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Abstract

This technical report describes the new one-dimensional (1D) hydrodynamic and sediment
transport model EFDC1D. This model can be applied to stream networks. The model code and
two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional
unsteady flows and has the ability to accommodate unsteady inflows and outflows associated
with upstream inflows, lateral inflows and withdrawals, groundwater-surface water interaction,
evaporation and direct rainfall. The model also includes representation of hydraulic structures
such as dams and culverts. For sediment transport, the model includes settling, deposition and
resuspension of multiple size classes of cohesive and noncohesive sediments. The bed is
represented by multiple layers of mixed sediment classes. A bed consolidation model is
implemented to predict time variations of bed depth, void ratio, bulk density and shear strength.
The sediment bed representation is dynamically coupled to the cross-sectional area
representation to account for area changes due to deposition and resuspension.
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1.

Introduction

This document outlines the theoretical and computational aspects of, EFDCID
(Environmental Fluid Dynamics Code - One-Dimensional), a box or control volume
based one-dimensional hydrodynamic and sediment-contaminant transport model. The
model is implemented in a stand-alone version and also incorporated into HSPF
(Hydrologic Simulation Package: Fortran).

Model Features include:

A.

Box or reach based spatial data structure, compatible with existing HSPF data
structure, for representing one-dimensional channel networks.

Utilization of water surface elevation dependent descriptions of channel cross-
section area, surface width, wetted perimeter and buoyancy centroid,
including representation of overbank regions.

Bi-directional unsteady flow and the ability to accommodate unsteady inflows
and outflows associated with upstream inflows, lateral inflows and
withdrawals, groundwater-surface water interaction, evaporation and direct
rainfall. The model includes representation of hydraulic structures such as
dams and culverts. Downstream boundary conditions include rating curves
and time varying water surface elevation.

The model includes a generic one-dimensional transport solver for salinity,
temperature and multiple sediment and contaminant classes. Longitudinal
dispersive transport is represented. Sources and sinks will be represented
consistent with continuity constraints.

Buoyancy effects due to salinity and temperature are dynamically coupled
with the hydrodynamic component using an equation of state. Temperature
transport includes a predictive surface heat exchange formulation representing
the effects of solar radiation, long wave back radiation, and latent and sensible
heat transfer.

For sediment transport, the model includes settling, deposition and
resuspension of multiple size classes of cohesive and noncohesive sediments.
The bed is represented by multiple layers of mixed sediment classes. A bed
consolidation model is implemented to predict time variations of bed depth,
void ratio, bulk density and shear strength. The sediment bed representation is
dynamically coupled to the cross-sectional area representation to account for
area changes due to deposition and resuspension.

The overall approach taken in developing the flow and sediment transport model was to
minimize code development by the utilization of existing process subroutines from the
multi-dimensional EFDC (Environmental Fluid Dynamic Code) model (Hamrick 1992;



Hamrick 1996; Hamrick and Wu 1997). Process routines from the EFDC model are
utilized to satisfy the following requirements:

A. A fully dynamic one-dimensional solver for the momentum and continuity
equations with channel cross-section area, surface width, bottom width, wetted
perimeter and buoyancy centroid as functions of the water surface elevation.

B. Time varying upstream inflows, and lateral inflows and withdrawals including
corresponding sediment loads.

C. Hydraulic control structures and rating curve boundary conditions.

D. Time varying downstream boundary conditions for water surface elevation,
salinity, temperature and sediment concentration.

E. A generic one-dimensional transport solver utilizing a monotone, positive definite
scheme which minimizes numerical diffusion

F. A fully predictive surface heat exchange formulation which includes evaporation
G. An equation of state relating density to salinity and temperature.

H. A multiple class sediment processes module that incorporates a wide variety of
parameterization for settling, deposition and resuspension of cohesive and
noncohesive sediments.

I. A multiple layer bed module that includes a bed consolidation solver and
parameterizations relating void ratio, bulk and dry density, and shear strength.

Utilizing the above existing routines, code development focused on the main driver
program, input and output routines for the stand alone version of the model, interface
routines for the HSPF embedded version of the model, and a new hydrodynamic solver
optimized for one-dimensional channel network applications. The following sections of
this document summarize theoretical and computational formulations of the governing
hydrodynamic and transport equations, and model input and output files.



2. Hydrodynamic Equations and Solutions Procedures

The one-dimensional momentum and continuity equations are

2 c (2.1)
20+0( L= s+ aog-edaon ez, 2|0
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0A+3.0=q, +q5+q; (2.2)
where
A = cross-section area
b = dimensionless buoyancy = (0-0,)/0,
cpp = dimensionless bottom resistance coefficient over the wetted
perimeter
g = acceleration of gravity
d. = distance down from water surface to channel area centroid
Q = discharge
R;, = hydraulic radius
q1 = lateral runoff per unit channel length
gs = rate of change of cross-sectional area due to sediment bed
resuspension and deposition
qr = tributary inflow per unit channel length
W, = surface width of the channel
{ = water surface elevation
The centroid depth is determined by
(2.3)

d, =%ﬁ(€—z)dzdy:ﬂ(z—z)dz4

0z,

with the integrals denoting integration across the surface width and over the depth of the
channel. For a rectangular cross-section, d. is equal to one half of the depth. The cross-
section area, hydraulic radius, and water surface width are defined as functions of the
water surface elevation by tabular functions.

Equations (2.1) and (2.2) are solved using a box or control volume spatial representation.

