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APPENDIX A

SENSITIVITY ANALYSIS: HOW DO WE KNOW WHAT’S IMPORTANT?

A.0 INTRODUCTION

Sensitivity analysis, as it is applied to risk assessment, is any systematic, common sense
technique used to understand how risk estimates and, in particular, risk-based decisions, are dependent on
variability and uncertainty in the factors contributing to risk.  In short, sensitivity analysis identifies what
is “driving” the risk estimates.  It is used in both point estimate and probabilistic approaches to identify
and rank important sources of variability as well as important sources of uncertainty.  The quantitative
information provided by sensitivity analysis is important for guiding the complexity of the analysis and
communicating important results (see Chapter 6).  As such, sensitivity analysis plays a central role in the
tiered process for PRA (see Chapter 2).  This Appendix focuses on a set of graphical and statistical
techniques that can be used to determine which variables in the risk model contribute most to the
variation in estimates of risk.  This variation in risk could represent variability, uncertainty, or both,
depending on the type of risk model and characterization of input variables. 

There is a wide array of analytical methods that may be referred to as sensitivity analysis, some of
which are very simple and intuitive.  For example, a risk assessor may have two comparable studies from
which to estimate a reasonable maximum exposure (RME) for childhood soil ingestion.  One approach to
evaluating this uncertainty would be to calculate the corresponding RME risk twice, each time using a
different plausible point estimate for soil ingestion rate.  Similarly, in a probabilistic model, there may be
uncertainty regarding the choice of a probability distribution.  For example, lognormal and gamma
distributions may be equally plausible for characterizing variability in an input variable.  A simple
exploratory approach would be to run separate Monte Carlo simulations with each distribution in order to
determine the effect that this particular source of uncertainty may have on risk estimates within the RME
range (90th to 99.9th percentile, see Chapter 1). 

 Sensitivity analysis can also involve more complex mathematical and statistical techniques such
as correlation and regression analysis to determine which factors in a risk model contribute most to the
variance in the risk estimate.  The complexity generally stems from the fact that multiple sources of
variability and uncertainty are influencing a risk estimate at the same time, and sources may not act
independently.  An input variable contributes significantly to the output risk distribution if it is both
highly variable and the variability propagates through the algebraic risk equation to the model output (i.e.,
risk).  Changes to the distribution of a variable with a high sensitivity could have a profound impact on
the risk estimate, whereas even large changes to the distribution of a low sensitivity variable may have a
minimal impact on the final result.  Information from sensitivity analysis can be important when trying to
determine where to focus additional resources.  The choice of technique(s) should be determined by the
information needs for risk management decision making.

This appendix presents guidance on both practical decision making and theoretical concepts
associated with the sensitivity analysis that are commonly applied in risk assessment.  An overview of the
type of information provided by sensitivity analysis is presented first, followed by guidance on how to
decide what method to use in each of the tiers.  A straightforward example of applications of Tier 1 and
Tier 2 sensitivity analysis methods is shown, followed by a more detailed discussion of the theory and
equations associated with the different methods.
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EXHIBIT A-1

DEFINITIONS FOR APPENDIX A

Continuous Variables - A random variable that can assume any value within an interval of real numbers (e.g., body
weight).

Correlation - A quantitative expression of the statistical association between two variables; usually represented by the
Pearson correlation coefficient for linear models, and the Spearman rank correlation coefficient (see below) for
nonlinear models.

Discrete Variables - A random variable that can assume any value within a finite set of values (e.g., number of visits to a
site in one year) or at most a countably infinite set of values, meaning that you can count observations, but there is no
defined upper limit.  An example of countably infinite would be the number of dust particles in a volume of air (a
Poisson distribution), whereas uncountably infinite would be the number of points in a line segment.

Local Sensitivity Analysis - Evaluation of the model sensitivity at some nominal points within the range of values of input
variable(s).

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - The process of repeatedly sampling from probability
distributions to derive a distribution of outcomes.  MCA is one of several techniques that may be used in PRA.

Multiple Regression Analysis - A statistical method that describes the extent, direction, and strength of the relationship
between several (usually continuous) independent variables (e.g., exposure duration, ingestion rate) and a single
continuous dependent variable (e.g., risk).

Nonparametric Tests - Statistical tests that do not require assumptions about the form of the population probability
distribution.

Range Sensitivity Analysis - Evaluation of the model sensitivity across the entire range of values of the input variable(s).
Rank - If a set of values is sorted in ascending order (smallest to largest), the rank corresponds to the relative position of a

number in the sequence.  For example, the set {7, 5, 9, 12} when sorted gives the following sequence {5, 7, 9, 12}
with ranks ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12 is 4). 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values
of the model’s input(s).  Sensitivity analysis attempts to provide a ranking of the model inputs based on their relative
contributions to model output variability and uncertainty.  Common metrics of sensitivity include:
< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of linear association

between the values of two quantitative variables.  The square of the coefficient (r2) is the fraction of the variance
of one variable that is explained by least-squares regression on the other variable, also called the coefficient of
determination..

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called elasticity.
< Sensitivity Score - A sensitivity ratio that is weighted by some characteristic of the input variable (e.g., variance,

coefficient of variation, range).
< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic r that measures

the strength and direction of association between the ranks of the values (not the values themselves) of two
quantitative variables.  See Pearson (above) for r2.
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EXHIBIT A-2

UTILITY OF SENSITIVITY ANALYSIS

C Decision making with the tiered approach-
e.g., After quantifying parameter uncertainty,
we are 95 percent confident that the RME risk
is below the risk level of concern— no further
analysis is needed.  Also—selection of a beta
distribution over a lognormal distribution for
ingestion rate changes the 95th percentile of
the risk distribution by a factor of 10—further
evaluation may be needed.

C Resource allocation - e.g., Two of the 10
exposure variables contribute 90 percent of
the variability in the risk estimate.

C Risk communication - e.g., For input
variable X, if we were to use a distribution
based on site-specific data instead of a
national survey, we would expect a minimal
change in the RME risk estimate.

A.1.0 UTILITY OF SENSITIVITY ANALYSIS

As highlighted in Exhibit A-2, sensitivity
analysis can provide valuable information for both risk
assessors and risk management decision makers
throughout the tiered process for PRA.  By
highlighting important sources of variability and
uncertainty in the risk assessment, sensitivity analysis
is generally an important component of the overall
uncertainty analysis.  For example, methods that
quantify parameter uncertainty and model uncertainty
may yield different estimates of the RME risk.  This
information can be used to guide the tiered process by
supporting decisions to conduct additional analyses or
prioritize resource allocations for additional data
collection efforts.  Results of sensitivity analysis can
also facilitate the risk communication process by
focusing discussions on the important features of the
risk assessment (e.g., constraints of available data,
state of knowledge, significant scientific issues, and
significant policy choices that were made when
alternative interpretations of data existed). 

Decision Making with the Tiered Approach

In general, the type of information provided by a sensitivity analysis will vary with each tier of a
PRA.  Table A-1 provides an overview of the methods that may be applied in each tier based on the type
of information needed.  In Tier 1, sensitivity analysis typically involves changing one or more input
variables or assumptions and evaluating the corresponding changes in the risk estimates.  Ideally, the
results for Tier 1 would be useful in deciding which exposure pathways, variables, and assumptions are
carried forward for further consideration in subsequent tiers of analysis.  By identifying the variables that
are most important in determining risk, one can also decide whether point estimates, rather than
probability distribution functions (PDFs), can be used with little consequence to the model output.  This
information is important not only for designing 1-D MCA models of variability, but also for designing
more complex analyses of uncertainty discussed in Appendix D (e.g., 2-D MCA models, geostatistical
analysis, Bayesian analysis).  Section A.2.2 provides an overview of the Tier 1 methods and some
insights regarding their limitations.  Methods associated with Monte Carlo simulations used in Tiers 2 and
3 can take advantage of the ability to vary multiple inputs simultaneously and account for correlations. 
Sections A.2.3 and A.3 provide an overview of the sensitivity analysis methods that can be applied in a
probabilistic analysis.
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Table A-1.  Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 of a PRA.

Tier Goal SA Method(s) What to Look For Rationale

1 Quantify contributions of
each exposure pathway to
risk, identify major and
minor pathways

Calculate % of total risk
from each exposure
pathway

Exposure pathways that
contribute a very small
percentage (e.g., < 5%) to
total risk

Good preliminary step in Tier 1 for reducing the number of
exposure variables to focus on in subsequent tiers. 

Exposure variables that
appear in multiple
exposure pathways

Risk estimates are likely to be more sensitive to variables that
appear in multiple exposure pathways.

1 Identify the form of the
dose equation for key
pathways 

Inspection Equation is multiplicative
or additive

SR values can be determined with minimal effort (see
Table A-3).  For multiplicative equations, SR=1.0 for all
variables in the numerator, and SR is a function of the percent
change for all variables in the denominator. 

Equation contains
variables with exponents
(e.g., powers, square
roots)

Output is likely to be more sensitive to variables with
exponents greater than 1.0.

1 Quantify contributions of
each exposure variable to
total risk, identify major
and minor variables

Sensitivity Ratio (SR),
unweighted

SR = 1.0, or SR is the
same for multiple
variables

It’s likely that this is a multiplicative equation (see above), and
the SR approach will not be effective at discriminating among
relative contributions.  Explore sensitivity further with other
methods.

SR … 1.0 SR may vary as a function of the % change in the input
variable.  In this situation, it can be informative to explore
small deviations (± 5%) and large deviations (min, max) in the
input variables.  

SR < 1.0 Implies an inverse relationship between the input and output
variables (e.g., inputs in the denominator of a risk equation).



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
 Appendix A ~ December  31, 2001

Table A-1.  Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 of a PRA.

Tier Goal SA Method(s) What to Look For Rationale

Page A-5 

SR=0 Variable probably appears in both the numerator and
denominator and, therefore, cancels out of the risk equation. 
Examples include exposure duration (ED) in noncancer risk
equations, and body weight (BW) if ingestion rate is expressed
as a function of body weight. 

1 (cont’d) Quantify
contributions of each
exposure variable to total
risk

Sensitivity Ratio (SR),
weighted—also called
Sensitivity Score

Differences in SR based
on the weighting factor

A more informative approach than unweighted SR value for
those variables that have sufficient information to define a
weighting factor (e.g., coefficient of variation or range).

2 Quantify relative
contributions of exposure
pathways to risk

1-D MCA for variability
or uncertainty, with
outputs specifying %
contribution of exposure
pathways

Compare mean with high-
and low-end percentiles
of % contribution to risk

The % contribution of each exposure pathway will vary as a
function of the variability (or uncertainty) in the inputs;
exposure pathways that appear to be relatively minor
contributors on average, or from Tier 1 assessment, may in fact
be a major contributor to risk under certain exposure scenarios. 
The likelihood that a pathway is nonnegligible (e.g., > 5%) can
be useful information for risk managers.

2 Quantify relative
contributions of exposure
variables to risk

1-D MCA for variability
or uncertainty, Graphical
analysis— scatterplots
of inputs and output

Nonlinear relationship Easy and intuitive approach that may identify relationships that
other methods could miss.  May suggest transformations of
input or output variables (e.g., logarithms, power
transformations) that would improve correlation and regression
analyses.

1-D MCA, Correlation
Analysis using Pearson
and /or Spearman Rank 

Very high or low
correlation coefficients

Differences between
relative rankings based on
Pearson and Spearman

Easy to implement with commercial software; rank orders the
variables based on the average contribution to variance. 
Differences in magnitude of coefficients are expected between
Pearson and Spearman rank approaches, but relative order of
importance is likely to be the same.
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1-D MCA, Multiple
Linear Regression
Analysis (e.g., stepwise)

Very high or low
regression coefficients

R2 and adjusted R2 for
total model

Easy to implement with commercial software; gives
contribution to reduction in residual sum of squares (RSS)

For risk equations with large sets of input variables, a small
subset of inputs may be able to explain the majority of the
variance.

2 Quantify relative
contributions of exposure
variables to RME risk
range

1-D MCA; same as
previous step, but for
subset of risk
distribution (e.g., > 90th

percentile)

Difference in relative
contributions for entire
risk distribution and the
RME range of the risk
distribution

Variables may contribute differently to the high-end of the risk
distribution, especially if the input variables are highly skewed. 
This situation would warrant a closer look at the assumptions
regarding the estimate of the variance, differences in the upper
tail (high-end percentiles) for alternative choices of probability
distributions, and assumptions associated with truncation limits.

1-D MCA, Goodness-of-
fit, K-S or Chi-square;
Sort output as above;
perform GoF on input
distribution only,
comparing subset of
input values
corresponding with
high-end risk to subset
corresponding with
remainder of risk
distribution 

GoF result—rejection of
null (distributions are the
same) suggests the
variable may be an
important contributing
factor to the RME risk
estimate

A second method for identifying variables that contribute
differently at the high-end of the risk distribution.  GoF test
results should be interpreted with caution because a Monte
Carlo simulation will generally yield large sample sizes (e.g.,
n=5,000 iterations), which is more likely to result in a positive
GoF test (i.e., rejection of the null).

3 Quantify relative
contributions of exposure
pathways and variables to
variability and
uncertainty in risk

2-D MCA, same
sensitivity analysis
methods as Tier 2

For variability, evaluate
inner loop values; for
parameter uncertainty,
evaluate outer loop values

The results of a sensitivity analysis depend on the question that
is being asked about the risk estimate—are we interested in
variability or uncertainty?  The major sources of variability in
risk may point to a different set of input variables than the
major sources of uncertainty in risk.
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Resource Allocation

Decisions regarding allocation of future resources and data collection efforts to reduce lack of
knowledge generally should take into consideration the most influential input factors in the model, and
the cost of gaining new information about the factors.  Sensitivity analysis is a key feature of determining
the expected value of information (EVOI) (see Appendix D).  Once a sensitivity analysis is used to
identify an input variable as being important, the source of its variability generally should be determined. 
If an input factor has a significant uncertainty component, further research and/or data collection can be
conducted to reduce this uncertainty.  Reducing major sources of uncertainty, such as the most relevant
probability model for variability or the parameter estimates for the model, will generally improve
confidence in the model output, such as the estimated 95th percentile of the risk distribution.  An input
factor may contribute little to the variability in risk, but greatly to the uncertainty in risk (e.g., the
concentration term).  Likewise, a variable may contribute greatly to the variability in risk, but, because
the data are from a well characterized population, the uncertainty is relatively low (e.g., adult tap water
ingestion rate).

An example of the output from a 2-D MCA of uncertainty and variability (see Appendix D) is
shown in Figure A-1.  Assume for this example that the decision makers choose the 95th percentile risk as
the RME risk, and that a sensitivity analysis is run to identify and quantitatively rank the important
source(s) of parameter uncertainty.  The bar chart (top panel) in Figure A-1 indicates that the mean soil
concentration contributes most to the uncertainty in the 95th percentile risk estimate.  In addition, the
mean exposure frequency is a greater source of uncertainty than the standard deviation exposure
frequency.  Since both the sample size and variance impact the magnitude of the confidence limits for an
arithmetic mean soil concentration, one way to reduce the confidence limits (i.e., the uncertainty) would
be to collect additional soil samples.  As shown by the box-and-whisker plots (bottom panel) in
Figure A-1, increasing the sample size (from n=25 to n=50) reduced the 90% confidence limits for the
95th percentile risk to below 1E-05, assuming the additional observations support the same estimate of the
mean and standard deviation as the original sample.

Although the uncertainty in a risk estimate can be reduced by further data collection if the
sensitive input distribution represents uncertainty, this is not necessarily true for input distributions that
represent variability.  For example, variability in the distribution of body weights can be better
characterized with additional data, but the coefficient of variation (i.e., standard deviation divided by the
mean) will not in general be reduced.

Risk Communication

Even if additional data are not collected to reduce uncertainty, identifying the exposure factors
that contribute most to risk or hazard may be useful for risk communication.  For example, assume that
the input for exposure frequency has the strongest effect on the risk estimate for a future recreational open
space.  Further examination of this exposure variable reveals that the wide spread (i.e., variance) of the
PDF is a result of multiple users (e.g., mountain bikers, hikers, individuals who bring picnics, etc.) of the
open space who may spend very different amounts of time recreating.  As a result of this analysis, the
decision makers and community may decide to focus remediation efforts on protecting the high-risk
subpopulation that is expected to spend the most time in the open space.

After determining which contaminants, media, and exposure pathways to carry into a PRA,
numerical experiments generally should be performed to determine the sensitivity of the output to various
distributions and parameter estimates that may be supported by the available information.  Variables that
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do not strongly affect the risk estimates may be characterized with point estimates without significantly
altering the risk estimates.  This guidance document does not recommend a quantitative metric or rule of
thumb for determining when a variable strongly affects the output; this would generally be determined on
a case-by-case basis.  A qualitative or quantitative analysis may be used depending on the complexity of
the risk assessment at this point.  For example, incidental ingestion of soil by children is often an
influential factor in determining risk from soil, a factor recognized by risk assessors.  This recognition is a
de facto informal sensitivity analysis.  An array of quantitative techniques is also available, ranging from
something as simple as comparing the range of possible values (i.e., maximum-minimum) for each
variable, to more complex statistical methods such as multiple regression analysis.  Several of these
methods are discussed in more detail in this appendix.

Often, sufficient information is available to characterize a PDF for a minor variable without
significant effort.  This situation raises a question of whether the variable should be characterized with a
point estimate or a PDF.  The results of sensitivity analysis should be viewed as supplemental
information, rather than an absolute rule for determining when to use a PDF.  There are at least two issues
to consider related to risk communication.  First, the risk communication process may be facilitated by
narrowing the focus of the evaluation to the key factors.  More attention can be given to the discussion of
key variables quantified by PDFs by describing the minor variables with point estimates.  However, the
decision to use a point estimate should be balanced by considering a second issue regarding perception
and trust.  There may be a concern that by reducing sources of variability to point estimates, there would
be a reduction (however small) in the variability in risk, especially if multiple small sources of variability
add up to a nonnegligible contribution.  To address these concerns, it may be prudent to leave the PDFs in
the calculations despite the results of a sensitivity analysis.
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Figure A-1.  Results of 2-D MCA in which parameters of input distributions describing variability are assumed
to be random values.  Results of a sensitivity analysis (top graph) suggest that more than 50% of the uncertainty
in the 95th percentile of the risk distribution is due to uncertainty in the arithmetic mean concentration in soil. 
The bottom graph gives box-and-whisker plots for the 95th percentile of the risk distribution associated with
Monte Carlo simulations using different sample sizes (n=25 and n=50).  For this example, the whiskers represent
the 5th and 95th percentiles of the distribution for uncertainty, otherwise described as the 90% confidence interval
(CI).  For n=25, the 90% CI is [1.0E-06, 2.2E-05]; for n=50, the 90% CI is reduced to [1.2E-06, 9.5E-06].  While
increasing n did not change the 50th percentile of the uncertainty distribution, it did provide greater confidence
that the 95th percentile risk is below 1x10-5.
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EXHIBIT A-3

SOME KEY INDICES OF SENSITIVITY ANALYSIS 

C Relative contribution of exposure pathways
C Inspection of risk equation
C Sensitivity ratios (i.e., elasticity)
C Sensitivity scores (i.e., weighted sensitivity

ratios)
C Graphical techniques with results of Monte

Carlo simulations (e.g., scatter plots)
C Correlation coefficient (or coefficient of

determination, r2) (e.g., Pearson product
moment, Spearman rank)

C Normalized multiple regression coefficient
C Goodness-of-fit test for subsets of the risk

distribution

A.2.0 COMMON METHODS OF SENSITIVITY ANALYSIS

Of the numerous approaches to sensitivity
analysis that are available (see Exhibit A-3), no single
approach will serve as the best analysis for all
modeling efforts.  Often, it will make sense to apply
multiple approaches.  The best choice(s) for a
particular situation will depend on a number of
factors, including the nature and complexity of the
model and the resources available.  A brief description
of the more common approaches is provided in this
appendix.  Sensitivity analysis need not be limited to
the methods discussed in this guidance, which focuses
on the more common approaches.  A large body of
scientific literature on various other methods is
available (e.g., Iman et al., 1988, 1991; Morgan and
Henrion, 1990; Saltelli and Marivort, 1990; Rose et
al., 1991; Merz, Small, and Fischbeck, 1992;
Shevenell and Hoffman 1993; Hamby, 1994; U.S.
EPA, 1997).  Any method used, however, generally
should be documented clearly and concisely.  This
includes providing all information needed by a third
party to repeat the procedure and corroborate the
results.  Relevant information might include the following: exposure pathways and equations; a table with
the input variables with point estimates, probability distributions and parameters; and tables or graphs
giving the results of the sensitivity analysis and description of the method used.  A hypothetical example
is presented in this appendix to illustrate how to apply and present the results of selected approaches to
sensitivity analysis.

Hypothetical Example of a Noncancer Risk Equation

To illustrate the application of sensitivity analysis concepts to Tier 1 and Tier 2, a hypothetical
risk assessment is presented based on the general equation for Hazard Index (HI) given by Equation A-1. 
Note that HI is equal to the sum of the chemical-specific Hazard Quotient (HQ) values, so technically,
this example reflects exposures from a single chemical.

HI
C I AF EF ED

BW AT RfD
i i i=
× × × ×

×
×

1
Equation A-1

The terms in Equation A-1 can be defined as follows: concentration in the ith exposure medium (Ci),
ingestion or inhalation rate of the ith exposure medium (Ii), absorption fraction of chemical in the ith

exposure medium (AFi ), exposure duration (ED), exposure frequency (EF), body weight (BW), averaging
time (AT=ED x 365 days/year), and reference dose (RfD).  

For this example, HI is calculated as the sum of the exposures to adults from two exposure
pathways: tap water ingestion and soil ingestion.  Equation A-2 gives the equation for HI while Table A-2
gives the inputs for a point estimate assessment and a probabilistic assessment of variability.  
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HI C I AF C I AF EF ED
BW AT RfD

w w w s s s=
× × + × × × ×

×
×

(( ) ( )) 1
Equation A-2

Table A-2.  Point estimates and probability distributions for input variables used in the hypothetical example of HI
associated with occupational exposure via water and soil ingestion. 

Input Variable
in Equation A-2

Point Estimate Probability Distribution
Units

CTE RME Type Parameters

Concentration in Water (C_w) 40 40 point estimate 40 mg/L

Tap Water Ingestion Rate (I_w) 1.3 2.0 lognormal1 [1.3, 0.75] L/day

Absorption Fraction Water (AF_w) 0.30 0.50 beta2 [2.0, 3.0] unitless

Concentration in Soil (C_s) 90 90 point estimate 90 mg/kg

Soil Ingestion Rate (I_s) 0.05 0.10 uniform [0, 0.13] kg/day

Absorption Fraction Soil (AF_s) 0.10 0.30 beta2 [1.22 , 4.89] unitless

Exposure Frequency (EF) 250 350 triangular [180, 250, 350] days/yr

Exposure Duration (ED) 1 7 empirical3 see below years

Body Weight (BW) 75 75 lognormal1 [74.6, 12.2] kg

Averaging Time (AT) 365 2555 empirical4 ED x 365 days

RfDoral
5 0.5 0.5 point estimate 0.5 mg/kg-day

1Parameters of lognormal distribution are [arithmetic mean, standard deviation].
2Parameters of beta distribution are [alpha, beta], with range defined by min=0 and max=1.0.  Parameter conversions for
arithmetic mean and standard deviation are given in Table A-7.
3Parameters of empirical cumulative distribution function (ECDF) for ED ~ [min, max, {x}, {p}] = [0, 30, {0.08, 0.18, 0.30,
0.44, 0.61, 0.84, 1.17, 1.72, 3.1, 6.77, 14.15, 23.94}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99}], where x is the
array of values and p is the array of corresponding cumulative probabilities.
4AT=ED x 365 for noncarcinogenic risks (Hazard Index).
5For simplicity, RfDoral is assumed to be applicable to the ingestion of the chemical in both water and soil.

A.2.1 TIER 1 APPROACHES

Approaches for sensitivity analysis in Tier 1 of a PRA are limited to calculations that are based
on changing point estimates.  They are generally easy to perform and to communicate.  As given by Table
A-1, goals for the sensitivity analysis in Tier 1 include quantifying the relative contributions of the
exposure pathways, identifying potential nonlinear relationships that may exist between input variables
and the risk estimate, and rank ordering the relative contribution of exposure variables to variability or
uncertainty in the risk estimate.  This last goal may be the most difficult to achieve due to the limitations
associated with the point estimate methodology.  Methods are applied to the hypothetical example
presented above (Section A.2.0) in order to demonstrate the inherent limitations of the Tier 1 approaches
in some situations.
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A.2.1.1 PERCENTAGE CONTRIBUTION OF EXPOSURE PATHWAYS TO TOTAL RISK

For cancer and noncancer risk assessments central tendency exposure (CTE) and RME risk is
typically calculated as the sum of risks from multiple exposure pathways.  Risks may be dominated by
one or two exposure pathways, which can be determined through a simple calculation as shown below. 
The relative contributions of exposure pathways are likely to differ between the CTE risk and RME risk.

The point estimates in Table A-2 were applied to Equation A-2 to obtain CTE and RME point
estimates of HI.  Table A-3 gives the percent contributions of soil ingestion and tap water ingestion using
Equations A-3 and A-4.  Tap water ingestion contributes at least 90% to HI, and the total HI is greater
than 1.0 for both CTE and RME point estimates.  If 1.0 is the level of concern for HI, and a decision was
made to explore variability and uncertainty in a probabilistic analysis, this result might support
prioritizing the evaluation of data and assumptions associated with the tap water ingestion pathway. 

Table A-3.  Percent contribution of exposure pathways to HI for the example in Section A.2.

Exposure 
Pathway

CTE Point Estimate RME Point Estimate

HI  % of total2 HI % of total

Soil Ingestion 0.02 6 % 0.15 13 %

Tap Water Ingestion 0.28 94 % 1.02 87 %

 Total 0.30 100 % 1.17 100 %

1Equation A-3:  HItotal = HIsoil + HIwater
2Example using Equation A-4: % of total RME HI for soil ingestion = (0.15 / 1.17) x 100% = 13%.

Equation A-3HI HItotal i
i

n

=
=
∑

1

Equation A-4Percent Contribution
HI

HIi
i

total
= × 100%

In this example, the choice of CTE and RME point estimates reflects an effort to explore
variability in HI, rather than uncertainty.  Even if the concentration terms represent the upper confidence
limit on the mean (e.g., 95% UCL), the point estimates chosen to represent the CTE and RME for other
exposure variables reflect assumptions about the variability in exposures.  There is uncertainty that the
choices actually represent the central tendency and reasonable maximum exposures.  To explore this
uncertainty, alternative choices for CTE and RME may have been selected.  This type of exploration of
uncertainty in Tier 1 may also be viewed as a form of sensitivity analysis.  The percent contribution of
exposure pathways could be recalculated, and the sensitivity ratio approaches discussed below may also
be applied.
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A.2.1.2 INSPECTION OF RISK EQUATION

For many Superfund risk assessments, risk equations can be characterized as relatively simple
algebraic expressions involving addition, multiplication, and division of input variables.  The term
“product-quotient” model is often applied to describe equations such as Equation A-1.  For these risk
equations, the input variables that are likely to contribute most to the variability or uncertainty in risk can
be identified by inspection.  In addition, inspection of the risk equation can help to identify which
sensitivity analysis methods are unlikely to reveal the relative importance of the input variables.  This
concept is illustrated by comparing the results of the sensitivity ratio approach (Section A.2.1.3) with the
Tier 2 approaches (Section A.2.2) applied to the hypothetical example in Section A.2.0.

Some risk equations can be more complex, involving conditional probabilities, or expressions
with exponents (e.g., y=x2, or y=exp(1- x)).  In these cases, the Tier 1 sensitivity analysis methods may be
effective and highlighting the variables that contribute most to the risk estimates. 

A.2.1.3 SENSITIVITY RATIO (SR)

A method of sensitivity analysis applied in many different models in science, engineering, and
economics is the Sensitivity Ratio (SR), otherwise know as the elasticity equation.  The approach is easy
to understand and apply.  The ratio is equal to the percentage change in output (e.g., risk) divided by the
percentage change in input for a specific input variable, as shown in Equation A-5. 

Equation A-5SR

Y Y
Y

100%

X X
X

100%

2 1

1

2 1

1

=

−







 ×

−







 ×

where, Y1 = the baseline value of the output variable using baseline values of input variables
Y2 = the value of the output variable after changing the value of one input variable
X1 = the baseline point estimate for an input variable
X2 = the value of the input variable after changing X1

Risk estimates are considered most sensitive to input variables that yield the highest absolute value for
SR.  The basis for this equation can be understood by examining the fundamental concepts associated
with partial derivatives (see Section A.3.2).  In fact, SR is equivalent to the normalized partial derivative
(see Equation A-12).  

Sensitivity ratios can generally be grouped into two categories—local SR and range SR.  For the
local SR method, an input variable is varied by a small amount, usually ±5% of the nominal (default)
point estimate, and the corresponding change in the model output is observed.  For the range sensitivity
ratio method, an input variable is varied across the entire range (plausible minimum and maximum
values).  Usually, the results of local and range SR calculations are the same.  When the results differ, the
risk assessor can conclude that different exposure variables are driving risk near the high-end (i.e.,
extreme tails of the risk distribution) than at the central tendency region.
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Demonstration of the Limitations of SR Approach

Although SR is a relatively simple and intuitive approach, it does not provide useful information
under certain conditions for the more common risk equations.  To demonstrate the limitations, first
Equation A-5 is applied to the hypothetical example given in Section A.2.0.  The results are then
extended to a more general case of any of the more common risk models that involve the products of
terms (i.e., multiplicative model) or the sum of terms (i.e., additive model).

Table A-4 presents an example of the local SR and range SR approach applied to the set of RME
inputs given in Table A-2.  For the local SR, each input was increased by 5% (i.e., )=+5%), while for the
range SR, each input was increased by 50%.  Inputs for exposure frequency were truncated at the
maximum value of 365 days/year, which represents a 4.29% increase over the nominal RME value of
350 days/year.  

Table A-4.  Results of the Sensitivity Ratio (SR) approach applied to the hypothetical example of RME HI given in
Section A.2.0.  Includes both soil ingestion and tap water ingestion pathways.

Input Variable , X
in Equation A-21

Nominal 
RME

value (X1)

Local SR 
() = + 5.0%)

Range SR 
() = + 50% or max)

X2
) in HI

(%) SR X2
) in HI

(%) SR

Tap Water Ingestion Rate, I_w
(L/day)

2.0 2.1 4.35 0.87 3.0 43.5 0.87

Absorption Fraction Water,
AF_w (unitless)

0.50 0.525 4.35 0.87 0.75 43.5 0.87

Soil Ingestion Rate, I_s (kg/day) 0.100 0.105 0.65 0.13 0.150 6.5 0.13

Absorption Fraction Soil, AF_s
(unitless)

0.30 0.315 0.65 0.13 0.45 6.5 0.13

Exposure Frequency, EF 
(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW (kg) 75 78.75 - 4.46 - 0.89 112.5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time
is a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
< In decreasing order of sensitivity:

Local SR () = 5%) rankings: EF > BW > I_w = AF_w > I_s = AF_s > ED 

Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< EF is the most sensitive variable with an SR value of 1.0.  Since EF is a variable in the numerator
for both exposure pathways, this result is to be expected, as will be explained below.
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< ED yields an SR=0, suggesting it does not contribute to the HI estimate.  Upon closer inspection
of the risk equation, it is apparent that ED occurs in the numerator of Equation A-2, as well as in
the denominator (AT=ED x 365).  Thus, ED effectively cancels out of the product quotient model
and does not effect the estimate of HI.

< BW, the only variable in the denominator of the risk equation, is also the only variable to yield a
different SR value when comparing the local and range SR approaches.  Thus, BW is the only
variable for which SR depends on the percent change in the input ()).

< BW is the only negative SR value, indicating that HI and BW are inversely related.  This is true
in general for any variable in the denominator of a product quotient model.

< For variables unique to the water ingestion pathway (I_w, AF_w), SR=0.87.  Similarly, for
variables unique to the soil ingestion pathway (I_s, AF_s), SR=0.13  These SR values are exactly
the same as the percent contributions of the tap water ingestion pathway and soil ingestion
pathway to HI (see Table A-3).

Since tap water ingestion is the dominant pathway (i.e., 87% of RME HI), a reasonable strategy
for the Tier 1 sensitivity ratio approach might be to limit the subsequent probabilistic analysis in Tier 2 to
the tap water ingestion pathway; so that input variables unique to the soil ingestion pathway would be
characterized by point estimates.  For this relatively simple example, this would mean that soil ingestion
rate (I_s) and absorption fraction from soil (AF_s) would be described by point estimates instead of
PDFs.  The question to address would then become—Of the exposure variables in the tap water ingestion
pathway, which ones contribute most to HI?  A sensitivity ratio approach was applied to the tap water
ingestion pathway to address this question.  The results are presented in Table A-5.

Table A-5.  Results of the Sensitivity Ratio (SR) approach applied to the hypothetical example of RME HI given in
Section A.2.0.  Includes only tap water ingestion pathway.

Input Variable , X
in Equation A-21

Nominal 
RME

value (X1)

Local SR 
() = + 5.0%)

Range SR 
() = + 50% or max)

X2
) in HI

(%) SR X2
) in HI

(%) SR

Tap Water Ingestion Rate, I_w
(L/day)

2.0 2.1 5.0 1.00 3.0 50 1.00

Absorption Fraction Water,
AF_w (unitless)

0.50 0.525 5.0 1.00 0.75 50 1.00

Exposure Frequency, EF 
(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW (kg) 75 78.75 - 4.46 - 0.89 112.5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time
is a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
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< In decreasing order of sensitivity:

Local SR () = 5%) rankings: I_w = AF_w = EF > BW > ED

Range SR () = 50%) rankings: I_w = AF_w = EF > BW > ED

< SR values for variables in the numerator (I_w, AF_w, and EF) are all equal to 1.0, so the SR
approach suggests that they contribute equally to the HI estimate.

< BW values are the same as in Table A-4.  They are negative, and the values change as a function
of the percent change in the nominal RME value ()).

Tables A-4 and A-5 suggest that the SR approach provides essentially the same information about
sensitivity as other Tier 1 methods.  Specifically, inspection of the risk equation reveals that ED does not
contribute to HI.  In addition, for pathway-specific variables in the numerator, like ingestion rates and
absorption fractions, SR values are equal to the percent contributions of the exposure pathways.  This
actually reflects the fact that each factor in the numerator of a multiplicative equation has an SR of 1.0.

The results of the SR approach applied to the example above can be generalized to all
multiplicative and additive risk equations, as discussed below.

Generalizing the Limitations of the SR Approach

In many cases, the general equation for SR (Equation A-5) will give values that can be
determined a priori, without doing many calculations.  To understand why this is true, it is useful to
simplify the algebraic expression given by Equation A-5.  Let ) equal the percentage change in the input
variable, X1.  For SR calculations, ) may be either positive or negative (e.g., ±5% for local SR; ±100% for
range SR), and the new value for the input variable (i.e., X2) is given by Equation A-6.

Equation A-6
X  X (X )

 X (1 )
2 1 1

1

= + ×
= × +

∆
∆

Therefore, the denominator in Equation A-5 reduces to ):

X X
X

X (1 ) X
X

(1 ) 1
1

2 1

1

1 1

1

−
=

+ −
=

+ −
=

∆ ∆
∆

and Equation A-5 reduces to Equation A-7: 

Equation A-7SR = ×
−









1 Y Y
Y

2 1

1∆

Equation A-7 can be used to evaluate SR for different types of exposure models in which the
intake equation is generally expressed as a simple algebraic combination of input variables.  Solutions to
SR calculations for input variables in both multiplicative and additive equations are given in Table A-6. 
For any such risk equation, the solution will fall into one of the five categories given by Exhibit A-4.
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EXHIBIT A-4

CATEGORIES OF SOLUTIONS FOR SENSITIVITY RATIOS OF 
MULTIPICATIVE OR ADDITIVE EQUATIONS 

Case 1 SR is a constant (e.g., 1.0).  SR is independent of the choice of nominal (default) values for
input variables and the choice of ).

Case 2 SR is a constant determined only by the nominal values for the input variables.  SR is
independent of the choice of ).

Case 3 SR is constant determined only by the choice of ).  SR is independent of the nominal
values for the input variables.

Case 4 SR is a function of both the nominal values for the input variables and the choice of ).
Case 5 SR is 0.  The variable does not contribute to the risk estimate.

Table A-6.  Examples of algebraic solutions to Sensitivity Ratio calculations for additive and multiplicative forms of
risk equations.1, 2  

Equation Type
(Output = Y, Inputs = A, B, C, D) SRA = SRB = SRC = SRD =

1) Additive in 
     Numerator Y

A B
C

=
+ A

A B+

B
A B+

−
+

1
1 ∆

NA3

2) Additive in 
    Denominator Y

A
C D

=
+

1.0 NA −
C

C (1 + ) + D∆
−

D
D (1 + ) + C∆

3) Multiplicative 
    in Numerator Y

A B
C

=
×

1.0 1.0 −
+

1
1 ∆

NA

4) Multiplicative 
   in Denominator Y

A
C D

=
×

1.0 NA −
+

1
1 ∆

−
+

1
1 ∆

1Sensitivity Ratio for input variable A for an equation that is additive in the numerator: SRA=A / (A + B).
2)=% change in input variable.  For example, ) for C=[(C2 - C1)/C1] x 100%, where C1=the original point estimate and C2=the
modified point estimate.  Similarly, C2=C1 (1 + )).
3NA=not applicable because the variable is not in the equation.
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The following observations can be made for the four forms of the risk equation, based on one of the five
cases described in Exhibit A-4:

(1) Additive in Numerator

< Case 2: SR values for variables in the numerator depend exclusively on the nominal point
estimates for all variables in the numerator.  The values are independent of the choice of percent
change in the inputs ()). 

< Case 3: SR values for variables in the denominator depend exclusively on ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting SR
values.  Therefore, SR is somewhat arbitrary, especially for the range SR approach since input
variables may have different plausible minimum and maximum values.

(2) Additive in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 4: SR values for variables in the denominator are a function of both the nominal values of
variables in the denominator and ).

(3) Multiplicative in Numerator and (4) Multiplicative in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 3: SR values for variables in the denominator depend exclusively on the ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting SR
values.  Therefore, SR is somewhat arbitrary, especially for range SR since input variables may
have different plausible minimum and maximum values.

These generalized results highlight a major limitation in the use of the SR approach for obtaining
information from sensitivity analysis.  For simple exposure models in which the relationship between
exposure and risk is linear (e.g., multiplicative), the ratio offers little information regarding the relative
contributions of each input variable to the risk estimate.  In many cases, all of the input variables will
have the same constant, either equal to 1.0 (in the case of a single exposure pathway) or equal to the
relative contributions of the exposure pathways.  For more complex models that combine additive,
multiplicative, and nonlinear relationships between inputs and outputs (e.g., environmental fate and
transport models, pharmacokinetic models), the ratio is likely to be an effective screening tool for
identifying potentially influential input variables and assumptions.

