The U.S. EPA's Great Lakes Legacy Act Ashtabula River Clean-Up

March 2008

1995 PCB Sampling Locations

Summary of Sampling Results

- 545,000 cubic yards of impacted sediments
- Maximum PCB Concentration 660 ppm
- Average PCB Concentration: 7.5 ppm (throughout entire sediment column)
- 25,000 pounds of PCBs present in sediments

Baseline Sampling Program

- Sediment Chemistry
 - PCBs, HCB, HCBD, TOC
- Sediment Toxicity
 - 20-day for C. dilutus Survival and Growth
 - 28-days for H. azteca Survival and Growth
- Water Chemistry
 - PCBs, TOC
- Whole Sediment Bioaccumulation
 - 28-day exposure of Lumbriculus variegatus;
 - Analyzed for: PCBs, % Lipids, % Moisture
- Caged Fish
 - 28-day exposure of young of the year catfish
 - Analyzed for: PCBs, % Lipids, % Moisture

PCB SWAC

Legend Total PCB's sediment ug/kg

- 47 100
- 101 500
- 501 1000
- O 1001 1500
- 1501 3000
- 3001 6000

*IDW Total PCB's SWAC = 763.97 ug/kg

175 - 500
501 - 1,000
1,001 - 1,500
1,501 - 3,000
 3,001 - 5,915

Grid cell size 2.66 x 2.66 m SWAC = Calculated average over interpolated surface area. *IDW = Inverse Distance Weighted

Baseline Sampling: Results and Lessons Learned

- Lessons Learned
 - Always do a baseline assessment
 - Always collect recent data to assess potential sources
 - It's 2008 and there are still violators out there (intentional and/or unintentional)
- Results
 - Pre-Dredging PCB SWAC: 0.5 mg/kg

Project Details

Project Goals

- Overarching Goals
 - Reduce contaminant levels in fish
 - Restore use of river by boats
 - 20% of boats damaged due to shallow depths in 2005
 - Reduce number of tumors in fish
 - Restore valuable habitat
- Specific Remedial Goal
 - 0.25 ppm PCBs Surface Weighted Average Concentration (SWAC) 10 years after the completion of dredging
 - 7.5 ppm PCB SWAC immediately following dredging
 - Dredge navigation channel below the federally authorized depth

Re-Sedimentation and Recovery

Depositional Scenarios 8.0 7.0 Surface Concentrations (ppm) 6.0 1" Deposition, 6" Mix 2" Deposition, 3" Mix & 4" Deposition, 6" Mix 5.0 4.0 3.0 2.0 1.0 0.0 2 3 5 0 6 1 Λ 7 8 9 10 Years

Operations Overview

Dredging

Dredging Cross Section

Summary of Dredging Process

- Required cut depths
 - Average total cut = 11 feet
 - Range of cut depths = 2-18 feet
 - Target depth: 20 feet or Bedrock
 - 545,000 cubic yards targeted for removal
- Two Hydraulic Cutterhead Dredges
 - 12" Dredge for Production
 - 8" Dredge for Clean Up Passes
 - VicVac[™] Suction attachment utilized for last pass above bedrock in Upper Turning Basin
 - Operated Concurrently

Hydraulic Dredge

Dredging Equipment

Biggest Challenge: Debris

Solution: Gatling Plate and Shear Bar

Solution: *Root Knife Installed in Pumps*

Dredging and Debris

- Debris related shutdowns
 - 2006: 19% project downtime throughout the entire system, with the worst day averaging 4 shutdowns per hour
 - installed revised gatling plate, and root knife in dredge pump led to 7% project downtime, and 1 cleanout every 2 hours.
 - 2007: Installed wiper blade along with gatling plate, added root knives to all boosters
 - 3% project downtime.

VicVac[™] Attachment

Residual Contamination and Cover Layer

Dredging Operation Details

- 12" Dredge Operating Independently – GPM = 4,000
 - Average % Solids = 8%-10%
 - Cy/day = 1,200 to 5,000 (dependent on system uptime)
 - Average cut depth per pass = 5 ft face
- 12" Dredge and 8" Dredge in Tandem
 CPM = 3 500 + 1 000 = 4 500
 - GPM = 3,500 + 1,000 = 4,500
 - Average % Solids = 8%
 - Cy/day = 1,200 to 5,000 (dependent on system uptime)

Dredging Operation Details

- 8" Dredge with VicVac[™] Attachment
 - GPM = 1,000
 - Average % Solids = 2% to 4%
 - Coverage = $\frac{1}{2}$ acre/day
 - Average cut depth per pass = 6"-12"