B0, + (%j - (%j = ~g(1 + o M0, (€.~ ¢,.2) (2.4)

A:m—

_g(ch)th (bm B b'"‘)+ By, (WSTS )Qi’” ~Bon (C—ISE ED Cr
h om



A,,0A4,+0,.-0,=(0,+0,+0,). (2.5)

Cross-sectional area, 4, water surface elevation, ¢, and buoyancy, b, are defined in
continuity control volumes. Discharge, O, is defined in momentum control volumes
which are staggered relative to continuity control volumes, with momentum control
volume m being centered at the upstream face of continuity control volume m, as shown
in Figure 1. The continuity and momentum control volume lengths are denoted by 4.,
and Ap.., respectively. Quantities defined at control volume centers, and determined by
interpolation, are denoted by the subscripts A:m and O:m. Quantities at control volumes
upstream and downstream are defined by the subscripts m- and m+. The source terms in
the continuity equation are defined in continuity control volumes by

Q. = lateral runoff discharge into volume m

Qs = rate of change of volume m due to bed resuspension and
deposition and bed consolidation.

Qr = tributary discharge into volume m

The rate of change of the continuity control volume due to sediment deposition and
resuspension and bed consolidation is given by

QS,m = _WB,A:mAA:mo‘)th (26)

where W is the channel width over which the deposited sediment bed extends, and B, is
the total thickness of the deposited bed.
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Figure 1. Continuity and momentum control volumes or cells. Dashed vertical lines
indicate positions of momentum volume boundaries in (a) and continuity
volume boundaries in (b).



Equations (2.4) and (2.5) are integrated in time, between time levels n and n+1, using a
two-time level, semi-implicit scheme adopted from the EFDC model. The momentum
and continuity equations become
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where & is the time-step. The implicit portion of the solution is represented by rewriting
(2.7) and (2.8) in the forms

o' =F-6,-2.)" (2.9)

(@4) ¢ +D,(0. -0)" =E, (2.10)

and combining to give a system of linear equations:
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These equations are solved for the new time level water surface elevation. New time
level discharges are then determined from (2.9). To guarantee volume continuity, the
new time level cross-sectional area is determined from (2.8).

Advective momentum fluxes in (2.7) and (2.9) are determined using simple upwind
differences:
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The data structure for the hydrodynamic and transport equation solutions is based on a
lookup table structure, with the upstream and downstream control volumes, m- and m+
being defined by m-= MM(m) and m+ = MP(m). An additional set of lookup tables are
used to define tributary inflow connections in the continuity equation.

At the upstream end of the main channel and each tributary channel, a no flow boundary
condition is implemented in the momentum equation and upstream inflow is represented
by a lateral source in continuity equation. This type of upstream boundary condition is
referred to as a waterfall boundary condition.

Downstream boundary conditions for the solution of the hydrodynamic equations
include:

Specified water surface elevation
7=¢,0) (2.13)
where {3 is a specified time series or harmonic function.

Specified incoming wave characteristic

Z—TQ —=4()
/8 gW

where ¢ is a specified time series or harmonic function.

(2.14)

Discharge specified as a function time

0 =0, (1) (2.15)
where Qprrepresents a time series.
Discharge specified as a function of water surface elevation

0=0,.¢) (2.16)

where Opc represents a rating curve for the downstream boundary section or a hydraulic
control structure.



3. Transport Equations and Solution Procedures

The transport equation for a dissolved or suspended material, represented by the
concentration, C, is

9, (AC) +0, (QC) = dx(ADCdxC)-l- q,C, +qCs +q,Cr+ Wyd oy = Wed (3.1)
where

C = concentration (salinity, temperature, or suspended sediment)

C = concentration of lateral runoff inflow

Cs = concentration associated with pore water component of water column-sediment bed
exchange

Cr = concentration of tributary inflow

D¢ = longitudinal dispersion coefficient

Ws= surface width of channel

Wg=bed depositional width of channel

Jeos= surface outflux of C

Jcg = bed influx of C

When C represents temperature, the last two terms on the right of (3.1) are retained and
account for net water surface heat flux and convective heat flux from the bed,
respectively. When C represents suspended sediment, the next to the last term on the right
of (3.1) is retained and represents sediment resuspension and deposition, with the term
qsC; set to zero.

Equation (3.1) is solved by a fractional step method at the same time-step as the
hydrodynamic equations. With C defined in the continuity control volumes, the first step
is:

47C, =4, —( £ jQ;:“CQ",,H +( ~ ]Q;::“Cgm

A:m A:m

J{Tigm} (D). (C,.-C.) - (VQAWJ (). (C.-C) 32)
“{&J (¢ +oici+0icy),
where
(3.3)
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It is noted that (3.2) is consistent with the continuity equation (2.6) that it reduces to
when all concentrations are set to unity. The second step is given by

n+l ~n+ n+1 ~* 1+
Am lC’m 1 = Am lC’m + H(W;RJCB - I/VS‘]CS m+ (34)
The surface and bottom fluxes are defined at the new time level to maintain a positive

concentration when J,, represents the settling or deposition of suspended sediment. The
advective fluxes in (3.2) are given by a weighted upwind-central difference form

Q:lﬂ ) Cn:m =F (max(Q,’;“/z,O) CZ—) +F (min(Q;H/z,O) C:l)

F v m .
+?CQ:1 1/2(C —+Cm)

(3.5)

where the flux weights, F, and F,., are determined by a flux limiter that insures a
monotone and positive definite solution while also reducing numerical diffusion
associated with upwind flux.



