660	7	0	0	0	0	0.512	1.2	7.51	19.1

D. (Time	Target Flow					Finished Wa	ter (Product)					0	utfall
Date		Rate	pН	Temp	ORP	DO	Nitrate + Nitrite	Nitrite	Nitrate	Sulfide	Turbidity	Cl Residual	pН	Temperature
	Days	gpm	std unit	°C	mV	mg/L	mg/L - N	mg/L - N	mg/L - N	mg/L	NTU	mg/L	std unit	°C
12/21/2011	237	6	8.11	18.1	665	5.5	0.05	0	0.05	0	0.142	1.5	7.79	16.6
12/23/2011	239	6	7.97	18.3	630	5.5	0.1	0	0.1	0	0.124	1.5	7.83	17.5
12/27/2011	243	6	7.96	18.9	630	7	0.4	0	0.4	0	0.175	1.1	7.75	18.5
12/28/2011	244	6	7.89	20.6	596	7	0.5	0	0.5	0		1	7.7	20.6
12/30/2011	246	6	7.44	20.9	120	7	0.4	0	0.4	0	0.216	0	7.38	20.7
1/3/2012	250	6	7.39	20.9	60	8	0.6	0	0.6	0		0	7.44	20.9
1/4/2012	251	6	7.76	22	690	4.5	0.7	0	0.7	0		2	7.42	22.7
1/6/2012	253	6	7.95	20.6	673	7	0.1	0	0.1	0	0.145	1.2	7.63	20.8
1/9/2012	256	6	7.85	21.1	385	7	0.4	0	0.4	0	0.341	1	7.49	21.6
1/11/2012	258	6	7.94	20.3	543	7	0.25	0	0.25	0	0.126	0.9	7.67	19.8
1/12/2012	259	6										0.9		
1/13/2012	260	6										0.8		
1/16/2012	263	6										0.1	7.58	20
1/17/2012	264	6										0.1	7.51	20.1
1/18/2012	265	6										0.7	7.68	19.7
1/19/2012	266	6										0.4		
1/20/2012	267	6										0.7		
1/23/2012	270	6											7.58	19.5
1/24/2012	271	6										0	7.64	19.5
1/25/2012	272	6										0	7.69	19.1

Notes:

Qualifiers:

H Sample analysis performed past method-specified holding time.

^{*} Leak at injection pump discharge fitting, chlorine turned off.

APPENDIX D FIELD METHODS

1.0 BATCH TEST PRELIMINARY TESTING

A preliminary batch test was conducted on September 16, 2010, to evaluate effects of operating the system in batch mode with continued recirculation. The goal was to determine if it was possible to attain the treatment goal of effluent perchlorate concentrations below 6 milligrams per liter (mg/L).

1.1 EXPERIMENTAL METHODS

The normal operating conditions were changed to achieve a nitrate and nitrite (NOx) concentration over 2.5 milligrams of nitrogen per liter (mg-N/L) in the lead reactor:

- feed flow was 20 gallons per minute (gpm)
- MBfR1 hydrogen pressure was 20 pounds per square inch gauge (psig)
- MBfR2 hydrogen pressure was 28 psig

The influent and effluent flow to the membrane biofiltration reactor (MBfR) vessels was stopped at the beginning of the test. The lead reactor (MBfR2) served as the first batch reactor. The NOx in the batch reactor was measured using an online nitrate analyzer. NOx concentrations quickly dropped from greater than 2.5 mg-N/L to almost non-detectable limits over 20 minutes. Samples were collected from the recycle pump discharge line and were sent to the lab for analysis. The online nitrate analyzer sample tap was at the recycle pump discharge. Samples were collected according to Table 1, while monitoring the online nitrate analyzer readings via the Operator Interface Terminal (OIT). The third sample was collected when NOx was at the lowest concentration read by the online nitrate analyzer. Theoretically, this would be a zero concentration. However, the lowest concentration of NOx was determined to be at the point where NOx readings stopped decreasing and began to increase slightly.

Table 1 Sample Intervals

Sample	Sample Collection Trigger
1	At 2.5 mg-N/L
2	At 0.5 mg-N/L
3	Below detection (lowest value)
4	10 minutes after sample #3
5	20 minutes after sample #3
6	30 minutes after sample #3

After the batch experiment on MBfR2 was complete, feed flow was restored for several hours with MBfR1 as the lead reactor. After stabilization of NOx readings was achieved, feed flow was turned off again and this test was repeated with MBfR1 as the batch reactor. Preliminary testing results are shown in Table 2.

Table 2 Preliminary Testing Results

Recirculation Flow Rate (gpm)	Sample	Sample Collection Trigger	Time
MBfR1: 280	R1-1	At 2.5 mg-N/L	12:08
MBfR2: 280	R1-2	At 0.5 mg-N/L	12:18
	R1-3	Below detection (lowest value)	12:25
	R1-4	10 minutes after sample #3	12:35
	R1-5	20 minutes after sample #3	12:45
	R1-6	30 minutes after sample #3	12:55
MBfR1: 280	R2-1	At 2.5 mg-N/L	15:13
MBfR2: 280	R2-2	At 0.5 mg-N/L	15:21
	R2-3	Below detection (lowest value)	15:27
	R2-4	10 minutes after sample #3	15:37
	R2-5	20 minutes after sample #3	15:47
	R2-6	30 minutes after sample #3	15:57

Note: R1 is MBfR vessel 1 and R2 is MBfR vessel 2.

2.0 BATCH TESTING

The team conducted the batch tests on November 14 and 15, 2010, to determine nitrate, nitrite and perchlorate removal following a change of the internal recirculation flow rate. The influent flow to the MBfR was stopped and the water only recirculated within modules. Results from the preliminary batch test demonstrated that perchlorate and nitrate were completely reduced. This series of tests was conducted to obtain more accurate kinetics data for perchlorate, nitrate, and sulfate under variable recirculation flow rates.

2.1 EXPERIMENTAL METHODS

On the day prior to the experiment, the operating parameters remained at normal operating conditions:

- influent feed flow rate was 10 gpm
- MBfR1 hydrogen pressure was 15 psig
- MBfR2 hydrogen pressure was 17.5 psig
- MBfR1 recirculation flow rate is 100 gpm
- MBfR2 recirculation flow rate 180 gpm

The water level was controlled by manually adjusting the overflow valve to prevent a high-level alarm from shutting down the system or a low-water level from exposing the module fibers. The pump discharge supplied influent flow to the online nitrate analyzer. The nitrate analyzer effluent flow was discharged to the top of the lead reactor. The nitrate analyzer was cleaned by sliding the flow assembly away from the sensor and spraying DI water around the cuvette gap area to remove growth on the lens and also allow flow around the assembly's window. Operating

conditions were set to facilitate the experiment and achieve approximately 5 mg-N/L NOx in the lead reactor:

- The sparge interval was increased so that a sparge event would not trigger during sampling
- MBfR1 hydrogen pressure was 7 psig
- MBfR1 recirculation flow rate was 100 gpm
- MBfR2 sample valve was in "hand" operation
- MBfR1 sample valve was off
- The feed flow rate was increased to 22 gpm, which was the maximum feed flow allowed before triggering a high level alarm in the tanks
- The overflow valve was completely opened to prevent a high-level alarm, which would stop the system
- The MBfR2 module purge lines were manually vented
- MBfR1 and MBfR2 module purge lines were placed in the "off" position during the batch tests.

When NOx levels in MBfR2 (lead reactor) were greater than 5.5 mg-N/L the feed was discontinued by placing the system influent pump and the system influent solenoid valve in the off position. The overflow valve was closed to prevent draining of the MBfR reactors. The recirculation pump continued to operate. The nitrate concentration was closely monitored using the OIT. When NOx in MBfR2 (batch reactor) dropped below 5.5 mg-N/L, time was recorded at each concentration. Water samples were collected from the recycle pump discharge at the specified times to be analyzed for nitrate, nitrite, and perchlorate. Table 3 shows when samples were collected from the lead reactor based on nitrate analyzer readings.

Table 3 Sample Intervals

Sample	Sample Collection Trigger
0	At 5.0 mg-N/L
1	At 2.5 mg-N/L
2	At 0.5 mg-N/L
3	Below detection (lowest value)
4	5 minutes after sample #3
5	10 minutes after sample #3
6	20 minutes after sample #3

Sample #3 had the lowest nitrate reading and was near or below the detection limit of the online nitrate analyzer. The lowest value of NOx was determined to be at the point where NOx readings stopped decreasing and began to increase slightly. After the last sample was collected, the process was repeated at a different recirculation flow rate. For all flow rates and results, refer to Table 4 for MBfR2 (R2) batch test and Table 5 for Batch Test #2. After the batch testing was completed, the system was returned to its normal operating parameters.

Table 4 MBfR2 (R2) Batch Test Sample Collection Times, Day 1

	BIR2 (R2) Batch	Test Sample Conection Times, Da	iy i
Recirculation Rate (gpm)	Sample	Sample Collection Trigger	Time
MBfR1: 100	Initial Reading	5.5 mg-N/L	11:04
MBfR2: 180	R2-0-180gpm	At 5.0mg-N/L	11:06
	R2-1-180gpm	At 2.5mg-N/L	11:15
	R2-2-180gpm	At 0.5mg-N/L	11:23
	R2-3-180gpm	Below detection (lowest value)	11:29
	R2-4-180gpm	5 minutes after sample #3	11:34
	R2-5-180gpm	10 minutes after sample #3	11:39
	R2-6-180gpm	20 minutes after sample #3	11:49
MBfR1: 100	Initial Reading	5.5 mg-N/L	12:17
MBfR2: 60	R2-0-60gpm	At 5.0mg-N/L	12:18
	R2-1-60gpm	At 2.5mg-N/L	12:30
	R2-2-60gpm	At 0.5mg-N/L	12:40
	R2-3-60gpm	Below detection (lowest value)	12:49
	R2-4-60gpm	5 minutes after sample #3	12:54
	R2-5-60gpm	10 minutes after sample #3	12:59
	R2-6-60gpm	20 minutes after sample #3	13:09
MBfR1: 100	Initial Reading	5.5 mg-N/L	13:50
MBfR2: 120	R2-0-120gpm	At 5.0mg-N/L	13:50
	R2-1-120gpm	At 2.5mg-N/L	13:59
	R2-2-120gpm	At 0.5mg-N/L	14:11
	R2-3-120gpm	Below detection (lowest value)	14:15
	R2-4-120gpm	5 minutes after sample #3	14:20
	R2-5-120gpm	10 minutes after sample #3	14:25
	R2-6-120gpm	20 minutes after sample #3	14:35
MBfR1: 100	Initial Reading	5.5 mg-N/L	15:10
MBfR2: 90	R2-0-90gpm	At 5.0mg-N/L	15:10
	R2-1-90gpm	At 2.5mg-N/L	15:23
	R2-2-90gpm	At 0.5mg-N/L	15:34
	R2-3-90gpm	Below detection (lowest value)	15:40
	R2-4-90gpm	5 minutes after sample #3	15:45
	R2-5-90gpm	10 minutes after sample #3	15:50
	R2-6-90gpm	20 minutes after sample #3	16:00

Table 5 MBfR1 (R1) Batch Test Sample Collection Times, Day 2

Table 5 Wibiki (Ki) Datch Test Sample Conection Times, Day 2				
Recirculation Rate (gpm)	Sample	Sample Collection Trigger	Time	
MBfR1: 150	Initial Reading	5.2 mg-N/L	9:57	
MBfR2: 180	R1-0-150gpm	At 5.0mg-N/L	9:58	
	R1-1-150gpm	At 2.5mg-N/L	10:12	
	R1-2-150gpm	At 0.5mg-N/L	10:25	
	R1-3-150gpm	Below detection (lowest value)	10:32	
	R1-4-150gpm	5 minutes after sample #3	10:37	
	R1-5-150gpm	10 minutes after sample #3	10:42	
	R1-6-150gpm	20 minutes after sample #3	10:52	
MBfR1:50	Initial Reading	5.5 mg-N/L	11:04	
MBfR2: 180	R1-0-50gpm	At 5.0mg-N/L	11:05	
	R1-1-50gpm	At 2.0mg-N/L	11:23	
	R1-2-50gpm	At 0.5mg-N/L	11:40	
	R1-3-50gpm	Below detection (lowest value)	11:56	
	R1-4-50gpm	5 minutes after sample #3	12:01	
	R1-5-50gpm	10 minutes after sample #3	12:06	
	R1-6-50gpm	20 minutes after sample #3	12:16	
MBfR1: 100	Initial Reading	5.23 mg-N/L	13:06	
MBfR2: 180	R1-0-100gpm	At 5.0mg-N/L	13:07	
	R1-1-100gpm	At 2.5mg-N/L	13:23	
	R1-2-100gpm	At 0.5mg-N/L	13:36	
	R1-3-100gpm	Below detection (lowest value)	13:45	
	R1-4-100gpm	5 minutes after sample #3	13:50	
	R1-5-100gpm	10 minutes after sample #3	13:55	
	R1-6-100gpm	20 minutes after sample #3	13:05	
MBfR1: 200	Initial Reading	5.2 mg-N/L	14:42	
MBfR2: 180	R1-0-200gpm	At 5.0mg-N/L	14:43	
	R1-1-200gpm	At 2.5mg-N/L	14:53	
	R1-2-200gpm	At 0.5mg-N/L	15:07	
	R1-3-200gpm	Below detection (lowest value)	15:13	
	R1-4-200gpm			
	R1-5-200gpm	10 minutes after sample #3	15:23	
	R1-6-200gpm	20 minutes after sample #3	15:33	

3.0 MBfR SPARGE SAMPLING PROCEDURE

Rialto ARo-Perc Sparge Process Sampling Procedure

Scope	The following procedure is to sparge process is initiated.	The following procedure is to be used by Rialto personnel whenever Rialto MBfR sparge process is initiated.				
Attributes and	Categories	Categories				
Categories	☐ Critical ☐ Emergency 区	Operating [Other			
	Attributes (Operating/Other)					
	⊠ Routine ☐ Non-Routine					
Hazards and Precautions	precautions that should be tal	The table below lists job hazards associated with completing this procedure and the precautions that should be taken for safety, environmental, quality, ergonomics, Good Manufacturing Practices, etc. before beginning this procedure.				
	Hazard		Precaution			
	Leakage.		Ensure all pipe connections are properly secured, and monitor all draining activities.			
	Pressurized water coming in contact with operator when taking sample.		Wear eye protection, gloves, and protective clothing.			
Tools and Equipment	Listed below are the unique t	ools and equip	pment needed to do this job.			
	Tool/Equipmen	t	Use			
	Sample bottles.		Collecting water sample.			
	Test kit.		Testing for solids.			
Consequences of Deviation	If this procedure is not followed, missing or inaccurate data could occur. This table lists consequences of deviation from the procedure steps or general operating limits.					
	Type of Deviation	Co	onsequences and How to Avoid			

Sampling

sparge process.

Inaccurate data collected will lead to inaccurate results.

