

Mine Waste Technology Program

Acid/Heavy Metal Tolerant Plants

Mine Waste Technology Program Acid/Heavy Metal Tolerant Plants

By:

Jay Cornish MSE Technology Applications, Inc. Mike Mansfield Advanced Technology Center Butte, Montana 59702

Under Contract No. DE-AC09-96EW96405 Through EPA IAG No. DW8993989701-0

Norma Lewis, EPA Project Manager Systems Analysis Branch National Risk Management Research Laboratory Cincinnati, Ohio 45268

This study was conducted in cooperation with U.S. Department of Energy Environmental Management Consolidated Business Center Cincinnati, Ohio 45202

National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268

Notice

The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded the research described here under IAG ID. No. DW8993989701-0 through the U.S. Department of Energy (DOE) Contract DE-AC09-96EW96405. It has been subjected to the Agency's peer and administrative review and has been cleared for publication as an EPA document. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement or recommendation. The views and opinions of authors expressed herein do not necessarily state or reflect those of EPA or DOE, or any agency thereof.

Foreword

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

Sally Gutierrez, Director National Risk Management Research Laboratory

Abstract

This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30, *Acid/Heavy Metal Tolerant Plants*, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). This project addressed EPA's technical issue of Mobile Toxic Constituents – Water and Acid Generation.

The objective of Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior growth characteristics and sustainability on acidic, heavy metals-contaminated soils occurring at varying elevations in western Montana. The native vegetative cover was required to meet the following criteria:

- reduce potential risks to human and wildlife receptors following exposure to heavy metals via the ingestion (plant/soil/surface water) and inhalation (fugitive dust) routes for these contaminants; and
- accelerate creation of improved wildlife habitat and aesthetic conditions on these historically degraded lands.

The three project specific goals were to:

- release seed of native species indigenous to western Montana that are valuable for the restoration/reclamation of hardrock mines, mill tailings, and smelter affected sites;
- field test potential releases (of these species) at the Anaconda Smelter Superfund Site to verify adaptation to acidic/metals-rich soils and interspecies compatibility; and
- provide technology transfer by the development of educational materials for the scientific community, seed producers, and reclamation specialists regarding new plant materials and establishment techniques.

Local accession no. 9081620 of slender wheatgrass met the quantitative criteria for canopy cover, aerial biomass production, and vigor when grown in pure stands; it also contributed significantly to the superior performance of mixed indigenous vs. mixed commercial accessions used for reclamation in the Anaconda area. For the five trace elements evaluated, only the copper level in the 2005 sample exceeded the generally acceptable concentration for most livestock species [i.e., 47 milligrams per kilogram (mg/kg) vs. 40 mg/kg], but not for wildlife (55 mg/kg; see Table 2-20). However, the concentrations of aluminum and copper (i.e., 151 and 15 mg/kg, respectively) in the 2006 tissue analyses imply plant surface contamination by soil particles influenced the results from 2005. Subsequently, Copperhead Selected class germplasm of the indigenous slender wheatgrass was released to commercial growers in the summer of 2006.

The above accession joins the following releases that were developed under the Development of Acid/Heavy Metal-Tolerant Cultivars project: Western Selected germplasm basin wildrye, Old Works Source Identified germplasm for fuzzy tongue penstemon, and Prospectors Selected germplasm for common snowberry. Local accessions of big bluegrass and bluebunch wheatgrass are expected to be released to commercial growers within the next 2 years.

Contents

			ii
Abst	tract		iv
Con	tents		v
Figu	ires		vii
Tabl	les		vii
Acro	onyms	and Abbreviations	viii
Spec	cies In	dex	ix
Ack	nowle	dgments	xi
Exec	cutive	Summary E	S-1
1.	INTR	CODUCTION	1
	1.1	Background	1
	1.2	Project Description	
	1.3	Scope of Work	
	1.4	Project Objectives	2
2			
2.		ONSTRATION	4
	2.1	Task 1 – Evaluation of Grasses, Forbs, and Seed Mixtures	
		2.1.1 Study Site	4
		2.1.2 Soil Treatment.	
		2.1.3 Post-Treatment Soil Sampling	
		2.1.4 Planting Design	
		2.1.5 Seeded Species	
		2.1.6 Sampling Methods	6
		2.1.7 Grass Trails (2003)	7
		2.1.8 Grass Trials (2004)	7
		2.1.9 Grass Trials (2005)	8
		2.1.10 Seed Mixture Trial	8
		2.1.11 Forb/Subshrub Trial	8
		2.1.12 Tissue Analysis	9
	2.2	Task 2 Woody Competentia Evaluation	10
	2.2	Task 2 – Woody Comparative Evaluation	
		2.2.1 Test Site2.2.2 Methods and Materials	
		2.2.3 Results and Discussion	10
	2.3	Task 3 – High Quality Seed "Bank"	11
		2.3.1 Seeding	
		2.3.2 Transplanting	
		2.3.3 Woody Transplants	
		2.3.4 Production Fields	
		2.3.5 Weed Control	
		2.3.6 Fertilization	12
		2.3.7 Irrigation	

Contents (Cont'd)

Page

		2.3.8 Seed Harvest	12
		2.3.9 Post-Harvest Maintenance	12
		2.3.10 Seed Cleaning	
		2.3.11 Seed Storage	
		2.3.12 Seed Accessioning and Inventory	
	2.4	Task 4 – Plant Releases	13
	2.5	Goal 1 – Field Testing	
	2.6	Goal 2 – Technology Transfer	
		2.6.1 DATC Project Releases	
	2.7	Comments Regarding Laboratory Quality Assurance/Quality Control	15
3.	CON	ICLUSIONS AND RECOMMENDATIONS	42
	3.1	Conclusions	42
		3.1.1 Woody Comparative Evaluation Plot	42
		3.1.2 Stucky Ridge Plot	
	3.2	Recommendations	43
4.	REF	ERENCES	44
Ap	pendix	A: Development of Acid/Heavy Tolerant Release (DATR) 2005 Activities	A-1
		B: Development of Acid/Heavy Tolerant Release (DATR) 2006 Activities	

Figures

1-1.	DATC project location map (Source: Montana NRIS, 1996)	3
2-1.	Layout of the grass, forb/subshrub, and seed mixture trials at the Stucky Ridge Comparative	
	Evaluation Planting. See Species Index (p. ix) for plant codes and Tables 2-5 through 2-8 for	
	seed mixture formulations. (Source: Marty, 2003b).	16

Tables

Page

Page

2-1.	Pretillage Soils Data in the Proximity of the Plot Site (ARCO, 2002, May)	17
2-2.	Post-Planting Grass, Forb/Subshrub, and Seed Mixture Trial (0- to 6-inch) Composite Soil	
	Sample Analysis	18
2-3.	Forb and Subshrub Treatments Included in the Forb/Subshrub Trial	18
2-4.	Grass Treatments Included in the Grass Trial at the Stucky Ridge Uplands	19
2-5.	Upland Areas – Experimental Seed Mix Formulation	20
2-6.	Upland Areas – Developed Seed Mix Formulation	20
2-7.	Waste Management Areas – Experimental Seed Mix Formulation	21
2-8.	Waste Management Areas – Developed Seed Mix Formulation	21
2-9.	Density (seedlings per square foot) Sampled on 6/24/03, at Stucky Ridge	22
2-10.	Density (seedlings per square foot) Sampled on 8/25/03, at Stucky Ridge	23
2-11.	Percentage Stand and Vigor of Grass Trials on Stucky Ridge Plot on 6/30/04	24
2-12.	Average Plant Height of Grasses in Stucky Ridge Plots Measured 6/30/04	25
2-13.	Percentage Stand and Vigor of Grasses in Stucky Ridge Plots Evaluated on 9/22/04	26
2-14.	Biomass Production of Grasses in Stucky Ridge Trials Clipped on 9/22/04	27
2-15.	Percentage Stand and Vigor of Grass Trials on Stucky Ridge Plots Evaluated on 8/30/05	28
2-16.	Average Plant Height of Grasses in Stucky Ridge Plots Measured on 8/30/05	29
2-17.	Biomass Production of Grasses in Stucky Ridge Trials Clipped on 8/30/05	
2-18.	Moto-X Replicated Mixture Trial on Stucky Ridge	31
2-19.	Seedling Density (2003), Percentage Stand (2004), and Total Plant Density (2005) of Forb and	
	Subshrub Accessions in the Stucky Ridge Comparative Evaluation Planting Evaluated on	
	6/24/03, 8/25/03, 6/30/04, 9/22/04, and 8/30/05	31
2-20.	Heavy Metal Concentration of Clipped Biomass Samples from Stucky Ridge Sampled on	
	9/22/04 and 8/29/05; Analyzed on 10/10/05 ^a	32
2-21.	Acid Extractable Heavy Metal Levels at the Woody CEP Plot	38
	Seed Origin and Elevation Entries	
	Woody Comparative Evaluation Plot	
2-24.	Seed Production Fields Established at the BPMC	40
2-25.	Seed on Hand of Increase Plant Material	40
2-26.	Comparison of Independent Soil Sampling and Analysis Results ^a	41

Acronyms and Abbreviations

Al	aluminum
ARCO	Atlantic Richfield Company
As	arsenic
BPMC	Bridger Plant Materials Center
Cd	cadmium
CEP	Comparative Evaluation Plot
Cu	copper
DATC	Development of Acid/Heavy Metal-Tolerant Cultivars
DLVCD	Deer Lodge Valley Conservation District
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
LOAEL	lowest observed adverse effect level
LSD	least significant difference (Fisher's mean comparison method)
MSE	MSE Technology Applications, Inc.
MWTP	Mine Waste Technology Program
Pb	lead
PLS	pure live seeds
RDU	Remedial Design Unit
RPD	relative percent difference
s.u.	standard unit
USDA-NRCS	U.S. Department of Agriculture/Natural Resources Conservation Service
WMA	waste management area
Zn	zinc

Species Index ^a

Part A. Grasses

Taxonomic Name (abbreviation)

Achnatherum hymenoides (ACHY) Agropyron intermedium (AGIN) Agrostis gigantea (AGGI) Bromus inermis (BRIN) Deschampsia caespitosa (DECE) Elymus lanceolatus (ELLA) Elymus trachycaulus (ELTR) Elymus wawawaiensis (ELWA) *Festuca ovina* (FEOV) Leymus cinereus (LECI) Pascopyrum smithii (PASM) Poa alpina (POAL) *Poa secunda* (POSE) *Poa species* (POSP) Pseudoroegneria spicata (PSSP) Stipa comata (STCO) Stipa viridula (STVI)

Part B. Forbs and Subshrubs

Taxonomic Name (abbreviation)

Achillea lanulosa (ACLA) Artemisia frigida (ARFR) Aster chilensis (ASCH) Cirsium arvense (CIAR) Ericameria nauseosa (ERNA) Eriogonum ovalifolium (EROV) *Eriogonum umbellatum* (ERUM) Krascheninnikovia lanata (KRLA) Linum lewisii (LILE) *Medicago sativa* (MESA) *Mentzelia decapetala* (MEDE) Penstemon eatonii (PEEA) Penstemon eriantherus (PEER) Penstemon strictus (PEST) Penstemon venustus (PEVE) Phacelia hastata (PHHA) Potentilla gracilis (POGR) Potentilla hippiana (POHI) *Symphyotrichum chilense* (SYCH) *Tetradymia canescens* (TECA)

Common Name

Indian ricegrass intermediate wheatgrass redtop smooth brome tufted hairgrass thickspike wheatgrass slender wheatgrass Snake River wheatgrass sheep fescue basin wildrye western wheatgrass alpine bluegrass Sandberg (Canby) bluegrass bluegrass species bluebunch wheatgrass needle-and-thread grass green needlegrass

Common Name

western varrow fringed sagewort creeping aster Canada thistle rubber rabbitbrush cushion buckwheat sulfur-flower buckwheat winterfat Lewis flax alfalfa tenpetal blazingstar firecracker penstemon fuzzy-tongue penstemon Rocky Mountain penstemon venus penstemon silverleaf phacelia slender cinquefoil woolly cinquefoil Pacific aster Spineless horsebrush

Part C. Shrubs and Trees

Taxonomic Name (abbreviation) Common Name Pinus contorta (PICO) lodgepole pine Pinus ponderosa (PIPO) ponderosa pine Populus tremuloides (POTR) quaking aspen wax currant *Ribes cereum* (RICE) Rosa woodsii (ROWO) Woods' rose Shepherdia argentea (SHAR) silver buffaloberry *Symphoricarpos albus* (SYAL) common snowberry *Symphoricarpos occidentalis* (SYOC) western snowberry

Note: ^a See USDA-NRCS (2006a) for additional information on these plant species.

Acknowledgments

This document was prepared by MSE Technology Applications, Inc. (MSE) for the U.S. Environmental Protection Agency's (EPA) Mine Waste Technology Program (MWTP) and the U.S. Department of Energy's (DOE) Environmental Management Consolidated Business Center. Ms. Diana Bless is EPA's MWTP Project Officer, while Mr. Gene Ashby is DOE's Technical Program Officer. Ms. Helen Joyce is MSE's MWTP Program Manager. Ms. Norma Lewis is the EPA Project Manager, while Ms. Lauren Drees is the EPA Quality Assurance Officer, for this project.

MSE thanks Ms. Leslie Marty and Mr. Mark Majerus for sharing the technical lead on this project and Mr. Joe Scianna for providing the summary report for 2006 activities. MSE also appreciates the constructive reviews received from Dr. Martha Apple (Montana Tech of the University of Montana) and Mr. Dennis Neuman (Reclamation Research Group, LLC) on the draft version of this report.

Executive Summary

The Mine Waste Technology Program (MWTP), Activity III, Project 30, *Acid/Heavy Metal Tolerant Plants*, was implemented by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). Project 30 addresses EPA's technical issue of Mobile Toxic Constituents – Water and Acid Generation.

The ultimate goal of the Development of Acid/Heavy Metal Tolerant Cultivars (DATC) project was to provide a reliable supply of high-quality, acid-metals tolerant native seed adapted to reclamation of hardrock mine lands within the Intermountain Region of the western United States.

This DATC project was initiated in 1995 and funded by a grant from the Montana Department of Natural Resources and Conservation (DNRC)-Reclamation and Development to the Deer Lodge Valley Conservation District (DLVCD). The DLVCD worked in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service (USDA-NRCS) Bridger Plant Materials Center (BPMC). The national network of 26 plant materials centers is the primary source of native plants developed specifically for reclamation and conservation use. The BPMC, in south-central Montana, is a 140-acre research facility dedicated to the selection and release of native plant materials, primarily for use in Montana and Wyoming. The original DNRC grant expired at the end of 1996 and this project did not receive funding until June 1998, at which time carryover money for the 1997-98 grant period was made available to this project, as well as some financial support from the Atlantic Richfield Company (ARCO). During 1999 and 2000, the project was again funded by a DNRC Reclamation and Development grant. Since 2000, the DATC project has been funded by the MWTP (through 2005) and the Montana Department of Justice-Natural Resource Damage Program (through 2008).

To date, the DATC project has acquired 130 collections of seed from 72 native species of grasses, forbs, shrubs, and trees from within the Upper Clark Fork River Basin. Additional collections have been made from abandoned mine sites throughout western Montana. These collections have been planted at various study sites in comparison with nonlocal native and introduced plant species. ARCO has provided land access for seed collection and sites for experimental plots throughout the Upper Clark Fork River Basin.

Presently, indigenous accessions of basin wildrye, slender wheatgrass, fuzzy-tongue penstemon, and common snowberry have been released to commercial growers. Three more grass accessions are expected to be released by 2008, with a few additional shrub accessions to follow thereafter (Appendix A, Section 5).

Introduction

1.1 Background

One of the most impacted areas within the Anaconda Smelter Superfund Site is approximately 18 square miles of uplands (Figure 1-1). The uplands are commonly derived from the weathering of bedrock and are typically thin, clayrich alfisols. Due to the susceptibility of these soils to erosion by wind and water, the soil surface in many areas had eroded away and the subsoil, which is exposed at the surface, continues to erode. Original vegetation in the uplands consisted primarily of shrub lands with coniferous forests above approximately 5,800 feet. In an effort to curtail the transport of contaminants and remediate these injured areas, state and federal regulatory agencies have developed several reclamation alternatives, which include planting of shrubs and trees.

The low pH soils at the Anaconda Smelter Superfund Site are routinely ameliorated by incorporating lime; however, nonuniform lime incorporation, as well as the upward migration of acid producing compounds, results in pockets of acidity. Additionally, many steeply sloped areas are not accessible to heavy equipment making them difficult to amend (Jennings and Munshower, 1997). Research has demonstrated that metal-tolerant plants can be used to stabilize and immobilize contaminants in the soil (e.g., Dahmani-Muller et al., 2000; Conesa et al., 2007). Metals are absorbed and accumulated by roots, adsorbed onto the roots, or precipitated within the rhizosphere, thereby trapping contaminants in the soil and breaking the soil-plant-animal cycle (Vangronsveld and Cunningham, 1998).

Numerous demonstration projects over the last 50 years at the Anaconda Smelter Superfund Site have tested the performance of several woody plant species in diverse edaphic conditions (Reclamation Research Unit, 1993). This study builds on previous research findings by testing accessions (ecotypes) of woody plant species that have shown adaptations to low pH and heavymetal contaminated soils. The objective of the study was to identify acid/ heavy-metal-tolerant native plant ecotypes that provide erosion control and wildlife habitat. The goal of the Development of Acid/Heavy Metal Tolerant Cultivars (DATC) project was to release these superior ecotypes to the commercial market, thereby providing a greater array of plant materials for the reclamation industry.

Previous studies included "local" germplasm originating from seed collected on nearby mineaffected soils in Deer Lodge County, Montana, as well as "nonlocal" germplasm seed collected on nonimpacted lands in various counties of Montana, Colorado, South Dakota, Utah, and Wyoming. Seedlings of 19 accessions of 7 woody species including lodgepole pine, ponderosa pine, silver buffaloberry, Woods' rose, common snowberry, western snowberry, and wax currant were transplanted into a common garden in a randomized complete block design. (The Species Index [p. ix] contains the taxonomic name for each plant species mentioned in this report.)

1.2 Project Description

This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30, *Acid/Heavy Metal Tolerant Plants*, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). This project addressed EPA's technical issue of Mobile Toxic Constituents – Water and Acid Generation.

The purpose of Activity III, Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior survivability and vigor on acidic, heavy metalscontaminated soils occurring at varying elevations in western Montana.

The initial demonstration of the viability of these plants occurred at sites located within the Anaconda Smelter Superfund Site.

1.3 Scope of Work

The scope of work for this project was to collect, test, select, grow, and ultimately release indigenous native plants that demonstrated superior adaptation to acidic/heavy metals-contaminated soils.

1.4 Project Objectives

The qualitative objective of Project 30 was to establish a native indigenous vegetative cover/plant community that:

 reduced potential risks to human and wildlife receptors following exposure to heavy metals through ingestion (plant, soil and surface water) and inhalation (fugitive dust) routes for these contaminants; and accelerated creation of improved wildlife habitat and aesthetic conditions on historically degraded lands.

The quantitative measures for selecting those species-specific accessions that meet the above objectives include (MSE, 2001):

- vegetative canopy cover of $40 \pm 10\%$;
- aerial (above ground) biomass production of 0.15 ± 0.05 dry kilogram per square meter (kg/m²);
- vigor rating of 1.5 ± 0.5 ; wherein 1 = "healthiest" vs. 5 = "dead"; and
- strong acid extractable ("total") trace element levels in aerial biomass that indicate neither gross phytotoxicity nor pose a significant threat to herbivores.