4. Heat Transport Formulation

For thermal transport and temperature simulations, the water surface heat flux for the
transport equation (3.1), when C represents heat (C=p0,,c;,T) is:

Jys =0T (0.39-0.05¢,> (1 - B,C,) + 40T (T, - T,) (4.1)
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where ¢, 1s the specific heat of water. The heat fluxes on the right hand side of (4.1) are
based on the NOAA Geophysical Fluid Dynamic Laboratory's atmospheric heat
exchange formulation (Rosati and Miyakoda 1988). The first two terms represent net
longwave back radiation where

T, = water surface temperature

T, = atmospheric temperature

£= emissivity

o= Stefan-Boltzman constant

e, = atmospheric vapor pressure in millibars
C,. = fractional cloud cover

B.= empirical constant equal to 0.8.

The third term is the convective or sensible heat flux where

¢, = dimensionless transfer coefficient on the order of 107 in magnitude,
0, = atmospheric density,
¢pa = specific heat of air.

The last term represents latent heat transfer where

c. = dimensionless transfer coefficient on the order of 107 in magnitude,

L = latent heat of evaporation

ess = saturation vapor pressures in millibars corresponding to the water surface
temperatures

es, = saturation vapor pressures in millibars corresponding to the atmospheric
temperature

R, = fractional relative humidity

Pa = atmospheric pressure in millibars

The incident shortwave solar radiation, /,, at the water surface (watts/mz) is given by
=051, (1- 4, + ¥ Xt —a)(1 - 0.62C, +0.0019 5) 4.2)

where
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1, = shortwave solar radiation at the top of the atmosphere
A = water vapor plus ozone adsorption coefficient (0.09)
T = atmospheric attenuation coefficient (0.7)

U = zenith angle

o = surface albedo

/3 = solar noon angle in degrees.

The bottom heat flux is given by:

JTB = Chblowcpw v ulz + vlz (TB - T)_IB (43)

where

T = bed temperature

P» = bed bulk density

cpp» = specific heat of the water-solid bed mixture

. . . . 3
cm, = dimensionless convective heat exchange coefficient on the order of 10™.

The remaining irradiance at the sediment bed-water interface being adsorbed into the
sediment bed is

1, =risexp(-B,H )+ (1 - )L exp(- H) (4.4)
where
3= fast scale attenuation coefficient (1/meters)
J3s = slow scale attenuation coefficient (1/meters)

r = a distribution fraction between zero and one

For shallow water environments, 7 is set to one and /3, generally falls within the range of
0.2 to 4 per meter. The thermal balance for the bed is given by

dt (0/)cprbT;7): Ib - Chhlowcpw v ulz + Vlz (T;) - T) (45)

where Hj is the thermal thickness of the bed. Equation (4.5) serves to couple the bed
with the water column.

11



5. Noncohesive Sediment Settling, Deposition and Resuspension

Noncohesive inorganic sediments settle as discrete particles, with hindered settling and
multiphase interactions becoming important in regions of high sediment concentration
near the bed. At low concentrations, the settling velocity for the jth noncohesive
sediment class corresponds to the settling velocity of a discrete particle:

Wy = W (5.1)

Useful expressions for the discrete particle settling velocity that depend on the sediment
density, effective grain diameter, and fluid kinematic viscosity are provided by van Rijn
(1984b):

R,
Y d,;<100um

18
- 52
TZ’ = 1130 ‘[1+o.01R;.—1) : 100um < d; <10004m >
g dj

L1 : d,>1000m

where dj is the sediment diameter, and

P, (5.3)
{2
Py

is the reduced gravitational acceleration and

g, = ED (5:4)

14
is the sediment grain densimetric Reynolds number.

At higher concentrations under hindered settling conditions, the settling velocity is less
than the discrete velocity and can be expressed in the form

I " (5.5)
w,; = (1 - Z 5 j Wy,

i psi

where o, is the sediment particle density with values of n ranging from 2 (Cao et al
1996) to 4 (Van Rijn 1984). The expression (5.5) is approximated to within 5 per cent by

1 S
Wsj =|1- nz pl'jwsaj

(5.6)

12



for total sediment concentrations up to 200,000 mg/liter. For total sediment
concentrations less than 25,000 mg/liter, neglect of the hindered settling correction
results in less than a 5 per cent error in the settling velocity, which is well within the
range of uncertainty in parameters used to estimate the discrete particle settling velocity.

Noncohesive sediment is transported as bed load and suspended load. The initiation of
both modes of transport begins with erosion or resuspension of sediment from the bed
when the bed stress, 7, exceeds a critical stress referred to as the Shield's stress, 7.,. The
Shield's stress depends upon the density and diameter of the sediment particles and the
kinematic viscosity of the fluid, and can be expressed in empirical dimensionless
relationships of the form:

_ s, (5.7)
e i 0

Useful numerical expressions of the relationship (5.7), provided by van Rijn (1984b), are:

0.24(R 2/3) . R<4
0.14(R°)"" : 4sRZ <10
6.5 =7 0.04(R)" : 10< R <20 (5.8)
0.013(R2*)” : 20< R <150
0.055 : R2*=2150

A number of approaches have been used to distinguish when a particular sediment size
class is transported as bed load or suspended load under specific local flow conditions
characterized by the bed stress or bed shear velocity:

w. =41, (5.9)

where 7, is the kinematic bed stress (dynamic stress divided by water density). The
approach proposed by van Rijn (1984a) is adopted in the EFDC model and is as follows.
When the bed velocity is less than the critical shear velocity

Usyg; :‘[ I, =4£d0.; (5.10)

no erosion or resuspension takes place and there is no bed load transport. Sediment in
suspension under this condition will deposit to the bed as will be subsequently discussed.
When the bed shear velocity exceeds the critical shear velocity but remains less than the
settling velocity,

u*csj <u, < Wsoj (51 1)

