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Executive Summary  

The Pacific Northwest National Laboratory (PNNL), in collaboration with The Space and Naval 
Warfare Systems Center (SPAWAR) proposed to develop a rapid, robust and reliable tool for in 
situ measurement of hydraulic properties in heterogeneous, anisotropic, variably saturated porous 
media.  A critical component of this project was the modification of the existing SCAPS/GeoVIS 
system to function as dual field-of-view video camera system for sub-surface soil imaging. This 
required modification of the single-camera GeoVis system to allow simultaneous capturing of 
images at different magnification factors to allow a more complete description of the grain size 
distribution curve. One camera is used to capture grain size data in the silt-sized fraction and the 
other to capture information in the sand-sized fraction. These two levels of magnification provide 
fields of view ranging from 2 to 20 mm diagonal.  
 
Digital images of sediments were converted into particle size distributions and their moments 
using the Pixel-Vernier, a suite of photogrammetric algorithms that combine markers-controlled 
watershed algorithm with a minimum-distance clustering to solve the segmentation problem. The 
segmentation algorithm decomposes the image into separate particle regions, which are used to 
derive several geometric attributes for each particle. These were used to estimate the particle size 
distribution and their relevant statistics. Particle size distributions were then used with a packing 
model to estimate porosity and saturated hydraulic conductivity which have the added benefit of 
constraining hydraulic conductivities derived from the borehole permeameter measurements. The 
approach proved successful in characterizing a diverse set of materials such as including soil, 
complex digital patterns, and sediment images from the Mars surface.   
 
In laboratory tests to calibrate the instruments and models, sediments were separated in 1φ 
fractions and characterized to determine particle shape, porosity and hydraulic conductivity. 
Binary mixtures of coarse and fine fractions were prepared with the fine fraction ranging from 0 
to 100%.  Measurements of particle shape, porosity and hydraulic conductivity were made on 
end members and mixtures. Results show that particles in all size classes are aspherical and that 
end-member porosity increases with decreasing particle diameter in the sand fraction and 
smaller. In the gravel fraction, end-member porosity initially increased with increasing diameter 
before becoming constant.  A model for the incomplete mixing of aspherical particles proved 
successful in predicting porosities and conductivities. Both parameters decreased to a minimum 
at a critical fines content confirming the importance of knowing the fractional concentrations of 
each component. 
 
A subatmospheric borehole permeameter proved successful in overcoming limitations in 
subsurface conductivity measurements. Use of a subatmospheric pressure permeameter reduced 
the effect of macropores and fissures on matrix flow. For the analysis of data, a new method 
using the Brooks-Corey hydraulic model was developed to solve the steady-state infiltration 
equation. Results from numerical simulations compared well with laboratory experiments. Field 
measurements were also in good agreement with independent measurements although the 
saturated hydraulic conductivity was slightly underestimated.  With the successful application of 
the packing model to the prediction of porosity and saturated hydraulic conductivity, the 
saturated hydraulic conductivity can be easily constrained in the permeameter analysis. 
  

 ix 



 

 x 

This approach will lead to a better understanding of the measurements available for permeability 
characterization and help to establish the validity of permeability predictions in untested intervals 
based on measurements like grain size distributions that are easier to make. The data obtained 
using the direct push sensors will be invaluable in the design and evaluation of remedial 
systems and the prediction of future contaminant migration. 

 
 



 

1.  Objectives 

The SERDP Cleanup Statement of need, CUSON-04-01, entitled “Innovative and low-cost 
methods for measuring hydraulic conductivity” was aimed at identifying improved or new 
technologies and procedures for in situ measurement of permeability.  In response to this need, 
the Pacific Northwest National Laboratory (PNNL) proposed an integrated characterization 
approach that would provide estimates of in situ hydraulic properties from the scale of laminae 
up to the formation scale. The principle objective of the proposed work was to develop a rapid, 
robust and reliable tool for in situ measurement of hydraulic properties in heterogeneous, 
anisotropic, variably saturated porous media. To meet the overall objective, a number of 
technical objectives were identified, including:  

 
• development a borehole permeameter module for measuring hydraulic properties 
• development of a dual-camera imaging system for in-situ grain size images  
• development of photogrammetric algorithms to determine grain-size distributions from 

downhole video images 
 
The different components would ultimately be integrated into a single multipurpose tool for 
deployment using direct push technology. The proposed work was expected to provide a means 
for estimating in situ hydraulic properties from downhole measurements.  
 
To obtain the data necessary to meet the specific objectives listed above, a combination of 
numerical, laboratory, and field studies were designed and implemented to characterize 
properties sediments and relate these properties back to those that could be easily measured with 
direct push technology.  A team of researchers was assembled to develop direct push, in situ 
sensors that could be deployed individually or as part of an integrated tool.  The sensors 
included:  1) a tension (subatmospheric pressure) permeameter for measuring variably relative 
permeability as a function of saturation, and 2) a microscopic imaging system for in situ imaging 
of sediments from which grain-size characteristics and independent estimates of hydraulic 
properties would be derived using digital photogrammetry.  
 
This report represents the two-year final progress report for SERDP project CU-1366 entitled 
“The Integration of Multi-Tension Probe Permeametry, and Digital Photogrammetry for the 
Improved Characterization of Subsurface Permeability” for the period 2005 to 2007.  This 
project was a collaborative effort between the Pacific Northwest National Laboratory (Dr. Andy 
Ward, Dr. Gamal Seedahmeed) and the Space and Naval Warfare Systems Center (Dr. Greg 
Anderson).  
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2.  Background  
 

The occurrence and impact of spatial variability in hydrogeologic properties of natural soils and 
sediments is well established. Soil-forming processes typically result in structures whose 
properties vary with: 1) the scale of observation, 2) space (heterogeneity), and 3) and orientation 
(anisotropy).  Differences in space and orientation can lead to complex variations in hydrologic 
properties, manifested as heterogeneity, that strongly affect the distribution of contaminants in 
the subsurface. Thus, predictions of contaminant fate and transport; design of remedial systems; 
and evaluation of the effectiveness of remediation schemes are also hampered by the multi-scale 
heterogeneity.  More specific to this work is the impact of heterogeneity on the ability to 
characterize hydraulic properties at the scales controlling transport.    
 
As a result of subsurface heterogeneity, there is a discrepancy in parameters parameter values at 
the scale at which measurements are typically made and the scale at which input data are needed 
for models used for interpretation and prediction.  For example, Figure 1 shows a typical cutface 
from the uppermost sedimentary unit of the Hanford Formation where a significant portion of 
vadose zone contaminants resides.  This particular sedimentary unit consists of glacio-fluvial  

sediments with heterogeneities ranging 
from localized ripples to horizontal 
intercalations of silt and gravel lenses.  
These sediments are characterized by 
discrete bedding planes and other abrupt 
structural features, rather than a smoothly 
varying structure. This type of 
heterogeneity is typical of natural soils and 
sediments can result in contrasts in 
hydraulic properties that lead to complex 
behavior of fluids and contaminants in 
these systems.  In fact, it is   characterized 
by several disparate length scales that in 
many cases prohibit the use of effective or 
average parameters for predicting transport 
(Russo et al. 2001).  

 
Figure 1. Exposed Trench Face Showing Layered 
Heterogeneity in Hanford’s 200 Area showing typical 
1×1-m model grid block (white square) used for 
numerical simulations relative to the typical 5-cm and 
15-cm sediment cores (white circles) used for 
characterizing sediment properties. 

 
Characterizing this heterogeneity, for the 
purpose of predicting water flow and 
reactive transport behavior at the field 
scale, has proven quite difficult.  This 
difficulty is directly related to the 
disparities in the scales at which transport 
processes occur, the scales at which 
measurements are typically made, and the 
scales at which models are applied (Figure 
1). These features represent two main 
challenges to parameterization: 1) how 
best to account for the effects of the multi-
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scale heterogeneity on transport properties, and 2) identifying the sufficiency of data required to 
adequately describe these properties. Ideally, the modeler wants to describe the global behavior 
while keeping the local-scale behavior as close to reality as possible.  However, the identifying, 
parameterizing and represent ting the small-scale features remains a challenge when trying to 
interpret or predict large-scale transport behavior.  
 
One solution to this dilemma is to merge information from various measurement scales obtained 
at the same location and then determine the effect of heterogeneity patterns on large-scale 
prediction of transport in porous media.  The problem is that there is no single integrated tool 
that allows convenient and cost-effective measurement of hydraulic properties at multiple scales 
without destroying the structure of the sediment.  The hydraulic properties of interest include 
hydraulic conductivity as a function of saturation, K(S); capillary pressure as a function of 
saturation, h(S); porosity (φ); residual saturation, Sr; and the parameters describing pore 
morphology and connectivity. These parameters are required as input for quantitative models 
used in remedial system design and evaluation and for predicting contaminant fate and transport.  
 
As shown in Figure 1, heterogeneity typically manifests across several spatial scales causing 
transport to be impacted simultaneously by high-permeability materials and low-permeability 
lenses.  Yet, typical measurements of K(S) and h(S) tend to smooth out the effects of local-scale 
heterogeneities and the associated anisotropy, which are known to dominate subsurface flow and 
transport processes. The omission of heterogeneity at or below the scale of measurement of the 
typical permeameter generates a permeability field that ignores the effects of fine-scale 
lamination and underestimates variability. Thus, the resulting picture is often insufficient for: 1) 
adequate interpretation of contaminant distributions, 2) optimized remedial system design, or 3) 
prediction of future fate and transport.  
 
2.1 Technical Approach 
 
To obtain the data necessary to meet the specific objectives listed above, a combination of 
numerical, laboratory, and field studies were designed and implemented to characterize sediment 
properties and establish relationships to grain size distributions that would be derived from 
down-hole images and in situ permeability estimates.  The numerical component of the research 
was designed to analyze digital images and derive parameters known to influence particle 
packing and ultimately soil physical and hydraulic properties. The laboratory component of the 
research was aimed at characterizing select sediments to establish end member behaviors of 
different sediment size classes (porosity, permeability) and model mixtures of these end 
members and to test new instrumentation. The field component was designed to test the 
instrumentation and analytical methods under field conditions.   
 
The tasks completed as part of this project are summarized herein and discussed in more detail in 
the following sections. 
 
Task 1: Development of a borehole permeameter module to measure hydraulic conductivity at 

sub-atmospheric and atmospheric pressures.  This module included sensors for 
measuring the permeameter outflow rate and matric potential (soil water pressure) at 
the outlet and at offset points in response injections at different inlet pressure heads. 
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Task 2:  Development of a dual-camera, microscopic imaging system for in-situ digital imaging 

of the porous medium at the sub-millimeter scale.  
 
Task 3:   Development of photogrammetric algorithms to automatically segment digital images 

into facies based on grain size statistics (mean diameter and sorting index). The 
resulting grain size distributions, geometric mean grain diameter, grain size variance, 
eccentricity, and mean particle orientation are used in the estimate of porosity and 
hydraulic conductivity.  

 
Task 4:   Field testing of the integrated system at the Hanford Site, in collaboration with 

Hanford’s Science and Technology Vadose Zone-Groundwater Integration Project. 
Tests were not performed at Hanford as the Science and Technology Project had come 
to an end prior to completion of this work. Tests were completed in San Diego at the 
SPAWAR facility. 
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3.  Materials and Methods 
 

3.1 Task 1:  Borehole Permeameter for Hydraulic Conductivity 
 

It well recognized that in situ estimates of hydraulic properties better represent field conditions 
than laboratory measurements on repacked or undisturbed cores. Methods commonly used to 
estimate permeability include pneumatic and hydraulic slug tests with permeameters deployed by 
cone penetrometer and hollow-stem augers, dynamic formation testers, and borehole electrical 
imaging devices (Chandler et al., 1989; Lowry et al., 1999; Gribb et al. 2000; Sorensen et al, 
2001; Morton et al, 2002) and acoustic techniques using Stonely waves (Paillet et al., 1992).  
Many of these techniques have proven capable of producing large amounts of data, some of 
which have been used to predict hydraulic conductivity in unsampled locations based on 
correlations with other geophysical measurements. However, rigid sampling procedures often 
omit important permeability features from the sampling program (Thomas et al., 1997) resulting 
in the underestimation of spatial variability in conductivity.  Neglecting heterogeneity below the 
scale of measurement of the typical permeameter results in conductivity estimates that may not 
reflect the effects of fine-scale lamination and underestimate the effects of variability.   
 
In situ methods for hydraulic properties have been developed for vadose zone measurement, 
particularly in the agricultural arena, and have been focused on near-surface measurements. 
Measurement techniques include tension infiltrometer, pressure infiltrometers, and borehole 
permeameters (e.g., Clothier and White, 1981; White and Sully, 1987; Smettem and Clothier, 
1989; Reynolds and Elrick, 1990a,b; Hussen and Warrick, 1993; Zhang, 1997).  Borehole 
permeameters like the Guelph Permeameter have long been used to measure subsurface 
unsaturated hydraulic properties but most use positive pressure heads (e.g., Reynolds et al., 1985; 
Amoozegar, 1989).  In highly fissured geologic formations and soils with substantial amounts of 
macropores, maintaining a positive pressure in the borehole or cavity is virtually impossible and 
estimates of permeability are biased by the presence of preferential pathways (Wu et al., 1993).   
 