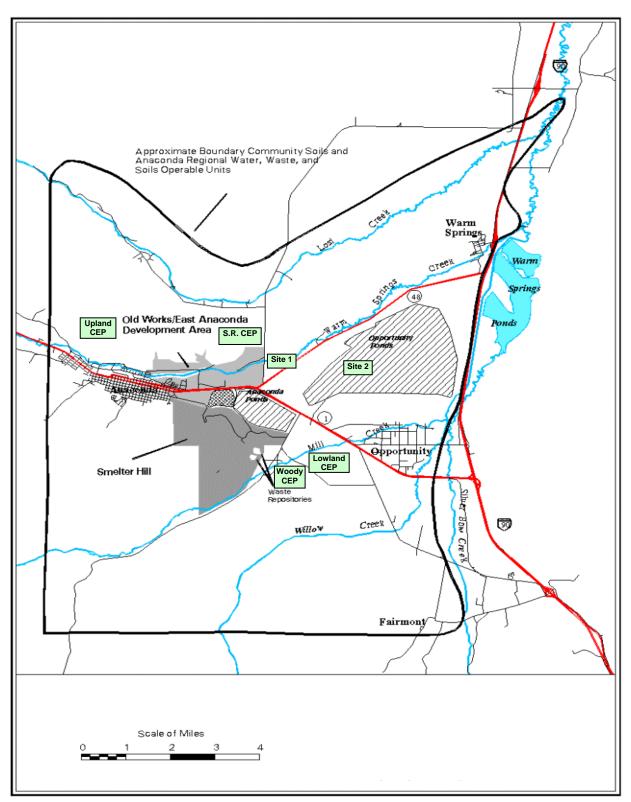


Figure 1-1. DATC project location map (Source: Montana NRIS, 1996).

Demonstration

The project was divided into tasks, subtasks, and work products specifically associated with each of the project goals (Marty, 2003a).

2.1 Task 1 – Evaluation of Grasses, Forbs, and Seed Mixtures

This task focused on identifying grass and forb accessions that exhibited superior tolerance to acid and heavy metals contaminated soils. The grass/forb entries evaluated were those that were tested at the Bridger Plant Materials Center (BPMC) greenhouse over the fall/winter of 2000-2001 (Marty, 2001).

2.1.1 Study Site

The site for this study is located on Stucky Ridge, approximately 2 miles northeast of Anaconda, Montana, in Deer Lodge County. The legal description and geographic position of the study site are the SW 1/4 of the SW 1/4 of Section 30, Range 11 West, Township 5 North and North 46°09'09"/West 112°54'30". The study plot occupies 1.5 acres in subpolygon OWSR-013.09, which was part of the Stucky Ridge Remedial Design Unit (RDU) #1 within the Anaconda Regional Water, Waste, and Soils Operable Unit.

RDU #1 encompasses 242 acres of the approximately 13,000 acres of upland terrestrial vegetation contaminated by emission fallout from the Washoe as well as the Upper and Lower Works smelters. Concerns identified in the Stucky Ridge RDU include elevated arsenic (As) concentrations in surface soils, barren or sparsely vegetated areas due to low pH, elevated contaminant concentrations, and steep slopes with high erosion potentials. Table 2-1 lists the soil characteristics of pretillage soil data points closest to the study site, as taken from the Remedial Action Work Plan/Final Design Report (EPA, 1995). Current and historic use of this area primarily consists of agricultural grazing, recreation, and open space/wildlife habitat.

The plot site is situated on a stream terrace above Lost Creek at an elevation of 5,308 feet and covers most of the relatively flat ground on the east end of Stucky Ridge. The vegetation, although sparse, includes scattered groves of quaking aspen; shrublands dominated by Woods' rose, currant species, rubber rabbitbrush, and spineless horsebrush; and grasslands dominated by redtop and basin wildrye. Annual precipitation at the site ranges from 10 to 14 inches with most of the precipitation occurring in the spring. The parent material is alluvium. The untilled soil had a pebbly loam texture that was well drained. The slope at the plot site averages approximately 5% to 10%.

2.1.2 Soil Treatment

The study plot site was ameliorated along with the rest of the treatment area following the remedial actions specified in the Remedial Action Work Plan/Final Design Report (EPA, 1995). The remedy identified for this treatment area was soil tilling to 12 inches with the addition of a neutralizing amendment to ameliorate the low pH soil conditions. Remediation of the area was performed by Jordan Contracting, Inc. and their subcontractors starting in the fall of 2002. According to the work report from Jordan Contracting prior to tillage, many of the erosion rills and gullies were graded using a D8 Dozer and a CAT 330 excavator. The entire treatment area was pretilled by Western Reclamation, Inc. with a Rhome[™] disc to approximately 12 inches in mid-September. Lime kiln dust, procured from Continental Lime, Inc., was then applied at a rate of approximately 22.0 tons/acre to neutralize the soil. Four additional passes were made with the Rhome[™] disc to a depth of 12 inches to incorporate the lime. Lime incorporation was completed on November 14, 2002.

In the spring of 2003, fertilizer (12% N, 16% P_2O_5 , 30% K_2O) was applied at a rate of 500 bulk pounds per acre and incorporated to 6 inches using a chisel plow. Table 2-2 lists the soil

characteristics of post-tillage soil data points taken throughout the study site. The tillage area was drill seeded in early May 2003 at a rate of 25 pounds per acre (lb/acre) with "Revegetation Mix #1" (Table 2-6).

2.1.3 Post-Treatment Soil Sampling

Soil sampling of the grass, forb/subshrub, and seed mixture trials was completed on June 24, 2003, after planting. The air-dried, unsieved soil samples were analyzed for pH (1:1 saturated paste) and total As, cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) by EPA Methods SW 3050/6010 at Energy Laboratories, Inc. in Billings, Montana. All analyses were performed in accordance with the laboratory's quality assurance/quality control manual. At the grass trial, eight randomly selected treatment units in each block were subsampled. The eight (0- to 6-inch) composite subsamples collected from a block were combined and mixed to form one representative sample. Duplicate soil samples were taken in Block 1, and alternate soil samples were taken in Block 3. In the forb/subshrub trial, four (0- to 6-inch) subsamples were taken per block to form one representative sample. Duplicate subsamples were taken in Blocks 1 and 3. In the mixture trial, two (0- to 6-inch) subsamples were taken per block to form one representative sample. Duplicate subsamples were taken in Block 1, and alternate subsamples were taken in Block 3.

The As and metal concentrations of the postplanting soil samples were generally moderate with the exception of Cu. Copper concentrations within the three trials averaged 832 milligrams per kilogram (mg/kg) and ranged from 525 mg/kg to 1,080 mg/kg. The average Cu concentrations in soils collected from the grass, forb/subshrub, and seed mixture trials were 845 mg/kg, 877 mg/kg, and 774 mg/kg, respectively. The pH of postplanting soil samples were all above neutral, averaging 7.8 and ranging from 7.2 to 8.2.

2.1.4 Planting Design

The study was arranged as three separate trials (grass, forb/subshrub, and seed mixture) each in a

randomized complete block design. The three trials are situated adjacent to each other as shown in Figure 2-1. The grass, forb/subshrub, and seed mixture trials are 0.96 acre, 0.44 acre, and 0.14 acre, respectively; total plot size is 1.54 acres. Between each block, as well as between trials, an 8-foot strip of slender wheatgrass 'Pryor' was planted to minimize edge effect. The seed bed was prepared by project personnel on April 22, 2003, using a 5-foot box scraper to level the soil. Rocks greater than 6 inches in diameter were hand picked from within the plot boundary. After rock removal, another pass was made with the box scraper and spike-tooth harrow to till out tractor tire compressions.

On May 13, 2003, the seed treatments were planted using a 4-row Kincaid[™] cone drill with 1-foot row spacing and a 0.5-inch planting depth. The seeding rate for the grass and forb/ subshrub trials was 50 pure live seeds (PLS) per linear foot of row. The seeding rate for the seed mixture trial was based on a total seeding rate of 50 PLS per square foot. Each component of the mix was calculated as a percentage of the per-square-foot rate.

The seed mixtures were formulated for two distinct applications. An "Upland" blend was designed for sloping areas with generally low water infiltration and to provide wildlife habitat. The "Waste Management Area" (WMA) blend was designed to provide a vegetative cover for areas in which remedial options appear to be limited and their use for containment of large volumes of waste is logical. The seed mixtures referred to as "Developed" are the seed formulations, using commercially available cultivars, currently specified for use in the Remedial Action Work Plan/Final Design Report (ARCO, 2002). The seed mixture previously referred to as Revegetation Mix #1, planted in the surrounding treatment area, was synonymous with the "Upland Developed" seed mixture. The seed mixtures referred to as "Experimental" are local ecotypes of the same species from mine-impacted lands.

Each treatment unit measured 8 feet by 25 feet and consisted of eight rows. In the grass and forb/ subshrub trials, each treatment unit was planted with a single accession. Two exceptions exist due to seed quantity restraints. In all replications of the grass trial, western wheatgrass 9081968 was drilled in only six rows with slender wheatgrass 'Pryor' drilled into the remaining two rows and broadcast in the unplanted area south of the forb/subshrub trial. In all replications of the forb/subshrub trial. cushion buckwheat 9082098 was drilled into only four rows with slender wheatgrass 'Pryor' drilled into the remaining four rows. Wooden stakes, spray painted orange and marked with an identification number, were installed in the northeast corner of each treatment unit. Lastly, a single-strand, smooth wire fence was installed around the perimeter of the plot to designate plot boundaries and restrict vehicular trespassing. In mid-July and again in mid-September, volunteer Canadian thistle was spot sprayed initially with a 3% solution of 2-4-D Amine and subsequently with a 3% solution of Stinger[™] (Clopyralid) applied with a backpack sprayer.

2.1.5 Seeded Species

The species entries consisted of 36 grass accessions representing 9 grass genera, 14 forb accessions representing 5 forb genera, 2 subshrub accessions representing 1 subshrub species, and 4 seed mixtures representing 2 seed mixture formulations (Tables 2-3 through 2-8). The 15 total genera tested were selected for inclusion in the study based on results from previous DATC project studies such as the Initial Evaluation Planting Study (Marty, 2000) and the Greenhouse Comparative Evaluation Planting study (Marty, 2001).

Each genus tested included at least one accession originating from metalliferous soil sites in the proximity of the Anaconda Smelter National Priorities List Site, with the exception in one case. Neither of the two winterfat accessions originated from metalliferous soils. In this report, accessions that originated from metalliferous soils are referred to as "local," whereas accessions originating from undisturbed soils are referred to as "nonlocal."

2.1.6 Sampling Methods

Seedling density was the growth response variable used to assess performance during the 2003 growing season. Measurements were taken using an 11.81-inch by 19.68-inch quadrat frame that was randomly placed at five sample locations within each 8-foot by 25-foot treatment unit. The sampling sites were computer generated x-y coordinates originating at the southwest corner of each experimental unit (Marty, 2003a). The quadrat was situated with its long axis perpendicular to the seeded rows so that each sampling measurement included two rows. Seedlings rooted within the quadrat frame were counted. Seeded seedlings, as well as nonseeded seedlings, were counted and recorded separately. Photographs of each treatment unit were taken during sampling events. Density data was collected on June 24, 2003, to assess emergence and initial establishment and on August 25, 2003, to assess subsequent establishment and/or die-off.

Data were collected on June 30, July 1, and September 22-23, 2004, and August 29-30, 2005. During the early summer sampling, four randomly located frames (11.81-inch by 19.68-inch) were used, from which average plant height was measured, percentage stand was estimated, and ocular estimates of plant vigor were made. Random samples were located along rows 2-3 and 6-7 to avoid edge-effect error. In the fall of 2005, the same random frame locations were used to estimate percentage stand and plant vigor and to measure plant height and sample biomass production. If combined biomass samples from all four replications did not yield at least 10 grams of material, additional clipping was done so that there would be enough biomass for tissue analysis. All biomass samples were oven dried at 140 °F for 24 hours, weighed, cut into small pieces, and packaged in plastic zip-lock bags for delivery to Energy Laboratories, Inc. for tissue analysis.

2.1.7 Grass Trails (2003)

The grand mean of seedling density data collected on June 24, 2003, in the grass trial was 5.4 seedlings/square foot (ft^2) and ranged from 15.0 to 0.3 seedlings/ft² as shown in Tables 2-9 and 2-10. Three accessions of slender wheatgrass ('Pryor', 9081620, and 'San Luis') had the greatest seedling densities at 15.0, 14.1, and 13.6, respectively. These results are not surprising as slender wheatgrass has been recognized for its excellent seedling vigor and quick establishment and growth on a variety of soil types (USDA-NRCS, 2006b). Density data collected 2 months later on August 25, 2003, indicated that these three slender wheatgrass accessions had significantly greater densities than 86% of the accessions tested. However, the locally collected slender wheatgrass 9081620 did not perform significantly better than 'Pryor' or 'San Luis'.

Western wheatgrass ('Rosana' and 9081968) had 13.3 and 12.7 seedlings/ft², respectively, on June 24. This species is an aggressively rhizomatous, long-lived grass known to be adapted to a wide range of soil pH from acidic to basic. Seedling density data collected on August 25 indicated that the above accessions also had significantly greater densities than 86% of the accessions tested including 'Rodan'.

Seedling density data from the June evaluation indicated that basin wildrye 9081624 had significantly greater density (7.8 seedlings/ft²) than 80.5% of the accessions including the four other basin wildrye accessions. However, by the August evaluation, wildrye 9081624 was not significantly better than wildrye 'Trailhead'. This accession's success was somewhat unexpected due to the species' poor to fair seedling vigor and slow seedling establishment. This species has been reported to be tolerant of elevated As and heavy metal concentrations (Taskey, 1972).

The bluebunch wheatgrass accessions ('Goldar' and 9081636) also performed in the top third of the field in June and August. In August, both accessions mentioned above had significantly better seedling densities than more than 50% of

the accessions. The local accession (9081636) did not perform significantly better than 'Goldar'. This species is reported to have fair seedling vigor and establishment with tolerances to acidic to slightly alkaline soils (USDA-NRCS, 2006a).

The grand mean for the August 25, 2003, evaluation was 4.3 seedlings/ft² and ranged from 14.5 to 0.31 seedlings/ft². This indicates that seedling density declined by 1.1 seedlings/ft² or 20.4% between the June and August evaluations, possibly due to drought stress.

2.1.8 Grass Trials (2004)

Based on the number of new seedlings found in 2004, many seeds did not germinate during the 2003 growing season. The most notable species were Indian ricegrass, basin wildrye, and western wheatgrass. Indian ricegrass has a hard seed coat and should normally be dormant-seeded in the fall. The basin wildrye and western wheatgrass can have delayed germination because of the combination of a relatively late spring planting date and subsequent hot, dry weather. The increase in new seedlings could be expressed in relatively higher percentage stands but was not revealed in the biomass production as seedlings were still quite small at the time of the late summer biomass sampling.

At the early summer sampling, June 30, 2004, the top accession, by a significant amount, was 9081620 slender wheatgrass with a 61.3% stand, 54.4-centimeter (cm) average height, and a 3.4 vigor rating. Other 'local source' accessions that exhibited good survival, stand, and vigor included 9081633 big bluegrass, 9081621 slender wheatgrass, 9081621 western wheatgrass, 9081624 basin wildrye, 9081628 Indian ricegrass, 9081635 Canby bluegrass, and 9081636 bluebunch wheatgrass and are shown in Table 2-11 and Table 2-12.

Toward the end of the growing season (September 22, 2004), there was very little change in the top performing accessions as shown in Table 2-13. Of the top 16 accessions in the early summer evaluation, 15 were still ranked as the top

performing accessions. The 9081620 slender wheatgrass remained as the top performer by a significant margin. Of the 'local source' accessions, 9081633 big bluegrass, 9081621 slender wheatgrass, 9081968 western wheatgrass, 9081635 Canby bluegrass, 9081624 basin wildrye, and 9081636 bluebunch wheatgrass all show promise and are among those being increased at the BPMC for potential release to the commercial seed industry. Fall biomass production was relatively low, with only 9081620 slender wheatgrass producing more than 2,000 kilograms per hectare (kg/ha) (i.e., 2,083 kg/ha), shown in Table 2-14. Some of the low production can be attributed to the number of new seedlings emerging in 2004. In addition, 2-year-old plants were often spindly because of the harsh edaphic conditions.

2.1.9 Grass Trials (2005)

The grasses were evaluated and sampled on August 30, 2005. Although there had been some mortality, the top performers of 2003/2004 continue to exhibit their ability to withstand the harsh edaphic conditions of this site. Slender wheatgrass (9081620) was the top performer with an average stand of 75% and average plant height of 87.5 cm and average biomass production of 8,211 kg/ha. These averages are shown in Tables 2-15, 2-16, and 2-17. Other superior accessions include 9081633 big bluegrass (stand-43.4%, biomass-2,506 kg/ha), 9081621 slender wheatgrass (stand-34.1%, biomass-4,100 kg/ha), 9081635 bluegrass (stand-25.9%, biomass-906 kg/ha), 9081968 western wheatgrass (stand-21.9%, biomass-800 kg/ha), and 9081624 basin wildrye (stand-22.2%, biomass-1,844 kg/ha). The released cultivars, Secar Snake River wheatgrass, Pryor slender wheatgrass, San Luis slender wheatgrass, Rosana western wheatgrass, and Trailhead basin wildrye were among the top performers; but in most cases, performances were slightly less than their indigenous counterparts.

2.1.10 Seed Mixture Trial

The forbs included in the seed mixtures in Section 2.1.4 did not emerge; therefore, densities reflect only emergent grass seedlings as shown in Tables

2-5, 2-6, 2-7, and 2-8. During the establishment year, the Developed WMA mix had the greatest seedling density with 10.5 seedlings/ft² shown in Table 2-18. The Experimental WMA mix had the lowest density with 6.3 seedlings/ ft^2 . The two Developed mixtures averaged 9.9 seedlings/ ft^2 , and the two Experimental mixtures averaged 6.3 seedlings/ ft^2 . There were no significant differences among the mixtures at the P = 0.05level. By the fall of the first year, the Developed WMA mixture still had the highest density (8.0 seedlings/ ft^2), and the Experimental WMA mixture had the lowest density (6.9 seedlings/ ft^2). The two Developed mixtures averaged 7.7 seedlings/ ft^2 , and the two Experimental mixtures averaged 6.9 seedlings/ ft^2 . As in June, no significant differences were seen among the four seed mixtures.

At the start of the second growing season in 2004, the two Experimental mixes had significantly better stands (Upland Exp.–39.4% and Waste Mgmt. Exp.–38.1%) than did the Developed mixes (Upland Dev.–17.3 and Waste Mgmt. Dev.–15.0%). By fall of the second year, the stands of all the mixes had increased, but the Experimental mixes were still significantly better than the Developed mixes. Biomass production of the Experimental mixes was also significantly better than that of the Developed mixes.

During 2005, the percentage stands of all mixes increased only slightly, but the biomass production was much higher. The Experimental mixes were dominated by 9081620 slender wheatgrass, while the Developed mixes were dominated by Revenue slender wheatgrass and Critana thickspike wheatgrass. The WMA Experimental mix topped all mixes with 8,933 kg/ha of oven-dry biomass production.

2.1.11 Forb/Subshrub Trial

Ten of the 16 trial entries had no emergence in 2003, and 15 of the 16 entries had less than 0.50 seedlings/ ft^2 in 2004. These results are shown in Table 2-19. The subshrub, winterfat Open Range Germplasm, was the only entry that demonstrated significant emergence with 9.5

seedlings/ ft^2 . The lack of forb emergence may be due to the May 13, 2003, planting date. The forb species in the study may have some physiological (after ripening) or physical (hard seed coat) seed dormancy. To overcome seed dormancy, many forb seeds generally require several weeks (8 to 14 weeks) of cold chilling. As with the grass species, some additional germination and emergence was expected in the spring of 2004; however, this did not happen with the forb species. The germination rates for some species such as thickstem aster and buckwheat are higher with shallow seeding (USDA-NRCS, 2006a). By the second growing season, only plants of Open Range winterfat and 9081632 silverleaf phacelia remained alive. There was no sign of new emergence of any of the accessions/species in the spring of 2004. The surviving, mature plants of Open Range Germplasm winterfat performed well, with some plants flowering and setting seed. After the third growing season, plants of Open Range winterfat, 9081632 silverleaf phacelia, Old Works fuzzytongue penstemon, Richfield firecracker penstemon, and Northern Cold Desert winterfat were found to be surviving. New plants of firecracker penstemon and fuzzytongue penstemon had germinated 2 years after being planted. The surviving plants of Open Range winterfat and 9081632 silverleaf phacelia exhibited good vigor, growth, and seed production.