13



sediment will be eroded from the bed and transported as bed load. Sediment in
suspension under this condition will deposit to the bed. When the bed shear velocity
exceeds both the critical shear velocity and the settling velocity, bed load transport ceases
and the eroded or resuspended sediment will be transported as suspended load. These
various transport modes are further illustrated by reference to Figure 2, which shows
dimensional forms of the settling velocity relationship (5.2) and the critical Shield's shear
velocity (5.10), determined using (5.8) for sediment with a specific gravity of 2.65. For
grain diameters less than approximately 0.130 mm (130 pm) the settling velocity is less
than the critical shear velocity and sediment resuspends from the bed when the bed shear
velocity exceeds the critical shear velocity will be transported entirely as suspended load.
For grain diameters greater than 0.130 mm, eroded sediment is transported as bed load in
the region corresponding to (5.11), and then as suspended load when the bed shear
velocity exceeds the settling velocity.

14
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Figure 2.  Critical Shield's shear velocity and settling velocity as a function of sediment
grain size.
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In the EFDC model, the preceding set of rules is used to determine the mode of transport
of multiple size classes of noncohesive sediment. Bed load transport is determined using
a general bed load transport rate formula:

95 _ q)(g’ ec‘) (5.12)

pdygd

where g3 is the bed load transport rate (mass per unit time per unit width) in the direction
of the near bottom horizontal flow velocity vector. The function @ depends on the
Shield's parameter

I ul (5.13)
gd;, gd,

g =

and the critical Shield's parameter defined by (5.7) and (5.8). A number of bed load
transport formulas explicitly incorporate the settling velocity. However, since both the
critical Shield's parameter and the settling velocity are unique functions of the sediment
grain densimetric Reynolds number, the settling velocity can also be expressed as a
function of the critical Shield's parameter with (5.12) remaining an appropriate
representation.

A number of bed load formulations developed for riverine prediction (Ackers and White
1973; Laursen 1958; Yang 1973; Yang and Molinas 1982) do not readily conform to (1)
and were not incorporated as options in the EFDC model. Two widely used bed load
formulations that do conform to (5.12) are the Meyer-Peter and Muller (1948) and

Bagnold (1956) formulas and their derivatives (Raudkivi 1967; Neilson 1992; Reid and
Frostick 1994) that have the general form

©(6,60.)=A6-6,) (V6 - & ) (5.14)
where
¢=¢6.) or ¢R) (5.15)
The Meyer-Peter and Muller formulations are typified by
3/2
®=¢0-6,) (5.16)
while Bagnold formulations are typified by

o =¢6-6,)\V6-1/8.) (5.17)

with Bagnold's original formula having ) equal to zero. The Meyer-Peter and Muller
formulation has been extended to heterogeneous beds by Suzuki et al. (1998), while

16



Bagnold's formula has been similarly extended by van Niekerk ef al. (1992). The bed
load formulation by van Rijn (1984a) has the form

®=g6-6.)
_0.053
YR

(5.18)

and has been incorporated into the CH3D-SED model and modified for heterogeneous
beds by Spasojevic and Holly (1994). Equation (5.18) can be implemented in the EFDC
model with an appropriately specified @ A modified formulation of the Einstein bed load
function (Einstein 1950) that conforms to (5.12) and (5.14) has been presented by
Rahmeyer (1999) and will be later incorporated into the EFDC model.

The procedure for coupling bed load transport with the sediment bed in the EFDC model
is as follows. First, the magnitude of the bed load mass flux per unit width is calculated
according to (5.12) at horizontal model cell centers, denoted by the subscript c. The cell
center flux is then transformed into cell center vector components using

u

Qpex — m Dpe (519)
\%

qbcy - m e

where u and v are the cell center horizontal velocities near the bed. Cell face mass fluxes
are determined by downwind projection of the cell center fluxes

Qbfx = (qbcx )upwind

(5.20)
Doy = (chy )upwind

where the subscript upwind denotes the cell center upwind of the x normal and y normal
cell faces. The net removal or accumulation rate of sediment material from the deposited
bed underlying a water cell is then given by:

mam,J, = (myqbfx)e N (myqbﬁc)w + (qubﬁ/)n - (qub@)s (5.21)

where J, is the net removal rate (gm/m’-sec) from the bed, m, and m,, are x and y
dimensions of the cell, and the compass direction subscripts define the four cell faces.
The implementation of (5.19) through (5.21) in the EFDC code includes logic to limit the
out fluxes (5.20) over a time-step, such that the time integrated mass flux from the bed
does not exceed bed sediment available for erosion or resuspension. When this
formulation is implemented in the one-dimensional model, the x direction is presumed
aligned along the channel, with the y fluxes set to zero. The scale factors m, and m, then
correspond to the cell length, 4, and the sediment bed width, W3, respectively.

17



Under conditions when the bed shear velocity exceeds the settling velocity and critical
Shield's shear velocity, noncohesive sediment will be resuspended and transported as
suspended load. When the bed shear velocity falls below both the settling velocity and
the critical Shield's shear velocity, suspended sediment will deposit to the bed. A
consistent formulation of these processes can be developed using the concept of a near
bed equilibrium sediment concentration. Under steady, uniform flow and sediment
loading conditions, an equilibrium distribution of sediment in the water column tends to
be established, with the resuspension and deposition fluxes canceling each other. Using a
number of simplifying assumptions, the equilibrium sediment concentration distribution
in the water column can be expressed analytically in terms of the near bed reference or
equilibrium concentration, the settling velocity and the vertical turbulent diffusivity. For
unsteady or spatially varying flow conditions, the water column sediment concentration
distribution varies in space and time in response to sediment load variations, changes in
hydrodynamic transport, and associated nonzero fluxes across the water column-sediment
bed interface. An increase or decrease in the bed stress and the intensity of vertical
turbulent mixing will result in net erosion or deposition, respectively, at a particular
location or time.

