

Dr. Sabine E. Martin Kansas State University

PHYTOTECHNOLOGIES AND SOIL AMENDMENTS

21st Annual NARPM Training Program

Kansas City, Missouri

May 16-20, 2011

www.epanarpm.org

Ecological Site Reuse

Process by which site habitat is restored, enhanced, or created

Soil amendments are used to bind contaminants, build soil, establish plant growth

21st Annual NARPM Training Program

Kansas City, Missouri

May 16–20, 2011

www.epanarpm.org

Phytotechnology

- Use of plants to solve/mitigate environmental problems
- Construction of ecosystems (wetlands for wastewater treatment)
- Recovery of ecosystems (mine reclamation, restoration of lakes and rivers)
- Create sinks for CO2 to mitigate impacts of climate change (reforestation)
- Mitigate pollution impacts and moderate energy extremes (green roofs)

21st Annual NARPM Training Program

Casper, Wyoming

Reforestation

Previously degraded land is being revitalized through ecological reforestation work

21st Annual NARPM Training Program

http://www.reforestteak.com/New-World-Eco-Trees_ep_44-1.html

May 16–20, 2011

www.epanarpm.org

Mine Reclamation

Coeur D'Alene Wetlands

The Players

21st Annual NARPM Training Program

Kansas City, Missouri

UNITED S

AL PROT

May 16–20, 2011

www.epanarpm.org

General Soil Conditions

Nutrient Status Soil pH **Organic matter content** Soil type (clayey vs sandy soils) Soil Compaction Soil Chemistry Toxicity of soil contaminants (metals) Excess Na (phyotoxic) Excess salts (phytotoxic)

21st Annual NARPM Training Program

Compaction

- Reduces soil porosity
- Air movement and root penetration are restricted
- Water runs off or ponds instead of infiltrating
- Roots grow sideways instead of downward
- Remedies: Tilling and addition of compost

Nutrient Status

- Nutrient status: N, P, K
 - Nitrogen: healthy leaf and stem growth
 - Phosphorus: important for root growth, flower production, <u>binds metals (reduces</u> <u>bioavailability)</u>
 - Potassium: overall plant health

21st Annual NARPM Training Program

pН

L PRO

www.epanarpm.org

12

1 M HCI

Coke

Rain Water

Pure Water

Organisms

Ammonia

1 M NaOH

(household cleaner)

Supports Freshwater

— Vinedar

Battery Acid

Stomach Acid

Adult Fish Die

pH Adjustment

Add lime to increase alkalinity

Add fertilizer to increase acidity: ammonium sulfate, sulfur-coated urea

 Add elemental sulfur or aluminum sulfate to acidify soils

21st Annual NARPM Training Program

Kansas City, Missouri

May 16–20, 2011

www.epanarpm.org

Organic Matter

- Enhances soil color
- Improves soil structure
 - Improves soil drainage and aeration (clayey soils)
- Retains Water (sandy soils)
- Provides soil nutrients

Kansas City, Missouri

- Encourages microbial activity
 - Binds contaminants, reduces bioavailabilit Y
 - Ideal OM content depends on soil type Below 1-3 % OM can be considered as low

21st Annual NARPM Training Program

May 16-20, 2011

www.epanarpm.org

Soil Type

Soils are a combination of sand, silt and clay

Soil Type - dependent upon sand, silt and clay content

21st Annual NARPM Training Program

L PRO

May 16–20, 2011

Soil Type

Clayey soils:

- Contaminants will adsorb to the clay mineral surfaces
- Adding OM will loosen soil, improve aeration, water infiltration, and also reduce bioavailability by binding contaminants