2.1.12 Tissue Analysis

Following the Fall 2004 and Fall 2005 evaluation for cover and vigor, each individual unit was sampled for biomass production. These clippings from all four blocks, along with additional clippings of low producing units, made up the 10 gram or greater of oven-dried samples that were submitted for tissue analysis. Samples were submitted to Energy Laboratories, Inc. in Billings, Montana, for determination of heavy-metal concentrations in as-received plant materials using EPA Method SW 3050/6010. Metal loads (concentration in and on the plant tissue) can be compared to maximum tolerable levels of dietary minerals for domestic animals (National Research Council, 2005). The dietary limit of 1 mg Cd/kg feed for domesticated animals is based on human

food residue considerations and the need to avoid increases of Cd in the food supply of the United States. Higher residue levels (less than 10 mg/kg) for a short period of time would not be expected to be harmful to animal health; however, these levels can result in unacceptable Cd concentrations in kidney, liver, and muscle tissues (ibid, p. 86). Based on a review of the scientific literature, ranges of elemental levels for mature leaf tissue have been presented by Kabata-Pendias and Pendias (1992). The elemental levels for generalized plant species into ranges representing deficient, sufficient, or normal, and excessive or toxic are shown in Table 2-20.

All tissue samples are unreplicated composites of samples from random plants in all four replications of the Stucky Ridge Comparative Evaluation Trial. Metal loads in the sampled tissue were generally below toxic levels.

- As was detected in 19 of the 39 samples in 2004 and in 32 of the 40 samples in 2005, with levels ranging from 5 mg/kg to 35 mg/kg. This upper value is slightly above the tolerable level for domestic livestock (30 mg/kg), and below that for wildlife (50 mg/kg). However, the detected levels rank in the 'Excessive or Toxic' level in plants.
- Cadmium was detected in samples of Rimrock Indian ricegrass in 2004 and 2005; it was detected in five accessions (three of which were in Indian ricegrasses). Only the 2004 Rimrock accession clearly exceeds the regulatory level for domestic livestock (1.0 mg/kg) and tolerance by wildlife (2 mg/kg).
- Copper was detected in all tissue samples, ranging from 14 mg/kg to 307 mg/kg. Twenty-three samples (2004) and 32 samples (2005) exceeded the tolerable level for domestic livestock (40 mg/kg). Eleven samples (2004) and 20 samples (2005) exceeded the tolerable level for wildlife (55 mg/kg). Since this is a copper smelting impacted area, high levels of copper are to be expected.

- Lead was detected in a sample of tenpetal blazingstar only (2004), at a level of 9 mg/kg, below the tolerable level for domestic livestock and wildlife. In 2005, Pb was detected in only four samples; two of these values exceeded the livestock limit of 10 mg/kg, but none exceeded the limit for wildlife species.
- Zinc was detected in all samples, ranging from 14 mg/kg to175 mg/kg, well below the tolerable level for domestic livestock (300 mg/kg) and wildlife (300 mg/kg).

The fact that heavy metal concentrations were highest in/on alpine blue grass, silverleaf phacelia, winterfat, and fuzzytongue penstemon was likely due to the excess dust particles on the low profile plants and those with leaf pubescence.

2.2 Task 2 – Woody Comparative Evaluation

Seeds/cuttings thriving in soils affected by metals were taken from populations of woody plant material from the Anaconda area (Marty, 2001). This task was divided into the two subtasks of:

- locating vigorous populations of targeted woody species situated within or adjacent to restoration areas; and
- yearly, large-scale seed/cutting collection at the identified sites.

2.2.1 Test Site

The site chosen for this demonstration is a 0.4-acre study site located approximately 4 miles southeast of Anaconda, Montana, that has been impacted by emission fallout from the Upper and Lower Works as wells as the Washoe smelter (Figure 1-1). The Upper and Lower Works smelters operated from 1884 to 1902 when the Washoe smelter took over smelting operations until 1980. The study site lies approximately 200 yards east of Mill Creek at an elevation of 5,140 feet. The soils at the site are in the Haploboroll's Family and consist of deep, well-drained soils formed in mixed alluvium composed of granitic, meta-sedimentary, and volcanic rocks.

The alluvium is derived from the Mill Creek drainage. Cobbles and stones commonly occur on the soil surface. In 1999, the site was plowed to a depth of 6 inches, rototilled, and packed. Laboratory analysis of four composite soil samples taken after tilling to 6 inches indicated an average pH of 4.53. Average As, Cd, Cu, Pb, and Zn concentrations in the four soil samples were 423 mg/kg, 6 mg/kg, 510 mg/kg, 233 mg/kg, and 308 mg/kg, respectively. The complete data are shown in Table 2-21.

2.2.2 Methods and Materials

The study tested 19 accessions consisting of 2 or 3 accessions of each of the 7 shrub/tree species. These accessions are shown in Table 2-22. The 6-to 12-inch seedlings were transplanted on October 18, 2000, in a randomized complete block design and replicated 20 times. An individual plant of each accession was represented in each replication. The seedlings were spaced 4.5 feet apart within rows and 9 feet apart between rows. The plot received no supplemental irrigation. The spring following planting, Vispore[™] (3-foot by 3-foot) tree mats were installed on all entries to suppress weeds and retard soil moisture evaporation.

Plant survival, height, and vigor were assessed in May 21 and August 14, 2001; May 20 and August 20, 2002; May 28 and August 26, 2003; June 30, 2004; and August 29, 2005. Plant height was measured in centimeters to the top of live foliage. Vigor was measured on a scale of 1 to 9, with 1 representing excellent vigor and 9 representing plant mortality.

2.2.3 Results and Discussion

Overall, survival of the entries in the Woody Comparative Evaluation Plot (CEP) in 2001 was local 91.4% and nonlocal 79.2%. The complete results are shown in Table 2-23. Edaphic conditions had taken their toll, as survival decreased each subsequent year; 2002-local 84.3% and nonlocal 52.5%, 2003-local 73.6% and nonlocal 43.8%, 2004-local 70.7% and nonlocal 40%, 2005-local 61.4% and nonlocal 37.5%. Anaconda's 30-year average annual precipitation was 13.93 inches. The site was dehydrated in 2000, the year of establishment, with precipitation at 9.57 inches. However, the years following were near or above normal; 2001-13.99 inches, 2002-16.23 inches, 2003-15.42 inches, 2004-13.37 inches, and 2005-15.75 inches. Therefore, precipitation in Anaconda was not likely a major factor in plant mortality.

In all species except common snowberry, the "local" source had equal or better survival than the "nonlocal" sources. As shown in Table 2-23, the superior accessions included ponderosa and lodgepole pines, common snowberry, and silver buffaloberry. Based on survival and growth, the best overall performing species have been ponderosa pine followed by common snowberry, buffaloberry, and Woods' rose. All accessions of lodgepole pine have performed poorly.

The average growth over the first 4-year period for the local source material was 5.9 inches, while the nonlocal material averaged 4.07 inches of growth. In 2005, the local material averaged 5.29 inches of growth, while the nonlocal averaged 3.43 inches. Generally, the local source material outgrew the nonlocal material except for the two snowberry species and the lodgepole pine. Some of the shrubs exhibited leader mortality or cropping by wildlife, which resulted in negative overall growth. The accessions with the greatest sustained growth were common snowberry (Ravalli County), wax current (Deer Lodge County), buffaloberry (Deer Lodge County), Woods' rose (Deer Lodge County), and western snowberry (Wyoming source).

Live plants were rated on a scale from 1 to 9 (1= highest rating) based on a visual assessment of their vigor or robustness. Dead plants were entered as missing values. The vigor rating for local source material was somewhat better than the nonlocal source material but not significantly so: 2001–local 3.8 vs. nonlocal 5.4, 2002–local 3.9 vs. nonlocal 4.8, 2003–local 5.1 vs. nonlocal 5.9, 2004–local 5.1 vs. nonlocal 5.9, and 2005–local 5.3 vs. nonlocal 5.9. No patterns in superior vigor seem to exist by species or origin other than the local material has slightly better vigor rating than the nonlocal.

The top-ranking accession for vigor was wax current followed by buffaloberry. As in the other categories, the lodgepole pine accessions had the poorest overall performance.

2.3 Task 3 – High Quality Seed "Bank"

A quality seed "bank" was established and maintained at BPMC. This task resulted in wild and cultivated seed that met or exceeded the Association of Official Seed Certifying Agencies criteria (AOSCA, 2003). All seed increase activities took place at the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) Plant Materials Center near Bridger, Montana. The 140-acre research farm was set up for irrigated seed production of conservation plants for use in Montana and Wyoming. Breeders and Foundation seed of released plant materials are produced at the BPMC for distribution to commercial seed growers through the Foundation Seed programs at Montana State University-Bozeman and the University of Wyoming-Laramie. The BPMC was set up to use both sprinkler and furrow irrigation. Seed increase blocks or fields are established by direct seeding, transplanting of container-grown stock, and transplanting/establishment of seed production orchards (woody plant material). Special consideration must be given to properly isolate DATC project material from other releases or test material of the same species. Cross-pollinated species are isolated at least 900 feet apart, while self-fertilized species are isolated at least 100 feet apart.

2.3.1 Seeding

All seeding was done with a two-row, double-disk planter equipped with depth bands to obtain a uniform 0.25- to 0.5-inch seeding depth. Seed was planted in rows spaced 3 feet apart to accommodate the gated pipe irrigation water delivery system. Depending on the species, planting was done either as a dormant-fall planting (October 15 to December 15) or as an early spring planting (April 1 to May 15). Seeds that have a dormancy or after-ripening requirement are dormant-fall seeded to obtain natural stratification.

2.3.2 Transplanting

For small lots of seed that need seed increase, the limited seed supply was planted into Conetainers[™] and transplanted into fields following 6 months of growth under greenhouse conditions. A mechanical transplanter was used, resulting in uniform 14 inches within-row spacing. This method has been used on alpine bluegrass, western wheatgrass, bluebunch wheatgrass, fuzzy-tongue penstemon, silverleaf phacelia, wooly cinquefoil, and tufted hairgrass.

2.3.3 Woody Transplants

All woody material was container grown and transplanted as 2-0 stock into seed production orchards. In some cases, a weed-barrier was used to reduce weed establishment within the rows, while in others, cultivation was used to keep between-row spaces weed-free. Most shrubs will not initiate seed production until the plants are 5 to 6 years old.

2.3.4 Production Fields

The species that were grown for seed production are shown in Table 2-24. Some of the woody increase orchards had not reached the maturity level necessary for seed production; however, seed will be harvested once these are productive and seed will be made available to other researchers and potentially released to the commercial plant production industry.

2.3.5 Weed Control

The preferred method for weed control was by either cultivation or hand roguing. However, chemical weed control was often necessary. With everything established in rows, between-row cultivation was easily accomplished with standard cultivators. All chemical applications are required to be completed prior to flowering or late in the season when plants have become dormant.

2.3.6 Fertilization

No fertilizers were added to field increase plots until the fall of the first growing season, and then every fall for the life of the stand. A standard mix of 80 lb N/acre and 40 lb P_2O_5 /acre was used on most species. Fall applications were applied in granular form from September 15 to October 15.

2.3.7 Irrigation

The Bridger area receives an average of 11.3 inches of annual precipitation, making it necessary to provide supplemental water to improve seed production. Hand-moved sprinklers were available for plant establishment if natural precipitation was inadequate. Once established, furrow irrigation was used. Critical irrigation times are early summer prior to flowering, after pollination as seeds are maturing, and during the fall when seedhead primordia are developing for the following year.

2.3.8 Seed Harvest

Depending on the species, size of stand, and amount of seed, harvesting can be accomplished in a variety of ways. Seed can be hand stripped, direct combined, swathed/combined, or head harvested/dried/combined. Seed was harvested at a 20% to 30% moisture level and dried to less than 12% for cleaning and storage. Seed that was officially released and made available to commercial growers must meet standards established by the Montana Seed Growers' Association and be analyzed for purity and germination by the Montana Seed Testing Laboratory at Montana State University.

2.3.9 Post-Harvest Maintenance

Following harvest, seed production stands were mowed to remove excess biomass and stimulate tillering. The stands were also cultivated prior to fall fertilization and irrigation.

2.3.10 Seed Cleaning

A variety of standard seed cleaning equipment was used to clean the DATC seed, both wildland collections and field seed increase. A hammermill was used to further thresh seed or remove appendages. Three different sizes of screenfanning mills are available for cleaning seed based on size, shape, and weight. An indent cylinder was used to remove round weed seed from elongated grass seed, and a small gravity table was used to make separations based on specific gravity.

2.3.11 Seed Storage

All cleaned seed were stored in cloth-mesh bags on shelves in the basement of the office building at the BPMC. The ambient conditions at BPMC are quite good for seed storage as there was consistently low relative humidity and uniform cool temperatures in the basement. Under these conditions, most native seeds will remain viable for up to 10 years.

2.3.12 Seed Accessioning and Inventory

The USDA-NRCS Plant Materials nationwide network uses the Plant Material Operational and Management System for the accessioning, inventory, and distribution of all lots of seed and plants handled through the Plant Materials network. All seed was inventoried to the nearest 10 grams (Table 2-25).

2.4 Task 4 – Plant Releases

This task involved developing release notices in cooperation with the appropriate partners following USDA-NRCS Plant Materials guidelines (2000).

The seeds and plants that are available to reclamationists are cultivar releases from universities, USDA Plant Material Centers, the USDA Agricultural Research Service, or private plant breeders. To be released as a cultivar, the germplasm must be extensively tested, reviewing primary traits through multiple generations, and field-testing to determine range of adaptability. This process takes at least 10 years with herbaceous plant material and can take 20 or more years for woody plants. Other sources of native plants are wildland collections and predamage plant salvage.

In recent years, the demand for native, indigenous plant material has resulted in the development of an alternate, quicker mechanism for the release of plant materials known as "Pre-Varietal release." Through this process, plant propagules can be released to the commercial seed and nursery industries in a timely manner, but at the expense of extensive field-testing. Germplasm was managed through the certified seed agencies, maintaining the same quality, purity, and germination standards of cultivar releases. There are three categories of Pre-Varietal releases:

- *Source Identified* With this classification, a person can locate and collect seed from a specific native site and have the seed certified by source only. A representative from a seed certification agency must inspect the collection site prior to harvest, documenting the identity of the species, elevation, latitude/longitude, and associated species. The collector can certify the seed as being from a particular source and of a standard quality and sell the seed directly to a customer. The collector can also take that seed and establish seed production fields, raising up to two generations past the original collection. This product must be included in a seed certification program to be able to certify the seed as 'Source Identified' germplasm. Through this process, seed can be certified the year of collection or in 2 years when increase in seed fields begin.
- <u>Selected</u> This category was for plant breeders who assemble and evaluate multiple collections of a species, making a selection of the superior accession or bulk or crosspollinate the superior accessions. This release process can take as few as 5 years but can claim only that one accession or bulk of accessions has been found to be superior for the conditions under which it was tested. No field-testing or the testing of progeny was required.
- <u>Tested</u> If the progeny of a superior germplasm was tested to ensure that the desired traits continued to manifest in subsequent generations, the germplasm qualifies were released as a tested germplasm. This process can take 6 to 8 years in herbaceous plant material and considerably longer with woody plants. The only

difference between tested and cultivar releases is the extensive field-testing of a cultivar.

The Pre-Varietals release mechanism has been used extensively on native plant materials that are not readily available on the commercial market, from seed growers, nurseries, or wildland collectors. Through this process, native plant material can be placed into the commercial seed and nursery industry sooner but with limited information on range of adaptation, ease of establishment in various climate and edaphic conditions, and longevity.

2.5 Goal 1 – Field Testing

The potential releases were field tested at the Anaconda Smelter Superfund Site and monitored for adaptation and interspecies compatibility.

2.6 Goal 2 – Technology Transfer

To attain this goal, educational materials pertaining to the DATC project were developed for distribution to the reclamation scientific community, seed producers, and commercial reclamation specialists. The project research results and plant products have been or will be publicized through articles in reclamation journals, symposium proceedings, and NRCS' Technical Notes, Plant Guides, Fact Sheets, and Plant Materials newsletters.

2.6.1 DATC Project Releases

The Conservation Districts of Montana and Wyoming own the land and facilities at the BPMC and lease to the USDA-NRCS. The USDA-NRCS Plant Materials Center has been in operation since 1959 and has established a cooperative relationship with the Agricultural Experiment Station network of Montana State University-Bozeman and the University of Wyoming-Laramie. The Plant Materials Center has experience in the release of conservation plants, both introduced and native, in cooperation with Montana State University and the University of Wyoming. Breeders and Foundation seed was produced at the BPMC, making Foundation seed available to the commercial seed industry for the production of Certified seed. In the case of Pre-Varietal releases, the BPMC produces G₁

(Generation 1) seed for distribution to growers who will produce G_2 and G_3 under the Certified Seed Program. Once a release was made, the releasing agency was responsible for maintaining a supply of G_1 (Pre-Varietal release) or Foundation (Cultivar release) seed for as long as seed/plants of the release are in demand.

The DATC project has identified numerous plants (grasses, forbs, shrubs, and trees) that exhibit tolerance of acidic and metalliferous soil conditions and have the potential for use by reclamationists in restoration efforts of severely impacted sites. Thus far, the DATC project has been instrumental in the release of germplasm from three plants:

- Washoe Selected germplasm basin wildrye (*Leymus cinereus*);
- Old Works Source Identified germplasm fuzzy-tongue penstemon (*Penstemon eriantherus*); and
- Prospectors Selected germplasm common snowberry (Symphoricarpos albus)

Information brochures have been published on these three releases and are distributed to potential seed growers and seed-purchasing customers. Foundation Quality (G_1) seed of Washoe basin wild rye has been distributed to two commercial seed growers in Montana, and seed of Old Works fuzzy-tongue penstemon has been distributed to one grower in Washington and Idaho. No growers have yet shown interest in the production of Prospectors common snowberry.

During the winter of 2006, Copperhead Selected class germplasm slender wheatgrass (9081620) was submitted for release consideration to the Variety Release Committee at Montana State University and the Pure Seed Committee at the University of Wyoming. This accession of slender wheatgrass has performed exceptionally well on the amended Stucky Ridge Trial site. As the release was successful, G_1 seed was made available to commercial growers in the summer of 2006. The DATC project has established seed increase fields of all plant species that have exhibited superior establishment and performance in field test plantings in the Anaconda vicinity on smelter and mining-impacted sites. The USDA-NRCS Plant Materials Center, in cooperation with the Deer Lodge Valley Conservation District, plans to continue releasing superior plant materials that have exhibited tolerance of acid/heavy metalcontaminated sites. These potential releases are:

- 9081620–slender wheatgrass (*Elymus trachycaulus*);
- 9081968-western wheatgrass (*Pascopyrum smithii*);
- 9081636–bluebunch wheatgrass (*Pseudoroegneria spicata*);
- 9081633-big bluegrass (Poa secunda);
- 9081628–Indian ricegrass Achnatherum hymenoides);
- 9081619-redtop (Agrostis gigantea);
- 9081632–silverleaf phacelia (*Phacelia hastata*);
- 9076274–woolly cinquefoil (*Potentilla hippiana*);
- 9078675-stiffstem aster (Symphyotrichum chilensis);
- 9081334-silver buffaloberry (Shepherdia argentea);
- 9081638-Woods' rose (Rosa woodsii); and
- 9081623–horizontal juniper (Juniperus horizontalis).

Opportunity Selected class germplasm big bluegrass (9081633) will be submitted to the Montana State University/University of Wyoming review committees in the winter of 2007. If the release is approved, G_1 seed will be available to commercial growers in the spring of 2008. Bluebunch wheatgrass (9081636) is being considered for release in fiscal year 2008. Other releases within the next 3 years include 9081968 western wheatgrass, 9081632 silverleaf phacelia, and 9081334 silver buffaloberry (Deer Lodge Valley Conservation District and USDA-Bridger Plant Materials Center, 2007).

2.7 Comments Regarding Laboratory Quality Assurance/Quality Control

Leaf-and-stalk biomass plus surface (0- to 6-inch) soil samples were submitted by BPMC to Energy Laboratories, Inc. throughout the MWTP phase of this project; MSE sampled surface soils once at the Lowland CEP plot (Figure 1-1) and submitted them to the HKM Laboratory. Both laboratories used EPA Methods SW 3050B for sample preparation and 6010B for instrumental determination of the target metals/As in these sample types. The key variations in sample preparation methodologies are as follows:

- Energy Laboratories air dries samples at temperatures slightly above ambient (~30 °C) without subsequent grinding or sieving materials prior to digestion; while
- HKM dries the soils at 40 °C for at least 24 hours, followed by sieving the soils through a 10-mesh screen, prior to digesting the 2-mm fraction.