A viable solution to this problem is to supply water under tension using an inflatable borehole 
tension permeameter (Or et al. 2000).  Use of a subatmospheric pressure permeameter would 
reduce the effect of macropores and fissures on matrix flow. However, designs proposed thus far 
cannot be used to determine hydraulic conductivity at low (more negative) matric potentials.  
Present analysis of data from these measurements is based on the assumption of a ‘linear’ soil in 
which the logarithm of K varies linearly with the logarithm of pressure head.  Such soils may be 
described by an analytical solution to the steady flow from cavities that assume a simple 
exponential representation of the unsaturated hydraulic function (Gardner, 1958).  However, 
such an analysis has been shown to be applicable only to coarse-textured soils and sediments.   
 
The objectives of this task were to develop a more robust design of borehole permeameter for 
use in heterogeneous sediments, to establish a more generalized approach for analyzing the 
steady-state infiltration rates, to develop an appropriate theory to describe the behavior of the 
permeameter and to facilitate optimization of its design by numerical modeling. To meet these 
objectives, we developed a rigid wall permeameter to measure outflow rates.  For the analysis of 
data, a new method using the Brooks and Corey (1964) hydraulic model was developed for the 
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solution of the steady-state infiltration equation. Results from numerical simulations were 
compared with the results of laboratory experiments.   
 
The soil hydraulic property that controls flow into unsaturated soil from a borehole tension 
permeameter is the relation between the unsaturated hydraulic conductivity K and capillary 
pressure head ψ. The integral of the K(ψ) relationship, know mathematically as the Kirchoff 
transform, has been shown by Gardner (1958) and others to be particularly useful for describing 
soil water flow: 
 

          (1) ∫=
ψ

ψ

ζζψφ
0

d)(K)(

 
where φ(ψ) is known as the flux potential (Gardner, 1958), ζ is the variable of integration, ψ0 is 
some arbitrarily chosen constant (usually the initial water potential) but the upper integration 
limit, ψ, is variable.  Elrick and Reynolds (1992) further defined several specific values of φ(ψ) 
for fixed upper limits of integration defined in Equations 2 through 5 below. The residual flux 
potential is given by  
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where ψi is initial pressure head. The tension flux potential is given by  
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Similarly, the matric flux potential is given by  
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whereas the velocity flux potential is given by 
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where H is a positive pressure head.  For most field soils at field capacity or drier, φr is negligibly 
small and can be ignored.  
 
The φt values represent the component of φ(ψ) that is appropriate for a tension permeameter 
supplying water to the infiltration surface at the negative potential, φt. The φm and φv values are 
the appropriate components of φ(ψ) for a pressure permeameter where water is supplied to the 
infiltration surface under the positive head, H. The steady-state flow of water from a borehole 
permeameter can be described by equations of the form (Reynolds et al., 1985; Philip, 1987; 
Reynolds and Elrick, 1990, 1991), 
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where Q is the steady flow rate of water into the soil and Qg, Qm, and Qv are the components due 
to gravity, capillarity, and pressure, respectively; a is the radius of the borehole permeameter; C 
[-] is the well shape factor that is a function of H/a and can be determined by a chart (Reynolds, 
1986; Soil Moisture Corp., 1987) or by empirical formula (Zhang et al., 1998) as given below for 
sand, loam or structured clay, and unstructured clay respectively: 
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   A borehole tension permeameter can therefore be used to determine unsaturated hydraulic 
conductivity at any desired matric potential.  For convenience of using the log scale we define a 
soil water tension, h as -ψ.  For flow rate from a borehole tension permeameter operating at 
tension, h, equation (6) can be modified to give: 
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There are a variety of models that can be used to describe soil hydraulic conductivity function, 
K(h). Here we choose the Gardner (1958) and the Brooks and Corey (1964) models for 
comparison owing to their ease of integration. Three alternate methods of analysis based on these 
two models are presented below. 
 
3.1.1 Continuous Brooks and Corey Model. For more accurate description of K(h), the Brooks 
and Corey (1964) model maybe used: 
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where he is the air-entry tension and m is a constant. Substituting Eq. (11) into (3) results in  
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Because we are trying to measure the unsaturated hydraulic conductivity, K(h), only the case of 
h > he will be considered. Then substituting φt(h) for h > he from eq. (12) into (10) yields the 
follow equation: 
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Rearranging Eq. (13) to solve for K(h) gives 
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Equation (14) can be used to calculate the unsaturated hydraulic conductivity at any matric 
potential once m is known.   
 
For the typical direct push hole, the borehlole diameter is quite small (e.g., a = 2.5 cm). Thus, 
when water is supplied under tension h < he, the flow through the bottom of the borehole due to 
gravity, the first term at the right hand side Eq. 13, is much smaller than that due to capillary, the 
second term at the right hand side of Eq. 13.  By neglecting the gravity effect, Eq. (13) can be 
rewritten as: 
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For the permeameter with an impermeable bottom, Eq. (15) is accurate. Combining  Eqs. (11) 
and (15) yields: 
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Hence the value of parameter m can be determined from Eq. (16) by linear regression. The 
unsaturated hydraulic conductivity can then be determined using Eq. (14).  However, when h < 
he, Eq. (16) cannot be used and Method 2 must be applied. 
 

 18 



 

3.1.2 Piece-Wise Brooks and Corey Model. In some cases, as will be shown in the Results 
section, the Brooks and Corey (1964) model cannot describe the full range of the hydraulic 
conductivity curve. Then, the relationship between ln(Q) and ln(h) is not linear. In this case, the 
ln(Q) and ln(h) relationship may be treated as piece-wise linear. In other words, the slope of 
ln(Q) vs. ln(h) in Eq. (16), m-1, is not a constant. The slope of the ith linear segment can be 
calculated as: 
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3.1.3 Piece-wise Gardner Model. The Gardner (1958) model developed for linear soils cannot 
be used to describe the entire range of K(h). The analysis can be extended to the entire range by 
treating the original model as a piece-wise log-linear model. The Garnder (1958) model is 
described by 
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where subscript ‘g’ denotes for the Gardner’s model and α [L-1] is a parameter inversely 
proportional to the capillary length. Substituting Eq. 18 into Eq. 3 produces  
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Substituting Eq. (12) into Eq. (10) and rearranging gives: 

      
1

2 2)(
−

⎟
⎠
⎞

⎜
⎝
⎛ +=

α
ππ

C
HaQhK     (20) 

 
By measuring Q at a given tension, h, K(h) can then be determined from Eq. (20) once α is 
known.  
 
By treating the Gardner (1958) model as a piece-wise linear function, α becomes a function of h 
but α must still be determined. The α parameter can be determined by first substituting the 
Gardner (1958) model into Equation 20 and taking logarithm to get a linear relationship between 
ln(Q) and α: 
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The slope α of the ith linear segment can be calculated by 
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3.3 Task 2:  Dual-camera Microscopic Imaging System 
 
A number of attempts have been made to capture images of subsurface sediments for use in 
characterization. Perhaps one of the more successful attempts has been the GeoVIS sensor mounted 
on SPAWAR’s Site Characterization and Analysis Penetrometer System (SCAPS).  The GeoVIS 
probe uses a miniature charge couple device (CCD) color video camera and appropriate optics 
system to image an area approximately 2 mm x 3 mm through a sapphire window on a cone 
penetrometer probe. The soil at the window is illuminated using LEDs mounted inside the probe. In 
its original configuration, the CCD camera system generates output as an analog video signal that is 
transmitted to the surface where it is displayed in real-time on a video monitor. The analog video 
signal is fed into a frame-grabber card installed in a microcomputer, which writes the data to the 
hard drive. When the push is terminated, the data was then transferred onto a compact disk and the 
digital data is available for post-processing.  

The SCAPS GeoVIS system is capable of continuously imaging the soil through a sapphire window 
as the probe is pushed into the ground by the hydraulic ram in the cone penetrometer vehicle. Video 
images are collected at the standard video rate of 30 frames/sec. The video probe is advanced into 
the ground at push rates that range from approximately 0.169 to 0.5 cm/s (4 to 12 inches/min) 
depending on the optical magnification factor. Even at the fastest push rate of 0.5 cm/s (12 
inches/min), an image is collected every 0.2 mm as the probe is advanced. Because the imaged area 
is approximately 2 mm × 3 mm, the video data appears as a continuous profile as the probe is pushed 
into the ground. 

In its current configuration, there are four major technical limitations to using the GeoVis data for 
granulometry. First, the push rate is determined by the magnification factor and the resulting 0.169 
to 0.5 cm/s rate is much slower than the standard CPT push rate of 2 cm/s.  Second, although the  
mean grain diameter of most sediments typically range over several orders of magnitude ( 2 μm for 
clay, 25 μm for silt, and 2000 μm for sand) while the current system can resolve objects no smaller 
than 20 microns.  Third, an image-based grain size distribution requires a statistically representative 
area of the soil specimen to be imaged in the field of view. However, the inverse relationship 
between field of view and magnification factor creates a major problem in effectively covering the 
range of grain sizes. If the magnification is too large, the large features will span multiple fields of 
view. Conversely, if the magnification is too small, smaller particles would be missed.  Thus, the 
field of view of 3.6 mm diagonal may limit the sampling of a representative elementary area from 
which to calculate grain size distributions may not be sampled. 

The objective of this task was to develop a dual field-of-view (FOV) video camera system for sub-
surface soil imaging. This required modification of the single-camera GeoVis system to allow 
simultaneous viewing of the image at different magnification factors so as to capture the entire size 
distribution.  At each magnification factor, image-based grain size analysis would be limited to those 
features that fall within predetermined limits.  Since the complete particle size distribution can be 
predicted from information on the sand fraction and a single point in the fine textured fraction 
(Hwang et al, 2002), the modification would add a second camera to allow measurements at two 
levels of magnification.  One camera would be used to capture grain size data in the silt-sized 
fraction (2 ≤ d ≤ 63 μm) and the second to capture information in the sand-sized fraction (63 ≤ d ≤ 
2000 μm). These two levels of magnification would provide fields of view ranging from 2 to 20 mm 
diagonal.  In addition, the light source would be modified to use a strobe light source synchronized 
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to the camera to illuminate the soil. Use of a strobe light source would ‘freeze’ the movement of the 
soil without having to stop the probe.  The system would be designed for use with a cone 
penetrometer system thereby allowing real-time visualization of sub-surface sediment 
lithostratigraphy, texture, and possibly structure characteristics.   

 
3.4 Task 3:  Photogrammetric Algorithms for Grain Size Distributions 
 
Quantifying particle size distributions and their moments is a fundamental part of 
characterization and modeling in the material sciences (Allen, 1997).  In process engineering, for 
example, measurement and control of the particle size distributions can be used to control and 
predict the product and process characteristics. Within the last two decades, image-based particle 
size distribution (psd) estimation has emerged as a strong research direction to complement 
existing methods and to overcome some of their limitations. As a major observation, the progress 
in image-based psd research is strongly connected with two main factors. These factors can be 
summarized by the scientific development and advancement in several interrelated fields, such as 
digital image processing and computer vision, as well as the slow penetration of this scientific 
knowledge among different fields. These two factors are well reflected in the early and the recent 
techniques and algorithms for psd. For example, in the eighties and early nineties photo-sieving 
(Ibekken and Schleyer, 1986; Diepenbroek et al., 1992) was proposed as a method for image-
based psd. Photo-sieving relies on manual identification and digitization of individual particle 
boundaries. On the other hand, Butler et al. (2001) utilized a simple global threshold approach 
for particles delineation or segmentation assuming that the image intensities follow a bimodal 
distribution. They tested an automated approach for threshold selection, but they found that it has 
a very poor performance and so the threshold was selected in a subjective way. It is clear that, in 
general, segmentation based on threshold alone will not produce acceptable results in the gamut 
of image segmentation applications. 
 
Over the least five years or so, a gradual progression was made toward more sophisticated 
approaches for psd. For example, Ghalib and Hryciw (1999) presented a comprehensive 
approach for estimating soil psds using digital images acquired in a laboratory setting. They used 
a backlight illumination to enhance the contrast of the particles. Their approach started with a 
binary thresholding which was followed by distance transform and watershed segmentation for 
the final delineation of the particle regions. McEwan et al. (2000) used Canny edge detection 
followed by morphological dilation and skeletonization to delineate sediment particles imaged 
by a high-resolution laser altimeter. They argued that this approach could be extended to digital 
images with additional development. In another laboratory setting, Carter and Yan (2005) 
investigated the suitability of image-based particle size analyzer for measuring particle shape 
parameters, such as aspect ratio. They concluded that the imaging-based sensor is very capable 
of measuring the shape parameters within acceptable tolerance bounds.  