Another difficulty with the SR approach is that it generally requires an assumption that the input
variables are independent.  Two variables may actually be positively correlated (e.g., high values of X1
correspond with high values of X2) or negatively correlated (e.g., high values of X1 correspond with low
values of X2).  If input variables are correlated, holding the value for one variable fixed while allowing
the other to vary may produce misleading results, especially with the range sensitivity ratio approach.  For
example, it may not be realistic to hold body weight fixed at a central tendency while allowing skin
surface area to vary from the minimum to maximum values.  An improvement over the sensitivity ratio
approach would be to allow correlated input variables to vary simultaneously.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Appendix A ~ December  31, 2001

Page A-19 

A.2.1.4 SENSITIVITY SCORE

A variation on the sensitivity ratio approach may provide more information from a Tier 1
sensitivity analysis, but it requires that additional information be available for the input variables.  The
sensitivity score is the SR weighted by a normalized measure of the variability in an input variable (U.S.
EPA, 1999).  Examples of normalized measures of variability include the coefficient of variation (i.e.,
standard deviation divided by the mean) and the normalized range (i.e., range divided by the mean), as
given by Equation A-8.

Equation A-8Sensitivity Score SR or SR= × ×
−σ

µ µ
(max min)

By normalizing the measure of variability (i.e., dividing by the mean), this method effectively weights the
ratios in a manner that is independent of the units of the input variable, and provides a more robust
method of ranking contributions to the risk estimates than the SR alone.  This approach does require that
the coefficient of variation or range can be calculated for each variable.  Tables A-7 and A-8 present the
results of the sensitivity scores based on the CV applied to the hypothetical example from Section A.2.0.

Table A-7.  Calculation of coefficient of variation (CV = SD / Mean) for the hypothetical example of RME HI given
in Section A.2.0. 

Input Variable , X
in Equation A-21 Probability Distribution2 Mean3 SD3 CV =

SD/Mean

Tap Water Ingestion Rate, I_w (L/day) lognormal (1.3, 0.75) 1.3 0.75 0.58

Absorption Fraction, Water, AF_w
(unitless)

beta (2.0, 3.0) 0.4 0.2 0.50

Soil Ingestion Rate, I_s (kg/day) uniform (0, 0.13) 0.065 0.038 0.582

Absorption Fraction, Soil, AF_s (unitless) beta (1.22, 4.89) 0.20 0.15 0.75

Exposure Frequency, EF (days/yr) triangular (180, 250, 350) 260 35 0.133

Exposure Duration, ED (years) empirical CDF (see Table
A-2 for parameters)

1.75 3.86 2.21

Body Weight, BW (kg) lognormal (74.6, 12.2) 74.6 12.2 0.16
1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging
time is a function of exposure duration.  RfD is a fixed point estimate.
2Beta (a, b): mean=a / (a+b) and SD = ((a x b) / [(a + b)^2 x (a+b+1)])^0.5)
Uniform (min, max): mean = (min + max)/2 and SD = ((1/12)^0.5) x (max - min) = 0.289 x (max - min)
Triangular (min, mode, max): mean = (min + mode + max)/3 and SD = (1/18) x (min^2 + mode^2 + max^2 - min x max - min
x mode - mode x max)
Empirical CDF ({x}, {p}): mean and SD were estimated by Monte Carlo simulation.
3Mean=arithmetic mean; SD=arithmetic standard deviation
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Table A-8.  Results of the Sensitivity Score (Score) approach applied to the hypothetical example of RME HI given
in Section A.2.0.  Calculations for Sensitivity Ratio (SR) and Coefficient of Variation (CV) are given in Table A-4
and Table A-7, respectively. 

Input Variable , X
in Equation A-21

Nominal 
RME

value (X1)

CV
(Table A-7)

Local SR 
() = + 5%)

Range SR 
() = + 50%)

SR
(Table A-4 ) Score2 SR

(Table A-4 ) Score2

Tap Water Ingestion
Rate, I_w (L/day)

2.0 0.58 0.87 0.50 0.87 0.50

Absorption Fraction,
Water, AF_w
(unitless)

0.50 0.50 0.87 0.44 0.87 0.44

Soil Ingestion Rate,
I_s (kg/day)

0.100 0.58 0.13 0.06 0.13 0.06

Absorption Fraction,
Soil, AF_s (unitless)

0.30 0.75 0.13 0.10 0.13 0.10

Exposure Frequency,
EF (days/yr)

350 0.13 1.00 0.13 1.00 0.13

Exposure Duration,
ED (years)

7 2.21 0.00 0 0.00 0

Body Weight, BW
(kg)

75 0.16 - 0.89 - 0.14 - 0.67 - 0.11

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time
 is a function of exposure duration.  RfD is a fixed point estimate.
2Score=SR x CV (see Equation A-8)

The following observations can be made from these results:
< In decreasing order of sensitivity:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Compared with the SR approach alone in which sensitivity can only be expressed for exposure
pathways, the sensitivity score approach provides a measure of sensitivity for exposure variables
within each exposure pathway.

< Although ED has the highest CV, it continues to have no contribution to the HI.

< If Tier 1 sensitivity analysis is based on the sensitivity score, the highest ranked
variables are generally those with the highest CV in the exposure pathway that
contributes the most to the total risk (HI).  For this hypothetical example, I_w and
AF_w are the two highest ranked variables.
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A.2.2 TIER 2 APPROACHES

Approaches for sensitivity analysis in Tier 2 of a PRA utilize the results of Monte Carlo
simulations, which allows multiple input variables to vary simultaneously.  The methods are relatively
simple to perform with spreadsheets or commercial statistical software.  The results are generally easy to
communicate, although the details of the methodology are more complex than Tier 1 approaches.  As
given by Table A-1, goals for the sensitivity analysis in Tier 2 are the same as Tier 1:quantifying the
relative contributions of the exposure pathways, identifying potential nonlinear relationships that may
exist between input variables and the risk estimate, and rank ordering the relative contribution of
exposure variables to variability or uncertainty in the risk estimate.  In addition, since the output is a
distribution, Tier 2 sensitivity analysis methods can also utilize graphical techniques to observe nonlinear
relationships, as well as evaluate potential changes in relative importance of variables and assumptions
for risks in the RME risk range.  Methods are applied to the hypothetical example presented in
Section A.2.0 in order to demonstrate the advantages over the Tier 1 methods.

A.2.2.1 GRAPHICAL TECHNIQUES

Simple scatter plots of the simulated input and output (e.g., risk vs. exposure frequency, or risk
vs. arithmetic mean soil concentration) can be used to qualitatively and quantitatively evaluate influential
variables.  A “tight” best-fit line through the scatter plot, as indicated by the magnitude of the r2, suggests
that a variable may significantly influence the variance in risk.  Hypothetical scatter plots used to identify
sensitive and insensitive variables are shown in Figure A-2.  Another method for visualizing the
relationship between all of the inputs and outputs is to generate a scatterplot matrix (Helsel and Hirsch,
1992).  This graphic shows both histograms and scatter plots for all variables on the same page.

Figure A-3 illustrates scatter plots for the 1-D MCA simulations associated with the example
from Section A.2.0.  Based on the r2 values (i.e., coefficient of determination for simple linear regression
analysis), the relationship between HI and I_w is very strong (r2 = 0.47) while the relationship between HI
and I_s is very weak (r2 < 0.01), suggesting that HI is more sensitive to variability in I_w than I_s.  

 A.2.2.2  CORRELATION COEFFICIENTS

The variance in a risk estimate from a Monte Carlo simulation is due to the variance in the
probability distributions used in the risk equation.  It is commonly said that a Monte Carlo model
propagates sources of variability simultaneously in a risk equation.  Numerous statistical techniques,
known collectively as correlation analysis and regression analysis, can be applied to a linear equation to
estimate the relative change in the output of a Monte Carlo simulation based on changes in the input
variables.  Examples of metrics of sensitivity include the simple correlation coefficient, the rank
correlation coefficient, and a variety of coefficients from multiple regression techniques.  The underlying
assumptions associated with these approaches are discussed in greater detail in Section A.3.  As explained
in Section A.3.3.1, correlation coefficients and regression coefficients are based on different
interpretations of the input variables, but they can be calculated with similar equations.

When the output distribution is compared with the distribution for one input variable at a time,
two of the more common approaches are to calculate the Pearson product moment correlation and the
Spearman rank correlation.  Correlation analysis with one input variable will generally yield reasonable
results when the input variables are sampled independently in a Monte Carlo simulation.  Some statistical
packages offer the correlation coefficient as an index of sensitivity, so it is important to identify which
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coefficient is being calculated.  Crystal Ball® and @Risk can be used to calculate the Spearman rank
correlation, which tends to be more robust when the relationships between inputs and outputs are
nonlinear.  If the relationships are linear, such as with the product quotient models presented in this
appendix, the two metrics of correlation will yield similar rankings of input variables.  Rank correlation
coefficients shown in Crystal Ball® and @Risk are calculated by the standard method provided in most
statistics texts.  Crystal Ball® also indicates that sensitivity can be determined as contribution to variance. 
This is not the relative partial sum of squares techniques discussed in Section A.3.3.2 (Equation A-19). 
Instead, Crystal Ball® calculates the contribution to the variance by squaring the rank correlation
coefficients and normalizing them to 100%.  Many other commonly used commercial software packages
will perform Spearman rank correlation.  Pearson product moment correlations (r) can be calculated in
Microsoft Excel using the trendline feature in a scatter plot chart, or by using the function Correl(X array,
Y array), where X array corresponds with the Monte Carlo simulation of an input variable, and Y array
corresponds with the output of the simulation.

Figure A-4 illustrates results of the correlation analysis for the 1-D MCA simulations associated
with the example from Section A.2.0.  The graphics were generated using Crystal Ball® 2000.  The results
are summarized in Table A-9.  If the model output variable (e.g., HI) and input variable are highly
correlated, it means that the output is sensitive to that input variable.  By squaring the coefficient, the
results can be expressed in terms of the percentage contribution to variance in the output (Figure A-4, top
panel).  To determine if the correlation is positive or negative, the correlation coefficient should not be
squared (Figure A-4, bottom panel).  For risk equations, in general, variables in the numerator of the
equation (ingestion rate, absorption fraction, exposure frequency, etc.) will tend to be positively
correlated with risk, while variables in the denominator (body weight) will tend to be negatively
correlated with risk.  The greater the absolute value of the correlation coefficient, the stronger the
relationship. 

Table A-9.  Results of Tier 2 sensitivity analyses applied to hypothetical example in Section A.2.0: Pearson product
moment correlations and Spearman rank correlations.1

Exposure Variable

Product Moment
Correlation

Spearman Rank 
Correlation2

r r2 x 100% r r2 x 100% normalized 
r2 x 100%

Tap Water Ingestion Rate, I_w (L/day) 0.644 41.4 0.603 36.3 39.5

Absorption Fraction Water, AF_w (unitless) 0.583 34.0 0.666 44.4 48.3

Body Weight, BW (kg) - 0.216 4.7 - 0.229 5.2 5.7

Exposure Frequency, EF (days/yr) 0.174 3.0 0.167 2.8 3.0

Absorption Fraction Soil, AF_s (unitless) 0.109 1.2 0.149 2.2 2.4

Soil Ingestion Rate, I_s (g/day) 0.061 0.4 0.099 1.0 1.1

Exposure Duration, ED (years) 0.010 0.0 0.010 0.0 0.0

1Monte Carlo simulation using Crystal Ball® 2000, Latin Hypercube sampling, and 5000 iterations.
2Crystal Ball® 2000 output includes Spearman rank correlations, r, and normalized r2 values, calculated by dividing each r2 value
 by the sum of all the r2 values (i.e., 0.920 in this example).  Figure A-4 illustrates the r and normalized r2 values for the
Spearman rank correlation analysis.
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Figure A-2.  Scatterplots of simulated random values from a 1-D MCA of variability.  The output from the
model is a contaminant concentration in soil (C) that corresponds with a prescribed (fixed) level of risk for a
hypothetical population (based on Stern, 1994).  For each iteration of a 1-D MCA simulation, random values
were simultaneously selected for all model variables and  the corresponding concentration (C) was calculated. 
Inputs were simulated as independent random variables.  Scatterplots of 500 consecutive random values and
estimates of C are shown for two input variables: relative absorption fraction, RAF (top graph); and mass
fraction of dust as soil, F (bottom graph).  There is a moderate, indirect relationship between C and RAF
(r2=0.34), compared with the weak relationship between C and F (r2=0.02), suggesting that the model output (C)
is more sensitive to variability in RAF than F.
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Figure A-3.  Scatterplots of simulated random values from a 1-D MCA of variability for example in Section
A.2.0.  The output from the model is HI.  For each iteration of a 1-D MCA simulation, random values were
simultaneously selected for all model variables and  the corresponding HI was calculated.  Inputs were simulated
as independent random variables.  Scatterplots of 250 consecutive random values and estimates of HI are shown
for two input variables: soil ingestion rate, I_s (top graph); and tap water ingestion rate, I_w (bottom graph). 
There is a negligible relationship between HI and I_s (r2 < 0.01), compared with the strong relationship between
HI and I_w (r2=0.47), suggesting that the model output (HI) is more sensitive to variability in I_w than I_s.  Best-
fit lines were generated with the Simple Linear Regression in Microsoft Excel’s trendline option for scatterplots;
r2 values represent the coefficient of determination (see Section A.3).
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Target Forecast:  Total HI

AF_water 48.3%

I_water 39.5%

BW 5.7%

EF 3.0%

AF_soil 2.4%

I_soil 1.1%

ED 0.0%

0% 25% 50% 75% 100%

Measured by Contribution to Variance

Sensitivity Chart

Target Forecast:  Total HI

AF_water .67

I_water .60

BW -.23

EF .17

AF_soil .15

I_soil .10

ED .01

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

Figure A-4.  Top panel - bar graph showing the r2 values (square of Spearman rank correlation coefficient), a
metric for the dependence of HI on exposure factors based on 1-D MCA for variability.  Bottom panel - bar graph,
sometimes referred to as “tornado plot”, showing rank correlation coefficient.  This graph is effective for showing
both the relative magnitude and direction of influence (positive or negative) for each variable.  Abbreviations for
input variables are given in Table A-4.  In this example, the variable with the greatest effect on HI is the absorption
fraction in water (AF_w), followed by the water ingestion rate (I_w).  Concentration does not influence variability
because, in this example, long-term average concentration is characterized by a point estimate (i.e., 95% UCL),
rather than a probability distribution.  Exposure duration does not influence variability because variability in ED is
expressed in both the numerator (ED) and denominator (AT=ED x 365 for noncarcinogenic effects), and cancels
out.  Output was generated with Crystal Ball®, which calculates the contribution to variance by squaring the rank
correlation coefficient and normalizing to 100%.
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In this example, seven exposure variables are used to characterize variability in HI.  The
remaining variables in the risk equation (i.e., concentration terms, and RfD) are characterized by point
estimates.  Because point estimates do not vary in a Monte Carlo simulation, they do not contribute to the
variance in the output.  This result does not mean that concentration is an unimportant variable in the risk
assessment.  Concentration may still contribute greatly to the uncertainty in the risk estimate.  A
sensitivity analysis of parameter uncertainty in a risk equation can be explored using iterative simulations,
such as with 2-D MCA.

Results of the Pearson correlation and Spearman rank correlation give similar rankings of the
input variables, with absorption fraction of water (AF_w) and tap water ingestion rate (I_w) being the two
dominant exposure variables.  Pearson correlations suggest that I_w is the most sensitive variable
(r =0.644), whereas the highest Spearman rank correlation is for AF_w (r = 0.603).  This may reflect the
fact that I_w is characterized by an untruncated lognormal distribution, whereas AF_w is bounded
between 0 and 1.0.  The effect on the correlations of the occasional high-end value for I_w generated
from random sampling of the lognormal distribution will tend to be expressed by Pearson correlations,
but muted by the Spearman rank correlations.

A comparison of the Tier 1 and Tier 2 results is given below:

< Tier 1, Sensitivity Ratios:

- Local SR () = 5%) rankings: EF > BW > I_w = AF_w >  I_s = AF_s > ED 

- Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< Tier 1, Sensitivity Scores:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Tier 2, Correlation Coefficients:

- Pearson: I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Spearman Rank: AF_w > I_w > EF > BW > AF_s > IR_s > ED

The Tier 1 sensitivity scores and Tier 2 correlation coefficients yield similar results, suggesting
that, if sufficient information is available to estimate the coefficient of variation in the input variables, a
Tier 1 analysis can help to focus efforts on the variables that contribute most to the variance in risk.  By
contrast, the Tier 1 sensitivity ratio approach suggested that EF was the most influential variable, when in
fact it contributes less than 5% to the variance in the HI.  These results suggest that Tier 1 sensitivity
ratios are best applied to identify dominant exposure pathways, rather than dominant exposure variables
in the risk equation.
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Y X X1 2= + Equation A-9

Y a X a X1 1 2 2= + Equation A-10

A.2.2.3 FOCUSING ON THE RME RANGE OF THE RISK DISTRIBUTION

Monte Carlo methods can also be used to determine the sensitivity over a subset of the output
distribution, such as the RME range (i.e., 90th to 99.9th percentiles).  For some exposure models, the
relative contribution of exposure variables may be different for the high-end exposed individuals than for
the entire range of exposures.  The general strategy for exploring sensitivity over subsets of risk estimates
is to first sort the distribution of simulated output values in ascending (or descending) order, and then
apply a sensitivity analysis to the subset of interest (e.g., > 90th percentile).  For the hypothetical example
presented in this appendix, there was no difference in the relative rankings of inputs in the RME range.

A.2.2.4 INSPECTION

With Monte Carlo analysis, the probability distributions assumed for the various input variables
are used to generate a sample of a large number of points.  Statistical methods are applied to this sample
to evaluate the influence of the inputs on the model output.  A number of different “indices” of sensitivity
can be derived from the simulated sample to quantify the influence of the inputs and identify the key
contributors.  Most of these are based on an assumption that the model output Y varies in a monotonic,
linear fashion with respect to various input variables (X1, X2, etc.).  For example, an estimate of average
daily intake (mg/kg-day) from multiple exposure pathways is linear with respect to the intake from each
pathway.  Since most risk models are linear with respect to the input variables, the output distribution
(particularly its upper percentiles) tends to be dictated by the input variables with the largest coefficient of
variation (CV), or the ratio of the standard deviation to the mean.  For example, Equation A-9 represents a
simple expression for intake rate as a function of random variables X1 and X2 :  

where X1 and X2 may represent dietary intake associated with prey species 1 and 2, respectively.  If the
same probability distribution was used to characterize X1 and X2, such as a lognormal distribution with an
arithmetic mean of 100 and standard deviation of 50 (i.e., CV=50/100=0.5), each variable would
contribute equally to variance in Y.  If, however, X2 was characterized by a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 200 (i.e., CV=200/100=2.0), we would expect Y to
be more sensitive to X2.  That is, X2 would be a greater contributor to variance in Y.  

While the coefficient of variation may be a useful screening tool to develop a sense of the relative
contributions of the different input variables, a common exception is the case when X1 and X2 have
different scales.  For example, Equation A-10 is an extension of Equation A-9:

where a1 and a2 are constants that may represent the algebraic combination of point estimates for other
exposure variables.  If the means of X1 and X2 are equal, but a1 >> a2, then X1 would tend to be the
dominant contributor to variance, regardless of the CV for X2.  This concept was demonstrated by the
sensitivity score calculations given in Table A-8.  Water ingestion rate (I_w) and soil ingestion rate (I_s)
had the same CV (0.58), but I_w was the dominant variable because tap water ingestion contributed
approximately 90% to the HI.

The most influential random variables generally have the highest degrees of skewness or are
related to the output according to a power function (Cullen and Frey, 1999).  For example, Equation A-11
presents an extension of Equation A-10 in which there is a power relationship between X2 and Y.  In this
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Y a X a X1 1 2 2= + θ Equation A-11

Partial Derivative Y
X

Y
X

= ≈
∂
∂

∆
∆

example, assume Y represents the total dietary intake rate of cadmium for muskrats, X1 and X2 represent
the dietary intake rate associated with prey species 1 and 2, respectively, a1 and a2 represent additional
point estimates in the equation, and 2 is the power exponent.  In general, for 2 > 1, the total dietary intake
rate (Y) will be more sensitive to the intake rate associated with species 2 (X2) than species 1.  Assume
(hypothetically) that the power relationship stems from the fact that there is a direct relationship between
availability of prey species X2 and chemical body burdens of prey species X2 because individuals that are
more accessible to the muskrat also happen to frequent areas of the site with higher concentrations.

 A.3.0 ADVANCED CONCEPTS IN SENSITIVITY ANALYSIS

This section provides additional information on the underlying principles of sensitivity analysis,
although it is not a comprehensive summary and is not intended to substitute for the numerous statistical
texts and journal articles on sensitivity analysis.  Section A.3.1 begins with a general framework for
relating model output to model input.  Section A.3.2 explains the sensitivity ratio approach and highlights
some of its limitations.  Section A.3.3 reviews some of the metrics reported by the commercial software
that report results of sensitivity analysis following Monte Carlo simulations (e.g., Crystal Ball®, @Risk). 
While statistical software for MCA provides convenient metrics for quantifying and ranking these
sources, it is strongly recommended that risk assessors and risk managers develop an understanding of the
underlying principles associated with these metrics.  

A.3.1 RELATING THE CHANGE IN RISK TO THE CHANGE IN INPUT VARIABLE X

For purposes of discussion, let Y denote a model output (e.g., risk) and suppose that it depends on
the input variable X.  In general, a risk assessment model may use any number of inputs; however, for
purposes of illustrating concepts, it is convenient to restrict this discussion to one variable.  The model
relates the output Y to values of X (i.e., x0, x1, , xn) based on the function expressed as Y=F(x).  The
sensitivity of Y to X can be interpreted as the slope of the tangent to the response surface F(X) at any point
xi.  This two-dimensional surface can be a simple straight line, or it may be very complex with changing
slopes as shown in Figure A-5a.  The sensitivity, therefore, may depend on both the value of X and the
amount of the change )x about that point.  This concept can be extended to two input variables, X1 and
X2, where the response is characterized by a three-dimensional surface.  The shape may be a simple plane
(Figure A-5c) or it may be very complex with many “hills” and “valleys” depending on the defining
function F(X1, X2).  In a typical risk assessment with ten or more variables, the surface can be very
complex, but the shape is likely to be dominated by a small subset of the input variables.

A sensitivity analysis based on a relatively small deviation about the point may be referred to as a
local sensitivity analysis, while a large deviation may be referred to as range sensitivity analysis.  In either
case, the objective is to evaluate the sensitivity at some nominal point (X1*, X2*) such as the point defined
by the mean or median of X1 and X2.  At any point, the sensitivity of the model output, Y* = F(X1*, X2*),
to one of the inputs (X1 or X2), is represented by the rate of change in Y per unit change in X.  This is the
slope of the surface at that nominal point in the direction of X and is expressed as MY/MXi, the partial
derivative of Y with respect to X.
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Figure A-5a.  Hypothetical 2-D response surface for Y given one input
variable: Y=F(X).  The sensitivity of Y with respect to X is calculated as the
slope at a specific point on the surface (x0, x1), or the partial derivative, MY/MXi.

If the function F(X1, X2) is known explicitly, it may be possible to determine the partial
derivatives analytically.  This is not a requirement, however, because an estimate can be obtained by
incrementing Xi by a small amount, )Xi, while keeping the other inputs fixed and reevaluating the model
output Y.  The resulting change in Y divided by )Xi will approximate MY/MXi at the nominal point.  In
practice, analytical solutions can be approximated using Monte Carlo techniques.  This information is
presented to highlight the fundamental concepts of sensitivity analysis.  The partial derivative, per se,
would typically not be one of the methods of sensitivity analysis used in a PRA.  However, all of the
approaches that are presented in this appendix are variations on this concept.

One drawback to using the partial derivative to quantify the influence of Xi is that the partial
derivative is influenced by the units of measurement of Xi.  For example, if the measurement scale for Xi
is changed from grams to milligrams, the partial derivative MY/MXi will change by a factor of 1,000. 
Therefore, it is necessary to normalize the partial derivative to remove the effects of units (see
Section A.3.2).

If the relationship between Y and all of the inputs is linear, then the response surface is a flat
plane and each of the partial derivatives at each point, (Xi, Y), will remain constant regardless of where the
point is in the surface (Figure A-5b).  In this case, it is a simple matter to determine the relative influence
that the various inputs have on the model output.  When the relationship is nonlinear, however, the
situation is more complex because the influence of a particular input may vary depending on the value of
that input.
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Figure A-5b.  Hypothetical 3-D response surface for Y given two input variables: Y = f(X1, X2).  The sensitivity
of Y with respect to Xi is calculated as the slope at a specific point on the surface, or the partial derivative,
MY/MXi.

Figure A-5c.  Hypothetical 3-D response surface when Y is a linear function of two input variables: Y=f(X1,
X2).  The slope (i.e., the partial derivative, MY/MXi) is constant for any point (Xi, Y) on the surface in the direction
of Xi.  In this case, MY/MX1=5 while MY/MX2=2.
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A.3.2 NORMALIZED PARTIAL DERIVATIVE

Classical sensitivity analysis methods use estimates of the partial derivatives of the model output
with respect to each variable.  For the purpose of evaluating the relative influence of the various input
variables on the model output at a single point, the normalized partial derivative provides a useful
index.

If the input variables are all discrete and take on a small number of values, then it is possible to
evaluate the influence of the various input variables at each of the points defined by considering all
possible combinations of the inputs.  Then the influence can be evaluated for each input by computing
normalized partial derivatives at each point.  This approach is limited to situations where the number of
inputs as well as the number of possible values for each input is relatively small; otherwise, the number of
combinations to be evaluated will be unmanageable.  Furthermore, when evaluating the influence at
different points on the input-output surface simultaneously, it is important to take into account the
probability associated with each of those points.  For example, the fact that a particular input has a large
influence on the model output at a particular point would be discounted if the probability associated with
that particular point is very low. 

A similar approach may be used to analyze inputs that are continuous variables if a few points
representing the range of values are selected.  For example, low, medium (or nominal), and high values
may be selected for each of the continuous input variables and then the relative influence of each of the
input variables can be computed as in the case of discrete inputs.  One limitation of this approach,
however, is that the continuous nature of the inputs makes it impossible to calculate an exact probability
for each of the points.  Generally, in a PRA, many if not all of the inputs will be random variables
described by probability distributions and it will be necessary to quantify the influence of each input, Xi,
over the entire range of Xi. 
 

An estimate of the partial derivative can be obtained by incrementing Xi by a small amount, say
)Xi while keeping the other inputs fixed and reevaluating the model output Y.  The resulting change in Y
divided by )Xi will approximate MY/MXi at the nominal point. 

    Partial Derivative = Y
X
∂
∂

≈
∆
∆

Y
X

As previously noted, one complication to using the partial derivative to quantify the influence of
Xi is that the partial derivative is influenced by the units of measurement of Xi.  One way this is
accomplished is to divide the partial derivative by the ratio of the nominal point estimates, Y* / Xi* (or
equivalently multiply by Xi* / Y*).  An approximation of the normalized partial derivative is given by
Equation A-12.
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EXHIBIT A-5

SIMPLIFYING ASSUMPTIONS IN 

REGRESSION ANALYSIS

C Y is a linear function of the unknown
coefficients ($i)

C Successive values of Y are uncorrelated 
C Variance of Y is constant for all values of

inputs (Xi)
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This is the same as the equation for calculating sensitivity ratios (Section A.2.1.3), or elasticity
(see Equation A-5).  As with the SR approach, the normalized partial derived can be weighted by
characteristics of the input variable (Section A.2.1.4).  One approach is to divide by the ratio of standard
deviations (FY/ FX), where FY is the standard deviation of Y and FX is the standard deviation of X.  This
method requires that the standard deviations be known, or that a suitable estimate can be obtained.

As previously noted, if the relationship between Y and all of the inputs is nonlinear, the influence
of a particular input may vary depending on the value of that input.  One approach to this problem is to
consider a range of values for the input and to examine the influence over that range.  If the input is
considered to be a random variable following some specified probability distribution, then it may be
desirable to look at the influence that the random input has on the model output across the distribution of
input values.  This can be accomplished with a Monte Carlo approach.  Another technique that addresses
nonlinearities is to calculate contributions to variance using input variables that are transformed (e.g.,
lognormal or power transformation).

A.3.3 REGRESSION ANALYSIS: R2, PEARSON R, AND PARTIAL CORRELATION COEFFICIENTS 

In order to understand R2, it is necessary to first understand simple and multiple linear regression. 
In regression analysis, we are interested in obtaining an equation that relates a dependent variable (Y) to
one or more independent variables (X):

Equation A-13Y X= + +β β ε0 1

where $0 and $1 are regression coefficients, and g is called a random error.  Equation A-13 is the general
equation for a simple linear regression, because there is only one Y and one X variable, and their
relationship can be described by a line with intercept $0 and slope $1.  

Note that linear regression refers to the linear relationship between parameters ($0, $1), not X and

Y.  Thus, the equation   isY X= + +β β ε0 1 1
2

considered linear.  Multiple linear regression involves
more than one X related to one Y

, while multivariate[ ]Y X X= + + ⋅ ⋅ ⋅β β β0 1 1 2

regression involves more than one Y to more than one
X.

The random error, g, represents the
difference between an observed Y value (calculated
from the observed input variables), and a Y value
predicted by the regression line (í).  It is also called
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the residual (i.e., g=y–í).  The random error takes into account all unpredictable and unknown factors that
are not included in the model.  Exhibit A-5 gives some of the simplifying assumptions that apply to
regression analysis.  Assumptions about g are that the random error has mean = 0 and constant variance,
and is uncorrelated among observations.  One method of finding the best regression line is to minimize
the residual sum of squares (i.e., least-squares method), also called the sum of squares due to error (SSE).

In terms of sensitivity analysis, we are interested in how much of the variation in Y can be
explained by the variation in X, and how much is unexplained (due to random error).  If a scatter plot of
paired observations (x, y) shows that our regression line intersects all of the observations exactly, then all
of the variation in Y is explained by X.  Another way of stating this is that the difference between the
mean output ( ) and an observed y (yi), or (yi - ), is equal to the difference between the mean outputy y
and a predicted y or ( ). $y y−

In general, the total deviation of yi from  is equal to the sum of the deviation due to they
regression line plus the deviation due to random error:

Equation A-14

( ) ( $ ) ( $ )

( ) ( $ ) ( $ )

y y y y y y

y y y y y y
SST SSE SSR

i i i i

i i i i

− = − + −

∑ − = ∑ − + ∑ −
= +

2 2 2

Thus, the total sum of squares (SST) equals the sum of squares due to error (SSE) plus the sum of
squares due to regression (SSR). 

A.3.3.1 CALCULATIONS OF R2 AND ADJUSTED R2

The R2 term is a measure of how well the regression line explains the variation in Y, or:

Equation A-15

R  SSR
SST

1 SSE
SST

R  
variation  explained by regression

total variation  in Y

2 = = −

=

where R2 is called the coefficient of multiple determination and R is called the multiple correlation
coefficient.  If R2=0.90 for a certain linear model, we could conclude that the input variables (X1, X2,...Xk)
explain 90% of the variation in the output variable (Y).  R2 reduces to the coefficient of determination r2

for simple linear regression when one independent variable (X) is in the regression model.  The sample
correlation coefficient, r, is a measure of the association between X and Y, and calculated by Equation
A-16.  It is also referred to as the Pearson product moment correlation coefficient.
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Equation A-16r
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In addition, r is an estimate of the unknown population parameter, D, defined by Equation A-17:

Equation A-17ρ
σ
σ σXY

XY

X Y
=

where FX and FY denote the population standard deviations of the random variables X and Y, and where
FXY is called the covariance between X and Y.  The covariance FXY is a population parameter describing
the average amount that two variables “covary”.  Thus, another way of thinking about a correlation
coefficient (R) is that it reflects the ratio of the covariance between two variables divided by the product
of their respective standard deviations; and the value always lies between -1 and +1.  @Risk and Crystal
Ball® provide both the R2 for the entire model, as well as the correlation coefficients for each input
variable (or regressor).  The higher the value of Ri for Xi, the more sensitive the output variable is to that
input variable. 

Although the calculations are the same, there is a subtle conceptual difference between the
coefficient of determination (r2) from regression, and the square of the correlation coefficient.  When
evaluating two variables (X, Y), the key is whether X is interpreted as a “fixed” quantity (i.e., an
explanatory variable), or a random variable just like Y.  In regression analysis, r2 measures how well the
regression line explains the variation in Y given a particular value for X (Equation A-15).  Correlation
requires that X be considered a random variable, typically having a bivariate normal distribution with Y
(see Appendix B). 

One artifact of regression analysis is that R2 increases as you add more and more input variables
to your model; however, the increased fit of the model due to one or more of the input variables may be
insignificant.  Sometimes an adjusted R2 is calculated to take into account the number of input variables
(called regressors) in the model (k) as well as the number of observations in the data set (n):

Equation A-18R n R
n kadj

2
21 1

1
=

− −
− −

( )

While R2 gives the proportion of the total variation of Y that is explained,  (Equation A-18) takesRadj
2

into account the degrees of freedom (df), and gives the proportion of the total variance of Y that is
explained (variance = variation /df); or stated simply,  is the R2 corrected for df, where df isRadj

2

described by [1 - k/(n-1)].

C If the relationship between an input variable and an output variable is strong, but nonlinear, the R2

statistic will be misleadingly low.
C If the means of the sampling data are used rather than the individual observations for each variable,

R2 will be misleadingly high.  This is because taking the mean of a sample reduces the fraction of the
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total variation due to random variation (see discussion of random error above).  This is an important
consideration when trying to interpret the results of regression analyses that incorporate data
averaged over different spatial scales (e.g., regression of PbB on soil lead concentrations taken at the
city block level may give an inflated R2 value if the sampling data are averaged over a larger spatial
scale, such as the census tract level).

A multiple regression analysis can also be performed to estimate the regression coefficients (see
Appendix A.3.3).  Each coefficient essentially represents an “average” value of the partial derivative
across the entire distribution of the input.  The regression coefficient, like the partial derivative, depends
on the units of measurement so, as in the case of the partial derivative, it must be normalized.  This can be
accomplished by multiplying the regression coefficient by the ratio of estimated standard deviations sy/sx.

A convenient way to carry out a sensitivity analysis is to perform a stepwise regression analysis. 
Some statistical software packages (e.g., SAS, SPSS) offer a variety of different approaches for this;
however, in general, they can be classified into two general categories: forward selection and backward
elimination.  In the forward selection, the inputs are added to the model one by one in the order of their
contribution.  In the backward elimination, all of the inputs are used in the model initially and then they
are dropped one by one, eliminating the least important input at each step.  A true stepwise procedure is a
variation on the forward selection approach where an input can drop out again once it has been selected
into the model if at some point other inputs enter the model that account for the same information.

A.3.3.2 RELATIVE PARTIAL SUM OF SQUARES (RPSS)

The relative partial sum of squares (RPSS) measures the sensitivity of the model output to each
of the input variables by partitioning the variance in the output attributable to each variable using multiple
regression techniques (Rose et al., 1991).  The RPSS is presented as a percentage reflecting the proportion
of influence a given variable has on risk.  The results of RPSS are intuitive and generally easy to
understand.

Briefly, the RPSS represents the percentage of the total sum of squares attributable to each of the
variables.  To calculate RPSS for variable Vi, the difference between the regression sum of squares (RSS)
for the full model and the regression sum of squares for the model with Vi missing (RSS-i) is divided by
the total sum of squares (TSS) and expressed as a percentage:

Equation A-19RPSS
RSS RSS

TSSi =
− −100 1( )

This procedure can be thought of as analogous to least squares linear regression, but performed in
the n-dimensional parameter space of the risk equation.  Since this approach depends on the adequacy of
the linear regression model between the output variable (e.g., risk) and all the variables, an additional
diagnostic is to check how close R2 is to 1.0.  For equations with more than three parameters (such as
those used in Superfund risk assessments), the computational overhead of this process is large and
requires specific computer programs.  The software program Crystal Ball® does not perform this
calculation, but it can be determined with most standard statistical software packages that perform
multiple regression. @Risk performs a calculation similar to this called multivariate stepwise regression
that yields correlation coefficients in lieu of percent contributions to output variance.
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A.3.3.3 SPEARMAN’S RANK CORRELATION COEFFICIENT (RHO)

The validity of using indices such as regression coefficients, correlation coefficients, and partial
correlation coefficients depends on the assumptions of the underlying linear model being met.  If there is
any doubt that a data set satisfies the model assumptions, a nonparametric measure of correlation based on
the rank orders of the inputs and associated outputs can be used.  The Spearman Rank correlation
coefficient is a nonparametric statistic; it measures an association between variables that are either count
data or data measured on an ordinal scale, as opposed to data measured on an interval or ratio scale.  An
example of an ordinal scale would be the ranking of sites based on their relative mean soil concentrations. 
For example, if there are four categories of soil contaminant concentrations, sites with the highest
concentrations may receive a rank of 1 while sites with lowest concentrations may receive a rank of 4. 
Ordinal scales indicate relative positions in an ordered series, not “how much” of a difference exists
between successive positions on a scale. 

To calculate the Spearman rank correlation coefficient, assign a rank to each of the input
variables (Xj) and output variables (Yk).  For each ranked pair (Xj, Yk), calculate the difference, d, between
the ranks.  For example, if the first observation for variable X has a ranking of 5 (relative to all of the
observations of X), and the corresponding value of Y has a ranking of 3 (relative to all of the observations
of Y), the difference (d) is equal to 5–3=2.  Spearman rho (rs) is calculated as:

Equation A-20r
d

n ns

i
i

n

= −
−

=
∑

1
6 2

1
3( )

Hence (-1 # rs # 1.0), and rs=-1 describes a perfect indirect or negative relationship between ranks
in the sense that if an X element increases, the corresponding Y element decreases.  Similarly, rs=0
suggests that there is no relationship between X and Y.

The Pearson product moment correlation coefficient is equal to the Spearman rank correlation
coefficient when interval/ratio values of the measured observations (X, Y) are replaced with their
respective ranks.
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APPENDIX B

SELECTION AND FITTING OF DISTRIBUTIONS

B.0 INTRODUCTION

An important step in Monte Carlo analysis (MCA) is to select the most appropriate distributions
to represent the factors that have a strong influence on the risk estimates.  This step in the development of
a Monte Carlo model can be very challenging and resource intensive. 

L Specifying probability distributions for all of the input variables and
parameters in a probabilistic risk assessment (PRA) will generally not be
necessary.

If the sensitivity analysis indicates that a particular input variable does not contribute significantly
to the overall variability and uncertainty, then this variable may be represented as a point estimate.  As
discussed in Appendix A, however, different approaches to sensitivity analysis may be applied
throughout the tiered approach (e.g., sensitivity ratios, correlation analysis), and the ability to reliably
identify variables as being minor or major can vary.  Sometimes it can be helpful to develop probability
distributions based on preliminary information that is available from Tier 1 in order to explore alternative
options for characterizing variability and uncertainty.  Likewise, sometimes the important “risk drivers”
are apparent, and resources can be allocated to fully characterize the variability and uncertainty in those
input variables.  Therefore, the process of selecting and fitting distributions may also be viewed as a
tiered approach.  This appendix reviews the methods available to select and fit distributions and provides
guidance on the process for determining appropriate choices depending on the information needed from
the assessment and the information available to define the input variables.