Post-Dredging PCB Concentrations

Post-Dredging PCB Concentrations

Post Dredging SWAC

- Goal: 7.5 ppm PCBs
 Max. Concentration of 40 ppm
- Results: 2.5 ppm PCBs
 Max. Concentration 33 ppm

Post-Dredging PCB Concentrations

SWAC Comparison

Cleanup Dredging Areas vs. MNR Areas

- MNR Areas
 - Goal: Dredge to prescribed depth, natural sedimentation to complete remediation
 - Approximate Area = 18 acres
 - # of Samples = 50
 - Post-Dredge PCB SWAC = 3.7 ppm
- Cleanup Dredging Areas with 8" Dredge
 - Goal: Remove all sediment to bedrock
 - Approximate Area = 10 acres
 - # of Samples = 21
 - Post-Dredge PCB SWAC = 0.1 ppm

Dredging: Lessons Learned

- Innovations are improving results of environmental dredging
- "Necessity is the mother of invention"
- Use of wiper blades, gatling plate, and root knives reduced impact of debris
- Need top notch team/Listen to the dredging experts
- Prescribe objectives, not methods
- Continuous improvement
- Proper sampling leads to accurate volume estimates
- Set realistic cleanup goals

Transport, Dewatering, Disposal, Water Treatment

Double-Walled Pipeline

CF with geotube bags laid out in preparation for sediment dewatering

Summary of Dewatering & Water Treatment

- Equipment
 - Primary Treatment
 - Geotubes (primary removal)
 - Anionic and cationic polymers
 - Secondary Treatment
 - Lamella Settlers/Polishing Bag Field
 - Poly Aluminum Chloride (PAC)
 - Polishing Treatment
 - Sand Filters
 - Carbon Filters
- Capacity
 - Designed for 5,000 gpm

Summary of Water Treatment

- Discharge Limits
 - PCBs = 0.0001 ug/L (monthly average)
 - -Hg = ND (at 0.16 ng/L)
 - Difficulty meeting this limit
 - Discharge concentration significantly less than river water concentrations
 - TSS = 10 mg/L (monthly average)
 - Daily maximum = 20 mg/L

Sediment Dewatering

Mountains of Bags

Sand and Carbon Filter Units

Polishing Bag Field

Dewatering: Lessons Learned

- Chemistry, Chemistry, Chemistry
- Accurate chemistry = better performance
 - Not enough polymer = Poor solids removal
 - Too much polymer = Plugged bags & Unhappy WTP
 - Heterogeneity of Sediment Slurry (% solids)
 - Oil and Grease
- Minimal Breakages (9 bag failures)

Watch flow rates and pressures

- Adequate man power, lighting, training, and conditioning
- Safety/Managing bags for stability

Water Treatment: Lessons Learned

- Getting the Chemistry Right
 - Substantial problems if chemistry and dose of polymer not accurately matched to sediment chemistry
 - Sediments are not a homogeneous matrix
- Impacts from Oxidation of Iron
 - Before and/or after treatment plant
- Need enough flexibility to incorporate changes to WTP as required
 - Equipment
 - Size
- Oil Grease Impacts

Progress, Issues, and Modifications

2006 Progress

- Dredging Commenced on September 9, 2006
 - Average production <800 cy per day
 - 62,000 cubic yards dredged
 - Winter shutdown on November 27, 2006
- Barrier to Construction
 - Polymer chemistry/dosing
 - Water treatment plant performance
 - Exceedances of TSS limit
 - Debris

Winter 2006/2007 Modifications

- Root knives installed on dredge and at each booster pump
- Installed Wipers on Gatling Plate
- Secondary treatment component added to WTP
 - Lamella settlers
 - Polish bag field
- Modifications to dewatering/water treatment chemistry
 - Cationic polymer added prior to dewatering
 - ACH added to control soluble iron before primary treatment process
- 2nd 8" Dredge mobilized for cleanup operations
 - Articulating dredge head
 - VicVac[™] Attachment
 - 12" Dredge and 8" Dredge feed into single 12" transport line

2007 Progress

- Full-scale dredging commenced April 6, 2007
 - Average production ~2,400 cy per day (including cleanup passes) at ~63% project uptime
 - 435,000 cubic yards dredged in 2007
 - Dredging end date: October 14, 2007
- Residual Cover Placement
 - 2+ acres covered in 7 days
- Remedial work complete

Lessons Learned

- Initial production ≠ Ultimate Production
- 2007 performance improvements was possible because of lessons learned during 3 month production-scale "pilot" dredging in 2006
- Adapt and improve
- Dredging and disposal is not cheap (\$125 per cubic yard)
- Dredging and disposal is not easy, but it can be accomplished

Questions?