Although field sampling and sample preparation varied, the similar results reported in Table 2-26 indicate the general representativeness of these data to the 0.8-acre plot. Both laboratories reported acceptable results for laboratory control standards, spike recoveries, and relative percent differences (RPD) for duplicate analyses (i.e., as required by Method 6010B).

	Grass Trial			Block 1	Block 2	7 Not to Scale
4 ACHY Nezpar	16 ELTR San Luis	30 POSE Sherman	20 LECI Magnar	10 PHHA 9081632	8 PEST Bandera	
24 PASM Rosana	32 POSP 9081635	23 PPSM Lodorm	36 ELNA Secar	12 POGI 9081679	5 KRLA Op.Range	N
19 LICE Washoe	22 PASM 9081968	29 POSE 9081633	11 DECE Nortran	1 EROV 9082098	4 KRLA NCD	N
28 POAL 1858	2 ACHY 9081629	35 PSSP Goldar	18 LECI 9081625	14 SYCH 9078675	15 SYCH 9081678	
26 POAL 01-13-1	15 ELTR Revenue	32 POSP 9081635	10 DECE 13970176	16 SYCH 5255-RS	9 PEVE Clearwater	
21 LECI Trailhead	36 ELWA Secar	7 AGGI 9076266	8 AGGI Streaker	6 PEER Old Works	1 EROV 9082098	
16 ELTR San Luis	13 ELTR 9081621	21 LECI Trailhead	4 ACHY Nezpar	4 KRLA NCD	6 PEER Old Works	
25 POAL 9016273	1 ACHY 9081628	5 AGGI 9076276	30 POSE Sherman	9 PEVE Clearwater	7 PEEA Richfield	
11 DECE Nortran	6 AGGI 9081619	1 ACHY 9081628	35 PSSP Goldar	7 PEEA Richfield	3 ERUM 01-206-1	
27 POAL Gruening	26 POAL 01-13-1	26 POAL 01-13-1	23 PASM Rodan	11 PHHA 9003	12 POGR 9081679	
14 ELTR Pryor	3 ACHY Rimrock	3 ACHY Rimrock	16 ELTR San Luis	3 ERUM 01-206-1	11 PHHA 9003	
10 DECE 13970176	19 LECI Washoe	27 POAL Gruening	25 POAL 9016273	15 SYCH 9081678	10 PHHA 9081632	
3 ACHY Rimrock	12 ELTR 9081620	13 ELTR 9081621	29 POSE 9081633	8 PEST Bandera	2 ERUM 450	
12 ELTR 9081620	27 POAL Gruening	34 PSSP 9081636	12 ELTR 9081620	13 POHI 9076274	13 POHI 9076274	1
30 POSE Sherman	17 LECI 9081624	10 DECE 13970176	9 DECE 9076290	5 KRLA Op.Range	16 SYCH 5255-RS	
17 LECI 9081624	5 AGGI 9076276	15 ELTR Revenue	27 POAL Gruening	2 ERUM 450	14 SYCH 9078675	↓ Forb/Subshrub Tri
36 ELWA Secar	30 POSE Sherman	18 LECI 9081625	6 AGGI 9081619	12 POGI 9081679	11 PHHA 9003	+ Ford/Subshrub Iri
7 AGGI 9076266	10 DECE 13970176	12 ELTR 9081620	5 AGGI 9076276	9 PEVE Clearwater	10 PHHA 9081632	
22 PASM 9081968	11 DECE Nortran	25 POAL 9016273	13 ELTR 9081621	5 KRLA Op.Range	5 KRLA Op.Range	
6 AGGI 9081619	34 PSSP 9081636	2 ACHY 9081629	32 POSP 9081635	4 KRLA NCD	13 POHI 9076274	
8 AGGI Streaker	18 LECI 9081625	8 AGGI Streaker	2 ACHY 9081629	16 SYCH 5255-RS	6 PEER Old Works	
13 ELTR 9081621	8 AGGI Streaker	16 ELTR San Luis	33 POSP 9081322	13 POHI 9076274	8 PEST Bandera	
29 POSE 9081633	33 POSP 9081322	22 PASM 9081968	26 POAL 01-13-1	10 PHHA 9081632	15 SYCH 9081678	
18 LECI 9081625	21 LECI Trailhead	11 DECE Nortran	7 AGGI 9076266	15 SYCH 9081678	7 PEEA Richfield	
33 POSP 9081322	29 POSE 9081633	4 ACHY Nezpar	15 ELTR Revenue	11 PHHA 9003	4 KRLA NCD	
15 ELTR Revenue	9 DECE 9076290	33 POSP 9081322	22 PASM 9081968	8 PEST Bandera	12 POGR 9081679	
35 PSSP Goldar	14 ELTR Pryor	28 POAL 1858	28 POAL 1858	2 ERUM 450	2 ERUM 450	1
1 ACHY 9081628	23 PASM Rodan	24 PASM Rosana	31 POSE Canbar	1 EROV 9082098	9 PEVE Clearwater	
9 DECE 9076290	28 POAL 1858	20 LECI Magnar	14 ELTR Pryor	6 PEER Old Works	1 EROV 9082098	
31 POSE Canbar	24 PASM Rosana	36 ELWA Secar	24 PASM Rosana	3 ERUM 01-206-1	14 SYCH 9078675	
34 PSSP 9081636	31 POSE Canbar	6 AGGI 9081619	19 LECI Washoe	7 PEEA Richfield	16 SYCH 5255-RS	
32 POSP 9081635	4 ACHY Nezpar	31 POSE Canbar	34 PSSP 9081636	14 SYCH 9078675	3 ERUM 01-206-1	
2 ACHY 9081629	35 PSSP Goldar	14 ELTR Pryor	17 LECI 9081624	Block 3	Block 4	
5 AGGI 9076276	20 LECI Magnar	17 LECI 9081624	3 ACHY Rimrock	[
23 PASM Rodan	7 AGGI 9076266	9 DECE 9076290	1 ACHY 9081628			
20 LECI Magnar	25 POAL 9016273	19 LECI Washoe	21 LECI Trailhead			
	Seed Mi	xture Trial				
4 WMA Dev	3 WMA Exp	4 WMA Dev	I UP Exp			
1 UP Exp	2 UP Dev	1 UP Exp	4 WMA Dev			
2 UP Dev	1 UP Exp	3 WMA Exp	3 WMA Exp			
3 WMA Exp	4 WMA Dev	2 UP Dev	2 UP Dev			
Block 1	Block 2	Block 3	Block 4	1		

Figure 2-1. Layout of the grass, forb/subshrub, and seed mixture trials at the Stucky Ridge Comparative Evaluation Planting. See Species Index (p. ix) for plant codes and Tables 2-5 through 2-8 for seed mixture formulations. (Source: Marty, 2003b).

Soil Sample Station	Depth (inches)	Arsenic (mg/kg)	Copper (mg/kg)	Zinc (mg/kg)	Saturated Paste pH (s.u.)
94S-SR-71	0-2				4.70
94S-SR-71	2-8				4.90
94S-SR-73	0-2				4.30
94S-SR-73	2-8				4.60
99-098A	0-2	495.0	1660.0	419.0	
99-098B	2-6	163.0	1320.0	276.0	
99-098C	0-6				4.20
99-098D	6-12				7.60
99-098E	12-18				7.80
99-099A	0-2	489.0	1370.0	303.0	
99-099B	2-6	95.8	1020.0	245.0	
99-099C	0-6				4.00
99-099D	6-12				7.30
99-099E	12-18				7.70
99-123A	0-2	656.0	1530.0	425.0	
99-123B	2-6	167.0	1530.0	332.0	
99-123C	0-6				4.40
99-123D	6-12				4.80
99-123E	12-18				6.30
99-163A	0-2	537.0	2180.0	493.0	
99-163B	2-6	256.0	1430.0	365.0	
99-163C	0-6				4.00
99-163D	6-12				6.20
99-163E	12-18				

Table 2-1. Pretillage Soils Data in the Proximity of the Plot Site (ARCO, 2002, May)

Sample Identification	Sample Description	рН (s.u.)	As (mg/kg)	Cd (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Zn (mg/kg)
GR1	Grass Trial, Block 1	8.2	120	1	797	35	174
GR2	Grass Trial, Block 2	8.1	117	1	906	34	177
GR3	Grass Trial, Block 3	7.9	132	1	833	43	195
GR4	Grass Trial, Block 4	8.0	212	2	985	61	228
GDR1	Grass Trial, Block 1, Dupl.	7.7	121	1	703	39	153
GDR3	Grass Trial, Block 3, Alt.	7.7	178	1	845	57	201
FR1	Forb Trial, Block 1	8.0	115	1	774	38	185
FR2	Forb Trial, Block 2	7.2	127	2	888	45	182
FR3	Forb Trial, Block 3	7.7	153	2	1010	45	220
FR4	Forb Trial, Block 4	7.6	127	2	1080	40	210
FD1	Forb Trial, Block 1, Dupl.	8.0	91	ND^\dagger	681	31	170
FD3	Forb Trial, Block 3, Dupl.	7.9	106	1	828	33	171
MR1	Seed Mix. Trial, Block 1	8.0	39	1	721	6	143
MR2	Seed Mix. Trial, Block 2	7.5	367	2	909	97	226
MR3	Seed Mix. Trial, Block 3	7.7	39	ND	706	12	161
MR4	Seed Mix. Trial, Block 4	7.8	257	2	857	91	209
MDR1	Seed Mix. Trial, Block 1, Dupl.	7.4	130	1	925	35	165
MDR3	Seed Mix. Trial, Block 3, Alt.	8.1	29	ND	525	9	153

Table 2-2. Post-Planting Grass, Forb/Subshrub, and Seed Mixture Trial (0- to 6-inch) Composite Soil Sample Analysis

[†] ND: Not detected at the reporting limit.

Species Identificati			
Number	Genus & Species	Accession/Variety	Origin
1	Eriogonum ovalifolium	9082098	Deer Lodge County, Montana
2	Eriogonum umbellatum	9082271	Utah
3	Eriogonum umbellatum	9082271	Idaho
4	Krascheninnikovia lantana	Northern Cold Desert Germplasm	Composite from Utah & Idaho
5	Krascheninnikovia lantana	Open Range Germplasm	Composite from Montana & Wyoming
6	Penstemon eriantherus	Old Works Germplasm	Deer Lodge County, Montana
7	Penstemon eatonii	Richfield Selected	Sevier County, Utah
8	Penstemon strictus	'Bandera' 477980	Torrance County, New Mexico
9	Penstemon venustus	Clearwater Selected	Clearwater River area, Idaho
10	Phacelia hastata	9081632	Deer Lodge County, Montana
11	Phacelia hastata	9082275	California
12	Potentilla gracilis	9081679	California
13	Potentilla hippiana	9076274	Deer Lodge County, Montana
14	Symphyotrichum chilense	9078675	Deer Lodge County, Montana
15	Symphyotrichum chilense	9081678	Colorado
16	Symphyotrichum chilense	9082274	Unknown

Species Identification Number	Genus & Species	Accession/Variety	Origin
1	Achnatherum hymenoides	9081628	Deer Lodge County, Montana
2	Achnatherum hymenoides	9081629	Deer Lodge County, Montana
3	Achnatherum hymenoides	'Rimrock'	Yellowstone County, Montana
4	Achnatherum hymenoides	'Nezpar'	White Bird, Idaho
5	Agrostis gigantea	9076276	Deer Lodge County, Montana
6	Agrostis gigantea	9081619	Deer Lodge County, Montana
7	Agrostis gigantea	9076266	Deer Lodge County, Montana
8	Agrostis gigantea	'Streaker'	Illinois
9	Deschampsia caespitosa	9076290	Silver Bow County, Montana
10	Deschampsia caespitosa	9082620	California
11	Deschampsia caespitosa	'Nortran'	Alaska
12	Elymus trachycaulus	9081620	Deer Lodge County, Montana
13	Elymus trachycaulus	9081621	Deer Lodge County, Montana
14	Elymus trachycaulus	'Pryor'	Carbon County, Montana
15	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada
16	Elymus trachycaulus	'San Luis'	Rio Grande County, Colorado
17	Leymus cinereus	9081624	Deer Lodge County, Montana
18	Leymus cinereus	9081625	Deer Lodge County, Montana
19	Leymus cinereus	Washoe Germplasm	Deer Lodge County, Montana
20	Leymus cinereus	'Magnar'	Saskatchewan, Canada
21	Leymus cinereus	'Trailhead'	Musselshell County, Montana
22	Pascopyrum smithii	9081968^\dagger	Deer Lodge County, Montana
23	Pascopyrum smithii	'Rodan'	Morton County, North Dakota
24	Pascopyrum smithii	'Rosana'	Rosebud County, Montana
25	Poa alpina	9016273	Gallatin County, Montana
26	Poa alpina	9082259	British Columbia, Canada
27	Poa alpina	'Gruening'	France/Switzerland
28	Poa alpina	9082266	Unknown
29	Poa secunda (ampla)	9081633	Deer Lodge County, Montana
30	Poa secunda (ampla)	'Sherman'	Sherman County, Oregon
31	Poa secunda (canbyi)	'Canbar'	Columbia County, Washington
32	Poa species	9081635	Deer Lodge County, Montana
33	Poa species	9081322	Lewis & Clark County, Montana
34	Pseudoroegneria spicata	9081636	Deer Lodge County, Montana
35	Pseudoroegneria spicata	'Goldar'	Asotin County, Washington
36	Elymus wawawaiensis	'Secar'	Washington

 Table 2-4. Grass Treatments Included in the Grass Trial at the Stucky Ridge Uplands

Species Identification Number	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
1	GRASSES:			
	Achnatherum hymenoides	9081629	Deer Lodge County, Montana	15.0
	Elymus trachycaulus	9081620	Deer Lodge County, Montana	15.0
	Leymus cinereus	Washoe Germ.	Deer Lodge County, Montana	15.0
	Pascopyrum smithii	9081968	Deer Lodge County, Montana	5.0
	Poa alpina	90816273	Gallatin County, Montana	10.0
	Poa secunda (ampla)	9081633	Deer Lodge County, Montana	15.0
	Pseudoroegneria spicata	9081636	Deer Lodge County, Montana	15.0
	FORBS:			
	Aster chilensis	9078675	Deer Lodge County, Montana	2.5
	Penstemon eriantherus	Old Works Germ.	Deer Lodge County, Montana	5.0
	Potentilla hippiana	9076274	Silver Bow County, Montana	2.5

Table 2-5. Upland Areas – Experimental Seed Mix Formulation

Table 2-6. Upland Areas – Developed Seed Mix Formulation

Species Identification Number	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
2	GRASSES:			
	Achnatherum hymenoides	'Nezpar'	White Bird, Idaho	5.0
	Elymus lanceolatus	'Critana'	Hill County, Montana	15.0
	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada	15.0
	Festuca ovina	'Covar'	Central Turkey	10.0
	Leymus cinereus	'Magnar'	Saskatchewan, Canada	15.0
	Pascopyrum smithii	'Rosana'	Rosebud County, Montana	10.0
	Poa secunda (ampla)	'Sherman'	Sherman County, Oregon	14.5
	Pseudoroegneria spicata	'Goldar'	Asotin County, Washington	10.0
	FORBS:			
	Achillea lanulosa	Great Northern	Flathead County, Montana	2.5
	Artemisia frigida	9082258	Unknown	0.5
	Linum lewisii	'Appar'	Custer County, South Dakota	2.5

Species Identification Number	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
3	GRASSES:			
	Agrostis gigantea	9076276	Deer Lodge County, Montana	15
	Deschampsia caespitosa	9076290	Silver Bow County, Montana	10
	Elymus trachycaulus	9081620	Deer Lodge County, Montana	15
	Leymus cinereus	Washoe Germ.	Deer Lodge County, Montana	15
	Pascopyrum smithii	9081968	Deer Lodge County, Montana	5
	Poa secunda (ampla)	9081633	Deer Lodge County, Montana	10
	Stipa comata	9078314	Deer Lodge County, Montana	10
	FORBS:			
	Aster chilensis	9078675	Deer Lodge County, Montana	10

 Table 2-7. Waste Management Areas – Experimental Seed Mix Formulation

Table 2-8. Waste Management Areas – Developed Seed Mix Formulation

Species Identification Number	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
4	GRASSES:			
	Agropyrum intermedium	'Greenar'	Former USSR	10
	Bromus inermis	'Manchar'	Manchuria, China	15
	Elymus lanceolatus	'Critana'	Hill County, Montana	10
	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada	15
	Leymus cinereus	'Magnar'	Saskatchewan, Canada	15
	Poa secumda (ampla)	'Sherman'	Sherman County, Oregon	10
	Stipa viridula	9082255	Washington	10
	FORBS:			
	Medicago sativa	'Ladak'	Kashmir, India	15

Genus & Species	Accession	Species ID	Density/ft ²	Mean Separation
Elymus trachycaulus	'Pryor'	14	14.97	A*
Elymus trachycaulus	9081620	12	14.09	AB
Elymus trachycaulus	'San Luis'	16	13.63	AB
Pascopyrum smithii	'Rosana'	24	13.31	AB
Pascopyrum smithii	9081968	22	12.72	AB
Pseudoroegneria spicata	9081636	34	11.75	BC
Leymus cinereus	9081624	17	11.25	BC
Elymus wawawaiensis	'Secar'	36	9.47	CD
Elymus trachycaulus	9081621	13	9.34	CD
Pseudoroegneria spicata	'Goldar'	35	9.09	CDE
Achnatherum hymenoides	'Nezpar'	4	8.94	CDEF
Elymus trachycaulus	'Revenue'	15	8.75	CDEFG
Poa secunda	9081633	29	7.13	DEFG
Leymus cinereus	'Magnar'	20	6.13	EFGH
Leymus cinereus	'Trailhead'	21	5.81	FGH
Pascopyrum smithii	'Rodan'	23	5.66	GH
Leymus cinereus	9081625	18	3.84	HI
Leymus cinereus	Washoe Germplasm	19	3.66	HIJ
Poa secunda	'Sherman'	30	3.13	HIJ
Agrostis gigantea	9081619	6	2.38	IJ
Poa alpine	9016273	25	2.34	IJ
Poa species	9081635	32	1.88	IJ
Agrostis gigantea	9076276	5	1.75	IJ
Poa alpine	9082266	28	1.72	IJ
Poa species	9081322	33	1.31	IJ
Achnatherum hymenoides	'Rimrock'	3	1.28	IJ
Deschampsia caespitosa	9076290	9	1.28	IJ
Poa secunda	'Canbar'	31	1.22	IJ
Deschampsia caespitosa	'Nortran'	11	1.00	IJ
Agrostis gigantea	9076266	7	0.81	IJ
Achnatherum hymenoides	9081629	2	0.78	IJ
Agrostis gigantea	'Streaker'	8	0.75	IJ
Poa alpine	9082259	26	0.66	IJ
Achnatherum hymenoides	9081628	1	0.59	IJ
Deschampsia caespitosa	9082260	10	0.56	IJ
Poa alpine	'Gruening'	27	0.34	J

Table 2-9. Density (seedlings per square foot) Sampled on 6/24/03, at Stucky Ridge

* Means followed by the same letter are not significantly different at the 0.05 significance level using the Duncan's Multiple Range Test

Genus & Species	Accession	Species ID	Density/ft ²	Mean Separation
Elymus trachycaulus	9081620	12	14.47	A*
Elymus trachycaulus	'San Luis'	16	13.44	А
Elymus trachycaulus	'Pryor'	14	12.13	А
Pascopyrum smithii	'Rosana'	24	12.00	А
Pascopyrum smithii	9081968	22	11.59	А
Elymus trachycaulus	'Revenue'	15	8.38	В
Leymus cinereus	9081624	17	7.81	BC
Pseudoroegneria spicata	'Goldar'	35	7.28	BC
Pseudoroegneria spicata	9081636	34	7.16	BC
Elymus wawawaiensis	'Secar'	36	6.56	BC
Achnatherum hymenoides	'Nezpar'	4	6.53	BC
Elymus trachycaulus	9081621	13	6.09	BC
Pascopyrum smithii	'Rodan'	23	5.75	BCD
Poa secunda	9081633	29	5.16	CDE
Leymus cinereus	'Trailhead'	21	4.91	CDE
Leymus cinereus	'Magnar'	20	3.00	DEF
Leymus cinereus	9081625	18	2.44	EF
Poa secunda	'Sherman'	30	2.34	EF
Agrostis gigantea	9081619	6	2.28	EF
Leymus cinereus	Washoe Germplasm	19	2.16	EF
Agrostis gigantea	9076276	5	1.47	F
Poa alpine	9082266	28	1.25	F
Poa alpine	9082259	26	1.03	F
Agrostis gigantea	9076266	7	0.97	F
Achnatherum hymenoides	'Rimrock'	3	0.91	F
Poa alpine	9016273	25	0.91	F
Poa species	9081635	32	0.91	F
Deschampsia caespitosa	'Nortran'	11	0.88	F
Poa species	9081322	33	0.72	F
Achnatherum hymenoides	9081628	1	0.59	F
Poa alpine	'Gruening'	27	0.53	F
Poa secunda	'Canbar'	31	0.47	F
Deschampsia caespitosa	9076290	9	0.44	F
Deschampsia caespitosa	9082260	10	0.38	F
Agrostis gigantea	'Streaker'	8	0.34	F
Achnatherum hymenoides	9081629	2	0.31	F