In PRA, there are some important distinctions in the terminology used to describe probability
distributions.  A probability density function (PDF), sometimes referred to as a probability model,
characterizes the probability of each value occurring from a range of possible values.  Probability
distributions may be used to characterize variability (PDFv) or uncertainty (PDFu).  One advantage of
using a PDFv and PDFu is that distributions represent a large set of data values in a compact way (Law
and Kelton, 1991).  For example, a lognormal distribution provides a good fit to a large data set of tap
water ingestion rates (n=5,600) among children ages 1 to 11 years (Roseberry and Burmaster, 1992). 
Therefore, the distribution type (lognormal) and associated parameters (mean and standard deviation)
fully describes the PDFv for intake rates, from which other statistics of interest can be calculated (e.g.,
median, and 95th percentile).  Reducing a complex exposure model to a series of representative and well-
fitting distributions can facilitate both the quantitative analysis and the communication of the modeling
methodology.  Alternatively, a PDFu may be specified to characterize parameter uncertainty.  For
example, the sample mean ( ) is generally an uncertain estimate of the population mean (:) due tox
measurement error, small sample sizes, and other issues regarding representativeness (see Section B.3.1). 
A PDFu can be used to represent the distribution of possible values for the true, but unknown parameter. 
Understanding whether uncertainty or variability is being represented by a PDF is critical to determining
how the distribution and parameters should be specified and used in a PRA. 
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EXHIBIT B-1

DEFINITIONS FOR APPENDIX B

Bayesian Analysis - Statistical analysis that describes the probability of an event as the degree of belief or confidence
that a person has, given some state of knowledge, that the event will occur.  Bayesian Monte Carlo combines a
prior probability distribution and a likelihood function to yield a posterior distribution (see Appendix D for
examples).  Also called subjective view of probability, in contrast to the frequentist view of probability.

Bin - Regarding a histogram or frequency distribution, an interval within the range of a random variable for which a
count (or percentage) of the observations is made.  The number of bins for a histogram is determined on a case-
by-case basis.  In general, equal interval widths are used for each bin; however, in some cases (e.g., Chi-square
test), individual bin widths are calculated so as to divide the distribution into intervals of equal probability.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit.  Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is
needed.  The number of dust particles in a volume of air is another example.  Countably finite implies there is an
upper limit (e.g., days of work per year).

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable.  Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Empirical Distribution Function (EDF) -The EDF, also called the empirical CDF (ECDF), is based on the frequency
distribution of observed values for a random variable.  It is a stepwise distribution function calculated directly
from the sample, in which each data point is assigned an equal probability.

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values observed or
measured from a population.  It conveys the range of values and the count (or proportion of the sample) that was
observed across that range.

Goodness-of-Fit (GoF) Test - A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population.  Generally involves an hypothesis test in which the null
hypothesis H0 is that a random variable X follows a specific probability distribution F0.  That is, H0: F=F0 and
Ha: F … F0.

Independence - Two events A and B are independent if whether or not A occurs does not change the probability that B
occurs.  Likewise, knowing the value of B does not affect the value of A.  Input variables, X and Y, are
independent if the probability of any paired values (X, Y) is equal to the probability of X multiplied by the
probability of Y.  In mathematical terms, X and Y are independent if f(X, Y)=f(X) x f(Y).  Independence is not
synonymous with correlation.  If X and Y are independent, then their correlation is zero, Cor(X, Y)= 0.  But, the
converse is not always true.  There may be a nonlinear relationship between X and Y that yields Cor(X, Y)=0, but
the variables are highly dependent. 

Nonparametric Method - Also called a distribution-free method, a procedure for making statistical inferences without
assuming that the population distribution fits a theoretical distribution such as normal or lognormal.  Common
examples are the Spearman rank correlation, (see Appendix A) and the bootstrap-t approach..

Parameter - In PRA, a parameter is a quantity that characterizes the probability distribution of a random variable.  For
example, a normal probability distribution may be defined by two parameters (e.g., arithmetic mean and standard
deviation). 

Parametric Distribution - A theoretical distribution specified by a distribution type and one or more parameters. 
Examples include the normal, Poisson, and beta distributions.
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EXHIBIT B-1 —Continued
DEFINITIONS FOR APPENDIX B

Probability Density Function (PDF) -  A function representing the probability distribution of a continuous random
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range
about that point. 

Probability Distribution - The mathematical description of a function that associates probabilities with specified
intervals or values for a random variable.  A probability distribution can be displayed in a graph (e.g., PDF
or CDF), summarized in a table that gives the distribution name and parameters, or expressed as a
mathematical equation.  In PRA, the process of selecting or fitting a distribution that characterizes
variability or uncertainty can also be referred to as applying a probability model to characterize variability or
uncertainty.  In this guidance, the probability model is considered to be one source of model uncertainty.

Step Function - A mathematical function that remains constant within an interval, but may  change in value from one
interval to the next.  Cumulative distribution functions for discrete random variables are step functions. 

Z-score - The value of a normally distributed random variable that has been standardized to have a mean of zero and a
SD of one by the transformation Z=(X–:)/F.  Statistical tables typically give the area to the left of the
z-score value.  For example, the area to the left of z=1.645 is 0.95.  Z-scores indicate the direction (+/-) and
number of standard deviations away from the mean that a particular datum lies assuming X is normally
distributed.  Microsoft Excel’s NORMSDIST(z) function gives the probability p such that p=Pr(Z # z), while
the NORMSINV(p) function gives the z-score zp associated with probability p such that  p=Pr(Z # zp).

B.1.0 CONCEPTUAL APPROACH FOR INCORPORATING A PROBABILITY DISTRIBUTION IN A PRA

Often, more than one probability
distribution may appear to be suitable for
characterizing a random variable.  A step-wise,
tiered approach is recommended for
incorporating probability distributions in a
PRA.  This appendix provides guidance on
selecting and fitting distributions for variability
and parameter uncertainty based on the overall
strategy given in Exhibit B-2.  Many of the
same principles of selecting and fitting
distributions are also given in EPA's Report of
the Workshop on Selecting Input Distributions
for Probabilistic Assessments (U.S. EPA, 1999a).

Probability distributions may be developed to characterize variability or uncertainty.  Example
flow charts for specifying a PDFv and PDFu are given in Figures B-1 and B-2, respectively.  Both
approaches outline an iterative process that involves three general activities:  (1) identify potentially
important sources of variability or uncertainty to determine if a PDF may be needed; (2) apply the general
strategy given in Exhibit B-1 and evaluate plausible alternatives for distributions and parameter estimates;
and (3) document the decision process.  The flowcharts provide a general outline of the process and
contain terms which are explained in subsequent sections.  Just as with the point estimate approach,
different sites may require different probability distributions for input variables, depending on the unique
risk management issues and sources of uncertainty.

EXHIBIT B-2

GENERAL STRATEGY FOR SELECTING
 AND FITTING DISTRIBUTIONS

(1) Hypothesize a family of distributions
(2) Assess quality of fit of distribution
(3) Estimate distribution parameters
(4) Assess quality of fit of parameters
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B.2.0 PRELIMINARY SENSITIVITY ANALYSIS

Selecting and fitting probability distributions for all of the input variables can be resource
intensive and is generally unnecessary.  Ideally, a subset of variables could be identified that contribute to
most of the variability and uncertainty in a risk estimate.  Sensitivity analysis can play an important role
in helping to identify and quantitatively rank the major exposure pathways and variables.  Since the
information obtained from a sensitivity analysis may vary, depending on the approach(es) used and the
information available to characterize the input variables, risk assessors should understand inherent
limitations of each approach.  A variety of approaches that are common for Tier 1 and 2 analyses are
described and applied to a hypothetical example in Appendix A.  

In a Tier 1 assessment, sensitivity analysis is typically limited to exploring the effect of
alternative point estimates on the risk estimate.  These methods can be helpful if additional information
regarding the variability in the input variables is incorporated into the analysis (i.e., sensitivity scores). 
Alternatively, a reasonable approach is to specify preliminary probability distributions for one or more
inputs in order to maximize the advantages of probabilistic methods.  The difference between a
preliminary distribution and a subsequent distribution reflects the level of effort invested in characterizing
variability and uncertainty.  If a robust data set is available in Tier 1 to define point estimates, then a
preliminary distribution may, in fact, fully characterize variability with very high confidence.  For other
variables, summary statistics, rather than sample data, may be available, allowing for estimates of central
tendency or plausible ranges.  The use of preliminary distributions reflects an effort to employ more
robust sensitivity analysis techniques without expending the effort and resources that might otherwise be
applied to a PRA in Tier 2.  The goal of the preliminary analysis would not be necessarily to evaluate
risks and/or develop a PRG; rather, the focus would be on identifying input variables that may be
important to explore more fully.  Preliminary sensitivity analysis can provide insight into the importance
of selecting among alternative probability distributions and exposure scenarios. 

One-dimensional Monte Carlo simulations with preliminary (or screening-level) distributions can
be run prior to engaging in a more involved process of selecting and fitting distributions.  The
distributions can be selected based on knowledge regarding the mechanisms that result in variability, and
information already available for determining point estimates (e.g., summary statistics, U.S. EPA
guidance, etc.).  Table B-1 provides examples of preliminary distributions that might be selected based on
the type of information available, sometimes referred to as the state of knowledge.  In many cases, the
distribution is intended to estimate the plausible bounds of a variable, while requiring no additional data
collection effort.  For example, given estimates of a lower bound [min], upper bound [max], and the
assumption that each value is equally likely, a uniform distribution would be used to represent variability
(or parameter uncertainty).  If no mechanistic basis for selecting a distribution exists, then the preliminary
distribution would be chosen based on the available information.  For example, given the estimates of the
arithmetic mean [:] and a percentile value [a] for a random variable, an exponential distribution might be
recommended with 8=1/:.

Guidance on matching the choice of the distribution to the state of knowledge is extended to a
more diverse array of scenarios later in this appendix (see Table B-4).
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1The preliminary distributions are based in part on maximum entropy concepts.  Maximum entropy is a technique for
determining the distribution that represents the maximum uncertainty allowed by the available information and data (Vose,
1996).  Although the approach can be used to quickly define distributions that maximize uncertainty, the credibility of the
distribution depends on the use of accurate, unbiased information.

2See Table B-2 for more detailed descriptions of selected distributions.
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Table B-1.  Examples of Preliminary Distributions Based on Information Available1, 2

Information / Constraints Distribution Shape

[a, b] uniform

[a, m, b] triangular

[ a, b, α1, α2, β] beta

[:, F] normal

γ exponential

[a, b, µ, σ] Johnson Sb,
Lognormal

[α, β] gamma

 a=minimum,  b=maximum, m=mode, α=shape parameter, :=mean,
 F=standard deviation, γ=average rate of occurrence of events, β=scale,

It may be informative to explore alternative choices for distributions applied to the same variable. 
For example, a simple yet informative approach is to run two 1-D MCA simulations for variability with
an input variable characterized first by a Johnson Sb (i.e., a four-parameter lognormal distribution; Hahn
and Shapiro, 1967) and then by a normal distribution.  The difference in the risk distribution, especially at
the percentile that is relevant to the risk management decision (e.g., 95th percentile), may offer insights
regarding the importance of the shape of the PDFv.

B.3.0 WHAT DOES THE DISTRIBUTION REPRESENT?

Distributions may be specified to characterize variability or uncertainty.  Often, a Monte Carlo
simulation of variability will focus on describing differences between individuals in a population (i.e.,
inter-individual variability).  In this case, the goal is to select a distribution that is representative of the
target population—the set of all receptors that are potentially at risk.  There may be uncertainty that the
choice of PDFv reflects variability in the target population.  In general, risk assessors should fully
disclose uncertainties in the PDFv, especially because the use of a distribution instead of a point estimate
may inappropriately suggest that there is a greater state of knowledge.  Following the tiered process (see
Chapter 2, Figure 2-1), there are multiple opportunities to consider consequences of alternative modeling
approaches early in the process of developing a probabilistic model.  The importance of relating the
distribution to the target population, clearly distinguishing between variability and uncertainty, and
evaluating data representativeness is emphasized in Sections B.3.1, B.3.2 and B.4.
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B.3.1 CONCEPTS OF POPULATION AND SAMPLING

The distinction between a target population, a sampled population, and a statistical population
should be considered carefully when evaluating information for use in both Tier 1 and Tier 2 of a PRA. 
The target population is often considered to be the “population of concern”.  A risk assessor is often
interested in quantifying specific attributes of the population (e.g., exposure duration, exposure
frequency, etc.).  A sampled population is the set of receptors available for selection and measurement. 
For purposes of this appendix/guidance, the sampled population may be the target population or it may be
a different population that is thought to be representative of the target population.  For purposes of this
guidance, a statistical population is an approximation of the target population based on information
obtained from the sampled population.

Distributions are generated from representative sample populations to make inferences about the
target population.  Ideally, a sampled population should be a subset of a target population and should be
selected for measurement to provide accurate and representative information about the exposure factor
being studied.  However, defining representative samples is a matter of interpretation.
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Sensitivity Analysis
(i.e., Tier 1 and Tier 2)

Is the factor 
influential?

Use a health protective 
point estimate

Present in workplan
and report

Is the factor     
amenable to expert 

judgment?

Conduct expert 
elicitation for PDFAre the data 

representative of 
of the target 
population?

No

Yes

Yes

Yes

No

No

No

Continued on next 
page

NoDo sufficient data 
exist or can they be 
collected to run a 

refined 1-D MCA?

Yes

Yes

Present PDF/EDF in 
workplan and report

Can the data be 
adjusted to better 
represent the target 
population (e.g., 
weighting factors)

Consider the mechanistic 
characteristics of the data 
(e.g., continuous or discrete 
variable)

Figure B-1 (page 1 of 2). Conceptual approach for incorporating probability distributions
for variability in PRA.
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Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Figure B-1 (page 2 of 2).  Conceptual approach for incorporating probability distributions
for variability in PRA.
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Identify dominant 
exposure pathway(s) from

sensitivity analysis
(Appendix A, Section B.2.0)

Identify factor(s)that may
contribute to uncertainty in 

the risk distribution
(Appendix A, Section B.2.0)

Select a plausible risk 
exposure model for the 

exposure pathway
(Fig. B-2b)

Select probability
distribution(s) for variability

in exposure factor(s) (Fig. B-1) 

Quantify parameter 
uncertainty with point 

estimates or distribution(s)
(Fig. B-2c)  

Run simulation to 
propagate variability and 
uncertainty (e.g., multiple 

1-D MCAs; 2-D MCA;  
MEE, etc.) 

Continue
quantifying
uncertainty?

Present
results in graphical
and tabular format

YesNo

Figure B-2a  (page 1 of 3).  Conceptual approach for quantifying model and parameter 
uncertainty in PRA.
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Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Is the 
exposure model 

appropriate?

Figure B-2b (page 2 of 3).  Detailed conceptual approach for incorporating model uncertainty in PRA.
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Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)

Is information 
available to quantify 

parameter 
uncertainty? 

Is the parameter 
amenable to expert 

elicitation?

Conduct expert 
elicitation

Select distribution 
(or point estimate) for 

uncertainty

Run simulation to 
propagate variability 

and uncertainty

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Continue with 
process 

acknowledging 
limits of data

No

Yes Yes

Yes No

No

Run sensitivity 
analysis to identify 

important sources of 
uncertainty

Identify candidate probability 
distribution(s) for variability (Fig. B-1):

• mechanistic basis for variability 
• exploratory data analysis
• expert judgment

Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)
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available to quantify 
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Figure B-2c (page 3 of 3).  Detailed conceptual approach for incorporating parameter
uncertainty in PRA.
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B.3.2 CONSIDERING VARIABILITY AND UNCERTAINTY IN SELECTING AND FITTING DISTRIBUTIONS

Multiple probability distributions may be used to describe variability and uncertainty in an input
variable.  For example, a normal probability distribution may be selected to characterize variability in
body weight, whereas a uniform distribution may selected to characterize uncertainty in the estimate of
the arithmetic mean of the normal distribution.  The appropriate interpretation and analysis of data for an
exposure variable will depend on whether one is specifying a PDFv or PDFu.  Figure B-1 outlines one
useful process for selecting distributions for variability, whereas Figure B-2 (three pages) outlines a
useful process for quantifying both model and parameter uncertainty.

Variability generally refers to observed differences attributable to true heterogeneity or diversity
in a population (U.S. EPA, 1997b).  Variability results from natural random processes.  Inter-individual
variability may stem from environmental, lifestyle, and genetic differences.  Examples include human
physiological variation (e.g., natural variation in body weight, height, breathing rates, drinking water
intake rates), changes in weather, variation in soil types, and differences in contaminant concentrations in
the environment.  Intra-individual variability may reflect age-specific changes (e.g., body weight and
height).  Variability is not reducible by further measurement or study.  A PDF for variability can usually
be obtained by fitting a distribution to the sample measurements. 

Sources of Uncertainty

Uncertainty generally refers to the lack of knowledge about specific factors, parameters, or
models (U.S. EPA, 1997b).  Although uncertainty in exposure and risk assessment may be unavoidable
due to the necessary simplification of real-world processes, it generally can be reduced by further
measurement and study.  Parameter uncertainty may stem in part from measurement errors, sampling
errors, or other systematic errors in the collection and aggregation of data.  Model uncertainty may reflect
the simplification of a complex process, a mis-specification of the exposure model structure, a misuse or
misapplication of an exposure model, use of the wrong distributional model, and the use of surrogate data
or variables.  Scenario uncertainty may reflect uncertainty in an exposure model, such as the relevance of
specific exposure pathways to the target population.  A conceptual exposure model can be used to provide
direction in specifying a probability distribution for uncertainty.  For example, the concentration term in a
Superfund risk assessment typically represents the long-term average concentration to which a receptor is
exposed (see Chapter 5).  An uncertainty distribution for the concentration term could be developed in
part from ideas about the statistical uncertainty of estimating the long-term average from a small sample,
and the assumption of random movement of the receptors within a defined exposure unit.

Probability Distributions and Model Uncertainty

This appendix primarily focuses on methods for quantifying uncertainty associated with both the
selection of a variability distribution, and estimating parameters of a distribution.  A probability
distribution can be referred to as a type of model in the sense that it is an approximation, and often a
simplified representation of variability or uncertainty that combines both data and judgment.  A broader
use of the term model refers to a representation of a chemical, physical, or biological process.  In risk
assessment, many different models have been developed, with varying objectives, major defining and
limiting components, and theoretical basis.  Figure B-2b provides a general process for exploring model
uncertainty of this type.  This figure reflects the concepts and spirit of the Agency Guidance for
Conducting External Peer Review of Environmental Regulatory Modeling (U.S. EPA, 1994).  In general,
EPA regional risk assessors should be consulted in order to determine the types of exposure and risk
models that may be plausible for quantifying exposure at a particular site.
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Parameter Uncertainty

Quantifying parameter uncertainty in a probabilistic model typically requires judgment (see
Appendix C).  When data are uncertain due to, for example, small sample sizes or questionable
representativeness (Section B.3.1), Monte Carlo simulation can be a useful tool for demonstrating the
effect of the uncertainty on the risk estimates.  It is most important to model uncertainty when the
sensitive input variables are uncertain.  Uncertainty can be quantified in both the point estimate approach
(e.g., a range of possible central tendency exposure values) or a probabilistic approach (e.g., a range of
possible values for the arithmetic mean of a distribution).  While a quantitative uncertainty analysis may
complicate a risk management decision by suggesting that risk estimates are highly uncertain, this
information can be helpful by focusing additional efforts towards collecting data and reducing uncertainty
in the most sensitive input variables.  Likewise, if an estimated risk is below a regulatory level of concern,
even after quantifying highly uncertain inputs to the exposure model, the risk manager may be more
confident in a decision.  As emphasized in Figures B-2a, B-2b, and B-2c, risk assessors should generally
refrain from setting ad hoc probabilities to different candidate distributions in a single Monte Carlo
simulation.  Instead, this guidance strongly recommends exploring model or parameter uncertainty by
running a separate simulation with each candidate model.  For example, rather than randomly assigning a
beta distribution or a lognormal distribution to an exposure variable for each iteration of a simulation,
separate simulations should be run with the candidate probability distributions.  Similarly, if a range of
temporal or spatial scales is plausible for quantifying exposure, multiple simulations should be designed
to demonstrate the importance of these assumptions on the risk estimates.

Uncertainty in parameter estimates may be characterized using a variety of methods.  Similar to a
PDF for variability, a PDF for parameter uncertainty may be represented by a probability distribution
with a unique set of parameters.  Sometimes the distribution for uncertainty can be specified by knowing
(or assuming) a distribution for variability.  For example, if X is a normally distributed random variable,
the Student’s t distribution and the Chi-square (P2) distribution can be used to develop PDFu’s for random
measurement error uncertainty in the sample mean and variance, respectively.  The PDFu for both the
Student’s t and Chi-square distributions is determined by the sample size (n).  If a PDFu cannot be
determined from the PDF for variability, or assumptions regarding the underlying distribution for
variability are not supportable, nonparametric or “distribution free” techniques may be used (e.g.,
bootstrapping).  Both parametric and nonparametric techniques may yield confidence intervals for
estimates of population parameters.  

B.4.0 DO DATA EXIST TO SELECT DISTRIBUTIONS?

Developing site-specific PDFs for every exposure assumption (or toxicity value, in the case of
ecological risk) can be time and resource intensive, and in many cases, may not add value to the risk
management decision.  For those exposure variables that do exert a significant influence on risk, a PDF
may be developed from site-specific data, data sets available in the open literature (e.g., EPA’s Exposure
Factors Handbook, U.S. EPA 1997a), or from existing PDFs in the literature (e.g., Oregon DEQ, 1998).

At Superfund sites, perhaps the most common exposure variable that will be described by site-
specific data will be the media concentration term.  The sample (i.e., collection of empirical
measurements) will most often be used to estimate either a point estimate of uncertainty (e.g., an upper
confidence limit for the arithmetic mean concentration—the 95% UCL), or a distribution that
characterizes the full distribution of uncertainty in the mean.  Exposure variables such as ingestion rates,
exposure duration, and exposure frequency will most likely be derived from existing PDFs or data sets in
the open literature.  The Agency supports the development PDFs that may be generally applicable to
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different sites (e.g., body weight, water intake, and exposure duration) (U.S. EPA, 1999b, 2001).  Until
final recommendations of PDFs are available for the more generic exposure variables, PDFs for exposure
variables that lack adequate site-specific data will typically be selected from: (1) existing PDFs; (2) data
on the entire U.S. population; or (3) data on subsets of the U.S. population that most closely represent the
target population at a site.  If risks to a sensitive subpopulation, such as young children, elderly adults,
ethnic groups, or subsistence fishermen, are a concern at a site, then existing PDFs or data sets that best
characterize these subpopulations would be preferable to national distributions based on the entire U.S.
population.  If adequate site-specific data are available to characterize any of the exposure variables,
distributions can be fit to those data. 

Uncertainty Associated with Sample Size

An appropriate question to consider when evaluating data sets for use in exposure and risk
assessment is, “What sample size is sufficient?”  Generally, the larger the sample size (n), the greater
one’s confidence in the choice of a probability distribution and the corresponding parameter estimates. 
Conversely, for small n, Goodness-of-fit (GoF) tests (see Section B.6.2) will often fail to reject many of
the hypothesized PDFs.  In general, there is no rule of thumb for the minimum sample size needed to
specify a distribution for variability or uncertainty.  Increasing a sample size may be an appropriate option
to consider when evaluating risk management strategies to reduce uncertainty. 

Statistical sampling, in general, is important to consider when estimating parameters of a
probability distribution.  One rule of thumb is that the parameters that reflect the central tendency of a
distribution (e.g., arithmetic mean, median, mode) can be estimated with greater confidence than
parameters that reflect the extremes of the distribution (e.g., 95th percentile).  When deciding on
appropriate truncation limits (minimum and maximum values), it is unlikely that the statistical sample
actually includes the plausible bounds.  See Section B.5.7 for more detailed guidance on specifying
truncation limits for probability distributions.

B.4.1 WHAT ARE REPRESENTATIVE DATA?

The question, “What is a representative sample?”, is important to address when selecting and
fitting distributions to data.  Many of the factors that may determine representativeness (e.g., sample size
and the method of selecting the target, and sample population (Section B.3.1)) are relevant to both point
estimate and PRA.  EPA’s Guidance for Data Usability in Risk Assessment, Part A (U.S. EPA, 1992)
describes representativeness for risk assessment as the extent to which data define the true risk to human
health and the environment.

The goal of representativeness is easy to understand.  However, evaluating data to determine if
they are representative is more difficult, especially if the problem and decision objectives have not been
clearly defined.

The importance of representativeness also varies with the level of complexity of the assessment. 
If a screening level assessment is desired, for example, to determine if concentrations exceed a health
protective exposure level, then representativeness may not be as important as health protectiveness.
However, if a complete baseline risk assessment is planned, the risk assessor should generally consider
the value added by more complex analyses (e.g., site-specific data collection, sensitivity analysis, and
exposure modeling).  A tiered approach for making these decisions for a PRA is presented in Chapter 2,
and examples of more complex analyses are presented in Appendix D.  In addition, the Agency (U.S.
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EPA, 1999a) summarizes the advantages and weaknesses of proposed checklists for risk assessors to
evaluate representativeness of exposure factors data.

For purposes of this guidance, a surrogate study is one conducted on a sampled population that is
similar to, but not a subset of, the target population.  When using surrogate data, the risk assessor should
generally exercise judgment about the representativeness of the data to the target population.  For
example, the distribution of body weights of deer mice from two independent samples from similar
ecosystems may differ depending on the age structure, proportion of males and females, and the time of
year that the samples were obtained.  When in doubt about which study results to use in defining a
probability distribution, one option is to develop a distribution and calculate risks with each sample
independently, and compare the results.  This approach can be a simple, but effective type of uncertainty
analysis.  At a minimum, uncertainties associated with the use of surrogate studies should be discussed in
the assessment.

In many cases, the surrogate population shares common attributes with the target population, but
is not truly representative.  The risk assessor should then determine the importance of the discrepancies
and whether adjustments can be made to reduce those differences.  There are a wide variety of methods
that can be used to account for such discrepancies, depending on the available information.  Summary
statistics (e.g., as presented by the Exposure Factors Handbook, U.S. EPA, 1997a) can be used to
estimate linear characteristics of the target population from the sample population.  For example, if the
mean, standard deviation, and various percentiles of the sample population are known, then the mean or
proportion exceeding a fixed threshold can be calculated using a simple weighted average.  Adjustment
options are more numerous if the risk assessor has access to the raw data.  Adjustments for raw data
include: weighted averages, weighted proportions, transformations, and grouping of the data based on the
available information (e.g., empirical data, and professional judgment).

In most cases, the evaluation of data representativeness will necessarily involve judgment.  The
workplan should generally include a description of the data, the basis for the selection of each
distribution, and the method used to estimate parameters (see Chapter 2).  Empirical data (i.e.,
observations) are typically used to select distributions and derive parameter estimates.  However, it may
be necessary to use expert judgment or elicitation in cases where the quality or quantity of available data
are found to be inadequate.

B.4.2 THE ROLE OF EXPERT JUDGMENT

Expert judgment refers to inferential opinion of a specialist or group of specialists within an area
of their expertise.  When there is uncertainty associated with an input variable, such as a data gap, expert
judgment may be appropriate for obtaining distributions.  Note that distributions elicited from experts
reflect individual or group inferences, rather than empirical evidence.  Distributions based on expert
judgment can serve as Bayesian priors in a decision-analytic framework.  The distributions and Bayesian
priors can be modified as new empirical data become available.  There is a rich literature base regarding
the protocol for conducting expert elicitations and using the results to support decisions (Morgan and
Henrion, 1990).  Elicitation of expert judgment has been used to obtain distributions for risk assessments
(Morgan and Henrion, 1990; Hora, 1992; U.S. EPA, 1997b) and for developing air quality standards
(U.S. EPA, 1982).

Bayesian analysis is a statistical approach that allows the current state of knowledge, expressed as
a probability distribution, to be formally combined with new data to reach an updated information state. 
In PRA, Bayesian Monte Carlo analysis (Bayesian MCA) can be used to determine the reduction in
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EXHIBIT B-3
FACTORS TO CONSIDER IN SELECTING A

PROBABILITY DISTRIBUTION*
C Is there a mechanistic basis for choosing a

distributional family?  
C Is the shape of the distribution likely to be

dictated by physical or biological properties or
other mechanisms?

C Is the variable discrete or continuous? 
C What are the bounds of the variable? 
C Is the distribution skewed or symmetric?  
C If the distribution is thought to be skewed, in

which direction?  
C What other aspects of the shape of the

distribution are known?
C How well do the tails of the distribution

represent the observations?

*Source: U.S. EPA, 1997b

uncertainty arising from new information.  When combined with techniques from decision analysis,
Bayesian MCA can help to determine the type
and quantity of data that generally should be
collected to reduce uncertainty.  The benefits and
limitations of expert elicitation, Bayesian
statistics, Bayesian MCA, and decision analysis
(i.e., value of information [VOI]), as applied to
PRA, are discussed in greater detail in
Appendix D.

B.5.0 FITTING DISTRIBUTIONS TO DATA

Sometimes more than one probability
distribution may adequately characterize
variability or uncertainty.  The choice of a
distribution should be based on the available data
and on knowledge of the mechanisms or
processes that result in variability.  In general, the
preferred choice is the simplest probability model
that adequately characterizes variability or
uncertainty and is consistent with the mechanism
underlying the data.  For example, a log-logistic
distribution would not necessarily be selected
over a 2-parameter lognormal distribution simply
because it was ranked higher in a GoF test by a
statistical software package.  Some distributions (e.g., normal, lognormal) are well known among risk
assessors.  The statistical properties for these distributions are well understood and the formal descriptions
can often be brief.  

Important factors to consider in selecting a PDF are described in Exhibit B-3.  An initial step in
selecting a distribution should be to determine if the random variable is discrete or continuous. 
Continuous variables take any value over one or more intervals and generally represent measurements
(e.g., height, weight, concentration).  For a continuous variable, a mathematical function generally
describes the probability for each value across an interval.  Discrete variables take either a finite or
countably infinite number of values.  Unique probabilities are assigned to each value of a discrete
variable.  The number of rainfall events in a month is an example of a discrete random variable, whereas
the amount of rainfall is a continuous variable.  Similarly, the number of fish meals per month is a
discrete variable, whereas the average size (mass) of a fish meal is continuous.  

Another important consideration is whether there are plausible bounds or limits for a variable. 
For example, it is highly unlikely that an American adult will weigh less than 30 kg or more than 180 kg. 
Most exposure variables may assume any nonnegative value within a plausible range.  Therefore,
distributions will generally be truncated at a minimum of zero (or higher), or a probability distribution
that is theoretically bounded at a nonzero value may be specified (see Table B-3).  A more detailed
discussion of factors to consider in selecting a PDF and specifying parameter values is provided below.
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B.5.1 CONSIDERING THE UNDERLYING MECHANISM

There may be mechanistic reasons depending on known physical or biological processes that
dictate the shape of the distribution.  For example, normal distributions result from processes that sum
random variables whereas lognormal distributions result from multiplication of random variables.  A
Poisson distribution is used to characterize the number of independent and randomly distributed events in
a unit of time or space.  An exponential distribution would describe the inter-arrival times of independent
and randomly distributed events occurring at a constant rate.  If, instead, the elapsed time until arrival of
the kth event is of interest, then the appropriate probability distribution would be the gamma distribution
(Morgan and Henrion, 1990).

L In all cases, it is incumbent on the risk assessor to explain clearly and fully the
reasoning underlying the choice of a distribution for a given exposure
variable—primarily from a mechanistic standpoint if possible.

Table B-2 lists some of the probability distributions that may commonly be used in PRA.  This is
not an exhaustive list, and the scientific literature contains numerous examples with alternative
distributions.  Where practicable, a mechanistic basis is presented for the choice of the distribution.  For
some distributions, such as beta, triangular, and uniform, a mechanistic basis is not offered because it is
unlikely that a chemical or biological process will yield a random variable with that particular shape. 
Nevertheless, such distributions may be appropriate for use in PRA because they reflect the extent of
information that is available to characterize a specific random variable.  Preliminary distributions are
discussed in Section B.2.0 and Table B-4.  Because many of the distributions given in Table B-2 can
assume flexible shapes, they offer practical choices for characterizing variability.

Table B-2 also illustrates probability distributions (both PDFs and CDFs) commonly used in
PRA.  While intuitively appealing, identifying a mechanistic basis for a distribution can be difficult for
many exposure variables; however, it may be relatively apparent that the variable is bounded by a
minimum (e.g., ingestion rate $ 0 mg/day) and a maximum (e.g., absorption fraction # 100%), or that the
relevant chance mechanism results in a discrete distribution rather than a continuous distribution, as
described above.

For each distribution, one or more examples with different parameter estimates are given to
demonstrate the flexibility in the shape of the PDF.  In addition to the descriptions of the distributions in
Tables B-2, Table B-3 provides a summary of the parameters and theoretical bounds that define the PDFs. 
For a further discussion of characteristics of PDFs see Thompson, 1999.  Figures (a-h) immediately
following Table B-2 present examples of PDFs and the corresponding CDFs for distributions commonly
used in PRA.
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Table B-2.  Examples of Selected Probability Distributions for PRA.

Distribution Mechanistic Basis Example(s)

Beta
Figure (e)

Describes a continuous random variable with
finite upper and lower bounds.  This
distribution can take on very flexible shapes,
but generally does not have a mechanistic
basis.

Absorption fraction bounded by 0 and 100%;
fraction of time an individual spends indoors.

Binomial Describes a discrete random variable produced
by processes that: (1) occur in a fixed number
n of repeated independent “trials”; (2) yield
only one of two possible outcomes (e.g.,
“success” or “failure”) at each trial; and
(3) have constant probability p of “success”.  A
binomial distribution is characterized by
parameters n, p, and x, representing the number
of trials, the probability of success of each
trial, and the number of successes,
respectively.

The number of animals with tumors (or some
other quantitative outcome) in a chronic animal
bioassay.

Exponential
Figure (h)

If instead of counting the number of events in
the Poisson process (below), one measures the
time (or distance) between any two successive,
random, independent events. 

The length of time between two radiation
counts; length of time between major storm
events; distance between impact points of two
artillery shells.

Gamma
Figure (g)

Similar to exponential except that time until
occurrence of the kth event in the Poisson
process is measured (rather than time between
successive events).  Reduces to exponential
when k=1.

Time until kth radiation count; elapsed time until
kth major storm event. 

Lognormal
Figure (b)

Multiplication of a large number of random
variables, or equivalently adding the
logarithms of those numbers, will tend to yield
a distribution with a lognormal shape.

Chemical concentrations in environmental
media; media contact rates; rates and flows in
both fate and transport models.  Because the
basic risk equation is multiplicative,
distributions of risk are generally lognormal.  In
practice, lognormal distributions often provide
good fits to data on chemical concentrations in
a variety of media (Gilbert, 1987; Ott, 1990).

Normal
Figure (a)

Addition of independent random variables,
with no one variable contributing substantially
to the total variation of the sum, will tend to
yield a distribution with a normal shape.  This
result is established by the central limit
theorem.

The “Gaussian Plume Model” for the dispersion
of air pollutants is based on the idea that, at a
micro level, individual parcels of air, or
molecules of pollutants, are subject to many
random collisions from other molecules that act
together as if a large number of random
numbers were being added/subtracted from an
initial 3-dimensional description of a position.

Poisson Observed when counting the frequency of
discrete events, where the events are
independent of one another, and randomly
distributed in space or time.  Approximates the
binomial distribution when sample size, n, is
large and probability, p, is small.

The number of counts of radiation that occur in
a particular time interval; the release of synaptic
transmitter from nerve cells; the number of
artillery shells falling within a fixed radius; the
occurrence of major storm events in a month;
number of leaks in average length of pipe.
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Triangular
Figure ©)

The PDF is shaped like a triangle, with
parameters representing plausible bounds and a
most likely value (i.e., mode).  This is a
“rough” probability model that generally
describes a random variable based on limited
information rather than mechanistic basis.

Variability in shower droplet diameter. 
Uncertainty in the mean air exchange rate in a
shower.

Uniform
Figure (d)

The PDF is shaped like a rectangle, with
parameters representing plausible bounds. 
This is a “rough” probability model that
generally describes a random variable based on
limited information rather than a mechanistic
basis. 

Variability in the air ventilation rate in a house.

Weibull
Figure (f)

Originated in reliability and (product) life
testing as a model for time to failure or life
length of a component when the failure rate
changes with time.  A very flexible model
taking a wide range of shapes.  If the failure
rate is constant with time, the Weibull reduces
to the exponential distribution.

Examples for exponential and gamma would
also be appropriate for Weibull.
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B. 5.2 EMPIRICAL DISTRIBUTION FUNCTIONS (EDFS)

In some cases, an empirical distribution function (EDF) may be preferred over fitting the data set
to a hypothesized distribution.  EDFs, also called empirical cumulative distribution functions (ECDF),
provide a way to use the data itself to define the distribution of the relevant variable.  Briefly, an EDF for
a random variable is described by a step function based on the frequency distribution of observed values. 
An EDF for a continuous random variable may be linearized by interpolating between levels of the
various bins in a frequency distribution.  The CDF for a linearized EDF appears as a line, rather than
steps.  Example B-3 at the end of this Appendix illustrates an EDF, linearized EDF, and beta distribution
("1=0.63, "2=2.85, rescaled to min=0, max=364) fit to percentile data for soil ingestion rates in children
(Stanek and Calabrese, 1995).  A plausible range (i.e., minimum and maximum values) was imposed on
the data set for this example. 

EDFs provide a complete representation
of the data with no loss of information.  They do
not depend on the assumptions associated with
estimating parameters for theoretical probability
models.  EDFs are designed to provide direct
information about the shape of the distribution,
which reveals skewness, multimodality, and
other features of the data set.  However, EDFs
may not adequately represent the tails of a
distribution due to limitations in data
acquisition.  In the simplest case, an EDF is
constrained to the extremes of the data set.  This
may be an unreasonable restriction if limiting
the EDF to the smallest and largest sample
values is likely to greatly underestimate the
distributional tails.  If this is an important source
of uncertainty, the risk assessor may choose to extend the tails of the distribution to plausible bounds or to
describe the tails with another distribution (see Exhibit B-4).  For example, an exponential distribution
may be used to extend the tails based on the last 5% of the data.  This method is based on extreme value
theory, and the observation that extreme values for many continuous, unbounded distributions follow an
exponential distribution (Bratley et al., 1987).  As with other probability models, uncertainty in the
plausible bounds of an EDF may be reduced by obtaining additional information.

Advantages and disadvantages of using EDFs in PRA are discussed in detail in the Report of the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

B.5.3 GRAPHICAL METHODS FOR SELECTING PROBABILITY DISTRIBUTIONS

Graphical methods can provide valuable insights and generally should be used in conjunction
with exploratory data analysis.  Examples of graphical methods are frequency distributions (i.e.,
histograms), stem-and-leaf plots, dot plots, line plots for discrete distributions, box-and-whisker plots, and
scatter plots (Tukey, 1977; Conover, 1980; Morgan and Henrion, 1990).

L Graphical methods are invaluable for exploring a data set to understand the
characteristics of the underlying population.