To illustrate how an appropriate suspended noncohesive sediment bed flux boundary
condition can be established, consider the two-dimensional, in the vertical plane, form of
the sediment transport equation,

0SS+ w,

1; S) (5.22)

2118)s +0,(1us)+ 2 ()=

where u and w are the along channel and vertical velocities respectively, K, is the vertical
diffusion coefficient, H is the water depth, and z is the dimensionless vertical coordinate
varying from O at the bed to 1 at the water surface. For nearly uniform horizontal
conditions, (5.22) can be approximated by:

3 (HS) = o';( K o5+ qu) (5-23)
|7 ‘
Integrating (5.23) over the depth gives
J (HE) =J, (5.24)

where the over bar denotes the mean over the depth. Subtracting (5.24) from (5.23) gives

K, (5.25)

H

a15)= 05205 +ws) -,

Assuming that the rate of change of the deviation of the sediment concentration from the
mean is small

d,(Hs")<< d,(HS) (5.26)

18



allows (5.26) to be approximated by

K 5.27
o"z(H” JS+ WSS) =J, (5-27)
Integrating (5.27) once gives
K
L35 +w,S=J,(1-2) (5.28)
H s
Very near the bed, (5.28) can be approximated by
K
0.5 +w,5= =), (5-29)
Neglecting stratification effects the near bed diffusivity is approximately
K / (5.30)
- =K Uu.kz ‘
o Ty
Introducing (5.30) into (5.29) gives
o"ZS+—S:—£i (5.31)
z zZw,
where
R=2e (5.32)
u.K
is the Rouse parameter. The solution of (5.31) is
J C
s=—le 4 S (5.33)
w, z
The constant of integration is evaluated using
§=S, : z=z, and J,=0 (5.34)

which sets the near bed sediment concentration to an equilibrium value, defined just
above the bed under no net flux condition. Using (5.34), equation (5.33) becomes

. 5.35
S= (Z—‘L) 5, L (5.35)
z w,
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For nonequilibrium conditions, the net flux is given by evaluating (5.35) at the
equilibrium level

J,=w,(5.,-5..) (5.36)

where S, is the actual concentration at the reference equilibrium level. Equation (5.36)
clearly indicates that when the near bed sediment concentration is less than the
equilibrium value a net flux from the bed into the water column occurs. Likewise when
the concentration exceeds equilibrium, a net flux to the bed occurs.

For the relationship (5.36) to be useful in a numerical model, the bed flux must be
expressed in terms of the transport model's representation of sediment mean
concentration. For application in an one-dimensional or two-dimensional model, (5.35)
can be integrated over the depth to give

J =w, (§Qq - S) (5.37)

where

S'eq :@SQQ:RZI
G -1) (5.38)

_ &y -y

S

= WZ;—I)SW:R z1

defines an equivalent layer mean equilibrium concentration in terms of the near bed
equilibrium concentration. The corresponding quantity in the sediment transport
equation (3.1) is

Jon =T =w,(5,, -5) (5.39)

An alternate formulation for one-dimensional and two-dimensional, depth averaged,
model applications retain the complete form of (5.28):

K
23S +w S=-J (1-z) (5.40)
H A
A more general form for the vertical diffusivity is:
K )
=Koy Dl = 41

Introducing (5.41) into (5.40) gives
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ss—R oo R(1-2)"J, (5.42)

z(1 —z)’] z w

N

A close form solution of (5.42) is possible for A equal to zero. Although the resulting
diffusivity is not as reasonable as the choice of A equal to one, the resulting vertical
distribution of sediment is much more sensitive to the near bed diffusivity distribution

than the distribution in the upper portions of the water column. For A equal to zero, the
solution of (5.42) is

R

S:—[1 Rz Ji C (5.43)
(1+R)

Evaluating the constant of integration using (5.43) gives

. (ZZ) 5 _(1_(1621{))& (5.44)

For nonequilibrium conditions, the net flux is given by evaluating (5.44) at the
equilibrium level

_ (1+R) (5.45)
J, = [W_)](Sq ‘Sne)

where S, is the actual concentration at the reference equilibrium level. Since z, is on the
order of the sediment grain diameter divided by the depth of the water column, (5.45) is
essentially equivalent (5.35). To obtain an expression for the bed flux in terms of the
depth average sediment concentration, (5.44) is integrated over the depth to give

oo 6 )

(5.46)

where

_  In(]
3 = S, R=1
"G 1) (5.47)

5 .-y S :R#I

TR )

The corresponding quantity in the sediment transport equation (3.1) is
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2(1+R) 3
2+Ril—zeq.> “

Jop =Jsp = Ws[
(5.48)

When multiple sediment size classes are simulated, the equilibrium concentrations given
by (5.38) and (5.47) are adjusted by multiplying by their respective sediment volume
fractions in the surface layer of the bed.

The specification of the water column-bed flux of noncohesive sediment has been
reduced to specification of the near bed equilibrium concentration and its corresponding
reference distance above the bed. Garcia and Parker (1991) evaluated seven
relationships, derived by combinations of analysis and experiment correlation, for
determining the near bed equilibrium concentration as well as proposing a new
relationship. All of the relationships essentially specify the equilibrium concentration in
terms of hydrodynamic and sediment physical parameters

Seq :S'eq(d’ps’pw’ws’u*’ I/) (549)

including the sediment particle diameter, the sediment and water densities, the sediment
settling velocity, the bed shear velocity, and the kinematic molecular viscosity of water.
Garcia and Parker concluded that the representations of Smith and McLean (1977) and
Van Rijn (1984b) as well as their own proposed representation perform acceptably well
when tested against experimental and field observations.

