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Presentation Outline

• Objective
• Vapor Intrusion (VI) Definition
• Brief Description of A&J 3D VI Model 
• Vapor Fate & Transport Mechanisms
• Effect of Site Conditions on VI
• Remarks
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Objective

• Provide an overview of key contaminant 
vapor fate and transport mechanisms 
for the vapor intrusion pathway

• Illustrate the effect of different site 
conditions on VOC concentration 
distribution in the subsurface and on the 
indoor air
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Vapor Intrusion 
Pathway
What is it?

1. Source (GW & Soil)
2. Volatilization
3. Migration through porous
4. Infiltration through 

building envelope
5. Indoor sources can 

confound

Contaminated Groundwater PlumeContaminated Groundwater Plume

Vadose Zone SoilsVadose Zone Soils

PAINT

Work BenchWork Bench

BasementBasement

Sewer line or other UtilitiesSewer line or other Utilities

Potentially exposed individualPotentially exposed individual

CracksCracks

CracksCracks

HVACHVAC
SystemSystem
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33

44

55

Paint CanPaint Can

Courtesy of Chris Lutes
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Foundation Entry Points

• Floor wall joints
• Loose fitting pipes
• Floor drains
• Cracks in foundation

Abreu, 2005 (adapted  from Loureiro, 1987)
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Type of Contaminants
Recalcitrant

– Very persistent (No degradation or slow degradation 
under natural conditions)

– Chlorinated hydrocarbons (e.g., PCE, TCE)
– Degradation products can be more toxic (e.g., Vinyl 

chloride)

Aerobically Biodegradable (see presentation in the afternoon)  
– Readily degradable under natural conditions in the 

presence of oxygen
– Petroleum hydrocarbons (e.g., Benzene, Toluene)
– Degradation products less toxic (e.g., H2O, CO2)
– Methane byproduct under anaerobic conditions
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• The three-dimensional transient model solves equations for:

• Soil gas flow

• Multi-species simultaneous vapor transport (e.g., O2, 
hydrocarbons)

• Reactions (e.g. degradation) in the vadose zone with 
user-defined kinetics

• Model simulates transient contaminant transport and 
heterogeneous subsurface conditions

• The model description and results have been published in 
peer-reviewed journals and presented at several 
conferences & workshops sponsored by EPA and API.

Abreu & Johnson 3D Model Overview
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Configurations Handled by the Model

Can evaluate slab on grade or basement construction

Symmetrical scenario 
with source at the 
water table or within 
unsaturated zone

Nonsymmetrical 
scenario with source at 
the water table

Nonsymmetrical 
scenario with source 
within the unsaturated 
zone
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Model Domain and Site Specific Inputs
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Building type, footprint, 
crack location and size

Source location, size and strength

Soil 
characteristics 
and properties

Building pressurization
and air exchange rate Ground surface 

cover type

Vapor source idealized as uniform 
concentration
Only  vapor transport, No GW transport
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Presentation of Results
Vertical cross-sections 
through center of 
building showing:

Concentration 
distribution 
normalized by 
source-zone vapor 
concentration 
VI attenuation factor, 

α = Cindoor/ Csource
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Previously Existing Models
1D models (e.g.; Johnson and Ettinger Model)

Simplistic geometry, one-dimensional transport, 
steady-state conditions, no biodegradation

A&J 3D Model Helped Advance Knowledge on
source-building lateral separation

site heterogeneous conditions,

Sub-foundation vs. near-foundation soil gas

oxygen limited aerobic biodegradation 

State-of-Science Advancements
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Key vapor fate and transport mechanisms
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Transport due to 
concentration 
gradients 

Dominant 
process close to 
the source

Diffusion
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Advection

Transport due to air 
pressure gradients 

More significant 
close to the building 

Normalized Gauge Pressure Field & Qs
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(Abreu and Johnson, 2005 & 2006)

Aerobic Biodegradation

Decomposition of 
contaminants by 
microorganisms within 
vadose zone
May significantly affect 
contaminant fate & 
transport
Oxygen distribution 
within vadose zone is 
key

(see afternoon section)
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Effect of different site conditions on the VI pathway

This presentation focus on recalcitrant 
compounds, the afternoon presentation focus on 

aerobically biodegradable petroleum hydrocarbons

Steady-state conditions presented first
Transient conditions presented later
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Source Vapor Concentration

Higher source 
concentration results in 
higher concentrations 
in subsurface gas and 
indoor air (if there is  
vapor intrusion and all 
other conditions are 
the same)

