The Increasing Importance of Biomonitoring Data to Interpret Changing Risk Estimates for Legacy Mining Communities

Rosalind Schoof1, Terry Moore2, Cord Harris2, and Dina Johnson1

April 4, 2012

1ENVIRON International Corporation
2BP Remediation Management
Outline

- Lead and arsenic as risk-drivers at legacy mine sites
- Changes coming for derivation of lead and arsenic cleanup levels
- Role of **blood lead studies** at legacy mine sites
- Role of **urine arsenic studies** at legacy mine sites
- Conclusions
Lead and Arsenic at Legacy Mine Sites

- Lead typically dominates at lead and zinc sites
- Arsenic typically dominates at copper sites
- Large legacy sites may have complex history of mining, smelting and refining operations with both lead and arsenic issues
Assessing Risks for Lead and Arsenic

• Nationally, several movements are underway to reassess elements of lead and arsenic risk assessment
• At legacy mine sites, human health risk estimates for lead and arsenic may be impacted by:
 – lower toxicological benchmarks for lead and arsenic
 – altered exposure parameter assumptions
• Meanwhile, actual exposures to people will be unchanged
Lead – Upcoming changes

- IEUBK model default assumptions will be changing
 - Higher default RBA
 - Diet intake, etc.
- CDC recently recommended lowering current blood lead target level
 - Driven by IQ studies, reduced levels in general population and lower analytical detection limits
 - Already lower in California and Europe, Canada considering

- Implications for legacy mine sites (short term)
 - PRG may decline from 400ppm to 250-300 ppm
- Incremental risk approach considered (long term)
 - California proposed in 2009
 - USEPA SAB instructed OPPT to consider for dust standards
 - Health Canada also considering
Arsenic – Possible Changes

- **Cancer slope factor**
 - Current CSF is 1.5 (mg/kg-day)^{-1}
 - CSF proposed in 2010 is 25.7 (mg/kg-day)^{-1}
 - 17-fold increase would decrease risk-based screening level proportionately
 - EPA SAB panel recommended additional justification in D-R assessment, but didn’t recommend major changes
 - Expect new CSF issued by ???

- **Implications for legacy mine sites**
 - Not clear if all EPA regions will accept and use the new CSF (Region 8 filed a formal memorandum of non-concurrence on draft CSF)
 - If accepted, will force most clean up levels to be derived based on background
 - ROD reviews could result in major changes in remedies
Biomonitoring Studies Provide Reality Check on Risk Estimates

- Biomonitoring is the measurement of a chemical or its metabolites in body tissues and fluids
- Biomonitoring data can improve our understanding of exposure
 - Can contribute to a multiple lines of evidence approach
 - Enable critical assessment and validation of theoretical predicted risks
 - Guide consequential risk management decisions for all legacy mining communities into the future
 - May also allow better understanding of how our bodies interact with the environment
Case Studies Show that Blood Lead and Urine Arsenic Reflect All Exposures

- For residential soils, children 1 to 7 years old are usually the focus.
- Blood lead concentrations reflect exposure from all sources over the past several months, urine arsenic reflects the past 72 hours.
- Blood and urine samples are collected at peak exposure times (late summer).
- To assess exposure pathways, studies may also include samples of yard soil, indoor dust, tap water and homegrown produce, and for lead, paint analyses.
- Detailed questionnaires elicit information about other household exposures.
- EPA’s IEUBK model for lead is based on such studies.
Studies of Lead at Butte

- Over 100 years of mining history
 - Over 500 underground mines
 - Four open pit mines, including the Berkeley Pit
 - Operations included silver mills, copper and zinc concentrators/smelters
Butte

- Added to NPL September 1983
- 3rd Five-Year ROD Review released July 2011
- EPA action levels for lead
 - 1,200 mg/kg in residential yards and play areas
 - 2,300 mg/kg at waste rock dumps or other source areas outside of residential areas
- Used to determine ongoing response actions by EPA
- Also used by Butte-Silver Bow County as part of the *residential metals abatement program*, which addresses both mining and non-mining (e.g., lead-based paint) sources of lead
• 1990 exposure study by University of Cincinnati yielded structural equation model of exposure pathways
 – Included blood lead assessment of 294 children up to age 6
 – Geometric mean BLL of children in Butte was 3.5 μg/dL, similar to U.S. levels at that time
 – Large study sample & over-representation of high risk areas
 – Residence location (i.e., age of neighborhood) and housing age strongest predictors of paint lead, soil lead, and dust lead concentrations
Butte Exposure Study and Risk Assessments

- 1990 exposure study (cont.)
 - Lead-based paint → lead contaminated soil → lead contaminated house dust
 - Only house dust lead directly related to blood lead
 - Soil lead’s indirect effect on blood lead is both small and weak
 - Variability in soil lead
 - 39% due to lead-based paint, rest due to heterogeneous distribution of lead in soil and lead from other sources
 - Gardening or eating home grown produce shown not to contribute to elevated BLLs
- Studies yielded low lead relative bioavailability estimates (10% to 12%) used in HHRAs
- Multiple lines of evidence supported lead clean up level
2006 Studies of Lead in Rico, Colorado