Would require another sample to be taken, wasting time and money. Make sure to follow the steps during the

Sample not taken at the right

time.

Step	Action		
1	Consult with APT water to determine when operating personnel should be present to take sample.		
2	From the Main Menu, go to the "Sparge" screen on the OIT. Prepare to take sample from LAG reactor.		
3	Sparge process for the lag reactor	will go through the following steps:	
	Step:	Approx. duration time (min)*:	
	1Pumpout	1-5	
	2Sparge	1	
	3 Drain	3-5	
	4Fill Heel	1-3	
	5Recirc	1	
	6 Drain Heel	2-4	
	7Equalize	4-5	
	These steps will be shown in the Othe current step being highlighted *These are just estimates and the Therefore, it is recommended to k	actual duration time could be different. eep track of steps in the OIT screen.	
4	Drain step (#3) will be highlighted after Sparge step (#2) is completed. Listen for the drain pump turning on to make sure step 3 has started and prepare to take sample. It is recommended to collect three samples of ~333mL each at 0.5, 1.5, and 2.5 minutes. Purge first ~200ml from SP-600 (located after the drain pump) before taking first sample and then start collecting approximately 1L for analysis at the given times. Label sample as "Lag First Drain."		
5	Once the Drain step is completed (drain pump will turn off), the tank will be partially filled and then recirculated. This will help remove anything that didn't get removed during the first drain process from the lag vessel.		
6	Drain Heel step (#6) will start following recirculation and will be highlighted in the OIT screen. Listen for the drain pump turning on and proceed to collect three samples of ~333mL each at 0.5, 1.5, and 2.5 minutes. Purge first ~200ml from SP-600 before taking first sample and then start collecting approximately 1L for analysis at the given times. Label sample as "Lag Second Drain."		

	•		
7	After the Equalized step for lag reactor is completed, sparge process will start for the lead reactor and will go through the following steps:		
	Step:	Approx. duration time (min)*:	
	1Pumpout	1-5	
	2Sparge	1	
	3 Drain	3-5	
	4Fill Heel	1-3	
	5Recirc	1	
	6 Drain Heel	2-4	
	7Refill	20	
	These steps will be shown in the OIT so the current step being highlighted.	creen during the sparge process with	
	*These are just estimates and the actual duration time could be different. Therefore, it is recommended to keep track of steps in the OIT screen.		
8	Drain step (#3) will be highlighted after Sparge step (#2) is completed. Listen for the drain pump turning on to make sure step 3 has started and prepare to take sample. It is recommended to collect three samples of ~333mL each at 0.5, 1.5, and 2.5 minutes. Purge first ~200ml from SP-600 (located after the drain pump) before taking first sample and then start collecting approximately 1L for analysis at the given times. Label sample as "Lead First Drain."		
9	After the Drain step, the tank will be partially filled and then recirculated. This will help remove anything that didn't get removed during the first drain process from the lead vessel.		
10	Drain Heel step (#6) will start following recirculation and will be highlighted in the OIT screen. Listen for the drain pump turning on and proceed to collect three samples of ~333mL each at 0.5, 1.5, and 2.5 minutes. Purge first ~200ml from SP-600 before taking first sample and then start collecting approximately 1L for analysis at the given times. Label sample as "Lead Second Drain."		
11	After the Refill step (#7) is completed, the feed water is stopped until the nitrate levels have been reduced to <1 mg-N/L.		

Revision History

The following table lists all changes made to this document.

Date	Revised By	Changes	
6/15/11	Renato Vigo	Document created.	
8/8/11	Renato Vigo	Modified to include better duration times for sparge steps.	

4.0 MEDIA FILTER SAMPLING PROCEDURE

Rialto Filter Backwash Sampling Procedure

Scope	The following procedure is to filter backwash is initiated.	The following procedure is to be used by Rialto personnel whenever Rialto media filter backwash is initiated.				
Attributes and	Categories	Categories				
Categories	☐ Critical ☐ Emergency ☒	Operating Other				
	Attributes (Operating/Other)					
	⊠ Routine ☐ Non-Routine					
Hazards and Precautions	precautions that should be tak	rds associated with completing this procedure and the en for safety, environmental, quality, ergonomics, Good before beginning this procedure.				
	Hazard	Precaution				
	Leakage.	Ensure all pipe connections are properly secured, and monitor all backwash activities.				
	Pressurized water coming in coperator when taking sample.	ontact with Wear eye protection, gloves, and protective clothing.				
	Falling off from a ladder.	Refer to the manufacturer's instructions to avoid falling off from a ladder.				
Tools and Equipment	Listed below are the unique to	ools and equipment needed to do this job.				
	Tool/Equipment	Use				
	Sample bottles.	Collecting water sample.				
	Test kit.	Testing for total solids and turbidity.				
	6 foot Ladder.	Monitoring the backwash from the top of the media filter.				
Consequences of Deviation		issing or inaccurate data could occur. This table lists procedure steps or general operating limits.				
	Type of Deviation	Consequences and How to Avoid				

Sample not taken at the right time.	Inaccurate data collected will lead to inaccurate results. Would require another sample to be taken, wasting time and money. Make sure to follow the steps during the media filter backwash.
-------------------------------------	--

Procedure

	Action		
Consult with APT water to determine when operating personnel should be present to take sample.			
Initiate Media Filter backwash.			
• From the Main Menu, go to the "Filtration Overview" screen.			
• Change the "dP to In the "Filter dP" value.	itiate Backwash" value to a number less than		
 After 60 seconds, the "Filter Backwash Trigger" will read ON and shortly after that Backwash pump (P-514) will turn on and water from the product tank will start flowing backwards through the filter. P-514 will stay on during the entire backwash process and will turn off 20 min 40 sec after backwash process is initiated. 			
•	er of the "Filtration Overview" screen will Backwashing" to "Backwashing."		
Backwash process for the me	dia filter will go through the following steps:		
Step:	Approx. duration time (min)*:		
1 Backwash	10-13		
2Settle	1-1.5		
3Purge	3.5-4		
4Start next	0.5-1		
*These are just estimates and	the actual duration time could be different.		
	itor the backwash process from the top of the s valve will point to the current step and will up to the next.		
	Initiate Media Filter backwas From the Main Menu Change the "dP to In the "Filter dP" value After 60 seconds, the shortly after that Back from the product tank filter. P-514 will stay will turn off 20 min 4 The lower right corne change from "NOT I Backwash process for the message of the message state of the start next These are just estimates and Using the 6 foot ladder, monifilter: an arrow on the Hydru		

Figure 1. Top view of the Hydrus valve located on the top of the Filter.

5	Take sample from SP-506 during the Backwash step (#1):
	• The entire Backwash process will use 400-500 gallons of water and the initial volume concentration may not be equal the final volume concentration; therefore, it is recommended to collect five samples of ~200mL each at 1, 3,5,7, and 9 minutes after step 1 begins. Purge and then collect samples.
	Use all samples taken to make a composite sample of about 1Liter for analysis.
6	Regardless of the current step, P-514 will always be on during the entire Backwash process and will try to achieve a Filter Outlet pressure equal to the setpoint (i.e. 30psig). You can access this by going to the "Filter BW Pressure PID" screen from the Main Menu or by pushing the filter outlet pressure button directly from the "Filtration Overview" screen. This pressure may not be possible to reach if a process valve is not throttled in the field.
7	During the Settle step (#2) nothing will be flowing through the filter (internal filter media valve will close). P-514's speed will adjust (slow down) to reach the pressure equal to that of the step point during this step.
8	Water will flow through the filter during the Purge step (#3) (internal filter media valve will open).
9	P-514 is programmed to run for 20min and 40 seconds after the backwash process is initiated. This should be enough time for the backwash valve to cycle through completely.

Revision History

The following table lists all changes made to this document.

Date	Revised By	Changes
6/29/11	Renato Vigo	Document created. Approved by:

APPENDIX E QUALITY ASSURANCE AND QUALITY CONTROL

1.0 METHODS

Quality assurance (QA) and quality control (QC) samples were analyzed to provide site-specific, field-originated information to assess whether data were of defensible quality as determined by adherence to the project's QA/QC requirements outlined in the Quality Assurance Project Plan (QAPP). QA/QC samples were collected concurrently with field samples and equally represented the medium being sampled at a given time and location. The following QA/QC samples were collected:

- Field Duplicates
- Matrix Spike/Matrix Spike Duplicates
- Trip Blanks

1.1 FIELD DUPLICATES

Field duplicate samples were collected to aid evaluation of the homogeneity of the sample matrix and the consistency of the sampling effort. Feld duplicates also provided an assessment of precision including sampling and handling error. Field duplicates were collected at a frequency of approximately one field duplicate sample per 10 samples collected. Field duplicates were collected concurrently with the primary environmental samples and equally represented the medium at a given time and location.

The precision goal for sample pairs whose values were greater than 10 times the practical quantitation limit (PQL) was a relative percent deviation (RPD) of less than or equal to 25 percent (%). For sample pairs that had one or both values less than 10 times the PQL, the precision goal was an RPD of less than or equal to 50%. Sample pairs that had one or both values that were less than the PQL had no RPDs calculated. If the precision goals were not met for any given sampling round, the project manager and field team leader performed a review of sample collection and handling procedures. For analyses performed in the field, the field procedures were also reviewed.

1.2 MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Matrix spike/matrix spike duplicate (MS/MSD) samples assess laboratory instrument accuracy and the matrix effects on the results. Specific samples for MS/MSD analysis were not collected for this project; instead, MS/MSDs were included with each sample run and included in the analytical laboratory's report. The frequency of MS/MSD analysis was approximately one in 20 samples. The only parameters that required matrix spikes were the volatile organic compound (VOC) and perchlorate samples analyzed by an offsite laboratory. The accuracy goal for these samples was a percent recovery of 70-130%.

1.3 TRIP BLANKS

Trip blanks provide an assessment of VOC cross-contamination during sample handling and shipment to the off-site laboratory. Trip blank samples were collected with each cooler containing samples for VOC analysis starting in the Optimization phase. The accuracy goal for all trip blanks was no detections of analytes in these samples. The lab was instructed to hold trip blanks until VOC analyses were complete and data were validated. If questionable analytical results were obtained, then the trip blanks were run to determine if possible contamination existed. However, there were no questionable results during the project so no trip blanks were analyzed during the project.

2.0 CALIBRATION PROCEDURES

Calibration procedures followed procedures outlined in the QAPP and manufacturer's specifications. Laboratory analytical calibration procedures were conducted in accordance with the QAPP and the laboratory's QA manual.

2.1 WATER MONITORING INSTRUMENTS

Field instruments were calibrated in the field at the beginning of each day (see Appendix D for records). Field water monitoring instruments included a Hach 2100N turbidity meter and Oakton pH, temperature, and ORP probe. Standards used for pH calibration included Oakton 4.0, 7.0 and 10.0 standard unit solutions. Standards used for the turbidity meter calibration included Hach 0, 20, 200, 1000 and 4000 Nephelometric Turbidity Units (NTU) high range standards, and Hach 0.136, 0.300, and 0.500 NTU low range standards were used for verification.

2.2 AIR MONITORING INSTRUMENTS

Air quality monitoring was warranted when an odor of hydrogen sulfide was detected during Steady State operations. Two four-gas meters were used during the study, one was a Scientific Instruments gas meter and the other an Equipco QREA. The four-gas meters were calibrated at the beginning of each field day where air monitoring took place. Standards used for calibration included a mixed cylinder containing 50.0% carbon monoxide, 12.5% oxygen, 50.0% methane, and 25% hydrogen sulfide. See Appendix D for calibration records.

2.3 SYSTEM MONITORING EQUIPMENT

The Operator Interface Terminal (OIT) data displayed monitoring information from online sensors at the site, and these data were also available for remote monitoring through an internet web address. Equipment which required regular calibration and maintenance is shown in Table 1. A full description of equipment operations and maintenance is included in Appendix G, the O&M Manual.

Table 1 Field Equipment Inspection and Calibration Frequency

Equipment	Manufacturer	Function	Frequency
Mass flow meter	MKS Instruments	Chemical gas flow rate	As needed
Pressure gauge		Chemical gas pressure	As needed
Magnetic flow meter	Signet	Water flow rate	Quarterly
Pressure gauge		Water pressure	As needed
Level sensor	Warrick	Tank Water level	As needed
Dryloc pH probe	Signet	pН	1-4 weeks
Dryloc Oxidation	Signet	ORP	1-4 weeks
reduction potential			
(ORP) probe			
Turbidity Sensor	TurbiMax	Turbidity	Quarterly
Nitrate Analyzer	Stamosens	Nitrate concentration	Monthly
Lower explosive limit		LEL	Quarterly
(LEL) detector			

3.0 RESULTS

A total of 2,350 analyses were performed during the demonstration, and 201 field duplicate samples were collected and evaluated for precision and accuracy (Table 2). The field duplicate rate of sample collection was slightly lower than planned at 9%. The average RPD for heterotrophic plate counts (HPCs) was 118%, which exceeded the RPD threshold of 25%. Of the six field duplicate samples tested, three had considerably high RPDs of 184, 174, and 114% (these samples were above 10 times the PQL). While this did not meet the data usability objective, HPC is a bioassay and as such is notorious for having a high degree of variability between samples. Results for HPCs are generally interpreted with order of magnitude differences being significant because of this difficulty.

Remaining samples had average RPDs below threshold values for usability. While the average RPD for DOC was below the threshold, there was one field duplicate with an RPD of 63%; this sample had a very low concentration near the PQL (1.1 vs 0.57 mg/L with a PQL of 1 mg/L). Two TCE sample results were above the threshold for data usability with an RPD of 76 and 79%, respectively. Similarly, these samples had low concentrations. Total suspended solids had RPDs which exceeded the data quality threshold of 50% in three samples. Two of the samples had RPDs of 58 and 67%, respectively. In each of these cases, the measurements were either at or as much as 10% less than the PQL. The remaining sample had an RPD of 156%, but again these results were very close to the PQL (4.8 and 0.6 mg/L with a PQL of 1.0 mg/L).

MS/MSDs were only required for VOCs and perchlorate with an accuracy goal of 70-130% recovery. The percent recovery of perchlorate samples averaged 103%. The percent recovery for the VOC samples including TCE, cis-1,2 dichloroethene and vinyl chloride was 94%, 105% and 93% respectively. The analytical laboratory performed MS/MSDs for several other parameters as part of their laboratory QA program. No samples exceeded the percent recovery thresholds for data quality (Table 2).