EXHIBIT B-4

VARIATIONS OF THE EDF

Linearized - Linearly interpolates between two
observations, yielding a linearized cumulative
distribution pattern.

Extended - In addition to linearizing (see above),
adds lower and upper bounds based on expert
judgment.

Mixed Exponential - Adds an exponential upper
and/or lower tail to the EDF.
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Together with statistical summaries, graphical data summaries can reveal important characteristics of a
data set, including skewness (asymmetry), number of peaks (multi-modality), behavior in the tails, and
data outliers.

Frequency Distribution or Histogram

The frequency distribution, or histogram, is a graphical approximation of the empirical PDF. 
Frequency distributions can be plotted on both linear and log scales.  The general strategy for selecting
the number of bins to partition the data is to avoid too much smoothing and too much jaggedness. 
Equation B-1 (U.S. EPA, 1999a) provides a starting point for estimating the number of bins based on the
sample size (n).

Probability Plotting

Another method that may be used to visualize distributions and estimate parameters is probability
plotting, also referred to as linear least squares regression or regression on ordered statistics.  This
technique involves finding a probability and data scale that plots the CDF of a hypothesized distribution
as a straight line.  The corresponding linearity of the CDF for the sample data provides a measure of the
GoF of the hypothesized distribution.  The general approach involves sorting the sample data in
ascending order and converting the ranks to percentiles.  The percentile value for the ith rank is calculated
according to Gilbert (1987) as:

An alternative formula is provided by Ott (1995):

Plotting positions given by Equations B-2 and B-3 are special cases of the more general formula given by
Equation B-4 (Helsel and Hirsch, 1992):

where a is a constant that varies from 0 (Equation B-3) to 0.5 (Equation B-2).

The percentiles are used to calculate the z-scores, which represent the number of standard
deviations away from the mean that a particular datum lies assuming the data are normally distributed. 
For normal distributions, the data are plotted against the z-scores; for lognormal distributions, the data are
log-transformed and plotted against the z-scores.  In both cases, parameters of the distribution can be
estimated from the least-squares regression line.  When the hypothesized distribution is a poor fit to the
data, p-plots can yield misleadingly low estimates of the standard deviation (Cullen and Frey, 1999). 
Both Gilbert (1987) and Ott (1995) provide excellent descriptions of the use of probability plotting to
derive parameter estimates for a given distribution.  Probability plotting techniques with best-fit lines
have been used to estimate parameters for a wide variety of distributions, including beta, Weibull, and
gamma.
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Cullen and Frey (1999) point out that probability plotting may not be a primary choice for
selecting a fitting distributions because the method violates an important assumption of least squares
regression—independence of the observations (see Appendix A, Exhibit A-5).  This is because the rank-
ordered data are no longer independent.  Nevertheless, this approach may yield good results when the fit
is good and the choice of distributions is somewhat subjective.

B.5.4 PARAMETER ESTIMATION METHODS

As a rule, there are often a number of different methods available for estimating a given
parameter.  The most appropriate method to apply may require judgment, depending on the relative
difficulty in applying a method for a particular parameter, as well as the desired statistical properties of
the method.  The following simple example provides a useful analogy.  Suppose that the parameter of
interest, A, is the total area of an approximately square exposure unit.  If the exposure unit is a perfect
square, and the length of one side (L1) is known, the area would be equal to L1

2 (i.e., for a square, A=Li
2). 

Suppose L is unknown, but two independent measurements, X1 and X2, are available to estimate the
length (see Exhibit B-5).  If it is assumed that the random variable, L, has a probability distribution with
mean :, then the area of the square piece of property is A=:2.  What is a reasonable estimate of the area

(i.e., ) based on X1 and X2?  Three plausible methods for calculating are given below.$ $A = µ 2 $µ 2

Because these three estimators will, as a rule, give different answers, it may be useful to set criteria for
selecting which one gives the “best” answer.  Some of the statistical criteria that are used for this purpose
are consistency, efficiency, robustness, sufficiency, and unbiasedness (see Exhibit B-6).  It turns out, each
method is relatively easy to implement, but the third method is preferred because it is a more efficient
estimator.

In many cases, particularly if a model is complex, potential estimators of the unknown parameters
are not readily apparent.  To assist in developing estimators, several general methods have been
developed.  Exhibit B-7 lists some of the more common parameter estimation methods. 

Perhaps the simplest method is the method of matching moments (MoMM), also called the
method of moments.  MoMM is appropriately named, as it involves expressing the unknown parameters
in terms of population moments and then “matching”, or equating the sample moments to the population

EXHIBIT B-5

ESTIMATING THE AREA OF A
HYPOTHETICAL EXPOSURE UNIT

Exposure
Unit

x1

x2
Exposure

Unit

x1

x2
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n

moments.  For example, the sample mean ( )x
and standard deviation (s) are estimators for the
corresponding population parameters (: and F). 

Maximum Likelihood Estimation (MLE)
is a commonly applied method, that is often
thought of as a parameter estimate for which the
observed data are most “likely”.  The likelihood
function is defined for independent continuous
random variables as follows:

L(θ1, θ2,...θk) = Π f(x1|θ1, θ2, ..., θk) 
     I=1

The likelihood function is evaluated based on the
product of the PDF for each value of x.  The
parameters of the probability model, (θk), are
chosen to maximize the likelihood function value
and thereby are most likely to produce the
sample data set (Cullen and Frey, 1999).

It has also been demonstrated that MLE
yields estimators that generally have good
properties when evaluated by the criteria listed
above.  In some cases (e.g., for smaller sample
sizes), these estimators are not unbiased;
however, this can often be accounted for by “adjusting” the estimator.  A familiar example of this
adjustment is in estimation of the variance of a normal distribution.  The MLE for the variance is biased
by a factor of ((n-1)/n), but this is easily corrected
by multiplying the MLE by (n/(–1)).  For some
distributions, calculations of the MLE are
straightforward.  For example, MLE for
parameters of a normal distribution are given by
the mean and standard deviation of the sample
data, the same as MoMM.  MLE for parameters of
a lognormal distribution are given by the mean and
standard deviation of the log-transformed data,
which is different from MoMM.  In general, MLE
calculations are complex, and commercial
software such as @Risk and Crystal Ball® may be
used.  A more detailed discussion of the derivation
and properties of MoMM and MLE can be found
in the statistics literature (e.g., Chapter 5 of Mood
and Graybill, 1963; Chapter 9 of Mendenhall and Scheaffer, 1973; Section 6.5 of Law and Kelton, 1991;
Section 5.6 of Cullen and Frey, 1999).  

EXHIBIT B-7

PARAMETER ESTIMATION METHODS

• Method of Matching Moments

• Maximum Likelihood

• Minimum Chi-Square

• Weighted Least-Squares

EXHIBIT B-6

CRITERIA FOR EVALUATING PARAMETER
ESTIMATION METHODS*

Consistency A consistent estimator converges to
the “true” value of the parameter as
the number of samples increases.

Efficiency An efficient estimator has minimal
variance in the sampling distribution
of the estimate.

Robustness A robust estimator is one that works
well even if there are departures from
the assumed underlying distribution.

Sufficiency A sufficient estimator is one that
makes maximum use of information
contained in a data set.

Unbiasedness An unbiased estimator yields an
average value of the parameter
estimate that is equal to that of the
population value.

*Source: Cullen and Frey, 1999
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B.5.5 DEALING WITH CORRELATIONS AMONG VARIABLES OR PARAMETERS

Correlations between exposure variables or between parameters of the probability distribution
may be important components of a probabilistic model.  Correlation is a measure of association between
two quantitative random variables.  Two random variables may either be positively or negatively
correlated.  A positive correlation exists between two variables if the value of X1 increases as the value of
X2 increases.  For example, higher hand dust lead levels have been associated with higher pediatric blood
lead levels (Charney et al., 1980).  A negative correlation exists between two variables if the value of X1
increases as the value of X2 decreases.  For example, studies suggest the ingestion of soil and dust
particles increases as particle size decreases (Calabrese et al., 1996).

A first step in identifying correlations is to assess the possible physical and statistical
relationships that exist between variables.  In an ecological risk assessment (ERA), for example, the
largest surf scoter (diving duck) does not consume the least amount of food, nor does the smallest surf
scoter consume the greatest amount of food.  Random sampling of body weight and ingestion rate as
separate parameters, however, allows for these two possibilities.  Neglecting a correlation between two
variables may restrict (underestimate) the tails of the ecological Hazard Quotient (HQ) for each chemical
of concern (COC), which are frequently the areas of the distribution of most interest. 

The degree to which correlations affect the output of a risk model depends on: (1) the strength of
correlations between the two variables, and (2) the contribution of the correlated variables to overall
variance in the output (Cullen and Frey, 1999).  Therefore, it is useful to conduct a preliminary sensitivity
analysis to assess the impact of alternative correlation assumptions on the model output.  If the impact is
significant, correlations should be identified and accounted for in the PRA.

There are several approaches to account for dependencies in MCA including: (1) modifying the
model to include the correlation; and (2) simulating dependence between variables for sample generation
(Cullen and Frey, 1999).  Modifying the model is preferred as simulation techniques cannot capture the
full complexity between model inputs.  However, when this is not possible, dependencies between
variables can be simulated and approximated by correlation coefficients and bivariate normal
distributions.

Correlation coefficients are a numerical measure of the strength and direction of the relationship
between two variables.  Sample correlation coefficients measure the linear relationship between variables. 
However, if two variables are from different probability distributions, it is unlikely that they are linearly
related.  Consequently, simulation software programs such as Crystal Ball® and @Risk can be used to
calculate and employ the nonparametric statistic, Spearman’s Rank Correlation Coefficients (Rho) in
simulating correlation between inputs.  Rank Correlation Coefficients measure the linear dependence not
of the data values themselves, but of the rank value of the data.  The ranks indicate relative positions in an
ordered series, not the quantitative differences between the positions.  The disadvantage of losing
information by using the rank values (rather than the actual values) is offset by the ability to correlate
random variables from different distribution types (See Appendix A).

Exhibit B-8 gives an example of a straightforward approach to specifying a rank correlation
between two input variables in a one-dimensional Monte Carlo analysis (1-D MCA) for variability.  A
range of correlations is explored as a form of uncertainty analysis on the distribution of intakes given a
fish advisory of 7.0 :g/day for a chemical.
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EXHIBIT B-8

CORRELATION OF INPUT VARIABLES FOR 1-D MCA OF VARIABILITY

Intake Equation Intake = (CF x IR x FI x EF x ED)/(BW x AT)

Variables Description and Units Units Point Estimate or PDFv

CF concentration in fish ug/kg 25

IR fish ingestion rate kg/meal lognormal (0.16, 0.07)1

FI fraction ingestion from source unitless 1.0

EF exposure frequency meals/yr lognormal (35.5, 25.0)1

ED exposure duration years 30

BW body weight kg 70

AT averaging time days 10950

     1Lognormal PDF parameters: arithmetic mean, standard deviation

< Correlation between IR and EF is suggested by Burger et al. (1999) study of 250 anglers on the Savannah
River, South Carolina.  Moderate correlation (Kendall’s tau=0.17, p=0.04)

< Uncertainty Analysis: 1-D MCA simulations of variability correlating IR and EF using Crystal Ball® 2000
(5,000 iterations, Latin Hypercube sampling).  Spearman rank correlations: 0.10, 0.50, 0.90

Statistics of PDFv for Intake (ug/day) compared to Fish Advisory of 7.0 ug/day

Rank Correlation (r) 0.10 0.50 0.90

Intake Statistics (ug/day)

mean 1.6 1.8 2.0

50th percentile 1.1 1.1 1.1

95th percentile 4.4 5.4 6.5

97.5th percentile 5.7 7.0 9.0

< For this example, only IR and EF are characterized by PDFs.  They contribute approximately equally to the
distribution of intakes.  Positive rank correlations have little effect on the median (50th percentile) of the
output distribution, but tend to widen the tails of the distribution.  Increasing the correlation from 0.10 to
0.90 increases the 90th percentile from 4.4 to 6.5 ug/day, and the 97.5th percentile from 5.7 to 9.0 ug/day.  

< If the fish advisory is 7.0 ug/day, uncertainty in the correlation coefficient may have important
consequences for the risk management decision.
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Correlations may also be specified for parameters of a probability distribution.  This is an
important concept when designing a two-dimensional Monte Carlo analysis (2-D MCA) in which
parameters of the same PDFv might be otherwise be described by independent PDFu’s.  A common
approach for correlating two parameters is to specify a bivariate normal distribution (Nelsen, 1986, 1987;
Brainard and Burmaster, 1992).  A bivariate normal distribution allows for the distribution of one variable
to be sampled conditional on the other.  This is a special case of a joint distribution in which both x and y
are random variables and normally distributed (as the conditional distribution of x or of y is always
normal) (Wonnacott and Wonnacott, 1981).  Example B-4 further explains bivariate normal distributions
and demonstrates this approach applied to coefficients of a simple linear regression model that relates
contaminant concentrations in soil and dust.

The results of correlation analysis should be interpreted with caution.  Two variables may be
associated due to: (1) a dependency between the two variables; (2) chance (two independent variables
appear dependent due to chance in the sampling procedure); and (3) variables not included in the analysis
(lurking variables) are affecting the two variables being analyzed.  Likewise, a low correlation measure
does not necessarily mean the two variables are independent.  As a lurking variable may cause the
appearance of an association between the two independent variables, it may also mask the association
between two dependent variables.

 L Correlation describes a degree of mathematical association, not a causal
relationship between the two variables.  

Efforts to extrapolate or predict correlations outside the range of observed values should also be
done with caution.  For example, there may be a strong linear relationship between age and height in
children; however, it would be inappropriate to apply this correlation to adults.  Additional caution is
needed when correlating more than two factors at a time.  In general, because of the complexity of
specifying a valid covariance matrix when correlating more than two factors at a time, risk assessors may
need to consult a statistician to avoid generating misleading risk estimates.

B.5.6 CENSORED DATA

In order to define the exposure point concentration, estimates of summary statistics representative
of the entire distribution of data are needed (Helsel and Hirsch, 1992).  Censored data complicate the
process of selecting and fitting PDFs and estimating parameter estimates.  A censored data set is a data set
for which measurements above or below a certain threshold are not available.  Left censored data occurs
frequently at Superfund sites, where samples for a number of chemicals are often below the reporting
limit.  A censored datum (often denoted by ND) commonly represents a value of half of the laboratory
reporting limit. 

Three general methods for estimating summary statistics for left censored data sets include:
(1) simple substitution; (2) distributional methods; and (3) robust methods (Helsel and Hirsch, 1992). 
These methods may be evaluated based on the root mean squared error (RMSE) estimate, a measure of 
the difference between the sample statistic (e.g., the sample mean, ) and the true population parameterx
(e.g., population mean, µ).  
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Methods which yield estimates closer to the true parameter value have lower bias, higher precision, and
lower RMSEs. 

Simple Substitution Methods

Simple substitution methods entail substituting values equal to or lower than the reporting limit in
the data set.  These surrogate values are then included in the calculation of the summary statistics and in
determining the distributional shape of the data set.  Although this method is frequently used, it is
important to understand its limitations; depending on the surrogate value used (e.g., half the reporting
limit) the simple substitution method may yield biased parameter estimates (e.g., low estimates of the
mean) and may yield misleading distributional shapes.  Studies such as those reported by Gilliom and
Helsel (1986) have determined, in terms of the RMSE, that simple substitution methods perform more
poorly than the distributional and robust methods described below. 

Distributional Methods

With distributional methods, the entire data set is assumed to follow a theoretical distribution
(e.g., normal distribution).  Assuming a theoretical distribution, MLE and probability plotting (p-plot)
methods provide summary statistics that best match the reported values of the data and the percentage of
samples below the threshold value.  If the data fit the theoretical distribution exactly, or if the sample size
is large, both MLE and p-plots are unbiased methods.  Often, however, the sample size is small and the
distribution deviates from a theoretical distribution.  In this case, the MLE and p-plot methods may yield
biased and imprecise methods (Hesel and Hirsch, 1992). 

Robust Methods

With robust methods, a theoretical distribution is needed.  A theoretical distribution is fit to the
data above the detection limit by MLE or p-plot methods.  Based on this assumed PDF, the value of the
data points below the detection limit are extrapolated and used in the summary statistics calculation.
Unlike the simple substitution method, these extrapolated values are not estimates for the data points;
rather, they are only used jointly to calculate summary statistics (Hesel and Hirsch, 1992).  The method is
considered robust as it uses the actual values of the sample data, rather than the distribution above the
detection limit. 

B.5.7 TRUNCATION

Truncation refers to imposing a minimum and/or maximum value on a probability distribution. 
The main purpose of truncation is to constrain the sample space to a set of “plausible values”.  For
example, a probability distribution for adult body weight might be truncated at a minimum value of 30 kg
and a maximum value of 180 kg in order to avoid the occasional selection of an unlikely value (e.g., 5 or
500 kg).  Given the subjectiveness involved in selecting truncation limits, such choices should clearly be
made with caution, and involvement of stakeholders who may be aware of site-specific circumstances. 
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For example, there may well be individuals who weigh more than 180 kg and less than 30 kg.  The
purpose for truncating the tails of a distribution is to confine each risk estimate of a Monte Carlo
simulation to a combination of plausible input values.  The advantage of truncating unbounded
probability distributions in PRA is that central tendency and high-end risk estimates will not be biased by
unrealistic values.  The disadvantage is that the original parameter estimates of the nontruncated
distribution are altered by constraining the sample space.  The bias in the parameter estimates increases as
the interval between the minimum and maximum truncation limit is reduced.  For example, a normal
distribution with an arithmetic mean of 100 may be fit to a data set; imposing a truncation limit of
300 may result in a truncated normal distribution with an arithmetic mean of 85.  The relationship
between the truncated and nontruncated parameter estimates can be determined analytically (Johnson et
al., 1995) or approximated using Monte Carlo simulations under both truncated and nontruncated
scenarios.

Table B-3.  Theoretical bounds and parameter values for selected distributions.

Probability Distribution Parameters1 Theoretical Bounds

Normal (:, F) (-4, + 4)

Lognormal (:, F) [0, + 4)

Weibull (", $) [0, + 4)

Exponential ($) [0, + 4)

Gamma (", $) [0, + 4)

Beta ("1, "2, a, b) [a, b]

Uniform (a, b) [a, b]

Triangular (a, m, b) [a, b]

Empirical ( bounded EDF) (a, b, {x}, {p}) [a, b]

1a=minimum, b=maximum, :=mean, F=standard deviation, m=mode, 
"=shape parameter, $=scale parameter, x=value, p=probability

Truncation is typically considered when using unbounded probability distributions (e.g., normal,
lognormal, gamma, Weibull) to characterize variability.  Table B-3 gives the theoretical bounds for
selected probability distributions that may be more commonly used in PRA.  Truncating the minimum
value may also be appropriate for distributions whose minimum is defined as zero (e.g., lognormal,
gamma, Weibull).  Truncation is generally less important when a PDF is used to characterize uncertainty
in a parameter estimate (e.g., arithmetic mean), since distributions for uncertainty are often bounded by
definition (e.g., triangular, uniform).  Bounded continuous distributions, such as the beta distribution or
empirical distribution (see Section B.5.2) are not subject to the parameter bias of truncation, although
plausible minimum and maximum values must still be identified. 

Identifying appropriate truncation limits that reflect “plausible bounds” for an exposure variable
will often require judgment.  Given that most data sets represent statistical samples of the target
population, it is unlikely that the minimum and maximum observed values represent the true minimum
and maximum values for the population.  However, there may be physiological or physical factors that
can aid in setting plausible truncation limits.  For example, the maximum bioavailability of chemicals in
the gastrointestinal (GI) tract is 100%.  Similarly, the solubility of chemicals in aquatic environments
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(accounting for effects of temperature) will generally be less than the chemical solubility in water free of
particulates.

In general, sensitivity analysis can be used to determine if truncation limits are an important
source of parameter uncertainty in risk estimates.  For exposure variables in the numerator of the risk
equation, the maximum truncation limit is of greatest concern.  For exposure variables in the denominator
of the risk equation, the minimum truncation limit is of greatest concern.  Details regarding the fit of the
tails of the probability distribution and the effect of truncation on the parameter estimates should
generally be included in the workplan.

B.6.0 ASSESSING QUALITY OF THE FIT

The quality of the fit of a distribution may be evaluated in several ways.  Standard statistical
approaches are available to test the fit of a theoretical distribution to a data set (i.e., GoF tests).  In
addition, alternative choices for distribution shapes and plausible bounds might be explored as a form of
sensitivity analysis.  Together with graphical exploration (Section B.5.3), this information may be useful
when deciding whether or not to incorporate a specific type of distribution for an exposure variable into a
PRA.  

L GoF tests are one tool among several to assess the quality of a distribution.

Although GoF testing is a necessary part of distribution fitting, and tests are readily available with
commercial software, it is less important than mechanistic considerations or graphical data exploration for
choosing a candidate distribution.  Examples of GoF tests are discussed below, and cautions regarding
GoF are outlined in Section B.6.3.

B.6.1 WHAT IS A GOODNESS-OF-FIT TEST?

Goodness-of-fit (GoF) tests are formal statistical tests of the hypothesis that the data represent an
independent sample from an assumed distribution.  These tests involve a comparison between the actual
data and the theoretical distribution under consideration. 

In statistical hypothesis testing the null hypothesis (H0) is assumed to be true unless it can be
proven otherwise.  The “evidence” upon which we base a decision to reject or not to reject H0 is a random
sample.  Typically, we seek to reject H0 in favor of Ha.  For example, with the two sample t-test, the null
hypothesis is that the means of two populations are equal (not different) and the alternative is that they are
different.  This is expressed as:  

Most often, the hypothesis test is used to show that the means are not equal (i.e., reject H0 in favor
of Ha) in order to state that there is a significant difference between the two populations at a specified
significance level (e.g., "=0.05).  Thus, the hypothesis test is often referred to as a significance test.

The p-value in a statistical test is calculated from a sample and represents the probability of
obtaining a value of the test statistic as extreme or more extreme as the one observed if H0 is in fact true. 
When the p-value is small it means either the null hypothesis is not true, or that we have witnessed an
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unusual or rare event (by chance we drew an unusual sample that resulted in the extreme value of the test
statistic).  Often a value of 0.05 or 0.01 is designated as a cutoff, or significance level ".  If the p-value is
(e.g., p < 0.05), the null hypothesis is rejected in favor of the alternative, and we state that the test result is
statistically significant at level ".  This does not mean that we have proven Ha is true.  Rather, we are
saying that based on our sample results, it is unlikely that H0 is true.  

In a GoF test, the hypothesis test is set up the same way as a “traditional” hypothesis test, but the
outcome is viewed a little differently.  In GoF tests, we generally seek to fail to reject H0 because the null
hypothesis states that the data were obtained from a population described by the specified distribution
(F0).  The alternative hypothesis is that the data were obtained from a population described by a different
distribution.  In most applications of GoF techniques, the alternative hypothesis is composite—it gives
little or no information on the distribution of the data, and simply states that H0 is false (d’Agostino and
Stephens, 1986).  This can be expressed as:

where F0 is a specific continuous distribution function, such as the CDF for a normal distribution.

L GoF tests do not prove that the population is described by the specified
distribution, but rather that this assumption could not be rejected.  

In general, p-values provide one metric of evaluating the fit of the distribution.  For example, a p-value of
0.06 indicates that the null hypothesis (i.e., the assumption of a specified distribution) cannot be rejected
at "=0.05.  Larger p-values indicate a better fit and stronger evidence that the distribution specified by the
null hypothesis may be appropriate.  This guidance does not recommend an arbitrary cutoff for the
p-value.  A risk assessor performing a GoF test generally should report the p-value and whether the fit is
considered “good” or “poor”.  

B.6.2 WHAT ARE SOME COMMON GOODNESS-OF-FIT TECHNIQUES?

The following GoF tests can also be found in most general statistical and spreadsheet software. 
Both Crystal Ball® and @Risk software present the results of chi-square, K-S, and Anderson-Darling tests
in their fitting routines. 

Shapiro-Wilk Test

The most widely used GoF test in risk assessment is the Shapiro-Wilk test for normality (Gilbert,
1987).  This simple hypothesis test can determine whether or not a small data set (n # 50) is normally
distributed.  The test can also be run on log-transformed data to assess whether the data are lognormally
distributed.  D'Agostino's test may be used for samples sizes larger than those accommodated by the
Shapiro-Wilk test (i.e., n > 50) (d’Agostino and Stephens, 1986).  In addition, Royston (1982) developed
an extension of the Shapiro-Wilk test for n as large as 2000 (Gilbert, 1987).  

Probability Plot Correlation Coefficient Test

The correlation coefficient r (or the coefficient of determination, r2) between the data and the
z-scores of a normal probability plot (Filliben, 1975; Helsel and Hirsch, 1992) is similar to the W statistic
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of the Shapiro-Wilk test.  A detailed comparison of the Shapiro-Wilk test and the product correlation
coefficient test is given by Filliben (1975) and d’Agostino and Stephens (1986).  Helsel and Hirsch
(1992) summarize critical r* values derived by Looney and Gulledge (1985) for the probability plot
correlation coefficient test.

Chi-Square Test

The chi-square test is a general test that may be used to test any distribution (continuous or
discrete), and for data that are ordinal (e.g., categories such as high/medium/low).  Chi-square is a
measure of the normalized difference between the square of the observed and expected frequencies.  For
example, by constructing a frequency distribution of the data with k adjacent bins, j=1...k, the number of
data points in the jth bin can be compared with the expected number of data points according to the
hypothesized distribution.  Note that in the case of continuous, unbounded distributions (e.g., normal), the
first and last intervals may include [- 4, a1] or [ak, + 4] (Law and Kelton, 1991).  The chi-square test is
very sensitive to the chosen number and interval width of bins—different conclusions can be reached
depending on how the intervals are specified.  Strategies for selecting bins (e.g., setting interval widths
such that there are no fewer than 5 data points expected per bin) are given in the statistical literature
(d’Agostino and Stephens, 1986; Law and Kelton, 1991).  The test statistic is compared with a value of
the chi-square distribution with (k - r - 1) degrees of freedom, where k is the number of sample values and
r is the number of parameters of the hypothesized distribution.  As described in Section B.6.1, in general,
higher p-values suggest better fits.

Kolmogorov-Smirnov (K-S) Test

The K-S test is a nonparametric test that compares the maximum absolute difference between the
step-wise empirical CDF and the theoretical CDF.  Because the maximum discrepancy is compared with
the test statistic, K-S is sometimes referred to as a supremum test (Cullen and Frey, 1999).  In general,
lower values of the test statistic indicate a closer fit.  The K-S test is most sensitive around the median of
a distribution, and, hence, it is of little use for regulatory purposes when the tails of distributions are most
generally of concern (U. S. EPA, 1999a).  Although it does not require grouping data into bins like the
chi-square test, critical values for the K-S test depend on whether or not the parameters of the
hypothesized distribution are estimated from the data set (Gilbert, 1987; Law and Kelton, 1991).  The
Lilliefors test was developed to surmount this problem when the hypothesized distribution is normal or
lognormal (Gilbert, 1987).

Anderson Darling Test

The Anderson-Darling test assesses GoF in the tails (rather than the mid-ranges) of a PDF using a
weighted average of the squared differences between the observed cumulative densities.  The Anderson-
Darling test is sometimes referred to as the quadratic test (Cullen and Frey, 1999).  The test statistic
should be modified based on sample size prior to comparison with the critical value.  Like the K-S test, in
general, lower values of the test statistic indicate a closer fit (i.e., if the adjusted test statistic is greater
than the modified critical value for a specified ", the hypothesized distribution is rejected).  The
Anderson-Darling test may be particularly useful because it places more emphasis on fitting the tails of
the distribution.
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B.6.3 CAUTIONS REGARDING GOODNESS-OF-FIT TESTS

There are many statistical software programs that will run GoF tests against a long list of
candidate distributions.  It is tempting to use the computer to make the choice of distribution based on a
test statistic.  However, GoF tests have low statistical power and often provide acceptable fits to multiple
distributions.  Thus, GoF tests are better used for rejecting poorly fitting distributions than for ranking
good fits.  In addition, for many distributions, GoF statistics lack critical values when the parameters are
unknown (i.e., estimated from the data).  In practice, this limitation is often discounted and the critical
values are interpreted as a semi-quantitative measure of the fit.  It is most appropriate to form an idea of
the candidate distributions based on some well reasoned assumptions about the nature of the process that
led to the distribution, and then to apply a GoF test to ascertain the fit (U.S. EPA, 1999a).  Whenever
possible, mechanistic and process (i.e., phenomenologic) considerations should inform the risk assessor's
choice of a particular distribution rather than the results of a comparison of GoF tests (Ott, 1995).  In
addition, the value of graphical evaluations of the fit cannot be overstated.

B.6.4 ACCURACY OF THE TAILS OF THE DISTRIBUTION

The tails of a distribution (e.g., < 5th and > 95th percentiles) for an input variable are often of
greatest interest when characterizing variability in risk.  Distributions fit to data may not characterize the
tails of the distribution in a way that represents the target population.  In general, the importance of
uncertainty in the fit of the tails of particular distributions should be determined on a site-specific basis. 
For exposure variables in the numerator of the risk equation, the upper tail is of greatest concern.  For
exposure variables in the denominator of the risk equation, the lower tail is of greatest concern.  

The tails of the input PDFs generally have a significant influence on the tails of the risk
distribution, especially for those variables that are ranked highest in a sensitivity analysis.  Different
distributions may share the same mean and variance, but assume very different shapes.  Experiments with
Monte Carlo simulations have demonstrated that the shape of the input PDFs may have a minimal effect
on the risk estimates in the tails of the probability distribution when the mean and variance of the input
PDFs are held constant (Hoffman and Hammonds, 1992; Finley and Paustenbach, 1994).  Nevertheless, it
is generally a good practice in PRA to demonstrate that alternative choices of PDFs do not have a
significant effect on percentiles in the RME risk range.

A common question when developing and evaluating Monte Carlo models is, “How many
iterations is enough?”.  Since Monte Carlo sampling is approximately random, no two simulations will
yield the same results (unless the same starting point, or seed, of the random number generator is used). 
A rule of thumb is that the stability of the output distribution improves with increasing numbers of
iterations, although there will always remain some stochastic variability.  The stability is generally better
at the central tendency region of the output distribution than at the tails; therefore, more iterations may be
needed when the risk management decision is associated with the higher percentiles
(e.g., > 95th percentile).  Risk assessors are encouraged to run multiple simulations (with the same inputs)
using different numbers of iterations in order to evaluate the stability of the risk estimate of concern.  The
results of such an exercise should generally be reported to the Agency when submitting a PRA for review. 
Note that while the speed of modern computers has essentially eliminated the issue for 1-D MCA (e.g.,
10,000 iterations of most 1-D MCA models can be run in less than 1 minute), it may still be an important
issue for more complex modeling approaches such as Microexposure Event analysis (MEE) and
2-D MCA (see Appendix D).
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B.7.0 SELECTING PROBABILITY DISTRIBUTIONS BASED ON STATE OF KNOWLEDGE

Table B-4 summarizes preliminary strategies for proceeding with a PRA based on the amount of
available information.  Recommended starting points for each of the three steps in the general process are
provided.  This table provides guidance on candidate distributions that are consistent with the available
information, however, it is not intended to discourage the use or exploration of alternative choices.

L Table B-4 provides recommended preliminary strategies, not steadfast rules. 
As an analyst works through the PRA, alternative distributions, estimation
methods, consideration of mechanism, and GoF tests may better guide the
selection process.  

Case 1 represents the best scenario, in which the analyst has access to the raw data and a
sufficiently large sample size (or > 6 percentiles).  In this case, the analyst has a variety of choices for
distribution fitting and estimating parameters.  However, frequently raw data are inaccessible to the
analyst.  Cases 2 and 3 have limited information available (i.e., mean and upper percentile) and, therefore, 
have a narrower set of starting points.  Case 4 is the most extreme scenario of data availability requiring
expert judgment on selecting and fitting distributions.
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Table B-4.  Strategies for conducting PRA based on available information.  Preferred methods in Case 1 (most
information) are identified by an asterisk (*).

Evaluation Step Case 1 Case 2 Case 3 Case 4

                                  Decreasing Information

Data
Availability

raw data of sufficiently
large sample size
                 or
six or more percentiles

three to five statistics two statistics one statistic

Selection of
Distribution Type

Nonnegative Continuous
any in this category

Bounded
beta, Johnson’s SB

Nonnegative Continuous
lognormal, gamma, Weibull

Bounded
beta, Johnson’s SB

case-by-case
basis using
expert judgment

Selection of
Parameter
Estimation /
Fitting Method

maximum likelihood*
regression methods
matching moments

minimize average
absolute percent error
(MAAPE) for 
available statistics

exact agreement
between 2-parameter
PDF and available
statistics

Assessment of 
Quality of Fit

Graphical Assessment
   P-log Q plot*, P-Q plot*

residual % error plot*
P-P plot, Q-Q plot 

GoF Tests
Anderson-Darling*
K-S
Chi-square

Graphical Assessment
P-log Q plot, P-Q plot

GoF Test
Chi-square,

   Estimate p-value for      
   MAAPE using 
   parametric bootstrap (if 
   sample size is known)

Graphical Assessment
judgment based on
comparative analysis of
PDFs and CDFs

Estimation of
Parameter
Uncertainty

Large Sample
asymptotic normality 

   assumption
Medium Sample

nonparametric bootstrap 
Small Sample

parametric bootstrap

Parametric bootstrap
generate random samples using the fitted distribution
(if sample size is known)
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EXAMPLES OF FITTING DISTRIBUTIONS USING 
GRAPHICAL METHODS, GOODNESS-OF-FIT, AND PARAMETER ESTIMATION

Example B-1.  Empirical Distribution Function (EDF) for Soil Ingestion Rates

This hypothetical example illustrates how graphical methods can be used to select probability
distributions for variability based on percentile data reported in the literature.  Table B-5 gives the
summary statistics that are reported by Stanek and Calabrese (1995) for average daily soil ingestion rates
among young children.  Three options are explored for selecting a distribution: (1) empirical distribution
function (EDF) represented by a step function; (2) linearized and extended EDF; and (3) continuous
parametric distributions (beta and lognormal).

In order to specify an EDF, a plausible range (minimum and maximum) must be inferred using
judgment.  Exposure factors such as ingestion rate are nonnegative variables (i.e., minimum $0); given
the relatively low value for the 25th percentile (10 mg/day), it is assumed that 0 mg/day is a reasonable
minimum value for this example.  If children with pica for soil are excluded from the population of
concern, the maximum value may be inferred from the relatively shallow slope at the high-end of the
distribution.  That is, the 90th percentile is reported as 186 mg/day while the 99th percentile is 225 mg/day,
an increase of only 39 mg/day; it is assumed that 300 mg/day is a plausible maximum value for this
example.  Commercial software such as Crystal Ball® and @Risk can be used to input EDFs.  Figure B-3
illustrates the basic step-wise EDF represented by the reported percentile values, as well as the
“linearized, extended EDF” (i.e., linear interpolation between reported values and extended lower and
upper tails).  

An alternative to relying on a linear interpolation between the percentile values is to fit a
continuous probability distribution to the reported percentiles.  Since the original data are unavailable,
standard GoF tests for the EDF, such as K-S and Anderson-Darling (d’Agostino and Stephens, 1986),
cannot be applied.  Note that computer software (e.g., Crystal Ball®, @Risk) will provide test statistics
and corresponding p-values, however, these results will (inappropriately) reflect the number of percentile
values reported rather than the sample size of the original data.  Nevertheless, graphical methods may be
employed to assess the adequacy of the fit of various PDFs.  In this example, a beta distribution and
lognormal distribution were fit to the EDF using Crystal Ball®.  Figure B-4 illustrates the selected
statistics for both distributions.  

The beta distribution appears to more closely match the reported percentile values, especially at
the upper tail of the distribution.  The lognormal distribution has an unbounded maximum that, for this
example, results in an extreme overestimate of the 95th and 99th percentiles.  The beta distribution, by
definition, is bounded at 0 and 1, and rescaled in this example to a maximum of 364 mg/day.  This
analysis would support the use of a beta distribution in a Monte Carlo simulation.
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Figure B-3.  Comparison of step-wise EDF and linearized EDF for ingestion rate.  The upper and lower tails of both
distributions are extended to a plausible range of [0, 300] mg/day.

Table B-5.  Selected statistics for reported and fitted distributions for ingestion rate (mg/day).
Summary
Statistic

Reported
Values

Linearized,
Extended EDF

Beta
Distribution1

Lognormal
Distribution2

minimum -- 0 0 0
25th percentile 10 10 13 11
50th percentile 45 45 44 31
75th percentile 88 88 100 86
90th percentile 186 186 165 216
95th percentile 208 208 205 375
99th percentile 225 225 322 3346

maximum -- 300 364 + 4

1Parameters of best-fit beta distribution: "1=0.63, "2=2.85, min=0, max=364.
2Parameters of best-fit lognormal distribution: :=97.6, F=291.8.
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Figure B-4.  Graphical assessment of beta and lognormal distributions fit to the cumulative
distribution reported in the literature (circles).  The beta distribution provides a closer fit to the
percentile values in this example.

.
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Example B-2.  Variability in Lead Concentrations in Quail Breast Tissue

This hypothetical example demonstrates how the combination of graphical methods, GoF tests,
and parameter estimation techniques provides strong evidence for selecting and fitting a lognormal
distribution.  Assume lead concentration in quail is an important variable for a food web model.  Site-
specific data (n=62) are used to estimate inter-individual variability in concentration (Table B-6).  The
histograms in Figure B-5 show lead concentrations in quail breast tissue collected near a settling pond at a
plating works.  Equation B-1 indicated that 7 bins is an appropriate starting point.  The result (top left
panel, Figure B-5) suggests that approximately 80% of the values are < 200 ppm and that the probability
distribution for variability may be described by a nonnegative, right-skewed distribution (e.g.,
exponential, Weibull, lognormal, etc.).  However, additional bins are needed to better understand the low-
end of the distribution.  After increasing the number of bins from 7 to 16 (top right panel, Figure B-5),
graphical evaluation continues to suggest that the distribution is unimodal right skewed.  The bottom
panel of Figure B-5 illustrates that increasing the number of bins would not provide better resolution of
the low-end of the distribution.  For these data, 16 bins appear to provide a reasonable balance between
too much smoothing and too much jaggedness.

Probability plots can be used to visually inspect the GoF of a specified distribution to the data,
and, because the hypothesized distribution yields a straight line, the plots are particularly useful for
evaluating deviations at the tails.  In addition, parameter estimates can be obtained from the regression
lines fit to the data, as discussed below.  For this example, two lognormal probability plots are explored to
evaluate how well the data can be described by a lognormal distribution (Figure B-6).  The top panel
gives the z-score on the abscissa (the “x” axis) and ln[concentration] on the ordinate (the “y” axis), while
the bottom panel gives ln[concentration] on the abscissa and z-score on the ordinate.  Plotting positions
for both methods were calculated using Equation B-2.  Equally plausible parameter estimates can be
obtained from regression lines using either plotting method; however, the approach shown in the top
panel may be easier to implement and interpret.