 
Graham et al. (2005a) offered a detailed analysis of four approaches for automated particle size 
measurement of coarse-grained sediments that exceed 23 μm. All of the parameters that control 
the performance of these approaches were tested for every possible combination to identify the 
range of values that will give acceptable results. From a machine learning perspective, their 
testing methodology is equivalent to partial ensemble methods or classifier combinations (Tan et 
al., 2005).  Graham et al. (2005b) developed a sophisticated image-based approach for psd that 
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followed as coarse-to-fine or a global-to-local strategy for particles or grain extraction. This 
approach starts with a non-linear smoothing by a median filter to remove the markings from the 
particle surfaces while preserving the edges. This step was followed by a morphological bottom-
hat transform to identify small dark parts of an image. A double threshold approach was then  
applied to the transformed image to obtain an initial segmentation. The result was refined by a 
watershed segmentation augmented by minima suppression. The overall performance of the 
algorithm was optimized by a detailed assessment of its internal parameters and they are tuned to 
work with image particles that are greater than 23 μm. The final results required visual checking 
in case the segmentation step failed for some reason.  
 
From the previous discussion, it is evident that the core of an image-based psd is highly 
dependable on a robust segmentation procedure to isolate the particle regions from their 
backgrounds. The success of any image segmentation algorithm is typically measured by the 
extent to which acceptable results can be achieved and the computational efficiency with which 
these results can be obtained. To this end, the objective of this task was to develop a general 
approach for image-based particle size distributions using an integrated and a multi-stage 
segmentation algorithm. The approach differs from that described by Graham et al. (2005b) in 
two major aspects: (1) it is very general and can be trained for any grain or particle size 
distribution; and (2) it addresses the complexity of the segmentation problem in an integrated and 
robust algorithm. This algorithm follows a gradual approach to come up with the hypotheses for 
the image regions that correspond to particles.   
 
This new approach is collectively referred to as “Pixel-Vernier” or for short (PV). PV combines 
markers-controlled watershed segmentation, which will be explained in the next section, and a 
minimum-distance clustering thresholding algorithm for particle regions extraction. PV is 
following a gradual coarse-to-fine or local-to-global strategy to perform the extraction process. 
The current realization of PV works in a supervised mode that requires user training. This 
training is restricted to a single smoothing parameter to adapt PV to different material types. The 
extracted regions are used to derive several geometric attributes for each particle, such as the 
semi-major axis, the semi-minor axis, and the equivalent diameter. These geometric attributes of 
all particle regions are then used to estimate the particle size distribution and their relevant 
statistics.  The PV can be used in a laboratory or field setting and for the purposes of this project 
was tested on a diverse set of materials including soils, rocks, Mars surface images, and digital 
images of varying texture.       
 
3.4.1 Pixel VernierApproach  

 
The Pixel-Vernier (PV) is a supervised approach for image-based particle size distribution (psd) 
estimation that uses a single training parameter. In addition, PV can also be viewed as a 
measurement approach for particles distribution estimation that exploits the human abstraction of 
decision-making at a very high level. The training parameter of PV is confined to the size of an 
averaging filter. The user checks the result visually at the training stage to determine if the 
results are acceptable or not in terms of delineating the optimal image regions that correspond to 
particles. The benefits of the averaging process can be appreciated from several angles such as 
minimizing the local random variability, increasing the probability of getting connected particle 
regions or removing markings on the particle surfaces, and introducing the bias of the PV user/s 
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toward a particular size distribution. From the classical setting of non-linear problems solving, 
the training step or the smoothing process can be perceived as the provision of the initial 
approximation for the segmentation algorithm to converge toward a particular size. This 
approximation does not have to be exact, but it has a wide radius of convergence. From this 
perspective, the zero approximation should be considered as one of the options. In other words, 
some applications may not require any approximations and the algorithm will converge to the 
correct size without smoothing. This is most likely to be the case for highly textured images such 
as fine grained soil.  
 
After obtaining the optimal averaging window size by training, PV proceeds in two phases of 
segmentation to extract the particle regions following a coarse-to-fine strategy. At the coarse 
level, we developed markers-controlled watershed segmentation algorithm, which is also a two-
stage process. In other words, the first stage is a collective action of preprocessing by markers 
and then followed in the second stage by the classical watershed segmentation. Markers are 
generally defined as local connected image regions that can be grouped based on homogeneity or 
other criteria of similarity (Gonzalez and Woods, 2002). The markers limit the number of image 
regions that will result from the watershed segmentation. At the fine level or the second stage, 
PV uses a minimum distance clustering algorithm for local segmentation within every region that 
results from the coarse level segmentation. The minimum distance clustering was developed to 
offset the remaining local over-segmentation that induced by the watershed algorithm. The final 
results of the of the minimum distance clustering, in terms of the final segmented image regions, 
is forwarded to a connected component labeling algorithm (Shapiro and Stockman, 2001) to 
identify and to extract each image region. Figure 1 shows the overall work flow of the Pixel-
Vernier approach.  
 

 
 
 

Figure 2. Overall work flow of Pixel-Vernier Approach 

 
3.4.2 Markers-Controlled Watershed Segmentation Algorithm 

 
The markers-controlled watershed segmentation is a powerful approach for image segmentation 
(Meyer and Beucher, 1990). This approach allows the development of practical solutions to the 
over-segmentation problem associated with the classical watershed algorithm by limiting the 
number of image regions. This limitation is typically achieved by adding a preprocessing step 
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(here: markers) that can bring extra knowledge into the watershed segmentation algorithm 
(Gonzalez and Woods, 2002). As a side remark, from a cognitive science perspective, markers 
can be viewed as a mechanism that brings a focus of attention to selected areas in the image. Itti 
and Koch (2001) defined attention as the process of selecting and gating visual information 
based on saliency in the image itself (bottom-up), and on prior knowledge about scenes, objects, 
and their interrelations (top-down). Practically, a marker is a local homogenous connected 
component (a region) that belongs to an image. By viewing the information content of an image 
as a foreground and a background, two types of markers could be defined: 1) an internal marker, 
and 2) an external marker, which belong to the foreground and the background respectively. 
Different types of image attributes can be used as markers such as intensity, color, edge 
gradients, texture, and even motion in the case of an image sequence. In general, a procedure for 
marker selection has two main steps: 1) the identification of the image attributes that will be used 
to define the marker; and 2) the implementation of the preprocessing.     

 
In the context of the proposed approach, the marker control is achieved through the use of a set 
of ranking filters to enhance the information content of the image. The image intensities in a 
predefined local neighborhood are sorted according to their numerical values and then the central 
pixel in that neighborhood is replaced by a ranked intensity value selected according to a preset 
criterion such as the minimum or the maximum (Russ, 2002). In particular, the markers control 
step is applied as follows: 

 
1. A circular local neighborhood, which has a radius of 5 pixels, is chosen for the ranked 

filters. The circular shape is chosen to minimize the directional effects of the local 
neighborhood. 
 

2. Two new images are generated by convolving the original image by the maximum and 
the minimum rank filters. Let us call them the maximum image and the minimum image 
respectively. In fact, the maximum filter is nothing but the classical top hat filter (Bright 
and Steel, 1987). 

 
3. Then, the maximum image is added to the original image to form a new image. The 

objective of this step is to enhance the local boundaries. 
 

4. Then the minimum image obtained in step (2) is subtracted from the end result of step 
(3) to produce a new image. 

 
5. A complement image is then computed for the new image obtained in step (4). To 

understand the notion of the complement image, we examine two examples. In the 
complement of a binary image, zeros become ones and ones become zeros. In other 
words, black and white are reversed. In the complement of intensity or gray level image, 
each pixel value is subtracted from the maximum pixel value (e.g., 255) supported by 
the class and the difference is used as the pixel value in the output image. In the output 
image, dark areas become lighter and light areas become darker.   
 

6. The complement image is forwarded to the classical watershed segmentation algorithm 
to obtain the initial hypothesis for the particle regions.  
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3.4.3  Minimum Distance Clustering Algorithm 

 
Although the combined approach of the markers-controlled and the smoothing process offer a 
solution to the global over-segmentation problem encountered in the watershed algorithm, it led 
to a local over-segmentation at a regional level. In other words, the image regions do not provide 
optimal information for the existing particles in terms of their spatial extent. To this end, we 
developed a minimum distance clustering algorithm to handle the local over-segmentation. The 
underlying principle of this algorithm is based on the assumption of separable intensity 
distribution within each image region into two classes, which is the classical objective of any 
binary thresholding approach. As a side remark, the result of binary thresholding depends on 
how the thresholding value or the decision-line is selected or obtained. For example, manual 
selection of the threshold reflects the human bias towards a particular intensity distribution. On 
the other hand, automatic selection of the threshold value typically reflects a certain statistical 
tendency. For example, Otsu’s algorithm (1979) seeks the bimodal distribution between two 
classes by minimizing the within-group variance and maximizing the between-group variance. 
The minimum distance clustering algorithm is based on the following steps: 

 
1. Searching for the minimum and maximum intensity values within each image region 

that resulted from the markers-controlled watershed segmentation. 
 

2. Classifying the intensity values in each region into two classes according to their 
absolute distance from the minimum and the maximum intensity values in each 
particular region. 

 
3. The pixels with intensity values that are closest to the maximum intensity are classified 

as particles and the ones that are closest to the minimum are classified as backgrounds. 
This classification assumes that the particle intensities have a bias toward the brightest 
or highest intensity values, but nothing wrong to take the opposite bias, which is 
application dependent. 

 
Figure 3 shows a conceptual diagram for the minimum distance clustering algorithm. The oval 
on the top resembles a mixed intensity distribution, but after applying the minimum distance 
clustering algorithm is separated into two classed as shown by the left and right ovals on the 
bottom.   

 
3.4.4  Geometric Attributes Extraction 
 
Following Shapiro and Stockman (2001), the following region properties are derived from the 
results of the minimum distance clustering: 

 
1. Region area, which is the number of pixels per each region. 

 
2. Region boundaries. 
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Figure 3. Conceptual diagram for the minimum distance 
clustering algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Perimeter length (P), which are the number of the pixels along the boundary of a region. 
The perimeter length is used to derive what is called the ‘equivalent diameter (de)’ as 
follows: 
 

                                                            
π
Pde =                                                              (23) 

 
4. Region centroid, which combined with its boundary, is used to derive three types of 

moments. These moments are the second-order row moment, the second-order column 
moment, and the second-order mixed moments. These moments are combined to derive 
the geometrical attributes of the best fit ellipse to each image region. These attributes are 
the length of the major (a) and the minor (b) axes.  Particle shape is the second most 
significant sediment property in natural sediments and can be defined by an anisotropy 
ratio, or by the shape factor. The average anisotropy of the extracted particles may be 
calculated as follows: 
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For three dimensional measurements, all three axes can be determined and a shape factor, ψ, 
calculated as 
 

ba
c =ψ                                           (25) 

where a, b, and c are the lengths of the major (longest) axis, the minor (intermediate) axis, and 
the semi-minor (shortest) axis, respectively. These axes are the mutually perpendicular axes of 
the particle. The shape factor for a sphere would be 1.0, whereas the shape factor of particles 
from natural sediment would be less than 1.0.  
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3.4.5  Particle Size Distribution and Statistics   
 
The equivalent diameters, de, or diameters for short, of the entire collection of particles that exist 
within an image view are used to derive the cumulative distribution curve, which is obtained 
from a histogram. The information content (frequency counting) of each bin in the histogram is 
weighted by the corresponding areas of the diameters that contribute to each bin. This weighting 
is used to account for the actual 2-D coverage of the image regions or particles. Naïve frequency 
counting will lead to incorrect characterization of the particle size distribution curve. 
Mathematically, the frequency weighting of de is implemented as follows: 
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where f̂ is the estimated frequency of de and Ai is the corresponding area for each de. Following 
Folk (1980), the cumulative distribution curve is used to estimate the following statistical 
measures: 
 

a. Median, this is the de corresponding to the 50th percentile on the cumulative curve,  
 
                                              50%dMedian e=                                                        (27) 
 

b. Graphic mean (Mz) and is given by: 
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c. Inclusive graphic standard deviation, , is given by: Iσ
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d. Inclusive Graphic skewness (SKI) averages the skewness obtained from d16% and 
 d84% with the skewness obtained from d5% and d95% and is given by: 
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    SKI determines the skewness of the central portion of the cumulative curve as 

well as the skewness of the “tails”, and the tails are just where the most critical    
differences between samples lie.  

 
e. Graphic kurtosis, and is given by: 
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        For normal curve, KG=1.00; leptokurtic curves have KG over 1.00; and 
      platykurtic curves have KG less than 1.00. 
 