Smith and McLean's formula for the equilibrium concentration is

S =p 0.65y,T (5.50)
! l+y T

where J; is a constant equal to 2.4E-3 and 7 is given by

P il P ul = U (5.51)
T w,

cs

where T}, is the bed stress and 7 is the critical Shields stress. The use of Smith and
McLean's formulation requires that the critical Shields stress be specified for each
sediment size class. Van Rijn's formula is

d ,
., :0.015ps—*T3/2Rd”5 (5.52)
z

eq

where z.,* ( = Hz,, ) 1s the dimensional reference height and R; is a sediment grain
Reynolds number. When Van Rijn's formula is selected for use in EFDCI1D, the critical
Shields stress in internally calculated using relationships from Van Rijn (1984b). Van
Rijn suggested setting the dimensional reference height to three-grain diameters. In the
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EFDCI1D model, the user specifies the reference height as a multiple of the largest
noncohesive sediment size class diameter.

Garcia and Parker's general formula for multiple sediment size classes is

2)

= : 5.53
e 'OS(1+3.33A(AZ)5) (:53)
Z, :ﬁRji/sFH (5.54)

Wsj ’
13 5.55

" d50
(5.56)

g
- —2 -
A=1+=2(1 -1)

®»

where A is a constant equal to 1.3E-7, dsy is the median grain diameter based on all
sediment classes, A is a straining factor, F is a hiding factor and 0y is the standard
deviation of the sedimentological phi scale of sediment size distribution. Garcia and
Parker's formulation is unique in that it can account for armoring effects when multiple
sediment classes are simulated. For simulation of a single noncohesive size class, the
straining factor and the hiding factor are set to one. The EFDCI1D model has the option
to simulate armoring with Garcia and Parker's formulation. For armoring simulation, the
current surface layer of the sediment bed is restricted to a thickness equal to the
dimensional reference height.
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6. Cohesive Sediment Settling, Deposition and Resuspension

The settling of cohesive inorganic sediment and organic particulate material is an
extremely complex process. Inherent in the process of gravitational settling is the process
of flocculation, where individual cohesive sediment particles and particulate organic
particles aggregate to form larger groupings or flocs having settling characteristics
significantly different from those of the component particles (Burban et al. 1989, 1990;
Gibbs 1985; Mehta et al. 1989). Floc formation is dependent upon the type and
concentration of the suspended material, the ionic characteristics of the environment, and
the fluid shear and turbulence intensity of the flow environment. Progress has been made
in first principles mathematical modeling of floc formation or aggregation, and
disaggregation by intense flow shear (Lick and Lick 1988; Tsai ef al. 1987). However,
the computational intensity of such approaches precludes direct simulation of flocculation
in operational cohesive sediment transport models for the immediate future.

An alternative approach, which has met with reasonable success, is the parameterization
of the settling velocity of flocs in terms of cohesive and organic material fundamental
particle size, d; concentration, S; and flow characteristics such as vertical shear of the
horizontal velocity, du/dz, shear stress, A4,du/dz, or turbulence intensity in the water
column or near the sediment bed, g. This has allowed semi-empirical expressions having
the functional form

W :W(d,&@,q) 6.1)

to be developed to represent the effective settling velocity. A widely used empirical
expression, first incorporated into a numerical model by Ariathurai and Krone (1976),
relates the effective settling velocity to the sediment concentration:

) ( S]“ (6.2)
w,=w, 5

o

where a is an empirical constant and the o subscript denotes a reference value.
Depending upon the reference concentration and the value of a, this equation predicts
either increasing or decreasing settling velocity as the sediment concentration increases.
Equation (6.2) with user-defined base settling velocity, concentration and exponent is an
option in the EFDC1D model. Hwang and Mehta (1989) proposed

as’ (6.3)

W=7 ~m

(5" +07)

based on observations of settling at six sites in Lake Okeechobee. This equation has a
general parabolic shape with the settling velocity decreasing with decreasing
concentration at low concentrations, and decreasing with increasing concentration at high
concentrations. A least squares regression analysis for the parameters a, m, and n in (6.3)
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was shown to agree well with observational data. Equation (6.3) does not have a
dependence on flow characteristics, but is based on data from an energetic field condition
having both currents and high frequency surface waves. A generalized form of (6.3) can
be selected as an option in the EFDC1D model.

Ziegler and Nisbet (1994, 1995) proposed the following formulation to express the
effective settling as a function of the floc diameter, d:

w, = ad, (6.4)
with the floc diameter given by:
1/2
a
d. = S — 6.5
! (S\/Ti”fj ©

where § is the sediment concentration, @y is an experimentally determined constant and

[.. and T, are the x and y components of the turbulent shear stresses at a given position
in the water column. Other quantities in (6.4) have been experimentally determined to fit
the relationships:

a=B(SYT. +T_ )_0'85 (6.6)
b=-08-05log(Sy7 + 72 - 5,) (6.7)

where B; and B, are experimental constants. This formulation is also an option in the
EFDCI1D model.