Despite the relatively large sample size of n=62, GoF tests generally fail to reject lognormality
(i.e., normality of the log-transformed data) in this example.  For the probability plot correlation
coefficient test (Filliben, 1975; Looney and Gulledge, 1985), if r < r* (the value for r at a specified "),
normality is rejected.  For this example, r is 0.988, and r* is between 0.988 and 0.989 for n=62 and
"=0.25; therefore, the p-value for the concentrations is approximately 0.25 and one fails to reject
lognormality at " # 0.25.  D’Agostino’s test yields essentially the same conclusion, with a calculated
Y value of -1.9166.  For this data set, with n=62 and "=0.10, one rejects normality if Y < -2.17 or
Y > 0.997 (see Table 9.7 in d’Agostino and Stephens, 1986); therefore, since Y is within this interval, one
fails to reject the normal distribution.  However, for "=0.20, the rejection criteria is [Y < -1.64 or
Y > 0.812], Y falls outside the low-end of the interval, resulting in a rejection of the normal distribution. 
For this data set, the p-value associated with d’Agostino’s test is slightly less than 0.20 and one fails to
reject normality at  " < 0.20.
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Table B-6.  Sample values of lead concentration (ppm) in quail breast muscle (n=62).
0.45 15.8 36.6 57 91 173 265

2.1 16 40 59.6 94.2 175.6 322
5.4 16.7 40.1 61.4 99 176 490
7.8 21 42.8 62 107 177 663.4
7.8 23 44 64 109 205 703
8.8 24 46 64 111 239 1231

11.8 24.8 47 84.6 149 241 1609
12 29.2 49 86.6 149 245 1634
15 35.5 53 86.8 154 264

Figure B-5.  Histograms of lead concentrations in quail breast muscle (n=62).  The top left panel shows the result
with seven bins; the top right panel shows the result with sixteen bins; the bottom panel uses bin widths of 10
ppm to highlight the lower tail (< 250 ppm) of the distribution.
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Different methods for obtaining the parameter estimates for the lognormal distribution can be
explored in this example.  For the lognormal distribution, MLE and MoMM simply require calculating
the mean and standard deviation of the log-transformed sample data.  For the lognormal probability plot
method, the parameters can be obtained directly from the least squares regression line expressed as
follows:

such that exponentiating the intercept will give the geometric mean (GM) and exponentiating the slope
will give the geometric standard deviation (GSD) (see Footnote 3 of Table B-7).  Both the MLE and
MoMM estimates will generally match the arithmetic mean of the log-transformed data (i.e., intercept)
determined from lognormal probability plots; however, estimates of the standard deviation (i.e., slope)
will vary (Cullen and Frey, 1999).  In general, the probability plot method yields estimates of the standard
deviation that are less than or equal to that of MoMM and MLE, and the results yield closer estimates as
the correlation coefficient of the probability plot increases (Cullen and Frey, 1999).  Table B-7
summarizes the parameter estimates using MLE, MoMM, and the two lognormal probability plotting
techniques described above.  The corresponding parameter estimates for the untransformed data are also
presented.  

In this example, the strong linearity of the probability plots (r2=0.98) shown in Figure B-6 is an
indication that a lognormal distribution is a reasonable model for describing variability in concentrations. 
The tails of the distributions fit the data fairly well, although the bottom panel suggests that the lognormal
distribution slightly overestimates the lower tail.  Furthermore, the parameter estimates of the lognormal
distribution using probability plotting closely match the estimates using MLE and MoMM.

Table B-7.  Parameter estimates for lognormal distribution of lead concentrations (ppm).

Parameter Estimation
Method

Log-transformed
Data

Untransformed
Data3

Arithmetic
mean [ ]$µ

Arithmetic
stdev [ ]$σ

Arithmetic
mean [ ]$µ

Arithmetic
stdev [ ]$σ

Maximum Likelihood
Estimate (MLE) 4.175 1.522 207 626

Method of Matching
Moments (MoMM) 4.175 1.522 207 626

Log Probability Plot1 4.175 1.507 203 597
Log Probability Plot2 4.175 1.543 214 670

1Least squares regression line for Figure B-6, top panel.
2Least squares regression line for Figure B-6, bottom panel.
3For a lognormal distribution, the following equations can be used to convert parameters of the normal distribution of
log-transformed data to corresponding parameters of the lognormal distribution of untransformed data.  Assume :* and
F* are the arithmetic mean and standard deviation, respectively, for the normal distribution of log-transformed data.
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Figure B-6.  Lognormal probability plots of lead in quail breast tissue.  Top panel gives z on the abscissa and
ln[concentration] on the ordinate.  Bottom panel gives concentration (log scale) on the abscissa and z on the
ordinate.  Equally plausible parameter estimates can be obtained from regression lines using either plotting
method.  Bottom panel requires an additional step to express the equation that yields parameter estimates
[ln(x)=(slope) z + (y-intercept)], where the slope estimates the standard deviation of ln(x) and the y-intercept
(at z=0) estimates the arithmetic mean of ln(x). 
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Example B-3.  Variability in Meal Sizes Among Consuming Anglers

A creel survey of anglers consuming contaminated fish was performed to estimate variability in
fish meal sizes.  The anglers were asked how many people would eat their fish.  The lengths of the fish
were measured and a regression equation was used to calculate the corresponding weights.  The portion of
the fish mass that is consumed was assumed to be 40% (e.g., fillets).  Results given in Table B-8 are
expressed in units of grams of fish per meal.

The appearance of the histograms (Figure B-7)
suggests that the sample (n=52) may have been selected from
a single distribution.

A normal probability plot of the meal sizes
(Figure B-8) shows a departure from linearity.  Specifically,
there appears to be a “kink” in the probability plot at about
400 g/meal, suggesting that the sample may have been
obtained from two unique distributions.  Both the Filliben 
test and Shapiro-Wilk test indicated a significant departure
from normality at "=0.01.  Parameters may be read directly
from the equations of the regression lines on the right hand
panel of the graph.  MoMM and MLE gave similar estimates.

Figure B-7.  Histograms of meal size (n=52) among consuming anglers.  Left panel uses 7 bins, while the right
panel uses 14 bins.

Table B-8.  Meal size (g/meal) (n=52).
65 182 310 405
74 208 314 415
74 221 318 416
77 226 318 477
90 241 327 531

110 248 332 572
111 253 336 608
133 260 337 745
143 261 350 831
150 281 351 907
163 303 360 1053
163 305 365 1189
174 305 390 1208



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-45

y = 241.55x + 357.38
R2 = 0.8056

-400

-200

0

200

400

600

800

1000

1200

1400

-3 -2 -1 0 1 2 3

y = 102.98x + 249.11
R2 = 0.9529

y = 265.42x + 812.12
R2 = 0.9369

-150

50

250

450

650

850

1050

1250

-3 -2 -1 0 1 2 3

Example B-4.  Bivariate Normal Distributions

This example introduces the bivariate normal
distribution to illustrate two concepts: (1) use of
information on correlations in a Monte Carlo
simulation; and (2) specifying distributions for
uncertainty in parameter estimates.  A brief
explanation of the bivariate distribution is presented
followed by an example comparing assumptions of
no correlation and perfect correlation.  A less
complex example of a method for addressing
correlations in PRA is given in Exhibit B-8.

Properties of a Bivariate Normal Distribution

One approach that can be used to correlate
two random variables is to specify a bivariate normal distribution, which allows for the distribution of one
variable to be sampled conditional on the other.  A bivariate normal distribution is a special case of a joint
distribution in which both x and y are random independent normally distributed variables.  A bivariate
normal distribution can be specified for all correlation coefficients including ρ=0, ρ=1, and ρ=−1.  The
bivariate distribution has a three dimensional shape and for ρ=0, from a bird’s-eye view, is perfectly
circular.  As correlation increases (i.e. moves towards -1 or 1) this circle narrows and flattens to an
elliptical shape, and finally for perfect correlation →=1 and ρ=-1) becomes a straight regression line with
a r2=1.  In three dimensional space the probability of obtaining measurement pairs (x, y) in the region is
equal to the volume under the surface in that region.  To completely specify the bivariate normal,
estimates of the arithmetic mean and variance of the two parameters, as well as the correlation coefficient
(:X and :Y, variances F2

X and F2
Y , and correlation coefficient D) are needed.

Figure B-8.  Probability plot of meal size data from consuming anglers.  The left panel shows the combined
data, with a departure from linearity at ~ 400 g/meal.  The right panel shows the data split between high
consumers (top line) and low consumers (bottom line); note that separate lognormal probability plots were
reconstructed for both subsets of the data.  The point at which to “split” the distribution in the left panel is
somewhat subjective.  The break would be more obvious if the two distributions did not overlap.

THIS EXAMPLE PRESENTS...

• Description of the assumptions associated
with the bivariate normal distribution

• Guidance on simulating the bivariate normal
distribution for two random variables

• Application of bivariate normal to a simple
linear regression equation relating
contaminant concentrations in soil and dust
(see Figure B-9).  Results are compared to
the assumption of no correlation and perfect
correlation
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X ZX X= + ×µ σ 1 Equation B-8

Y ZY Y= + ×µ σ 2 Equation B-9

In a bivariate normal distribution, values of y corresponding to each value of x follow a normal
distribution (Snedecor and Cochran, 1989).  Analogously, the values of x corresponding to each value of
y follow a normal distribution.  Furthermore, if two random variables, X and Y, jointly follow a bivariate
normal distribution, the marginal distribution of X is normal with mean :X and variance F2

X, and the
marginal distribution of Y is normal with mean :Y and variance F2

Y.

Conditional Distributions

Assume we are interested in the conditional distribution of X given a certain value for Y.  For
example, if X and Y are positively correlated, we would expect that relatively high values of X tend to
correspond with relatively high values of Y.  The conditional distribution of X given that Y=y, where y
represents a specific value for the random variable Y, is a normal distribution with:

Likewise, the conditional distribution of Y given that X=x, is also normal with:

These general equations can be used to generate a correlated pair (X, Y), as described below. 

*Note that the mean of the conditional distribution of X is a function of the given value of Y but the
variance depends only on the degree of correlation.  

General Approach for Correlating X and Y

To generate a correlated pair (X, Y), first generate X using a random value Z1 from the standard
normal distribution:

Next, express Y as a function of the conditional mean and variance of Y given X and a second standard
normal variate Z2:
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and generate a correlated Y by plugging Equation B-7 into Equation B-9.  Using algebra, the combined
equations yield the following simplified expression for generating Y:

The important component of this equation is that two
random variates are needed (Z1 and Z2).

An alternative, but less general approach
would be to obtain Y by first generating a normal
variate X (Equation B-8) and then plugging that
value into the regression equation of Y on X to obtain
the associated value of Y.  While this method
maintains a correlation between X and Y, it will
underestimate parameter uncertainty.  The results are
equal only for the special case of perfect correlation
(D=1.0) between X and Y.  Therefore, the more
general bivariate normal distribution approach (given
by Equations B-8 to B-10) is recommended for
correctly correlating X and Y because it provides a
more robust estimate of parameter uncertainty.

Application of Bivariate Normal Distribution to
Correlate Concentrations of Zinc in Soil and Dust

Assume random sampling of soil and dust
zinc concentrations occurs in a residential area.  Composite samples of soil and dust are collected from
21 locations such that samples are paired (i.e., each soil sample is co-located with a dust sample) (Table
B-9).  First the relationship between the zinc concentration in soil and dust is evaluated using simple
least-squares regression.  Next, the bivariate normal distribution for the slope ($1) and intercept ($0) is
determined, yielding an arithmetic mean and standard deviation for each parameter (:b0, F2

b0, :b1, and
F2

b1), and correlation coefficient D between $1 and $0.  In this context, the bivariate normal distribution
may be considered a distribution for uncertainty in the parameter estimates.

Three simulation methods are employed to demonstrate the effect of assuming a bivariate normal
distribution for parameters vs. perfect correlation, or independent parameters.  Specifically:

(1) The slope and intercept of the regression line are described by a specific form of the bivariate
normal distribution (i.e., follow Steps 1, 2 in Exhibit B-9, and use Equation B-10 instead of
Step 4).

(2) The slope and intercept of the regression line are described by a general form of the bivariate
normal distribution (i.e., follow Steps 1 to 4 in Exhibit B-9).

(3) The slope and intercept of the regression line are described by independent normal distributions
(i.e., follow Steps 1–4 in Exhibit B-9, but omit the correlation coefficient D in Steps 2 and 4).
For each approach, Monte Carlo simulations with I=5,000 iterations were run to determine the set

EXHIBIT B-9

STEPS FOR SIMULATING UNCERTAINTY IN
LINEAR REGRESSION EQUATION USING A
BIVARIATE NORMAL DISTRIBUTION TO

CORRELATE PARAMETERS (#0, #1)

(1) Select Z1 from a standard normal distribution
Z~ N(0, 1)

(2) Calculate $0 using Equation B-8, where X=$0,
:x=:b0, and F2

x=F2
b0

(3) Select Z2 from a standard normal distribution
Z~ N(0, 1)

(4) Calculate $1 using Equation B-10, where
Y=$1, :y=:b1, F2

y=F2
b1, D=correlation between

$0 and $1
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of parameter values ($0, $1) for a simple linear regression equation.  Typically, the uncertainty in the
parameter estimates is not accounted for when simple linear regression equations are used to relate to
exposure variables in a model.  Such an approach may fail to account for important sources of parameter
uncertainty.  Figure B-10 (middle panel) illustrates the preferred approach for characterizing parameter
uncertainty based on the bivariate normal distribution. (Note that the correlation coefficient relating the
intercepts and slopes generated from the simulation is consistent with the correlation coefficient that
describes the bivariate normal distribution; this is a good check that the simulation was set up correctly
and run for a sufficient number of iterations). These results are contrasted with results using a form of the
bivariate normal (Equation B-10) that underestimates uncertainty (top panel) unless parameters are
perfectly correlated.  In addition, the simplistic approach of sampling from independent normal
distributions (bottom panel), yields a “shot gun” scatter plot.  Sampling from independent normal
distributions results in unlikely extreme combinations of the slope and intercept more often than the
correct bivariate normal approach; propagating this bias through a risk model may severely bias estimates
of uncertainty in risk. 

Bivariate Normal
Distribution for

Parameters of the
Regression Equation 

B0 mean 173.9

variance 4162.2

B1 mean 0.193

variance 0.0063

s2 27857.4

Cov (B0, B1) -4.2428

r -0.8254

Figure B-9.  Simple linear regression of zinc concentrations in soil
and dust.

Table B-9.  Zinc concentrations in paired (i.e., co-located) soil and dust samples
(ppm) for n=21 locations.
Sample Soil (Xi) Dust (Yi) Sample Soil (Xi) Dust (Yi)

1 120 216 12 560 200
2 190 149 13 560 256
3 270 83 14 720 496
4 285 508 15 800 239
5 310 215 16 880 203
6 340 219 17 910 757
7 350 203 18 1035 676
8 380 101 19 1445 426
9 440 178 20 1600 522

10 480 232 21 1800 276
11 560 199
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Figure B-10.  Results of Monte Carlo simulation
(n=5000 iterations) to estimate the slope and intercept of a
regression equation.  Top panel reflects the bivariate normal
distribution for the special case that fails to capture the
parameter uncertainty; middle panel reflects the preferred
bivariate normal distribution with D=-0.825 based on
empirical paired data; bottom panel reflects sampling from
independent normal distributions.
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APPENDIX C

CHARACTERIZING VARIABILITY AND UNCERTAINTY
IN THE CONCENTRATION TERM

C.0 THE CONCENTRATION TERM AND THE EXPOSURE UNIT

Incomplete knowledge of the concentration of one or more chemicals in various exposure media
is often the major source of uncertainty in Superfund risk assessments.  In any risk assessment, the
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant,
(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time
scale of the toxicity of the chemical(s).  This appendix expands upon concepts introduced in Chapter 5. 
This appendix does not provide detailed equations for performing calculations, but instead refers the
reader to other Environmental Protection Agency (EPA) guidance documents in which both the
recommended approaches and calculations are provided.

The concentration term is linked to the concept of an exposure unit (EU).  For Superfund risk
assessments, an EU is the geographical area in which a receptor is randomly exposed to a contaminated
medium for a relevant exposure duration.  Environmental sampling provides information about the
contamination within and around an EU.  Multiple EUs may be defined at a site based on the choice of a
receptor, the exposure medium, and the nature of contact with the medium.  For example, residential
exposures to children may involve exposures via soil and dust ingestion both at the primary residence and
recreational areas at a day care facility.  Site-specific information regarding the activities of receptors
should guide assumptions about the receptor’s contact with exposure media.

L Defining the EU is critical to the success of the remedial strategy, as it
affects the calculation of the concentration to which receptors are
exposed.

C.1.0 VARIABILITY IN PRA

In general, variability and uncertainty should be kept separate to the extent possible in any
probabilistic risk assessment (PRA).  For example, assume a one-dimensional Monte Carlo Analysis
(1-D MCA) was developed to characterize variability in risk, but it combined a distribution for
uncertainty in mean concentration with distributions for variability in exposure variables.  The result
would yield a single distribution for risk, however, each risk estimate would reflect both uncertainty and
variability and distinguishing between the two would not be possible.  Therefore, EPA’s Guiding
Principles for Monte Carlo analysis recommends against mixing distributions of variability and
uncertainty in a 1-D MCA (U.S. EPA, 1997b) to avoid such ambiguities.

A fundamental concept in Monte Carlo analysis is that there is variability in exposure between
receptors (inter-individual variability) as well as day-to-day variability for each individual (intra-
individual variability).  In most Tier 2 analyses (see Chapter 2), the goal of a 1-D MCA is to characterize
inter-individual variability in exposure and risk.  Typically, probability distributions for exposure
represent variability (PDFv’s) between individuals in the average value over the entire exposure duration. 
In this case, the exposure point concentration (EPC) should represent the average exposure concentration
over the entire exposure duration.  Because an EPC is calculated from a sample, there is uncertainty that
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the sample mean equals the true mean concentration within the EU; therefore, to account for associated
uncertainty, the 95% upper confidence limit for the mean (95% UCL) is generally used for Superfund risk
assessments (U.S. EPA, 1992).

In a 1-D MCA, a point estimate for the EPC is combined with PDFv’s for other variables to yield
a probability distribution for risk.  An alternative approach is to simulate long-term average exposures as
a series of consecutive short-term exposure events.  This approach is referred to as MicroExposure Event
(MEE) Monte Carlo modeling, and is discussed in detail in Appendix D.  In MEE modeling, the goal is to
develop PDFv’s for exposure variables that capture the event-to-event variability in exposures at the
individual level.  The concept of an averaging time still applies, but generally to a shorter time frame.  For
example, seasonal variability in exposure frequency might be expected among outdoor occupational
workers so that different PDFv’s are representative of inter-individual for each season.  In this case, the
EPC continues to represent an average concentration within the EU, but it would be linked to season-
specific activity patterns.  It may be important to develop two different weighted averages to reflect
season-specific activity patterns and locations that are more frequently contacted in the summer compared
with the winter, for example.  As the time frame for the exposure scenario is shortened from the entire
exposure duration, to a season, to a day, to an individual event, the concentration term should be
reevaluated to assess the relevance of the assumption that concentrations contacted by the receptor are
represented by the mean of the measured sample.  

The following discussion introduces concepts of temporal and spatial variability as they apply to
the estimate of the EPC for different exposure media and exposure scenarios.  While the general rule of
thumb applies to all Monte Carlo models—use a measure of the average concentration within the EU over
the time frame of exposure—it is important to apply the site sampling data in a way that is consistent with
the exposure scenario.

C.1.1 TEMPORAL VARIABILITY

Temporal variability in chemical concentrations may be an important consideration when
developing a preliminary remediation goal (PRG) for any exposure medium (refer to Chapter 5 for a
comprehensive discussion of using PRA to evaluate PRGs).  For example, wind erosion may change
chemical concentrations in surface soil over time; leaching may change concentrations in both subsurface
soil and groundwater; and bioaccumulation may result in increasing concentrations in predatory fish with
time.  If possible, such factors should be considered early in the risk assessment process and included in
the conceptual site model.

Development of the EPC normally will depend on the averaging time relevant to the exposure
scenario and health endpoint of concern.  In the shorter term, it may be unlikely that receptors are
exposed throughout the entire EU due to temporal (and spatial) variability in the contaminant and inter-
individual variability in activity patterns.  Therefore, inter-individual variability in the EPC might be
expected, and a distribution of EPCs may be developed to represent differences in exposure among the
population.  Variability in short-term exposure may be an important factor for assessing variability in
acute toxicity.  However, over time, short-term variability in the EPC will tend to smooth out and
approach a long-term average concentration.  A single estimate of the long-term average EPC may be
reasonable to use in assessing risks to the receptor population.  This is true regardless of the underlying
distribution of the environmental sampling data (e.g., lognormal, normal, beta, etc.).  

While most chemicals regulated by the Superfund program are based on concerns for chronic
toxicity (e.g., lifetime cancer risk from exposure to a carcinogen for ten or more years), for some
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chemicals, toxic effects occur with shorter exposure durations (e.g., nitrate in drinking water and
methemoglobinemia in infants).  Differences between acute and chronic health endpoints are important to
consider for ecological receptors such as transient migratory species.  Superfund guidance distinguishes
between acute and chronic exposure to provide risk assessors the option of evaluating risk under different
time frames.  The EPC should be estimated within an EU during a period of time that has toxicological
relevance for the exposed population.

L The time scale of the concentration term should match the time scale of
the toxicity criterion and exposure duration.  

C.1.2 SPATIAL VARIABILITY 

Spatial variability in chemical concentrations is also an important property to consider when
developing a PRG.  Spatial variability arises from many factors, including the mechanism of
contamination, physical and chemical dilution and transformation processes, and physical characteristics
of the site (Cullen and Frey, 1999).  Similarly, receptors may exhibit spatial variability in their contact
with an exposure medium.  In general, receptors are assumed to have equal access to all areas within an
EU so that the concept of a long-term average concentration is applicable.

Often, the EPC is estimated without regard to the spatial patterns in contamination.  The sampling
design yields a measure of the variability in concentrations that is assumed to be representative of the
receptor’s contact with the exposure medium.  However, even when the sampling design is representative
(e.g., both are simple random samples within the EU), the concentrations may exhibit clear spatial
patterns that could be used to reduce uncertainty in the EPC.  Geostatistics (see Section C.5.2 and
Appendix D) offers a wide range of techniques for incorporating spatial information into estimates of the
EPC.  These techniques are particularly useful when there is uncertainty in the representativeness of site
sampling, due to a difference in scale between site sampling and the size of the EU, or the use of targeted
sampling designs that oversample areas within an EU believed to contain the highest levels of
contamination.

In point estimate risk assessments (Tier 1 of the PRA), the EPC is most often characterized by a
point estimate of the mean concentration, typically given by the 95% UCL for the mean to account for
uncertainty in the site characterization (U.S. EPA, 1992).  Variability in concentrations is an important
consideration for determining appropriate statistical methods used to estimate the 95% UCL.  In addition,
for some Monte Carlo models, a PDFv may be developed to determine the EPC for the exposure model. 
A PDFv for the EPC may be warranted in short-term exposure scenarios, particularly when the sampling
density is relatively sparse in relation to the size of the EU (i.e., poor site characterization).  For example,
a risk assessment may include a future use residential scenario (e.g., currently the site is undeveloped) in
which the EPC that is relevant to a potentially exposed population of children is the average concentration
within a 0.5 acre lot.  If the soil sampling yields 100 measurements, but a small subset of the samples
(e.g., less than three) are available for any 0.5 acre area, the most appropriate measure of the average
concentration for a hypothetical residence may be the maximum detected concentration or a single value
from the PDFv in concentration among hypothetical receptors.  In general, for any of the EU’s that define
a randomly located residence, the poor site characterization would be a source of uncertainty in both a
point estimate and probabilistic risk assessment. 

At the vast majority of sites, concentration data is the easiest data to obtain of all the exposure
variables.  In cases of poor site characterization, risk managers may opt to perform a point estimate risk
assessment only using the maximum detected concentration and highly protective exposure assumptions. 
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In the scenario described above for 0.5 acre residential lots, it is possible that a residence would be
located in an area in which the average concentration is represented by the maximum detected
concentration in the sample.  Should the risk manager opt for a Tier 1 point estimate risk assessment, the
use of the maximum detected concentration of a chemical on the site should ensure the performance of a
health-protective risk assessment within a smaller EU.  

Consideration of variability is also warranted in short-term scenarios for ecological risk
assessment (ERA) when the EU is much smaller than the site (see Section C.3.1.1).  For example, the
home range of the receptor populations may be relatively small in comparison to the spatial distribution
of sampling locations (e.g., benthic invertebrates living in the sediment at the bottom of a river or soil
invertebrates in a terrestrial habitat).  In these cases, the receptor would be exposed to an area smaller than
the sampling grid or measure of areal sampling density.  A value from the PDFv that characterizes
variability in the concentrations across a relatively large spatial scale may be used to define the EPC for a
receptor population at a smaller scale.  Again, risk assessors should take care in designing a 1-D Monte
Carlo model when using a PDFv for the concentration term.  It is unadvisable to mix a PDFv for the
concentration term with PDFv’s for other exposure scenarios when estimating risks within one EU.  Use
of the PDFv in this manner would incorrectly suggest that the mean concentration varied for each
individual within the same EU according to the variability in concentration measured across a much
larger area.  A preferred approach is to use a PDFv to obtain a point estimate that represents the EPC, and
then combine this point estimate with PDFv’s for other variables in the Monte Carlo simulation to
estimate risks in the small EU.  If there are many EU’s at a site, or if the boundaries of EUs are undefined,
more advanced modeling approaches can be developed to efficiently run multiple scenarios.  Methods for
characterizing exposure point concentrations for ecological receptors are further discussed in Sections C.2
and C.3. 

C.1.3 EXAMPLE OF TEMPORAL AND SPATIAL VARIABILITY

Exposure scenarios often require consideration of both temporal and spatial variability.  The
MEE might be used to assess temporal variability by simulating long-term intake as the sum of individual
exposure events.  The time step for MEE is an important consideration and will depend on the rate of
change of the most rapidly changing exposure variable.  In addition, there should be a correspondence
between the time periods over which data were obtained and the time step used in the MEE model.  For
example, when a MEE is used for the risk assessment, the concentration term selected at each time period
should match the “average” concentration within the EU appropriate for that particular time period. 
Assume that the receptor is a residential child, and the time period is a single day, and the child may
contact only 1,000 square feet within the 0.5 acre (20,000 square feet) residential EU.  The specific
1,000 square foot area may change with each day as the child chooses different areas in the yard to
frequent.  Hence, the variability in the sample may be a more appropriate measure of the concentration
contacted by residential child receptor on a day-to-day basis than the long-term average within the
0.5 acre EU.  Over the long-term, this receptor will be exposed to the entire EU and hence the average
contaminant concentration within the 0.5 acre EU.  Note that the day-to-day variability in concentration
undergoes the familiar phenomenon of “regression to the mean” when considered over the long-term.
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C.1.4  SPATIAL AND TEMPORAL VARIABILITY FOR DIFFERENT EXPOSURE MEDIA

C.1.4.1 VARIABILITY OF CONCENTRATIONS IN SOIL

Surface soil is subject to erosion by wind and surface water runoff.  Over time, concentrations in
surface soil may change, but generally at a slow rate relative to other media.  The spatial variability of
chemical contamination is most often due to the mechanism by which the contamination occurred.  For
example, particulate stack emissions will tend to fall in an even pattern downwind of the stack whereas
over-application of pesticides and chemical spills can result in a patchy pattern of contamination.

Subsurface soil is not subject to wind erosion, so concentrations change mostly due to
degradation processes or leaching of the contaminant to groundwater.  At most Superfund sites,
concentrations of chemicals in subsurface soil will remain relatively constant.

C.1.4.2 VARIABILITY OF CONCENTRATIONS IN GROUNDWATER

Exposure to groundwater contamination mostly occurs at a fixed point in space (e.g., the
wellhead).  Groundwater is subject to a variety of influences that can alter chemical concentrations within
this medium such as aerobic and anaerobic biodegredation, volatization, and absorption.  Due to these
influences, monitored natural attenuation is an appropriate remedy under certain site conditions.  If a risk
assessor wishes to use a measure of the long-term average of a concentration in groundwater, a
hydrogeologist should be consulted.

C.1.4.3 VARIABILITY OF CONCENTRATIONS IN SURFACE WATER

Concentrations in surface water can be very dynamic.  Streams are constantly flowing and the 
effects of mixing, dilution and evaporation can change the chemical concentrations in surface water over
relative short time periods.  Any sampling of surface water is truly a “snapshot” in time.  The sampling
methods used to characterize spatial and temporal variability of concentrations in surface water will have
a direct effect on the uncertainty in estimates of the average concentration over both short and long time
frames.

C.1.4.4 VARIABILITY OF CONCENTRATIONS IN SEDIMENT 

In some situations, sediment may be considered a relatively stable medium, similar to soil. 
Alternatively, sediment may be physically moved by currents, tides, the movement of ships and other
events.  Trend analysis may be used to establish the long-term average sediment transport at a site.  This
information could provide the basis for choosing a representative “average” concentration in the sediment
available to ecological receptors (Piest and Miller, 1975; Van Sickel and Beschta, 1983; Walling, 1983;
Meade et al., 1990).

C.1.4.5 VARIABILITY OF CONCENTRATIONS IN FISH

Concentrations in fish may vary due to a change in the availability of food and environmental
conditions.  Factors that may be used to model population dynamics may include intensity of angler
harvest, death/attrition of the population, and the introduction of a predator species or a more adaptive
species.  In risk assessments that include a fish ingestion exposure pathway, the activities of the angler
may be a more important factor in determining the EPC than the changes in concentrations in fish over
time.  For example, an avid recreational angler may harvest fish from different locations within a lake and
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consume fish of different sizes and species.  In this way, with the consumption of contaminated fish, both
the contaminated medium and the exposure point change throughout the exposure duration. 

Unless, samples of fish are collected over time, knowledge of these factors will generally be
unknown.  Concentrations of bioaccumulative chemicals in territorial fish (e.g., largemouth bass)
obtained in different locations will generally reflect the concentrations in the sediment in the individual’s
home territory.  Concentrations of bioaccumulative chemicals in migratory fish will be more difficult to
predict as the fish will contact areas with varying sediment and surface water concentrations.

C.1.4.6 EXAMPLES OF TEMPORAL AND SPATIAL VARIABILITY IN THE CONCENTRATION TERM FOR
SELECTED EXPOSURE MEDIA

Whatever medium is considered in the development of EPCs, the risk assessor should be aware
that the EPC embodies aspects of both the spatial distribution of contamination, the movement of the
receptor, and possibly the contaminated medium within the EU.  Table C-1 presents examples of sources
of temporal and spatial variability in the concentration term based on both the contamination in selected
exposure media and the receptor.

Table C-1.  Examples of temporal and spatial variability in selected media for the concentration term in common
exposure scenarios.

Factor Soil Groundwater Fish

Temporal
Variability

Contaminant • none, if contaminant source is
inactive

• seasonal fluctuation in
groundwater table

• seasonal changes in species
availability

• aerial deposition from
ongoing source emissions
affected by wind patterns

• migration of contaminant
plume

• bioconcentration

• degradation over time • natural attenuation • long-term changes in population
dynamics

• volatilization • fish tissue concentrations linked
to temporal variability in water
and sediment concentrations

• migration to groundwater • physical and chemical processes
• radioactive growth and decay

Receptor • changes in activity patterns
and behaviors over time (e.g.,
with age)

• none, fixed location at
specific wellhead

• dietary preferences for fish
species

• changes in well location
over time

• cooking practices

Spatial
Variability

Contaminant • heterogeneity in
concentrations over a small
area and with depth, including
presence of hotspots

• migration of contaminant
plume, based on
hydrogeology and source
emissions (e.g., bulk flow
or continuous source)

• migration of fish

• heterogeneity in soil
properties that influence
bioavailability

• changes in fish population
structure

Receptor • daily activity patterns involve
contact with different areas of
the EU

• none, fixed location at
specific wellhead

• change in recreational habits,
and areas fished

• changes in well location
over time
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Figure C-1.  Spatial and temporal variability in contaminant concentrations in groundwater.

C.2.0 NONRANDOM EXPOSURES

As discussed in Section C.1.2, in the long-term it is generally assumed receptors exhibit random
movement, such that there is an equal probability of contacting any area within the entire EU.  Therefore,
the long-term exposure concentration will most likely be the arithmetic mean of the concentration within
the EU.  However, in many situations, the assumption of random exposures in space may clearly be an
oversimplification.  People’s behavior and preferences will cause them to access specific areas within an
EU with greater frequency than others.  The same is true in terms of ecological receptors with specific
habitat preferences.

For example, groundwater concentrations may show a large variation when sampled from wells
in different locations (Figure C-1).  Typically, residential receptors do not sample randomly from
different wells, but draw chronically from individual wells.  In such a case, the EU is a single wellhead. 
Fluctuations in the groundwater plume will depend on the hydrogeology of the site as well as the seasonal
fluctuations in the water table.  In this hypothetical example, concentrations are declining over time at
distances nearest to the source, and concentrations are increasing as the plume moves farther from the
source. 

Incomplete information regarding the behavior patterns of people and environmental systems can
be a large source of uncertainty in a risk assessment.  Because of this, methods are being developed to
model spatial relationships (between the contaminant and receptor) and nonrandom exposures.  Recently,
a quantitative technique to model nonrandom exposure has been proposed for ERA (Hope, 2000, 2001). 
Briefly, this technique divides the EU into smaller subunits and uses information about the attractiveness
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of each subunit to assign a probability of the receptor occupying a given subunit for a period of time. 
Receptor movements are modeled stochastically and a time-weighted average of all the subunits provides
a measure of the EPC.  In some ecological risk assessments, telemetry data can be used to better
characterize the areas of contamination that overlap with habitats of selected species.  Hoff (1998)
demonstrates an approach for American badgers (Taxidea taxus) in which telemetry data and
geostatistical modeling provide an improved relationship between contaminant concentrations, tissue
residues, and effects.

C.3.0 SOURCES OF UNCERTAINTY IN THE CONCENTRATION TERM

There are numerous potential sources of uncertainty in the estimate of the true mean
concentration within an EU.  As discussed in Chapter 5 (Section 5.1.1), sources of uncertainty can be
grouped into four broad categories: sample data, location of the EU, behavior of the receptor, and from
miscellaneous sources (e.g., physical and chemical processes).  Development of an uncertainty
distribution for the average concentration requires knowledge of the variability in chemical
concentrations within the EU (unless distribution-free approaches are used), the toxicity of the chemicals,
and the receptor’s behavior.  These distributions should be developed by risk assessors with the concept
of the EU in mind.  Differences in scale (e.g., small home range of an ecological receptor population
relative to the site sampling design) can be a major source of uncertainty in ecological risk assessments. 
Methods for addressing such uncertainties in the concentration term are presented below.  By
incorporating these methods into the quantitative uncertainty analysis, risk managers may more
effectively evaluate the importance of data-gaps and design subsequent rounds of site sampling to reduce
the uncertainty in the EPC. 

C.3.1 QUANTIFICATION OF UNCERTAINTY BASED ON THE SIZE OF THE EXPOSURE UNIT

Site characterization sometimes occurs before an EU has been defined.  Therefore, an EU may be
smaller than an entire site, equal to the site itself, or larger than the site.  These three conditions lead to
different conclusions and methods about the determination of the EPC.  The most complex situation is
when the EU is smaller than the site and the site can contain multiple EUs.  For future scenarios in which
the land use differs from the current land use, the difficulty in predicting the exact size and location of
EUs necessitates accounting for the uncertainty in the EU.

Composite sampling is often used to maximize site information.  However, it is important to note
that the use of composite sampling influences the concentration term.  If composite sampling is used
exclusively at a site, the actual maximum concentration present or the best estimate of this maximum
concentration will not be available.  Depending on the time scale of the toxic effect or whether acute
toxicity should be considered, this lack of knowledge of the maximum concentration present may be a
large data gap.  Risk assessors are urged to consider composite sampling and its ramifications for the
concentration term.

C.3.1.1 WHEN THE EXPOSURE UNIT IS SMALLER THAN THE SITE

The size of the EU will be different depending on the length of exposure.  A receptor can access a
greater area if given more time.  In almost all cases, the size of the EU for short-term exposure will be
smaller than the EU for long-term exposure.  Therefore, in addition to the uncertainty associated with
sampling and analysis (which can be quantified with existing methods for calculating confidence
intervals), there is uncertainty about the location of the EU within the site.
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If contamination is evenly spread across the site, the location of the EU may not have any bearing
on the EPC.  In such a case, uncertainty may depend on the sample size or density of measurements
within the EU relative to the entire site.  In point estimate risk assessments, the concentrations of
chemicals at the sampling location that poses the greatest risk may be considered as estimates of the EPC
for this small EU.  Using this “riskiest” sampling location as an estimate of the mean within an EU of
unknown location accounts for both the uncertainty associated with limited sampling within a single EU
and the uncertainty of the location within the site of the EU.

To express the uncertainty in location of the EU as a distribution, methods have been developed
to place an EU of a given size randomly about a site (Burmaster and Thompson, 1997).  A concentration
term is developed for each of a large number of randomly located EUs.  The distribution of these
concentration terms will express the uncertainty in the location of the EU.

Risk assessors are cautioned to consider whether the statistical method used to estimate the EPC
in an EU accounts for all sources of uncertainty in the concentration term.  If only a few samples are used
to characterize the average concentration within an EU, then the uncertainty in the EPC is large and
should be presented in the risk characterization.  These conditions may warrant additional sampling or the
use of analytical methods that account for spatial variability within the entire site.

At some sites, geostatistical methods, pattern recognition, and geographical information systems
(GIS) methods may provide additional insight and will aid in the development of the concentration term
(see Section C.5.2).  Although Table 3-1 shows several statistical methods for estimating both point
estimates and distributions that encode uncertainty in the concentration term, a risk assessor’s
understanding of these uncertainties should be conceptual as opposed to purely statistical.

C.3.1.2 WHEN THE EXPOSURE UNIT IS THE SAME SIZE AS THE SITE

In this case, the entire environmental data set within the site boundaries can be used for the
determination of the concentration term.  Assuming the EU occupies the entire site, then the source of
uncertainty associated with knowing the average concentration within the EU is the sampling and
analytical uncertainty.  

C.3.1.3 WHEN THE EXPOSURE UNIT IS LARGER THAN THE SITE

In this case, the EU extends beyond the site boundaries.  Therefore, the entire environmental data
set within the site boundaries can be used for determination of the concentration term.  However, an
additional term in the exposure assessment may be needed to account for the fraction of the exposures
that are expected to occur off site.  Essentially, the contribution of the chemical concentrations measured
on and off site are weighted by the fraction ingested or contacted in each area.  Similarly, the term “area
use factor” is used in ecological risk assessments to refer to the percentage of time or area an animal
inhabits a contaminated area.  An exposure scenario in which the EU is defined by the multiple locations
that may be visited would be a common extension of this concept.  One reasonable assumption regarding
off site exposures is that the concentrations would be equal to the “background” concentrations.  If this
assumption is made, a site risk assessor should be consulted to determine appropriate methods for
incorporating background concentrations into the risk assessment.  Alternatively, additional sampling at
off site locations would be needed to estimate the concentrations.  
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C.4.0 SUMMARY OF RECOMMENDATIONS FOR THE CONCENTRATION TERM

Table C-2 presents general guidelines for establishing a concentration term in various media
based on exposure time and the size of the EU.  These general guidelines along with site-specific
exposure conditions are the driving factors in risk assessment decision making for establishing the
concentration term.