3.5 Particle Packing Characteristics  
 
Both porosity and permeability are critical parameters for estimating water retention and 
hydraulic conductivity of heterogeneous subsurface formations.  However, in situ measurements 
with direct push technology could be subject to error owing to rearrangement of pore space 
adjacent to the probe. Grain size distributions are less susceptible to the effects of probe insertion 
and can provide a robust estimate of porosity permeability using a packing model. Models have 
been developed to predict the porosity and permeability of binary mixtures but natural soils tend 
to be made up of numerous fractions. The objective of the subtask was to extend an existing 
packing model developed for binary packs of spherical particles to a multicomponent mixture of 
aspherical particles 
 
3.5.1 Porosity of Binary Mixtures  
 
Clark (1979) proposed an ideal packing model based on the assumption of complete mixing of 
two sizes of particles. This model recognizes two end-members, coarse-packed and fine-packed 
sediments. In coarse packing, the coarse grains form a self-supporting structure with a non-
compacted porosity equal to φc. As the concentration of fines increase, φ decreases as the fines 
fill the pore space. This decrease continues until a critical point, c, where fines occupy all the 
pore space of the clean coarse-textured fraction. At this point, the fines concentration is equal to 
φc. Beyond this point, an increase in fines concentration is only possible by replacing coarse 
particles with fines. In this case, the coarse grains are increasingly dispersed in the matrix of fine 
grains. The porosity of the mixture, φb, is solely a function of the volume fraction of fine 
components. At the second end-member, the pack is composed of only fines without coarse 
particles and has a porosity of φf. The porosity of a binary mixture is calculated as:  
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In natural sediments, the mixing of two components is rarely complete and the ideal packing is 
difficult to achieve (McGeary, 1961). The ideal packing model was modified to account for 
fractional packing (Koltermann and Gorelick, 1995). The Koltermann-Gorelick (KG) model 
introduced a coefficient, y, to account for the relative proportions of coarse and fine materials in 
the mixture. The porosity of the mixture is then given as: 
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where φ is porosity; φc and φf are the porosities of the coarse and fine end-members, respectively, 
φmin is the minimum value of φ; and c is the volume fraction of the fine fragment based on total 
volume. The value of y ranges from 0 to 1 with a maximum occurring when there is only one 
component (i.e., c = 0 or c = 1). A minimum in y, ymin, occurs when the pores of the coarse 
component are completely filled with fines, i.e., c = φc. The value of y at volume fractions of 
fines is computed by linear interpolation: 
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 (34) 

 
The KC model has been proven superior to the ideal packing model for predicting the porosities 
of binary mixtures. However, it is recognized that there are some limitations. First, the physical 
interpretation of parameter y is has not been demonstrated. Perhaps more importantly, for ymin 
<(0.5 + 0.5φf), the KG model predicts φmin at a volume fraction of fines that is less than φc. This 
typically occurs when φmin is relatively large, as is the case with coarser gravel fractions. 
Nevertheless, the KG model can be used to estimate the porosity of sediments when limited 
information on the grain-size distribution is available.  
 
3.5.2 Saturated Hydraulic Conductivity of Binary Mixtures 
 
One difficulty in applying the KC-type equations to estimate hydraulic conductivity of binary 
mixtures is the need to determine the representative grain diameter, d. A variety of approaches 
have been tried. Bear (1972) recommended using the harmonic mean. However, the type of 
averaging used to calculate d should depend on the type of packing because d is a function of the 
volume fraction of fine components (Koltermann and Gorelick, 1995). Once d is known, the 
saturated hydraulic conductivity of a binary sediment mixture, Kb, is given by  
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where ρ is fluid density, g is the gravitational constant, and μ is dynamic viscosity. The Kozeny-
Carmen coefficient (Kozeny 1927), Kcc, is defined as the product of tortuosity (τ) and the shape 
factor (Shf); both of which are dimensionless, i.e., (Kcc = τShf). The shape factor is a measure of 
the effect of the shape of the grains, pores, and pore channels in the porous medium. The 
tortuosity and shape factor reflect the geometry of the cross-sectional area of the pore channels 
normal to the flow direction. For unconsolidated sediments, Carman (1937) assigned a value of 
2.0 for τ and a value of 2.5 for Shf , which both results in a value of 5.0 for Kcc. Estimates of the 
shape factor can be derived from photogrammetric measurements. 
 
Koltermann and Gorelick (1995) recommend that the geometric mean be used for mixtures with 
low concentrations of fines whereas the harmonic mean is recommended for mixtures with high 
concentrations. A recognized problem is that d is undefined for mixtures in which neither 
fraction is dominant. The result is a discontinuity in the K(c) function (e.g., Fig. 8, Koltermann 
and Gorelick, 1995; Fig. 1c, Kamann et al., 2007).  
 
Since Kb must be continuous across all d, including those where 0 < c < 1, we introduce a power 
average as an aggregation operator over all c. A p-order power average (Korvin, 1982; Zhang et 
al., 2005) is defined as  
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p
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where dc and df are the mean diameters of the coarse and fine particles, respectively, and p is a 
coefficient that varies from positive to negative as the fine fraction increases. The arithmetic 
(p = 1), geometric (p → 0), and harmonic (p =-1) are all specific cases of the power average and 
cover the entire range of mixtures. 
 
3.5.3 Unsaturated Hydraulic Conductivity of Binary Mixtures 
 
The challenge, therefore, is to use information on packing to derive constitutive properties for 
subsurface flow and transport. The water-retention function of the binary sedimentary mixture 
may also be described by the fractional packing model, i.e.,  
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where θ is the volumetric water content, θc is the volumetric water content of the coarse fraction, 
θf is the volumetric water content of fine fraction, and ψ is the matric potential. It is well 
recognized that Ks increases with increasing mean particle diameter and the gravel concentration. 
However, a number of researchers have reported a threshold concentration above which Ks 
decreases, perhaps owing to less accessible surfaces for water flow (Valentin and Casenave, 
1992; Valentin, 1994). Such a threshold is consistent with the concept of the critical ratio of 
entrance and the porosity minimum. Hence, a similar approach can be used to estimate the 
unsaturated hydraulic conductivity, K(θ), i.e.,  
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In Eq. (38) Kc and Kf are the hydraulic conductivities of the coarse-grained and fine-grained 
components, respectively, whereas b is a fitting parameter. Equations 37 and 38 may then be 
used to estimate the unsaturated hydraulic properties of binary mixtures based on the properties 
measured on the end members. However, these equations are not readily applicable to the 
multicomponent mixtures typical of natural soils.  
 
3.5.4 Porosity of Multicomponent Mixtures 
 
Natural soils typically contain multiple components that show significant differences in particle 
shape, density, and porosities among size fractions. A heterogeneous soil can be treated as an 
assemblage of n fractions of aspherical particles (Yu et al., 1996a,b). Each fraction, i (i =1, 2, ..., 
n) has an equivalent volume diameter, ; sphericity, ϕi; volume fraction, Xi; and mean particle 
density, ρi. The type of packing arrangement is reflected in the specific volume of particles, Vs. 
The specific volume, V, of the multi-component pack may be expressed as (Yu and Standish, 
1993) 

ivd
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The mixing interaction between two components is dependent on their relative size, which may 
be quantified using an equivalent packing diameter (Yu and Standish, 1993). The equivalent 
packing diameter of a size fraction can be determined by measuring its size-dependent packing 
properties and relating them to the diameter of a sphere as a result of the similarity between 
spherical and aspherical particle packs. Component i should therefore have an equivalent 
packing diameter  that is a function of  and ϕi. The porosity, φb, of a multicomponent 
mixture may then be calculated as (Yu and Standish, 1993; Yu et al., 1996a,b), 
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where Xi is the fractional solid volume of the ith component.  
 
The specific volume of the multicomponent mixture, V, defined as the reciprocal of the packing 
density, is calculated as the maximum of : T
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In Eq. (42), Vi is the initial specific volume that can be determined from measurements of the 
initial porosity of each fraction, φi. The variable rij is the ratio of small-to-large equivalent 
packing diameters between components i and j. The two functions f(rij) and g(rij) are interaction 
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functions that depend on rij. Yu et al. (1996a,b) showed that for spherical particles, f(rij) is given 
by  

77.233.3 )1(81.2)1()( ijijijij rrrrf −+−=  (43) 

whereas g(rij) is given by 
67.397.1 )1(36.0)1()( ijijijij rrrrg −+−=  (44) 

The solution of Eqs. (39 to 44) requires prior information on φi and . Both of these variables 
may be determined from measurements on the separated soil fractions.  

ipd

In the absence of empirical data, it has been established that the φi of the spherical particles 
ranges from 0.4 for loose or poured packs to 0.36 for dense random packs (German, 1989). 
However, fine particles are typically aspherical, and φi increases as particle size decreases 
(Wakeman 1975; Yu et al., 1996a,b). Therefore, unlike the packing of coarse particles, φi is a 
function of particle size and shape. By representing the particle size and shape of component i 
with an equivalent volume diameter, , and shape factor, ψi, φi may be calculated as  

ivd

),( ivi i
df ψφ =  (45) 

To account for the aggregation phenomenon in the finer components, an equivalent packing size, 
, that depends on both and ψi, is defined as 
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Yu et al. (1996a,b) have established dependencies between φi and ψi and between and ψi for 
spherical particles. However, these relationships do not hold for fine particles because these 
particles are typically aspherical, and the interaction between particle size, shape, and porosity is 
not well understood. Nonetheless, the initial porosity can be easily measured for different 
components and related to , in which case, Equation (46) reduces to  

ipd

ivd

)(
ivi df=φ  (47) 

For simplicity, it is assumed that the ratio of packing sizes between components i and j, rij, is 
dependent on the corresponding ratio of equivalent volume diameters, Rij, i.e.,  

)( ijij Rfr =  (48) 

For a given fraction, Equations 47 and 48 can be developed empirically. However, other 
measureable parameters like particle diameter can be used in place of the equivalent volume 
diameter. Different types of fine particles (e.g., clays such as montmorillonite, illite, or kaolinite) 
are also likely to have different cohesive and packing behaviors, but these differences are 
ignored at this stage. Input parameters for the model therefore includes, for each size fraction, the 
shape factor, mean particle density, and porosity. Measurements were conducted on soil 
separates to determine these parameters. Initial porosities were determined for the different size 
fractions separated by wet sieving and sedimentation.   
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3.5.5  Porosity Measurements 
 
For tests on binary mixtures, materials from two different size categories (paired from among 
three categories: silt, sand, and marbles/pebbles) were used to create binary mixtures as simple 
models of gravelly sediments. The mixtures were created using glass sandblasting beads ranging 
in size from 2 to 14 mm (Potters Industry, Brownwood, TX) and glass marbles (14 mm, 50 mm) 
to represent the different subclasses of gravel, and commercially available 20/30 Accusand 
(Unimin Corp., LeSueur, MN) to represent the fine fraction. The glass beads were obtained as 
presorted fine, medium, and coarse fractions and were resorted, via sieving, before use. 
Additional binary mixtures were created using silt and fine gravel (4 mm) from the Hanford Site. 
For the experiments, samples were created with each end-member category (i.e., 100% fine, 
100% coarse) and with mixtures of fine and coarse fractions. For each mixture, 10 samples were 
created by increasing the fines content from 0% to 100% in 10% increments. These samples 
were used in a series of experiments to measure physical and hydraulic properties.  
 
Packing of the model mixtures involved used three approaches: 1) poured packing, 2) tapped 
packing, and 3) vibrated packing. For the poured pack measurement, a sediment sample was 
slowly poured into a standard laboratory funnel with a 5 mm opening, allowing the sediment to 
fill a graduated cylindrical (60 mm high, 50 mm diameter). The excess soil was levelled off and 
a rubber stopper that fit the opening in the cylinder was then placed on the surface. The stopper 
was fitted with two small holes (1 mm diameter) to allow any trapped air to escape. Placement of 
the stopper typically resulted in a small decrease in height and a leveling of the surface. The final 
height was used to calculate the poured packing density, ρ0.  After this measurement, the 
cylinder was subjected to manual vertical tapping until there was no change in the soil height. 
The tapping number and the height of the powder in the cylinder were recorded and used to 
calculate the tapped density, ρt. Finally, the cylinder was vibrated on a laboratory orbital vibrator 
and the final soil height recorded for use in calculating the vibrated density, ρv. Since the 
volume-height relation had been accurately calibrated, the measured height and weight of the soil 
in the graduated cylinder could be used to calculate the packing density. The measurements were 
repeated to quantify the end-member porosities of soil fractions separated on 1φ (2mm) intervals. 
 
3.5.6  Hydraulic-Conductivity Measurements 
 
To quantify the effect of grain size on hydraulic conductivity, the saturated hydraulic 
conductivity of end-member fractions and binary mixtures were measured in specially 
constructed permeameters.  The permeameters were designed such that the specimen cylinders 
were approximately 8 or 12 times the maximum particle size of the sediment to be characterized 
(ASTM 2006). To measure Ks, enough sediment was first weighed out to pack the permeameter 
to a height of 15 cm at the desired density. The material was placed into the permeameter using a 
long tube to avoid segregation during emplacement. The tube was moved in a circular pattern 
and was maintained at a height such that the free fall of the sediment was not more than 3 cm. 
The permeameter was then vibrated to obtain the required packing density. The system was 
connected to a water supply, and water was allowed to flow upward through the sample at the 
desired rate until the flow became steady. The volume of water, Q, passing through the cross-
sectional area, A, of the permeameter was recorded as a function of time, t. The hydraulic-head 
gradient (i=Δh/L) was also determined from the piezometers installed at the top and bottom 
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(separated by distance L) of the permeameter. Measurements were repeated using the size 
fractions, binary mixtures, and the end members of the binary mixtures at several flow rates. For 
each sample, the hydraulic-head gradient was plotted against the Darcy velocity (v=Q/A), and the 
Ks was determined from the slope of the line. 
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4.  Results 
 

4.1 Borehole Permeameter  
 

4.1.1 Numerical Experiments 
 
To test the theory, we conducted numerical simulations of water movement from a prototype 
borehole permeameter into a surrounding soil using the STOMP numerical simulator. A 
cylindrical coordinate system was used. The simulation domain size was 100 cm×10°×235 cm 
and was discretized into 44×1×94 nodes. Four soils with different textures, i.e., sand, sandy 
loam, silty loam, and clay loam, were used. The true hydraulic properties of the four soils were 
selected from Carsel and Parrish (1988) and were summarized in Table 1. For each soil, 10 
measurements were were simulated at the tensions ranging from 0.05 m to 0.8 m.  
 

