A MULTIPLE TRACER / GEOCHEMICAL APPROACH TO CHARACTERIZING WATER AND CONTAMINANT MOVEMENT THROUGH ABANDONED MINE WORKINGS NEAR RICO, COLORADO

Mike Wireman, Region 8, U.S. EPA, Denver, CO;

Rory Cowie, University of Colorado Boulder, Boulder, CO; Mark W. Williams, University of Colorado, Boulder, CO; Robert L. Runkel, United States Geological Survey, Denver, CO

Thanks to Jan Christner

Southwest Colorado

<u>Rico mining district</u>

MINING HISTORY

- 1869 -1977 Active silver, zinc, lead mining district
- 1930-31 St. Louis tunnel driven to explore for deep ore bodies
- 1955 Sulfuric acid production plant (from pyrite)
- 1956 1979 Series of ponds constructed for sulfuric acid production and tailings disposal
- 1971 —Rico Argentine Mining Co ceased mining operations and deeper workings allowed to flood
- 1973-1975 Heap leach NW of St. Louis tunnel adjacent to Delores River
- 1976-1977 Mining activities ended
- 1980 1983 Anaconda acquired Rico Argentine Mining Co. & conducted exploration drilling no mining
- 1879 -1968 production 83,000 ounces of gold, 14,500,000 ounces of silver,
 5600 tons copper, 84,000 tons lead ,83,000 tons zinc.

GEOLOGY

- Domal uplift PC monzonite -6000 ft.
- Dome bounded by numerous near vertical faults.
- NE_SW Blackhawk fault bounds east side of dome numerous associated reverse& normal faults sub-paralell to BH Fault
- Pennsylvania age Hermosa Fm was intruded by dome widespread in outcrop /subcrop –dips away from dome -2800 ft thick
- Comprised of interbedded sandstones, limestones, shale, conglomerate, arkose extensively faulted

<u>ore bodies</u>

- Mineralization due to hydrothermal fluids moving along faults and limestone bedding planes in the downdip direction.
- Significant mineralization can occur 400 -500 feet from the major faults.
- The primary ore deposits are:
 - massive sulfide replacement deposits in the limestones of the middle and upper members of the Hermosa Formation,
 - metamorphic deposits of sulphides in limestones of the Ouray, Leadville and Hermosa formations and as
 - veins on fractures and small faults in Hermosa sandstones and arkoses. The
 - ores were mined primarily by stoping limestone blocks that contain target metals at a high enough grade. The limestone beds were stoped in a downdip direction, which resulted in a lot of connection between levels of mine workings.

ENVIRONMENTAL ISSUES

 Discharge from St. Louis tunnel contains high concentrations of heavy metals – NPDES permit lapsed - June 2010 – Zn -3900 ug/l - Portal discharge to ponds which discharge to Delores River

Unlined ponds - adjacent to Delores River —ponds contain sludge / tailings -64,000 yd³

- **Zn 18,000 38,000 ppm**
- Cd 51 190 ppm
- Cu 650 -2400 ppm
- Pb 200 1000 ppm

Discharge of AMD (pH -2-3) from Blaine workings – ore bodies have high sulphide content

TMDL on Silver Creek –dissolved Cd & Zn

PROJECT GOALS

- Characterize stream /groundwater/mine hydrology
- Evaluate feasibility of hydraulic controls to reduce volume of discharge and /or contaminant load from St. Louis tunnel
 - a) Reduce flow of water into / through mine workings
 - Reduce mobilization of contaminants within the mine workings
 - c) Isolate high-concentration contaminant source for limited small scale treatment

Hydrologic investigation

- Determine if significant volume of surface water from Silver creek enters mine workings
- Identify sources of AMD
- Characterize mine water flowpaths – contribution to St. Louis tunnel
- Determine flow and chemistry of Silver creek and mine water

- Chemical / isotopic analysis
- Stream Tracer studies
- Mine workings tracer studies

WATER CHEMISTRY / METALS LOADING

- St. Louis tunnel portal discharge
- Silver Creek
 - Time series at SC-493
 - Synoptic along entire study reach (SC-106- SC-1131)
- Underground mine waters
 - 517 Shaft
 - Pipe discharge to 517 shaft access tunnel
 - Blaine tunnel pool and discharge from a raise from above Blaine level
 - Argentine tunnel above Blaine level
- Argentine tails seep

St. Louis Tunnel

Portal discharge vs. Delores River flow

Portal discharge chemistry (DR-3)

Parameter (dissolved) (ug/l)	June 2011	October 2011
рН	6.7	7.4
Cd	52	17.5
Cu	55.2	5.0 U
Fe	445	1090
Pb	1.0 U	1.0 U
Zn	10,200	3810

MINE WATER CHEMISTRY

517 Shaft Metal Concentrations

Argentine tunnel (ug/l) Cu-349,000 Zn – 2,460,000 Mn – 294,000 Pb – 239,000 Cd -12,000 pH – 2 - 2.5