Table C-2.  Summary of factors that may be considered in developing an EPC. 

Medium
Exposure

Time Random
Non-

Random

Size of EU relative to
the site/sampling

density
Recommendation 

(Human Health and Ecological)
Soil Short-term X small HH - consider variability in concentration

relative to the time scale of toxicity.

ECO - time weighted average of smaller
subunits.

Soil Long-term X variable HH, ECO - consider uncertainty in the average
concentration within an EU.

Fish Short-term X variable HH, ECO - consider variability in sample
concentrations relative to the exposure time.

Fish Long-term X variable HH - consider uncertainty in the average
concentration in consumed portion of fish.

ECO - consider uncertainty in average
concentration of whole fish. 

Ground-
water

Short-term X small - single well head HH - consider either the highest detected
concentration or uncertainty around the
concentration at the center of the plume as a
measure of a single well and relate to the time
scale of the toxic effect.

ECO - not applicable
Ground-
water

Long-term X small - single well head HH - consider variability among the higher
concentration samples as a protective EPC. 
Alternatively, hydrogeologic modeling may be
used to obtain a long-term average concentration
in the most contaminated area.
ECO - not applicable

C.5.0  METHODS FOR ESTIMATING UNCERTAINTY IN THE MEAN CONCENTRATION

Confidence intervals (CIs) and UCLs are computed to characterize uncertainty in a parameter
estimate.  CIs can be computed for any parameter.  The general method for estimating confidence
intervals is presented in equation C-1. 

CI = parameter estimate ± (critical value) x SE Equation C-1

The parameter estimate is the estimated value for the unknown population parameter.  The critical
value is the number, z, with probability, p, lying to its right (for an upper critical value) or left (for a lower
critical value).  For a standard normal distribution (i.e., arithmetic mean=0, standard deviation=1), critical
values are referred to as the z-score or z-statistic.  These values are commonly given in statistics texts, and



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Appendix C  ~ December 31, 2001

Page C-11

may also be calculated using the Microsoft Excel function Normsinv(p), where p corresponds to the
probability lying to the right of the value.  Distributions that characterize parameter uncertainty are
sometimes referred to as sampling distributions.  The standard error (SE) is the standard deviation of the
sampling distribution for the parameter estimate.  The confidence interval conveys two concepts: (1) an
upper and lower confidence limit (for a 2-sided CI), and (2) a confidence level (1–"), which gives the
probability that the method yields an interval that encloses the parameter (Moore and McCabe, 1993). 
Methods for estimating SE vary for specific parameters.  For example, the SE of a mean concentration
may be calculated based on the sample variance and the sample size (due to Central Limit Theorem). 
Methods for calculating the SE for other parameters, such as the 95th percentile, are more complex, and
may be estimated from a series of nested bootstrap simulations (Efron and Tibshirani, 1993; U.S. EPA,
2001a).  

When comparing alternative approaches for quantifying parameter uncertainty, criteria that are
important to consider include the variance of the original data set, and the bias and coverage of the CIs
generated by each method.  In statistics, a method is unbiased if the mean of the sampling distribution is
equal to the true value of the parameter.  Similarly, a method has accurate coverage if the probability p
that a CI does not cover the true parameter is equal to the probability level used to construct the CI.  For
risk assessment, the most desirable method is one that deals well with high variance, yields CIs that are
sufficiently wide (i.e., the CI does not underestimate the probability of enclosing the population
parameter), and, more specifically, yields upper confidence limits that are not biased low.  The choice of
the most appropriate method will depend on the characteristics of the data set and a balance between two
objectives: (1) the desire to be health protective and, therefore, have a low probability of underestimating
the mean, and (2) a desire to be accurate, in the sense of choosing a method whose expected coverage
equals the true coverage.  As a general principle for quantitative uncertainty analysis, if alternative
methods yield very different answers, it is helpful to explore the reasons for the differences.  The
objective is to explain why the estimates of the 95% UCL differ, and to determine if the differences are
sufficiently great that they could alter the risk management decision or PRG.  This information should be
presented as part of the risk communication process associated with the scientific management decision
points of the tiered process for PRA (see Chapter 2). 

As discussed in Chapter 5, in Superfund risk assessment, the EPC is usually calculated as the
95% UCL for the mean to account for the uncertainty in estimating the average concentration within an
EU.  The 95% UCL is defined as a value that, when repeatedly calculated for randomly drawn subsets of
size (n), equals or exceeds the true population mean 95% of the time.  In other words, it is calculated and
applied as a 1-sided confidence limit.  The 95% UCL is one percentile on the probability distribution that
characterizes uncertainty in the mean (i.e., the PDFu for the mean).  It is equal to the 95th percentile of the
sampling distribution for the mean.  EPA’s guidance on calculating the concentration term describes the
rationale and methodology for selecting the 95% UCL as the point estimate for the concentration term
(U.S. EPA, 1992). 

Common methodologies for characterizing the 95% UCL for the arithmetic mean concentration
include the following: (1) application of Equation C-1 using Student’s t-statistic (for normal
distributions), (2) Land method using H-statistic (for lognormal distributions) (Land 1971, 1975), and
(3) bootstrap and Jacknife resampling techniques (Efron and Tibshirani, 1993).  Details on these methods
and on choosing an appropriate method are provided in the ORD/OSWER guidance bulletin, Lognormal
Distribution in Environmental Applications (U.S. EPA, 1997a), and the more recent OSWER guidance
bulletin, Guidance on Calculation of UCLs at Superfund Sites (U.S. EPA, 2001a).  An overview of
methods that may be used when data are not normal or lognormal is also provided by Schulz and Griffin
(1999).  It is the responsibility of the regional risk assessor to ensure that an appropriate method for
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calculating a UCL or for developing an uncertainty distribution is chosen.  Chapter 3 (Table 3-1) provides
an overview of approaches for characterizing uncertainty in the concentration term in both 1-D MCA and
2-D MCA.

C.5.1 QUANTIFYING UNCERTAINTY WITHOUT INFORMATION ABOUT LOCATIONS OF
SAMPLES AND RECEPTORS 

Knowledge of both the sampling locations and the receptor’s activity patterns with the EU can be
used to derive a more representative estimate of the 95% UCL.  If a risk assessor has access to an
environmental data set without information about the sample locations, the risk assessor is forced to
assume that the sample consists of a number of independent observations.  The validity of this assumption
depends on the unknown spatial variability of contamination at the site.  The size and location of an EU,
as well as the choice of a statistical method for estimating the distribution of uncertainty around the mean
concentration will require often implicit (and possibly incorrect) assumptions about the spatial
distribution of contamination.  Similarly, if information regarding receptor activity patterns is unavailable,
one must assume that any area within the EU is equally representative of potential exposures.  The risk
assessor is urged to explore the effects of these various assumptions and to make choices that are
protective of human health and the environment.

C.5.2 QUANTIFYING UNCERTAINTY WITH INFORMATION ABOUT LOCATIONS OF SAMPLES
AND RECEPTORS 

In classical statistics, observations are assumed to be independent.  This assumption is often
invalid at contaminated sites where the method by which a chemical is released into the environment
(e.g., deposition from airborne emissions; migration of contaminant plume from a point source) results in
positive spatial autocorrelation.  In other words, observations located next to each other tend to contain
similar levels of contamination (i.e., redundant information) (Griffith and Layne, 1999).  For example, the
higher the spatial autocorrelation, the less incremental information is provided by adding observations in
close proximity to existing observations.  This decrease in the information content of a site sample is
exacerbated by the tendency to choose sampling locations in the most contaminated areas rather than
distributed at regular spatial intervals or specified using random sampling methodology.

At many hazardous waste sites, environmental sampling plans are designed with remedial actions
rather than risk assessment in mind.  Therefore, the risk assessor must establish a correspondence between
the actual sampling locations and the locations a receptor would be expected to frequent.  Geostatistics
may provide information to establish this correspondence. 

Geostatistics is a branch of spatial statistics that can be used to model spatial variability and
parameter uncertainty.  Geostatistics offers two fundamental contributions to risk assessment: (1) a group
of methods to describe the spatial distribution of a contaminant in a quantitative fashion, and (2) the
ability to maximize the information available in the data set (Deutsch and Journel, 1988; Isaacs and
Srivastava, 1989). 

Geostatistics is capable of using the information revealed by a correlation analysis of the data to
estimate concentrations at unsampled locations.  For example, geostatistics is able to use the spatial
information contained in the data to model uncertainty in contaminant concentrations for areas where data
are sparse, a situation commonly encountered in site assessment work.  Using geostatistics, information
from samples collected from outside an EU can be used to model the uncertainty in the mean
concentration within an EU.  Approaches that do not consider the geospatial information present in the
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data are limited to the subset of samples within an EU.  However, this ability to model uncertainty in
areas where data are sparse is also limited, and a well characterized site is still the best path to
understanding the risk at that site.

Geostatistical methods may be used to calculate a distribution of uncertainty in the mean of the
concentration term for use in PRAs.  In the past, geostatistics has not been widely applied to risk
assessment, even though uncertainty in the exposure concentration is often a major source of uncertainty
in risk estimates.  Most risk assessors quantify uncertainty in the long-term average concentration without
explicitly considering the spatial information present in data obtained from environmental sampling or
knowledge of the receptor’s movement and activities within the EU.  When spatial information does not
exist, the inherent assumption is that environmental sampling yields a data set that is representative of the
spatial variability in concentrations encountered by a receptor.  This assumption represents one source of
uncertainty in the EPC.  In addition, data collected outside an EU are often ignored in the analysis, even
though they can provide a more comprehensive view of patterns of contamination across the site,
including the EU of interest.  Ignoring site-wide information may result in less informed estimates of risk
and, therefore, less effective remedial designs (i.e., too little or too much remediation).  In the past five
years, with rapidly expanding software and hardware capabilities, some examples of the application of
geostatistics can be found in exposure assessment and remedial design (e.g., Gomez-Hernandez, 1996;
Goovaerts, 1996, 1997; Kriakidis, 1996; Ginevan and Splitstone, 1997; McKenna, 1997, 1998) as well as
site assessment guidance (e.g., U.S. EPA, 2000). 

A limit to applying geostatistics at hazardous waste sites is that the method is resource intensive
and requires personnel experienced with the software and techniques.  Risk assessors and risk managers
should ensure that contractors and other personnel have the necessary capabilities before applying
geostatistical methods to risk assessment or site cleanup.  Geostatistics is a powerful tool, but it cannot
incorporate quantitative knowledge regarding all sources of uncertainty.  The risk assessor is cautioned to
consider all possible sources of uncertainty as described in Chapter 5.  As indicated previously, a full
discussion of geostatistics is beyond the scope of this guidance, and interested readers are urged to consult
the OSWER guidance document, Guidance on Strategy for Surface Soil Cleanup at Superfund Sites (U.S.
EPA, 2001b).

EPA has produced several software packages used for geostatistical estimation.  Among these are
GEO-EAS and GEO-PACK.  Expertise in geostatistics can be obtained from ORD/Las Vegas.
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APPENDIX D

ADVANCED MODELING APPROACHES FOR 
CHARACTERIZING VARIABILITY AND UNCERTAINTY

D.0 INTRODUCTION

This appendix briefly describes the following advanced modeling approaches that can be used in
probabilistic risk assessment (PRA) to characterize variability and uncertainty: two-dimensional MCA (2-
D MCA), microexposure event analysis (MEE), geospatial statistics, and Bayesian analysis.  Except for 2-
D MCA, these approaches can also be applied to point estimate risk assessment.  The application of many
of these approaches will require access to expertise in specialized areas of statistics and, in some cases,
specialized or even custom-designed computer software.  The intent here is to introduce some of the basic
concepts and terminology, as well as to provide references where the reader can find more exhaustive
coverage of these topics. 

D.1.0 EXPRESSING VARIABILITY AND UNCERTAINTY SIMULTANEOUSLY

A Monte Carlo analysis that characterizes either uncertainty or variability in each input variable
(see Chapter 1) can be described as a one-dimensional Monte Carlo analysis (1-D MCA).  A 2-D MCA is
a term used to describe a model that simulates both uncertainty and variability in one or more input
variables.  All probability distributions that are used to describe variability in a PRA model have a certain
degree of associated uncertainty.  For example, suppose variability in soil concentration (ppm) is
estimated using a normal probability density function (PDF) defined by a mean (:soil=5) and standard
deviation (Fsoil=1), and subjectively truncated (min, max) at (0, 50).  Uncertainty in the parameter
estimates can be represented in a PRA model by assuming both parameters are also random variables.  To
illustrate this concept, assume normal PDFs for uncertainty can be specified for both parameters. 
Uncertainty in the mean is described by the normal PDF with parameters (:mean=5, Fmean=0.5); similarly,
uncertainty in the standard deviation is described by the normal PDF with parameters (:SD =1, FSD =0.5). 
Model variables are represented in this manner when there is a compelling reason to believe that a unique
probability distribution does not adequately describe one’s knowledge of each variable in the model.  A
variable described in this way is called a second order random variable.  Figure D-1 (Panel A) shows a
collection of n=20 cumulative probability distributions (CDFs), each curve representing a unique set of
(mean, SD) parameter estimates for the normal PDF for variability.  Panel B shows the 90% confidence
interval1 based on 2,500 simulated CDFs.  The 95% lower and upper bounds correspond to the
distribution of 5th percentiles and 95th percentiles, respectively (i.e., CDF for 2,500 5th percentiles and
CDF for 2,500 95th percentiles).  The 90% credible interval (CI) for the 50th percentile is (3.4, 6.7).
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Figure D-1.  Panel A shows a family of 20 CDFs for a hypothetical random variable, Y (e.g., concentration in
units of ppm), characterized by a normal PDF where both the mean and SD are also random variables
representing uncertainty in the parameter estimates: Mean~ Normal(5, 0.5), SD~ Normal(1, 0.5).  Each CDF
represents a single simulation of n=2500 iterations using a unique set of parameters.  For example, CDF1
represents N~(4.0, 1.3) while CDF2 represents N~(5.4, 0.3).  Panel B shows the “90% credible interval” for the
CDF based on 2,500 simulations, each simulation using n = 2500 iterations (i.e., a 2-D MCA with 2,500 outer
loop iterations and 2,500 inner loop iterations).  Lower, median, and upper bounds represent the simulated 5th,
50th, and 95th percentiles, respectively.  The 90% confidence interval for the estimate of the 50th percentile is:
{3.4, 6.7}.
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EXHIBIT D-1

DEFINITIONS FOR APPENDIX D

Bayesian Statistics - A specialized branch of statistics that views the probability of an event occurring as the degree of belief
or confidence in that occurrence.

Geospatial Statistics - A specialized branch of statistics that explicitly takes into account the georeferenced context of data and
the information (i.e., attributes) it contains.

Frequentist - A term referring to classical statistics in which the probability of an event occurring is defined as the frequency
of occurrence measured in an observed series of repeated trials.

Image Analysis - A technique in geostatistics used to restore a degraded image or interpret images that have been contaminated
by noise or possibly some nonlinear transformation.

Kriging - A geostatistical method of spatial statistics for predicting values at unobserved locations.
Likelihood Function - A Bayesian term referring to a probability distribution expressing the probability of observing a piece

of new information given that a particular prior belief is true.
Location Tag - The spatial coordinates of a sampling location (e.g., longitude, latitude).
Microexposure Event Analysis (MEE) - An approach to modeling exposure in which long-term exposure of an individual is

simulated as the sum of separate short-term exposure events.
Point Pattern Analysis - A technique in geostatistics of restricting the analysis to location information, ignoring attribute

information, addresses two location problems: (1) describing points according to spacing, and (2) describing points
according to density.

Posterior Distribution - A Bayesian term referring to a probability distribution that has been updated with new information.
Prior Distribution - A Bayesian term referring to the hypothesized, expected, or calculated probability distribution for an event

prior to the collection of new information.
Spatial Autocorrelation - The tendency of data from locations that are relatively close together to be geographically correlated.
Thiessen (Voronoi) Polygon Analysis - A method of spatial statistics in which an area is subdivided into subregions, or

polygons, in order to predict values at unobserved locations. 
Time Step - A modeling term used to describe the time interval within which variable values do not change.
Two-Dimensional Monte Carlo analysis (2-D MCA) - Separate representation of variability and uncertainty in an MCA,

usually accomplished using nested computation loops.

In the example shown in Figure D-1, the mean and standard deviation for soil concentration were allowed
to vary independently.  Thus, a distribution could be defined by a combination of a low mean and a high
standard deviation, high mean and low standard deviation, or any other combination in between.  The
assumption of independence of variable parameters may not be valid in all cases.  It may be unreasonable
to assume that a high mean soil concentration would occur with a low standard deviation.  An alternative
assumption would be that the standard deviation of the mean is a constant proportion of the mean (i.e., a
constant coefficient of variation).  Correlations between parameters should be considered in the design of
the PRA.  One approach that is especially useful for characterizing relationships between the slope and
intercept of a simple linear regression is to specify the bivariate normal distribution for the parameter
estimates. 

D.2.0 TWO-DIMENSIONAL MONTE CARLO ANALYSIS (2-D MCA)

Two-dimensional MCA is an approach for computing risk (or hazard) when combining
distributions that represent variability and uncertainty.  In 2-D MCA, distributions representing variability
and uncertainty are sampled using nested computational loops (Figure D-2).  The inner loop simulates
variability by repeatedly sampling values for each variable from their defined probability distributions. 
With each circuit of the outer loop, new parameter values for each variable are selected, and the inner
loop sampling is repeated.  The result is a collection of inner loop simulations, one for each parameter
value selected.  If the inner loop samples 5,000 times, and the outer loop samples 1,000 times,  then each
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Figure D-2.  Diagram showing of a 2-D Monte Carlo model in which the variability and
uncertainty dimensions are computed in nested loops.  In this example, values for
exposure variables in the inner loop represent monthly averages.

variable is sampled 5,000,000 times and 1,000 simulated probability distributions of risk are generated
from the PRA model.  These probability distributions can be analyzed to estimate the distributions for
specific risk estimates.  For example, confidence limits on the estimate of specific risk percentiles can be
simulated using 2-D MCA (Figure D-3).
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a 95% probability that the RME HQ (95th percentile) is below 16.
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Equation D-1

   Equation D-2

Standard Time-Averaging

Microexposure Event Modeling

C = Concentration; I = exposure event; j = year of life
IR = Intake Rate
EF = Exposure Frequency
ED = Exposure Duration
BW = Body Weight
AT = Averaging Time

D.3.0 MICROEXPOSURE EVENT ANALYSIS

The standard dose equation
generally used in Superfund site risk
assessments represents exposures
averaged over a specified time period
that is relevant to the health endpoint of
concern (Equation D-1).  If the risk
assessment is directed at assessing life-
time risk to humans, the averaging time
used in Equation D-1 would generally be
70 years (i.e., estimated average human
lifetime), and the calculated chemical
intake would generally represent the life-
time average daily dose (LADD).  Where
information is available to characterize
variability on a smaller time scale than
life-time, an alternative expression of
dose that accommodates such variability
may be desirable. 

Concentrations in various
environmental media can be expected to
vary over time.  For example, wind
erosion may change chemical
concentrations in surface soil.  Leaching may change concentrations in both subsurface soil and
groundwater.  The change in the concentration term is most readily apparent when considering anglers
harvesting fish.  If an angler consumes a large amount of fish from a single location (e.g., a specific lake,
pond, or river), then the average chemical concentration in the fish consumed by that angler can be
expected to be similar to the average of the chemical concentration of fish in the population.  However, if
an angler consumes fish only occasionally, or harvests fish from different locations, there will be
considerably more uncertainty in the concentration term.  In addition, a harvesting angler may consume
varying amounts of fish over the period of the exposure duration due to changing tastes, changes in the
fish population size or other factors.

Daily activity patterns, food intake, soil ingestion and other behavioral factors are measured in a
time period of less than a year.  The extrapolation of these short term results to the chronic exposure
situation is a source of uncertainty.  Exposure events are real but unknowable, whereas data regarding the
nature and magnitude of these events is known but its application to a real world situation is uncertain. 
Microexposure event analysis (MEE) attempts to explicitly quantify this uncertainty.  Figure D-5 presents
the general approach for MEE analysis. (Price et al., 1996, 2000).  MEE modeling provides an alternative
to the standard time-averaging approach represented by Equation D-1.  In the MEE approach, long term
intake is viewed as the sum of individual exposure events (Equation D-2).  Implementing the MEE
approach in a PRA requires dividing the exposure duration into short epochs, or time steps, within which
the values assigned to exposure variables remain constant, but are allowed to vary from one time step to
the next.  In a PRA model, exposure variables are adjusted at each time step by selecting values from the
probability distributions representing each variable (Figure D-4).  Discussion of the implementation of
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Figure D-4.  Time Step for MEE.

MEE analysis in risk assessment and its merits and limits can be found in Wallace et al. (1994), Price et
al. (1996), Slob (1996), and Buck et al. (1997).

In MEE modeling, the time step becomes an important variable, with associated uncertainty.  The
time step should be selected based
on information available to
describe how exposures change
over time.  For example, a model
of a moving plume of solvents in
groundwater might suggest that
chemical concentrations in a
given location are dropping by
between 16 and  25% quarterly. 
Several rounds of sampling may
support this prediction.  This
rapid decline in concentrations
suggests that an appropriate time
step might be one quarter (i.e.,
three months).

On the other hand, where
risk is being assessed for metals,
dioxin, or PAHs in soil, the
concentrations might be expected
to change much more slowly, if at all, and the basis of the time step might be the increase in age and
corresponding changes in behavior of the receptor.  The time step may be global; that is, one time step
may apply to all variables in the model.  In this case, the same number of random values would be
selected for each exposure variable in a Monte Carlo simulation.  A more complex model may use
different time steps for different variables, requiring some probability distributions to be sampled more
often than others.  The selection of a value for a time step implies that the value represents the average
value for that variable during the time step.
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Figure D-6.  Hypothetical example showing the effect of model time step on the probability
distribution for soil and dust ingestion rate in children over a 1-year period.  Number of
samples (n) needed to simulate exposures:  Annual (1), Quarterly (4), Monthly (12).

Two important issues related to time step should be considered in implementing the MEE
approach in PRA models.  The first is the relationship between the length of the time step and the number
of times random values are generated from a defined probability distribution.  As the time step decreases,
more time steps are needed to simulate exposures over a specified duration.  For example, given a time
step of one year and an exposure duration of 30 years, each random variable will be sampled 30 times
(once per year); for a time step of one month and an exposure duration of 30 years, each random variable
would be sampled 360 times (i.e., 12 months/year x 30 years).  The Central Limit Theorem indicates that
as n increases, the distribution of sample means is approximately normal, and the standard deviation of
the sample distribution is inversely proportional to the square root of n.  Thus a highly skewed input
distribution (e.g., lognormal) may tend to become less skewed with increasing n (Figure D-6).  A biased
estimate of the RME risk in a PRA model may result if an inappropriately small or large time step is used
in the model.  This emphasizes the importance of having an empirical basis for selecting the time step and
of exploring the time step as a variable in a sensitivity analysis of the model.

The second issue related to the time step concerns temporal correlations.  Is it reasonable to
assume that random values selected for consecutive time steps are completely independent?  For example,
consider body weight.  The body weights of an individual measured at different times would be expected
to show positive temporal autocorrelation; that is, body weight is likely to be similar (but not constant)
from one time step to the next.  For example, if an individual weighs 60 kg during one month, it is
unlikely that they will weigh 80 kg the next month.  If this scenario is accepted, then body weight should
not be allowed to vary independently from one monthly time step to the next in the model.  At shorter
time steps, temporal correlation becomes more likely as a result of temporal autocorrelation.  For
example, one can expect a higher correlation between body weights on an individual measured on two
successive days (one-day time step) than between weights measured at the midpoint of two successive
years.  Approaches to simulating temporal correlations in probabilistic models might include fixing an
individual within a percentile range of a distribution (e.g., randomly assigned quartile) or using randomly
assigned fluctuations (e.g., BWt = BWt-1 ± x).
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EXHIBIT D-2

POSITIVE SPATIAL AUTOCORRELATION

• Locations with a high value of Y tend to be
surrounded by nearby high values of Y.

• Locations with a medium value of Y tend to be
surrounded by nearby medium values of Y.

• Locations with a low value of Y tend to be
surrounded by nearby low values of Y.

EXHIBIT D-3

EXAMPLES OF RISK ASSESSMENT ISSUES 
LINKED TO GEOSPATIAL STATISTICS

• Sampling tends to disproportionately represent
“hot spots” (i.e., a relatively large portion of a
data set with a small sample size (n) tends to be
concentrated at “hot spots”).

• The upper confidence limit (UCL) for the
arithmetic mean exposure concentration (e.g.,
chemical concentrations in soil) depends on the
sample size.

• Additional sampling may be needed, especially
to better define the spatial patterns or the extent
of contamination.

• There is uncertainty about locations not sampled
at a site, as well as uncertainty regarding the
representativeness of neighboring samples in
nearby EUs. 

D.4.0 GEOSPATIAL STATISTICS

Spatial statistics is a specialized branch
of statistics, falling under the heading of
multivariate statistics, that explicitly takes into
account the georeferenced or locational tagged
context of data.  Generally, environmental
samples collected at Superfund sites have this
geolocational information  By acknowledging the
geography of site chemicals, information about
the spatial distribution of contamination can be
incorporated into an exposure assessment.  In
addition, knowledge about a receptors home
range or patterns of movement may also be
incorporated into the definition of the exposure unit (see Appendix C, Section C.2.0).  Explicitly
accounting for spatial relationships may lead to a more accurate estimate of the confidence limits for the
arithmetic mean concentration.  Geospatial statistics quantifies the spatial autocorrelation (Exhibit D-2) of
sample measurements and allows for the exploration of the spatial distribution of exposure and risk using
techniques of map generalization.  By recording locational tags for each sample, information about spatial
patterns within an exposure unit (EU) can be exploited to estimate both pre- and post-remediation
exposure and risk.  

In the past five years, with rapidly expanding software and hardware capabilities, some examples
of the application of geostatistics can be found in exposure assessment and remedial design (e.g.,
Gomez-Hernandez, 1996; Goovaerts, 1996, 1997; Kriakidis, 1996; Ginevan and Splitstone, 1997;
McKenna, 1998; Hope, 2000; 2001) as well as site assessment guidance (e.g., U.S. EPA, 2000).

Several important risk assessment issues
are closely linked to geospatial statistics, as
described in Exhibit D-3.  Geospatial statistics
comprises:

• spatial autoregression
• geostatistics
• point pattern analysis
• image analysis

The first three of these subjects can
contribute to spatial statistical support of site risk
assessments.  The key concept linking all three is
spatial autocorrelation, which refers to covariation
among samples for a single chemical, or the
tendency of data from locations that are relatively
close together to be geographically correlated.  By
analogy, classical statistics treats soil samples as
though they are balls, each having a battery of
attributes, that can be placed into an urn for
statistical analysis; geospatial statistics treats soil
samples as though they are clusters of grapes,
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with the branchy stems representing locational tags.  Concentrations located on the same “branch” will be
more strongly correlated than concentrations on different branches.

How is Geostatistics Different from Classical Statistics?

In general, geostatistics provides information beyond that provided by classical statistical
techniques for at least two reasons.  First, in classical statistics, observations are assumed to be
independent.  This assumption is often invalid at contaminated sites where the method by which a
chemical is released into the environment (e.g., deposition form airborne emissions; migration of
contaminant plume from a point source) often results in positive spatial autocorrelation (see
Section D.4.1).  In other words, observations located next to each other tend to contain similar levels of
contamination (i.e., redundant information).  For example, the higher the spatial autocorrelation, the less
incremental information is provided by adding observations in close proximity to existing observations. 
This issue is compounded when the sample locations have been preferentially determined (e.g., “hot spot”
sampling) rather than distributed at regular intervals or specified using random sampling methodology.

 Second, geostatistics is able to use the geospatial information contained in the data to model
uncertainty in contaminant concentrations for areas where data are scarce, a situation commonly
encountered in site assessment work.  Using geostatistics, information from samples collected from
outside an EU can be used to model the uncertainty in the mean concentration within an EU.  Approaches
that do not consider the geospatial information present in the data are limited to the subset of samples
within an EU. 

D.4.1 CORRELATION AND SPATIAL AUTOCORRELATION

Several simple bivariate statistical approaches may be used to introduce the concept of spatial
autocorrelation.  Consider two variables, X and Y.  For positive correlation there is a tendency for high
values of X to be paired with the high values of Y, medium values of X to be with the medium values of
Y, and low values of X with the low values of Y.  The tendency is in the opposite direction for negative
correlation; high values of X tend to be paired with low values of Y, and so on.  Spatial autocorrelation,
which virtually always is positive, directly parallels these definitions, but is written in terms of a single
variable as shown in Exhibit D-2.

Just as the bivariate relationship between two variables, X and Y, can be portrayed by a scatter
plot (Y versus X), the spatial autocorrelation relationship can be portrayed for a single variable, Y, (e.g.,
Y versus Y).  A good example is the Moran scatterplot, which plots the sum or average of nearby values
of Y versus Y.  This plot is most effective when Y has been converted to z-scores.  As shown in
Figure D-7 and Section D.4.2, scatter plots can be used to illustrate some important issues related to
sample size.  
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Figure D-7.  Effect of an outlier on measured correlation:  r=0.956
with outlier (n=100), whereas r=0.086 excluding outlier (n=99
clustered points).

If no soil samples were collected at a site (n=0), there is no information about the chemical
concentrations in soil, and any guess may be considered an estimate.  However, if the chemical
concentration of a single sample (n=1) is measured, some information is obtained that partly restricts this
estimate.  As each additional independent sample is taken, more information is obtained, and the
restriction on the estimate becomes more binding.  If the same location is selected repeatedly for
sampling, then the repeated measures, which may vary through time, will tend to be highly positively
correlated; part of the information obtained from each sample is the same, and should not be counted
more than once in estimating the site-wide soil concentration.  Similarly, if immediately adjacent
locations are sampled, the measures will often tend to be highly positively correlated (spatial
autocorrelation).  Once the first sample is taken, each additional sample provides only a fractional
increment of new information about the site in its entirety.  

D.4.2 EFFECTIVE SAMPLE SIZE (N*) AND DEGREES OF FREEDOM

Repeated measures can result in data clustering, which can be illustrated in a scatter diagram. 
Because two points determine a straight line, if (n–1) points cluster together on a scatter diagram while a
single additional point occurs far away from this cluster (i.e., an outlier), then the resulting bivariate
correlation will be very high (see Figure D-7).  This situation alludes to the notion of effective sample
size (n*): the n* is no longer equal to the number of observations (n), but rather is dramatically reduced
by the presence of inter-observational correlation.  For the example shown in Figure D-7, n* is slightly
greater than 2 rather than 100 (i.e., n).
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EXHIBIT D-4

EFFECT OF SPATIAL AUTOCORRELATION
(r) ON EFFECTIVE SAMPLE SIZE (n*)

r n*

0.000 625

0.050 514

0.539   64

0.957     3

1.000     1

Spatial autocorrelation plays an analogous role in
georeferenced data.  If a sampling network is arranged as
a 25-by-25 square grid (one sample point per grid cell),
and superimposed over a large site so that a very large
distance separates nearby sample locations, then
essentially zero spatial autocorrelation should be present
in the geographic distribution of the concentrations of any
given chemical.  Concentrations will appear to be
haphazard across the site, rendering the effective sample
size as n*=625.  If the distance between nearby locations
on the sampling mesh is decreased so that the spatial
correlation is only r=0.050, then the effective sample size
decreases to n*=514.  The effect of reducing the inter-
sample distance on spatial autocorrelation and n* for a
25-by-25 grid is shown in Exhibit D-4.  If r increases to
1, then n* reduces to 1.  Therefore, obtaining a measure
of latent spatial autocorrelation is essential to estimating
n*; this in turn is critical to determining confidence limits
for estimates of mean concentrations, which are sensitive to sample size.  The UCL for the mean will be
biased only when very high levels of spatial autocorrelation are present; this is because the Student-t
statistic used to estimate the UCL (assuming a normal distribution) changes very little as the degrees of
freedom (related to sample size) increases above 10; part of the difference between n and n* is offset by
an inflation of the variance.

The concept of effective degrees of freedom is important in exposure assessment because high
positive spatial autocorrelation can bias the estimate of the UCL concentration if geospatial statistics are
not considered.  This should be of particular concern when specific locations at a site are intensively
sampled (e.g., suspected “hot spots”), and other locations are relatively undersampled.  Accordingly, the
design of the sampling network itself can be evaluated from the perspective of geospatial statistics in
order to ascertain the quality of sample information.  The ideal sampling network should provide
geographic representativeness, should be roughly uniformly distributed over a site, and is best
implemented as a stratified random sampling design; that is, the site is partitioned into geographic stratum
(e.g., EUs), and then a random sampling of points is selected within each strata.  In practice, sample
designs may need to focus on objectives that are in conflict with the above ideals.  For example, intense
sampling of suspected “hotspots” may be necessary at some sites, at the expense of a more representative
spatial coverage of the site.  In such cases, several statistical techniques are available for assessing the
statistical benefit (in terms of reducing uncertainty) of additional sampling at undersampled locations.  

D.4.3 ASSESSMENT OF ADDITIONAL SITE SAMPLING

Thiessen Polygons.  In addition to calculating nearest neighbor statistics, the adequacy of a
sampling network can be assessed by Voronoi (i.e., Thiessen polygon) surface partitioning, a popular
approach used in mapping intra-site geographic distributions.  This procedure divides a site into a
mutually exclusive set of polygons, each polygon containing a single measured concentration.  Each
polygon has the unique property that any location within the polygon is closer to the polygon’s sample
location than to any other sample point (Clifford et al., 1995).  The concentration measured at the sample
point in the polygon is assigned to the entire area of the polygon.  The intensity of sample points on a
surface can be measured by Equation D-3 mean inverse polygon areas:
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Equation D-3

Equation D-4

Equation D-5

where SI is a measure of the sampling intensity, Ai is the area of the ith polygon, and m is the number of
interior polygons (those not along the edge of the site); m < n.  The variance of the sampling intensity can
be expressed by Equation D-4:

If the sampling network is uniform (i.e., polygon areas are equal), the variance will be essentially zero. 
The variance will increase as the network deviates from uniform.  This measure can be used to assess
whether or not additional samples will improve the spatial coverage.  

L Sampling locations that would yield a dramatic reduction in the variance
should be given priority for future sampling efforts.

Thiessen polygons can be used to develop area-weighted estimates of the arithmetic mean
concentration (Csoil,w) according to the following general equation:

where Ci is the concentration in the ith polygon, Ai is the area of the ith polygon in the EU, and AT is the
total area of the EU.  The weight for each measurement is essentially the ratio of the area of each polygon
to the total area of the site.  Clifford et al. (1995) applied this approach to an ecological risk assessment of
the burrowing owl with the following simplifying assumptions: habitat range is circular, size of EU is
constant (75 ha) although location may vary, and organisms spend equal time in all portions of their
habitat.  Given these assumptions, a nonparametric bootstrap method can be used to determine the
approximate 95% UCL for the mean concentration (see Appendix C).  Using Monte Carlo analysis, Csoil,w
can be estimated for different locations of the EU according to Equation D-5, and confidence limits can
be generated from the multiple bootstrap estimates.  Burmaster and Thompson (1997) demonstrate a
similar approach in which the EU (with constant area but random rectangular dimensions) is overlayed on
the Theissen polygon surface and 95% UCL for the mean is calculated from the bootstrap sample.

Linear Regression.  Another diagnostic is found in the linear regression literature.  The
locational tag coordinates (e.g., longitude, latitude) can be converted to z-scores (say zu and zv) for the
following calculation:  
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Equation D-6

where Y is a measure of the sampling network, ruv is the correlation between the coordinate axes, and n is
the number of samples.  Any sampling location (zu, zv) in which Y > 9/n may be considered too isolated in
the sampling network.  Additional sampling locations would be positioned closer to it to improve the
overall coverage of the sampling network.

D.4.4 MAP GENERALIZATION

Another important application of geospatial statistics to risk assessment is that of map
generalization, which draws on the subjects of geostatistics and spatial autoregression.  Techniques
developed for both topics exploit spatial autocorrelation in order to produce a map.  

Kriging and Semivariograms.  Geostatistics may employ kriging, which yields statistical
guesses at values of a chemical at unsampled locations based on information obtained from sampled
locations.  Kriging assumes that the underlying geographic distribution is continuous, evaluates spatial
autocorrelation in terms of distance separating sample points, and employs a scatter diagram similar to the
Moran scatter plot to portray this relationship (i.e., the semivariogram plot: half the squared difference
between measured concentrations for two sampled locations versus distance separating these two
locations).  The best-fit line to this scatter of points is described by one of about a dozen equations
(semivariogram models).

Many different kriging approaches can be applied to quantify the spatial relationships among
geographic attributes within an exposure unit.  For example, site-specific chemical concentrations may be
correlated with geologic information, such as glacial deposits, soil characteristics of core samples, and
attributes that represent favorable habitats for ecological receptors.  This information can be used to
expand the available data and improve estimates of chemical concentrations at unsampled locations by
employing a technique called co-kriging.

Thiessen Polygons and Spatial Autoregression.  Spatial autoregression assumes a discretized
surface, uses the Thiessen polygon surface partitioning to construct a Moran scatter plot, and can be used
to estimate values at selected points with a regression-type equation.  Theoretically, the exponential
semivariogram model relates to the conditional autoregressive model, and the Bessel function
semivariogram model relates to the simultaneous autoregressive model; in practice, though, the spherical
semivariogram model often provides the best description of a semivariogram plot.  Regardless of which
approach is taken to map generalization, one relevant contribution of these two subjects is the following
observation:

L Including positive spatial autocorrelation results in more accurate
variance estimates; this in turn yields more accurate estimates of the
95% UCL for the mean concentration.
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D.4.5 IMPLEMENTATION ISSUES RELATED TO GEOREFERENCED DATA

Estimation of parameters, for either geostatistical or spatial autoregressive models, cannot be
achieved with ordinary least squares (OLS) techniques; nonlinear least squares must be used.  While OLS
provides unbiased regression coefficients, these estimates are not necessarily sufficient (i.e., they do not
summarize all of the information in a sample pertaining to the population), efficient (i.e., the standard
errors often are incorrect), and consistent (i.e., the asymptotic sampling distribution concentration will not
be at the parameter value).  In other words, OLS essentially uses the wrong degrees of freedom in its
calculations, as described in Section D.4.2.  Two additional complications of georeferenced data that do
not appear in other types of data are (1) spatial autocorrelation might be directional (i.e., directional
dependency); and (2) variance might be nonconstant over space as well as over the magnitude of the
dependent variable, Y (e.g., chemical concentration).  Several statistical approaches, which are beyond
the scope of this guidance, are available for analyzing these potential sources of bias in the exposure
concentration estimates (Isaaks and Srivastava, 1989; Cressie, 1991; Griffith, 1993; Ginevan and
Splitstone, 1997). 