21st Annual NARPM Training Program

Kansas City, Missouri

May 16-20, 2011

www.epanarpm.org

Soil Amendments

Manure

- Sugar beet lime
- Wood ash
- Log yard waste
- Composts

L PRO

21st Annual NARPM Training Program

Types of Soil Amendments

Table 3: Types of Soil Amendments

Amendment	Availability	Uses	Public	Cost	Advantages	Disadvantages	Links		
			Acceptance						
Organics									
Biosolids	Sustainable supply: Higher quantities in urban areas	Nutrient source; Organic matter (OM) source; Sorbent ¹ properties in crease with in creasing iron content.	Largely odor- driven; Pathogen concerns; Concerns largely driven by perception.	Materials generally free; Municipalities may pay for iran sport and use.	Multi-purpose, multi- benefit scil amen dment; highly cost-effective; EPA regulated ² ; well character.zed consistent quality.	Fublic concern/public perceptions, High nutrient loadings in some settings; Some sources have high moisture content	National Biosolids Partnership (http://www.biosolids.org/in dex.asp)		
Manures	Sustainable supply; Higher quantities near CAFOs	Nutrient source; OM source.	Well accepted.	Materials generally free; Transport and application fee.	Widespread and readily available.	Not consistently regulated ² ; Variable quality; Not routinely treated for pathogen reduction; Generally uncharacterized.	Industry Residuals How They Are Collected, Treated and Applied (http://www.du- in.org/studentpapers/)		
Cempost	Location- dependent; Volumes limited; Competing users	Nutrient source; OM source.	Readily accepted.	Product and transport costs can be high.	Readily accepted; Stable product; Can be used in or near water;	High cost; Limited availability; N quantity usually significantly lower than non-composted materials.	U.S. Composting Council (http://www.composting.com n.cil.org/section.cfm?id=37) Association of Compest Producers		
D'gestates ³	New material; Very location dependent	Nutrient source; OM source.	May have odor pioblems.	To be determined; Transport and application fee.		New enough so that not regulated ² , Variable quality; Not routinely treated for pathogen reduction; Generally uncharacterized.			

21st Annual NARPM Training Program

Kansas City, Missouri ation Activitation May 16–20, 2011

www.epanarpm.org

Use of Soil Amendments

Table 1: Types of Problems Addressed by Soil Amendments

AL PROT

	Exposure Pathways and Adverse Effects	Interactions	Solutions
		•	
	Contaminant Bioavailability/	Phytoavailability Pro	blems
Toxicity (inorganic)	•		
Aluminum (Al)	Phytotoxicity Runoff Leaching	Low pH ² = more toxic; Low P = more toxic; High calcium (Ca) = less toxic	Raise pH greater than 6.0, add OM and P; add gypsum or other high soluble Ca source
Arsenic (As)	Soil Ingestion Runoff Leaching	High pH ² = more toxic; High P = more soluble	Add organic matter (OM) and adjust pH to between 5.5-6.5
Borate (BO ₃ ³)	Phytotoxicity	Low and High pH ² = more toxic	Add iron oxide and acidify (pH between 6.0-7.0)
Cadmium-to-Zinc Ratio (Cd:Zn) ¹	Food chain	High ratio = greater bioavailability (risk) of Cd	Add Zn to reduce the Cd:Zn ratio
Chromate (CrO ₄ ² ')	Phytotoxicity Runoff Leaching	High pH ² = more toxic	Add reductants, e.g., OM, biosolids; also acidify to less than 6.5
Copper (Cu)	Phytotoxicity Runoff Leaching Aquatic receptors	Low pH ² = more toxic; low OM = more toxic	Raise pH (6.0-7.0), add P, OM, and sorbents
Lead (Pb)	Soil ingestion	Low phosphorus (P) = more toxic	With no As present, raise pH to 6.0 or greater; with As present, raise pH to 5.5-6.5; add P, and iron oxide
Manganese (Mn)	Phytotoxicity Runoff Leaching	Low pH ² = more toxic	Raise pH greater than 7.0
Molybdenum (Mo)	Food chain Cu:Mo ratio	High pH ² = more toxic; Low Cu = more toxic	Acidify (pH between 5.5- 6.5) and add Cu

21st Annual NARPM Training Program

Use Kansas City, Missouri diation, Reway 16–20, 2011se, EPA+542-R-0, www.epanarpm.org

Use of Soil Amendments, cont.

	Exposure Pathways and Adverse Effects	Interactions	Solutions
Nickel (Ni)	Phytotoxicity	Low pH ² = more toxic; low P = more toxic	Raise pH (7.0-8.0), add P, OM, and sorbents
Selenium (Se)	Food chain Runoff Leaching	High pH ² = more toxic	Acidify (pH between 5.5-6.5)
Sulfate (SO ₄ ²)	Phytotoxicity to salt effects	NA	Irrigate soil
Zinc (Zn)	Phytotoxicity	Low pH ² = more toxic; low P = more toxic	Raise pH (7.0-8.0), OM, and sorbents ³ , e.g., iron and manganese oxides, WTR ⁴
Toxicity (organic)			
Polycyclic Aromatic Hydrocarbon (PAH)	Soil Ingestion	Low OM ⁵ = more bioavailable	Add OM and tillage
Polychlorinated Biphenyl (PCB)	Soil Ingestion	Low OM ⁵ = more bioavailable	Add OM and tillage