Table 2 Data Quality Indicators

Analyte	No. Field Samples	No. Field Duplicates	Average RPD	No. MS/MSDs	Average Percent Recovery (%)
Perchlorate	404	44	8%	20	103%
Perchlorate (confirmatory)	63	4	3%	3	83%
Nitrate	168	17	7%	8	97%
Nitrite	167	17	6%	8	101%
Total suspended solids	63	7	40%	5	82% ²
Threshold odor number	17	1	0%	1	94% ²
Fecal coliforms	100	6	0%	5	83% ²
Total coliforms	100	6	0%	5	89% ²
E coli	36	4	0%	2	86% ²
Heterotrophic plate count	90	6	118%	5	78% ²
DOC	119	8	18%	6	100%
TCE	168	14	15%	9	94%
cis-1,2-DCE	166	14	0%	8	105%
VC	113	14	0%	6	93%
TTHMs	20	3	3%	1	127%
Sulfate	46	4	2%	2	100%
Total sulfide	125	4	10%	6	84%
Alkalinity	83	7	3%	4	110% ²
Total dissolved solids	90	7	2%	4	93%2
Haloacetic acids	38	3	1%	2	108%
Phosphate	27	2	18%	1	116%
Ammonia	41	4	30%	2	109%
Hardness	82	7	1%	4	91% ²
N-Nitrosodiethylamine	6	0	1	1	106% ²
N-Nitrosodimethylamine	6	0	1	1	95.5% ²
N-Nitroso-di-n-					
propylamine	6	0	1	1	92.5% ²
TTHM-FP	12	0	1	1	
Turbidity	4	0	1	1	$101\%^{2}$

Notes: 1 not determined.

Completeness of data was assessed as the percentage of valid samples that met precision and accuracy requirements compared to the total number of samples. The completeness goal for this project was 90%, as defined in the Demonstration Plan QAPP. Completeness was tracked both for individual sampling rounds and cumulatively over the course of the demonstration. Completeness was >99%, as only two samples were not useable due to holding time exceedances. There were two samples that exceeded the holding time for nitrate. These samples were collected during the Challenge phase on January 12, 2012. The samples were collected from the finished water, one was a field duplicate. The samples were eliminated from further

² MS/MSD sample results were not from the current study but were included in the analytical report for samples analyzed with the same batch that day.

analysis. While there were some data points that exceeded the accuracy data quality objective for HPCs, the samples were included with the understanding that HPC is an inherently difficult test to reproduce and at most order of magnitude changes should be assessed to determine differences.

APPENDIX F LABORATORY ANALYTICAL DATA

														MBf	R Influ	ent									
Date	Time	Target Flow Rate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite	Nitrate+ Nitrite	Ammonia	200)	TCE	cis 1,2-DCE		VC	Acetone	Sulfate	Alkalinity	TDS	Turbidity	TTHMs	TTHM-Formation Potential	HAA5	HAA6	Phosphate	Hardness
	days	gpm	μg/L		mg/L-N	mg/L-N	mg/L-N	mg/L-	N mg	/L	μg/L	μg/I		μg/L	 μg/L	mg/L	mg/L	mg/L	NTU	μg/I		μg/L	μg/L	mg/L	mg/L
4/22/2011	-6	0	180		8.8	0.15	U 8.95																	< 0.16	
4/25/2011	-3	0																							
4/27/2011	-1	0																							
4/29/2011	1	5	180		8.8	0.15	U 8.95				55	1	U	0.5 U	5.3		160	250							200
5/2/2011	4	5	180																					0.14	
5/4/2011	6	5	180																						
5/6/2011	8	5	190		8.4	0.15	U 8.55				50	1	U	0.5 U		21	160	250							200
5/9/2011	11	5	180																						
5/11/2011	13	5	210		8.3	0.15	U 8.45				65	1	U	0.5 U		20	150	240							190
5/13/2011	15	8	190																						
5/16/2011	18	10	170																						
5/18/2011	20	10	190		8.7	0.15	U 8.85		1	U	53	1	U	0.5 U		20	150	250						0.16 U	190
5/20/2011	22	10	180																					0.16 U	J
5/23/2011	25	8	170																						
5/25/2011	27	8	180		8.3	0.15	U 8.45		1.1		56	1	U	0.5 U		20	140	260						0.16 U	J 200
5/27/2011	29	8	180																					0.16 U	J
6/1/2011	34	10	180																						
6/3/2011	36	10	200		8.1	0.15	U 8.25		1	U	56	1	U	0.5 U		21	140	270						0.16 U	J 210
6/6/2011	39	12																						0.25	
6/10/2011	43	12	180																						
6/13/2011	46	12	190																						
6/16/2011	49	12																							
6/20/2011	53	12	190		8.3	0.15	U 8.45	0.5	U 0.27	7	44	1	U	0.5 U	10 U	J 20	160	250						0.16	200
6/27/2011	60	12	170		8.6	0.15	U 8.75																		
7/5/2011	68	16	180		8.3	0.15	U 8.45	0.5	U 0.09	2	58	1	U	0.5 U	10 U	J 20	180	270						0.16 U	J 200
7/11/2011	74	16	190		8.3	0.15	U 8.45		U 0.08	4	51	1		0.5 U		21	140	260						0.16 U	190
7/18/2011	81	10														İ									
7/25/2011	88	20	180		8.0	0.15	U 8.15				53	1	U	0.5 U	10 U	J 21	150	270						0.14 U	J
8/1/2011	95	22	170		8.4	0.15	U 8.55	0.14	0.17	7	58	< 1		0.5 U		20	160	260						0.16 U	J 190
8/8/2011	102	20	180													İ									
8/15/2011	109	18	180		9	0.15	U 9.15	0.5	U 0.3		59	< 1		0.5 U		21	160	270						0.16 U	190
8/17/2011	111	18	200																						

														MBf	R Inf	luer	ıt											
Date	Time	Target Flow Rate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite	Nitrate+ Nitrite	Ammonia		DOC	TCE	cis 1,2-DCE		VC	Acetone		Sulfate	Alkalinity	TDS	Turbidity	TTHMs	TTHM-Formation	Potential	HAAS		HAA6	Phosphate	Hardness
	days	gpm	μg/L		mg/L-N	mg/L-N	mg/L-N	 mg/L-	-N	mg/L	μg/L	μg/I		μg/L	μg	/L	mg/L	mg/L	mg/L	NTU	μg/l	_		μg/L	, ,	μg/L	mg/L	mg/L
8/19/2011	113	18	170				0				. 0		П		1.0		0											
8/26/2011	120	15	160	130	9	0.15	U 9.15	0.5	U	0.6	65	1	U	0.5 U	J 10	U	22	160	250									190
8/31/2011	125	15	170										Ħ															
9/2/2011	127	15	170										Ħ															
9/7/2011	132	15	160	160	9.3	0.15	U 9.3	0.5	U	1	54	1	U	0.5 L	J 10	U	21	140	280									190
9/9/2011	134	10	160																									
9/12/2011	137	10	160	160	9.2	0.15	U 9.2	1.5	(0.21	64	1	U	0.5 L	J 10	U	21	140	280									190
9/14/2011	139	10	170										Ħ															
9/16/2011	141	20	170										Ħ															
9/19/2011	144	5	180		9.7	0.15	U 9.7																					
10/3/2011	158	10	160		8.8	0.15	U 8.8						Ħ															
10/5/2011	160	10	150	160	8.6		U 8.6	0.5	U	1.1	59	1	U	0.5 L	J		21	150	260									190
10/7/2011	162	10	160																	< 1.0								
10/10/2011	165	5	160										Ħ															
10/12/2011	167	5	150																									
10/14/2011	169	5	160										Ħ															
10/17/2011	172	10	160	170	8.7	0.15	U 8.7	0.5	U (0.51	55	1	U	0.5 U	J		21	130	250									190
10/19/2011	174	10	160										Ħ															
10/21/2011	176	10	140										Ħ															
10/26/2011	181	10	160	150	9	0.15	U 9	0.5	U (0.29	39	1	U	0.5 U	J 10	U	22	150	260									210
10/28/2011	183	10	160										Ħ															
10/31/2011	186	10	120										Ħ															
11/2/2011	188	10	150	150	9	0.15	U 9	0.5	U	0.6	54	1	U	1 U	J 10	U	21	160	270									180
11/4/2011	190	10	160										Ħ															
11/7/2011	193	10	160										Ħ															
11/9/2011	195	10	140	130	8.9	0.15	U 8.9	0.5	U (0.69	63	1	U	0.5 U	J		22	140	270								 	190
11/11/2011	197	10	130										\sqcap															1
11/16/2011	202	10											\sqcap															1
11/18/2011	204	10	160	140	9	0.15	U 9	0.12	(0.13	43	1	U	0.5 L	J		22	160	250									200
11/22/2011	208	10	150	130	9.2		U 9.2	0.5		0.97	51			0.5 U			22	130	260									190
11/28/2011	214	8	160		8.4		U 8.4	0.5		2.0	48			0.5 U		U	22	150	260		4	U		6	U	7 U	i T	200
11/30/2011	216	8	140										\sqcap															

129/2011 225 6															MBfl	R Influ	ent										
12/9/2011 225 6	Date		Flow	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite	Nitrate+ Nitrite	Ammonia		DOC	TCE	1,2-DC		VC	Acetone	Sulfate	Alkalinity	TDS	Turbidity	TTHMs	TTHM-Formation Potential	HAAS		HAA6	Phosphate	Hardness
12/14/2011 230 6		days	gpm	μg/L		mg/L-N	mg/L-N	mg/L-I	N mg/L	-N	mg/L	μg/L	μg/l	L	μg/L	μg/L	mg/L	mg/L	mg/L	NTU	μg/L	ı.	μg/I	L	μg/L	mg/L	mg/L
12/16/2011 232 6 160 9.3 0.15 U 9.3 0.14 2 58 1 U 0.5 U 23 270 8.6 6 U 7 U 12/19/2011 235 6 160 9.2 0.15 U 9.2 0.5 U 2.1 57 1 U 0.5 U 22 150 250 6 U 7 U 12/12/2011 237 6 150 U 237 1.11 239 U 237 2			6																					Ш			
12/19/2011 235 6 160 9.2 0.15 U 9.2 0.5 U 2.1 57 1 U 0.5 U 22 150 250 6 U 7 U 12/21/2011 237 6 150 0 0 0 0 0 0 0 0 0																								Ш			
12/21/2011 237 6												_	1									8.6	_	U			190
12/23/2011 239 6						9.2	0.15	U 9.2	0.5	U	2.1	57	1	U	0.5 U		22	150	250				6	U	7 I	J	200
12/27/2011 243 6																								Ш			
12/28/2011 244 6 150																								Ш			
12/30/2011 246 6 160 160 150 8.3 0.15 U 8.3 0.5 U 0.79 51 1 U 0.5 U 22 140 280 19						8.9	0.15	U 8.9	0.37		1.1	39	1	U	0.5 U	10 U	J 22	150	220				6	U	7 I	Л	190
1/3/2012 250 6 150 8.3 0.15 U 8.3 0.5 U 0.79 51 1 U 0.5 U 22 140 280 19																								Ш			
1/4/2012 251 6 150 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>Ш</td><td></td><td></td><td></td></t<>									1														1	Ш			
1/6/2012 253 6 160 9.2 0.15 U 9.2 0.5 U 0.14 60 1 U 0.5 U 22 140 300 <						8.3	0.15	U 8.3	0.5	U	0.79	51	1	U	0.5 U		22	140	280				19	Ш	19		200
1/9/2012 256 6 150 9.2 0.15 U 9.2 0.5 U 0.14 60 1 U 0.5 U 0.5 U 0.14 60 1 U 0.5 U 0.5 U 0.14 60 1 U 0.5 U 0.5 U 0.14 0.5 U 0.5 U 0.14 0.5 U 0.5										1 1																	
1/11/2012 258 6 160 <						0.2	0.15		0.7		0.14		-		0.7.11			1.10	200			+ +		\vdash		4	210
1/12/2012 259 6 1/13/2012 260 6 1/17/2012 264 6 1/18/2012 265 6						9.2	0.15	0 9.2	0.5	U	0.14	60	1	U	0.5 U		22	140	300					\vdash			210
1/13/2012 260 6 1/17/2012 264 6 1/18/2012 265 6				160						+												+		₩		+	_
1/17/2012 264 6 1/18/2012 265 6									-	+	-	-					+				1			H		+	
1/18/2012 265 6									1	++				++							\vdash	+	1	$\vdash \vdash$		+	
									_	++							+					+	_	++		+	
-11/20/2012 + 267 + 6 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1										++											\vdash	+		\vdash	+	+	
1/20/2012 267 6 1/23/2012 270 6										++											\vdash	+		\vdash	+	+	
1/23/2012									1	++	+			+							\vdash	+	-	\vdash		+	

			Strainer						I	Lead]	Reactor								
Date	Time	Target Flow Rate	Phosphate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite		Nitrate+ Nitrite		Total Sulfide	TCE	cis 1,2-DC	Œ	VC		Alkalinity	TDS	Hardness
	days	gpm	mg/L	μg/L	μg/L	mg/L-N	mg/L-N	1	mg/L-N	1	mg/L	μg/L	μg/L		μg/L		mg/L	mg/L	mg/L
4/22/2011	-6	0		180	190	8.9	0.15	U	9.05										
4/25/2011	-3	0		190															
4/27/2011	-1	0		3.1															
4/29/2011	1	5		180		8.6	0.15	U	8.75			34	1	U	0.5	U	180	260	200
5/2/2011	4	5		180															
5/4/2011	6	5		150															
5/6/2011	8	5		120		2.9	0.15	U	3.05			38	1	U	0.5	U	190	230	200
5/9/2011	11	5		41															
5/11/2011	13	5		140		2.3	0.15	U	2.45			48	1	U	0.5	U	170	240	200
5/13/2011	15	8		180															
5/16/2011	18	10		150															
5/18/2011	20	10		180		3.5	3.2		6.7			40	1	U	0.5	U	150	240	190
5/20/2011	22	10		170															
5/23/2011	25	8		170															
5/25/2011	27	8		190		3.4	2.5		5.9			53	1	U	0.5	U	160	260	200
5/27/2011	29	8		200															
6/1/2011	34	10		170															
6/3/2011	36	10		190		3.8	1.5		5.3			42	1	U	0.5	U	160	260	210
6/6/2011	39	12																	
6/10/2011	43	12		190															
6/13/2011	46	12		200															
6/16/2011	49	12		180		4.4	1.6	\sqcap	6							П			
6/20/2011	53	12		190		2.7	3	Ħ	5.7			48	1	U	0.5	U	170	240	200
6/27/2011	60	12		170		2	3.9	\sqcap	5.9							П			
7/5/2011	68	16		180		4.1	2.8	\sqcap	6.9			47	1	U	0.5	U	180	260	200
7/11/2011	74	16		180		4.4	2.3	Ħ	6.7			44	1	U	0.5	U	160	260	190
7/18/2011	81	10						Ħ						П		П			
7/25/2011	88	20		140		1.8	2.0	\sqcap	3.8	\neg				П		\Box	170	240	
8/1/2011	95	22		140		1.3	1.5	H	2.8			42	1	U	0.5	U	190	260	190
8/8/2011	102	20		130				\sqcap		\top	0.023			П		П			
8/15/2011	109	18		110		2.3	0.75	\sqcap	3.05	\neg		53	1	U	0.5	U	170	260	180
8/17/2011	111	18		110				\sqcap		$\neg \uparrow$				T		П			