D.5.0 EXPERT JUDGMENT AND BAYESIAN ANALYSIS

Up to this point in RAGS Volume 3: Part A, risk has been characterized as having a population
probability distribution with parameters (e.g., mean, standard deviation) that can, theoretically, be
estimated from observation.  In theory, risk estimates could be derived by repeatedly measuring risk in
subsets of the population of interest (e.g., repeated measurements of site-related cancer risk).  The
unstated expectation, or goal, is that the PRA model will accurately simulate this real risk distribution. 
This approach derives from a classical view of probability.  The classical or frequentist view defines the
probability of an event as the frequency with which it occurs in a long sequence of similar trials.  From
the frequentist perspective, the probability of having a flipped coin land heads-up is given by the
frequency distribution of heads-up results derived from repeated similar trials of coin flips.  For real-
world decisions such as those informed by Superfund risk assessments, there is uncertainty that the
sample data are representative of the population (see Chapter 1, Section 1.2.4). 

Bayesian View of Probability.  A Bayesian perspective on probability allows distributions to be
constructed based on the judgment of an expert in the field.  The subjectivist or Bayesian view is that the
probability of an event occurring is the degree of belief a person has in the occurrence.  Probabilities can
be assessed by experts using scientific knowledge, judgment, data, past experience, and intuition. 
Different people may assign different probabilities to an event, and a single individual may assign
different probabilities to the same event when considered at different times.  The consequence is that
probabilities become conditional and the conditions must be explicitly stated (Howson and Urbach, 1989;
Morgan and Henrion, 1990; Ott, 1995; Sivia, 1996).  These conditional probabilities can, of course, be
updated with new information.  

Using the coin flip analogy above, a Bayesian perspective might be that, based on experience
with coins, assuming that most coins are fair, and that a fair coin would be expected to land heads-up half
the time, the expected probability of the tossed coin landing heads-up is 0.5.  If the outcome of repeated
trials was different from the expected, the Bayesian approach would be to update the probability based on
the new data.  In the coin flip example, both the Bayesian and frequentist approaches will arrive at the
same conclusions, because the outcome is amenable to rigorous experimentation.  Where the two
approaches can be expected to differ is in the assignment of probabilities to events that cannot be
rigorously measured; for example, the probability of a site-related cancer risk, or the probability of a child
ingesting a specific amount of soil. 
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EXHIBIT D-5

COMPONENTS OF BAYES THEOREM IN PRA

• Input probability distributions for exposure (or toxicity)
based on available data or expert judgment

• Prior probability distribution for risk based on input
probability distributions (output from PRA)

• New data
• Likelihood function, expressing the probability of

observing the new data conditional on prior risk
estimates

• Posterior (updated) probability distribution for risk

The subjective judgment of experts is, therefore, an important tool in the Bayesian approach to
risk assessment.  For example, the input distributions for a PRA may be based upon the judgment of one
or more experts who rely upon estimates from the literature, data from experimental studies, and any
other information they consider relevant.  Even when formal elicitations of expert opinion are not done,
the final selection of the form and parameters of the input distributions usually involves some subjective
judgment by the analyst.  One of the challenges of incorporating judgments from experts or lay people is
that there can be overconfidence bias (i.e., people tend to underestimate their uncertainty).  There is a rich
literature about the protocol for conducting expert elicitations and using the results to support decisions
(Lichtenstein and Fischoff, 1977; Morgan and Henrion, 1990; Shlyakhter and Kammen, 1992). 
Elicitation of expert judgment has been used to obtain distributions for use in risk assessments (Morgan
and Henrion, 1990; Hora, 1992; U.S. EPA, 1997;) and in developing air quality standards (U.S. EPA,
1982).  

In addition to providing input
distributions for PRAs, Bayesian analysis
allows the current state of knowledge,
expressed as a probability distribution, to
be formally combined with new data to
reach an updated information state.  The
distribution expressing the current
knowledge is the prior distribution and
may be the output of a PRA (Figure D-8). 
An appropriate likelihood function for the
data must also be formulated.  The
likelihood function is based upon an
understanding of the data gathering process
and is used to determine the probability of
observing a new set of data given that a
particular risk estimate is true.

Once the prior distribution is determined, the new data values are collected, and the likelihood
function is assumed, Bayes theorem (Exhibit D-5) provides a systematic procedure for updating the
probabilistic assessment of risk.  The updated information state is called the posterior distribution and
reflects the reduction in uncertainty arising from the new information.  
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Equation D-7

D = new data
Ri = ith risk prediction associated with new data
Rj = jth risk estimate simulated from PRA model 
N = number of risk estimates from the PRA model

New Data

Likelihood Function
P(D/R)

Prior Distributions of 
Model Variables PRA

Prior Distribution
of Risk Variable

P(R)

Bayes
Theorem*

Posterior Distribution of 
Risk Variable P(R/D)

Figure D-8.  Conceptual model of Bayesian Monte Carlo analysis.  A PRA simulation yields a prior
distribution of risk based on probability distributions for input variables.  Given new data for an input variable,
and a likelihood function for risk, Bayes Theorem (Eq. D-7) can be used to generate a posterior distribution of
risk.  The expression P(D/R) refers to a conditional probability, “the probability of D, given R”.  Conditional
probabilities can be thought of as relative frequencies, where R is the information given, and D is the event
being computed when a particular value of R occurs.
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For example, suppose a model is available to relate soil tetrachlorodibenzodioxin (TCDD)
concentrations at a site with serum concentrations of TCDD.  A probability distribution of soil
concentrations is created based upon expert judgment and a limited amount of site specific data.  Using
the model, the soil concentrations can be associated with a distribution of serum TCDD concentrations
(P®), the prior distribution).  New site-specific data (D) are subsequently collected on serum TCDD
concentrations in order to reduce uncertainty in the risk estimate.  Assume that it is known that serum
TCDD concentrations generally follow a lognormal distribution and that the best estimate of the
parameters of this distribution come from the prior distribution on serum TCDD.  This creates the
likelihood function (P(D|R)).  Using Bayes Theorem, the new data are used to form a revised distribution
of serum TCDD.  This is the posterior distribution (P(R|D)). 

Bayesian Monte Carlo analysis.  In the past, the use of Bayesian analysis was limited by the
degree of mathematical complexity involved.  Using Monte Carlo analysis to carry out the PRA, rather
than mathematical equations to describe the distributions, allows the calculations to be done much more
easily.  This variation on traditional Bayesian methods is called Bayesian Monte Carlo analysis
(Patwardan and Small, 1992; Dakins et al., 1996).  In the TCDD example discussed above and illustrated
in Figure D-7, the required calculations are carried out for each of the N iterations of the Monte Carlo
analysis (I and j go from 1 to N).

Bayesian Monte Carlo analysis is appropriate in several situations.  If a model has been created
and a distribution developed using PRA, new information may be incorporated without the need to repeat
the entire analysis.  This information could be on one of the uncertain parameters of the model or on the
model output variable.  Similarly, a generalized risk model with generic parameter distributions may be
used for a Superfund risk assessment with the model predictions fine-tuned using data from a particular
site of interest.  Finally, after a distribution is developed, the amount of uncertainty that exists may be too
large for the risk manager to make a decision.  In this case, the risk manager might seek out new
information that would refine the analysis and decrease the uncertainty. 

Bayesian Monte Carlo analysis can also be combined with techniques from decision analysis to
help determine the type and quantity of data that should be collected to reduce uncertainty.  Decision
analysis is a technique used to help organize and structure the decision maker’s thought process and
identify a best strategy for action.  To determine the appropriate action, one defines the range of possible
decisions, evaluates the expected value of the utility or loss function associated with each decision, and
selects the decision that maximizes the expected utility or minimizes the expected loss.  

L Decision analysis provides a quantitative approach for evaluating the
benefits of including an expanded assessment of uncertainty and the
subsequent benefits of reducing this uncertainty.  

Value of Information.  Value of information (VOI) analysis involves estimating the value that
new information can have to a risk manager before that information is actually obtained (Clemen, 1996).
It’s a measure of the importance of uncertainty in terms of the expected improvement in a risk
management decision that might come from better information.  Examples of VOI quantities are the
expected value of including uncertainty (EVIU), the expected value of sample information (EVSI), the
expected value of perfect information (EVPI).  Calculation of these quantities can be done using
mathematical methods, numerical integration (Finkel and Evans, 1987), or Monte Carlo techniques
(Dakins, 1999)
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Value of information calculations require the specification of either a utility or a loss function.  A
loss function states the losses associated with making different types of decision errors including both
direct monetary costs and losses associated with other consequences.  Loss functions take various forms
depending on the risk management situation (Morgan and Henrion, 1990). 

Expected Value of Including Uncertainty.  The expected value of including uncertainty, EVIU,
is a measure of the value of carrying out a PRA.  It’s the difference between the expected loss of a
decision based on a point estimate risk assessment and the expected loss of the decision that considers
uncertainty (Figure D-9).  If uncertainty in a risk assessment has been estimated using Monte Carlo
techniques and a loss function has been specified, the EVIU can be easily calculated.  First, the
management decision from the point estimate assessment is determined.  The loss from making this
decision is calculated for each iteration of the Monte Carlo, each time assuming that the risk estimate
from that iteration is true.  The expected loss is the average of these individual losses.  The expected loss
for the PRA is determined by calculating the expected loss for a full range of management decisions and
selecting the decision with the lowest expected loss.  The EVIU is calculated by subtracting the loss
associated with the PRA from that associated with the point estimate risk assessment.  

Expected Value of Sample Information.  The expected value of sample information is the
difference between the expected loss of the decision based on the PRA and the expected loss of the
decision from an improved information state.  As such, the EVSI is a measure of the value that may result
from the collection and use of new information (Figure D-9).  Calculation of the EVSI involves a
technique called preposterior analysis and is somewhat more complicated.

This type of analysis is termed “preposterior” because it involves the possible posterior
distributions resulting from potential samples that have not yet been taken.  For each replication from the
Monte Carlo simulation, the predicted value from the model is used to randomly generate a set of K data
points.  Each set of data points is then used to calculate the posterior probabilities for the N Monte Carlo
simulated values.  These posterior probabilities are then used to obtain the optimal answer to the
management question at this new level of uncertainty by selecting the decision that minimizes the
expected loss over all possible management decisions.

This procedure is repeated for each of the N replications of the Monte Carlo analysis resulting in
N posterior distributions, N management decisions, and N associated expected losses.  Because each of
these outcomes is equally weighted, the expected loss associated with the state of uncertainty expected to
exist after the data collection program is carried out is simply the average of the N expected losses.  The
EVSI is the difference between the expected loss based on the results of the PRA and the expected loss
from the updated information state. 

Expected Value of Perfect Information.  The EVPI is the difference between the expected loss
of the decision based on the results of the PRA and the expected loss of the optimal management decision
if all uncertainty were eliminated.  In actual application, no research plan or data collection program can
completely eliminate uncertainty, only reduce it.  The EVPI is an upper bound for the expected value of
efforts to reduce uncertainty and so provides the ultimate bound on what should be spent on research and
data collection efforts. 
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Nominal Decision
Ignoring Uncertainty

Decision Under
Uncertainty

Decision with Additional
 Imperfect Information

Decision with 
Perfect Information

EVIU

EVSI

EVPI

High Expected Loss
EVIU = Expected Value of Including Uncertainty
EVSI = Expected Value of Sample Information
EVPI = Expected Value of Perfect  Information

Low Expected Loss

Figure D-9.  Expected Loss associated with various types of information incorporated into a generic uncertainty
analysis.  The x-axis reflects different categories of value of information (VOI) quantities.  The y-axis reflects the
increasing Expected Loss with increasing uncertainty.

When a PRA has been carried out using Monte Carlo techniques, the expected loss associated
with perfect information is calculated by determining the expected loss for each iteration of the Monte
Carlo, assuming that the correct management decision, if that iteration were true, is made.  As always, the
expected loss is the average of these losses, and the EVPI is calculated by subtraction.

Uses of Value of Information in Risk Assessment.  VOI analysis has many benefits for risk
managers.  First, VOI analysis makes the losses associated with decision errors explicit, balances
competing probabilities and costs, and helps identify the decision alternative that minimizes the expected
loss.  VOI analysis can help a decision maker overcome a fear of uncertainty by developing a method to
handle it.  If the losses associated with making a poor decision are unclear, small uncertainties can take on
major importance.  Conversely, if the losses associated with different risk management decisions are
similar, little additional effort need be expended to continue to consider the alternatives. 
 

In addition, VOI analysis helps prioritize spending on research.  It provides insights into how
resources could be spent to achieve the most cost-effective reduction in uncertainty by identifying which
sources of uncertainty should be reduced, what type of data should be obtained, and how much data is
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needed.  Finally, VOI analysis may help decision makers explain the rationale for their decisions to the
public and help the public understand the multiple objectives considered in managing risks.

Expected Loss is usually greatest when uncertainty in risk estimates is ignored.  For example, by
quantifying uncertainty in risk (e.g., 2-D MCA, Bayesian Monte Carlo analysis) a risk manager may
determine that the cleanup level associated with the 90th percentile of the risk distribution (rather than the
95th percentile) is adequately protective.  Quantifying uncertainty may also result in lower expected loss
when more soil remediation is required due to the losses associated with possible under-remediation, e.g.,
cost of additional sampling or lost revenue due to failure to meet land use requirements.  The expected
loss may be further reduced by collecting additional soil samples, which would presumably reduce
uncertainty in estimates of mean exposure point concentrations.  The expected loss may be minimized by
obtaining "perfect" information (i.e., no uncertainty); however, as shown in Figure D-9, EVPI spans a
wide range of expected loss because the value associated with reducing uncertainty may be tempered by
costs associated with additional sampling and analysis.  In practice, risk assessors consider this issue
when deciding to obtain additional samples for site characterization.

The decision to obtain additional information in order to reduce uncertainty should be made on a
site-specific basis, taking into account the potential impact that reducing uncertainty may have on the
overall remedial decision.  Important questions to consider include: (1) Are the risk estimates sufficiently
sensitive to an exposure variable that collecting further data will reduce uncertainty? and (2) Are the
confidence limits on the 95th percentile risk estimate sufficiently wide that reducing uncertainty may alter
the cleanup goal?  An example of decision framework applicable to PRA is presented in Figure D-10. 
The framework has three tiers.  Tier 1 includes the point estimate approach and an assessment of the need
for PRA.  In Tier 2, the EVIU is calculated and, if warranted, a PRA is conducted.  In Tier 3, the value of
additional information is assessed and Bayes Theorem would be used to incorporate the new information
and update probability distributions.

Limitations of These Techniques.  Figure D-10 illustrates situations where Bayesian analysis
and value of information quantities may not be helpful.  For example, if point estimate risk assessment is
selected as the appropriate method, these techniques do not apply.  In addition, as site-specific data
become available that are increasingly comprehensive and representative of the population of interest,
Bayesian Monte Carlo analysis and the Monte Carlo analysis using the classical (frequentist) methods
will approach the same result.  This is because the site-specific data are incorporated into both
approaches.  To be representative and comprehensive, the data set must be sufficiently large, randomly
selected, and represent the full range of variability that exists in the population (e.g., temporal, spatial,
inter-individual).  However, data sets are rarely perfect, often too small, suffer from relatively high
sampling and/or measurement errors, or don’t represent the entire population variability over time, space,
age, gender, or other important variables.  If the data cannot be assumed to describe the population
distribution sufficiently well, then PRA will help to more fully develop the entire range of the population
distribution and the Bayesian Monte Carlo analysis will act to refine the model estimates.
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Point 
Estimate

Is the value 
versus the cost 
of the PRA a 

concern?

Is the PRA 
needed for 

other 
reasons

Present results 
in standard 

format

Calculate expected value of 
including uncertainty (EVIU)

Is EVIU > cost

Perform PRA

Is uncertainty too 
large for decision 

making?

Present results of 
Point Estimate and 

PRA

Are different data 
collection 

schemes being 
considered?

Calculate expected value of 
sample information (EVSI) for 

different schemes
Collect appropriate data
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appropriate distribution
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No No
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No

No
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Yes
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Figure D-10.  Conceptual model for evaluating the expected value of including uncertainty in a Bayesian Monte
Carlo anaylsis.
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In order to carry out VOI calculations, a loss function must be assumed.  Definition of the loss
function may be complex due to multiple decision goals and/or multiple decision makers and may be
difficult to capture in an equation.  Finally, for Bayesian analysis and the calculation of the EVSI to be
helpful, one or more sources of new data must exist.  In addition, some information must be available
about these data since a likelihood function describing its probability distribution must be assumed.  
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APPENDIX E
 

DEFINITIONS OF TERMS RELEVANT TO PRA 
AND REFERENCES FOR FURTHER READING

E.0 DEFINITIONS OF TERMS

Definitions for the specialized terms pertaining to probabilistic analysis are presented in this
appendix.  Some of the same terms are also defined at the beginning of each chapter, sometimes with
additional examples that are relevant to concepts presented in the chapter.  The definitions in this guidance
are intended to be consistent with definitions used in the National Contingency Plan (NCP) and other
Environmental Protection Agency (EPA) guidance, including the definitions of variability, uncertainty, and
Monte Carlo simulation found in EPA’s Guiding Principles for Monte Carlo Analysis (U.S. EPA, 1997a).
Note that if a definition uses a term that is defined elsewhere in the appendix, it is highlighted in bold text.

Definitions of Terms Used in PRA
50th percentile The number in a distribution such that half the values in the distribution are greater

than the number and half the values are less.  The 50th percentile is equivalent to the
median.

95th percentile The number in a distribution such that 95% of the values in the distribution are less
than or equal to the number and 5% of the values are greater than the number.

95% Upper Confidence
Limit for a Mean

The 95 percent upper confidence limit (95% UCL) for a mean is defined as a value
that, when repeatedly calculated for randomly drawn subsets of size n, equals or
exceeds the true population mean 95% of the time.  The 95% UCL provides a
measure of uncertainty in the mean; it is not a measure of variability and should
not be confused with a 95th percentile.  As sample size increases, the difference
between the UCL for the mean and the true mean decreases, while the 95th

percentile of the distribution remains relatively unchanged, at the upper end of the
distribution.  EPA’s Superfund program has traditionally used the 1-sided 95% UCL
for the mean as the concentration term in point estimates of reasonable maximum
exposure (RME) for human health risk assessment (U.S. EPA, 1992, 1997b).

Applicable or Relevant
and Appropriate
Requirements (ARARs)

Federal or state environmental standards; the NCP states that ARARs should be
considered in determining remediation goals.  ARARs may be selected as
site-specific cleanup levels.

Arithmetic
Mean (AM) 

A number equal to the average value of a population or sample.  Usually obtained by
summing all the values in the sample and dividing by the number of values (i.e.,
sample size).

Assessment Endpoint A term usually associated with ecological risk assessment; an explicit expression of
an environmental value (ecological resource) that is to be protected, operationally
defined by risk managers and risk assessors as valuable attributes of an ecological
entity.   Examples include 1) sustained aquatic community structure, including
species composition and relative abundance and trophic structure; 2) reductions in
populations of fish-eating birds; and 3) reductions in survival, reproduction or
species diversity of indigenous benthic communities (U.S. EPA, 1997c, 1999a).
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Backcalculation A method of calculating a preliminary remediation goal (PRG) that involves
algebraic rearrangement of the risk equation to solve for concentration as a function
of risk, exposure, and toxicity.

Background Exposure Exposures that are not related to the site.  For example, exposure to chemicals at a
different time or from locations other than the exposure unit (EU) of concern. 
Background sources may be either naturally occurring or anthropogenic (man-
made).

Bayesian Analysis Statistical analysis that describes the probability of an event as the degree of belief
or confidence that a person has, given some state of knowledge, that the event will
occur.  Bayesian Monte Carlo combines a prior probability distribution and a
likelihood function to yield a posterior distribution (see Appendix D for examples). 
Also called subjective view of probability, in contrast to the frequentist view of
probability.

Bootstrap
Methods

A method of sampling actual data at random, with replacement, to derive an estimate
of a population parameter such as the arithmetic mean or the standard error of the
mean.  The sample size of each bootstrap sample is equal to the sample size of the
original data set.  Both parametric and nonparametric bootstrap methods have been
developed.

Boxplot Graphical representation showing the center and spread of a distribution, sometimes
with a display of outliers (e.g., Figure 7-3).  This guidance uses boxplots to represent
the following percentiles: 5th, 25th, 50th, 75th, and 95th. 

Cancer Slope Factor
(CSF)

A plausible upper-bound estimate of the probability of a response per unit dose of a
chemical over a lifetime.  The CSF is used to estimate an upper-bound probability of
an individual developing cancer as a result of a lifetime of exposure to a particular
level of a potential carcinogen. 

Central Limit Theorem If random samples of size n are repeatedly drawn from a population of any
distribution, the distribution of sample means converges to the normal distribution. 
The approximation improves as n increases.

Central Tendency
Exposure (CTE)

A risk descriptor representing the average or typical individual in the population,
usually considered to be the arithmetic mean or median of the risk distribution.

CTE Risk The estimated risk corresponding to the central tendency exposure.

Cleanup Level A chemical concentration chosen by the risk manager after considering both RGs
and the nine selection-of-remedy criteria of the NCP (U.S. EPA, 1990; 40CFR
300.430(e)(9)(iii)).  Also referred to as Final Remediation Levels (U.S. EPA, 1991),
chemical-specific cleanup levels are documented in the Record of Decision (ROD). 
A cleanup level may differ from a PRG for several reasons, including various
uncertainties in the risk estimate, the technical feasibility of achieving the PRG, and
application of the nine criteria outlined in the NCP.

Coefficient of Variation Ratio of the standard deviation (SD) to the arithmetic mean (AM) (CV=SD/AM). 
Dimensionless measure of the spread of a distribution, therefore, useful for
comparing probability density functions (PDFs) for different random variables.
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Community Advisory
Group (CAG)

A group formed to provide a public forum for community members to present and
discuss their needs and concerns related to the Superfund decision-making process. 
A CAG serves as the focal point for the exchange of information among the local
community, EPA, State regulatory agency, and other pertinent Federal agencies
involved in the cleanup of a Superfund site.

Community
Involvement
Coordinator (CIC)

As a member of the CAG and site team, the CIC coordinates communication plans
(i.e., the Communicty Involvement Plan (CIP) and addresses site-specific CAG
organizational issues.

Community
Involvement
Plan (CIP)

A plan that identifies community concerns and the preferences of the community for
the communication of site-related issues.

Concentration Term The concentration variable used in exposure assessment.  Concentration terms are
expressed in units applicable to the media of concern (e.g., mg/L for water, :g/m3

for air; mg/kg for soil and dust.

Confidence Interval A range of values that are likely to include a population parameter.  Confidence
intervals may describe a parameter of an input variable (e.g., mean ingestion rate)
or output variable (e.g., 95th percentile risk).  When used to characterize
uncertainty in a risk estimate, it is assumed that methods used to quantify
uncertainty in the model inputs are based on statistical principles such as sampling
distributions or Bayesian approaches.  For example, given a randomly sampled data
set, a 95% confidence interval for the mean can be estimated by deriving a sampling
distribution from a Student's t distribution.  

Confidence Limit The upper or lower value of a confidence interval.

Continuous Variable A random variable that can assume any value within an interval of real numbers
(e.g., concentration).

Countably Infinite Used to describe some discrete random variables, this term refers to a set of
numbers that can be counted with integers (e.g., one, two, three) and that has no
upper limit.  Examples include the number of tosses required for a coin to show a
head—we can count each toss, but it is possible that at least one more toss is needed. 
The number of dust particles in a volume of air is another example.  Countably finite
implies there is an upper limit (e.g., days of work per year).  

Correlation A quantitative relationship between two or more input variables of a model (e.g.,
body weight, inhalation rate, skin surface area).  In analyses involving time-
dependent variables, a change in one variable is accompanied by a change in
another time-dependent, correlated variable.  Ignoring correlations in probabilistic
risk assessment (PRA) may lead to unrealistic combinations of values in a risk
calculation.  Correlations can also be defined as relationships between inputs and
outputs.
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Coverage Confidence intervals are expected to enclose a true but unknown parameter
according to a specified probability, such as 90% or 95%.  This is the expected
coverage of the confidence interval, given a specified significance level (alpha). 
The difference between the expected coverage and the actual coverage is one metric
for evaluating statistical methods that yield different confidence intervals.

Credible Interval A range of values that represent plausible bounds on a population parameter. 
Credible intervals may describe a parameter of an input variable (e.g., mean
ingestion rate) or output variable (e.g., 95th percentile risk).  The term is introduced
as an alternative to the term confidence interval when the methods used to quantify
uncertainty are not based entirely on statistical principles such as sampling
distributions or Bayesian approaches.   For example, multiple estimates of an
arithmetic mean may be available from different studies reported in the
literature—using professional judgment, these estimates may support a decision to
describe a range of possible values for the arithmetic mean.

Cumulative Distribution
Function (CDF)

A graph that shows the cumulative probability of occurrence for a random
independent variable (e.g., Fig. 6-1).  The cumulative probability is typically given
as the y-axis, ranging from 0 to 1.0.  Each value c of the function is the probability
that a random observation x will be less than or equal to c.  Mathematically, the
function that defines the CDF is obtained from the PDF by integration (in the case of
a continuous random variable) or by summation (for discrete random variables). 

Discrete Variable A random variable that can assume any value within a finite set of values (e.g.,
number of rainfall events in one month) or at most a countably infinite set of
values.

Empirical Distribution A distribution obtained from actual data and possibly smoothed with interpolation
techniques.  Data are not fit to a particular parametric distribution (e.g., normal,
lognormal), but are described by the percentile values.

Expected Value of
Information (EVOI)

The expected increase in the value (or decrease in the loss) associated with obtaining
more information about quantities relevant to the decision process.  EVOI is a
measure of the importance of uncertainty in risk and the potential for changing a
risk management decision if uncertainty is reduced (see Appendix D).

Expert Judgment An inferential opinion of a specialist or group of specialists within an area of their
expertise.  Expert judgment (alternatively referred to as professional judgment) may
be based on an assessment of data, assumptions, criteria, models, and parameters in
response to questions posed in the relevant area of expertise (see Appendix D).  

Exposure Assessment The qualitative or quantitative estimate (or measurement) of the magnitude,
frequency, duration, and route of exposure.  A process that integrates information on
chemical fate and transport, environmental measurements, human behavior, and
human physiology to estimate the average doses of chemicals received by individual
receptors.  For simplicity in this guidance, exposure encompasses concepts of
absorbed dose (i.e., uptake and bioavailability).

Exposure Point
Concentration (EPC)

The contaminant concentration within an exposure unit to which receptors are
exposed.  Estimates of the EPC represent the concentration term used in exposure
assessment.
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Exposure Unit (EU) A geographic area where exposures occur to the receptor of concern during the time
of interest.  Receptors may be human or ecological (e.g., plants, birds, fish,
mammals).  For purposes of PRA, probability distributions for exposure and
toxicity variables apply equally to all members of a population at a given exposure
unit.  Ecological exposure units often consider habitat and seasonality factors that
enhance exposure in a spatial area usually related to home ranges.

Forward Calculations A method of calculating a risk estimate that involves the standard arrangement of the
risk equation to solve for risk as a function of concentration, exposure, and toxicity.

Frequency Distribution A graph or plot that shows the number of observations that occur within a given
interval; usually presented as a histogram showing the relative probabilities for each
value.  It conveys the range of values and the count (or proportion of the sample)
that was observed across that range.

Frequentist A term referring to classical statistics in which the probability of an event occurring
is defined as the frequency of occurrence measured in an observed series of repeated
trials.

Geometric Mean (GM) The nth root of the product of n observations.  For lognormal distributions, the GM is
equal to the median and is less than the arithmetic mean.  For normal distributions,
all three measures of central tendency (GM, AM, median) are equal.

Geostatistics Branch of statistics that focuses on data that have a spatial or geographic
components.  In risk assessment, geostatistics is a general term for a variety of
techniques that are typically applied to chemical concentrations in soil or
groundwater in which the sampling locations are considered in quantifying the
exposure point concentration.

Goodness-of-Fit (GoF)
Test

A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population.  Generally involves an
hypothesis test in which the null hypothesis H0 is that a random variable X
follows a specific probability distribution F0.  That is, H0: F = F0 and Ha: F … F0.

Hazard
Index (HI)

The sum of more than one hazard quotient for multiple substances and/or multiple
exposure pathways.  The HI is calculated separately for chronic, subchronic, and
shorter-duration exposures.

Hazard
Quotient (HQ)

The ratio of estimated site-specific exposure to a single chemical from a site over a
specified period to the estimated daily exposure level, at which no adverse health
effects are likely to occur.

Hazardous Substance
Research Centers
(HSRC)

Research centers providing free technical assistance to communities with
environmental contamination programs through two distinct outreach programs:
Technical Outreach Services for Communities (TOSC) and Technical Assistance
to Brownfields Community (TAB).

High-end Risk A risk descriptor representing the high-end, or upper tail of the risk distribution,
usually considered to be equal to or greater than the 90th percentile.
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Histogram A graphing technique which groups the data into intervals and displays the count of
the observations within each interval.  It conveys the range of values and the relative
frequency (or proportion of the sample) that was observed across that range.

Hypothesis Testing Statistical test of an assumption about a characteristic of a population.  The goal of
the statistical inference is to decide which of two complementary hypotheses is
likely to be true.  

Image Analysis A technique in geostatistics used to restore a degraded image or interpret images
that have been contaminated by noise or possibly some nonlinear transformation.

Independence Two events A and B are independent if knowing whether or not A occurs does not
change the probability that B occurs.  Two random variables X and Y are
independent if the joint probability distribution of X and Y can be expressed as the
product of the individual marginal probability distributions.  That is, f(X, Y) = 
f(X) A f(Y).  Independence of X and Y is not synonymous with zero correlation (i.e.,
Cor(X, Y) = 0).  If X and Y are independent, then Cor(X, Y) = 0; however, the
converse is not necessarily true because X and Y may be related in a nonlinear
fashion but still maintain zero correlation (Law and Kelton, 1991).

Independent and
Identically Distributed
(IID)

Random variables that are independent and have the same probability distribution
of occurrence.

Individual-Level Effect An assessment endpoint that focuses on protecting a hypothetical or real individual
in a population.  Individual-based models may account for unique exposure and
toxicological response to chemicals among individual receptors.

Iterative
Reduction (IR) 

A method of calculating a PRG that involves successively lowering the
concentration term until the calculated risk is acceptable. This method can be
applied to any medium.

Iterative Truncation A method of calculating a PRG that involves developing an expression for the
concentration term in which high-end values are “truncated” to reduce the
maximum concentration, and calculating risks associated with the reduced
concentration.  The method may be repeated with consecutively lower truncation
limits until risk is acceptable.  Iterative truncation methods avoid difficulties
associated with applying Monte Carlo analysis to a backcalculation.

Kriging A statistical interpolation method that selects the best linear unbiased estimate of the
parameter in question.  Often used as a geostatistical method of spatial statistics for
predicting values at unobserved locations based on data from the surrounding area. 
Information on fate and transport of chemicals within the area lacking data can be
incorporated into kriged estimates.

Kurtosis The measure of peakedness of a distribution.  A uniform distribution has a lower
kurtosis than a peaked distribution such as the normal and lognormal distribution. 
Kurtosis is referred to as the 4th central moment of a distribution.
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Land Method The conventional method for calculating uncertainty in the mean concentration
(e.g., 95% UCL) when the sample data are obtained from a lognormal distribution
(U.S. EPA, 1992).

Latin Hypercube
Sampling (LHS)

A variant of the Monte Carlo sampling method that ensures selection of equal
numbers of values from all segments of the distribution.  LHS divides the
distribution into regions of equal sampling coverage.  Hence, the values obtained
will be forced to cover the entire distribution.  It is more efficient than simple
random sampling, i.e., it requires fewer iterations to generate the distribution
sufficiently.

Likelihood Function A term from Bayesian statistics referring to a probability distribution that
expresses the probability of observing new information given that a particular belief
is true.

Local Sensitivity
Analysis

Evaluation of the model sensitivity at some nominal points within the range of
values of input variable(s).

Location Tag The spatial coordinates of a sampling location (e.g., longitude, latitude).

Low-end Risk A risk descriptor representing the low-end, or lower tail of the risk distribution,
such as the 5th or 25th percentile.

Maximum Detected
Concentration (MDC)

The maximum concentration detected in a sample.

Mean Arithmetic mean or average; the sum of all observations divided by the number of
observations.  Referred to as the first central moment of a distribution.

Microexposure Event
(MEE) Analysis

A method of assessing risk based on an aggregate sum of a receptor's contact with a
contaminated medium.  MEE analysis simulates lifetime exposure as the sum of
many short-term, or “micro” exposures (see Appendix D).  MEE approaches can be
used to explore uncertainty associated with the model time step in PRA (e.g., use
of a single value to represent a long-term average phenomenon, seasonal patterns in
exposure, or intra-individual variability).

Mode The most probable value of a random variable; a value with the largest probability
or highest probability density (or mass for discrete random variable).  The second
parameter of a triangular distribution. 

Moments of a
Distribution

Similar to a parameter; constant that represents a mathematical description of a
random variable.  Central moments are defined with respect to the mean.  Mean,
variance, skewness, and kurtosis are the first, second, third, and fourth central
moments of a probability distribution.
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Monte Carlo Analysis
(MCA) or Simulation

A technique for characterizing the uncertainty and variability in risk estimates by
repeatedly sampling the probability distributions of the risk equation inputs and
using these inputs to calculate a distribution of risk values.  A set of iterations or
calculations from Monte Carlo sampling is a simulation.  For example, a single
iteration for risk from ingestion of water may represent a hypothetical individual
who drinks 2 L/day and weighs 65 kg; another iteration may represent a hypothetical
individual who drinks 1 L/day and weighs 72 kg.

Monte Carlo Sampling A method of simple random sampling used to obtain a distribution of values which
may serve as an input to a PRA.  The probability of obtaining any given sample is
similar to the probability of a sample occurring within the distribution.  Hence, for a
given sample size, simple random sampling tends to produce values clustered around
the mean of the distribution.

Multiple Regression
Analysis

A statistical method that describes the extent, direction, and strength of the
relationship between several (usually continuous) independent variables (e.g.,
exposure duration, ingestion rate) and a single continuous dependent variable (e.g.,
risk).

Nonparametric Method A procedure for making statistical inferences without assuming that the population
distribution has any specific form such as normal or lognormal.  Sometimes referred
to as distribution-free methods.  Common examples are the sign test, Spearman
rank correlation, and the bootstrap-t approach.

Numerical Stability The property of a probabilistic simulation such that the a parameter value of the
output distribution (e.g., percentile, mean, variance, etc.) remains sufficiently
constant for a specified number of Monte Carlo iterations.  Numerical stability is a
measure of the precision of the output from a simulation; the tails of the distribution
are typically less stable than the center.  Sufficient precision is determined by
professional judgment.  

One-dimensional Monte
Carlo Analysis (1-D
MCA)

A method of simulating a distribution for an endpoint of concern as a function of
probability distributions that characterize variability or uncertainty.  In this
guidance, distributions used to characterize variability may be abbreviated PDFv,
whereas distributions used to characterize uncertainty may be abbreviated PDFu.  It
is good practice not to combine PDFs for variability and uncertainty in 1-D MCA.

Parameter A value that characterizes the probability distribution of a random variable.  For
example, a normal probability distribution may be defined by two parameters (e.g.,
AM and SD).  It is important to distinguish between this definition, and a second
popular use of the term parameter when referring to an input variable in a
mathematical equation or model.  For this guidance, the term variable will be used to
describe inputs to a model.  For example, if body weight is a variable in the exposure
assessment that we define with a probability distribution (e.g., normal) we would
state that the variable is body weight and the parameters are the arithmetic mean and
standard deviation values that characterize the normal distribution

Parametric Distribution A theoretical distribution defined by one or more parameters.  Examples are the
normal distribution, the lognormal distribution, the triangular distribution, and the
beta distribution.
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Percentile The pth percentile of the distribution is the value such that p percent of the
observations fall at or below it.  Also called quantiles or fractiles; percentiles are
expressed as a percent, ranging from 0 to 100, whereas quantiles or fractiles range
from 0 to 1.

Point Estimate A quantity calculated from values in a sample to represent an unknown population
parameter.  Point estimates typically represent central tendency or upper bound
estimate of variability.

Point Estimate Risk
Assessment

The familiar risk assessment methodology in which a single estimate of risk is
calculated from a set of point estimates.  The results provide point estimates of risk
for the CTE and RME exposed individuals.  Variability and uncertainty are
discussed in a qualitative manner.

Point Pattern Analysis A technique in geostatistics of restricting the analysis to location information,
ignoring attribute information, addresses two location problems: (1) describing
points according to spacing, and (2) describing points according to density.

Population-Level Effect An ecological term for an assessment endpoint that focuses on protecting a group
of individuals within a specified exposure unit and time that have similar exposures
and toxicological responses to chemicals.

Posterior Distribution A term from Bayesian statistics referring to a probability distribution that has been
updated with new information.

Potentially Responsible
Party (PRP)

Individuals, companies, or any other party that is potentially liable for Superfund
cleanup costs.

Power The probability that a test procedure detects a false null hypothesis; Power equals
(1-$), where $ is the probability of a Type II error (i.e., accepting H0 when Ha is
true).   Power curves are a function of a fixed significance level ("), sample size, and
variability (SD).

Preliminary
Remediation Goal
(PRG)

A chemical concentration in an environmental medium associated with a particular
exposure scenario that is expected to be protective of human health and ecosystems. 
PRGs may be developed based on (ARARs), or exposure scenarios evaluated prior
to a risk assessment (e.g., generic PRG) or as a result of the baseline risk
assessment (site-specific PRG).  Exhibit 5-1 provides further detail on generic and
site-specific PRGs.

Prior Distribution A Bayesian term referring to the hypothesized, expected, or calculated probability
distribution for an event prior to the collection of new information.

Probabilistic Risk
Assessment (PRA)

A risk assessment that uses probabilistic methods to derive a distribution of risk or
hazard based on multiple sets of values sampled for random variables.
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Probability Density
Function (PDF)

A graph that shows the probability of occurrence of an unknown or variable
quantity.  A PDF is used to characterize a continuous random variable; the integral
of all possible values is equal to 1.0 (i.e., the area under the curve).  In PRA, PDFs
can be used to display the shape of the distribution for an input variable (e.g., normal
distribution for ingestion rate) as well as the output from a Monte Carlo simulation
(e.g., risk distribution). 

Probability Distribution A function that associates probabilities with the values taken by a random variable. 
A probability distribution can be displayed in a graph (e.g., PDF or CDF),
summarized in a table that gives the distribution name and parameters, or expressed
as a mathematical equation.  In PRA, the process of selecting or fitting a distribution
that characterizes variability or uncertainty can also be referred to as applying a
probability model to characterize variability or uncertainty.  In this guidance, the
probability model is considered to be one source of model uncertainty.

Probability Mass
Function (PMF)

A histogram that shows the probability of occurrence of an unknown or variable
quantity.  A PMF is used to characterize a discrete random variable; similar to the
PDF, the sum of all possible values of a PMF is equal to 1.0.  The mass at a point
refers to the probability that the variable will have a value at that point.

Random Variable A variable that may assume any value from a set of values according to chance. 
Discrete random variables can assume only a finite or countably infinite number of
values (e.g., number of rainfall events per year).  A random value is continuous if its
set of possible values is an entire interval of numbers (e.g., quantity of rain in a year)
variable that may assume any of a set of values.  The likelihood of each value is
described by a probability distribution.