Table 2-10. Density (seedlings per square foot) Sampled on 8/25/03, at Stucky Ridge

* Means followed by the same letter are not significantly different at the 0.05 significance level using the Duncan's Multiple Range Test

Genus & Species	Accession	Stand (%)	Vigor (1-9)
Elymus trachycaulus	9081620	61.3 a*	3.4
Achnatherum hymenoides	Rimrock	31.3 b	4.8
Poa secunda	9081633	31.3 b	3.3
Elymus trachycaulus	9081621	28.4 bc	4.8
Elymus trachycaulus	Pryor	26.9 bcd	4.8
Pascopyrum smithii	9081968	26.7 bcd	4.9
Achnatherum hymenoides	Nezpar	25.3 bcde	5
Leymus cinereus	9081624	20.8 bcdef	4.4
Elymus wawawaiensis	Secar	20 bcdefg	4.6
Elymus trachycaulus	Revenue	19.7 cdefg	4.8
Elymus trachycaulus	San Luis	18.6 cdefgh	4.8
Achnatherum hymenoides	9081628	18.3 cdefgh	5.6
Pascopyrum smithii	Rosana	16.9 defghi	4.75
Leymus cinereus	Trailhead	15.1 efghij	4.8
Poa secunda	9081635	15 efghij	3.3
Pseudoroegneria spicata	9081636	14.5 efghijl	5.3
Leymus cinereus	Washoe	12.8 fghijl	d 5
Leymus cinereus	Magnar	12.2 fghijl	sl 5.3
Pascopyrum smithii	Rodan	11.8 fghijl	slm 5.3
Agrostis gigantea	9081619	10.7 fghijl	dm 3.2
Leymus cinereus	9081625	10.1 fghijl	dm 5.5
Pseudoroegneria spicata	Goldar	10 fghijl	xlm 5
Achnatherum hymenoides	9081629	8.6 ghijł	dm 5.7
Agrostis gigantea	9076276	8.1 hijk	dm 2.6
Poa secunda	Sherman	6.2 ijk	4.8 dlm
Poa alpina	1—13—1	4.1 jk	dm 3.3
Deschampsia caespitosa	9076290	4 jk	4.2
Poa secunda	9081322	3.6 k	dm 4.3
Poa alpina	9016273	3.3 k	dm 4.6
Agrostis gigantea	9076266	3.1 k	dm 2.5
Poa alpina	Poa alpina 1858 1.4 lm		lm 4.5
Deschampsia caespitosa	Nortran	0.6	m 2.1
Poa alpina	Gruening	0.5	m 4
Agrostis gigantea	Streaker	0.4	m 5.2
Poa secunda	Canbar	0.4	m 6.2
Deschampsia caespitosa	13970176	0.2	m 5.3

Table 2-11. Percentage Stand and Vigor of Grass Trials on Stucky Ridge Plot on 6/30/04

* Means followed by the same letter are not significantly different at the 0.05 significance level using the least significant difference (LSD) Mean Comparison method

Genus & Species	Accession	Height N	Aillimeters (mm
Elymus trachycaulus	9081620	54.4	a*
Elymus trachycaulus	9081621	34.2	с
Agrostis gigantea	9076276	33.3	cd
Agrostis gigantea	9081619	27.1	cde
Poa secunda	9081633	26.5	cdef
Elymus wawawaiensis	Secar	24	defg
Poa secunda	9081635	23.3	efgh
Pseudoroegneria spicata	Goldar	22.5	efghi
Agrostis gigantea	9076266	21	efghij
Elymus trachycaulus	Pryor	18.5	efghijk
Leymus cinereus	9081624	17.9	efghijkl
Poa secunda	9081322	17.5	fghijkl
Achnatherum hymenoides	Nezpar	16.9	ghijklm
Leymus cinereus	Trailhead	16.1	ghijklmn
Elymus trachycaulus	San Luis	14.5	hijklmno
Deschampsia caespitosa	9076290	14.5	hijklmno
Elymus trachycaulus	Revenue	14.3	hijklmno
Pascopyrum smithii	Rosana	13.5	ijklmno
Achnatherum hymenoides	Rimrock	13	jklmnop
Leymus cinereus	Magnar	12.8	jklmnop
Leymus cinereus	Washoe	12.5	jklmnop
Pascopyrum smithii	Rodan	12.3	jklmnop
Pseudoroegneria spicata	9081636	12	jklmnop
Pascopyrum smithii	9081968	11.3	klmnop
Leymus cinereus	9081625	10.6	klmnop
Agrostis gigantea	Streaker	10.3	klmnop
Achnatherum hymenoides	9081628	9.1	lmnop
Poa alpine	113—1	8.1	mnop
Achnatherum hymenoides	9081629	7.6	mnop
Deschampsia caespitosa	13970176	7	nop
Poa secunda	Sherman	6.8	nop
Poa secunda	Canbar	6.3	op
Deschampsia caespitosa	Nortran	6	op
Poa alpina	9016273	5.8	op
Poa alpina	Gruening	4.5	р
Poa alpina	1858	3.9	р

Table 2-12. Average Plant Height of Grasses in Stucky Ridge Plots Measured 6/30/04

Genus & Species	Accession		Stand (%)	Vigor (1-9)
Elymus trachycaulus	9081620	61.3	a*	1.8
Poa secunda	9081633	37.2	с	2.4
Elymus trachycaulus	9081621	30	cd	2.7
Pascopyrum smithii	9081968	28.4	cde	4
Elymus trachycaulus	Pryor	27.5	cde	4.6
Pascopyrum smithii	Rosana	26.3	de	3.6
Achnatherum hymenoides	Rimrock	24.1	def	4.2
Poa sp.	9081635	24.1	def	2.8
Elymus trachycaulus	Revenue	23.8	defg	4.3
Leymus cinereus	9081624	22.8	defgh	3.6
Leymus cinereus	Trailhead	20	defghi	4
Elymus wawawaiensis	Secar	19.2	defghi	4
Elymus trachycaulus	San Luis	19.1	defghi	4.4
Achnatherum hymenoides	Nezpar	18.4	efghij	4.1
Pseudoroegneria spicata	9081636	17.9	efghij	3.8
Agrostis gigantea	9081619	17.8	efghij	2.1
Pascopyrum smithii	Rodan	16.6	fghijk	4.5
Agrostis gigantea	9076276	15.9	fghijk	2.7
Achnatherum hymenoides	9081628	14.4	ghijkl	4.9
Leymus cinereus	Washoe	14.1	ghijkl	4.6
Leymus cinereus	Magnar	13.4	ghijkl	4.7
Pseudoroegneria spicata	Goldar	13.4	ghijkl	4.1
Poa secunda	Sherman	12.2	hijklm	4.1
Poa sp.	9081322	11.9	ijklm	2.9
Leymus cinereus	9081625	11.6	ijklmn	4.1
Achnatherum hymenoides	9081629	11.3	ijklmno	5.4
Poa alpina	01-13-1	8.4	jklmnop	3.6
Agrostis gigantea	9076266	7.8	jklmnop	2.1
Deschampsia caespitosa	9076290	6.3	klmnop	2.8
Poa alpina	9016273	5.2	lmnop	3.6
Poa alpina	1858	4.4	lmnop	3.6
Agrostis gigantea	Streaker	1.9	mnop	4
Deschampsia caespitosa	13970176	1.9	mnop	3.3
Poa alpina	Gruening	1.1	op	3.3
Deschampsia caespitosa	Nortran	0.4	op	3
Poa secunda	Canbar	0	ор	9

 Table 2-13. Percentage Stand and Vigor of Grasses in Stucky Ridge Plots Evaluated on 9/22/04

Genus & Species	Accession	Biomass (kg/ha)		
Elymus trachycaulus	9081620	2,083 a*		
Agrostis gigantea	9081619	706 cd		
Elymus trachycaulus	9081621	544 cde		
Poa secunda	9081633	408 cdef		
Elymus trachycaulus	Pryor	386 cdef		
Elymus wawawaiensis	Secar	346 def		
Leymus cinereus	9081624	216 ef		
Leymus cinereus	Trailhead	192 ef		
Elymus trachycaulus	Revenue	172 ef		
Leymus cinereus	Washoe	148 ef		
Agrostis gigantea	9076276	148 ef		
Poa secunda	Sherman	115 ef		
Elymus trachycaulus	San Luis	100 f		
Poa sp.	9081635	100 f		
Deschampsia caespitosa	9076290	99 f		
Pseudoroegneria spicata	9081636	97 f		
Pascopyrum smithii	Rosana	95 f		
Achnatherum hymenoides	Rimrock	84 f		
Leymus cinereus	9081625	52 f		
Pascopyrum smithii	Rodan	45 f		
Pseudoroegneria spicata	Goldar	43 f		
Poa sp.	9081322	34 f		
Agrostis gigantea	9076266	29 f		
Poa alpina	01-13-1	14 f		
Pascopyrum smithii	9081968	11 f		
Achnatherum hymenoides	Nezpar	9 f		
Deschampsia caespitosa	13970176	8 f		
Poa alpina	9016273	7 f		
Achnatherum hymenoides	9081629	4 f		
Achnatherum hymenoides	9081628	4 f		
Leymus cinereus	Magnar	3 f		
Poa alpina	1858	2 f		
Poa alpina	Gruening	2 f		
Deschampsia caespitosa	Nortran	1 f		
Agrostis gigantea	Streaker	tr f		
Poa secunda	Canbar	0 f		

Table 2-14. Biomass Production of Grasses in Stucky Ridge Trials Clipped on 9/22/04

Genus & Species	Accession	Star	nd (%)	Vigor (1-9)
Elymus trachycaulus	9081620	75.0 a*	k	2.1
Poa secunda	9081633	43.4 1	b	2.1
Elymus trachycaulus	9081621	34.1 l	bc	2.7
Poa secunda	9081635	25.9	cd	3.3
Elymus trachycaulus	Pryor	23.1	cde	5.3
Leymus cinereus	9081624	22.2	cdef	3.8
Pascopyrum smithii	9081968	21.9	defg	4.5
Elymus wawawaiensis	Secar	21.6	defg	4.3
Elymus trachycaulus	San Luis	20.9	defgh	4.6
Pascopyrum smithii	Rosana	20.6	defgh	4.7
Leymus cinereus	Trailhead	16.2	defghi	4.3
Pascopyrum smithii	Rodan	16.2	defghi	5.0
Achnatherum hymenoides	9081628	14.1	defghij	5.3
Achnatherum hymenoides	Rimrock	14.1	defghij	4.5
Leymus cinereus	9081625	13.8	defghij	5.5
Pseudoroegneria spicata	9081636	13.8	defghij	4.5
Agrostis gigantea	9081619	13.4	efghijk	3.2
Leymus cinereus	Washoe	13.4	efghijk	4.8
Agrostis gigantea	9076276	13.1	efghijk	3.7
Poa secunda	Sherman	12.5	efghijkl	4.0
Achnatherum hymenoides	Nezpar	11.9	efghijklm	4.6
Elymus trachycaulus	Revenue	11.9	efghijklm	5.4
Pseudoroegneria spicata	Goldar	11.1	efghijklm	4.6
Leymus cinereus	Magnar	10.9	fghijklm	5.2
Deschampsia caespitosa	9076290	10.6	fghijklm	3.9
Poa secunda	9081322	10.0	ghijklm	4.2
Agrostis gigantea	9076266	9.0	hijklm	4.0
Achnatherum hymenoides	9081629	6.4	ijklm	5.7
Poa alpina	01-13-1	3.9	jklm	5.0
Poa alpina	1858	3.6	jklm	5.3
Poa alpina	9016273	3.0	jklm	3.8
Deschampsia caespitosa	Nortran	1.6	klm	3.8
Deschampsia caespitosa	13970176	0.9	lm	3.8
Poa alpina	Gruening	0.8	lm	1.5
Agrostis giganteus	Streaker	0.4	m	1.5
Poa secunda	Canbar	0.1	m	8.0

Table 2-15. Percentage Stand and Vigor of Grass Trials on Stucky Ridge Plots Evaluated on 8/30/05

Table 2-16.	Average Plant	Height of Grass	es in Stucky	Ridge Plots	Measured on 8/30/05

Genus & Species	Accession	Height Centimeters (cm)
Elymus trachycaulus	9081620	87.5 a*
Elymus trachycaulus	9081621	76.3 a
Poa secunda	9081633	59.0 b
Leymus cinereus	9081624	58.0 bc
Elymus trachycaulus	Pryor	47.0 bcd
Elymus wawawaiensis	Secar	46.5 bcde
Elymus trachycaulus	San Luis	46.3 bcde
Poa secunda	9081635	45.6 bcdef
Leymus cinereus	9081625	44.0 bcdef
Agrostis giganteus	9081619	43.8 bcdef
Leymus cinereus	Trailhead	42.9 cdefg
Achnatherum hymenoides	Rimrock	39.5 defg
Elymus trachycaulus	Revenue	36.9 defgh
Poa secunda	9081322	36.9 defgh
Leymus cinereus	Washoe	36.1 defgh
Agrostis giganteus	9076276	35.0 defgh
Achnatherum hymenoides	Nezpar	33.4 defgh
Pseudoroegneria spicata	Goldar	33.1 defgh
Pseudoroegneria spicata	9081636	31.5 efgh
Leymus cinereus	Magnar	30.9 fghi
Poa secunda	Sherman	30.4 fghi
Pascopyrum smithii	Rosana	28.6 ghi
Pascopyrum smithii	Rodan	27.5 ghi
Agrostis giganteus	9076266	26.3 ghi
Pascopyrum smithii	9081968	24.7 hi
Deschampsia caespitosa	9076290	22.8 hi
Achnatherum hymenoides	9081628	20.8 hij
Achnatherum hymenoides	9081629	15.9 ijk
Poa alpina	01-13-1	6.4 jkl
Deschampsia caespitosa	Nortran	5.7 jkl
Poa alpina	9016273	5.4 kl
Deschampsia caespitosa	13970176	4.5 kl
Poa alpina	1858	4.1 kl
Poa alpina	Gruening	1.1 kl
Agrostis giganteus	Streaker	0.9 kl
Poa secunda	Canbar	0.0 1

Genus & Species	Accession	Biomass	(kg/ha)
Elymus trachycaulus	9081620	8,211 a	*
Elymus trachycaulus	9081621	4,100	b
Poa secunda	9081633	2,506	c
Leymus cinereus	Trailhead	2,222	cd
Agrostis giganteus	9076276	2,189	cd
Agrostis giganteus	9081619	2,039	cde
Leymus cinereus	9081624	1,844	cdef
Elymus trachycaulus	Pryor	1,578	cdefg
Agrostis giganteus	9076266	1,367	cdefgh
Elymus wawawaiensis	Secar	1,289	cdefgh
Poa sp.	9081635	906	defgh
Achnatherum hymenoides	Nezpar	872	defgh
Deschampsia caespitosa	9076290	844	defgh
Pascopyrum smithii	9081968	800	defgh
Pascopyrum smithii	Rosana	650	efgh
Leymus cinereus	Magnar	639	efgh
Elymus trachycaulus	San Luis	622	efgh
Elymus trachycaulus	Revenue	578	fgh
Leymus cinereus	9081625	428	fgh
Leymus cinereus	Washoe	361	gh
Achnatherum hymenoides	Rimrock	339	gh
Pseudoroegneria spicata	9081636	317	gh
Pseudoroegneria spicata	Goldar	272	gh
Poa secunda	9081322	233	gh
Pascopyrum smithii	Rodan	189	gh
Poa secunda	Sherman	189	gh
Agrostis giganteus	Streaker	122	h
Achnatherum hymenoides	9081628	61	h
Achnatherum hymenoides	9081629	61	h
Poa alpina	9016273	51	h
Poa alpina	1858	28	h
Deschampsia caespitosa	13970176	28	h
Poa alpina	01-13-1	23	h
Poa alpina	Groening	0	h
Deschampsia caespitosa	Nortran	0	h
Poa secunda	Canbar	0	h

Table 2-17. Biomass Production of Grasses in Stucky Ridge Trials Clipped on 8/30/05

	Density 6/03	Density 8/03	Stand 6/04	Stand 9/04	Stand 8/05	Height 2004	Height 2005	Biomass 2004	Biomass 2005
	no/ft2	no/ft2	%	%	%	cm	cm	kg/ha	kg/ha
Upland Exp.	6.4	7.4	39.4	45.9	60.6	45.8	78.8	790	5939
Upland Dev.	9.3	7.0	17.3	24.4	25.9	14.8	47.2	215	2011
Waste Mgmt Area Exp	6.3	6.9	38.1	46.9	59.7	44.8	82.5	1206	8933
Waste Mgmt Area Dev	10.5	8.0	15.0	23.8	28.4	19.8	56.6	306	4494

Table 2-18. Moto-X Replicated Mixture Trial on Stucky Ridge

Table 2-19. Seedling Density (2003), Percentage Stand (2004), and Total Plant Density (2005) of Forb and Subshrub Accessions in the Stucky Ridge Comparative Evaluation Planting Evaluated on 6/24/03, 8/25/03, 6/30/04, 9/22/04, and 8/30/05

					2004 \$	Stand	
Genus & Species	Variety/Accession			2003 Density/ft ² 6/24 8/25		9/22 %	2005 Average Plants/Plot 8/30
Krascheninnikovia	Open Range						
lanata	Germplasm	5	9.47 a*	6.75 a*	5.5 a*	4.5 a*	20.00
Phacelia hastata	9081632	10	0.28 b	0.22 b	0.5 b	0.5 b	6.00
Krascheninnikovia lanata	Northern Cold Desert Germ.	4	0.19 b	0.16 b	0.0 b	0.0	0.25
Penstemon strictus	'Bandera'	8	0.19 b	0.03 b	0.0 b	0.0 b	0
Eriogonum umbellatum	9082271	2	0.06 b	0.00 b	0.0 b	0.0 b	0
Penstemon venustus	Clearwater Selected	9	0.03 b	0.00 b	0.0 b	0.0 b	0
Eriogonum umbellatum	9082273	3	0.00 b	0.00 b	0.0 b	0.0 b	0
Penstemon eatonii	Richfield Select	7	0.00 b	0.00 b	0.0 b	0.0 b	0.75
Eriogonum ovalifolium	9082098	1	0.00 b	0.00 b	0.0 b	0.0 b	0
Penstemon eriantherus	Old Works Germplasm	6	0.00 b	0.00 b	0.0 b	0.0 b	15.00
Phacelia hastate	9082275	11	0.00 b	0.00 b	0.0 b	0.0 b	0
Potentilla gracilis	9081679	12	0.00 b	0.00 b	0.0 b	0.0 b	0
Potentilla hippiana	9076274	13	0.00 b	0.00 b	0.0 b	0.0 b	0
Symphyotrichum chilense	9078675	14	0.00 b	0.00 b	0.0 b	0.0 b	0
Symphyotrichum chilense	9081678	15	0.00 b	0.00 b	0.0 b	0.0 b	0
Symphyotrichum chilense	9082274	16	0.00 b	0.00 b	0.0 b	0.0 b	0

* Means followed by the same letter are similar at the 0.05 level of significance using the LSD Mean Comparison method.