			Strainer						L	ead Reactor	r							
Date	Time	Target Flow Rate	Phosphate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite		Nitrate+ Nitrite	Total Sulfide	тсе	cis 1,2-DC	E	VC		Alkalinity	TDS	Hardness
	days	gpm	mg/L	μg/L	μg/L	mg/L-N	mg/L-N	I	mg/L-N	mg/L	μg/L	μg/L		μg/L	ı	mg/L	mg/L	mg/L
8/19/2011	113	18		150														
8/26/2011	120	15		61	70	2	0.73		2.73		60	1	U	0.5	U	170	230	190
8/31/2011	125	15		57														
9/2/2011	127	15		76														
9/7/2011	132	15	0.21	110	100	3	1		4		50	1	U	0.5	U	170	270	200
9/9/2011	134	10	0.46	65														
9/12/2011	137	10	0.23	47	39	1.2	0.52		1.72		58	1	U	0.5	U	160	260	180
9/14/2011	139	10		69														
9/16/2011	141	20		99														
9/19/2011	144	5		13		0.44	0.15	U	0.59									
10/3/2011	158	10		130		3.4	1.9		5.3									
10/5/2011	160	10	0.35	94	80	1	1		2		49	1	U	0.5	U	180	250	190
10/7/2011	162	10		39														
10/10/2011	165	5		7		0.16	0.15		0.31									
10/12/2011	167	5		12														
10/14/2011	169	5		8.1														
10/17/2011	172	10	0.16	150	140	3.7	1.9		5.6		54	1	U	0.5	U	160	250	200
10/19/2011	174	10		110											Î			
10/21/2011	176	10		130														
10/26/2011	181	10	0.33	110	99	1	2.1		3.1		55	1	U	0.5	U	170	240	210
10/28/2011	183	10		130											Î			
10/31/2011	186	10		80					İ									
11/2/2011	188	10	0.16	44	45	0.48	0.68		1.16		49	1	U	1	U	190	240	180
11/4/2011	190	10		47				\sqcap					\sqcap					
11/7/2011	193	10		42									\sqcap					
11/9/2011	195	10	0.26	31	32	0.57	0.65	\sqcap	1.22		52	1	U	0.5	U	170	260	200
11/11/2011	197	10		31				H					П					
11/16/2011	202	10											Ħ					
11/18/2011	204	10	0.34	50	49	0.88	0.74		1.62		42	1	U	0.5	U	170	240	210
11/22/2011	208	10		80	72	0.97	1.5	\sqcap	2.47		46	1	U	0.5	U		240	190
11/28/2011	214	8	0.36	78		1.1	1.4		2.5		46	1	U	0.5	U	-	240	200
11/30/2011	216	8		61									П					

			Strainer					Lea	d Reactor								
Date	Time	Target Flow Rate		Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite	Nitrate+ Nitrite	Total Sulfide	TCE	cis 1,2-DC	E	VC		Alkalinity	TDS	Hardness
	days	gpm	mg/L	μg/L	μg/L	mg/L-N	mg/L-N	mg/L-N	mg/L	μg/L	μg/L		μg/L		mg/L	mg/L	mg/L
12/9/2011	225	6										Ш		Ш			
12/14/2011	230	6		56								Ш		Ш			
12/16/2011	232	6	0.49	62		1.2	0.72	1.92		53	1	U	0.5	U	34	250	180
12/19/2011	235	6		55		1.1	0.92	2.02		46	1	U	0.5	U	160	240	190
12/21/2011	237	6		58								Ш		Ш			
12/23/2011	239	6		56								Ш		Ш			
12/27/2011	243	6	0.43	56		1	0.84	1.84		45	1	U	0.5	U	170	240	190
12/28/2011	244	6		47								Ш		Ш			
12/30/2011	246	6		49								Ш		Ш			
1/3/2012	250	6	0.83	45		0.86	1.1	1.96		46	1	U	0.5	U	180	270	210
1/4/2012	251	6		40								Ш		Ш			
1/6/2012	253	6		59										Ш			
1/9/2012	256	6	0.54	50		0.87	0.74	1.61		43	1	U	0.5	U	180	280	210
1/11/2012	258	6		99								\sqcup		\sqcup			
1/12/2012	259	6										\sqcup		\sqcup			
1/13/2012	260	6										\sqcup		\sqcup			
1/17/2012	264	6										Н		\sqcup			
1/18/2012	265	6										Н		\sqcup			
1/20/2012	267	6										\sqcup		\sqcup			
1/23/2012	270	6												\sqcup			
1/25/2012	272	6															

										Lag R	eactor											
Date	Time	Target Flow Rate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Ammonia	Nitrate	Nitrite	Nitrate+ Nitrite	Fecal Coliforms	Total Coliforms		E. coll	Plate Count	DOC	TCE	cis 1,2-DCE	VC	Sulfide	Alkalinity	TDS	Turbidity	Hardness
	days	gpm	μg/L	μg/L	mg/L-N	mg/L-N	mg/L-N	mg/L-N	MPN/ 100 ml	MPN/ 100 ml		PN/ mL	CFU/ml	mg/I	μg/L	μg/]	L μg/L	μg/L	mg/I	mg/L	NTII	mg/L
4/22/2011	-6	0	180	μg/L	mg/L T	8.6		U 8.75	100 m	100 1111	100		CI C/III			μs		μg/L	mg/ L	ing/L	1110	mg/L
4/25/2011	-3	0	150			0.0	0.15	0.73														
4/27/2011	-1	0	120																			
4/29/2011	1	5	180	190		7.3	0.15	U 7.45							29	1	U 0.5	J	170	260		200
5/2/2011	4	5	150	270		7.5	0.10							1			3 3.2	- 1	1,5			
5/4/2011	6	5	14	12																		
5/6/2011	8	5	4.5	5		0.11 U	J 0.15 I	U 0.26 U	1 2	J 7			2 U	J 1	U 32	1	U 0.5	IJ	200	230		200
5/9/2011	11	5	5.9																			
5/11/2011	13	5	16	18		0.1	0.15	U 0.25	2	J 8				1	U 44	1	U 0.5	IJ	180	230		190
5/13/2011	15	8	69										20 U	J	U							
5/16/2011	18	10	150																			
5/18/2011	20	10	180	200		0.15	4.5	4.65	2	J 7			5070	1	U 39	1	U 0.5	IJ	170	230		200
5/20/2011	22	10	170	180																		
5/23/2011	25	8	170																			
5/25/2011	27	8	180	180		0.16	2.8	2.96	2	J 8			5070	1.4	45	1	U 0.5	IJ	180	260		200
5/27/2011	29	8	160	160																		
6/1/2011	34	10	170	160																		
6/3/2011	36	10	190	180		0.13	1.8	1.93	2	J 2	U		>7380	1	U 41	1	U 0.5	U 0.1	170	250		200
6/6/2011	39	12																				
6/10/2011	43	12	200																			
6/13/2011	46	12	150																			
6/16/2011	49	12	180			0.22	2.4	2.62														
6/20/2011	53	12	140	130	0.5 U	0.08	0.31	0.39	4	4			>7380	0.66	49	1	U 0.5	U 0.1	U 180	250		200
6/27/2011	60	12	11			0.11 U	J 0.15 I	U 0.26 U														
7/5/2011	68	16	110	110	0.5 U	0.16	0.96	1.12	2	J 2	U		>7380	0.41	45	1	U 0.5	U 0.023	180	250		200
7/11/2011	74	16	61	62		0.079	0.32	0.399	23	23			>7380	0.29	59	1	U 0.5	U 0.1	U	250		190
7/18/2011	81	10																				
7/25/2011	88	20	11			0.078	0.15	U 0.228											180	250		
8/1/2011	95	22	14	15	0.11	0.11	0.15	U 0.26	2	J 2	U		30,000	0.26	41	1	U 0.5	U 0.18	190	240		190
8/8/2011	102	20	19															0.12			0.09	
8/15/2011	109	18	12	13	0.5 U	0.16	0.16	0.32	2	J 2	U		17,000	0.39	52	1	U 0.5	U 0.027	180	250		200
8/17/2011	111	18	16							1												

										Lag	Rea	ctor										
Date	Time	Target Flow Rate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Ammonia	Nitrate	Nitrite	Nitrate+ Nitrite	Fecal Coliforms	Total Coliforms		E. coli	Plate Count	DOC	TCE	cis 1,2-DCE	VC	Sulfide	Alkalinity	TDS	Turbidity	Hardness
	days	gnm	ug/I		ma/I N	mg/L N	mg/I N	mg/L N	MPN/ 100 ml	MPN 100 r		MPN/ 100 mI		ml ma/l	ug/I	ug/	I ug/I	ug/I	mg/I	ma/I	NTI	mg/I
8/19/2011	days 113	gpm 18	μ g/L 26	μg/L	mg/L-N	mg/L-N	mg/L-N	mg/L-N	100 1111	1001		100 1111	L CFU/	ml mg/	L μg/L	μg/]	L μg/L	μg/L	mg/L	mg/L	NIU	mg/L
8/26/2011	120	15	6.6	6.6	0.5 U	0.15	0.15 U	J 0.3	2 1	U 11	+		129,00	0 1.4	56	1	U 0.5	U 0.22	190	220		200
8/31/2011	125	15	8.2	0.0	0.5	0.13	0.15	0.5	2				129,00	0 1.4	30	1	0 0.3	0.22	190	220		200
9/2/2011	127	15	8.8								+					+						
9/7/2011	132	15	27	28	0.29	0.5	0.3	0.8	2 1	U 2	+		4,000	2.3	50	1	U 0.5	U 0.41	170	260		200
9/9/2011	134	10	7.9	20	0.27	0.5	0.5	0.0			+		7,000	2.3	- 50	1	0.5	0.71	170	200		200
9/12/2011	137	10	9	8.6	0.14	0.16	0.11	0.27	4	2	IJ		1,600	1.4	52	1	U 0.5	U 4.0	170	250		190
9/14/2011	139	10	13	0.0	0.11	0.10	0.11	0.27					1,000	1.1	32	1	0.5	1.0	170	230		170
9/16/2011	141	20	27													+						
9/19/2011	144	5	2,													1						
10/3/2011	158	10	10			0.099	0.21	0.309								+						
10/5/2011	160	10	8.1	9	0.13	0.11 U	0.15 U	J 0.11	2 1	U 27			46700	1.5	44	1	U 0.5	U 0.36	200	240		190
10/7/2011	162	10	4.1		0.10	0.11	0.10	0.11					10,00					0.00		2.0		170
10/10/2011	165	5	20 U			0.11 U	0.15 L	J 0.11														
10/12/2011	167	5	4 U																			
10/14/2011	169	5	4 U																			
10/17/2011	172	10	20	19	0.18	0.19	0.35	0.54	2 1	U 66.5			1200	0.44	49	1	U 0.5	U 0.074	190	240		180
10/19/2011	174	10	12			0.127	0.00	1										1 1 1	1			
10/21/2011	176	10	20																			
10/26/2011	+	10	16	17	0.17	0.12	0.2	0.32	2 1	U 17			8750	1	43	1	U 0.5	U 1.6	220	250		210
10/28/2011	183	10	24																			
10/31/2011	186	10	16																			
11/2/2011	188	10	8.1	9.2	0.11	0.098	0.11 U	J 0.098	2 1	U 2			10600	2.2	45	1	U 1	U 3.3	190	240		180
11/4/2011	190	10	9.3																			
11/7/2011	193	10	7.9					 								1		1				
11/9/2011	195	10	8	6.7	0.5 U	0.097	0.15 U	J 0.097	2 1	U 34.4	U	2	U 14500) 2	51	1	U 0.5	U 1.3	180	260		190
11/11/2011	197	10	9.4																			
11/16/2011	202	10	9.5																			
11/18/2011	204	10	9.5	8.6	0.12	0.097	0.15 L	J 0.097	2 1	U 8		2	U 3400	1.2	39	1	U 0.5	U 0.31	190	240		210
11/22/2011	208	10	16	14	0.5 U	0.11 U	0.29	0.4	2 1	U 50		2	U 25600	1.7	45		U 0.5		180	250		200
11/28/2011	214	8	15	11	0.5 U	0.086 J	0.15 L	J 0.086 J	2 1	U 8		2	U 4250		41		U 0.5		190	210		200
11/30/2011	216	8	7.9																			

														Lag R	leac	ctor													
Date	Time	Target Flow Rate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Ammonia	Nitrate		Nitrite		Nitrate+ Nitrite		Fecal Coliforms		Total Coliforms		E. coli		Plate Count	DOC	TCE	cis 1,2-DCE		ΛC		Sulfide	Alkalinity	TDS	Turbidity	Hardness
	days	gpm	μg/L	μg/L	mg/L-N	mg/L-l	N	mg/L-l	N	mg/L-	Ν	MPN/ 100 ml		MPN/ 100 m		MPN/ 100 ml		CFU/ml	mg/L	μg/L	μg/	T.	μg/	L	μg/L	mg/]	[]mg/I	NTU	mg/L
12/9/2011	225	6	mg/E	μg/ L	Ing/2 IV	mg/L		g/ 13 1		1116/11		100 1111		100 111		100 111			Ing/ E	µg/2	l MS	Ī	<u> </u>	Ĩ	μς/ Ξ	g/		1112	mg, z
12/14/2011	230	6	10						H						Ħ														
12/16/2011	232	6	7.9	8.7	0.32 J	0.11	U	0.15	U	0.15	U	2	U	36.7		2	U	11800	3.8	43	1	U	0.5	U	0.43	38	250		180
12/19/2011	235	6	9.6	9.9	0.18	0.07	J	0.15	U	0.07	J	2	U	2	U	2	U	138000	2.9	39	1	U		_	0.8	180	230		190
12/21/2011	237	6	9.6																										
12/23/2011	239	6	8.7																										
12/27/2011	243	6	9.3	8.7	0.33 J	0.11		0.13	J	0.24		2	U	8		2	U	136000	1.7	43	1	U	0.5	U	1.1	190	250		190
12/28/2011	244	6	8.3																										
12/30/2011	246	6	10				Ш		Ш																				
1/3/2012	250	6	6.8	7.3	0.33	0.069	J	0.15	J	0.069	J	2	U	2	U	2	U	6900	2	14	1	U	0.5	U	1.6	200	260		480
1/4/2012	251	6	7.7				Ш		Ш		\bot																		
1/6/2012	253	6	8.9		0.10	0.000	Ļ	0.15		0.004	Ļ							2.7.00	1.0	2.1					0.2.1	100	2.10		210
1/9/2012	256	6	6.9	6.5	0.13	0.082	J	0.15	U	0.082	J	2	U	13		2	U	9500	1.3	34	1	U	0.5	U	0.26	190	260		210
1/11/2012	258	6	16				Н		H		+						H					+		H					
1/12/2012	259 260	6							H		+											+		H					
1/13/2012 1/17/2012	264	6 6					H		$\vdash \vdash$		+				H		${\mathbb H}$			+		H		H					+
1/18/2012	265	6					H		$\vdash \vdash$		+				\forall		H					+		╁					+
1/20/2012	267	6					H		H		+		\vdash		\forall		H					+		H					+
1/23/2012	270	6					H		\forall		+				H		H					${}^{\dag}$		H		1			+
1/25/2012	272	6					\prod		H		T				\dagger							T		$\dagger \dagger$					

