ENHANCED SULFATE REDUCTION TREATMENT OF MINING-INFLUENCED WATER USING BIOCHEMICAL REACTORS

IMPACTS ON MERCURY SPECIATION

Stephen Dent, Ph.D.
National Conference on Mining-Influenced Waters
Approaches for Characterization, Source Control and Treatment
Albuquerque, NM

August 13, 2014
Presentation Objectives

• Mercury in the Environment
 – Prevalence
 – How a Mole Hill Turns into a Mountain

• Biochemical Reactors – Mining Impacted Water
 – Formosa Treatability Study
 – ORD Bench Top Study

• General Conclusions

• Recommendations for Moving Forward
Anthropogenic Point Source Impacts

Minamata Bay

California Gold/Mercury Mines
Non-Point Source Impact

• 367 Stream Sites Sampled Across United States

• Sites with Fish Greater than 0.3 µg/g
 • 25% Exceedances

• Sites with Fish Greater than 0.6 µg/g
 • 10% Exceedances
Bioaccumulation

Wood et al., 2013

\[BAF = \frac{C_B}{C_{DW}} \]

- BAF = Bioaccumulation Factor (1/kg)
 - (Gobas and McCorquodale, 1992)
- \(C_B \) = Concentration in Biota or Particle (ng/kg)
- \(C_{DW} \) = Concentration Dissolved in Water (ng/L)

Mountains out of a Mole Hills
Working the Problem Backwards (MeHg)

- **USGS: Mean, ng/L**
 - All Sites: 0.19
 - Unmined: 0.2
 - Mined: 0.18

- **Range, ng/L**
 - All Sites: 4.11-ND
 - Unmined: 4.11 – ND
 - Mined: 2.02 – ND

- **California Water Control Board:**
 - 0.06 ng/L – Implementation Goal
Mine Impacted Water

• “Aqueous waste generated by ore extraction and processing, as well as mine drainage and tailings runoff.” ~ITRC, 2013

• AMD: Sulfidic Rock in Contact with Surface Water and Oxygen
 – pH Decreases
 – Metals Dissolve
Biochemical Reactors

• BCRs are engineered systems that use an organic substrate (electron donor) to drive microbial and chemical reactions to reduce concentrations of metals, acidity, and sulfate in MIW.

 – ChitoRem® SC-20
 – Woody Substrate/Manure Including Limestone

 \[
 \text{SO}_4^{2-} + 2 \text{CH}_2\text{O} \rightarrow \text{HS}^- + 2 \text{HCO}_3^- + \text{H}^+
 \]

 \[
 \text{S}^{2-} + \text{Me}^{2+} \rightarrow \text{MeS(s)} \text{ and } \text{HS}^- + \text{Me}^{2+} \rightarrow \text{MeS(s)} + \text{H}^+
 \]

 – See Angela Frandsen’s Talk; Section 10 @ 1:30 Today
Treatability Study Flow Diagram

NOTE:
AUGUST 8, DISCHARGE TUBING LOWERED TO BE 25° ABOVE BOTTOM OF BARREL

FORMOSA MINE SUPERFUND SITE
DOUGLAS COUNTY, OREGON

Figure 1-2
Pilot-Scale Treatability Study
Process Flow Diagram (Record Drawing)
AUGUST 2013
Composition

<table>
<thead>
<tr>
<th>Substrate Mix</th>
<th>Volume (gallon)</th>
<th>Substrate Mix</th>
<th>Volume (gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Treatment ChitoRem®</td>
<td></td>
<td>Pre-Treatment SAPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>--</td>
<td>12.50</td>
<td>4.38</td>
</tr>
<tr>
<td>Fresh dairy manure</td>
<td>--</td>
<td>12.50</td>
<td>4.38</td>
</tr>
<tr>
<td>Limestone chips 3/4-inch to 1.5-inch</td>
<td>--</td>
<td>75.00</td>
<td>26.25</td>
</tr>
<tr>
<td>3/4-inch inert gravel</td>
<td>--</td>
<td>7.50</td>
<td>7.50</td>
</tr>
<tr>
<td>ChitoRem®</td>
<td>40</td>
<td>14.00</td>
<td>--</td>
</tr>
<tr>
<td>Construction sand</td>
<td>40</td>
<td>21.00</td>
<td>--</td>
</tr>
<tr>
<td>Inert pea gravel</td>
<td>20</td>
<td>7.00</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>49.50</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Composition

<table>
<thead>
<tr>
<th>Composition</th>
<th>Woody Material Mixture</th>
<th>ChitoRem® and Sand Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Substrate Mix (v/v Percent)</td>
<td>Volume (gallon)</td>
</tr>
<tr>
<td>Sawdust</td>
<td>15.00</td>
<td>5.25</td>
</tr>
<tr>
<td>Wood chips</td>
<td>30.00</td>
<td>10.50</td>
</tr>
<tr>
<td>Compost</td>
<td>15.00</td>
<td>5.25</td>
</tr>
<tr>
<td>Fresh dairy manure</td>
<td>20.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Limestone chips 3/4-inch to 1.5-inch</td>
<td>20.00</td>
<td>7.00</td>
</tr>
<tr>
<td>3/4-inch inert gravel</td>
<td>--</td>
<td>7.50</td>
</tr>
<tr>
<td>ChitoRem®</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Construction sand</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inert pea gravel</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>42.50</td>
</tr>
</tbody>
</table>