A final settling option in EFDCID is based on that proposed by Shrestha and Orlob
(1996). The formulation in EFDC1D has the form

w, = 5% exp(—4.21+0.147G) (6.8)
a=0.11+0.039G

where

G= V(O”Zu)2 + (0"2\/)2 (6.9)

is the magnitude of the vertical shear of the horizontal velocity. It is noted that all of
these formulations are based on specific dimensional units for input parameters and
predicted settling velocities and that appropriate unit conversions are made internally in
their implementation in the EFDC1D model.
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Water column-sediment bed exchange of cohesive sediments and organic solids is
controlled by the near bed flow environment and the geomechanics of the deposited bed.
Net deposition to the bed occurs as the flow-induced bed surface stress decreases. The
most widely used expression for the depositional flux is:

(6.10)

r.—T
_WsSd( «“ bj =wIS, : T,sT,
cd

0 : 7,27,

where 7 is the stress exerted by the flow on the bed, 7., is a critical stress for deposition
that depends on sediment material and floc physiochemical properties (Mehta et al.1989),
and S, is the near bed depositing sediment concentration. The critical deposition stress is
generally determined from laboratory or in situ field observations and values ranging
from 0.06 to 1.1 N/m? have been reported in the literature. Given this wide range of
reported values, in the absence of site specific data the depositional stress is generally
treated as a calibration parameter. The critical depositional stress is an input parameter in
the EFDC1D model.

Since the near bed depositing sediment concentration in (6.10) is not directly calculated,
the procedures of Chapter 5 can be applied to relate the near bed depositional
concentration to the bottom layer or depth average concentration. Using (5.33) the near
bed concentration during times of deposition can be determined in terms of the bottom
layer concentration for two-dimensional, in the vertical plane, and three-dimensional
model applications. Inserting (6.10) into (5.33) and evaluating the constant at a near bed
depositional level gives

s=(1+0-1)%)s, e

For use in a two-dimensional, depth averaged, or one-dimensional application, (6.11) is
integrated over the total depth to give

-1
In\z,

%=(Q+G§?%Q—%ﬂﬂ§R:1
-y, )

S, =| T, +——7—(-T7)| SR#l

1-R)('-1)

(6.12)

The corresponding quantities in the one-dimensional sediment transport equation (3.1)
are
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An alternate formulation for depth averaged and one-dimensional model applications is
obtained by combining (6.10) with (5.43). The constant of integration is evaluated at a
near bed depositional level to give

(, R [, R Z_jf (6.14)
S {1 1+ R)]]:’Sd J{l (1 (1 +R)dedezR
Integrating (6.14) over the depth gives
Sd:((2+R(1—zd)J ln(Zd)[ (1+R(l—zd)J]:1D_§:R:
2(1+r) )G 1) (1+R) (6.15)

o (S5 el e

The corresponding quantities in the one-dimensional sediment transport equation (3.1)
are

o _ [(2+R(1 zd))T +ﬂ2d_2( (“_R(ﬂ)deD_I;R:l

wS 2(1+R) G'-1) (1+R)

;]vs% :_uz ;gg;e)Zd)j fa { (1:)1(2_ 12 1)[ (l (1+ R)j D ]

It is noted that the assumptions used to arrive at the relationships (6.12) and (6.15) are
more tenuous for cohesive sediment than the similar relationships for noncohesive
sediment. The settling velocity for cohesive sediment is highly concentration dependent
and the use of a constant settling velocity to arrive at (6.12) and (6.15) is questionable.
The specification of an appropriate reference level for cohesive sediment is difficult. One
possibility is to relate the reference level to the floc diameter using (6.5). An alternative
is to set the reference level to a laminar sub-layer thickness

(6.16)

_US) (6.17)
‘" Hu,
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where U(S) is a sediment concentration dependent kinematic viscosity, and the water
depth is included to nondimensionalize the reference level. A number of investigators,
including Mehta and Jiang (1990) have presented experimental results indicating that at
high sediment concentrations, cohesive sediment-water mixtures behave as high viscosity
fluids. Mehta and Jaing's results indicate that a sediment concentration of 10,000 mg/L
results in a viscosity ten times that of pure water, and that the viscosity increases
logarithmically with increasing mixture density. Use of the relationships (6.12) and
(6.16) is optional in the EFDC1D model. When they are used, the reference height is set
using (6.17) with the viscosity determined using Mehta and Jaing's experimental
relationship between viscosity and sediment concentration.

Cohesive bed erosion occurs in two distinct modes, mass erosion and surface erosion.
Mass erosion occurs rapidly when the bed stress exerted by the flow exceeds the depth

varying shear strength, 7; of the bed at a depth, H,. below the bed surface. Surface
erosion occurs gradually when the flow-exerted bed stress is less than the bed shear

strength near the surface but greater than a critical erosion or resuspension stress, I,
which is dependent on the shear strength and density of the bed. A typical scenario under
conditions of accelerating flow and increasing bed stress would involve first the
occurrence of gradual surface erosion, followed by a rapid interval of mass erosion,
followed by another interval of surface erosion. Alternately, if the bed is well
consolidated with a sufficiently high shear strength profile, only gradual surface erosion
would occur. Transport into the water column by mass or bulk erosion can be expressed
in the form

(6.18)

where J, is the erosion flux, Jsp represents the bed source term in (3.1), my, is the dry
sediment mass per unit area of the bed having a shear strength, 7;, less than the flow-

induced bed stress, 7, and T,,. is a somewhat arbitrary time scale for the bulk mass
transfer. The time scale can be taken as the numerical model integration time-step
(Shrestha and Orlob 1996). Observations by Hwang and Mehta (1989) have indicated
that the maximum rate of mass erosion is on the order of 0.6 gm/s-m’ that provides a
means of estimating the transfer time scale in (6.18). The shear strength of the cohesive
sediment bed is generally agreed to be a linear function of the bed bulk density (Mehta et
al. 1982; Villaret and Paulic 1986; Hwang and Mehta 1989)

Ts = aspb +bs (619)
For the shear strength in N/m” and the bulk density in gm/cm’, Hwang and Mehta (1989)
give a, and b, values of 9.808 and -9.934 for a bulk density greater than 1.065 gm/cm3 .
The EFDCI1D model currently implements Hwang and Mehta's relationship, but can be

readily modified to incorporate other functional relationships.

