Injection of Oxygen in Deep Horizontal Wells for the Biostimulation of PAH Degradation at a Former Wood Treating Superfund Site

Ernest Mott-Smith, P.E. Cal Butler, P.G. Tim Turner, P.E.

Erik Spalvins, EPA Region 4 David Keefer, EPA Region 4 Sean R. Carter, Matrix Oxygen Injection Systems

BLACK & VEATCH FEDERAL SERVICES DIVISION

October, 2011 • Orlando Florida Remediation Conference

Building a World of Difference in a Changing World

ESCAMBIA WOOD TREATING SITE

Background

- Former wood treating facility in Pensacola, FL that operated from 1942 to 1982
- Primary products were pressure treated utility poles.
- Primary contaminants are coal tar creosote compounds, PCP and dioxin
- Site is 26-acres, with over 60 acres of adjacent neighborhoods acquired.

Active Wood Treating Plant circa 1975

Ę

ESCAMBIA WOOD TREATING SITE – JAN 2009

Relocation of Mount Dioxin and Source Area Locations

Composite Depth Naphthalene Plume

Site Conceptual Model

6

Source Zone DNAPL

DNAPL at 70 ft bgs

Adjacent confirmatory sonic bore; cores and plastic sleeves stained dark brown to black; strong naphthalene odor.

Adjacent test well screened 70 to 75 ft bgs with free flowing creosote DNAPL.

₽,

Biosparge Pilot Test Setup

8

BIOSPARGE PILOT TEST GOALS

- **1.** Demonstrate viability of directional drilling under railroad yard
- 2. Compare the effectiveness of different well materials
- **3.** Evaluate the ability to disperse oxygen effectively through a horizontal well
- 4. Determine design basis for flows and pressures
- 5. Measure and assess dissolved oxygen dispersion outward and upward from the horizontal wells
- 6. Identify changes in microbial activity due to oxygenation of the plume

9

NAPTHALENE PLUME

₽,

LAYOUT OF IN SITU BIOSPARGE PILOT TEST

Performance Monitoring Wells

5-feet

HW-3 Performance Monitoring Array

LĘ.

In Situ Biosparge Pilot Study Components

Bundle of 3 Injection Wells

Air Conversion to >90% Pure O₂ Horizontal Directional Rig drilling the 1,450 ft long bore to 100 ft bgs, and installing the bundle of three (3) injection well screens.

Pilot Scale Biosparge Wall Design

14

BioSparge Well Construction

2-inch DIA HDPE **Screen Construction** 8-inch DIA steel casing and carrier casing stainless screen ADS piping is air cut microslits on 2-inch DIA 1-foot centers that delivers 0.2 Two 1 ¼ -inch DIA_ stainless steel HDPE tremie pipes scfm per foot of pipe (opens at 5 psig). 0 **HDPE** Riser 2-inch DIA HDPE **12-inch Borehole Grout Seal** 566-feet 170-feet 28-feet **SS** Riser 8-inch Casing 2-Inch Stainless **2-Inch Stainless** (Withdrawn) 2-Inch ADS **Steel Screen Slot Steel Screen Slot HDPE DR-11 H3 H1 Air Diffusion Pipe H2 Directed Technologies Drillin**

Oxygen Injection Trailer

- The Matrix Oxygen Injection System produces O2 gas on-site for pulse injection into groundwater contaminant plumes at controlled rates or volumes.
- DO saturation levels up to 40 mg/L.
- Dispersion of oxygen with control of radius of influence and oxygen mass transfer

- Used at over 250 remediation sites over 14 years.
- U.L. certified PLC control system with touch screen display and remote access
- Pressure swing adsorption oxygen generator and rotary screw compressor
- License to operate under U.S. Patent No. 5,874,001.

Oxygen Injection Flow Schematic

Ambient Air Nitrogen Gas (Purged) **Pressure Swing Adsorption Oxygen Generator** Oxygen Storage Tanks for Pulse Injection **Rotary Screw Air Compressed** Air, **Compressor and Clean & Dry Refrigerated Dryer Oxygen Gas** ~90% Oxygen Pulsed Into Groundwater en Delivery Manifo o

Naphthalene Aerobic Degradation Pathway

Results

LAYOUT OF IN SITU BIOSPARGE PILOT TEST

20

Ę

Phase 1 and 2 Pilot Scale Oxygen Feed Rates

• In situ DO target = 10 mg/L (minimum goal of 5 mg/L)

Phase 1 and 2 Pilot Scale Flow Results

- 0.03 to 0.1 scfm/foot of screen
- Pressures ranged from 30 to 53 psig

Performance Monitoring

What Results are Indicators of Increased Oxygen Influence?