Date Time Flow Rate F	Turbidity NTU
4/22/2011 -6 0 4/25/2011 -3 0 4/27/2011 -1 0 4/29/2011 1 5	NTU
4/25/2011 -3 0 4/27/2011 -1 0 4/29/2011 1 5	
4/27/2011 -1 0 4/29/2011 1 5	
4/29/2011 1 5	
5/2/2011 4 5	
5/4/2011 6 5	
5/6/2011 8 5 1 10 U 2 U 300 738 1 U 13 1 U 0.5	U
5/9/2011 11 5	
5/11/2011 13 5 10 U 2 U 240 1 U 19 1 U 0.5	U
5/13/2011 15 8	
5/16/2011 18 10	
5/18/2011 20 10 10 10 U 2 U 13 6,230 1 U 23 1 U 0.5	IJ
5/20/2011 22 10	
5/23/2011 25 8	
5/25/2011 27 8 10 U 2 U 13 >7380 1.3 23 1 U 0.5	U
5/27/2011 29 8	
6/1/2011 34 10	
6/3/2011 36 10 10 U 2 U >7380 1 U 24 1 U 0.5	U
6/6/2011 39 12	
6/10/2011 43 12	+
6/13/2011 46 12	+
6/16/2011 49 12	
6/20/2011 53 12 10 U 4 4 >7380 0.37 28 1 U 0.5	J
6/27/2011 60 12	+
7/5/2011 68 16 1 1 2 U 5,550 0.44 31 1 U 0.5	J I
7/11/2011 74 16 10 U 11 23 >7380 0.29 41 1 U 0.5	J
7/18/2011 81 10 <10 1 1 <10	+ +
7/25/2011 88 20	+ +
8/1/2011 95 22 10 10 U 2 U 6,000 1 U 31 1 U 0.5	U
8/8/2011 102 20 3.5 4.6 12 6.8 0.068	+ +
8/15/2011 109 18 0.6 2 U 2 9,500 0.34 39 1 U 0.5	U
8/17/2011 111 18	+ +

				MBfR	Solids											Aera	ation	l								
Date	Time	Target Flow Rate	Lead First Drain TSS	Lead Second Drain TSS	Lag First Drain TSS	Lag Second Drain TSS	TS	SS	TDS	Tota Sulfid		Sulfate	Fecal Coliforms		Total Coliforms	Pla Cou		E. coli	DO	ЭC	тсе	cis 1,2-D	CE	VC		Turbidity
	days	gpm	mg/L	mg/L	mg/L	mg/L	mg	g/L	mg/L	mg/I	Ĺ	mg/L	MPN/100 m	ıl	MPN/100 m	CFU	/ml	MPN/100 ml	mş	g/L	μg/L	μg/L		μg/L	ı	NTU
8/19/2011	113	18								0.025		22														
8/26/2011	120	15					1.7			0.25		15	2	U	50	106,	000		1.3	;	35	1	U	0.5	U	
8/31/2011	125	15																								
9/2/2011	127	15	3	4.4	5.6	3.8	0.5																			
9/7/2011	132	15								0.2			2	U	4	3,0	00		2.2	2	29	1	U	0.5	U	
9/9/2011	134	10	3.5	4.5	5.7	5.0	0.9									Í										
9/12/2011	137	10											13		7	20	0		2.2	2	29	1	U	0.5	U	
9/14/2011	139	10								0.46													11			
9/16/2011	141	20																			1					
9/19/2011	144	5								0.1	U	18											11			
10/3/2011	158	10																			1		11			
10/5/2011	160	10					0.5			0.22		11	2	IJ	13	320	00		1.5	;	20	1	U	0.5	U	
10/7/2011	162	10					0.0														1		Ť			2.3
10/10/2011	165	5																			1		$\dagger \dagger$			
10/12/2011	167	5	7.2	8	32	15															1		$\dagger \dagger$			
10/14/2011	169	5	, . <u>_</u>	Ü	32	10								+			_						$\dagger \dagger$			
10/17/2011	172	10					1	U		0.065		18	2	IJ	27 U	J 90	0		0.4	6	25	1	U	0.5	U	
10/19/2011	174	10					•			0.005		10			2,				0.1			1		0.0		
10/21/2011	176	10	4.2	3.8	17	4.8															1		+			
10/26/2011		10	1.4	3.0	1,	1.0	1	U		0.92	++	13	2	U	6	105	00	+	1	\dashv	31	1	U	0.5	ŢŢ	
10/28/2011	183	10					-				ff	10			<u> </u>	103		+				1	+	0.0		
10/31/2011	186	10									\vdash			+			\dashv	+			1		+		\vdash	-
11/2/2011	188	10					0.3			0.29	++	11	2	U	4	905	50	+	2.2		21	1	U	1	U	
11/4/2011	190	10	35	21	4.1	7.5	0.5			0.27	\vdash	11		_		700	, ,	+	2.2			1				-
11/7/2011	193	10		21	1,1	7.5					++			+	+							 	+			
11/9/2011	195	10					1	U		1.4	++	13	2	U	17 U	J 955	50	2 U	2	\dashv	26	1	U	0.5	U	
11/3/2011	197	10	4.9	6.3	7.3	5.4	1			1.7	++	1.0	2	J	1/))3.	,0	2 0		-	20	1		0.5		
11/11/2011	202	10	7.7	0.3	1.3	J. †					\vdash			+			\dashv			-		1	+		$\vdash\vdash$	
11/18/2011	204	10					0.10			0.043	++	15	2	ŢŢ	8	30	<u></u>	2 U	1.2	,	22	1	U	0.5	U	
11/18/2011	204	10					1	U		0.043		16	+	U	8	126		2 U	1.7		22	1	U		U	
11/28/2011	214	8					1	U		0.056		10		U	2 U	J 20		2 U	2.6		17	1	U		U	
							1	U		0.030	++		۷	U	۷ (20	U	<u> </u>	2.0	<u>'</u>	1/	1	U	0.3		
11/30/2011	216	8				<u> </u>																				

				MBfR	Solids											Aeration	1									
Date	Time	Target Flow Rate	Lead First Drain TSS	Lead Second Drain TSS	Lag First Drain TSS	Lag Second Drain TSS	TS	SS	TDS	Total Sulfid	Sulfate	Coliforms		Total Coliforms		Plate Count	E. coli		DOC	1	CCE	cis 1,2-DC	Œ	VC		Turbidity
	days	gpm	mg/L	mg/L	mg/L	mg/L	mg	g/L	mg/L	mg/L	mg/L	MPN/100 m	ıl	MPN/100 m	ıl	CFU/ml	MPN/100 r	nl	mg/L	ļ	ıg/L	μg/L		μg/I		NTU
12/9/2011	225	6																					\square		\bot	
12/14/2011	230	6					1	T T	210	0.16		2	TT	1.4		7050	2	TT	4.1		10	1	T 7	0.5	T T	
12/16/2011	232	6					1 0.1	U	210	0.16			U	14	тт	7950	2	U	4.1		19	1 1	U	0.5	U	
12/19/2011	235	6					0.1	H, J	230	0.31		2	U	2	U	8450	2	U	2.9		18	1	U	0.5	U	
12/21/2011 12/23/2011	237 239	6																					H		+	
12/23/2011	243	6					1	U	240	0.18		2	IJ	8		6050	2	ΤT	1.7		17	1	U	0.5	U	-
12/28/2011	244	6					1	U	240	0.16		2		8		0030			1./		1 /	1		0.5		
12/20/2011	246	6	24	6.5	14	7.2							-		-			H					H		+	
1/3/2012	250	6	24	0.5	17	1.2	0.7	ī	250	0.82	18	2	U	2	ΤŢ	6000	2	ΤT	1.5		14	1	U	0.5	U	
1/4/2012	251	6					0.7	3	230	0.02	10	2				0000			1.5		1.	1		0.5	Н	
1/6/2012	253	6																								
1/9/2012	256	6					4.8		270	0.1	16	2	U	8		950	2	U	1.2		12	1	U	0.5	U	
1/11/2012	258	6										_	_	-	1	7				H			Ħ		Ħ	
1/12/2012	259	6											1					H					H			
1/13/2012	260	6																Ħ					Ħ			
1/17/2012	264	6											İ										H			
1/18/2012	265	6																					П			
1/20/2012	267	6																					П			
1/23/2012	270	6																								
1/25/2012	272	6																								

Target Plate Flow Rate Target Flow Rate Target Flow Rate Target Flow Rate Target Flow Flo								Med	lia Filter Eff	lue	ent				Filter Backwash
4/22/2011 -6 0	Date	Time	Flow	TSS		Turbidity	Fecal		Total		Plate	E. coli	DOC		
4/25/2011 -3 0		days	gpm	mg/I	ı	NTU	MPN/100	ml	MPN/100 n	nl	CFU/ml	MPN/100 mL	mg/L		mg/L
4/27/2011 -1 0	4/22/2011	-6	0												
4/29/2011 1 5 </td <td>4/25/2011</td> <td>-3</td> <td>0</td> <td></td>	4/25/2011	-3	0												
5/2/2011 4 5 5 1 0<	4/27/2011	-1	0												
5/4/2011 6 5 1 U 2 U 50 623 1 U 5/9/2011 11 5 U 2 U 50 623 1 U 5/19/2011 11 5 U 2 U 30 1 U 5/13/2011 15 8 U 2 U 30 U 1 U 5/18/2011 18 10 U 2 U 2 1080 U 5/26/2011 22 10 U 5/26/2011 22 10 U 0	4/29/2011	1	5												
5/6/2011 8 5 1 U 2 U 50 623 1 U 5/9/2011 11 5 0 0 0 0 1 U 5/11/2011 13 5 1 U 2 U 30 0 1 U 5/18/2011 15 8 0	5/2/2011	4	5												
5/9/2011 11 5 1 U 2 U 30 1 U 1 U 5/11/2011 15 8 1 U 2 U 30 1 U 1 U 5/13/2011 15 8 1 U 2 U 2 10 1 U 2 U 2 1080 1 U 1 U 5/20/2011 22 10 1 U 2 U 2 1080 1 U 1 U 2 U 2 1080 1 U 1 U 1 U 1 U 2 U 2 U 4 770 1 U 1 U 2 U 4 770 1 1 U 1 U 2 U 4 770 1 1 U 1 0 1 U 1 1 U 1 1 1	5/4/2011	6	5												
S/11/2011 13 5 1 U 2 U 30 1 U	5/6/2011	8	5	1	U		2	U	50		623		1	U	
5/13/2011 15 8 < 20	5/9/2011	11	5												
5/16/2011 18 10 1 U 2 U 2 1080 1 U 5/18/2011 20 10 1 U 2 U 2 1080 1 U 5/20/2011 25 8 1 U 2 U 4 770 5/25/2011 27 8 10 U 2 U 4 770 5/25/2011 29 8 1 1 U 2 U 4 770 5/25/2011 3 1 U 2 U 4 770 5/25/2011 3 1 U 3 1 0 1 U 3 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0	5/11/2011	13	5	1	U		2	U	30				1	U	
5/18/2011 20 10 1 U 2 U 2 1080 1 U 5/20/2011 22 10 U 1 U 5/23/2011 25 8 U 0	5/13/2011	15	8								< 20				
5/20/2011 22 10 1 U 5/23/2011 25 8 1 1 U 5/25/2011 27 8 10 U 2 U 4 770 1 5/27/2011 29 8 10	5/16/2011	18	10												
5/23/2011 25 8 10 U 2 U 4 770	5/18/2011	20	10	1	U		2	U	2		1080				
5/25/2011 27 8 10 U 2 U 4 770 5/27/2011 29 8 6/1/2011 34 10 0 <t< td=""><td>5/20/2011</td><td>22</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>U</td><td></td></t<>	5/20/2011	22	10										1	U	
5/27/2011 29 8	5/23/2011	25	8												
6/1/2011 34 10 0	5/25/2011	27	8	10	U		2	U	4		770				
6/3/2011 36 10 10 U 2 U 2 U 5550 1 U 6/6/2011 39 12 0	5/27/2011	29	8												
6/6/2011 39 12	6/1/2011	34	10												
6/10/2011 43 12 0 0 <t< td=""><td>6/3/2011</td><td>36</td><td>10</td><td>10</td><td>U</td><td></td><td>2</td><td>U</td><td>2</td><td>U</td><td>5550</td><td></td><td>1</td><td>U</td><td></td></t<>	6/3/2011	36	10	10	U		2	U	2	U	5550		1	U	
6/13/2011 46 12 0 <td< td=""><td>6/6/2011</td><td>39</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	6/6/2011	39	12												
6/16/2011 49 12 0 0 <t< td=""><td>6/10/2011</td><td>43</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	6/10/2011	43	12												
6/20/2011 53 12 1 U 2 U 2 U 3390 0.37 6/27/2011 60 12	6/13/2011	46	12												
6/27/2011 60 12 0 <td< td=""><td>6/16/2011</td><td>49</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	6/16/2011	49	12												
7/5/2011 68 16 10 U 2 U 2 U 380 0.29 7/11/2011 74 16		53	12	1	U		2	U	2	U	3390		0.37		
7/5/2011 68 16 10 U 2 U 2 U 380 0.29 7/11/2011 74 16	6/27/2011	60	12												
7/11/2011 74 16		68	16	10	U		2	U	2	U	380		0.29		
7/18/2011 81 10 <td< td=""><td></td><td>74</td><td>16</td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>П</td><td></td><td></td><td></td><td></td><td></td></td<>		74	16					+		П					
7/25/2011 88 20 8/1/2011 95 22 10 U 2 U 2 U 2,000 0.32 8/8/2011 102 20 U 8,500 0.36 8/15/2011 109 18 3 2 U 8,500 0.36	_														
8/1/2011 95 22 10 U 2 U 2 U 2,000 0.32 8/8/2011 102 20 0 0 0 0 0 8/15/2011 109 18 3 2 U 8,500 0.36			20												
8/8/2011 102 20 8/15/2011 109 18 3 2 U 8,500 0.36	_			10	U		2	U	2	U	2,000		0.32		
8/15/2011 109 18 3 2 U 8,500 0.36					\Box						, ,				
					\Box		3		2	U	8,500		0.36		
	8/17/2011	111	18		\Box						,				