- Historical mining community undergoing remediation
- Lead exposure study undertaken in 2006 to monitor effects of remediation
 - **May** – 118 people (67% households) participated
 - BLL 3 μg/dL in 17 children
 - BLL 1.7 μg/dL in 95 adults
 - **Sept.** – 112 people participated
 - BLLs 2.6 μg/dL in 12 children
 - BLLs 1.9 μg/dL in 92 adults
- BLLs correlated with house dust better than with soil
Lead Study Summary

• Blood lead exposure studies were conducted in numerous mining and smelting communities during the 1980s and 1990s
• Generally, the strongest correlations for BLLs were with dust lead concentrations, and operating smelters exerted a greater effect on BLLs via outdoor dust deposition and track-in to indoor dust
• Far fewer exposure studies have been conducted since 2000, although some communities have ongoing surveillance testing of BLLs
• The nation-wide decline in BLLS since the 1990s makes it difficult to discern local trends vs. nationwide trends
• Contemporary exposure studies are needed to determine primary exposure sources and to update assumptions and parameters for exposure models
Urine Arsenic as Indicator of Exposure: Background Example
Biomonitoring studies support lack of exposure below 100 ppm

- **Anaconda (1990)** – Mean urine arsenic increased about 30% as soil arsenic increased from 50 to 400ppm
- **Bingham Creek Channel study (1993)** – No association between soil arsenic and urine arsenic
- **Middleport, NY (2004)** – No association between soil arsenic and urine arsenic

1990 Butte Urine As (μg/L)

<table>
<thead>
<tr>
<th></th>
<th>All soil < 50 ppm As</th>
<th>Soil As 50-100 ppm*</th>
<th>Soil As > 100 ppm*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>31</td>
<td>83</td>
<td>26</td>
</tr>
<tr>
<td>Mean</td>
<td>13.0</td>
<td>14.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>6.5</td>
<td>8.9</td>
<td>7.1</td>
</tr>
<tr>
<td>Median</td>
<td>13.0</td>
<td>12.0</td>
<td>11.5</td>
</tr>
<tr>
<td>95%-tile</td>
<td>25.0</td>
<td>30.5</td>
<td>27.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>26.5</td>
<td>43.5</td>
<td>28.0</td>
</tr>
</tbody>
</table>

One or more samples
Studies of Arsenic at Anaconda

• Processed copper ore from Butte from about 1884 – 1980
 – Milling and smelting operations
• Added to NPL September 1983
• Site covers an area of approximately 300 square miles
• 1996 Community Soils ROD
• 4th Five-Year ROD Review completed September 2010
Anaconda Site – Soil Action Levels

• EPA action levels for arsenic
 – 250 mg/kg in residential yards
 – 500 mg/kg in commercial/industrial soils
• Residential action level corresponds to 8 in 100,000 risk level based on:
 – Site-specific soil ingestion study
 – Relative bioavailability 18% for soil, 26% for dust
 – Site-specific indoor dust data
 – Demonstration of reduced winter dust concentrations
 – Lower exposures demonstrated in biomonitoring study
Anaconda Exposure Study
1992 Univ. Cincinnati

\[\log(Y) = 0.4818 + 0.1955 \log(X) \]
\[N = 226, r = 0.2509 \ (p = 0.0001) \]

Source: Adapted from Hwang et al. (1997a)
• 971 children less than 6 years old and 378 older siblings and adults

• Arsenic soil and water concentrations:
 – Average of 27 ppm in soil (range 4 to 623 ppm)
 – Average of 10 ppm in residential floor dust (range 1 to 130 ppm)
 – Average of 3.5 ppb in tap water (range 1 to 11 ppb)

• Urine (creatinine-corrected) 5.20 µg/l (range 0.7 to 27.5 µg/l) for children <72 months
Bingham Creek Channel Arsenic Study
Conclusions

• Urinary arsenic concentrations were associated with:
 – Child’s age
 – Season of sample collection
 – Time spent outdoors
 – Concentration of arsenic in drinking water

• Association between urinary arsenic and arsenic in handwipe samples not significant
 – high variability of measures within an individual over time
 – dominance of other factors (e.g. food/water) vs. dust and soil as contributors to urinary arsenic

• Former arsenic pesticide facility near Buffalo
• 439 study participants, including 77 children <7 years old
• Soil arsenic soil ranged from 5.2 to 340 ppm with an average of 28 ppm (and 22.5 ppm at homes with children < 7 years)
• Dust concentrations averaged 20 ppm (and 22ppm at homes with children < 7 years)
Key findings of the Middleport biomonitoring study

- Speciated and inorganic urinary arsenic levels were low
- Urinary arsenic levels were generally not correlated with soil or house dust
- House dust concentrations were not correlated with soil concentrations
- Site-specific risk assessment supported by study showing low relative bioavailability
Putting Lead and Arsenic Risks in Context

- Critical importance of understanding the factors that affect site-related lead and arsenic exposures to allow:
 - a meaningful interpretation of site-specific risk estimates
 - evaluation of the protectiveness of existing or proposed remedies
- Risk assessments that incorporate site-specific exposure information alone will not address this need
- Role for biomonitoring studies
 - Complement interpretation of theoretical risk estimates for common risk drivers
 - Provide data for assessing remedy protectiveness at legacy mine sites
Longer Term Research Needs

- Contemporary biomonitoring studies (especially for lead)

- Examine exposure assumptions:
 - Soil ingestion rates
 - Evaluate role of exterior dust
 - Relative soil/dust intakes
 - Relative bioavailability
 - Lead absolute bioavailability in children
 - Blood lead GSD