An	alyze	d or	1 1(0/1	0/05 ^a)/05 ^a						
L	~	Α		A				u	P			n
	Spe									1g/		
#	cies			k		Cd (mg/kg)	k		k		k	
		2 0				20	2			2 0	2 0	2 0
		0				0		0			0	
		4								5		
	AC		-		-			-		-		
	HY											
	908										1	
	162									N		
1	8	1	9	6	8	ND 2	9	4	D	D	3	8
	AC											
	HY 908	\mathbf{r}	1								1	
	162						4	3	Ν	N		7
2	9			9	8	ND 2				D		
	AC											
	HY											
	Ri							_				_
2	mro ck	3	3	N	0	5 1				N D		
3		5	2	υ	9	5	/	5	υ	D	0	0
	AC HY	2	2									
	Nez			N	Ν	Ν	1	2	Ν	N	5	3
4	par									D		
	AG											
	GI											
	907										_	
5	627 6				6					N D		
5		0	2	υ	0	ND D	0	2	υ	D	4	1
	AG GI											
	908	6	3				1					
	161	6	7				0			Ν		
6	9	3	5	D	D	ND D	0	2	D	D	1	4
	AG											
	GI	F	2								1	
	907 626			N		Ν	7	3	N	N	1	1
7	6				6					D		
	AG											
	GI		2									
	Stre		5					2				
0	ake		0		3	N		4		1		7
8	r		0		5	D		3		3		8
	DE CE											
	CE 907	3	4									
	629	3	0				4	4	N	N	6	5
9	0	4	5	5	6	ND 1	8	5	D	D	3	2

Table 2-20. Heavy Metal Concentration of Clipped Biomass Samples from Stucky Ridge Sampled on 9/22/04 and 8/29/05; Analyzed on 10/10/05^a

	Spe cies	k	g/ g)	k	ng/ g)	Cd (mg/kg)	(n k	g)	k	ng/ g)	Zr (mg kg	g/ g)
		0 0	0 0	2 0 0 4	0 0	0 0	0 0	0 0	0	0 0	2 0 0 4	0 0
_	DE CE 139	4					_				0	_
1 0	701 76 DE	0		8	6						8 7	
	CE Nor tran EL	3		8		ND	2 9		N D		6 7	
1 2	TR 908 162 0 EL	4	8		5						1 4	
1 3	TR 908 162 1		8	N D	N D						2 1	
	EL TR Pry or	0	1		8						3 7	
1 5	EL TR Rev enu e EL	8	4		7						5 0	
1 6	TR San Lui s LE		9		6						4 0	
1 7	CI 908 162 4	2	3	N D	5						1 1 1	
	LE CI 908 162 5 LE	6	5	6	9	ND 1					1 7 2	2
1 9	CI Wa sho e	7	6		N D						1 7 5	0

	Spe cies		g)	A (n k 2	g)	Cd (mg/kg)	()]	Cu mg (g)	;/)	Pt (mg kg 2	g/ ;)	Zn (mg kg 2	g/)
		0 0		0 0	0 0		0 0))	0 0	0 0	0 0	0 0
	LE	4	3	4	3	2004	5 4		5	4	3	4	5
2 0		3	1		8		1 N 1 D 3	e					
2 1	LE CI Tra ilhe ad	4	9		8		N 3 D 5						
2 2	PA SM 908 196 8	7	1	6	5		N 4 D 5						
2 3	PA SM Ro dan	9	4	7	6		N 5 D 2						
2 4	PA SM Ros ana	1	1	6	9		N 2 D 9						
	PO AL 901 627 3 PO	9	4	7	2 1		N 5 D 0		2			4	
2 6	AL 01- 13- 1	2 2 0	9 5	8	1 7		N 7 D 8						
	PO AL 185 8	1 9	4 1				N 3 D 3					6	
	PO SE 908 163 3 PO	4	1	9			N 4 D 9						
3 0	SE She rma n	1	2	9			N 3 D 6					9	

		Al (mg/ kg)	A (n k	ng/	Cd (mg/kg)			P (m kg	g/	Zn (mg/ kg)	,
		2 2 0 0 0 0	2 0 0	2 0 0	2 0 2004 5	2 0 0	2 0 0	2 0 0	2 0 0	2 2 0 0 0 0 4 5	
		no sam ples					-		_		-
3 2	908 163	3 5 6 4 4 9								3 4 8 4	
3 3	908 132 2 PS	4 3 4 4 1 6		9						56 74	
3 4		6 9 7 3 6 1								8 8 1 4	
3 5	SP Gol	6 5 5 4 4 8			ND D	8 1	6 8	N D	N D	75 78	
3 6	W A Sec ar	3 6 9 3 6 5 3 2		7						66 85	
1	Р	9 6 2 6								2 3 2 1	
2	DE	2 5 6 4 8 5								7 4 3 0	
3	AE XP	3 4 7 2 4 1								2 2 7 5	
4	AD EV	2 5 7 4 0 8								64 74	
5	Ran	1 1 3 7 7 3 2								8 4 2 7	

ot Spe (m # cies kg 2 0	g) kg) 2 2 2 0 0 0	Cd (mg/kg)	2 0	Cu (mg/ kg) 2 2 0 0	kg) 2 2 0 0	Zn (mg/ kg) 2 2 0 0
04	0 0 0 5 4 5	2004	0 5	0 0 4 5	0 0 4 5	0 0 4 5
PE -	5 7 5	2007	5	- 5	- 3	
ER	1					
Old Wo	2 8 1		Ν	6	N	3
6 rks	0 4		D	5	D	1
PH	2					
HA 908	3 7			3		
1 163	2 4		Ν	0	1	9
0 2	0 2		D	7	5	1
Maximum Tolerable						
Levels for						
Dome						
stic livesto						3
ck				4	1	0
(NRC, 2005)	3 0	1.0^{b}		0 c	0 d	0 e
Wildli	0	1.0				
fe						3
(Ford, 1996)	5 0	2		5 5	4 0	0 0
Metal	0	2		5	Ū	0
levels						
in Plants						
(Kabat						
a- Pendia						
s &						
Pendia						
s, 1992)						
				2		
Defici ent				to 5		
Suffici	1			5	5	
ent or	to			to	to	25
Norm al	1. 7	0.05 to 0.2		3 0	1 0	27 to 150
	5			•	~	100
Exces	to			•	26	100
sive or Toxic	2 0	5 to 30		20 to 100	30 to 300	to 400

L Al As		Cu Pb Zn
ot Spe (mg/ (mg/ # cies kg) kg)	Cd (mg/kg)	(mg/(mg/(mg/))
# cies kg) kg) 2 2 2 2	Cd (mg/kg)	kg) kg) kg) 2 2 2 2 2 2 2 2
0 0 0 0		0 0 0 0 0 0 0
4 5 4 5	2004	5 4 5 4 5 4 5

Notes:

^aElement-specific MDLs are ≤ 5 mg/kg (by inductively-coupled plasma-optical emission spectroscopy). ^bFor protection of human health; lowest observed adverse effect level (LOAEL) for livestock is 10 mg/kg. ^cLOAEL for cattle ranges from 15 mg/kg for sheep to 250 mg/kg for horses. ^dFor horses; 100 mg/kg for cattle and sheep.

^eFor sheep; 500 mg/kg for horses and cattle.

Sample No.	рН (s.u.)	As (mg/kg)	Cd (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Zn (mg/kg)
A.T. 0-6" NE	4.0	610	7	620	320	370
A.T. 0-6" NW	4.9	360	5	340	120	222
A.T. 0-6" SE	4.6	530	5	340	150	200
A.T. 0-6" SW	4.6	190	7	740	340	440
Arithmetic Mean	4.53	422.5	6	510	232.5	308
Phytotoxicity Criteria ^a	< 5.0	136-315	5.1-20	236-750	94-250	196-240

 Table 2-21. Acid Extractable Heavy Metal Levels at the Woody CEP Plot

Note: EPA phytotoxicity standards (CDM Federal, 1997).

Table 2-22. Seed Origin and Elevation Entries

Family/Species	Seed Origin	Elevation
Caprifoliaceae:		
Symphoricarpos albus (L.) Blake	Deer Lodge Co., Montana	6000 ft
S. albus (L.) Blake	Ravalli Co., Montana	3500
S. occidentalis Hook.	Deer Lodge Co., Montana	5559
S. occidentalis Hook	CO Seed Source	unknown
S. occidentalis Hook	Weston Co., Wyoming	5000
Elaeagnaceae:		
Shepherdia argentea (Pursh) Nutt.	Deer Lodge Co., Montana	6000
S. argentea (Pursh) Nutt.	Utah Seed Source	unknown
S. argentea (Pursh) Nutt.	Sweetwater Co., Wyoming	6000
Grossulariaceae:		
Ribes cereum Dougl.	Deer Lodge Co., Montana	5700
R. cereum Dougl.	Chaffee Co., Colorado	8000
Pinaceae:		
Pinus contorta Dougl. ex Loud.	Deer Lodge Co., Montana	6400
P. contorta Dougl. ex Loud.	Albany Co., Wyoming	9500
P. contorta Dougl. ex Loud.	Custer Co., Idaho	6300
P. ponderosa P. & C. Lawson	Deer Lodge Co., Montana	5850
P. ponderosa P. & C. Lawson	Lawrence Co., South Dakota	5500
P. ponderosa P. & C. Lawson	San Juan Co., Colorado	8000
Rosaceae:		
Rosa woodsii	Deer Lodge Co., Montana	5168
R. woodsii	Ravalli Co., Montana	3400
R. woodsii	Pueblo Co., Colorado	6000

Replication		Vi	gor			Average H		% Su	rvival			
	2002	2003	2004	2005	2002	2003	2004	2005	2002	2003	2004	2005
PICO 9078320	5.80	5.1	6.5	7.6	10.1	10.2	11.8	14.0	85	40	25	25
PICO m039ID0002	5.0	5.0	7.0	8.0	12.8	16.3	16.0	16.5	30	15	10	10
PICO m038WY0002	4.0	4.5	5.5	6.0	14.5	15.7	18.0	20.5	20	15	5	10
PIPO 9081318	2.1	3.4	5.6	5.7	24.7	27.4	25.8	31.3	100	100	95	95
PIPO m04CO0002	4.2	4.8	7.3	8.0	14.3	14.7	13.7	14.1	85	85	85	75
PIPO m020SD9903	3.2	2.7	4.8	5.3	26.8	32.1	31.5	38.3	100	100	95	95
RICE 9081329	4.8	2.8	3.9	3.3	25.5	47.2	52.0	78.7	75	65	70	60
RICE m024CO0003	5.4	5.1	5.9	5.4	12.3	24.0	25.6	46.9	65	50	50	40
ROWO 9081638	4.2	4.5	4.5	4.4	26.1	35.9	39.4	57.3	75	65	65	55
ROWO m076CO0003	7.0	7.0	8.0	9.0	9.0	5.0	4.0	0.0	15	5	5	0
ROWO m07MT0003	5.0	4.0	6.0	4.0	12.0	28.5	21.7	50.5	20	10	15	10
SHAR 9081334	2.5	2.5	3.9	4.0	29.9	37.9	41.7	73.9	80	80	80	75
SHAR m022WY0005	6.6	5.2	6.7	7.3	5.6	7.8	12.7	20.1	60	35	30	35
SHAR m015UT9901	5.8	5.0	5.5	6.0	9.2	13.3	15.0	31.5	25	20	10	10
SYAL 9078388	3.6	4.0	4.5	5.7	18.7	25.1	28.5	30.5	90	85	95	90
SYAL m045MT003	3.6	3.0	4.2	4.8	18.3	30.3	33.7	40.5	30	30	30	30
SYOC 9081639	4.6	5.2	6.9	6.5	18.1	16.1	18.6	26.5	85	80	65	30
SYOC m021WY0004	3.8	2.8	4.6	4.4	24.8	40.6	37.5	55.7	90	75	70	65
SYOC m018CO9904	4.0	4.5	4.8	5.4	16.6	22.8	23.7	35.9	90	85	75	70

Table 2-23. Woody Comparative Evaluation Plot

Common Name	Accession	Release	Field Number	Field Size	Established
woolly cinquefoil	9076274		4		spring 2006 ^a
fuzzytongue penstemon	9081631	Old Works	20	.30	11/04 ^b
silverleaf phacelia	9081632		20	.35	11/04 ^b
basin wildrye	9081627	Washoe	20	.80	4/05 ^b
basin wildrye	9081627	Washoe	22	.21	4/99 ^b
bluebunch wheatgrass	9081636		20	.30	4/05 ^b
slender wheatgrass	9081620		20	.35	4/05 ^b
big bluegrass	9081633		20	.24	4/05 ^b
Indian ricegrass	9081628		22	.14	4/99 ^b
western wheatgrass	9081968		22	.10	6/05 ^a
common snowberry	9078388	Prospectors	19	.44	5/00 ^c
creeping juniper	9081623		23	.60	5/02, 5/03 ^c
Woods' rose	9081638		30	.40	7/99 ^c
western snowberry	9081639		30	.40	5/00 ^c
silver buffaloberry	9081334		30	.60	5/00 ^c

Table 2-24. Seed Production Fields Established at the BPMC

^a Transplanted Cone-tainers[™] ^b Established from seed ^c Transplanted 2-0 stock Notes:

Table 2-25. Seed on Hand of Increase Plant Material

Genus & Species	Common Name	Accession	Seed on Hand Kilograms (kg)
Achnatherum hymenoides	Indian ricegrass	9081628	4.81
Agrostis giganteus	Redtop	9076276	50.03
Elymus trachycaulus	slender wheatgrass	9081620	44.52
Juniperus horizontalis	creeping juniper	9081623	0.34
Leymus cinereus	basin wildrye	Washoe	28.84
Pascopyrum smithii	western wheatgrass	9081968	0.01
Penstemon eriantherus	fuzzytongue penstemon	Old Works	2.75
Phacelia hastate	silverleaf phacelia	9081632	9.96
Poa secunda	big bluegrass	9081633	4.16
Potentilla hippiana	woolly cinquefoil	9076274	4.80
Pseudoroegneria spicata	Bluebunch wheatgrass	9081636	23.71
Rosa woodsii	Woods' rose	9081638	0.56
Shepherdia argentea	silver buffaloberry	9081334	0.00
Symphoricarpos albus	common snowberry	Prospectors	0.47
Symphoricarpos occidentalis	western snowberry	9081639	0.10

Part A. Sampling by	Part A. Sampling by BPMC on October 24, 2001, and Analysis by Energy Laboratories, Inc. (Billings)								
Field Sample No.		Laboratory Parameters							
	pН	Eh	As	Cd	Cu	Pb	Zn		
	(s.u.)	(mV)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
LS-1	7.4	296.0	338.0	6.0	574.0	147.0	394.0		
LS-2	5.1	339.0	404.0	7.0	639.0	163.0	455.0		
LS-3	5.4	345.0	472.0	11.0	882.0	230.0	572.0		
L2-4	6.7	312.0	329.0	7.0	608.0	155.0	435.0		
Average	6.2	323.0	385.8	7.8	675.8	173.8	464.0		

Table 2-26. Comparison of Independent Soil Sampling and Analysis Results^a

Part B. Sampling by MSE or	October 26, 2001, and Analysis by HKM Laboratory (Butte)
Field Sample No	I shorstory Parameters

Laboratory Parameters								
pН	Eh	As	Cd	Cu	Pb	Zn		
(s.u.)	(mV)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
6.65	249.0	554.0	9.9	988.0	253.0	636.0		
4.72	275.0	539.0	11.3	937.0	223.0	702.0		
4.53	287.0	551.0	11.1	954.0	241.0	705.0		
4.66	290.0	506.0	10.6	843.0	201.0	669.0		
7.18	230.0	367.0	9.4	657.0	161.0	593.0		
5.78	262.5	493.0	10.3	858.4	211.8	650.4		
	(s.u.) 6.65 4.72 4.53 4.66 7.18	(s.u.) (mV) 6.65 249.0 4.72 275.0 4.53 287.0 4.66 290.0 7.18 230.0	pH Eh As (s.u.) (mV) (mg/kg) 6.65 249.0 554.0 4.72 275.0 539.0 4.53 287.0 551.0 4.66 290.0 506.0 7.18 230.0 367.0	pH Eh As Cd (s.u.) (mV) (mg/kg) (mg/kg) 6.65 249.0 554.0 9.9 4.72 275.0 539.0 11.3 4.53 287.0 551.0 11.1 4.66 290.0 506.0 10.6 7.18 230.0 367.0 9.4	pH Eh As Cd Cu (s.u.) (mV) (mg/kg) (mg/kg) (mg/kg) 6.65 249.0 554.0 9.9 988.0 4.72 275.0 539.0 11.3 937.0 4.53 287.0 551.0 11.1 954.0 4.66 290.0 506.0 10.6 843.0 7.18 230.0 367.0 9.4 657.0	pH Eh As Cd Cu Pb (s.u.) (mV) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 6.65 249.0 554.0 9.9 988.0 253.0 4.72 275.0 539.0 11.3 937.0 223.0 4.53 287.0 551.0 11.1 954.0 241.0 4.66 290.0 506.0 10.6 843.0 201.0 7.18 230.0 367.0 9.4 657.0 161.0		

Notes:

^a For Lowland CEP plot (Figure 1-1), post-plow surface (0- to 6-inch) composite soil samples. ^b Field duplicate samples.

r							
Avg./RPD/%	6.4	18.7	27.8	32.0	27.0	21.9	40.2
$\pm 25\%$ -50% is acceptable.							

Source: DLVCD, 2005, Tables 7 and 8.

3. Conclusions and Recommendations

3.1 Conclusions

3.1.1 Woody Comparative Evaluation Plot

Several dead plants were removed and it was observed that the roots of these plants had not penetrated the native soil beyond their soil media plug area. It is probable that the plants whose roots were able to tolerate the low pH and metalliferous surroundings beyond their plug area flourished, while those with roots sensitive to the edaphic contaminates declined.

The accessions that had good survival and are now showing substantial growth include:

- *Pinus ponderosa* (Deer Lodge County, Montana);
- *Pinus ponderosa* (Lawrence County, South Dakota);
- *Ribes cereum* (Deer Lodge County, Montana);
- *Rosa woodsii* (Deer Lodge County, Montana);
- Rosa woodsii (Ravalli County, Montana);
- Shepherdia argentea (Deer Lodge County, Montana);
- Symphoricarpos albus (Deer Lodge County, Montana); and
- Symphoricarpos occidentalis (Weston County, Wyoming).

3.1.2 Stucky Ridge Plot

All of the potential germinable seeds germinated the first year (2003). The record high temperatures and low precipitation in July and August, along with the late spring planting date (May 13), are considered the primary factors affecting the incomplete germination and emergence during the 2003 growing season (National Weather Service, 2003). There was a significant amount of new grass seedling emergence detected during the June 30, 2004, evaluation, particularly in the Indian ricegrass, western wheatgrass, big bluegrass, and basin wildrye plots and some new germination of forbs in 2005.

In the single-species plots, the 'local source' plants that exhibited superior performance include 9081620 and 9081621 slender wheatgrass, 9081633 big bluegrass, 9081968 western wheatgrass, 9081624 and Washoe Germplasm basin wildrye, 9081628 Indian ricegrass, 9081636 bluebunch wheatgrass, and 9081635 bluegrass. The superior indigenous plant material was being further increased for potential release to the commercial seed industry. Worth noting was the performance of some of the released cultivars such as Pryor and Revenue slender wheatgrass, Rosana western wheatgrass, Rimrock Indian ricegrass, Trailhead basin wildrye, Secar Snake River wheatgrass, and Goldar bluebunch wheatgrass.

The forb/subshrub trial had poor emergence and consequently poor seedling densities with the exception of Open Range Germplasm winterfat. The low densities were most likely the result of the late spring planting that resulted in an insufficient period of cold-moist stratification. An additional problem may have been sowing smallsized seed too deeply. There was also heavy surface erosion on this portion of the trial site.

In the Seed Mixture Trials, the 'Experimental' mixes that contained native 'local source' were far superior to the 'Developed' mixes that consisted of native 'nonlocal source' (Upland mix) and introduced cultivars (Waste Management Areas). However, it was estimated that the majority of plants in the Experimental mixtures, both Upland and Waste Management Areas, were 9081620 slender wheatgrass, which was the best overall performer on this particular site. Because this species is short-lived and only moderately tolerant of grazing, "stands should be managed carefully to ensure seed production occurs every other year for long-term survival" (USDA-NRCS, 2006b; p. 2).