Date								N	Лес	lia Filter Eff	lue	ent				Filter Backwa	ash
8/19/2011	Date	Time	Flow	TSS		Turbidit	y		S				E. coli		DOC		
826/2011 120 15 1 U 2 U 23 106,000 0.91 8/31/2011 125 15 9 0 0 0 0.91 0		days	gpm	mg/I		NTU		MPN/100 ı	ml	MPN/100 n	nl	CFU/ml	MPN/100 m	Ĺ	mg/L	mg/L	
8/31/2011 125 15 1	8/19/2011	113	18													200	
97/2011 127 15	8/26/2011	120	15	1	U			2	U	23		106,000			0.91		
97/2011 132 15	8/31/2011	125	15														
99/9/2011 134 10 0.5	9/2/2011	127	15	1	U												
9/12/2011 137 10	9/7/2011	132	15					2	U	2	U	60			1.4		
9/14/2011 139 10	9/9/2011	134	10	0.5													
9/16/2011 141 20 55	9/12/2011	137	10					2		2		11,100			1.3		
9/19/2011	9/14/2011	139	10	1	U												
10/3/2011 158 10	9/16/2011	141	20	55													
10/5/2011 160 10	9/19/2011	144	5														
10/7/2011 162 10	10/3/2011	158	10														
10/10/2011	10/5/2011	160	10					2	U	2	U	1000			1		
10/10/2011 165 5	10/7/2011	162	10			0.08	J									33	
10/14/2011 169 5		165	5														
10/14/2011 169 5	10/12/2011	167	5													< 1.0	
10/17/2011 172 10		169	5				t										
10/19/2011 174 10 10 10/21/2011 176 10 10/21/2011 176 10 10/21/2011 181 10 10/21/2011 181 10 10/21/2011 183 10 10/21/2011 186 10 10/21/2011 188 10 0.2 2 U 2 6700 1.3 1.3 11/2/2011 190 10 1.3 11/2/2011 193 10 10 10 10 1.3				1	U			2	U	2	U	1150			0.7	22	
10/21/2011 176 10 0 0.29 0.29 10/28/2011 181 10 1 0 0.29 0.29 10/28/2011 183 10 0 0 0.29 0.29 10/31/2011 186 10 0																	
10/26/2011 181 10 1 U 2 U 2 U 6950 0.29 10/28/2011 183 10 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
10/28/2011 183 10 10/31/2011 186 10 11/2/2011 188 10 0.2 11/4/2011 190 10 11/7/2011 193 10 11/9/2011 195 10 1 11/11/2011 197 10 11/16/2011 202 10 11/18/2011 204 10 0.2 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208 10 1 11/22/2011 208				1	U			2	U	2	U	6950			0.29		
10/31/2011 186 10 11/2/2011 188 10 0.2 2 U 2 6700 1.3 11/4/2011 190 10									Ť			-					
11/2/2011 188 10 0.2 2 U 2 6700 1.3 11/4/2011 190 10 10 10 10 10 10 10 10 11/1/2011 193 10 10 10 10 10 11/1/2011 197 10 10 10 11/16/2011 10 10 11/18/2011 10 11/18/2011 20 10 11/15/2011 20 10 11/15/2011 20 11/15/2011 2 11/15/2011 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																	
11/4/2011 190 10 10 10 11/1/2011 193 10 10 10 11/1/2011 195 10 1 10 1 10 10 10 11/11/2011 197 10 10 11/11/2011 197 10 10 10 11/11/2011 10 10 10 11/11/2011 150 2 11/15/2011 2				0.2				2	U	2		6700			1.3		
11/7/2011 193 10 1 U 2 U 7 16500 2 U 1.2 11/11/2011 197 10 10 1							1										
11/9/2011 195 10 1 U 2 U 7 16500 2 U 1.2 11/11/2011 197 10 I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>							1										
11/11/2011 197 10 10 11/16/2011 202 10 11/18/2011 204 10 0.2 2 U 2 11/50 2 U 0.3 11/22/2011 208 10 1 U 2 U 2 5400 2 U 1.2				1	U		T	2	U	7		16500	2	U	1.2		
11/16/2011 202 10 11/18/2011 204 10 0.2 2 U 2 11/50 2 U 0.3 11/22/2011 208 10 1 U 2 U 2 5400 2 U 1.2							1		Ť								
11/18/2011 204 10 0.2 2 U 2 1150 2 U 0.3 11/22/2011 208 10 1 U 2 U 2 5400 2 U 1.2									T							1	\dashv
11/22/2011 208 10 1 U 2 U 2 5400 2 U 1.2				0.2				2	U	2		1150	2	U	0.3		
				1	U				+					-			
11/28/2011 214 8 1 U 2 U 23 3200 2 U 2.2	11/28/2011	214	8	1	U			2	U	23		3200		U	2.2		
11/30/2011 216 8							1		Ť								

						N	Ted	lia Filter Eff	lue	ent				Filter Backwash
Date	Time	Target Flow Rate	TSS		Turbidity	Fecal Coliforms	8	Total Coliforms		Plate Count	E. coli		DOC	TSS
	days	gpm	mg/L	,	NTU	MPN/100 r	nl	MPN/100 n	al	CFU/ml	MPN/100 m	L	mg/L	mg/L
12/9/2011	225	6		Π			Г					П		
12/14/2011	230	6												
12/16/2011	232	6	26			2	U	11		4950	2	U	2.6	
12/19/2011	235	6	2			2	U	2	U	3550	2	U	2.2	
12/21/2011	237	6												
12/23/2011	239	6												
12/27/2011	243	6	0.6			2	U	2		6250	2	U	1.3	
12/28/2011	244	6												
12/30/2011	246	6												
1/3/2012	250	6	0.7	J		2	U	2	U	2200	2	U	1.3	
1/4/2012	251	6												66
1/6/2012	253	6												
1/9/2012	256	6	0.1	J		2	U	2	U	1200	2	U	0.34	
1/11/2012	258	6												
1/12/2012	259	6												99
1/13/2012	260	6												
1/17/2012	264	6												
1/18/2012	265	6												
1/20/2012	267	6												
1/23/2012	270	6												
1/25/2012	272	6												

Target Fine													Finish	ed Wa	iter (Pro	oduct))									
May 1900 1901 1	Date	Time	Target Flow Rate	Perchlorate EPA Method	Perchlorate EPA Method 332.0	Nitrate	Nitrite	Nitrate+ Nitrite	Turbidity			Plate Count		DOC	Total Sulfide		Odor	ТТНМ	I THM - Formation	Potential	HAA5	HAA6	N-Nitroso-diethyl- amine	N-Nitroso-	dimethyl-amine	N-Nitroso-di- n-propylamine
### ### ##############################		days	gpm	μg/L	μg/L	mg/L	mg/L	mg/L	NTU			CFU/ml		mg/L	mg/L			μg/L	μg/l	. µ	g/L	μg/	L μg/L	μд	/ L	μg/L
A272011 1 0 0 0 0 0 0 0 0	4/22/2011		0			Ī																				, ,
Name	4/25/2011	-3	0																							
Name	4/27/2011	-1	0																							
S22011 4 5 5 6 5 6 7 0 6 5 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 0 0 0 0 0 0 0 0		1	5																							
SA/42011 6 5 5 6 7 0 6 5 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 0 0 0 0 0 0 0 0		4			1			1																		
Section Sect		6	5																							
59/2011 11 5		8	5									2 U						< 4		6	5 U	7	U			
S/11/2011 13 5	-																	·								
S/13/2011 15 8 8 8 8 8 8 8 8 8												623					1	< 4		6	5 U	7	U			
S716/2011 18 10																	1	<u> </u>								
S/18/2011 20 10																										
5/20/2011 22 10 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 U</td><td>1 2 U</td><td>800</td><td></td><td></td><td></td><td></td><td></td><td>< 4</td><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										2 U	1 2 U	800						< 4	U							
5/23/2011 25 8 2 U 2 U 2 U 80 <4														2.3			1	<u> </u>		6	5 U	7	U			
5/25/2011 27 8 2 U 2 U 80 4 U 6 U 7 U 5/27/2011 29 8 8 8 8 8 8 8 8 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9																	1									
5/27/2011 29 8										2 U	1 2 U	80						< 4	U	6	5 U	7	U			
6/1/2011 34 10											1 - 1															
6/3/2011 36 10																										
6/6/2011 39 12										2 U	1 2 U	210		< 1				< 4	U		4	4				
6/10/2011 43 12																	1									
6/13/2011 46 12																	1									
6/16/2011 49 12					1		 				† †									+						
6/20/2011 53 12 1 1 2 U 2 U 380 0.42 4 U 6 U 7 U 0	-																								+	
6/27/2011 60 12 1 1 2 U 2 U 12 0.25 4 U 6 U 7 U 0.25 0.										2 [1]	2 11	380		0.42				4	U	6	5 U	7	U		+	
7/5/2011 68 16 1 2 U 2 U 120 0.25 4 U 6 U 7 U 0 7/11/2011 7/11/2011 7/11/2011 7/11/2011 7/11/2011 7/11/2011 81 10 </td <td>_</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td> </td> <td>1</td> <td></td> <td> - -</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	_				1		 	1		- -	 							-	-			1				
7/11/2011 74 16					1		+ +	1		2 [1]	2 1	120		0.25				4	U	6	5 U	7	U		+	
7/18/2011 81 10	—				1		+ +											-		_	_				\dashv	
7/25/2011 88 20 0 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td>+ +</td><td></td><td> </td><td></td><td>† †</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\dashv</td><td></td></td<>					1		+ +				† †														\dashv	
8/1/2011 95 22 8/8/2011 102 20	\vdash				1		+ +				† †														\dashv	
8/8/2011 102 20 0.025	_									2 11	2 11	<1000		0.34				4	U	6	5 T	7	U		+	
	_									-	 				0.025			•		+					+	
8/15/2011 109 18	8/15/2011	109	18		1		+ +			2 U	1 2 U	279		0.43	2.020			1.2		6	5 U	7	U		\dashv	
8/17/2011 111 18 16	_			16						- -	+ -			5.15						+		†			\dashv	

														Fini	ished V	Vater	(Pro	duct)											
Date	Time	Target Flow Rate	Perchlorate EPA Method 314.0	Perchlorate EPA Method 332.0	Nitrate	Nitrite		Nitrate+ Nitrite	Turbidity	Fecal Coliforms		Total Coliforms	Plate Count	E. coli	DOC		Total Sulfide		Odor	ТТНМ	I THM -	Formation Detention	HAAS		HAA6	N-Nitroso-diethyl- amine	N-Nitroso- dimethyl-amine	N-Nitroso-di- n-propylamine	1
	days	gpm	μg/L	μg/L	mg/L	mg/	/L	mg/L	NTU	MPN 100 n		MPN/ 00 ml	CFU/m	MPN 1 100 n		L n	ng/L			μg/L	ļ	ıg/L	μg/l	. . µ	ıg/L	μg/L	μg/L	μg/L	
8/19/2011	113	18	27	24				8										2.0		1.1	П		6		<u>7</u> [[J			
8/26/2011	120	15	6.9	6.3						2	U	2 U	24		1.	0.0	.02			1.3			6		7 T	J			
8/31/2011	125	15	8.7																										
9/2/2011	127	15	11																										
9/7/2011	132	15	30	29.5		1				2	U	2	520		1	3 0.	.1 U	J		4	U	T	6	U 1	7 T	J			\dashv
9/9/2011	134	10	8.1															7							1	† †			
9/12/2011	137	10	9.3	8.0						2	U	2 U	94		1.3	0.0	033			< 0.0005			6	U 1	7 T	J			
9/14/2011	139	10	4 U																										
9/16/2011	141	20	28																										
9/19/2011	144	5																											
10/3/2011	158	10	12		0.31	< 0.15		0.46																					
10/5/2011	160	10	8.1	8						2	U	2 U	719																
10/7/2011	162	10	6.3						0.1 J																				
10/10/2011	165	5	5.3																										
10/12/2011	167	5	3.4 J																										
10/14/2011	169	5	4.6																										
10/17/2011	172	10	22	23						2	U	2 U	141		0.6	8 0.	.1 U	IJ		1.3			3.1	3	.8				
10/19/2011	174	10	15																										
10/21/2011	176	10	20																										
10/26/2011	181	10	16	18						2	U	2 U	58		0.3	2 0.	.1 U	J 1	U				1.6	1	.6				
10/28/2011	183	10	26																										
10/31/2011	186	10	17																										
11/2/2011	188	10	12	11						2	U	2 U	1 [J	1.2	2 0.0	.04			4	U		1.4	1	.4				
11/4/2011	190	10	13																										
11/7/2011	193	10	10																										
11/9/2011	195	10	8.9	7.1						2	U	2 U	22	2	U 1.	0.0	024			4	U		1.3	1	.6				
11/11/2011	197	10	7.6																										
11/16/2011	202	10																											
11/18/2011	204	10	10	8.5						2	U	2 U	10	2	U 0.3	5 0.0	065			4	U		1		1				
11/22/2011	208	10	20	17						2	U	2 U	136		U 1.		.1 U	J		4	U		6	U ´	7 T	J			
11/28/2011	214	8	14		0.22	0.15	U	0.22		2	U	2 U	1 U	J 2	U 1.9	0.	.1 U	J 1	U	3.6			8.8	9	.3	0.0019 U	0.0019	U 0.00079	J
11/30/2011	216	8	8.1															1	U				2.5	2	.5				

															Fi	nish	ed Wa	iter (Pro	duct)												
Date	Time	Target Flow Rate	Perchlorate EPA Method	514.0 Perchlorate EPA Method 332.0	Nitrate	Nitrito	Million	Nitrate+ Nitrite	Turbidity	Fecal Coliforms		Total Coliforms	i	Plate Count	E, coli		DOC	Total Sulfide		Odor	MHLL	- MHI	Formation	Potential HAA5		HAA6	N-Nitroso-diethyl-	amine	N-Nitroso- dimethyl-amine	•	N-Nitroso-di- n-propylamine	
	days	gpm	μg/L	μg/L	mg/L	, mg	5/I .	mg/L	NTII	MPN 100 n		MPN/ 100 ml	CF	∐/ml	MP 100		mg/L	mg/L			μg/L		μg/L	μg/]	١,	μg/l	,	g/L	μg/L		μg/L	
12/9/2011	225	6	μg/L	μg/L	mg/L	1112	, L	mg/L	1110	100 11			CI		100	1111	mg/L	mg/L			μg/L		μg/L	με		μζ	μ		μg/L	\forall	μg/L	
12/14/2011	230	6	11								T								1	U			1.1	6	U	7	U			Ħ		
12/16/2011	232	6	8.3		0.2	0.15	U	0.2		2	U	2 U	30	5	2	U	2.3	0.021	J 1	U	4 U	U	13	6	U	7	U 0.00)75 J	0.0019	U	0.0019	U
12/19/2011	235	6	10		0.24	0.15	U	0.24		2	U	2 U	22	2	2	U		0.028	J 1	U	1.1			3		3	0.00	19 U	0.0019	U	0.0019	U
12/21/2011	237	6	11																3				8.4	6	U	7	U			П		
12/23/2011	239	6	11																2				17	6	U	7	U					
12/27/2011	243	6	7.8		0.44	0.15	U	0.44		2	U	2 U	1	5	2	U	1.6	0.026	1	HFT	4 U	U	11	6	U	7	U 0.00)68 J	0.0019	U	0.0019	U
12/28/2011	244	6	12																1	U			8.4	6	U	7	U			Ш		
12/30/2011	246	6	12																4	_			47	2.1		2.1				Ш		
1/3/2012	250	6	9.8		0.23	0.15	U	23		2	U	2	1	U	2	U	1.3	0.041	5		4 U	U	14	1.9		1.9	0.00	19 U	0.0019	U	0.0019	U
1/4/2012	251	6	17																5	_		_	20	3.4		4.3				Ш		
1/6/2012	253	6	9.3																1	U		В	12	1	U	1	U			\sqcup		
1/9/2012	256	6	7.7		0.21	0.15	U	0.21		2	U	2 U	14	0	2	U	0.43	0.029	1		4 U	U :	8.7 I	3 1	U	1	U 0.00	19 U	0.0019	U	0.0019	U, L
1/11/2012	258	6	16													\sqcup						_			\sqcup					\coprod		
1/12/2012	259	6											1			\sqcup						_			\sqcup					\coprod		
1/13/2012	260	6	13		0.23		U, H	0.23																						$\downarrow \downarrow$		
1/17/2012	264	6	17		0.45	0.15	U	0.45								\vdash														\dashv		
1/18/2012	265	6	13		0.23	0.15	U	0.23			_					\sqcup						-			\square					\dashv		
1/20/2012	267	6	17		0.44	0.15	U	0.44			_					\sqcup						-			\square					\dashv		
1/23/2012	270	6	9.9		0.3	0.15	U	0.3			_					\sqcup									\sqcup					\dashv		
1/25/2012	272	6	11		0.26	0.15	U	0.26																						Ш		