Vapor source Vapor source

Vapor source

(x1,000) (x100,000)

For recalcitrant compounds, 
normalized concentrations 
and α are independent of 
source concentration
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Steady pressurization

If building is under-
pressurized the air flows from 
soil into building and may 
lead to higher sub-slab  and 
indoor air concentrations

If building is over-pressurized 
the air flows from building into 
soil and may lead to lower 
indoor air and sub-slab 
concentrations  (if indoor air is 
clean)

Building Pressurization

Vapor source Vapor source

Vapor sourceVapor source
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Increased source depth 
results in decrease in α
(i.e., greater attenuation) 
• Non-linear relationship

Sub-slab concentrations 
and α for buildings with 
basements are slightly 
higher than slab-on-grade 
construction

Source Depth & Building Type
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A 20 m (66 ft) 
lateral distance 
separation results 
in decrease in α by 
five orders of 
magnitude

Source Lateral Distance
Shallow Groundwater
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two orders of 
magnitude
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α

Source Depth & Lateral Distance
Under equal 

conditions
Effect of lateral 
distance separation 
is more significant 
for shallow source 
scenarios
Source depth has 
small effect when 
building is above 
source area
Bldg. construction has 
small impact

Abreu and Johnson, EST 2005

Shallow GW

Deep GW
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Other Considerations…

Site conditions may 
lead to opposite finding:

Source location
Surface seal
Building ventilation
Multiple sources
Soil lithology

Under equal conditions, 
α for slab-on-grade  
building is smaller than 
for basement
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Building Conditions & Ventilation

Other building related 
factors also affect the 
indoor air 
concentrations (or α
values)

Presence or 
absence of cracks 
Building ventilation 
(i.e., air exchange 
rate and building 
air flow rates)  
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Layered Soils

Moist, fine-grained 
soils may act as 
diffusive barrier

Higher 
concentration 
below
Lower 
concentration 
above
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Layered Soils & Lateral Source

High moisture 
content layer on 
ground surface 
may result in 
slight increase of 
lateral vapor 
migration

ResultsCMS

High moisture 
content layer 
above the vapor 
source may 
significantly 
decrease vapor 
migration
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Steady Wind Load
Can create non-uniform distribution of sub-slab concentrations 
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Transient Transport by Diffusion
Profiles & Time Since Source Release

Moisture content 
retards the 
migration of 
contaminants
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Transient Transport by Diffusion
Profiles & Time Since Source Release

Chemical sorption 
to soil particles 
retards the 
migration of the 
contaminant

Effect of 
foc & koc
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Time to Reach Steady-State by Diffusion
Time is affected by

Source depth & 
lateral distance
Soil moisture & foc
Contaminant 
properties (koc)

Non-retarded Time to Reach Near SS

Johnson et al. (1999)
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Transient Pressure Fluctuations

Fluctuations in building 
pressurization can affect 
the transport of soil gas 
into buildings as the air 
flow direction is reversed

Atmospheric Pressure Fluctuations
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Fluctuations in Water Table Elevation

  

Groundwater source
Groundwater source

Groundwater source

Contaminated soilClean soil

 Rising  Falling Original  

  

Clean groundwater

Contaminated soil

Original  Rising  Falling 

Contaminated groundwater

Contaminated groundwater

Residual soil source

Schematic illustration 
(Not model simulated)

Fluctuations in the 
water table elevation 
may affect the 
distribution of 
contaminants in the 
subsurface and the 
source-foundation 
separation

Soil Source

Groundwater Source
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Remarks
VOC concentration distribution in the subsurface may 
not be uniform and can exhibit spatial and temporal 
variability (including the sub-slab concentration 
distribution).
Factors that influence subsurface contaminant 
distribution and indoor air concentration:

Source concentration, depth and lateral distance
Soil physical properties
Site geology (i.e., subsurface heterogeneities)
Building conditions (construction, pressure, AER)
Surface seal (impermeable cover)
Time since contaminant release occurred
Aerobic biodegradation (see afternoon presentation)
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Remarks
These vapor intrusion conceptual model 
scenarios can help practitioners develop a site-
specific conceptual model, plan VI 
investigations, and interpret the results.
The presented simulations are based on 
idealized and simplified assumptions about 
conceptual model scenarios to illustrate VI 
processes.  These scenarios may not be 
representative of site-specific conditions, but 
may be used to guide site-specific VI 
evaluations.