The tissue analyses show that the heavy metal concentrations in and on the plant tissue sampled from the Stucky Ridge plots were generally within the tolerable limits for both domestic livestock and wildlife.

The overall performance on the Stucky Ridge plots was quite variable, with strips running north and south that had poorer plant vigor and biomass production. The Pryor slender wheatgrass strips between replications (running east and west) exhibited waves of good and poor establishment and performance. Soil samples (0- to 6-inch) were taken under four plant stands of slender wheatgrass ranging from excellent to very poor in hopes of explaining this variability. It was thought that the incorporation of the amendments may have created strips with varying pH. Soil analysis for pH indicated no difference in pH (all 6.8 to 7.3) under the varying stand of slender wheatgrass. Although this variability remains unexplained, it may be due to microclimatic effects on seed germination (i.e., subtle, highly localized variations in soil

moisture and temperature). Another possible explanation is the presence of metals-rich "hot spots" that remained after initial tillage of the soils.

3.2 Recommendations

The DATC project offers an improved means of revegetating lands degraded by hardrock mining, milling, and smelting activities within the Intermountain Region of the Western United States. Acceptance of the Anaconda-accessions released to date, as well as those in the future, by regulatory agencies and private industry will be aided by continued funding of field demonstration and seed production activities by BPMC. Such efforts should include seasonal performance monitoring of key species and "experimental" seed mixtures at the Stucky Ridge and Woody CEP plots for at least another few years. Such monitoring would improve understanding of plant response(s) to climatic variability and variations in heavy metals uptake (per given accession) from soil over time. MSE Technology Applications, Inc. is impressed by the BMPC's expertise and dedication to achieving these ends and hopes its good work will be able to continue into the future.

References

Association of Official Seed Certifying Agencies (AOSCA). 2003. Operational Procedures, Crop Standards and Service Programs Publication (Genetic and Crop Standards), Meridian, Idaho.

Atlantic Richfield Company. 2002. Anaconda Smelter NPL Site, Anaconda Regional Water, Waste and Soils Operable Unit: Remedial Action Work Plan/Final Design Report, 2002 Stucky Ridge RA (Portion of Stucky Ridge Area No. 4 RAWP) Uplands Revegetation. Prepared by Pioneer Technical Services for ARCO.

CDM Federal. 1997. Final Baseline Ecological Risk Assessment for the Anaconda Regional Water, Waste and Soils Operable Unit, Volume 1. Prepared for the U.S. Environmental Protection Agency, Region 8, Helena, MT Field Office.

Conesa, H. M., A. Faz, and R. Arnaldos. 2007. "Initial Studies for the Phytostabilization of a Mine Tailing from the Cartagena-La Union Mining District (SE Spain)," *Chemosphere 66*(1): 38-44.

Dahmani-Muller, H., F. van Oort, B. Gelie, and M. Balabane. 2000. "Strategies of Heavy Metal Uptake by Three Species Growing Near a Metal Smelter," *Environmental Pollution 109*(2): 231-238.

Deer Lodge Valley Conservation District. 2007. Development of Acid/Heavy Metal Tolerant Releases (DATR): 2006 Activities. Prepared by the DLVCD in cooperation with the USDA-NRCS-Bridger Plant Materials Center for the U.S. EPA/Mine Waste Technology Program and State of Montana/Natural Resource Damage Program.

Deer Lodge Valley Conservation District. 2005. Development of Acid/Heavy Metal Tolerant Cultivers (DATC): A Summary of Activities for 2000-2004. Prepared by the DLVCD in cooperation with the USDA-NRCS-Bridger Plant Materials Center for the U.S. EPA/Mine Waste Technology Program and Montana Natural Resources Damage Program. Ford, K.L. 1996. *Risk Management Criteria for Metals at BLM Mining Sites*. Prepared by the U.S. Department of Interior, Bureau of Land Management, National Applied Resource Sciences Center (Denver, CO) as Technical Note 390 (revised).

Jennings, S. R. and F. F. Munshower. 1997. Best Management Practices for Mineland Reclamation, Anaconda, Montana: Relationships Between Land Reclamation Techniques and Ecological Process. Prepared by the Reclamation Research Unit, Montana State University, Bozeman, as Publication No. 9702.

Kabata-Pendias A. and H. Pendias. 1992. *Trace Elements in Soils and Plants*. CRC Press, Boca Raton, FL.

Marty, L. J. 2003a. Development of Acid/Heavy Metal-Tolerant Cultivars Project Bi-Annual Report: October 1, 2002 to March 31, 2003. Prepared for the U.S. EPA/Mine Waste Technology Program and State of Montana/ Natural Resource Damage Program.

Marty, L. J. 2003b. Development of Acid/Heavy Metal-Tolerant Cultivars Project Bi-Annual Report: April 1, 2003 to September 30, 2003. Prepared for the U.S. EPA/Mine Waste Technology Program and State of Montana/ Natural Resource Damage Program.

Marty, L. J. 2001. Development of Acid/Heavy Metal-Tolerant Cultivars (DATC) Project: Progress Report for April 1, 2001 to September 30, 2001. Prepared for the U.S. EPA/Mine Waste Technology Program and State of Montana/Natural Resource Damage Program.

Marty, L. J. 2000. *Development of Acid/Heavy Metal-Tolerant Cultivars (DATC) Project: Final Report for July 1998 to July 2000.* Prepared for the Deer Lodge Valley Conservation District, in cooperation with the USDA-NRCS/Bridger Plant Materials Center. Montana Natural Resource Information System (NRIS). 1996. *Anaconda Smelter Superfund Map No. 97epa13e*. Montana State Library, Helena, MT.

MSE Technology Applications, Inc. 2001. Quality Assurance Project Plan-Acidic/Heavy Metal-Tolerant Plant Cultivars Demonstration, Anaconda Smelter Superfund Site: Mine Waste Technology Program, Activity III, Project 30. Prepared by MSE Technology Applications, Inc., and USDA-NRCS/Bridger Plant Materials Center for the U.S. EPA/National Risk Management Research Laboratory (Cincinnati, OH) and U.S. DOE/ National Energy Technology Laboratory (Pittsburgh, PA) as Report No. MWTP-185.

National Research Council. 2005. *Mineral Tolerance of Animals*, Second Revised Edition. National Academies Press, Washington, D.C.

National Weather Service. 2003. Missoula Weather Forecast Office, accessed November 2003 at website www.wrh.noaa.gov/Missoula.

Reclamation Research Unit (RRU). 1993. Anaconda Revegetation Treatability Studies, Phase 1: Literature Review, Reclamation Assessments, and Demonstration Site Selection. Prepared by the RRU, Montana State University for the ARTS Technical Committee plus Research & Development Institute, Inc. Report No. ASSS-ARTS-I-FR-R1-102293.

Taskey, R. D. 1972. Soil Contamination at Anaconda Montana: History and Influence on Plant Growth. Master of Science Thesis, School of Forestry, University of Montana, Missoula.

USDA-NRCS. 2006a. *PLANTS Database*, posted at website http://plants.usda.gov.

USDA-NRCS. 2006b. *Plant Guide: Slender Wheatgrass*, posted at website http:// plants.usda.gov/plantguide/pdf/pg_eltr7.pdf.

USDA-NRCS. 2000. *National Plant Materials Manual*, Part 540.7 (Plant Selection). U.S. Government Printing Office, Washington, D.C.

U.S. Environmental Protection Agency. 1995. Remedial Action Work Plan/Final Design Report for the Anaconda Regional Water, Waste and Soils Operable Unit of the Anaconda Smelter NPL Site, Helena, MT.

Vangronsveld, J. and S.D. Cunningham. 1998. Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration. Springer-Verlag, Berlin.

Development of Acid/Heavy Metal Tolerant Releases (DATR) 2005 Activities Report

> from Deer Lodge Valley Conservation District in cooperation with the USDA-NRCS Plant Materials Center

Appendix B

Development of Acid/Heavy Metal Tolerant Releases (DATR) 2006 Activities Report

> from Deer Lodge Valley Conservation District in cooperation with the USDA-NRCS Plant Materials Center

Development of Acid/Heavy Metal Tolerant Releases (DATR) 2005 Activities



A Report to EPA Mine Waste Technology Program and Montana Natural Resource Damages Program

By Deer Lodge Valley Conservation District in cooperation with the USDA-NRCS Plant Materials Center

I. INTRODUCTION

INTRODUCTION

Montana has a history of mining, starting with the gold rush of the 1860s, followed by mining of silver and, eventually, copper. The derelict lands produced by past mining for heavy metals and the processing of crude mineral ores are both visually unattractive and sources of environmental contamination. In the Clark Fork River Basin alone, there were approximately 20 square miles of tailing ponds, more than 175 square miles of soils and vegetation contaminated by air pollution from smelting operations, at least 30 square miles of unproductive agricultural land, and 150 miles of contaminated stream beds and habitat along these streams, plus millions of gallons of contaminated ground water (Johnson and Schmidt, 1998; Moore and Luoma, 1990). Throughout the rest of the state, the Abandoned Mine Reclamation Program identified over 4,500 acres of unvegetated spoils and sites affected by acid mine drainage (Chen-Northern, Inc., 1989).

To successfully reclaim acid/metalliferous-affected sites, it is imperative that a permanent vegetative cover be established, thereby reducing surface wind and water erosion and reducing the amount of leaching of contaminants into subsurface water aquifers. A lack of plant materials able to withstand the severe edaphic conditions of acid- and/or heavy-metal-contaminated soils has created a need for native plant materials that demonstrate inherent tolerances of these conditions and that are adapted to the intermountain valleys and foothills of western Montana. Research has found that populations of certain species growing in soils containing large amounts of heavy metals may be tolerant of the metals, and will grow better on such soils than plant materials originating from uncontaminated soils (Bradshaw, 1952; Bradshaw et al., 1965; Bradshaw, 1977; and Antinovics et al., 1971). All have shown that metal and acid tolerance evolves over time and this tolerance is genetically controlled, being passed on through seed material. This process of natural selection usually occurs over a long period of time (Antonovics, 1966). Antonovics (1968) found that mine spoil plants developed a high level of self-fertility, apparently to prevent the dilution of the tolerance by the flow of nontolerant genes from neighboring populations. Smith and Bradshaw (1972) found that metal-tolerant plant populations tend to translocate fewer amounts of heavy metals into their aerial parts than nontolerant populations. This is a significant factor if a reclaimed site is to be grazed by wildlife and/or livestock. Current reclamation efforts to re-establish plant cover on abandoned and active hardrock mine sites rely primarily on seed of native plants developed for coal mine reclamation and range renovation in dry, high pH soils of eastern Montana, southern Idaho, and eastern Washington and Oregon. The most successful reclamation efforts within the Clark Fork Valley Super-Fund site involve the amendment of soils to neutralize the soil pH and tie up heavy metals. Not all contaminated soils are accessible or traversable with farming equipment, creating a need for seed and transplants tolerant of acid/heavy metal plant materials.

Project History

To address this need for adapted native plants, the Development of Acid/Heavy Metal-Tolerant Plants (DATC) project was initiated in 1995. The DATC project was initially

funded by a Montana Department of Natural Resources-Reclamation and Development Grant awarded to the Deer Lodge Valley Conservation District (DLVCD), with research conducted by Matt Marsh. The DLVCD worked in cooperation with the USDA-NRCS Bridger Plant Materials Center. The national network of 26 Plant Materials Centers is the primary source of native plants developed specifically for reclamation and conservation use. The Bridger PMC, in south-central Montana, is a 140-acre research facility dedicated to the selection and release of native plant materials, primarily for use in Montana and Wyoming. The original DNRC grant expired at the end of 1996 and this project did not receive funding until June 1998, at which time carry-over money for the 1997-98 grant period was made available to this project, as well as some financial support from Atlantic Richfield Co. (ARCO). During 1999 and 2000, the project was again funded by a NDRC Reclamation and Development grant. Since 2000, the DATC project has been funded by the EPA Mine Waste Technology Program (through 2005) and the Montana Department of Justice-Natural Resource Damage Program (through 2008). To date, the DATC project has involved the seed collection of 145 native grasses, forbs, shrubs, and trees from within the Upper Clark Fork River Basin and abandoned mine sites throughout western Montana. These collections have been planted at various study sites in comparison with nonlocal native and introduced plant species. The Atlantic Richfield Company (ARCO) has provided land access for seed collection and sites for experimental plots.

The first Initial Evaluation Plantings (IEPs) (single-row plots) were established in 1995 on the flats east of Anaconda (near junction of Highway 1 and 48), on the Opportunity Ponds (three levels of lime amendment), and adjacent to the Lead Smelter at East Helena. Collectively these three research sites tested 220 accessions of 95 species of native and introduced plants. In the spring of 1999, a Comparative Evaluation Planting (CEP) (single-row plots) was established along Willow Glen Road east of Anaconda evaluating 84 entries, which included multiple accessions of 6 forbs, 13 grasses, and 6 forb/grass mixes. During the fall/winter of 1999, a greenhouse study at the Bridger PMC utilized contaminated soil from the Anaconda Flats area. The results of this replicated, controlled environment study provided enough statistically significant data to move some individual collections toward official release to the commercial seed industry. In 2001, CEPs were established with a four-row cone seeder on Stucky Ridge (upland site) and on the Mill Creek Flats (lowland site) to evaluate eight seed mixtures, four consisting of native, local-origin species and four consisting of nonlocal-origin released cultivars. In October 2002, a shrub/tree CEP (Willow Glenn Road Site) was established to compare native indigenous material with commercially available stock of the same species, utilizing 2-0 transplants. All plantings prior to 2003 were established on unamended sites, receiving deep-plowing treatment only (except Opportunity Pond-Site 2). In the spring of 2003, another replicated trial was established on Stucky Ridge (adjacent to the moto-cross site) on a site that had been deep plowed and amended with lime.

To date, there have been three official germplasm releases by the DATC project: Washoe Selected Class germplasm of basin wildrye (*Leymus cinereus*), Old Works Source Identified Class germplasm of fuzzytongue penstemon (*Penstemon*

eriantherus), and Prospectors Selected Class germplasm of common snowberry (*Symphoricarpos albus*). Presently there are 15 collections of 9 species (see Seed Increase section) that have been established in seed increase fields for potential future release. Two commercial growers in Montana are growing Washoe basin wildrye, while a grower in Idaho and one in Washington have recently established seed production fields of Old Works fuzzytongue penstemon.

References

- Anatovics, J., A.D. Bradshaw, and R.G. Turner. 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. Vol. 7:1-55.
- Anatovics, J. 1966. The genetics and evolution of differences between closely adjacent plant populations with special reference to heavy metal tolerance. Ph.D Thesis. University of Wales.
- Anatovics, J. 1968. Evolution in closely adjacent plant populations. Evolution of selffertility. Heredity, Lond. 23:219-238.
- Bradshaw, A.D. 1952. Populations of *Agrostis tenuis* resistant to lead and zinc poisoning. Nature (London) 169:1098.
- Bradshaw, A.D. 1977. The evolution of metal tolerance and its significance for vegetation establishment on metal contaminated sites. *In*: Heavy Metals and the Environment. ed. T.C. Hutchinson. Toronto University Press.
- Bradshaw, A.D., T.S. McNeilly, and R.P.G. Gregory. 1965. Industrialization, evolution and the development of heavy metal tolerance in plants. *In*: British Ecological Society Symposium 5. eds. G.T. Goodman et al. p.327-343.
- Chen-Northern, Inc. 1989. Final Report-abandoned mine reclamation program: noncoal inventory. Prepared by Montana Department of State Lands.
- Johnson, H.E. and C.L. Schmidt. 1988. Clark Fork Basin Project: Status Report and Action Plan. Prepared for the Office of Governor, Helena, MT.
- Moore, J.N. and S.N. Luoma. 1990. Hazardous waste from large-scale metal extraction: The Clark Fork Waste Complex, Montana. Prepared by the University of Montana-Missoula and U.S. Geological Survey. 34 pp.
- Smith, R.A.H. and A.D. Bradshaw. 1972. Stabilization of toxic mine wastes by use of tolerant plant populations. Trans. Int. Min. Metall. 81(a):230-237.

II. WOODY EVALUATION

WOODY COMPARATIVE EVALUATION PLANTING PERFORMANCE REPORT

Introduction

This report summarizes the plant performance of the Woody Comparative Evaluation Planting (CEP) installed in the fall of 2000 at the Anaconda Smelter Superfund Site. One of the most impacted areas is the ~18 mi² of uplands within the Anaconda Smelter Superfund Site. The uplands are commonly derived from the weathering of bedrock and are typically thin, clay-rich alfisols. Due to the susceptibility of these soils to erosion by wind and water, the soil surface in many areas has eroded away and the subsoil, which is now exposed at the surface, continues to erode. Original vegetation in the uplands consisted primarily of shrub lands with coniferous forests above approximately 5,800 feet (Keammerer, 1995). In an effort to stem the transport of contaminants and restore these injured areas, state and federal regulatory agencies have developed several reclamation alternatives, many of which include the planting of shrubs and trees in the uplands.

The low pH soils at the Anaconda Smelter Superfund Site are routinely ameliorated by incorporating lime; however, nonuniform lime incorporation, as well as the upward migration of acid-producing compounds, results in pockets of acidity. Additionally, many steeply sloped areas are not accessible to heavy equipment making them difficult to amend. Research has demonstrated that metal-tolerant plants can be used to stabilize and immobilize contaminants in the soil (Smith and Bradshaw, 1972; Bradshaw et al., 1978). Metals are absorbed and accumulated by roots, adsorbed onto roots, or precipitated within the rhizosphere, thereby trapping contaminants in the soil and breaking the soil-plant-animal cycle.

Numerous demonstration projects over the last 50 years at the Anaconda Smelter Superfund Site have tested the performance of several woody plant species in diverse edaphic conditions (Dutton, 1992; Eliason, 1959; Gordon, 1984; Reclamation Research Unit and Schafer and Associates, 1993; Reclamation Research Unit, 1997). This study builds on previous research findings by testing accessions (ecotypes) of woody plant species that have shown adaptations to low pH and heavy-metal contaminated soils. The objective of the study is to identify acid/heavy-metal-tolerant native plant ecotypes that provide erosion control and wildlife habitat. The Development of Acid/Heavy-Metal-Tolerant Cultivars Project's goal is to release these superior ecotypes to the commercial market and thereby provide a greater array of plant materials for the reclamation industry.

Study entries include "local" germplasm originated from seed collected on nearby mineaffected soils in Deer Lodge County, Montana, as well as "nonlocal" germplasm originated from seed collected on non-impacted lands in various counties of Montana, Colorado, South Dakota, Utah, and Wyoming. Seedlings of 19 accessions of 7 woody species including *Pinus contorta* lodgepole pine, *Pinus ponderosa* ponderosa pine, *Shepherdia argentea* silver buffaloberry, *Rosa woodsii* Woods' rose, *Symphoricarpos albus* common snowberry, *Symphoricarpos occidentalis* western snowberry, and *Ribes*

cereum wax currant were transplanted into a common garden in a randomized complete block design.

Study Site

The 0.4-acre study site, located ~4 miles southeast of Anaconda, Montana, has been impacted by emission fallout from the Upper and Lower Works as well as the Washoe smelter. The Upper and Lower Works smelters operated from 1884 to 1902 at which point the Washoe smelter took over smelting operations until 1980. The study site lies ~200 yards east of Mill Creek at an elevation of 5,140 ft in USDA Plant Hardiness Zone 4a. The soils at the site are in the Haploboroll's Family and consist of deep, well-drained soils formed in mixed alluvium composed of granitic, meta-sedimentary, and volcanic rocks. The alluvium is derived from the Mill Creek drainage. Cobbles and stones commonly occur on the soil surface. In 1999, the site was plowed to a depth of 6 inches, rototilled, and packed. Laboratory analysis of four (0- to 6-inch) composite soil samples taken after tilling to 6 inches indicated an average pH of 4.53. Average arsenic, cadmium, copper, lead, and zinc concentrations in the four soil samples were 423 mg/kg, 6 mg/kg, 510 mg/kg, 233 mg/kg, and 308 mg/kg, respectively (table 1).