						G	AC-1				IX - 1	1										Outfa	.ll					
Date	Time	Target Flow Rate	TCE		cis 1,2-DCE		VC		Acetone		Perchlorate EPA Method	314.0	Perchlorate EPA Method	332.0	TCE		cis 1,2-DCE		VC	Acetone		Sulfate	TDS	Ethylene Diromide	Chloride	Phosphate	Ammonia	Hardness
	days	gpm	μg/I		μg/l	L	μg/L	4	μg/L	ı	μg/L	1	μg/I	4	μg/I	_	μg/L	1	μg/L	μg/L	1	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L-N	mg/L
4/22/2011	-6	0																										
4/25/2011	-3	0																										
4/27/2011	-1	0																										
4/29/2011	1	5	1	U	1	U			10	U	4	U	4	U	1	U	1	U	< 0.5	10	U	0.35	220	< 0.01	100	< 0.16	< 0.5	160
5/2/2011	4	5																										
5/4/2011	6	5																										
5/6/2011	8	5	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
5/9/2011	11	5																										
5/11/2011	13	5	1	U	1	U			10	U	4	U	4	U	22		1	U		10	U							
5/13/2011	15	8																										
5/16/2011	18	10																										
5/18/2011	20	10	1	U	1	U	0.5	U	5.4		4	U	4	U	1	U	1	U	< 0.5	10	U							
5/20/2011	22	10																										
5/23/2011	25	8																										
5/25/2011	27	8	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
5/27/2011	29	8																										
6/1/2011	34	10																										
6/3/2011	36	10	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
6/6/2011	39	12																										
6/10/2011	43	12		П		\sqcap					4	U	4	U														
6/13/2011	46	12		П		П										\sqcap					\top							
6/16/2011	49	12				\sqcap										\sqcap												
6/20/2011	53	12	1	U	1	U		\sqcap	10	U	4	U	4	U	1	U	1	U		10	U							
6/27/2011	60	12		П		\sqcap		\sqcap		T	4	U	4	U														
7/5/2011	68	16	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
7/11/2011	74	16	1	U	1	U	0.5	U	10	U	4	U	4	U	1	U	1	U		10	U							
7/18/2011	81	10	1	U	1	U	0.5	U	10	U			4	U	1	U	1	U		10	U							
7/25/2011	88	20				\sqcap				$\dagger \dagger$	4	U	4	U		\Box		\Box										
8/1/2011	95	22	1	U	1	U	0.5	U	10	U	4	U	4	U	1	U	1	U		10	U							
8/8/2011	102	20		\sqcap			•			$\dagger \dagger$	4	U	4	U		$\dagger \dagger$		Ħ		-								
8/15/2011	109	18	1	U	1	U		$\dagger \dagger$	10	U	4	U	4	U	1	U	1	U		10	U							
8/17/2011	111	18						$\dagger \dagger$		\dagger		П		$\dagger \dagger$							+							

						G	AC-1				IX - 1	1										Outfa	ıll					
Date	Time	Target Flow Rate	TCE		cis 1,2-DCE		ΛC		Acetone		Perchlorate EPA Method	314.0	Perchlorate EPA Method	332.0	TCE		cis 1,2-DCE		VC	Acetone		Sulfate	TDS	Ethylene Diromide	Chloride	Phosphate	Ammonia	Hardness
	days	gpm	μg/l	L	μg/l	[_	μg/L		μg/L		μg/L		μg/L	4	μg/L	,	μg/L		μg/L	μg/L		mg/L	mg/L	μg/L	mg/L	mg/L	mg/L-N	mg/L
8/19/2011	113	18																										
8/26/2011	120	15	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
8/31/2011	125	15																										1
9/2/2011	127	15																										
9/7/2011	132	15	1	U	1	U			10		4	U	4	U	1	U	1	U		10	U							
9/9/2011	134	10																										
9/12/2011	137	10	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
9/14/2011	139	10																										
	141	20																										
9/19/2011	144	5	1	U	1	U			10	U			8	U	1	U	1	U		10	U							
	158	10																										
10/5/2011	160	10									4	U	4	U	1	U	1	U		10	U							
10/7/2011	162	10																										
	165	5				Ħ					4	U	4	U	1	U	1	U		10	U							
10/12/2011	167	5				Ħ																						
	169	5				Ħ										Ħ												
	172	10	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
	174	10				Ħ										Ħ												
	176	10				Ħ										Ħ												
	181	10	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
	183	10		П		H						\sqcap		\sqcap		П		Ħ			П							
	186	10		П		H						\sqcap		\sqcap		П		Ħ			П							
	188	10	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	U							
	190	10				H			-			\Box		\sqcap		H					Ħ							
	193	10		T		H		+		\sqcap		Ħ		\forall		H		H			H							
<u> </u>	195	10	1	U	1	U		\vdash	10	U	4	U	4	U	1	U	1	U		10	U							
	197	10				Ħ		\vdash			-	Ħ	•	Ħ		Ħ												
	202	10		\Box		H						\Box		$\forall t$		H		H			\vdash							
	204	10	1	U	1	U			10	U	4	U	4	U	1	U	1	U		10	ŢŢ							
	208	10		U		U		+	10	U	4	U	<u>.</u> 4	U	1	U	1	U		10	II							
	214	8		U		U		U	10	U	4	U		U	1	U	1	U		10	U							
	216	8					0.5	\dashv	10		•		<u>'</u>	H		H	*	\exists		10	H							

						G	AC-1			IX -	1										Outfa	ıll					
Date	Time	Target Flow Rate	TCE		cis 1,2-DCE	`	VC	Acetone		Perchlorate EPA Method	314.0	Perchlorate EPA Method	332.0	TCE		cis 1,2-DCE		VC	Acetone		Sulfate	TDS	Ethylene Diromide	Chloride	Phosphate	Ammonia	Hardness
	days	gpm	μg/	L	μg/	L	μg/L	μg/L		μg/L	1	μg/L	4	μg/L	4	μg/L	,	μg/L	μg/L		mg/L	mg/L	μg/L	mg/L	mg/L	mg/L-N	mg/L
12/9/2011	225	6	1	U	1	U		10	U	4	U	4	U	1	U	1	U		10	U							
12/14/2011	230	6																									
12/16/2011	232	6	1	U	1	U		10	U	4	U	4	U	1	U	1	U		10	U							
12/19/2011	235	6	1	U	1	U		10	U	4	U	4	U	1	U	1	U		10	U							
12/21/2011	237	6																									
12/23/2011	239	6																									
12/27/2011	243	6	1	U	1	U		10	U	4	U	4	U	1	U	1	U		10	U							
12/28/2011	244	6													Ш												
12/30/2011	246	6																									
1/3/2012	250	6	1	U	1	U		10	U	4	U	4	U	1	U	1	U		10	U							
1/4/2012	251	6																									
1/6/2012	253	6									Ш		Ш														
1/9/2012	256	6	1	U	1	U		10		4	U	4	U	1	U	1	U		10	U							
1/11/2012	258	6													Ш												
1/12/2012	259	6		\perp		\perp									Ш												
1/13/2012	260	6									Ш		Ш														
1/17/2012	264	6	1	U	1	U		10						1	U	1	U		10	U							
1/18/2012	265	6		\perp		$\downarrow \downarrow$						4	U		Ш					Ш							
1/20/2012	267	6		\perp		$oldsymbol{\downarrow}$									Ш		Ш			\Box							
1/23/2012	270	6		\perp		\perp									Ш					\sqcup							
1/25/2012	272	6																									

MBfR 1 & MBfR 2 rotated sample points every 3 days due to lead/lag configuration (field verification completed during sampling for laboratory). **Notes:** Non detects are listed as the reporting limit.

Qualifiers:

В	Analyte wa	is detected in the	associated Method E	3lank.
---	------------	--------------------	---------------------	--------

Sample analysis performed past method-specified holding time.

HFT The holding time is immediate. It was analyzed in the laboratory as soon as possible after receipt.
RL < Result ≤ MDL. The concentration is an approximate value.

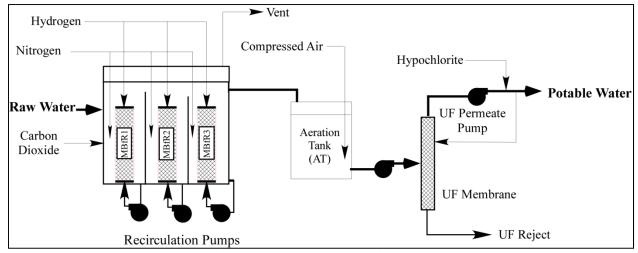
- Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not
- Analyte NOT DETECTED at or above the RL or MDL, if MDL is specified.

CFU/ml	colony forming units per milliliter	RL	reporting limit
cis 1,2-DCE	cis-1,2-Dichloroethene	TCE	trichloroethene
DOC	dissolved organic carbon	TDS	total dissolved solids
E. coli	Escherichia coli	TTHM	total trihalomethanes
EPA	USA Environmental Protection Agency	TSS	total suspended solids
gpm	gallons per minute	VC	vinyl chloride

milligram per liter micrograms per liter mg/L μg/L milligram as nitrogen per liter greater than mg/L-N

most probable number per 100 milliliters MPN/100 ml < less than MDL maximum daily load less than or equal to

NTU nephelometric turbidity units


Acronyms:

APPENDIX G ONLINE MONITORING DATA (EXCEL FILE ATTACHED)

APPENDIX H EAST VALLEY WATER DISTRICT DEMONSTRATION SUMMARY

1.0 INTRODUCTION

A membrane biofilm reactor (MBfR) and media filtration system were demonstrated at East Valley Water District (EVWD) for perchlorate and nitrate destruction and potable water production. The MBfR contained hydrogen-pressurized hollow fibers, which supported the growth of perchlorate-reducing bacteria (PRB) on the fibers. MBfR modules were composed of Cellulose Triacetate (CTA) membranes and plug-flow conditions to minimize reactor volume and sustain higher volumetric loadings. The MBfR included a three-stage process (Figure 1). In addition, aerobic biodegradation, media filtration and chlorination are integrated as downstream processes for the removal of dissolved organic carbon (DOC), suspended solids, and bacteria and disinfection. This demonstration was initiated in late 2007 and lasted about 6 months. The demonstration was conducted at EVWD Well 28A located in San Bernardino, California.

Figure 1 Process Flow Diagram

1.2 PERFORMANCE OBJECTIVES

The goal of this study was to demonstrate and validate the performance of the MBfR system as a suitable method to destroy perchlorate and nitrate in groundwater and produce potable water. The MBfR system was also evaluated for compliance with associated regulatory requirements with respect to potable water production standards.

Quantitative and qualitative performance objectives were established to assess success of the technology's application. Safety and permit compliance qualitative performance objectives specifically addressed demonstration activities rather than the technology, but were critical for a successful demonstration. Taste and odor were also considered as a critical aspect of general public acceptance, but are not regulated. Quantitative performance objectives for perchlorate and nitrate reduction were selected to be more stringent than regulatory requirements because

influent concentrations are relatively low when compared to typical ranges in groundwater (Table 2). Groundwater was spiked with 50 micrograms per liter (μ g/L) of perchlorate. The quantitative performance objective for perchlorate removal was based on the California maximum contaminant level (MCL) of 6 μ g/L. Nitrite had the potential to accumulate as an intermediate of nitrate reduction. Therefore, it was assigned a performance objective equal to 50% of its MCL. Disinfection and filtration are regulatory requirements. Additional criteria are reported and summarized in Table 1 to address disinfection requirements and biological stabilization of the effluent.

Table 1 Performance Objectives and Related Success Criteria

Performance Objective		Success Criteria	
Qualitative	Safety	No reportable health and safety incidents	
	Permit compliance	No violations	
	Taste and odor	Treatment by the MBfR process results in	
		production of an aesthetically acceptable	
		product	
	Regulatory acceptance	Obtain letter of conditional acceptance	
		from the California Department of Public	
		Health (CDPH)	
Quantitative	Contaminant destruction	< 6 μg/L perchlorate	
	Disinfection	Coliforms ND, HPC < 500/mL	
	Filtration	(Turbidity < 0.2 NTU)	
	Biological stabilization	DOC < 2 mg/L	

Table 2 Typical Groundwater Chemistry Parameter Ranges

Analyte	Range	Units
Perchlorate	<4 to 9.6	μg/L
Nitrate	7.0 to 8.6	mg-N/L
Sulfate	29 to 50	mg/L
Alkalinity	118 to 130	mg CaCO ₃ /L
Hardness	143 to 200	mg CaCO ₃ /L
Total dissolved solids	190 to 280	mg/L
рН	7.70 to 8.15	SU

2.0 RESULTS - DEMONSTRATION TESTING

The demonstration included 1) a start-up phase designed to promote PRB growth on the hollow fiber membranes, and 2) an optimization phase to investigate different operational conditions and their impact on contaminant removal, operation and maintenance requirements.

2.1 START-UP PHASE

A culture of PRB, grown at Arizona State University in Professor Rittmann's laboratory using Well 28A groundwater, was used as inoculum for the MBfR biomass formation. The influent flow was set at 1 gallon per minute (gpm) to allow sufficient residence time for the bacteria to

colonize the hollow fiber membranes. Typical raw water nitrate and perchlorate concentrations after spiking were approximately 7 milligrams per liter (mg/L) and $43\mu g/L$, respectively.