Table 1. Soils and their hydraulic properties used in the numerical experiments (after 
Carsel and Parrish, 1988). 

Soils θs 
(m3 m-3)

Ks 
(m s-1) 

α 
(m-1) 

n 
(-) 

θr 
(m3 m-3)

Sand 0.43 8.25×10-5 14.5 2.68 0.045 
Sandy Loam 0.41 1.228×10-5 7.5 1.89 0.065 
Silty Loam 0.45 1.25×10-6 2.0 1.41 0.067 
Clay Loam 0.41 7.22×10-7 1.9 1.31 0.095 

 
To estimate the hydraulic conductivity, the Brooks and Corey (1964) model and the Gardner 
(1958) models were used. Figure 4 shows the linear relationship between ln(Q) and ln(h) and 
comparison of measured hydraulic conductivity (points) and their true values (solid line) for the 
sand using method 1, which uses the Brooks and Corey (1964) model.  Corresponding results are 
shown in Figure 5 for the sandy loam, the silty loam Figure 6; and the clay loam and in Figure 7.  
These results show that, for the two coarse soils (Figure 4 and Figure 5) the measured values 
match the true curve very well, although the unsaturated hydraulic conductivity varied by 4 to 6 
orders of magnitude. These results indicate that the proposed method 1, based on the Brooks and 
Corey (1964) model should work well for relatively coarse soils.  
 
Results for sols with finer texture show an increase in the estimation error. The increase in the 
error is due to the large difference between the van Genuchten (1980) model and the Brooks and 
Corey (1964) model. For the two finer soils, the results were analyzed using method 2 and 
method 3, which uses the piece-wise linear hydraulic function based on the Brooks and Corey 
(1964) model and Gardner (1958) model. These results are shown in Figure 6 through 8.  Both 
methods resulted in a significant reduction in the measurement error, whereas method 3 slightly 
underestimated K for the two soils. A significant difference between methods 2 and 3 is that the 
former uses the ln(Q) vs. ln(h) relationship while the latter uses the ln(Q) vs. h relationship. 
Hence, for measurements taken at water contents near saturation (h → 0), method 2 may not be 
the most appropriate but method 3 can be used.  
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Figure 4. (a) Linear relationship between ln(Q) and ln(h) and (b) comparison of measured 
hydraulic conductivity (points) and their true values (solid line) for the sand using method 1. 
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Figure 5. (a) Linear relationship between ln(Q) and ln(h) and (b) comparison of measured 
hydraulic conductivity (points) and their true values (solid line) for the sandy loam using method 
1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 36 



 

3 2 1 0
21

20

19

18

17

ln(h)

ln
(Q

)

 
1 0.8 0.6 0.4 0.2

1 .10 9

1 .10 8

1 .10 7

1 .10 6

1 .10 5

Pressure Head (m)

C
on

du
ct

iv
ity

 (m
/s

)

 
Figure 6. (a) Linear relationship between ln(Q) and ln(h) and (b) comparison of measured 
hydraulic conductivity (points) and their true values (solid line) for the silty loam using method 
1. 
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Figure 7. (a) Linear relationship between ln(Q) and ln(h) and (b) comparison of measured 
hydraulic conductivity (points) and their true values (solid line) for the clay loam using method 
1. 
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Figure 8. (a) Piece-wise linear relationship between ln(Q) and ln(h) and (b) comparison of 
measured hydraulic conductivity (points) and their true values (solid line) for the silty loam using 
method 2. 
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Figure 9. (a) Piece-wise linear relationship between ln(Q) and ln(h) and (b) comparison of 
measured hydraulic conductivity (points) and their true values (solid line) for the clay loam using 
method 2. 
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Figure 10. (a) Piece-wise linear relationship between ln(Q) and ln(h) and (b) comparison of 
measured hydraulic conductivity (points) and their true values (solid line) for the silty loam using 
method 3. 
 
Although method 1 may give larger error in the finer soils, it may still be a more desirable 
approach as it is relatively easy to extrapolate the log linear slope to larger tensions whereas the 
slopes from methods 2 and 3 cannot be easily extrapolated due to piece-wise linear nature. Of-
course, this problem can be overcome through use of a polynomial function to describe the 
piece-wise linear relationship. Nonetheless, the results if the numerical simulations show that a 
borehole tension permeameter would allow reasonable estimates of the hydraulic conductivity 
based on in situ measurements. 
 
4.1.2 Laboratory and Field Experiments 
 
A number of prototype borehole tension permeameter were constructed for testing in the 
laboratory and field. Early designs used a flexible porous material and porous plastic, with later 
designs based on porous stainless steel. To measure of the unsaturated hydraulic conductivity, 
K(h), the permeameter was connected to a Marriott system to control the tension, and the flow 
rate, Q(t) measured over time.  The measurements were taken from large tension (relatively dry) 
conditions to small tension (relative wet) conditions. Measurements were taken both in the 
laboratory using grab soil samples and in situ for the field tests.  Results were compared with 
those using other methods such as the Guelph Permeameter, instantaneous profile and constant 
flux methods and the inverse method (Zhang et al., 2003). 
 
The unsaturated hydraulic conductivity of Hanford’s BWTF sand was measured using the 
prototype Borehole Tension Permeameter both in the laboratory using grab samples and in the 
field. Soils used in the test were mostly sand so only method 1 was used to analyze the data. The 
results are shown by the points in Figure 11. For the purpose of comparison, the K(h) curves 
measured using other methods, i.e., the Guelph Permeameter, instantaneous profile and constant 
flux methods and the inverse method given in Zhang et al. (2003), are also shown. As expected, 
the in situ measured K(h) values were smaller than those measured in the laboratory by more  
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Figure 11. Comparison of the unsaturated hydraulic conductivity of 
Hanford’s BWTF sand measured using the borehole tension permeameter 
and other standard methods. 
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than one order of magnitude. The K(h) curve based on the prototype permeameter results is 
nearly parallel to the curve derived from the constant flux method. For field measurements, at a 
tension of 0.3 m, results from the prototype permeameter were nearly identical to those from the 
instantaneous profile method and the inverse method, while those at smaller tensions (about 0.18 
and 0.08 m) were smaller than the values from the latter two methods. One possible explanation 
for the smaller K values under relative wet conditions is that water from the permeameter is not 
entering the larger pores at the tensions used whereas the field instantaneous profile and inverse 
methods were based on an internal drainage and redistribution from saturated conditions and 
were dominated by larger pores at early times.  
 
Under these conditions it would have been difficult to retain a positive heads in the cavity to 
measure hydraulic conductivity using traditional borehole methods. These results clearly show 
that the borehole tension permeameter is capable of providing reasonable estimates of the 
unsaturated hydraulic conductivity. Measurements near saturated conditions could be constrained 
by estimates from the Kozeny-Carmen equation taking into account the shape factor and grain 
size moments derived from photogrammetric measurements with the dual camera microscope 
system.  The final design of the dual camera microscope is summarized below. 
 
 
 
 
 
 
4.2 Dual-camera Microscope Imaging System  
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The original GeoVis probe was designed for use with the Elmo MN400 camera therefore the 
hardware was first modified to accommodate the final camera. First as a new optics fixture had 
to be designed to accommodate the new optics and to fix a glare problem noted with the original 
design. Evaluation of the lenses has resulted in the Edmund Optics Infinistix NT54-677 being 
rated as having the best image quality. The Infinistix lens is available in a range of 
magnifications and working distances. For the narrow FOV camera (FOV will be 1.5 mm to 2 
mm) the Infinistix NT55-355 with optional doubler was acquired. One Infinistix lens (NT54-
677) had a magnificaton of 1:1, and the second lens had a magnification of 2:1 and with an 
Infinity DL doubler that increases the magnification to 4:1. The new module included the 
following optical components: 1) an Infinistix 1.0X video lens with a 68-mm working distance 
(PN NT55-357); 2) an Infinistix 2.0X video lens with a 44-mm working distance (PN NT55-
355); 3) an infinity DL doubler tube for the vide lenses,  (PN NT39-686); 4) a 10-mm rhomboid 
prism (PN NT47-213); 5) a 10-mm right angle mirror (PN NT45-592); and 6) a 10-mm cube 
beamsplitter (PN NT32-601). All of the components were sourced from Edmund Optics. After 
evaluating a number of video cameras, the Sony XC-555 video camera was selected and two 
were installed so that there are matching cameras used for both the wide and narrow field of 
view systems. The Sony camera proved to be more flexible in that the automatic gain can be 
disabled, which allows for more consistent quantification of soil color and brightness.   

 
A number of methods were investigated for simultaneously capturing data from the two video 
cameras.  One method was to use a video combiner, which combined the two video streams into one 
video stream. While this would naturally provide timing synchronization between the two videos, a 
major disadvantage would be a significant reduction in image resolution. The two videos would have 
to share the standard video resolution of 720 pixels by 480 pixels, so the effective image resolution 
would be less than half of what the cameras can produce.  Owing to the high data rate for video 
recording, a single computer proved to be insufficient to handle both video streams simultaneously. 
Ultimately, a second computer was installed into the monitoring system to record the video stream 
from the second video camera. That is, the narrow and wide field of view cameras needed their own 
video capture/recording system. A closed caption encoder was also incorporated to allow text data 
(such as push depth and time) to be embedded into the video stream on the vertical blanking line 
used for closed captions. This method of adding text data to the video stream has the advantage of 
giving the end user the option of displaying the data or not. Although it is best that video images 
captured for photogrammetric analysis are collected without the text being part of the captured 
image, it is very useful to have key information (such as the time and depth of the push) tied to the 
video stream. The closed caption system provides both in that the user can choose to display (or not) 
the text data. Closed caption display is available on any television manufactured in the past decade.  

Figure 12 shows schematics of the modified probe.  This design provides a 12 degree included  
angle between the two cameras. The narrow field of view lens is the Infinistix video lens with a 44-
mm working distance and a magnification of 2X used with a 2X doubler tube, for a total 
magnification of 4X and a field of view of 1.6 mm. The wide field of view lens is the Infinistix video 
lens with a 68-mm working distance and a magnification of 1X and a field of view of 6.4 mm. 
Images takes with the 6.4-mm field of view represent the upper range of grain sizes that can be 
captured. Images from with the 1.7-mm field of view represent the current lower limit of resolution 
and correspond to the upper boundary for the silt-sized fraction. The capture hardware used for the  
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Figure 12. Schematic of original and modified GeoVis system, (a) original single 
camera soil imaging video microscope system, (b) internal view of dual-microscope 
system, (c) optical components including two cameras, lenses, beam splitter, prism 
and sapphire window, and (d) external view of new probe. 

(a) (b) (c) (d)(a) (b) (c) (d)

 

video microscope images is a Plextor ConvertX PX-M402U, an external USB 2.0 video capture 
device. The required dual optical path was accomplished using a 10×10×10 mm cubic beam splitter 
and a right angle prism. The lighting is provided by an array of 6 white light emitting diodes (LEDs). 
The components of the camera system are summarized in Table 2. 

 

Table 2. Component specifications of the dual camera system 

Component Specification 

Camera  Sony XC-555 All-in-one Industrial Micro Camera 

Image Device ½” type CCD 

Effective Picture Elements 768 (H) x 494 (V) 

Video Output S-video or Composite Video 

Light Source 6 LED’s, 5mm diameter White,  clear lens, Intensity: 8000 mcd 
@20mA 

Current Push Depth up to 30 meters 
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A cutaway view of the stereo vision camera system with one camera is shown in Figure 13. This 
design includes a 12 degree angle between the two cameras. The modified probe also required a new 
umbilical be designed to handle the video signal. The video signal must travel through greater than 
150 feet of umbilical to reach the video capture devices in the SCAPS truck. Previously, only a 
single camera was used and the output was composite video. A single coaxial cable of 0.10 inch 
diameter was used. The digital recording standard used for that system was MPEG1 with a 
resolution of 352 by 240 pixels.  

 

 

 
 

Figure 13. A cutaway view of the dual-camera stereo vision system with one camera/lens 
visible. 