Surface erosion is generally represented by relationships of the form
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J=wS :&(—b ] LT, 2T, (6.20)

or
d [ (-1
J =wS Zﬂexpt—ﬂ(uj j L T,2T, (6.21)

where dm./dt is the surface erosion rate per unit surface area of the bed and 7. is the
critical stress for surface erosion or resuspension. The critical erosion rate and stress and
the parameters @, [, and y are generally determined from laboratory or in situ field
experimental observations. Equation (6.20) is more appropriate for consolidated beds,
while (6.21) is appropriate for soft partially consolidated beds. The base erosion rate and
the critical stress for erosion depend upon the type of sediment, the bed water content,
total salt content, ionic species in the water, pH and temperature (Mehta et al. 1989) and
can be measured in laboratory and sea bed flumes.

The critical erosion stress is related to but generally less than the shear strength of the
bed, which in turn depends upon the sediment type and the state of consolidation of the
bed. Experimentally determined relationships between the critical surface erosion stress
and the dry density of the bed of the form

I, =cf (6.22)

have been presented (Mehta et al. 1989). Hwang and Mehta (1989) proposed the
relationship

. =alp,-p) +c 6.23)

between the critical surface erosion stress and the bed bulk density with a, b, ¢, and o
equal to 0.883, 0.2, 0.05, and 1.065, respectively for the stress in N/m? and the bulk
density in gm/cm’. Considering the relationship between dry and bulk density

®,-n) (6.24)

pd —,OS (,OS_,OW)

equations (6.22) and (6.23) are consistent. The EFDC1D model allows for a user defined
constant critical stress for surface erosion or the use of (6.23). Alternate predictive
expressions can be readily incorporated into the model.

Surface erosion rates ranging from 0.005 to 0.1 gm/m’-s have been reported in the
literature, and it is generally accepted that the surface erosion rate decreases with
increasing bulk density. Based on experimental observations, Hwang and Mehta (1989)
proposed the relationship
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d 0.198 6.25
log,, (ﬂ) =0.23 exp(—j (6.23)
dt p, —1.0023

for the erosion rate in mg/cm*-hour and the bulk density in gm/cm’. The EFDC1D model
allows for a user defined constant surface erosion rate or predicts the rate using (6.25).
Alternate predictive expressions can be readily incorporated into the model. The use of
bulk density functions to predict bed strength and erosion rates in turn requires the
prediction of time and depth in bed variations in bulk density which is related to the water
and sediment density and the bed void ratio, & by

=l

1+& 1+&/""
Selection of the bulk density dependent formulations in the EFDCID model requires

implementation of a bed consolidation simulation to predict the bed void ratio as
discussed in the following chapter.
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7. Sediment Bed Geomechanical Processes

This chapter describes the representation of the sediment bed in the EFDC1D model. To
make the information presented self-contained, the derivation of mass balance equations
and comparison with formulations used in other models are also presented.

Consider a sediment bed represented by discrete layers of thickness By, which may be
time varying. The conservation of sediment and water mass per unit horizontal area in
layer k are given by:

0.8\ _ (7.1)
dt(l_'_; j =ik TSt _5(k’kb)‘]sb
k

(7.2)

EB '
dz(ﬁiwll-l;‘kkj = Jow- " ks J(k’kb)%j (gk maX(‘]sb’ O)+ & mm(Jsb ’0))

where £ is the void ratio, g, and o, are the sediment and water density and J; and J,, are
the sediment and water mass fluxes with k- and k+ defining the bottom and top
boundaries, respectively, of layer £&. The mass fluxes are defined as positive in the
vertical direction and exclude fluxes associated with sediment deposition and erosion.
The last term in equation (7.1) represents erosion and deposition of sediment at the top of
the upper most bed layer, k=k;, where

l:k=k, (7.3)

Ak, = {0 Lk # K,
Consistent with this partitioning of flux,
Jo:. =0:k#k, (7.4)

The last term in (7.2) represents the corresponding entrainment of bed pore water into the
water column during sediment erosion and entrainment of water column water into the
bed during deposition. The water flux, J,,.++, at the top of the upper most layer, k,, is not
necessarily zero, since it can include ambient seepage and pore water expulsion due to
bed consolidation.

Assuming sediment and water to be incompressible, (7.1) and (7.2) can be written as:

7.5
dz( B, jz 1 (J?.k_ ‘Jq-k+)—5(k,kb)ﬁ (7.5)
1+g/) p " s: Py
= J; [ J, (7.6)
dt(l .I;. ;k] “Gyi- " Dwrs ~ dk,kb{é‘k max(p—‘:’, oj +g, mln( p:; ’ D
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where the water specific discharges

Jw:k— = prw:k - (77)
']w. k+ = prw:k -

have been introduced into (7.6). Four approaches for the solution of the mass
conservation equations (7.5) and (7.6) have been previously utilized. The solution
approaches, hereafter referred to as solution levels, increase in complexity and physical
realism and will be briefly summarized below.

The first level or simplest approach assumes specified time-constant layer thicknesses
and void ratios with the left sides of (7.5) and (7.6) being identically zero. Sediment
mass flux at all layer interfaces are then identical to the net flux from the be