The enriched biofilm formation led to a progressive increase of perchlorate removal in the following 7 weeks after bacterial inoculum. Perchlorate removal reached around 28% and 50% after 4 and 5 weeks of system operation, respectively. Six weeks were needed to achieve effluent perchlorate concentrations less than 6 μ g/L, which met the success criteria of the related performance objective. About 72% nitrate and nitrite removal was achieved after 4 weeks. Effluent nitrate and nitrite levels below detection limits were reached by the end of this initial two-month start-up period (Figure 2).

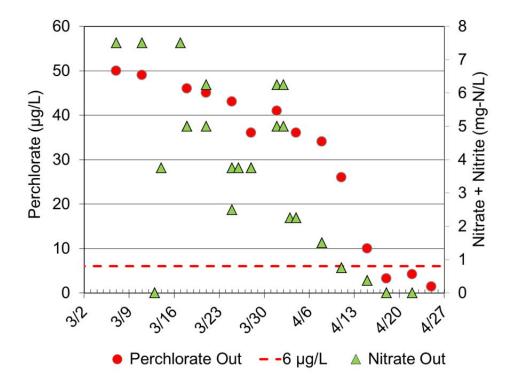


Figure 2 MBfR Start-up Perchlorate and Nitrate and Nitrite Effluent Concentrations

2.2 OPTIMIZATION PHASE

The primary goal of the optimization phase was to identify optimal operating conditions for the MBfR system and perchlorate removal. After the acclimation period, MBfR operational conditions were varied to test the system response to changes in influent and recirculated water flow rates, and influent perchlorate concentrations.

Influent Flow Rate

The MBfR was tested with progressive increase in influent flow rates to determine the stability of the system to variable loadings. Flow rates of 1, 3 and 6 gpm were maintained over time periods as shown in Figure 3. Influent concentrations of perchlorate ($\sim 55 \mu g/L$) and of nitrate

[approximately 7 milligrams as nitrogen per liter (mg-N/L)] were constantly fed to the reactor through the duration of the test.

The results show optimal perchlorate and nitrate removal performances at 1 gpm, with effluent concentrations of perchlorate below the success criteria of 6 μ g/L as shown in Figure 3. Perchlorate removal was maintained in the following week, with a flow rate of 3 gpm. However, this operational change increased effluent nitrate and nitrite concentrations to levels that did not meet performance requirements for nitrate and nitrite.

The reactor performance abruptly deteriorated during the following 3 weeks when the system was operated at 6 gpm. The performance metrics were again not met. In these conditions, effluent perchlorate concentrations around 45 μ g/L were reported, and steady nitrate and nitrite concentrations around 3.8 mg-N/L were reached.

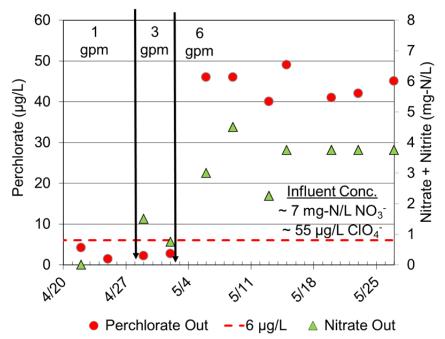


Figure 3 Effect of Increased MBfR Influent Flow Rate, Effluent Perchlorate and Effluent Nitrate and Nitrite

The MBfR system resilience was evaluated by returning to more optimal conditions at lower flows (3 and 1 gpm) as shown in Figure 4. Perchlorate and nitrate removal were improved at 3 gpm, although the success criteria were generally not met. Perchlorate removal performance did improve at 1 gpm, but did not recover. However, the progressive decrease in flow rate was beneficial to the removal of nitrate, which again reached undetectable levels after 2 weeks at the 1 gpm regime.

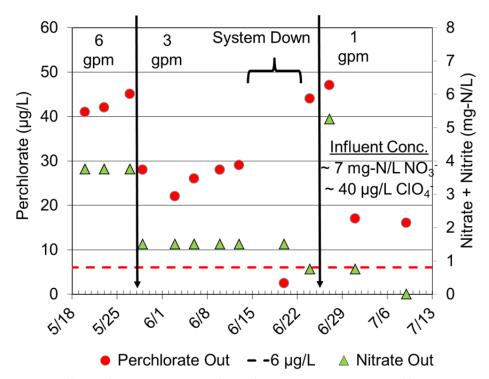


Figure 4 Effect of Decreased MBfR Influent Flow Rate on Effluent Perchlorate and Effluent Nitrate and Nitrite

These results demonstrate that the MBfR is not capable of consistently removing perchlorate and nitrate and nitrite below the set success criteria (50 μ g/L to less than 6 μ g/L perchlorate and less than 0.5 mg-N/L nitrate and nitrite) at flow rates greater than 1 gpm. Furthermore, after conditions of upset, the system was not able to fully recover its perchlorate removal capability.

Recirculation Increase

After the influent flow was returned to 1 gpm, recirculation of reject through the MBfR was used to support system recovery by promoting PRB colonization. The recycle rate was increased from 90 gpm to 180 gpm while maintaining 1 gpm influent flow. This increase improved perchlorate removal by about 65% and decreased effluent concentrations to approximately 19 μ g/L (Figure 5). However, this did not meet the success criteria. On the other hand, changes in recirculation flow improved nitrate removal to undetectable levels.

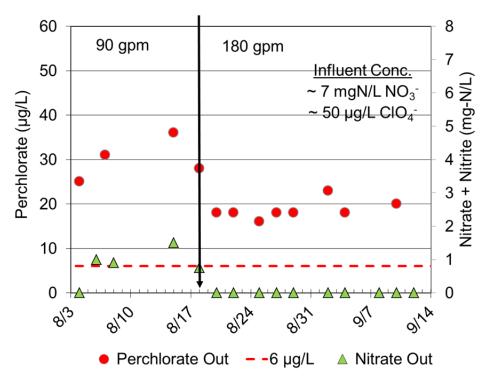


Figure 5 Effect of Increased MBfR Recirculation Flow on Perchlorate and Nitrate and Nitrite Removal

Influent Perchlorate Concentration Decrease

MBfR performance improved when the influent perchlorate concentration was lowered from 50 μ g/L to 15 μ g/L (Figure 6). These perchlorate dose concentrations were closer to those typically measured in the EVWD groundwater. Reducing the influent perchlorate concentration to 15 μ g/L resulted in effluent concentrations lower than 6 μ g/L, meeting the success criteria for perchlorate. In parallel, increased effluent concentrations of nitrate and nitrite were observed at levels that inconsistently met the success criteria for the corresponding performance objective.

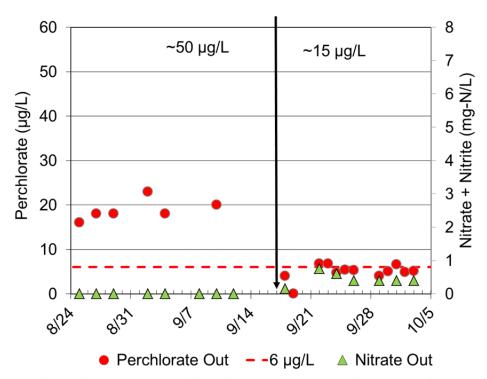


Figure 6 Effect of Decreased MBfR Influent Perchlorate Concentration on Perchlorate and Nitrate and Nitrite Removal

3.0 DISCUSSION AND CONCLUSIONS

During the initial start-up of the MBfR, successful perchlorate removal was achieved in about 6 weeks, with influent concentrations of $50~\mu g/L$ being reduced to less than $6~\mu g/L$ at a flow rate of 1 gpm. During the optimization phase, perchlorate and nitrate removal capability declined when altering operating conditions. Visual observation of uneven bacterial distribution at the membrane surfaces among the three bioreactors operating in series (Figure 7), the high accumulation of biomass in the first MBfR stage, and the limited biofilm density of the third MBfR stage indicated a poor biofilm control and possible poor flow distribution, thus the loss of effective membrane surface area for mass transfer to occur. Hence, the operational conditions tested might have developed mass transfer limitations, which were partially overcome by increasing water recirculation rates. Alternative membrane configurations and different operating strategies may be able to address the limitations encountered, and further systematic process improvements need to be evaluated. The design for the follow-on demonstration at West Valley Water District built on key findings from this project.

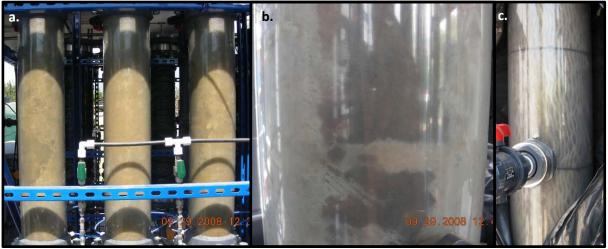
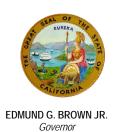



Figure 7 MBfR Modules from Stage 1 (a), Stage 2 (b), and Stage 3 (c).

APPENDIX I CDPH LETTER OF CONDITIONAL ACCEPTANCE

State of California—Health and Human Services Agency California Department of Public Health

July 26, 2013

Mr. John Bosler Chief Operations Officer Cucamonga Valley Water District P.O. Box 638 Rancho Cucamonga, CA 91730

Mr. David Friese ARoNite Technology Director APTwater, Inc. 2516 Verne Roberts Circle, Suite H-102 Antioch, CA 94509

CONDITIONAL ACCEPTANCE OF ARONITE BIOLOGICAL TREATMENT FOR THE PRODUCTION OF DRINKING WATER FROM NITRATE CONTAMINATED WATER

Dear Mr. Bosler and Mr. Friese:

The Water Treatment Committee (WTC) of the Drinking Water Program in the California Department of Public Health (Department) has reviewed the following documents submitted with your request to gain acceptance of ARoNite (Autotrophic Reduction of Nitrate) biological treatment as a means of removing nitrate from source waters prior to distribution as part of the public water supply.

"Well 23 ARoNite 30 Day Demonstration Report, April 12, 2012" prepared by APTwater for Cucamonga Valley Water District

"Well 23 ARoNite Extended Demonstration Report, January 21, 2013" prepared by APTwater for Cucamonga Valley Water District

Based on the review of the above pilot study reports, the WTC hereby confirms that the ARoNite biological treatment process has been demonstrated to remove nitrate from some sources of water. The ARoNite process is a hydrogen based membrane biofilm biological treatment system for the removal of nitrate. The ARoNite system uses native microorganisms present in the groundwater and hydrogen gas as the electron donor for microbial respiration. The biological treatment process occurs in a proprietary sealed treatment vessel where membranes are used to deliver hydrogen gas to the biofilm.

Mr. John Bosler and Mr. David Friese July 26, 2013 Page 2

The pilot study result indicates that a properly designed and operated ARoNite biological treatment system can be used as one of the unit processes for the removal of nitrate from some water sources. Thus it can be incorporated into an overall drinking water treatment plant. Nevertheless, we consider the ARoNite biological treatment system to be capable of nitrate removal with several important caveats that have been incorporated into the conditions presented below.

The WTC accepts the ARoNite biological treatment system to remove or reduce nitrate from some source water(s) that might be used for potable supply subject to the following conditions:

- 1. The system is operated in a manner that maximizes steady state conditions and minimizes intermittent production flow rates (e.g., a plant operated 24 hours a day, 7 days a week).
- 2. Continuous on-line monitoring systems for water flow, nitrate, turbidity, chlorine residual and dissolved oxygen shall be incorporated into the process design with adequate alarm strategies detailed in the water system's operation plan.
- 3. Site-specific tests are required to determine the impact of seasonal and temporal variations in water quality (nitrate concentration, temperature, available micro and macro nutrients, and/or hydraulic loading rates, etc.) on process performance. For example, it is anticipated that the hydrogen feed requirement will vary as a function of source water quality, so the impact(s) of variable nitrate concentrations (in time and magnitude) on finished water quality needs to be evaluated. The site-specific verification testing should represent worst-case conditions and the testing periods must cover the time during the seasonal and temporal variations in water quality.
- Nitrate reduction process control shall be based on the constant influent flow with variable hydrogen pressure scheme that was demonstrated during the extended demonstration period.
- 5. Filtration treatment process control shall be based on the use of an optimum dose of coagulant that includes adequate flash mixing and an acceptable filter design.
- 6. Source of the microbiological seed must be identified and characterized as not containing human pathogens, except when indigenous biota are selected to inoculate the bed. The use of indigenous microorganisms to "seed" the reactor renders this condition moot.

- 7. All chemicals used in the system must be NSF/ANSI standard 60 certified by an ANSI accredited testing organization.
- 8. All materials that come into direct contact with the source water must be NSF/ANSI standard 61 certified by an ANSI accredited testing organization.
- 9. A pressure sensor with alarm should be installed on the hydrogen feed system.
- 10. Following biological treatment, the filtration, disinfection and other treatment processes will be required to meet the following performance standards:
 - a. 4-log virus inactivation must be achieved by the end of the disinfection treatment process.
 - b. Treated water must be coliform free. Weekly or monthly samples collected at the end of the disinfection treatment process will be required.
 - c. Treated water must contain HPC of less than 500 cfu/mL. Weekly or monthly samples collected at the end of the disinfection treatment process will be required.
 - d. Individual filtered water effluent turbidity shall be 0.3 NTU or less, 95% of the time. Continuous monitoring of filter effluent will be required.
 - e. Corrosivity of the effluent water must be monitored and controlled prior to distribution, if necessary. Daily treated water pH reading of the plant effluent will be required.
 - f. Distribution system disinfectant by-products samples must be collected based on the Stage 2 Disinfectant / Disinfection By-Products Rule and must comply with the Locational Running Annual Average (LRAA) for TTHM and HAA5 MCLs.
 - g. Treated water must meet all secondary standards.
 - h. Treated water needs to have sufficient dissolved oxygen to stabilize the water prior to distribution to consumers.
- 11. Proper operator certification of the facility will be required based on the complexity of the full scale treatment system.
- 12. An operator training program for the biological treatment system shall be provided as part of the start-up process for the full scale treatment system.

Mr. John Bosler and Mr. David Friese July 26, 2013 Page 4

We note that membrane biofilm reactor biological treatment has not been proven to work on all water sources. Therefore, additional testing will be required to confirm the treatment system's performance prior to full scale installations at other use sites. To ensure the acceptability of the study approach, prior to starting, the local CDPH Drinking Water Program District Engineer should be consulted to ensure that the study is conducted in sufficient detail so that adequate information is gathered to identify the critical design and operating factors of the full scale treatment plant.

Be advised that the approval for the design and use of this technology in any drinking water application will be handled on a case-by-case basis by the Drinking Water Program's district offices. The individual district offices based on specific site requirements may specify additional unit treatment processes as well as require additional pilot testing or full-scale demonstration of the treatment process. Approval is granted through the domestic water supply permitting process. Information such as the study results, technical drawings, plans and specifications will need to be submitted with the application and will be used for the development of the water supply permit.

We would like to thank you and your colleagues for working with us during the development and testing of this technology. Should you have any questions regarding the content of this letter, please free to contact me at (510) 620-3460.

Sincerely,

Eugené H. Leung, P.E. Senior Sanitary Engineer

Technical Operations Section

cc: Water Treatment Committee