 
For the dual-video microscope system, the digital recording standard was MPEG2 with a resolution 
of 720 by 480 pixels, producing 4 times the resolution of the MPEG1.  Owing to the higher 
resolution, a decision also had to be made about the recording system.  The Sony XC-555 cameras 
can output either s-video or composite video. The s-video output sends out the color and brightness 
information on separate channels which produces a higher quality image than is possible with 
composite video, but at the cost of requiring two video signal cables per camera. The main constraint 
is the inner diameter of the push rods used in the SCAPS system. The video cable(s), power cable, 
and strain gauge cable for the tip and sleeve, with protective jacket, must all fit inside a 0.63” inner 
diameter.  

Various types of cabling were evaluated for their suitability for this task. One option for transmission 
of the video signal was a CAT-5 Ethernet cable.  Several companies make small video to CAT-5 
adapters, which claim to be able to send video 100’s of feet through CAT-5 cable. A single CAT-5 
cable with 4 twisted pairs would be able to carry the S-video signal from both cameras but the effect 
on image quality was unknown. The CAT-5 cabling solution was to use commercial video to CAT-5 
adapters so as to use CAT-5 cable for the long (>200 feet) cable runs. A single CAT-5 cable could 
carry the s-video signal from both cameras. Another possible solution is to use small diameter 
(~0.10” o.d.) 75 Ω co-axial cable. Two coaxial cables for each s-video signal were required, 
resulting in a total of four coaxial cables for the two cameras. Both cables were built to evaluate 
effects on long cables on image quality.   

The effect on the image quality was evaluated by capturing images of the same object using the 
different cables for linking to the capture device. Figure 14 shows the results of these measurements. 
One object imaged was the cover for a software manual. This was chosen because of the color  
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(a) 

 

(b) 

 

(c) 

 
 

(d) 

 

(e) 

 
 

(f) 

 
 

Figure 14. Digital images of objects used to test the effects of cable type and length on image 
quality, (a) manual cover at FOV of 6.4 mm with direct video connection using a 6-foot s-
video cable, (b) manual cover at FOV of 6.4 mm with 200-foot CAT-5 video connection, (c) 
manual cover at FOV of 6.4 mm with 200-foot coax video connection (RG-179B), and (d) 
printed material at FOV of 6.4 mm with direct video connection (6-foot s-video cable), (e) 
Material at FOV of 6.4mm with 200-foot CAT-5 Video Connection and (f) printed material at 
FOV of 6.4 mm with 200-foot coax video connection (RG-179B). 
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content. The other object used for the image was black text printed on a sheet of paper. This was 
considered useful for the evaluation of the sharpness of the images. There are three images shown of 
each of the two objects. For reference, the first image was captured using a direct link to the capture 
card. The direct link used a 6-foot length of high quality s-video cable. Then an image was captured 
using a 200-foot CAT-5 cable with video adaptors (MuxLab™ Model 500016) at each end. The 
third image of each object was captured using the two coaxial cables (RG-179B). All images were 
captured using the wide field of camera (6.4-mm FOV). For reference this consists of a Sony™ XC-
555 color video camera and an Infinistix lens of 68 mm focal length and 1X magnification. The 
Pinnacle Studios PCI 700 video capture card was used for the image capture. Visual inspection of 
the images shows no obvious degradation or flaws in the images due to the long cables. Given these 
results, the choice between the two cable systems depended on which was most robust, the easiest to 
assemble, and the one that minimized interference between the two camera systems. 

 
Photographs of the new optics module are shown in Figure 15 and Figure 16. These images show 
views of the back side with the camera and front side with the sapphire window. Several test 
images of different materials were taken with the dual-camera microscope. These images were 
taken with the 6.4 mm field of view (FOV) and represent the upper range of grain sizes that can 
be captured and the 1.7-mm FOV, which represents the current lower limit of resolution with 
corresponds to the upper boundary for the silt-sized fraction. Figure 17 shows example images 
captured with the new dual camera system with the sapphire window in place. The camera was 
used to photograph black 120 grit sand paper with narrow and wide fields of view to evaluate 
adequacy of lighting and the effects on resolution. This very dark material presents the worst 
case for the lighting.   
 
(a) 

 

(b) 

 
Figure 15. New dual camera module showing (a) view of back side, and (b) view of sapphire 
window side with LEDs turned on. 
 

Laboratory tests of the prototype dual camera imaging system revealed a glare problem with the 
wide field-of-view (FOV) camera (FOV of 6 mm to 10 mm). The light from the LEDs was 
reflected from the inside surface of the sapphire window into the FOV of the camera. This was 
particularly problematic at FOV's greater than 6 mm. As a result of this the hardware was 
modified to increase the angle of incidence of the LED light and the window from the current 30 
degrees to 45 degrees. This modification proved effective in reducing the back reflection (glare) 
problem. The images show that the current system has adequate lighting for the darkest soils.  
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(a)

 

(a)
 

 

(b)(b)
 

Figure 16. New dual camera module showing (a) window-side of the probe, and (b) camera side 
of probe.  

 

More importantly, there is no glare or back reflection of the LED’s from the window so the new 
design solves one of the major issues with the first generation of the GeoVis module.  
 
Figure 17a and Figure 17b show images of Emory cloth captured with the dual camera system. 
For these images, the sapphire window was removed for the image capture because of the glare 
problem discussed previously. One camera was set up for a 6.4-mm wide FOV, whereas the 
other was set up for a 1.6-mm wide FOV. Both cameras were set to output s-video. The narrow 
FOV lens is an Infinistix of 44 mm focal length and 2X magnification, used with a 2X doubler 
tube, for a total magnification of 4X. The other lens is an Infinistix of 68 mm focal length and 
1X magnification. The capture hardware used for the video microscope images is a Plextor 
ConvertX PX-M402U, an external USB 2.0 video capture device. Figure 17b and Figure 17c 
show images of a millimeter scale photographed at the two different fields of view as a measure 
of the width of the field of view (FOV) of the two camera systems. 
 

Figure 18 shows images collected under conditions identical to those in Figure 17. Images are 
60, 120, 180, 240 grit Emory cloth. Figure 19a shows the image of millimeter scale for the 6.4-  
mm and 1.7-mm fields of view. Figure 19b shows the corresponding millimeter scale for 1.7 mm 
field of view. Figure 20 shows digital images with the dual-camera system to test lighting and 
resolution at a 1.7-mm field of view. In this case images were captured of 60 grit Emory cloth, 
120 grit, 180 grit, 240 grit Emory cloth.   
 
Figure 21 show images of sandy soil from just outside the SPAWAR laboratory. For these 
images, the positions of the camera and lens were adjusted to provide greater magnification 
(smaller FOV).  Otherwise the objects used for the images are the same. The black Emory cloth 
provided a worst case test for checking for adequate lighting levels. It is unlikely that the soils to 
be imaged will be as dark as the black Emory cloth. The 6.4-mm FOV shows good resolution 
allowing for accurate particle segmentation. Owing to the large particle sizes, the 1.7-mm FOV 
produces a somewhat blurred image of the larger particles but would be expected to provide 
sharper images of sediments in the very fine sand and silt fractions.  
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(a) 

 

(b) 

 
(c) 

 
 

(d) 

 

Figure 17. Digital images of used to test lighting and resolution, (a) 120 grit black sand paper 
photographed with the narrow field of view camera, (b) 120 grit black sand paper imaged with the 
wide field of view camera, (c) millimeter scale imaged with the with narrow field of view camera.
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(a) 

 

(b) 

 

(c) 

 
 

(d) 

 

Figure 18. Digital images with the dual-camera system to test lighting and resolution at the a 6.4  
mm field of view, (a) 60 grit Emory cloth, (b) 120 grit Emory cloth, (c) 180 grit Emory, and (d) 
240 grit Emory cloth.  
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(a) (b) 

 
Figure 19. Digital image of millimeter scales for (a) 6.4  mm field of view and (b) 1.7 mm 
field of view. 

 

The modified GeoVis probe appears capable of resolving textural changes, even under poor 
background lighting conditions.  Direct push optical methods could easily provide real-time high-
resolution images useful for differentiating soil characteristics based on texture information.  The 
next step was to test the system with actual soils. 

Figure 22 show images of soil-color samples from the University of Arizona Soil Club.  These soils 
have ID numbers #3, #4 and #17 (U of A’s numbering system). Figure 23 show images of soil-color 
samples from the University of Arizona Soil Club.  These soils have ID numbers #7, #15 and #1 (U 
of A’s numbering system). Each soil was photographed twice, once with the narrow FOV camera 
(1.6mm wide FOV), and once with the wide FOV camera (6.4mm wide FOV).  Note that the images 
photographed with the narrow FOV had a reticle placed on top of the soil for reference. Samples 
were prepared by placing a quarter teaspoon of a given soil sample into a small plastic dish. A 
square piece of standard microscope slide glass was placed on top of the soil sample and tamped 
down. This was placed under the lighting fixture that was machined to go into the soil probe. The 
Sony XC-555 video camera, along with a Pinnacle Systems Movie Box video converter with USB 
interface, was used to capture the images. Two different InfiniStix lenses were used with this 
camera. The first lens (44 mm focal length, 2X magnification) was used together with a 2X doubler 
tube, for a total magnification of 4X. The other lens (68 mm focal length, 1X magnification) was 
used without the doubler tube. There are 2 images each of the three soils, one taken with the narrow 
FOV camera (1.6-mm wide FOV), and the other with the wide FOV camera (6.4-mm wide FOV).  
Colors inferred from the images were consistent with those defined by the Munsell color chart 
designations for the soil standards suggesting good color resolution with the dual camera system. 

Following the successful completion of the laboratory testing, the camera module was installed 
into the SSC-CD SCAPS truck and integrated it into the existing hardware. Some hardware 
upgrades were required; specifically the data acquisition computer had to be upgraded to have a 
USB 2.0 for the MPEG 2 video capture device.  The existing SCAPS system could only capture 
MPEG 1 video. Thus, a new USB MPEG 2 video capture device was integrated with the video 
system and tested with the closed caption encoder system. 
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(a) 

 
 

(b) 

 

(c) 

 
 

(d) 

 

Figure 20. Digital images with the dual-camera system to test lighting and resolution at a 1.7-mm 
field of view, (a) 60 grit Emory cloth, (b) 120 grit Emory cloth, (c) 180 grit Emory cloth, (d) 240 
grit Emory cloth. 
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(a) 

 

(b) 

 

Figure 21. Digital images with the dual-camera system to test lighting, (a) sand soil at a 6.4-mm 
field of view, and (b) sand soil at a 1.7-mm field of view. 
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 (a) 

 
 

(b) 

 

(c) 

 
 

(d) 

 

(e) 

 
 

(f) 

 

Figure 22. Digital images samples from the University of Arizona Soil Club used to test color 
resolution, (a) soil #3 at 1.6-mm field of view, (b) soil #3 at 6.4-mm field of view, (c) soil #4 at 
1.6-mm field of view, (d) soil #4 at 6.4-mm field of view, (e) soil #17 at 1.6-mm field of view, 
(f) soil #17 at 6.4-mm field of view.  
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(b) 

 

(c) 

 
 

(d) 

 

(e) 

 
 

(f) 

 

Figure 23. Digital images samples from the University of Arizona Soil Club used to test color 
resolution, (a) soil #7 at 1.6-mm field of view, (b) soil #7 at 6.4-mm field of view, (c) soil #15 at 
1.6-mm field of view, (d) soil #15 at 6.4-mm field of view, (e) soil #1 at 1.6-mm field of view, 
(f) soil #1 at 6.4-mm field of view.  
 

 53 



 

In anticipation of the system upgrade, discussions have been initiated with the software 
developer that produced the SCAPS data acquisition software about integrating the new 
photogrammetric processing software into the current WinOCPT software system. The vendor 
was unwilling to provide the source code and options for integrating the software were then 
explored.  The available options included provision of the PNNL-developed software provided 
as a Dynamic-Link Library (DLL) that could be called from the SCAPS code, providing the 
PNNL source code to vendor compile as part of the SCAPS code, or to run the PNNL-developed 
code independently of the SCAPS code, either in the background, waiting for the image files to 
appear in a specific directory, or post processing the images. After exploring these options, it was 
determined that the preferred method of interfacing with the SCAPS WinOCPT software would 
through a standalone application that could be configured to search for new image files in 
specified directories to automatically process the new files as they are created. The output of the 
program is a text file with the porosity data as well as an image file of the processed image. A 
supplemental program was written to work with the SCAPS software, WinOCPT, to display to 
the user the output of the PNNL program. The data are then displayed in a window along with 
the processed image. The PNNL code runs independently of the WinOCPT application and so 
the same application can be used for post processing the image files if necessary.  
 

The process of installing the new probe in the SSC-SCAPS System became somewhat more 
involved than expected as many components had to be upgraded to be compatible with the new 
image system, in particular the capture computer, and to be compatible with the PWC SCAPS 
System (the end users). To facilitate the transition from the laboratory test setup to the field 
installation, a contractor was used to facilitate the installation of the new system and to operate 
the SCAPS System. Nonetheless, these tasks were completed in a timely fashion and field testing 
initiated.   
 