Treatability Study Flow Diagram

FORMOSA MINE SUPERFUND SITE
DOUGLAS COUNTY, OREGON

Figure 1-2

Plot-Scale Treatability Study
Process Flow Diagram

CDM Smith

August 2013
Mercury Results

Trace Mercury (EPA 1631) ~ 2 months

Formosa Treatability Study
Mercury Results (Continued)

Methyl Mercury (EPA 1630) ~2 months

SC-20 pH: 3.26 6.36 6.25 6.34

MeHg
Formosa Mercury Evaluation Summary

• All SC-20 BCRs Increased THg and MeHg
 – THg Increased by 10 to 20 ng/L
 – MeHg Increased by 1 to ~3 ng/L

• THg Potentially Sourced from Media
 – Crab Hg Body Burden ~ 0.16 mg/kg

• MeHg From Release Or Generation
 – Potential Resident Source:
 • Aquatic Organisms Typically Enriched in MeHg
 – Potential MeHg Generation from Resident and Influent Hg(II)
 • Evidence of SRB Activity
 – ORP, Sulfide, Volatile Fatty Acids
ORD Bench Top Study

Influent and Column Specifics
24 hr Hydraulic Residence Time

- Column 1: SC-20 (140 g) + sand (420 g) – Pretreated MIW
- Column 2: Wood Chips (253 g) + Hay (17 g) + Manure (4 g) – Pre
- Column 3: SC-20 (140 g) + Sand (420 g) – Raw MIW
- Column 4: Wood Chips (253 g) + Hay (17 g) + Manure (4 g) – Raw
- Column 5: SC-20 (140 g) + Sand (420 g) – Na Azide Raw MIW
- Column 6: Sand (420 g) – Na Azide Raw MIW
Total Filtered Mercury: 31 and 34 Weeks into Test

- Dissolved Fraction (<0.45 um) Comparable to Field Study
 - Fraction Most Available for Methylation
- Raw FMW Columns ~ GLI 1.3 ng/L
- PreTreat Columns < GLI 1.3 ng/L
- Na Azide Columns >> GLI 1.3 (With Elevated Hg Influent)
Methylmercury 31 and 34 Weeks into Test

Evidence of SRB Activity:
- SRB Lab Test: (+) In Raw and Pretreat Columns
- Elevated Volatile Fatty Acid In Raw and Pretreat Columns
- pH Elevated in Raw and Pretreat Columns
- ORP Depressed in Raw and Pretreat Columns

Data Provided by EPA ORD Laboratory
Bench Top Study Observations

- SC-20 Pretreated: THg and MeHg Maintained Below Levels of Concern (1.3 ng/L for THg GLI & 0.06 ng/L for MeHg CWCB)

- SC-20 Effluent (Raw & Na Azide) ~75% MeHg in Dissolved Fraction

- Natural Production of MeHg Typically ~5% of Total

- MeHg as THg
 - Raw FMW: 0.4 to 0.5
 - Pretreat: 0.08
 - Na Azide: 0.5 to 0.6
Key Difference Between Lab and Field Test

• Duration:
 – Field Test Sampled One Time ~2 Months Into Test
 – Lab Test Sampled Twice, at 7 and 8 Months Into Test

• Flow Consistency:
 – Field Test Flow Decreased Over Time
 • Much of Media Left Unreacted
 – Lab Test Flow Remained Consistent

• Variability of Mercury Concentrations in Influent
 – Formosa Adit Stable
 • ~ 2 ng/L
 – ORD Laboratory Influent
 • Range 1.1 to 9.6 ng/L
General Conclusions

• Effect on Total Mercury
 – Field Test: THg Increased in all SC-20 BCRs
 – Lab Test: THg Decreased in all Columns

• MeHg in SC-20 Effluent Elevated relative to Influent
 – Two Possible Explanations
 • SRB Activity Methylate Hg(II) to MeHg, or
 • Resident MeHg Released from Media

• Need for More In Depth Evaluation to Quantify and Understand Mercury Dynamics Associated with the Application of SC-20 in MIW Applications
Recommendations for Further Study

• Fully Quantify Resident Mercury Concentration and Speciation in BCR Media
 – Both SC-20 and Sand

• Evaluate Conditions that Promote Mercury Release from BCR Media

• Evaluate Conditions that Promote Methylation of Hg(II)
 – From Influent Source
 – From Resident Source
Acknowledgements

- Formosa Treatability Study:
 - Performed by CDM Smith Federal Programs: Task Order 047 for Architectural and Engineering Services (AES10) Contract Number 68-S7-03-04

- ORD Bench Top Study:
 - Mercury Component Funded by the Superfund and Technology Liaison Extramural Funding (2013); Project Code TEC-961J,L,M

- EPA Contributors
 - Chris Cora, Project RPM, EPA Region 10, Seattle, WA;
 - Chris Eckley, PhD, Mining Geochemist, EPA Region 10, Seattle, WA;
 - Souhail Al-Abed, PhD, Work Assignment Manager, EPA Region 5, Cincinnati, OH;
 - Kira Lynch, Environmental Scientist, Region 10, Seattle, WA;
 - John McKernan, Director of Engineering Technical Support Center, Region 5, Cincinnati, OH

- CDM Smith Contributors
 - Mike Allen, Project PM
 - Nicholas R. Anton, PE, Environmental Engineer, Denver, CO;
 - David J. Reisman, Sr. Environmental Scientist, Cincinnati, OH
Questions?

Contact Info

Stephen Dent, PhD

Cell: 971-201-6976
Office: 503-205-7419

e-mail: dentsr@cdmsmith.com