Poor Soil Health/Ecosystem Function Problems

High or Low pH			
Active Acidity (as measured directly in a water:soil mixture)	Runoff Leaching	Controls metal solubility and microbial activity; increases metal availability ⁶	Add lime and/or other alkaline soil amendments
Alkalinity	Anion solubility and metal micronutrient availability	See Mo, Se, As listed above	Add acid equivalent
Potential Acidity (total acid production capacity with time; largely from unreacted sulfides)	Runoff Leaching Metal and salt evolution and associated phytotoxicity	Similar to active acidity (above) ⁶	Estimate total lime demand and add 1.25 to 1.5 times the demand
Sodicity or Solinity			
Electrical Conductivity	Phytotoxicity, plant water stress, nutrient uptake imbalances	High Na = more toxic	Irrigate; OM may help
Sodium (Na)	Phytotoxicity Sodicity ⁷	High SAR = high soil dispersion	Add any Ca:Mg-rich material ¹ ; OM

21st Annual NARPM Training Program

4L PROT

May 16–20, 2011

www.epanarpm.org

EDA 542 B 07 012 2007

Addition of Soil Amendments Can Reduce Contaminant Bioavailability

Bioavailability: the fraction of the chemical(s) of concern in soil that is accessible to an organism (human or plants) for absorption

Courtesy of CSIRO, Land & Water, Australia

Biosolids

Nutrient rich organic material resulting from the <u>treatment</u> of domestic sewage in treatment facility

- Tested (federal biosolids rule: 40CFR Part 503)
- Biosolids can be applied as fertilizer and will improve soil structure

Very efficient use of organic N,P by crops because of slow release throughout the growing season

21st Annual NARPM Training Program

Tacoma, WA

Lime+ Tagro added

Control

24

21st Annual NARPM Training Program

Kansas City, Missouri

AL PROT

May 16-20, 2011

www.epanarpm.org

Ar	Arsenic Concentrations in Soils and Lettuce Samples Tacoma, WA Test Plot Site							
Trea	atment	Soil (mg/kg) [†]	Lettuce (mg/kg) †					
Cont	trol	90	0.151					
Tagr	o +Lime	87	0.081					
†Al Ur MITED STATES PU	I concentrations are averan published preliminary dat ublication by others	age of four field replicates	luction, distribution, or					
AL PROTECTO	Kansas City, Mis	21 st Annual NARPM Train souri May 16–20, 20	ning Program					

Cadmium Adsorption by Biosolids amended Soils

21st Annual NARPM Training Program

Kansas City, Missouri

May 16–20, 2011

www.epanarpm.org

Bioavailability

Describes the fraction of the chemical(s) of concern in soil that is accessible to an organism (human or plants) for absorption.

Commonly thought of as one process only: Absorption Efficiency

21st Annual NARPM Training Program

Sandy Soils and Zinc

Clayey Soil and Zinc

21st Annual NARPM Training Program

Kansas City, Missouri

AL PROT

May 16-20, 2011

www.epanarpm.org

Case Study: Galena, KS

Issues:

- Lack of vegetation
- Zn, Cd, and Pb levels in surface waters and stream sediments exceeded aquatic life criteria

Interrelated issues: lack of vegetation promotes the movement of runoff and sediments from mining-impacted areas

21st Annual NARPM Training Program

Factors Limiting Vegetative Growth

- Nutrient deficiencies
- Metal toxicity
- Adverse pH conditions
- Limited water holding capacity
- Lack of microbial activity
- Poor soil chemical, physical, or biological properties

21st Annual NARPM Training Program

Manure Application

21st Annual NARPM Training Program

Kansas City, Missouri Photo courtesy of G. Pierzynski May 16–20, 2011

www.epanarpm.org

Plot without Amendment

21st Annual NARPM Training Program

Ransas City, Missouri Photo courtesy of G. Hettiarachchi May 16–20, 2011

www.epanarpm.org

Plot with Amendment

Electrical Conductivity

Time	control	100 tons/acre	200 tons/acre
		dS/m	
Fall '07	0.4	30	43
Spring '08	0.4	0.8	1.0
Fall '08	0.6	0.8	1.0
Spring '09	0.3	0.5	0.6
Fall '09	0.3	0.4	0.5