Figure 24 through Figure 32 show the end results of this task.  Figure 24 shows the completed 
dual-camera probe as mounted in the cone penetrometer shaft. The small hole to the right of the 
sapphire window is a set screw that holds the internal assembly in place. Figure 25 shows part of 
the cables that connect to the umbilical to provide power and s-video transmission capabilities at 
the rod end of the camera probe. Figure 26 is a picture of the dual-camera probe inner assembly 
showing the probe end of the power and s-video cable and part of the 200-ft umbilical. Figure 27 
shows the completed dual video probe being installed in the push rod housing. Figure 28 is a 
photograph of the probe stored in the rack on board the SCAPS truck in preparation for 
deployment. The push rods used with the probe are lined up to the left of the camera module. 
Figure 29 shows the probe in the hydraulic push fixture. The image capture computer is in the 
background. Figure 30 shows the probe positioned just above the ground, ready for ground 
penetration. In Figure 31, the outputs from both cameras are displayed; the upper image is from 
the 1.6-mm FOV camera, whereas the lower image is from the 6.4-mm FOV.  These images 
represent simultaneous views of the same soil. Figure 32 is a screenshot of the complete system 
in operation.  The SCAPS application (WinOCPT) is running as well as the PNNL-developed 
image processing code.  The window at the lower left displays the output of PNNL’s program, 
porosity data and the segmented image. The upper left window is the user interface for the 
WinOCPT program. This is typical of what the end user will see during operation. The system is 
complete, testing has been successful, and the improved system can be transitioned to the field 
use. 
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Figure 24. Completed dual-camera probe. The small hole to the right of the window is the set 
screw that holds the internal assembly in place. 

 
 

 

 
 
Figure 25. The cables for power and s-video at the rod end of the camera probe. 
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Figure 26. Dual Camera Probe inner assembly with the probe end of the power and s-video cable 
and part of the 200-ft umbilical.  

 
 

 

 
 
Figure 27. Completed video microscope probe inside of housing.  
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Figure 28. Probe on rack in SCAPS truck prior to field testing. 
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Figure 29. Probe in hydraulic push fixure. 
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Figure 30. Probe in position ready for ground penetration. 
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Figure 31. Screenshot of dual video views (1.6-mm and 6.4-mm fields of view) of sample soil. 
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Figure 32. Dual Video with Porosity Window and WinOCPT Window 
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4.3 Photogrammetric Tools for Grain Size Characterization  
 
After exploring several options, image-based measurement emerged as an affordable technology for 
information extraction and physical modeling of sediments. However, the information content of a 
sediment image is compounded and influenced by several factors such as illumination and local 
contrast differences, surface characteristics, and imaging sensor. These factors make the information 
retrieval from images a non-trivial task.  The objective of this task was to develop the algorithms 
necessary to derive granulometric properties of the sediments from down-hole video images of 
lithostratigraphy obtained with the dual-camera microscope system.  First, data quality objectives for 
the image analysis task were established to ensure that imaging system could provide data of 
sufficient quality. It was agreed that the use of segmentation for image-based measurement should 
address the following issues: 

• Ability to adapt to the contrast variation across the image and to the spatial extent of different  
image features (feature size) 

• Minimally affected by illumination differences 

• Combine segmentation, classification, and measurement in a single step 

• Should use an objective and automatic threshold to separate the objects of interest from their 
background 

• Should cover multiple applications 

Armed with these requirements, it became obvious that existing segmentation techniques would not 
be applicable to the complex problem of image-based measurement. The result was a general image-
based approach for particle size distributions, referred to as the “Pixel-Vernier” (PV), combines 
markers-controlled watershed algorithm with a minimum-distance clustering to solve the 
segmentation problem. The combined algorithm is embedded in a coarse-to-fine strategy using a one 
training parameter to adapt the algorithm to different size distributions.  

A series of experiments were conducted to demonstrate the validity and the generality of the 
proposed algorithm. The first set of the experiments were devised to show the computational 
accuracy of the algorithm and its predictive capability of ground truth information. The PV 
approach was used to estimate the mean, median, inclusive graphic standard deviation, inclusive 
graphic skewness, inclusive graphic kurtosis, and anisotropy for each image of the particle 
distribution. As stated previously, the accuracy of the segmentation or the particle regions 
delineation results is judged visually at the training stage. This training was achieved by 
searching for an optimal window size for the smoothing filter. 

 
A Sony XC-555 microscopic digital video camera was used to acquire four images with known 
average distribution sizes (Figure 33). This camera was equipped with a fixed focal length, 6.4 
mm, and it had an effective image size of 768 x 494 pixels. The average particle or grit sizes 
captured by each image are 53 μm, 78 μm, 116 μm, and 278 μm respectively. The spatial 
resolution of the four images was 10 μm/pixel. In other words, every pixel represents 10 μm. 
Figure 34  shows the results of the markers-controlled watershed segmentation on the image 
depicted in Figure 33a. The yellow boundaries highlight the particle regions at the coarse level. 
The local over-segmentation is very clear in each region, as shown by the zoom-in patches  

 62 



 

(a) 

 

(b) 

 

(c) 

 

 

 

 

 

 

 

(d) 

 

Figure 33. Digital images of Emory cloth captured with the dual-camera system at the 6.4 mm 
field of view (a) 53 μm grit size, (b) 78  μm grit size, (c) 116 μm grit size, and (d) 278 μm grit 
size.  
 

 
 
 
 

Figure 34. Markers-controlled watershed segmentation for the image shown in Figure 33a. 
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appeared to the left and the right. This result and the others obtained in different experiments, but 
not reported here, justify the use of the minimum distance clustering algorithm to refine or to 
delineate the optimal region. Figure 35 shows the binary images for the results of the minimum 
distance clustering and the white regions refer to the delineated particles. Figure 36 shows the 
cumulative distributions for the diameters of the particle images displayed in Figure 35.  

 
(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 35.  The final segmentation results for the images shown in Figure 33. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 36.  The particle size distribution for images shown in Figure 33. 
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Table 3 shows the estimated statistics for the particle distribution of the images shown in Figure 
33. The second column in Table 3 and the rest of the columns depict the actual average values 
for the particles associated with each image. The results shown in Table 3 confirm that the 
developed algorithm reproduces the actual mean diameters for the four distributions and with a 
very small deviation in images B and C. The selection of the optimal window size for the 
averaging filter, as shown in Table 3, is very robust in the sense of not being very close to the 
actual value of the diameter. In addition, the closeness between the mean and the median is a 
strong indicator that the average mean diameter is a representative measure for the whole 
distribution captured by the image since this closeness can be interpreted as unbiased mean 
diameter. The last column of Table 3 shows the anisotropy as computed by equation 24, which is 
a very hard measure to get by normal sieving. In addition, the deviation of the anisotropy from 
zero clearly defeats any hypothesis for sphericity or isotropy.     
 

 
Table 3. The estimated statistics for the images shown in Figure 33.  
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Anisotropy

A 53 3 53.03 53.64 16.41 -0.137 1.111 0.376 
B 78 5 73.40 73.70 16.77 -0.055 0.836 0.354 
C 116 7 113.4 115.63 31.87 0.162 0.929 0.360 
D 278 17 277.9 270.19 68.65 0.150 0.993 0.354 
 
 

The algorithm was evaluated to determine its applicability to general particle patterns with a 
manually obtained ground truth. Figure 37a shows an image of a snake skin pattern. The manual 
measurement of the average diameter for the texture elements is 9.5 ± 1 pixels. Figure 37b shows 
the final segmentation results whereas and Table 2 presents the relevant parameters estimated by 
PV.  From the results in Table 4 it is evident that the proposed PV algorithm provides a very 
close estimate for the average diameter (10.731 pixels) in light of its ground truth value (9.5 
pixels). Although the algorithm resulted in incorrect segmentation in terms of lumping together 
some texture elements as a single object (see Figure 37b), the final result of the average diameter 
is impacted very slightly and this is because there are enough correct segmentation results that 
make the impact of incorrect ones almost negligible. As in the case of the Emory cloth analysis 
the particles, which appear circular, show evidence of anisotropy but to a lesser extent than in the 
Emory cloth images.     
 
Given that the main application of interest is the segmentation of soil and sediment images, 
another set of tests were conducted using an image of gravel (Figure 38a). The objective of this 
experiment was to investigate the applicability of the algorithm on a natural sediment, the results 
if which would be of great practical value to a variety of engineering and scientific fields.  The 
quality of particles delineation is used as a metric or ground truth to judge the performance of the 
PV algorithm as the true particle size moments are unknown. Figure 38b shows the final results  
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Figure 37.  Digital image of a snake skin pattern, (a) original image, and (b) image segmented using the 
PV algorithm.  
 
 

 
Table 4. The estimated statistics for the snake skin image  
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Anisotropy

Snake 9.5 ±1 5 10.731 8.101 0.490 -1.912 1.4381 0.251 
 

of the segmentation obtained from the PV algorithm.   The segmentation results shown in  
Figure 38 confirms that the proposed algorithm can separate the information content of the image 
(here: pixel intensities) into meaningful objects (here rocks). Table 5 summarizes the grain size 
moments derived from the image using the PV algorithm. The closeness between the mean and 
the median is a strong indicator that the mean diameter is representative measure for the rock 
distribution as captured by the image. The robustness of the widow size of the averaging filter in 
terms of its relationship to the estimated mean diameter or the median is also worth noting. In 
other words, this window size does not have to be exact to get meaningful results. The anisotropy 
of the rocks distribution is also captured by the PV algorithm and is estimated 0.323.  The 
common value of the shape factor (ψ) for natural soil and sediment particles is around 0.70, 
which is equivalent to an anisotropy ratio of 0.3 (i.e., 1- ψ) as defined in equation 24.  

 
A similar analysis was performed on an image captured by the Mars Rovers (from Mars data; see 
Figure 39a. This is a microscopic image taken by the Mars Exploration Rover Spirit. The metric 
resolution of this image is 30 μm/pixel. In particular, this image shows a dominant cluster of 
coarse grains in the distribution. The purpose of this test was to show the generality of the 
algorithm on an atypical data set and to support the diversity argument claimed as an advantage  
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Figure 38.  Digital image of gravel sediment, (a) original image, and (b) image segmented using the PV 
algorithm.  

 
 
 
 
 

Table 5. The estimated statistics for the gravel image  
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Rock Unknown 17 32.983 34.648 7.585 -0.268 0.925 0.323 
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(b) 

 

 

 

Figure 39.  Digital image of sediment from Mars, (a) original image, and (b) image segmented 
using the PV algorithm. Image courtesy of  NASA/JPL/Cornell/USGS. 

 
 
 
 

Table 6. The estimated statistics for the Mars image  
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Gravel Unknown 15 984.93 978.12 161.94 -0.029 0.968 0.339 
 

of this approach. Again the visual check of the results is used as a metric to judge the quality of 
the segmentation.  The segmentation results shown in Figure 39b confirm the robustness of the  
PV algorithm in terms of separating the particles from their background. The semi-identical 
values for the mean and the median are a strong indicator that the mean diameter can serve as a 
representative measure for the particles cluster distribution. As in the previous tests, there is 
evidence of anisotropy in this distribution with an estimated value of 0.339. 

 
This task resulted in the development of a novel and general algorithm, the Pixel-Vernier, for 
particle size segmentation and the estimation of moments. The PV algorithm extracts particle 
size information a coarse-to-fine or global-to-local strategy. The markers-controlled watershed 
and smoothing provide the global extraction which is then refined by the minimum distance 
clustering algorithm. The PV generates results that are very comparable with their ground truth.  

 
 

4.4 Porosity and Hydraulic Conductivity from Grain Size Distribution  
 
Accounting for grain-scale heterogeneity on flow-and-transport properties requires an 
understanding of the properties of each soil fraction and how each fraction contributes to bulk 
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properties. Most packing models are based on the assumption of spherical particles but there is 
substantial evidence that particles in natural soils are aspherical, which can affect both porosity 
and hydraulic conductivity. This may explain the difficulty in predicting porosity and 
permeability from textural information. Although porosity is perhaps one of the simplest 
parameters for characterizing the packing of soil particles, accurate measures are very difficult to 
obtain for unconsolidated, poorly sorted sediments.  This is partly because the process of sample 
collection often disturbs the structure. Predictions from grain size require information particle 
diameter and sorting but these are typically not reported in tests to derive textural class.  In the 
sections below, predictions of porosity and hydraulic conductivity using particle shape and size 
distributions derived from photogrammetric methods are summarized. 