- Increases in DO and ORP
- Changes in metal chemistry/mobility due to:
 - \succ Changes in **oxidation states** (e.g., Fe⁺² \rightarrow Fe⁺³)
 - Decreases in natural organic matter (and potential increased metal mobility)
- Decreases in TOC or COD

What Results are Indicators of Biological Degradation?

- Increases in naphthalene degrading bacteria
- Increased CO₂ from aerobic respiration
- Decreased concentrations of naphthalene

BIOSPARGE PILOT TEST MONITORING

Verification of Dissolved Oxygen Front

Used stable luminescent optical dissolved oxygen probes

- Continuous downwell monitoring with Trolls for 30-days in the 6 performance monitoring wells for DO, ORP, pH, conductivity, and temperature.
- DO Measurement a critical parameter
- Oxygen is not consumed as part of an electrochemical reaction, and optical sensors do not require sample flow or stirring for accurate readings
- Accuracy from:
 - 0 to 20 mg/L (±0.1 to 0.2 mg/L)
 - 20 to 50 mg/L (±10%)

Performance Monitoring Wells

5-feet

HW-3 Performance Monitoring Array

Phase 1 and 2 Pilot Scale DO Results – HW3

60.0 **Phase 1 Monitoring** Phase 2 Monitoring **O**₂ 0, 50.0 Dissolved Oxygen (mg/L) 40.0 30.0 20.0 10.0 **DO Goal** 0.0 05/27/09 07/26/09 09/24/09 11/23/09 01/22/10 03/23/10 05/22/10 07/21/10 09/19/10 11/18/10 01/17/11 03/18/11 05/17/11

DISSOLVED OXYGEN AT HW3

• HW3-91' ▲ HW3-71' - HW3-55'

- Phase 1 = 30 days injection
- Phase 2 = 89 days injection

Phase 1 and 2 Pilot Scale DO Results – HW2

DISSOLVED OXYGEN AT HW2

- Phase 1 = 30 days injection
- Phase 2 = 89 days injection

Phase 1 and 2 Pilot Scale ORP Results

Oxidation Reduction Potential at HW2

- Phase 1 = 30 days injection
- Phase 2 = 89 days injection

Naphthalene Aerobic Degradation Pathway

29

Sampling for In Situ Microbial Population

Bio-Flo Samplers

- Field sample collection
- Used to record baseline & post-pilot test populations of degraders
- 1 to 2 Liters
- Microbes live on solid surface

Bio-Trap® Samplers

 Contains beads of activated carbon with high surface area for microbial growth

minim

30

- ~30-day incubation
- Unique sampling matrix, bio-sep beads, which mimics environmental conditions
- Can be analyzed using a variety of molecular based approaches (DNA, RNA and PLFA)

Downwell Microcosm Study - Phase 1 Injection

- Microcosm study consisted of Bio-Trap cylinders installed in 3 wells for one month (07/25/09 to 08/25/09)
- Baseline results from Bio-Flo Sampler

NAH Indicator Gene Populations by qPCR

Bio-Flo Sampling NAH = Naphthalene Dioxygenase

Phase 1 Pilot Scale Respirometry Data

- Wellhead CO₂ Analysis
- 500 ppmv is background value in air

Naphthalene Analytical Sampling

Ę

Conclusions and Lessons Learned

- Directional drilling of 1450-ft long and 100-foot deep cluster biosparge well was quite successful.
- ADS Sparge pipe proved effective.
- Additional performance monitoring wells would greatly enhance determination of the lateral influence of dissolved oxygen and naphthalene-consuming bacteria.
- Vertical biosparging wells would serve to compare the HDD effectiveness and cost for full-scale operation.
- The optical DO downwell probes on the trolls maintained calibration through 90 days of operation.
- Good convergence of data for pilot test success:
- ✓ Analytical results✓ Field DO and ORP data

✓ Bacterial microcosm results✓ Respirometry

Contact Information:

Timothy R Turner, PE Black & Veatch Special Projects Corp. 1120 Sanctuary Parkway, Suite 200 Alpharetta, Georgia 30004 770-521-8125

Building a World of Difference in a Changing World