Hettiarachchi G.M., and G.M. Pierzynski. 2010. USE OF PELLETIZED COMPOST MATERIALS AS AMENDMENTS OF LEAD-ZINC CHAT TAILINGS IN GALENA, KANSAS. *First Quarter 2010. Quarterly Progress Report Submitted to the Kansas Department of Health and Environment.*

21st Annual NARPM Training Program

L PRO

May 16-20, 2011

Extractable Zn

Time	control	100 tons/acre	200 tons/acre
		mg/kg	
Fall '08	134	8	6
Spring '09	86	9	4
Fall '09	228	74	16

Hettiarachchi G.M., and G.M. Pierzynski. 2010. USE OF PELLETIZED COMPOST MATERIALS AS AMENDMENTS OF LEAD-ZINC CHAT TAILINGS IN GALENA, KANSAS. *First Quarter 2010. Quarterly Progress Report Submitted to the Kansas Department of Health and Environment.*

L PRO

May 16-20, 2011

Ground Cover

Time	control 100 tons/acre		200 tons/acre	
		plants/50 ft		
Spring '09	62	62	64	
Fall '09	65	87	88	

Hettiarachchi G.M., and G.M. Pierzynski. 2010. USE OF PELLETIZED COMPOST MATERIALS AS AMENDMENTS OF LEAD-ZINC CHAT TAILINGS IN GALENA, KANSAS. *First Quarter 2010. Quarterly Progress Report Submitted to the Kansas Department of Health and Environment.*

L PRO

May 16-20, 2011

Biomass Production

Time	control	100 tons/acre	200 tons/acre	
		g / m²		
Fall '08	13	18	16	
Fall '09	37	102	107	

Hettiarachchi G.M., and G.M. Pierzynski. 2010. USE OF PELLETIZED COMPOST MATERIALS AS AMENDMENTS OF LEAD-ZINC CHAT TAILINGS IN GALENA, KANSAS. *First Quarter 2010. Quarterly Progress Report Submitted to the Kansas Department of Health and Environment.*

L PRO

May 16–20, 2011

Applicable Contaminants

Petroleum Hydrocarbons

- Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)
- Trichlorethene (TCE) and other chlorinated solvents
- Ammunition wastes and explosives
- Heavy Metals
 - Pesticides

21st Annual NARPM Training Program

Ground cover
aids in soil stabilization
prevents erosion, drift
prevents direct contact (human, animal) with contaminants

controls infiltration

21st Annual NARPM Training Program

Phytostabilization, cont.

Mobility reduction of heavy metals and some organic contaminants

Via chemical interaction in rhizosphere

Accumulation of contaminants at root/soil interface Precipitation of contaminants within root zone Adsorption of contaminants onto roots

 Via soil amendments to decrease solubility of metals (phosphates, lime, OM, biosolids)

Kansas City, Missouri

Phytostabilization

Improved Ecological Function

Precipitation Interception Capacity by Plants

Plant name	Plant type	Magnitude and duration of rain	Interception capacity (%)
Natural pasture	Mixed grasses	389 mm in 5 months	14-19
Alfalfa	Agricultural crop	Unspecified	36
Tall panic grass	Prairie species	12.7 mm in 30 minutes	57
Little blue stem	Prairie species	12.7 mm in 30 minutes	5 0-60
Birch	Tree species	350 mm in 5 months	10
Ash	Tree species	38 mm rain (no time given)	24
Spruce-fir	Tree species	272 mm in 5 months	30

Table 1-2. Typical water interception capacities

From: Phytotechnology Technical and Regulatory Guidance and Decision Trees, revised, ITRC, 2009

21st Annual NARPM Training Program

L PRO

Phytohydraulics

From: Phytotechnology Technical and Regulatory Guidance and Decision Trees, revised, ITRC, 2009

21st Annual NARPM Training Program

Kansas City, Missouri

4L PROT

May 16–20, 2011

www.epanarpm.org

Maximum Rooting Depths

Examples

- Indian Mustard: to 12 inches Metals
- Grasses: to 48 inches Organics
- Alfalfa: to 30 feet
- Poplar trees: to 15 feet Metals, organics, chlorinated solvents

21st Annual NARPM Training Program

Phytodegradation

Breakdown of contaminant molecules via plant enzymes into less or non-toxic toxic components

Examples:

Hybrid Poplar Trees break down TCE into water, CO2 and chloride ions (Schnoor et al. 1995)

Poplars partially break down TNT

Phytotransformation Organic Contaminants (examples)

- Petroleum Hydrocarbons TPH, PAHs, BTEX
- Pesticides
- Chlorinated Solvents usually involving groundwater
- PCPs