Range Sensitivity
Analysis

Evaluation of the model sensitivity across the entire range of values of the input
variable(s).

Rank If a set of values is sorted in ascending order (smallest to largest), the rank
corresponds to the relative position of a number in the sequence.  For example, the
set {7, 5, 9, 12} when sorted gives the following sequence {5, 7, 9, 12} with ranks
ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12
is 4). 

Rank Correlation
(Spearman Rank Order
Correlation Coefficient) 

A “distribution free” or nonparametric statistic r that measures the strength and
direction of association between the ranks of the values (not the values themselves)
of two quantitative variables.

Remedial
Investigation/Feasibility
Study (RI/FS)

Studies undertaken by EPA to delineate the nature and extent of contamination, to
evaluate potential risk, and to develop alternatives for cleanup. 

Reasonable Maximum
Exposure (RME)

The highest exposure that is reasonably expected to occur at a site (U.S. EPA, 1989,
1990).  The intent of the RME is to estimate a conservative exposure case (i.e., well
above the average case) that is still within the range of possible exposures.

RME Risk The estimated risk corresponding to the reasonable maximum exposure.
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Reference Dose (RfD) An estimate of an exposure level for the human population, including sensitive
subpopulations, that is likely to be without an appreciable risk of deleterious effects
during a lifetime.  Chronic RfDs are specifically developed to be protective for a
long-term exposure to a chemical (e.g., >7 years) and account for uncertainty
spanning perhaps an order of magnitude or greater.

Remediation Action
Level (RAL)

Generally, a concentration such that remediation of all concentrations above this
level in an exposure unit will result in the 95% UCL being reduced to a level that
does not pose an unacceptable risk to an individual experiencing random exposures. 
The RAL will depend on the mean, variance, and sample size of the concentrations
within an exposure unit as well as considerations of acute toxicity of the chemicals
of concern. 

Remediation Goal Generally, a health-based chemical concentration in an environmental medium
chosen by the risk manager as appropriate for a likely land use scenario.

Risk Assessment The use of available information to make inferences about the health effects
associated with exposure of individuals or populations to hazardous materials or
situations.  Components of risk assessment include: hazard identification, dose-
response assessment, exposure assessment, and risk characterization (NRC,
1983).

Risk Characterization A component of risk assessment that describes the nature and magnitude of risk,
including uncertainty.  In assessments of Superfund sites, it includes the summary
and interpretation of information gathered from previous steps in the site risk
assessment (e.g., data evaluation, exposure assessment, toxicity assessment),
including the results of a probabilistic analysis.

Risk Descriptor A statistic (e.g., arithmetic mean, 95th percentile) that describes the risk to the
assessment endpoint.

Risk Management The process by which regulatory decisions are made using all available risk
assessment information (including, but not limited to, the results of the PRA).  The
NCP provides nine criteria for remedial decisions (e.g., protection of human health,
compliance with ARARs, etc.).  Risk managers may include the Remedial Project
Manager (RPM), section and branch chiefs, etc.

RME Range The 90th to 99.9th percentiles of the risk distribution generated from a PRA, within
which an RME risk value may be identified.  The 95th percentile is generally
recommended as the starting point for specifying the RME risk in a Superfund PRA.

Scientific/Management
Decision Point (SMDP)

A point during the risk assessment process when the risk assessor communicates
results of the assessment at that stage to the risk manager.  At this point, the risk
manager determines whether the information is sufficient to arrive at a decision
regarding risk management strategies and/or if additional information is needed to
characterize risk.
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Sensitivity Analysis Process for identifying the important sources of variability and uncertainty in a
model’s output.  Different techniques can be used in each of the 3 tiers of the tiered
process for PRA (see Chapter 2).  In Tier 1, sensitivity ratios are used to quantify the
effects of changes in one or more model inputs on the model output.  In Tiers 2 and
3, correlation analysis can be used to rank inputs based on their relative contribution
to variance in risk.  Local sensitivity refers to nominal changes in inputs within a
plausible range, whereas range sensitivity refers to changes in inputs across the
minimum and maximum values of the plausible range.  Further explanations of the
different methods for sensitivity analysis are given in Appendix A.

Sensitivity Ratio Ratio of the change in model output per unit change in an input variable; also called
elasticity.

Skewness The measure of asymmetry of a distribution.  Coefficients of skewness are zero for
symmetric distributions (e.g., normal), positive for right-skewed distributions (e.g.,
lognormal), and negative for left-skewed distributions (e.g., specific forms of beta) .
Referred to as the third central moment of a distribution.

Spatial Autocorrelation The tendency of data from locations that are relatively close together to be
geographically correlated.

Stakeholder Any individual or group who has an interest in or may be affected by EPA’s site
decision-making process.

Stability Stochastic variability, or “wobble” associated with random sampling, calculated as
the average percent change in the model output after rerunning Monte Carlo
simulations with the same set of input assumptions.  Used as a metric for evaluating
the adequacy of the number of iterations in a MCA.

Standard Deviation,
Arithmetic and
Geometric

Standard deviation (or arithmetic standard deviation, SD) is a common measure of
the spread of a distribution.  Calculated as the square root of the variance.  The
geometric standard deviation (GSD) is the anti-log of the standard deviation of the
logarithms of each value.  The GSD is a unitless quantity that gives a measure of the
ratio of the variance to the mean, similar in concept to the coefficient of variation.

Step Function A mathematical function that remains constant within each of a series of adjacent
intervals but changes in value from one interval to the next.  Cumulative
distribution functions for discrete random variables are step functions. 

Stochastic Dominance Implies no intersection between the CDFs; distribution A stochastically dominates
distribution B if, for every percentile of the CDF, A > B.  This characteristic may
not be apparent from the PDFs of the distributions, which may overlap.

Stochastic Process A process involving random variables, and characterized by variability in space or
time.

Target Population The set of all receptors that are potentially at risk.  Sometimes referred to as the
“population of concern”.  A sample population is selected for statistical sampling in
order to make inferences regarding the target population (see Appendix B,
Section B.3.1, Concepts of Populations and Sampling).



RAGS Volume 3 Part A ~ Process For Conducting Probabilistic Risk Assessment
 Appendix E  ~ December 31, 2001

Definitions of Terms Used in PRA

Page E-13 

Technical Assistance
Grant (TAG)

A federal grant that is intended to provide a community with the opportunity to hire
independent experts to help evaluate and explain the results of a risk assessment

Technical Outreach
Services for
Communities (TOSC)

A service of the HSRC with the aim to provide independent technical information
and assistance to help communities with hazardous substance pollution problems.

Thiessen (Voronoi)
Polygon Analysis

A method of spatial statistics in which an area is subdivided into subregions, or
polygons, in order to predict values at unobserved locations. 

Time Step A variable in all exposure models that refers to the unit of time for which a random
value is considered representative of intra-individual variability  (e.g., average daily
ingestion rates for an individual from one year to the next).  A time step may be
equal to an entire exposure duration (e.g., 30 years), or a fraction of the exposure
duration during which changes in input variables may be expected (e.g., one year). 
Time steps need not be identical for all exposure variables, and should address the
most rapidly changing variable in the risk equation. Time step can be an important
consideration for MEE analysis.

Toxicity Reference
Value (TRV)

A numerical expression of a chemical’s dose-response relationship that is used in
ecological risk assessment.

True Mean
Concentration

The actual average concentration in an exposure unit.  Even with extensive
sampling, the true mean cannot be known.  Only an estimate of the true mean is
possible.  A greater number of representative samples increases confidence that the
estimate of the mean more closely represents the true mean.

Truncation The process of setting lower and upper limits on the range of a distribution, in order
to avoid unrealistic values for exposure variables (e.g., > 100% bioavailability). 
Most often used for continuous, unbounded probability distributions (e.g., normal). 

Two-dimensional Monte
Carlo Analysis (2-D
MCA)

An advanced modeling technique that uses two stages of random sampling, also
called nested loops, to distinguish between variability and uncertainty in exposure
and toxicity variables.  The first stage, often called the inner loop, involves a
complete 1-D MCA simulation of variability in risk.  In the second stage, often
called the outer loop, parameters of the probability distributions are redefined to
reflect uncertainty.  These loops are repeated many times resulting in multiple risk
distributions, from which confidence intervals are calculated to represent
uncertainty in the population distribution of risk. 

Type I Errors False positive; the error made when the null hypothesis is rejected in favor of the
alternative, when in fact the null hypothesis is true.  

Type II Errors False negative; the error made when the null hypothesis is accepted when in fact the
alternative hypothesis is true.  

Uncertainty Lack of knowledge about specific variables, parameters, models, or other factors. 
Examples include limited data regarding the concentration of a contaminant in an
environmental medium and lack of information on local fish consumption practices. 
Uncertainty may be reduced through further study.  
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Variability True heterogeneity or diversity in characteristics among members of a population
(i.e., inter-individual variability) or for one individual over time (intra-individual
variability).  For example, body weights of a study population at one point in time
will exhibit variability, and body weight will change as an individual ages.  Further
study (e.g., increasing sample size, n) will not reduce variability, but it can provide
greater confidence in quantitative characterizations of variability. 

Variable A quantity that can assume many values.

Variance Measure of the spread of a distribution, equal to the square of the standard
deviation (SD).  Calculated as the average of the squares of the deviations of the
observations from their mean.  Variance is referred to as the second central moment
of a distribution.

Z-score The value of a normally distributed random variable that has been standardized to
have a mean of zero and a SD of one by the transformation Z=(X–:)/F.  Statistical
tables typically give the area to the left of the z-score value.  For example, the area to
the left of z =1.645 is 0.95.  Z-scores indicate the direction (+/-) and number of
standard deviations away from the mean that a particular datum lies assuming X is
normally distributed.  Microsoft Excel’s NORMSDIST(z) function gives the
probability p such that p=Pr(Z # z), while the NORMSINV(p) function gives the
z-score zp associated with probability p such that  p=Pr(Z # zp).

E.1.0 ADDITIONAL INFORMATION

Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis (Morgan
and Henrion, 1990) and Probabilistic Techniques in Exposure Assessment (Cullen and Frey, 1999) provide
excellent philosophical and practical treatises on probabilistic risk assessment.  These works are highly
recommended to risk assessors who wish to know more about probabilistic risk assessment.  The Summary
Report for the Workshop on Monte Carlo Analysis (U.S. EPA, 1996) and the Summary Report for the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999b) are other sources
of information to learn more about PRA.  Other additional references for reading are listed in this Appendix.
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EXHIBIT F-1

EXAMPLES OF ELEMENTS 
OF THE WORKPLAN FOR PRA

1. Statement of the ecological assessment
endpoints and/or human risk

2. Summary of the point estimate risk assessment

3. Potential value added for risk management by
conducting a PRA and proceeding to the
subsequent tiers (quantify variability,
uncertainty, or both)

4. Discussion of adequacy of environmental
sampling for PRA (e.g., data quality issues)

5. Description of the methods and models to be
used (e.g., model and parameter selection
criteria)

6. Proposal and basis for probability distributions
and point estimates

7. Methods for deriving the concentration term

8. Proposal for probabilistic sensitivity analysis

9. Method for dealing with correlations

10. Bibliography of relevant literature

11. Software (i.e., date and version of product,
random number generator)

12. Simulation approach (e.g., iterations, Monte
Carlo or Latin Hypercube sampling, time step)

13. Proposed schedule and expertise needed

APPENDIX F

WORKPLAN AND CHECKLIST FOR PRA

F.0 INTRODUCTION

This appendix provides guidance on
developing a workplan prior to the initiation of a
probabilistic risk assessment (PRA), and using a
checklist when reviewing a PRA.  Like the
quality assurance project plan (QAPP), the
workplan for PRA generally should document the
combined decisions or positions of the remedial
project manager (RPM), risk assessor, and
stakeholders involved in the risk assessment. 
Often there are many stakeholders in a risk
assessment, and it is important to involve and
engage all stakeholders early in the decision-
making process.  These are important steps that
should save time and effort.  

F.1.0 WORKPLAN

In general, PRAs may be developed by
Environmental Protection Agency (EPA), EPA
contractors, or a potentially responsible party
(PRP) with appropriate EPA oversight.  In each
case, it is important to develop a workplan early
in the risk assessment process.  PRAs to be
submitted by a contractor or PRP should
generally be submitted for EPA review before
commencing the analysis.  The workplan should
describe the software to be used, the exposure
routes and models, and input probability
distributions and their basis (e.g., relevance to the
site-specific contamination and pathways),
including appropriate literature references. 
Examples of the elements of a workplan are given
in Exhibit F-1, as well as Exhibit 4-8 in Chapter 4
(Example Elements of a Workplan for Ecological
PRA).  It is important that the risk assessor and risk manager discuss the scope of the probabilistic
analysis and the potential impact on the Remedial Investigation/Feasibility Study (RI/FS).   

L Given the time and effort that can be expected to be invested in conducting a
PRA, it is important that a workplan undergo review and approval by EPA,
prior to proceeding with the assessment.  
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EXHIBIT F-2

KEY FOCAL POINTS FOR PRA REVIEW

1. Clarity of and conformation to objectives.

2. Scientific basis and documentation of input
distributions and assumptions.

3. Model structure and computational mechanics. 

4. Results, including, limitations, reasonableness, 
and clarity of documentation.

The EPA generally will not accept probabilistic analysis where a workplan for the analysis has
not been initially submitted to the Agency and approved by the Regional risk assessor and RPM. 
Exceptions to this process may be considered on a case-by-case basis. 

Conducting a PRA is an iterative process.  In general, as new information becomes available, it
should be used to evaluate the need to move to a higher tier.  The decision to move an assessment to a
higher tier of complexity should result in a revised workplan and consultation with the Agency.  The
previous PRA, and its sensitivity analysis, should be included in the revised workplan, along with a point
estimate risk assessment based on any data collected as part of a lower tier.  The assessment will often be
restricted to the chemicals and pathways of concern that contribute the greatest risk.

Throughout the process of developing the PRA, the EPA risk assessor and the personnel involved
in developing the assessment should have a continuing dialogue to discuss the many Agency decisions
and their potential impact on the assessment.  This dialogue, along with interim deliverables, will help to
ensure that the risk assessment report will meet the needs of the Agency and that any problems are
identified and corrected early in the process.

F.2.0 FOCAL POINTS FOR PRA REVIEW

In reviewing a PRA, it is recommended
that a systematic approach be adopted to ensure
that all key technical elements of the PRA are
evaluated and potential weaknesses are identified. 
A review check list can facilitate this process and
promote consistency in the reviews of PRAs. 
Such a list can be developed from EPA’s guiding
principles (U.S. EPA, 1997) and other reviews on
the subject of PRA quality review (e.g., Burmaster
and Anderson, 1994).

In general, the review of a PRA can be
organized into four focal points listed in
Exhibit F-2.  PRAs can vary in complexity, from
relatively simple to very complicated; thus, the
review strategy may need to be customized for
specific sites. 

F.3.0 CHECKLIST FOR REVIEWERS

The exposure pathways and chemicals considered in a PRA should be clearly stated and related to
the assessment endpoint.  Often, the simplest way of doing this is to use the site conceptual model.

Table F-1 provides a list of major points that may be used to evaluate the quality of a
probabilistic assessment.  This is not an exhaustive list.  The ultimate judgment of the acceptability of a
PRA is the responsibility of the regional EPA personnel.

The issues that a reviewer should focus on may be different for each assessment.  The workplan
and the assessment should address each of the items on the checklist, but the workplan may include
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additional items.  The reviewer is responsible for ensuring that the workplan and the assessment are
complete and of sufficient quality to help support a risk management decision under the National
Contingency Plan (NCP).

The report should include a discussion of the results of assessment and how they relate to the
point estimate of risk and hazard.  A clear and concise description of what the results mean is an
important part of each report. 

F.4.0 INTERNAL AND EXTERNAL REVIEW

There are two levels of review that may be appropriate for a PRA.  If an EPA reviewer feels the
need for help with a review, other EPA personnel may be contacted formally or informally to provide
additional review capabilities.  The EPA personnel should also review the draft workplan for PRA to
evaluate the appropriateness and consistency with Agency guidance.  If EPA personnel are contacted
early in the risk assessment process, the review can occur in a more productive and timely manner.

When the issues at a particular site are complex or contentious, EPA reviewers may also wish to
obtain the services of outside experts for peer review (U.S. EPA, 2000).  According to EPA’s Peer-
Review Policy Statement dated June 7, 1994 (U.S. EPA, 1994), “Major scientifically and technically
based work products related to Agency decisions normally should be peer-reviewed.”  External peer
review should be considered when allocating resources for a PRA.  The EPA reviewers generally should
select external peer reviewers who possess no bias or agenda regarding the process or methods of PRA. 
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Table F-1.  Example of a Generic Checklist for Reviewers [2 pages]

Focal Point U Evaluation Criterion
Objectives and Purpose
Assessment
Endpoints

U Are the human health and/or ecological assessment endpoints clearly stated and
consistent with the workplan?

Benefits U Are the rationales for, and benefits of, performing the PRA clearly stated and
consistent with the workplan?

Site Conceptual
Model

U Is there a description or graphic representation of the receptors and pathways
considered in the assessment?  Has the PRA addressed each of the pathways for
completeness (e.g., sources, release mechanisms, transport media, route of entry,
receptor)?

Separation of
Variability and
Uncertainty

U What is the modeling strategy for separating variability and uncertainty in the PRA? 
Is this strategy consistent with the assessment endpoints?

Model Structure and Computational Mechanics
Flow Chart U Is a diagram of the computational sequence provided so that the pathways of inputs

and outputs and data capture can be understood and easily communicated? 
1-D MCA / 
2-D MCA

U Is a 1-D MCA or 2-D MCA being implemented in the PRA?  What is represented
by either or both dimensions?

Algorithms U Are all algorithms used in the model documented in adequate detail to recreate the
analysis? 

Integration U Are the algorithms used in numerical integration identified and documented?
Dimensional
Analysis

U Has a unit analysis been conducted to ensure that all equations balance
dimensionally?

Random Number
Generation

U What random number generator is used in model computations? Is it robust enough? 
What reseeding approach is used to minimize repeated sequences? 

Input Distributions and Assumptions
Variability and
Uncertainty

U Is there a clear distinction and segregation of distributions intended to represent
variability from distributions intended to represent uncertainty?

Data sources U Are the data or analysis sources used in developing or selecting the input
distributions documented and appropriate for the site? 

Distribution
Forms

U Are the analyses used in selecting the form of the distribution adequately
documented (i.e., understandable and repeatable by a third party?)

Distribution
Parameters

U Are the analyses used to estimate the distribution parameters adequately
documented?

Distribution Tails U Do the estimation methods precisely depict the tails of the input distributions; how
was this evaluated?  Is there sufficient information to depict tails for empirical
distributions?  Are these estimated as exponential tails with bounding values?

Truncations U Are any input distributions truncated?  Do these truncations make sense?  Should
truncations be applied to any of the distributions?

Concentration
Term

U Is the derivation of a point estimate or distribution for the concentration term
adequately documented?  Is sufficient information provided to enable the reviewer
to recreate the concentration term?

Variable
Correlations

U Have variable independence and correlations been addressed? Has the methodology
for representing variable correlations in the model been documented and is it
reasonable in terms of the variables, the site, and the statistical approach?
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Time Step U Has the basis for the time step used in the model been documented?  Is a single time
step used, or do variables have different time steps? Are the time steps conceptually
reasonable for the variables; for the site?  Has the time step been evaluated in the
sensitivity analysis?

Sensitivity
Analysis

U Has a sensitivity analysis been conducted? Are the methods used in the analysis
statistically valid? What did the analysis reveal about uncertainties in the
assessment and the relative contributions of input variables to uncertainty?

Results of Modeling
Completeness U Are all the exposure routes identified in the site conceptual model and workplan

addressed in the model results? Has the PRA fulfilled the objectives and satisfied
the purpose stated in the workplan?

Point Estimate
Calculation

U Has a point estimate calculation, using mean or median values of the input
distributions, been performed?  How do these results compare with the central
tendencies calculated with the probabilistic model? How do the reasonable
maximum exposure (RME) estimates compare?  Have the similarities or differences
between risk estimates from the point estimate and probabilistic approaches been
adequately addressed?

Stability of Output
Tails

U Has the stability of the high-end tail of the risk distribution been adequately
evaluated?  How stable are the estimated tails (in quantitative terms?)  Is this level
of stability adequate to support the risk management decisions that the model is
intended to support?

Significant Figures U Is the number of significant figures used in the output reasonable and consistent
with model uncertainty?

Limitations U Are the strengths and weaknesses of the PRA methodology and limitations of the
results for decision making clearly presented?

Clarity U Are the results and conclusions clearly presented and consistent with model output
(e.g., central tendency exposure (CTE) and RME identified in the Executive
Summary along with discussion of uncertainty)?

Graphics U Are there graphics included that show both the risk distribution and PRA results
(e.g., CTE and RME risk)?
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APPENDIX G

FREQUENTLY ASKED QUESTIONS FOR PRA

INTRODUCTION

This section presents a few questions and answers relating to probabilistic risk assessment (PRA). 
The purpose of the frequently asked questions (FAQs) is to facilitate the understanding of PRA using a
comparison with the traditional point estimate approach to risk assessment. 

The FAQs presented here provide an overview of PRA with pointers to more detailed, and often
more technical, discussions in other parts of the guidance.

(1) What is a risk assessment?

Risk assessment is a tool for organizing available information to make inferences about the
potential human health or ecological effects associated with exposure to hazardous materials.  The
National Contingency Plan (NCP) addresses the use of a baseline risk assessment at Superfund sites to
determine whether risks to human health and the environment are unacceptable.  The NCP implements
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980.  

Risk assessments traditionally provide single point descriptors of risk (e.g., a central tendency
exposure (CTE) risk descriptor or a reasonable maximum exposure (RME) risk descriptor).  As such,
these types of risk assessments have been referred to as point estimate risk assessments.  

In 1983, the National Research Council (NRC) described the following four steps for conducting
human health risk assessments:

• Hazard identification: the determination of whether a particular chemical is or is not causally
linked to a particular health effect.

• Dose-response assessment: the determination of the relation between the magnitude of
exposure and the probability of occurrence of the health effects in question.

• Exposure assessment: the determination of the extent of human exposure before or after
application of regulatory controls.

• Risk characterization: a description of the nature and often the magnitude of human risk,
including attendant uncertainty (NRC, 1983).

Readers are referred to risk assessment guidance documents such as Risk Assessment Guidance
for Superfund (RAGS): Volume I.  Human Health Evaluation Manual (HHEM) (Part A, Baseline Risk
Assessment)(U.S. EPA, 1989a), Risk Assessment Guidance for Superfund: Volume II.  Environmental
Evaluation Manual (U.S. EPA, 1989b), and Ecological Risk Assessment Guidance for Superfund:
Process for Designing and Conducting Ecological Risk Assessments (U.S. EPA, 1997a) for more
information about point estimate risk assessment methods and policies.



RAGS Volume 3 Part A ~Process For Conducting Probabilistic Risk Assessment
 Appendix G ~ December 31, 2001

Page G-2

(2) What is a probabilistic risk assessment (PRA)?

Superfund risk assessments have traditionally provided single point estimates of risk.  More
recently, PRAs have been developed.  A PRA is a risk assessment that provides a probability distribution,
rather than a point estimate, of risk.  A probability distribution conveys both a range of values and a
likelihood of occurrence of each value.  This may allow a risk assessor to make statements about the
likelihood that risks will exceed a level of concern.  The probability distribution for risk often represents
variability in risk estimates for a potentially exposed population.  This variability may be due to
variability in exposure and/or toxicity.  PRA may also be used to quantify uncertainty in risk estimates. 
This can be useful because it allows a risk assessor to make statements about the level of confidence in
the likelihood that risks will exceed a level of concern.

Probabilistic methods often use computer simulations to combine multiple probabilistic
distributions in a risk equation.  Monte Carlo analysis (MCA) is perhaps the most widely used
probabilistic method in PRA (see Question #7).
 
(3) How does PRA compare with the point estimate approach?

A single point estimate of risk does not explicitly characterize associated variability or
uncertainty.  However, multiple point estimates of risk (e.g., CTE or RME) can begin to characterize
variability in risk as they use different points on each input distribution for exposure).  A PRA can
characterize variability in risk by using the full distribution of variability in exposure parameters in the
risk equations.  Advanced PRA techniques can also quantitatively characterize uncertainty.  In
appropriate circumstances, results of a PRA can lead to more informed risk management decisions.

A PRA can be more resource intensive than a point estimate risk assessment.  Some PRAs can
require greater effort than point estimate approaches to define model inputs (i.e., select and fit probability
distributions), as well as additional steps in the planning, review, and communication of the risk
assessment assumptions and results (see Chapter 6 and Appendix F).  A PRA does not necessarily require
more data than a point estimate approach, although it does provide a framework for incorporating more of
the available information into the risk assessment.  When information on important exposure variables is
lacking, results from a point estimate approach and a probabilistic approach will be equally uncertain.

If a decision is made to conduct a PRA, this does not replace a point estimate risk assessment. 
Results of point estimate approaches should still be presented along with results of probabilistic
approaches in Tier 2 or Tier 3.

(4) Why should I consider using PRA?

PRA can have several advantages over the traditional point estimate approach to risk assessment. 
PRA can often provide a more complete characterization of risk; a quantitative description of the
uncertainties in the risk estimates; more informative sensitivity analysis; the ability to make probabilistic
statements about risk; the ability to know where specific risk levels are on the potential distribution of
risk; an increased understanding of risks; and opportunities for improved communication and risk
management decision making.
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(5) When should I consider using PRA?

A PRA may be considered as early as the planning stages of a point estimate risk assessment or as
late as after the completion of a point estimate risk assessment.  Ideally, PRA should be considered as
early as possible in the planning of risk assessment activities at a site so that sampling plans and data
collection efforts may be appropriately directed.  A PRA may be used when the risk management decision
is not apparent and when the results of a PRA may inform the risk management decision.  Often a risk
management decision is not apparent when the site-specific risk estimate is close to the regulatory level of
concern.  The NCP discusses a generally acceptable range for cumulative excess cancer risk of 1E-06 to
1E-04 for protecting human health (U.S. EPA, 1990).  Noncancer risks to human health and ecological
health are generally characterized by a ratio of exposure to toxicity, called a Hazard Quotient (HQ) or
Hazard Index (HI) for multiple contaminants.  The point of departure for evaluating noncancer risks may
vary from site to site, but a HQ of 1 may be a good starting point for risk management decisions.  

PRA may also be considered when the results of the point estimate risk assessment suggest that
risks are clearly above a risk level of concern, and a preliminary remediation goal (PRG) is needed. 
Because PRA and point estimate risk assessments use different techniques for quantifying variability and
uncertainty, they may support different PRGs.  If the results are dramatically different, further steps may
be warranted to reevaluate the choices for input variables - both the point estimates, and the probability
distributions and parameters (including truncation limits) for the 1-D MCA.

PRA will not be needed in many cases.  Point risk estimates often produce results which are
sufficient for making remedial decisions (e.g., sites are usually either heavily contaminated or only
marginally contaminated).  A tiered approach to risk assessment has been developed by Environmental
Protection Agency (EPA) and is recommended for use in deciding when to move from point estimate risk
assessments to PRAs of varying complexities.  A workplan should be developed and submitted for review
before beginning a PRA at any stage in the tiered process.  As a general rule, if the potential value added
by a PRA outweighs the additional resource required to conduct it, PRA may be warranted (see
Chapter 2).

(6) How is the risk distribution from PRA used for decision making?

The EPA’s RAGS Volume I (U.S. EPA, 1989a) and the NCP Preamble (U.S. EPA, 1990) state
that the RME will generally be the principal basis for evaluating potential human health risks at
Superfund sites.  Ecological assessments also often consider an RME endpoint.  The point estimate
Superfund risk assessments use a combination of average and high-end input values to arrive at the RME. 
In PRA, risks are described by a probability distribution instead of a point estimate.  To use a risk
distribution for decision making, one needs to identify a percentile value that corresponds to the RME. 
EPA’s Guidelines for Exposure Assessment (U.S. EPA, 1992a) states that, “the high-end risk means risks
above the 90th percentile of the population distribution”, and “the high-end estimator should not exceed
the 99.9th percentile” due to uncertainty in specifying the upper tail of the input distributions in a Monte
Carlo analysis.  Similarly, the 90th to 99.9th percentiles of the risk distribution are recommended in this
guidance as the RME range for decision making in PRA.  Selection of a single point within the RME
range generally requires consideration of the level of uncertainty in the risk distribution.  The EPA
recommends that the 95th percentile of the risk distribution be used as a starting point for risk management
decisions in the absence of site-specific information.
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(7) What is Monte Carlo Analysis (MCA)?

MCA is a numerical technique for PRA.  MCA was developed in the 1940's during the
beginnings of the nuclear power industry.  MCA combines statistical analysis with modern computational
techniques to calculate risk estimates, by randomly choosing different sets of input values each time. 
Each calculation is an iteration and a set of iterations is called a simulation.  The output of a simulation
used for risk assessment is a continuous probability distribution, which can be displayed in a graph in the
form of either a probability density function (PDF) or corresponding cumulative distribution function
(CDF).  Both displays represent the same distribution, but are useful for conveying different information. 
For example, the PDF for risk is a good way for displaying relative probability using an area under the
bell-shaped curve.  The CDF for risk is generally S-shaped and can be especially informative for
illustrating the percentile corresponding to a particular risk level of concern (e.g., 95th percentile=1E-06). 
Other uses of PDFs and CDFs are presented in Chapter 1, Exhibit 1-3.  In 1997, EPA published a policy
accepting the use of MCA to perform human health and ecological risk assessments (U.S. EPA, 1997a). 
This guidance focuses on MCA as a method of quantifying variability and uncertainty.

(8) What is the policy on using PRA to characterize variability or uncertainty in toxicity or dose
response?

In human health risk assessments, probability distributions for risk should reflect variability or
uncertainty in exposure.  In ecological risk assessments, risk distributions may reflect variability or
uncertainty in exposure and/or toxicity (see Chapter 1, Sections 1.4 and 1.4.1, Item 3).

Approaches to characterizing variability and uncertainty in toxicological information should
reflect both the latest developments in the science of hazard and dose-response evaluation and consistent
application of EPA science policy.  This statement is consistent with the 1997 EPA Policy Statement
presented in Section 1.4 above (U.S. EPA, 1997g).  Probabilistic approaches to ecological dose-response
assessment may be explored, as discussed and demonstrated in Chapter 4.  This guidance does not
develop or evaluate probabilistic approaches for dose-response in human health assessment and, further,
discourages undertaking such activities on a site-by-site basis.  Such activities require contaminant-
specific national consensus development and national policy development.  Parties wishing to undertake
such activities should contact the OERR to explore ways in which they might contribute to a national
process for the contaminant of interest to them.

(9) What is the policy on using PRA at EPA and in Superfund?

In the spring of 1997, EPA released the memorandum, Use of Probabilistic Techniques
(including Monte Carlo Analysis) in Risk Assessment (U.S. EPA, 1997b).  The policy states that
probabilistic analysis techniques, “given adequate supporting data and credible assumptions, can be 
viable statistical tools for analyzing variability and uncertainty in risk assessments.”  As such, a PRA,
“will be evaluated and utilized in a manner that is consistent with other risk assessments submitted to the
Agency.”  Together with this Policy Statement, the Agency released a set of guiding principles for use
and review of probabilistic analyses.  Hence, both RAGS and Agency-wide guidance emphasize the
importance of review of the scientific and technical merit of a probabilistic analysis to determine whether
or not the assessment is of sufficient quality to support a remedial decision.  This guidance, RAGS
Volume 3: Part A, provides risk assessors with comprehensive guidance on when and how to conduct
PRAs using MCA within the Superfund program (see Preface and Chapter 1). 

(10) What are the challenges of using PRA?
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Although PRA may have several advantages over the traditional point estimate approach to risk
assessment, the use of PRA tends to be more resource intensive and may introduce some additional
challenges to risk communication efforts.  Risk communication helps build trust with the stakeholders and
disseminate the risk information.  In general, EPA staff and stakeholders are accustomed to a point
estimate of risk and are unfamiliar with PRA and the quantitative estimates of uncertainty that PRA can
support.  Although, quantitative risk estimates may be more informative, they also may be more difficult
to communicate and may not be well received due to stakeholder desires for certainty (Slovic, et al.
1979).  Early and frequent communication with stakeholders is key in implementing PRA successfully. 
Often PRA requires additional data collection efforts as well as more time and resources to select and fit
probability distributions.
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APPENDIX H

INDEX 

Applicable or Relevant  and Appropriate

 Requirements (ARAR), 5-3, 18, 19; 7-1

backcalculation, 5-3, 10-11
Bayesian analysis, D-16, 17-18
Benchmark Dose Software (BMDS), 4-16, 17-19, 32-35
biomarker, 7-9
bivariate normal distribution, B-45, 46-49
bootstrap resampling, 3-12; 5-7, 15; C-11

CDF (see cumulative distribution function)
censored data, B-27
central limit theorem, C-11
central tendency exposure (CTE), 1-15, 16-17
checklist, 1-29; 4-41; F-1, 4
cleanup goal, level, 5-1, 3, 18-21; 7-13
confidence interval, 1-19; 3-12; 5-7; 6-16; C-11
continuous response, 4-28, 29
correlation,

and bivariate normal, B-46, 47-50
comparison with regression analysis, A-21, 34 
partial, A-33
Pearson, A-2, 26, 33
r-square, 4-12; 6-13; A-33, 34
simple, A-2, 26
Spearman rank, 3-26; A-26, 36; B-26

credible interval, 1-19; 3-12, 16; 6-16, 17
CDF (see cumulative distribution function)
CTE (see central tendency exposure)
cumulative distribution function (CDF)

compared with PDF, 1-12; 3-6, 7-8; 4-14; 7-3

deterministic risk assessment (see point estimate risk
assessment)
dichotomous response, 4-26, 27
distribution (see probability distribution)

empirical distribution function (EDF), 4-15; 5-13; B-8,
22, 37-38

Expected Value of Information (EVOI), 1-21; D-19,
20-24

expert judgment, 6-5; D-16, 17-19
exposure point concentration (EPC), 3-10; 5-4, 6, 12
exposure unit, 1-18; 3-10; 5-4, 5-20; C-1, 2-13

forward calculation, 5-3

geostatistics, 5-14; C-12, 13; D-10, 11-16
goodness-of-fit (GoF) test, 1-29; B-31, 32-35

Anderson Darling (AD), B-34
Chi-Square, A-6; B-33
Kolmogorov-Smirnov (KS), B-33, 34
probability plot (see probability plot)
Shapiro-Wilk, B-33

iterative,
reduction, 5-12, 13, 19-21
truncation (see truncation)

joint probability curve, 4-30

kriging, 5-9; D-15

Land Method, 5-7; C-12
Latin Hypercube Sampling, 3-15, 17
lognormal distribution, 1-11, 25; 3-4, 12-14; 5-7, 15;

C-11

maximum entropy, B-5
maximum likelihood estimation (MLE), B-25
measurement of attainment, 5-21
method of matching moments, B-24, 25
Microexposure Event Analysis (MEE), C-2; D-6, 7-9
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Monte Carlo,
analysis, 1-D MCA, 1-14; D-1; G-4
analysis, 2-D MCA, 1-19; D-1, 2-5
simulation, 1-13

NCP, nine criteria, 1-6; 2-12, 16; 5-1, 4; 7-1, 12
normalized partial derivative, A-13, 32

parameter estimation criteria, B-24, 25
partial derivative, A-13, 29-32, 36
PDF (see probability density function)
point estimate risk assessment,

compared with PRA, 1-11, 17, 20-23; 4-7, 8-11;
G-2, 4, 5

preliminary remediation goal (PRG), all of Chapter 5;
7-11, 12-14

probability density function (PDF),
compared with CDF, 1-12; 3-6, 7-8; 4-14; 7-5
concept of probability density, 3-4
PDFu, 1-19; 3-12, 13-15; 4-31, 33-34; 5-8; 6-16
PDFv, 1-12, 1-19, 20; 3-4, 12-14; 4-31; 5-8; 
C-1, 2-4

probability distribution,
continuous, 4-16
discrete, 4-16
preliminary or screening level, 2-6; 4-44; B-1, 4-5 
selection of, 3-5; B-34, 35
for dose response or toxicity, 1-27; 3-6; 4-15,
16-39; 7-8, 9; G-4

probability mass function (PMF), 1-11
probability plot, 5-16; B-23, 24, 33-34, 40-46 
problem formulation, 1-7, 22, 24, 28; 4-2, 11, 42;

5-4, 15

quantitative uncertainty analysis, C-11

random variable, 1-11, 14; 4-12; 5-6
rank correlation coefficient, 3-26; 6-14
reasonable maximum exposure (RME), 1-15, 16-17

RME range, 1-21, 26-27; 7-4, 11-13

regression analysis, A-1, 32-36
multiple, A-2, 6, 8, 36
stepwise, A-36

remediation
action level, 5-1, 7-8, 17
goal, 1-6, 28; 2-14, 15; 5-1; 7-1; C-2

representativeness, 1-17; 3-5, 6; 4-7; 6-10; 7-6, 7-8, C-3
risk 

characterization, 1-5, 8; 3-1, 6, 9; 4-2; 6-10; 7-6,
7-8; C-3
CTE and management of ecological risk, 4-38
communication, 1-4, 10, 25-26; 2-16; all of Chapter
6; C-11

RME (see reasonable maximum exposure)

sample size, 1-18; 3-6; 5-8, 14; 6-9; C-9, 11; D-12, 13
Scientific/Management Decision Plan (SMDP), 1-9;

4-5, 8, 44, 46, 48
sensitivity analysis, all of Appendix A

role in the tiered approach, 3-9, 21; A-3
simple correlation coefficient, A-21
spatial autocorrelation, C-12
species sensitivity distribution (SSD), 4-20, 21, 24-25
stability, 3-17; 4-38; 7-6, F-5

numerical, 1-15, 25; 3-17
stakeholders, 

types of, 2-7, 8; 6-4, 5
role in tiered process, 1-4, 7; 2-16; 3-17, 18-26;
4-39; 5-12; 6-1, 4, 7, 19

Thiessen polygons, D-13, 14-15
tiered approach, 1-9, 26-28; 2-9, 10-18; 4-40, 41; 3-17;

5-9, 10; 6-6
time step, C-4; F-5
toxicity reference value (TRV), 4-6; 4-9; 4-15, 16,

20-24, 32-35, 38
truncation, 

probability distributions, 3-6, 13-15, 25; B-30,
31-32
iterative method for PRGs, 5-12 13-21; F-4
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uncertainty,
model, 1-17, 18; 3-11, 17; 4-6
parameter, 1-17, 18; 3-11, 12-16
scenario, 1-18; 3-11, 17 

upper confidence limit (UCL), 5-4, 5; C-11

value of information (VOI) (see EVOI)
variability,

and concentration term, all of Appendix C
inter-individual, 3-1; C-1
intra-individual, C-1, 2
spatial, C-3, 4-7
temporal, C-2, 3-7

workplan, 1-27; 2-1, 4; 4-39, 40, 44, 46; all of
Appendix F

z-score, C-10, 11