 
4.4.1 Particle Shape  
 
After particle diameter, particle shape is the second most significant sediment property in natural 
sediments. Thus, a critical step in estimating hydraulic properties from particle size distributions 
is the characterization of particle shape.  To understand the relationship between particle size and 
shape, sediments were separated on 1φ intervals on the Udden-Wentworth particle-size scale and 
the lengths of the major, minor, and semi-minor axes determined using calipers (gravel fractions) 
and image analysis methods (sand and silt fraction). Axes lengths were used to calculate the, the 
anisotropy ratio, according to Eq. 24, and these are summarized in Table 7.  In this scheme, 
anisotropy varies between 0 and 1, with a perfectly spherical particle having a value of 0. 
Essentially none of the particles are spherical. The smallest value (0.3432) is observed in the 
coarse sand fraction. For mean diameters less than 0.75 mm, the anisotropy increases with 
decreasing diameter.  The same applies for particles larger than 0.75 mm with anisotropy initially 
increasing to a plateau before decreasing slightly. These data are critical for calculating porosity 
and hydraulic conductivity from particle size distributions as the parameters are very sensitive to 
particle shape  
 

Table 7. Measured particle shape parameters for size fraction from natural sediments 

Fraction du (mm) dl (mm) 
davg 

(mm) Anisotropy 
Very Coarse 
Pebble 64 32 48 0.4842 
Coarse Pebble 32 16 24 0.5178 
Medium Pebble 16 8 12 0.4677 
Fine Pebble 8 4 6 0.4040 
Very Fine Pebble 4 2 3 0.3634 
Very Coarse Sand 2 1 1.5 0.3515 
Coarse Sand 1 0.5 0.75 0.3432 
Medium Sand 0.5 0.25 0.375 0.3582 
Fine Sand 0.25 0.125 0.1875 0.3724 
Very Fine Sand 0.125 0.0625 0.09375 0.4154 
Silt 0.0625 0.00390625 0.033203 0.4363 
Clay 0.00390625 0.001953125 0.00293 0.4792 
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4.4.2 Porosity 
 
Table 8 shows the diameter at the lower boundary (dl) and upper boundary (du) of each size class 
as well as the mean diameter, davg, for each size fraction. The average value of porosities for 
poured, tapped, and vibrated are also summarized for each fraction in Table 8. As can be 
expected porosity decreased from the poured values to tapped to vibrated.  The porosity of the 
size fractions increased with decreasing diameter in the sand fractions and smaller.  The vibrated 
porosity, φvibrated, increased from 0.449 m3 m-3 in the very coarse sand fraction to 0.462 m3 m-3 in 
the very fine sand fraction. The trend continued as particle size became smaller, increasing from 
0.540 m3 m-3 in the coarse silt to 0.724 m3 m-3 in the clay fraction. The increase in porosity with 
decreasing diameter is consistent with observations in the powder technology literature where 
increases in porosity with decreasing size has been reported for particles less and 500 μm 
(Wakeman 1975; Yu et al., 1996a,b).  The measured porosities of the gravel fractions initially 
increased with increasing particle diameter before becoming constant.  The initial increase with 
increasing diameter is inconsistent with literature reports which suggest a constant value of 
around 0.40 m3 m-3 for coarse fractions. The measured values are also somewhat larger than 
those reported. The difference between these values and published results may be due to particle 
shapes. Most of the data reported in the literature are for random packs for spheres. Porosities of 
spherical particle packs have been reported to range from 0.40 m3 m-3 for loose or poured packs 
to 0.36 for dense random packs (German, 1989).  Larger values, such as observed here can be 
expected angular particles because of a greater tendency for bridging.  
 

Table 8. Measured Porosities for Size Fractions of Natural Sediments  

Fraction du (mm) dl (mm) davg (mm) φpoured φtapped φvibrated 

Very Coarse Pebble 64 32 48 0.459 0.410 0.403 

Coarse Pebble 32 16 24 0.474 0.424 0.417 

Medium Pebble 16 8 12 0.471 0.427 0.427 

Fine Pebble 8 4 6 0.429 0.376 0.376 

Very Fine Pebble 4 2 3 0.409 0.360 0.360 

Very Coarse Sand 2 1 1.5 0.485 0.468 0.449 

 Coarse Sand 1 0.5 0.75 0.515 0.481 0.471 

Medium Sand 0.5 0.25 0.375 0.555 0.506 0.477 

Fine Sand 0.25 0.125 0.1875 0.559 0.519 0.481 

Very Fine Sand 0.125 0.0625 0.09375 0.570 0.494 0.462 

Coarse Silt 0.0625 0.03125 0.046875 0.655 0.540 0.540 

Medium Silt 0.03125 0.015625 0.0234375 0.660 0.628 0.607 

Fine Silt 0.015625 0.0078125 0.01171875 0.704 0.643 0.627 

Very Fine Silt 0.0078125 0.00390625 0.005859375 0.727 0.664 0.637 

Clay 0.00390625 0.001953125 0.002929688 0.784 0.724 0.724 
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As shown in Table 7, the gravel fraction anisotropy values were significantly higher than the 
sand fractions and initially increased with increasing particle diameter. Fine particles are also 
aspherical and this is reflected in the increase in anisotropy and porosity with decreasing particle 
size as shown above. 
 
Figure 40 compares the measured and predicted porosities of binary mixtures of glass beads (2, 
5, 14, 50 mm), used to represent gravel, and 20/30 Accusand used to represent the fine fraction.  
Such binary mixtures are good models of poorly sorted sediments.  The porosity of the end 
members (100% Accusand, 100% glass beads) is consistent with published values for random 
packs.  As the concentration of fines (Accusand) in the mixture increased, there was a clear 
decrease in porosity until a minimum value, φmin, was reached.  Values of φmin decreased with 
increasing diameter of the coarse fraction and so did the critical the fines content, c, at which the 
minimum occurred.  
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Figure 40.  Porosity variation as a function of fines content in 
binary mixtures. The fine component is 20/30 Accusand whereas 
the coarse component is glass beads. 

 
The observed φmin decreased from around 0.30 m3 m-3 with the 2 mm beads to 0.20 m3 m-3 with 
the 50-mm beads. Following the occurrence of φmin, porosity started to increase with increasing 
fines concentration.  The observed decrease in porosity to a minimum value followed by an 
increase to the value of the finer end member is consistent with the fractional packing concept.  
Porosities predicted with the packing model described previously are also in good agreement 
with the measured values. The greatest challenge therefore in predicting the porosity of real 
sediment mixtures will be determining the relative amounts of fine and coarse fractions and 
determining the end-member porosities.  Results of this work shows that complete grain size 
distribution curve can be readily obtained by photogrammetric techniques. End-member 
porosities can be derived from photogrammetric methods or from laboratory measurements on 
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soil fractions.  Measurements such as those reported in Table 8 can be used to create databases 
for sediments with similar parent materials and depositional environments.   
 
Using information on particle shape and porosities for end member fractions, the 
multicomponent packing model was used to predict the porosity of field samples collected from 
the immobilized low activity waste (ILAW) site at Hanford.  Figure 41 compares the measured 
porosity with the porosity predicted based on the complete particle size distribution, the particle 
shape parameters and end member porosities for each fraction.  The results are quite 
encouraging. These results suggest that relatively accurate predictions of porosity can be made if 
the component fractions are characterized. 
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Figure 41.  Comparison of porosities predicted from grain size 
distributions with measured porosities.  

 
 

 
4.4.2 Hydraulic Conductivity 
 
Figure 42 compares the measured and predicted hydraulic conductivities of the binary mixtures 
of glass beads (2, 5, 14, 50 mm) and 20/30 Accusand.  The hydraulic conductivities of the end 
members (100% Accusand, 100% glassbeads) were consistent with published values for random 
packs and showed good correlation with mean diameter as predicted by empirical KC-type 
models.  As with the porosity data, hydraulic conductivity decreased sharply from the value at 
100% pure glass beads as the content of fines increased.  This decrease is due to the mixture 
becoming less well sorted, with the fines filling the large pores formed by the coarser particles.  
Hydraulic conductivity reached a minimum, Kmin, when the amount of fines became equal to the 
porosity of the coarse fraction.  The most striking observation is that the relationship between Ks  

 73 



 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fines Content by Weight

0.01

0.1

1

10

100

1000

S
at

ur
at

ed
 H

yd
ra

ul
ic

 C
on

du
ct

iv
ity

 (c
m

 s
-1

)

20/30 Sand + 2 mm Beads
20/30 Sand + 5 mm Beads
20/30 Sand + 14 mm Beads
20/30 Sand + 50 mm Beads

 
 

Figure 42.  Hydraulic conductivity variation as a function of fines 
content in binary mixtures. The fine component is 20/30 
Accusand whereas the coarse component is glass beads  

 
 

and fines content is non-linear.  This is inconsistent with widely used models that assume the 
ratio of K of the mixture to that of the fine fraction is equal to the ratio of the void ratio of the 
mixture to that of the coarse fraction.  Such models predict a linear change in Ks as the 
concentration of fines increase.  
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5.  Summary 
 
The Pacific Northwest National Laboratory (PNNL), in collaboration with The Space and Naval 
Warfare Systems Center (SPAWAR) proposed to develop a rapid, robust and reliable tool for in 
situ measurement of hydraulic properties in heterogeneous, anisotropic, variably saturated porous 
media.  To meet this objective, high-resolution subsurface imaging techniques were integrated 
with photogrammetric methods and subatmospheric hydraulic conductivity measurements to 
permit prediction critical hydraulic properties from cone penetrometer measurements.  

 
A critical component of this project was the modification of the existing SCAPS/GeoVIS system 
to function as dual field-of-view video camera system for sub-surface soil imaging. This required 
modification of the single-camera GeoVis system to allow simultaneous capturing of images at 
different magnification factors to allow a more complete description of the grain size distribution 
curve. At each magnification, image-based grain size analysis is limited to those features that fall 
within predetermined limits.  One camera is used to capture grain size data in the silt-sized 
fraction (2 ≤ d ≤ 63 μm) and the second to capture information in the sand-sized fraction (63 ≤ d 
≤ 2000 μm). These two levels of magnification provide fields of view ranging from 2 to 20 mm 
diagonal. Digital imaging allowed automated recording of complex shapes in a controlled 
environment (scale, lighting, measurement) accurate to the level of a single pixel. Measurement 
in a digital environment also allows creation of ratios and proportional area measurements useful 
for lithofacies identification.  

 
Digital images of the sediment were converted into particle size distributions and their moments 
using the Pixel-Vernier, a suite of photogrammetric algorithms that combine markers-controlled 
watershed algorithm with a minimum-distance clustering to solve the segmentation problem. The 
combined algorithm is embedded in a coarse-to-fine strategy using a one training parameter to 
adapt the algorithm to different size distributions. The segmentation algorithm decomposes the 
image into separate particle regions. These regions are used to derive several geometric attributes 
for each particle, such as the semi-major axis, the semi-minor axis, and the equivalent diameter. 
The geometric attributes of all the particles are used to estimate the particle size distribution and 
their relevant statistics. Particle size distributions were then used with a packing model to 
estimate porosity and saturated hydraulic conductivity which have the added benefit of 
constraining hydraulic conductivities derived from the borehole permeameter measurements. The 
approach proved successful in characterizing a diverse set of materials such as including soil, 
complex digital patterns, and sediment images from the Mars surface.  The similarity between 
calculated and known parameters confirm the robustness of the algorithm in terms of separating 
the particles from their background and for deriving parameters, including particle shape 
parameters, that are currently not obtainable with traditional characterization methods. 

 
Sediments were separated in 1φ fractions and characterized to determine particle shape, porosity 
and hydraulic conductivity. Binary mixtures of coarse and fine fractions were prepared using 
marbles, gravel, sand, and silt with the fine fraction ranging from 0 to 100% in increments of 
10% . Measurements of particle shape, porosity and hydraulic conductivity were made on end 
members and mixtures to allow calibration of the Pixel-Vernier and a multicomponent packing 
model. Results show that particles in all the size classes are aspherical and that porosity end-
member porosity increases with decreasing particle diameter in the sand fraction and smaller. In 
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the gravel fraction, end-member porosity initially increased with increasing diameter before 
becoming constant.  A binary packing model was extended to the incomplete mixing of 
aspherical particles of all size classes and calibrated with laboratory measurements. Measured 
porosity and hydraulic conductivity both decreased to a minimum at a critical fines-content, 
much unlike the predictions based on complete mixing. Model results confirm that the mass-
volume relationships and hydraulic properties are influenced by the fractional concentrations of 
each component. 
 
A subatmospheric borehole permeameter proposed to overcome limitations in subsurface 
hydraulic conductivity measurements was successful in estimating hydraulic conductivities 
under laboratory and field conditions. Use of a subatmospheric pressure permeameter reduced 
the effect of macropores and fissures on matrix flow. For the analysis of data, a new method 
using the Brooks-Corey hydraulic model was developed to solve the steady-state infiltration 
equation. Results from numerical simulations compared with the results of laboratory 
experiments. Field measurements of unsaturated hydraulic conductivity were also in good 
agreement with independent measurements also the saturated conductivity was slightly 
underestimated.  With the successful application of the packing model to the prediction of 
porosity and saturated hydraulic conductivity, the saturated conductivity can be easily 
constrained in the permeameter analysis. 
  
This approach will lead to a better understanding of the measurements available for permeability 
characterization and help to establish the validity of permeability predictions in untested intervals 
based on measurements like grain size distributions that are easier to make. The data obtained 
using the direct push in situ sensors will be invaluable in the design and evaluation of 
environmental remedies. 
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