21st Annual NARPM Training Program

BIODEGRADING HYDROCARBONS

TPH Dissipation in Craney Island, VA Study

Banks, 1999, in Kulakow, 2002 ITRC workshop presentation

52

Clover 60 Unvegetated Percent _{Dissip} ation 0 0 0 0 0 0 0 0 Fescue Bermuda 6 8 16 18 12 23 4 10 20 **Month** 21st Annual NARPM Training Program Kansas City, Missouri May 16-20, 2011 www.epanarpm.org

Phytoextraction

Rock and Tsao, 2002, Introduction to Phytotechnologies, ITRC Workshop Series Presentation

Shundown and a state of the sta

21st Annual NARPM Training Program

Kansas City, Missouri

May 16-20, 2011

www.epanarpm.org

Phytoextraction of Heavy Metals

- Ag, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, W, Zn
 - Hyperaccumulating plants can treat metals in soil at ~1,000 ppm range
 - Must prevent eco exposure and leaching, and dispose of properly
- Treatment depth generally ~ 1 foot
 - Phytotoxicity
 - physical or chemical amendments required for extraction or stabilization strategies

21st Annual NARPM Training Program

Natural Hyperaccumulators of Metals

Barley

- Sunflowers
- Tall Fescue
- Hydrangea
- Rapeseed

http://en.wikipwedia.org/wiki/phytoremediation

21st Annual NARPM Training Program

Hyperaccumulators

Hyperaccumulators table - 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Pd, Pt, Se, Zn – accumulation rates

Contaminant	Accumulation rates (in mg/kg dry weight)	Latin name	English name	H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant	Notes	Sources
Al-Aluminium	A-	Agrostis castellana	Highland Bent Grass	As(A), Mn(A), Pb(A), Zn(A)	Origin Portugal.	[1]
Al - Aluminium	1000	Hordeum vulgare	Barley	xxx	25 records of plants.	[2] [3]
Al - Aluminium	xxx	Hydrangea spp.	Hydrangea (a.k.a. Hortensia)	xxx	xxx	xxx
Al - Aluminium	Al concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively. ^[4]	Melastoma malabathricum L.	Blue Tongue, or Native Lassiandra	P competes with aluminium and reduces uptake. ^[5]	XXX	
Al-Aluminium	xxx	Solidago hispida (Solidago canadensis L.)	Hairy Goldenrod	xxx	Origin Canada.	[2] [3]
Al-Aluminium	100	Vicia faba	Horse Bean	xxx	xxx	[2] [3]
Ag-Silver	xxx	Brassica napus	Rapeseed plant	Cr, Hg, Pb, Se, Zn	Phytoextraction	[6] [7]
Ag-Silver	xxx	Salix spp.	Osier spp.	Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products; ^[7] Cd, Pb, U, Zn (<i>S.</i> <i>viminalix</i>); ^[8] Potassium	Phytoextraction. Perchlorate (wetland halophytes)	[7]

http://en.wikipwedia.org/wiki/phytoremediation

21st Annual NARPM Training Program

Kansas City, Missouri

4L PROT

May 16-20, 2011

www.epanarpm.org

Phytovolatilization

Soluble contaminants are taken up with water via plant roots, transported to the leaves and volatized.

Chlorinated hydrocarbons volatize well, gasoline components do not (Davis et al., 1998)

Poplar saplings concentrate and transpire MTBE

21st Annual NARPM Training Program

Phytovolatilization cont.

Selenium – after conversion to dimethylselenide (Neumann et al. 2003)

Mercury – after conversion to elemental Hg by microbes (example Yellow Poplars Rugh et al. 1996, 1998)

21st Annual NARPM Training Program

Critical Factors for Implementing Ecological Revitalization

Type and concentration of contaminants
 Depth of contamination
 Toxicity

- Transfer of contaminants
- Leaching/mobilization of contaminants
 - Size and other physical constraints of site

Critical Factors for Implementing Ecological Revitalization(cont.)

- Natural soil and climate conditions
- Availability of suitable plant material
- Expertise
- Proper risk management, monitoring
- Cost
- Acceptability
- Seasonality of plant activity
- Sampling requirements

21st Annual NARPM Training Program

Contact Info

Dr. Sabine Martin Kansas State University 785-532-6519 <u>smartin1@k-state.edu</u>

21st Annual NARPM Training Program

Kansas City, Missouri

L PRO

May 16–20, 2011

www.epanarpm.org