517 TUNNEL PIPE - BEDROCK GW	??
Cu-0.5	
Zn – 10.8	
Mn – 1.0	
Pb – 0.14	
Cd -0.1	

Argentine seep chemistry

Parameter (dissolved) (ug/I)	June 2011	October 2011
рН	7.8	7.8
Cu	5.00 U	2.50 U
Cd	1.00 U	1.00 U
Pb	1.00 U	1.18 J
Fe	1000 U	1000 U
Zn	3780 ug/l	3810 ug/l

Seasonal Water Isotopes

Relatively new water

No bomb spike water

No old water

Residence time in gw / mine water flow system is few years

Silver Creek - Stream tracing (evaluate loss to mine workings)

- Stage-discharge relationships at 2 locations – time series of flow
- Slug additions to develop point flow estimates above & below suspected loss reach
- Continuous additions to measure discharge above & below suspected loss reach

Silver Creek – Stage discharge relationship High flow –June 2011

- Rating curves developed @ SC-68 & SC-493 by correlating data from pressure transducers with flow measurements made w/ Marsh – McBirney flow meter
- Pressure transducer recorded stage every 15 minutes
- Used to help adjust slug results
- Results conflict with slug tests & continuous tracer results

Silver Creek – Slug additions High flow – June 2011

- Slug tests dissolve NaCl in stream water add as a slug to Silver Creek
- Cl SC relationship established at SC-636 convert SC to Cl concentration
- Chloride profiles integrated to estimate streamflow
 - Q = (mass Cl added / integrated area under Cl curve) * unit_conversion_factor

 Slug results corrected due to unsteady streamflow & fact that slug additions not performed at same time every day

Silver Creek – Continuous injection tracer dilution method

- Sodium Bromide injected on 6/23 from 8:00 -19:40 plateau concentration reached in Silver Creek
- Flow at SC-68 & SC- 106 estimated by Q_{x =} Q₁ C₁/C_x
 - Q_1 = injection rate; C_1 = injection concentration; C_x = average concentration @ SC-68 & SC- 106
- Slug tests suggest a loss downstream of SC-106
- Flow from SC-106 to SC-636 $Q_d = Q_u$ (MLR * deltaX)
 - Q_u = streamflow @ upstream site; MLR = median loss rate from slug test; deltaX = distance between 2 sites

Results of continuous injection

Gaining stream – tracer dilution w/ distance = increase in flow Losing stream – exhibit steady concentration w/ distance

Flow loss estimated to be 5.3% to 9% - within margin of error?

Synoptic sweep # 1 affected by pump outage Synoptic sweep # 2 more representative Data from Runkel, 2012

Mine workings tracing

- Objective verify flowpaths & determine travel times in workings
- Tracers injected into 517 shaft, Blaine tunnel and Silver Creek
- Sample locations 517 shaft; St. Louis tunnel portal; Silver Creek @ SC-493; Argentine tailings seep

Silver Creek tracer investigation

- Objective to help determine if Silver
 Creek loses water to mine workings or
 Argentine seep
- Rhodamine WT & bromide injected continuously-for approx. 71 hours (10/5 @ 11:02 to 10/8 @ 9:38)

No rhodamine or bromide found in 517 shaft or Argentine seep above background concentrations

517 Shaft trace

- 50 gallon slug containing 3.22 lbs of lithium & 22.65 lbs of fluorscein – mixed with pH 2.7 water
- Chased with approx.
 50,000 gallons of water from Silver
 Creek
- DTW in shaft 450 ft
- TD shaft 600 ft?

• Fluorescein

- first arrival at St. Louis tunnel 15 hours –velocity 567 ft/hr
- Peak @ 37 hours velocity
 230 ft/hr
- Lithium
 - first arrival at St. Louis tunnel 15 hours –velocity 567 ft/hr
 - Peak @ 21 hours velocity 405 ft/hr
- Mass recovery -1100 hrs after injection
 - Lithium 74 %
 - Fluorescein 58%

Findings

Fast transport by advection w/ help from chasing water

SE x-cut is open –few obstructions

Significant portion of fluorescein remains in storage -mixed with water in shaft? residence time in pool behind collapsed portion of St. Louis tunnel?

Fluorscein / Li only found at St. Louis tunnel discharge

Blaine workings tracing investigation

- Samples collected in 517 shaft, Argentine seep & Silver Creek
- **517 Shaft**
 - 10 hours 1rst arrival of F
 (a) 517 shaft ave.
 velocity 66 ft/hr
 - Peak @ 68 hours –ave. velocity 10 ft/hr
 - (Based on estimated distance to 517 of 660 feet)
- No detection of F in Silver Creek or Argentine seep

<u>Conclusions</u>

- Possible loss from Silver Creek to workings –though not certain
 - > 5-9 % @ high flow 22-23 % at low flow
- The x-cut that connects the 517 shaft to the St. Louis tunnel is open and rapidly transports water
- Fairly open connections between Blaine workings and 517 shaft
- Primary sources of AMD /heavy metals water in Blaine & associated workings
- Water in 517 shaft has some residence time
 - Argentine seep not recharged by mine workings or gw
- Residence time in GW flow systems which discharge to mine workings is 5-15 years
- Discharge from St. Louis tunnel is primarily bedrock groundwater with seasonally varying inputs from workings along Silver Creek – Blaine, 517 shaft