Sample No.	рН <i>s.u.</i>	As <i>mg/kg</i>	Cd <i>mg/kg</i>	Cu <i>mg/kg</i>	Pb <i>mg/kg</i>	Zn <i>mg/kg</i>
A.T. 0-6" NE	4.0	610	7	620	320	370
A.T. 0-6" NW	4.9	360	5	340	120	222
A.T. 0-6" SE	4.6	530	5	340	150	200
A.T. 0-6" SW	4.6	190	7	740	340	440
\boxtimes	4.53	422.5	6	510	232.5	308
Phytotoxic						
Criteria [†]	< 5.0	136-315	5.1-20	236-750	94-250	196-240

Table 1. Acid extractable heavy-metal levels (EPA method 3050) and pH of 0- to 6-inch composite samples.

† EPA phytotoxicity standards (CDM Federal 1997).

Methods and Materials

The study tested 19 accessions consisting of two or three accessions of each of the seven shrub/tree species (table 2). The 1-0 and 2-0 (6- to 12-inch) seedlings were transplanted in a Randomized Complete Block Design replicated 20 times on October 18, 2000. An individual plant of each accession is represented in each replication. The seedlings are spaced 4.5 feet apart within rows and 9 feet apart between rows. The plot receives no supplemental irrigation. The spring following planting, VisporeTM (3-ft x 3-ft) tree mats were installed on all entries to suppress weeds and retard soil moisture evaporation.

Family/Species	Seed Origin	Elevation		
Caprifoliaceae:				
Symphoricarpos albus (L.) Blake	Deer Lodge Co., MT	6000 ft		
S. albus (L.) Blake	Ravalli Co., MT	3500		
S. occidentalis Hook.	Deer Lodge Co., MT	5559		
S. occidentalis Hook	CO Seed Source	unknown		
S. occidentalis Hook	Weston Co., WY	5000		
Elaeagnaceae:				
Shepherdia argentea (Pursh) Nutt.	Deer Lodge Co., MT	6000		
S. argentea (Pursh) Nutt.	UT Seed Source	unknown		
<i>S. argentea</i> (Pursh) Nutt.	Sweetwater Co., WY	6000		
Grossulariaceae:				
Ribes cereum Dougl.	Deer Lodge Co., MT	5700		
R. cereum Dougl.	Chaffee Co., CO	8000		
Pinaceae:				
Pinus contorta Dougl. ex Loud.	Deer Lodge Co., MT	6400		
P. contorta Dougl. ex Loud.	Albany Co., WY	9500		
P. contorta <i>Dougl. ex Loud</i> .	Custer Co., ID	6300		
<i>P. ponderosa</i> P. & C. Lawson	Deer Lodge Co., MT	5850		
P. ponderosa P. & C. Lawson	Lawrence Co., SD	5500		
P. ponderosa P. & C. Lawson	San Juan Co., CO	8000		
Rosaceae:				
Rosa woodsii	Deer Lodge Co., MT	5168		
R. woodsii	Ravalli Co., MT	3400		
R. woodsii	Pueblo Co., CO	6000		

Table 2. Seed origin and elevation of entries in the Woody Comparative Evaluation Planting.

Plant survival, height, and vigor were assessed in 2001 (May 21 and August 14), 2002 (May 20 and August 20), 2003 (May 28 and August 26), 2004 (June 30), and 2005 (August 29). Plant height is measured in centimeters to the top of live foliage. Vigor is measured on a scale of 1 to 9, with 1 representing excellent vigor and 9 representing plant mortality.

Results and Discussion

Survival

Overall survival of the entrees in the Woody CEP after 1 year (2001) was local 91.4% and nonlocal 79.2%) (table 3). The edaphic conditions have taken their toll, as survival has decreased each subsequent year; 2002—local 84.3% and nonlocal 52.5%, 2003—local 73.6% and nonlocal 43.8%, 2004—local 70.7% and nonlocal 40%, 2005 local

61.4% and nonlocal 37.5%. Anaconda's 30-year average annual precipitation is 13.93 inches. The site was quite dry the year of establishment (2000—9.57 inches), but the years following were near or above normal; 2001—13.99", 2002—16.23", 2003—15.42", 2004—13.37", and 2005---15.75". Precipitation in Anaconda, therefore, was probably not a major factor in plant mortality.

In all species except *Symphoricarpos occidentalis,* the "local" source had equal or better survival than the "nonlocal" sources. As shown in table 3, the superior accessions included *Pinus ponderosa* (Deer Lodge County, MT), *P. ponderosa* (Lawrence County, SD), *P. ponderosa* (San Juan County, CO), *Symphoricarpos albus* (Deer Lodge County, MT), and *Shepherdia argentea* (Deer Lodge County, MT). Based on survival and growth, the best overall performing species have been *Pinus ponderosa*, followed by *Symphoricarpos albus, Shepherdia argentea, and Rosa woodsii.* All accessions of *Pinus contorta* have performed poorly.

Growth

The average growth over the first 4-year period for the local source material was 14.99 cm (5.9 inches), while the nonlocal material averaged 10.33 cm (4.07") of growth. In 2005, the local material averaged 13.44 cm of growth, while the nonlocal averaged 8.7 cm. Generally, the local source material outgrew the nonlocal material except for the two snowberry species, *Symphoricarpos alba* and *Symphoricarpos occidentalis*, and the lodgepole pine (*Pinus contorta*). Some of the shrubs exhibited leader mortality or cropping by wildlife, which resulted in negative overall growth. The accessions with the greatest sustained growth were *Symphoricarpos albus* (Ravalli County), *Ribes cereum* (Deer Lodge County), *Shepherdia argentea* (Deer Lodge County), *Rosa woodsii* (Deer Lodge County), and *Symphoricarpos occidentalis* (Wyoming source).

Vigor

Live plants were rated on a scale from 1 to 9 (1=highest rating) based on a visual assessment of their vigor or robustness. Dead plants were entered as missing values. The vigor rating for local source material was somewhat better than the nonlocal source material, but not significantly so: 2001—local 3.8 vs. nonlocal 5.4, 2002—local 3.9 vs. nonlocal 4.8, 2003--local 5.1 vs. non-local 5.9, 2004--local 5.1 vs. non-local 5.9, and 2005--local 5.3 vs. non-local 5.9. No patterns in superior vigor seem to exist by species or origin other than the local material has slightly better vigor rating than the non-local.

The top-ranking accession for vigor was *Ribes cereum* (Deer Lodge County) followed by *Shepherfia argentea* (Deer Lodge County). As in the other categories, the lodgepole pine *Pinus contorta* accessions had the poorest overall performance.

Table 3. Woody compa	rative eval	uation: 200	2-2005									
Replication	Vigor	Vigor	Vigor	Vigor	Avg. Ht.	Avg. Ht.	Avg. Ht.	Avg. Ht.	% Surv.	% Surv.	% Surv.	% Surv.
	2002	2003	2004	2005	2002 (cm)	2003 (cm)	2004 (cm)	2005 (cm)	2002	2003	2004	2005
PICO 9078320	5.80	5.1	6.5	7.6	10.1	10.2	11.8	14.0	85	40	25	25
PICO m039ID0002	5.0	5.0	7.0	8.0	12.8	16.3	16.0	16.5	30	15	10	10
PICO m038WY0002	4.0	4.5	5.5	6.0	14.5	15.7	18.0	20.5	20	15	5	10
PIPO 9081318	2.1	3.4	5.6	5.7	24.7	27.4	25.8	31.3	100	100	95	95
PIPO m04CO0002	4.2	4.8	7.3	8.0	14.3	14.7	13.7	14.1	85	85	85	75
PIPO m020SD9903	3.2	2.7	4.8	5.3	26.8	32.1	31.5	38.3	100	100	95	95
RICE 9081329	4.8	2.8	3.9	3.3	25.5	47.2	52.0	78.7	75	65	70	60
RICE m024CO0003	5.4	5.1	5.9	5.4	12.3	24.0	25.6	46.9	65	50	50	40
ROWO 9081638	4.2	4.5	4.5	4.4	26.1	35.9	39.4	57.3	75	65	65	55
ROWO m076CO0003	7.0	7.0	8.0	9.0	9.0	5.0	4.0	0.0	15	5	5	0
ROWO m07MT0003	5.0	4.0	6.0	4.0	12.0	28.5	21.7	50.5	20	10	15	10
SHAR 9081334	2.5	2.5	3.9	4.0	29.9	37.9	41.7	73.9	80	80	80	75
SHAR m022WY0005	6.6	5.2	6.7	7.3	5.6	7.8	12.7	20.1	60	35	30	35
SHAR m015UT9901	5.8	5.0	5.5	6.0	9.2	13.3	15.0	31.5	25	20	10	10
SYAL 9078388	3.6	4.0	4.5	5.7	18.7	25.1	28.5	30.5	90	85	95	90
SYAL m045MT003	3.6	3.0	4.2	4.8	18.3	30.3	33.7	40.5	30	30	30	30
SYOC 9081639	4.6	5.2	6.9	6.5	18.1	16.1	18.6	26.5	85	80	65	30
SYOC m021WY0004	3.8	2.8	4.6	4.4	24.8	40.6	37.5	55.7	90	75	70	65
SYOC m018CO9904	4.0	4.5	4.8	5.4	16.6	22.8	23.7	35.9	90	85	75	70

Conclusion

Several dead plants were dug up and it was observed that the roots of these plants had not penetrated the native soil beyond their soil media plug area. It seems probable that plants whose roots were able to tolerate the low pH and metalliferous surroundings beyond their plug area flourished, while those with roots sensitive to the edaphic contaminates declined.

The accessions that have had good survival and are now putting on substantial growth include:

Pinus ponderosa (Deer Lodge County, MT) Pinus ponderosa (Lawrence County, SD) Ribes cereum (Deer Lodge County, MT) Rosa woodsii (Deer Lodge County, MT) Rosa woodsii (Ravalli County, MT) Shepherdia argentea (Deer Lodge County, MT) Symphoricarpos albus (Deer Lodge County, MT) Symphoricarpos occidentalis (Weston County, WY)

Recommendations

There are obvious limitations and apparent weaknesses in this study. Currently, only one individual plant comprises an experimental unit. This is problematic because high mortality at the plot resulted in replications lacking an experimental unit, thus generating missing values. It is suggested that an experimental unit include five to ten individuals and that the number or replications be decreased. A larger experimental unit would also allow the harvesting of a few individuals for examination of subterranean growth. Secondly, the "local" and "nonlocal" seedlings of each species in this study were assembled from different growers and were not produced using identical cultural techniques. It is important that accessions of each species are produced under the same regimes. Thirdly, the current study lacks a control. A control plot located at a relatively uncontaminated site is needed in order to compare soil effects and the effectiveness of the treatments. It is believed that the installation of Vispore[™] tree mats was beneficial.

References

- Bradshaw. A.D., M.O. Humphreys, and M.S. Johnson. 1978. The value of heavy metal tolerance in the revegetation of metalliferous mine wastes, pp. 311-333. <u>In</u>: Environmental Management of Mineral Wastes. G.T. Goodman and M.J. Chadwick (eds.). Sijthoff and Noordhoff, Alphen aan den Rejn, The Netherlands.
- CDM Federal. 1997. Final Baseline Ecological Risk Assessment, Volume 1. Prepared for the U.S. Environmental Protection Agency, Region VIII, Montana Office. October 1997.

- Dutton, B. 1992, August 27. Old Works Revegetation Project, Planting Trials Survival Analysis. ARCO Report, 11p. Atlantic Richfield Company, Anaconda, MT.
- Eliason, L. 1959, August. Anaconda Mineral Company Memorandum, Tailing Area Tree Planting Status Report. Montana Historical Archives, Boxes 90 and 91, Helena, MT
- Gordon, R. 1984, December. Container Seedling Plots at Anaconda. Anaconda Minerals Company Internal Correspondence, MSE Records Library, Butte, MT.
- Keammerer, Warren R. 1995, July. U.S. District Court, District of Montana, Helena Division. State of Montana vs. ARCO No. cv-83-317-HLN-PGH. Expert Report of Warren Keammerer. July 13, 1995.
- Reclamation Research Unit and Schafer and Associates. 1993. Streambank Tailing and Revegetation Studies, STARS Phase III, Final Report. Montana Department of Health and Environmental Sciences, Helena, MT.
- Reclamation Research Unit. 1997, July. Anaconda Revegetation Treatability Studies, Phase IV: Monitoring and Evaluation, Volume 1. Montana State University, Bozeman, MT 59717-0290. Document No.: ASSS-ARTS-IV-FR-073197.
- Smith, R.A. and A.D. Bradshaw. 1972. Stabilization of toxic mine wastes by the use of tolerant plant populations. Trans. Inst. of Mining and Metallurgy 81:A230-238.

III. STUCKY RIDGE MOTO-X SITE

COMPARATIVE EVALUATION OF GRASSES, FORBS, AND SEED MIXTURES FROM "LOCAL" VERSUS "NON-LOCAL" ORIGINS Moto-X—Stucky Ridge

Introduction

Currently the commercial varieties being utilized at the Anaconda Smelter NPL Site include 'Pryor' slender wheatgrass, 'Sherman' big bluegrass, 'Sodar' streambank wheatgrass, 'Trailhead' basin wildrye, 'Secar' and 'Goldar' bluebunch wheatgrass, 'Rosana' western wheatgrass, 'Critana' thickspike wheatgrass and 'Appar' Lewis flax. Most of these varieties were developed for coal mineland reclamation in the saline, high pH soils found in eastern Montana and Wyoming. This study's objective is to identify and develop metal-tolerant plant varieties that are adapted to the edaphic conditions found at the Anaconda Smelter NPL Site in western Montana and other mine-affected areas with similar climatic and soil characteristics. This investigation is based on the premise that germplasm originating from low pH and metalliferous soils will exhibit significantly better establishment, cover, and biomass production when grown in lime-amended metalliferous soils at the Anaconda Smelter NPL Site.

Methods and Materials

Study Site

The study is located on Stucky Ridge, ~2 mi northeast of Anaconda, Montana, in Deer Lodge County. The legal description and geographic position of the study site are the SW 1/4 of the SW 1/4 of Section 30, Range 11 West, Township 5 North and North 46°09'09"/ West 112°54'30". The study plot occupies 1.5 acres in subpolygon OWSR-013.09, which is part of the Stucky Ridge Remedial Design Unit (RDU) #1 within the Anaconda Regional Water, Waste, and Soils Operable Unit.

RDU #1 encompasses 242 acres of the ~13,000 acres of upland terrestrial vegetation contaminated by emission fallout from the Washoe, as well as the Upper and Lower Works smelters. Concerns identified in the Stucky Ridge RDU include elevated arsenic concentrations in surface soils, barren or sparsely vegetated areas due to low pH and elevated contaminant concentrations, and steep slopes with high erosion potentials (ARCO 2002, May) (table 1). Current and historic use of this area primarily consists of agricultural grazing, recreation, and open space/wildlife habitat.

The plot site is situated on a stream terrace above Lost Creek at an elevation of 5308 feet and covers most of the relatively flat ground on the east end of Stucky Ridge. The vegetation, although sparse, includes scattered groves of quaking aspen, shrublands dominated by Wood's rose, currant species, rubber rabbitbrush, and horsebrush; and grasslands dominated by redtop and basin wildrye. Annual precipitation at the site ranges from 10 to 14 inches with most of the precipitation occurring in the spring. The parent material is alluvium. The soil has a gravelly loam texture and is well drained. The slope at the plot site averages ~5 to 10 percent.

	•				Sat. Paste
Soil Sample Station	Depth	As	Cu	Zn	рН
	inches	mg/kg	mg/kg	mg/kg	s.u.
94S-SR-71	0-2				4.70
94S-SR-71	2-8				4.90
94S-SR-73	0-2				4.30
94S-SR-73	2-8				4.60
99-098A	0-2	495.0	1660.0	419.0	
99-098B	2-6	163.0	1320.0	276.0	
99-098C	0-6				4.20
99-098D	6-12				7.60
99-098E	12-18				7.80
99-099A	0-2	489.0	1370.0	303.0	
99-099B	2-6	95.8	1020.0	245.0	
99-099C	0-6				4.00
99-099D	6-12				7.30
99-099E	12-18				7.70
99-123A	0-2	656.0	1530.0	425.0	
99-123B	2-6	167.0	1530.0	332.0	
99-123C	0-6				4.40
99-123D	6-12				4.80
99-123E	12-18				6.30
99-163A	0-2	537.0	2180.0	493.0	
99-163B	2-6	256.0	1430.0	365.0	
99-163C	0-6				4.00
99-163D	6-12				6.20
99-163E	12-18				

Table 1. Pre-tillage soils data in the proximity of the plot site (ARCO 2002, May).

Soil Treatment

The study plot site was ameliorated along with the rest of treatment area (OWSR-013.09) following the remedial actions specified in the Remedial Action Work Plan/Final Design Report (ARCO 2002, May). The remedy identified for this treatment area was soil tilling to 12 inches with the addition of a neutralizing amendment to ameliorate the low pH soil conditions. Remediation of the area was performed by Jordan Contracting, Inc. and their subcontractors starting in the fall of 2002. According to the work report from Jordan Contracting, Inc. (Bahr 2003, February 18) prior to tillage, many of the erosion rills and gullies were graded using a D8 Dozer and a CAT 330 excavator. The entire treatment area was pre-tilled by Western Reclamation, Inc. with a Rhome™ disc to approximately 12 inches in mid-September. Lime kiln dust, procured from Continental Lime, Inc., was then applied at a rate of ~22.0 tons/acre to neutralize the soil. Four additional passes were made with the Rhome™ disc to a depth of 12 inches to incorporate the lime. Lime incorporation was completed on November 14, 2002.

In the spring of 2003, fertilizer (12% N, $16\%P_2O_5$, 30% K₂O) was applied at a rate of 500 bulk pounds per acre and incorporated to 6 inches using a chisel plow. The tillage area was drill seeded in early May 2003 at a rate of 25 lbs/acre with "Revegetation Mix #1." Table 2 below lists the soil characteristics of pre-tillage soil data points closest to

the study site (northwest portion of treatment area [OWSR-013.09] as stated in the Remedial Action Work Plan/Final Design Report [ARCO 2002, May]).

-	inarysis from the order	,					1
Sample Id.	Sample Description.	pН	As	Cd	Cu	Pb	Zn
		s.u.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GR1	Grass Trial, Rep. 1	8.2	120	1	797	35	174
GR2	Grass Trial, Rep. 2	8.1	117	1	906	34	177
GR3	Grass Trial, Rep. 3	7.9	132	1	833	43	195
GR4	Grass Trial, Rep. 4	8.0	212	2	985	61	228
GDR1	Grass Trial, Rep. 1, Duplicate	7.7	121	1	703	39	153
GDR3	Grass Trial, Rep. 3, Alternate	7.7	178	1	845	57	201
FR1	Forb Trial, Rep. 1	8.0	115	1	774	38	185
FR2	Forb Trial, Rep. 2	7.2	127	2	888	45	182
FR3	Forb Trial, Rep. 3	7.7	153	2	1010	45	220
FR4	Forb Trial, Rep. 4	7.6	127	2	1080	40	210
FD1	Forb Trial, Rep. 1, Duplicate	8.0	91	ND [†]	681	31	170
FD3	Forb Trial, Rep. 3, Duplicate	7.9	106	1	828	33	171
MR1	Seed Mix. Trial, Rep. 1	8.0	39	1	721	6	143
MR2	Seed Mix. Trial, Rep. 2	7.5	367	2	909	97	226
MR3	Seed Mix. Trial, Rep. 3	7.7	39	ND	706	12	161
MR4	Seed Mix. Trial, Rep. 4	7.8	257	2	857	91	209
MDR1	Seed Mix. Trial, Rep. 1, Duplicate	7.4	130	1	925	35	165
MDR3	Seed Mix. Trial, Rep 3, Alternate	8.1	29	ND	525	9	153

Table 2. Post-planting grass, forb/subshrub, and seed mixture trial (0- to 6-inch) composite soil sample analysis from the Stucky Ridge Comparative Evaluation Planting.

† ND: Not detected at the reporting limit.

Post-Treatment Soil Sampling Methods

Soil sampling of the grass, forb/subshrub, and seed mixture trials was completed on June 24, 2003, after planting. The soil samples were analyzed for pH (1:1 saturated paste), and total As, Cd, Cu, Pb, and Zn by Energy Laboratories, Inc. in Billings, Montana. At the grass trial eight randomly selected treatment blocks in each replication were subsampled. The eight (0- to 6-inch, 0- to 15-cm) composite subsamples collected from a replication were combined and mixed to form one representative sample. Duplicate soil samples were taken in replication 1 and alternate soil samples were taken in replication 5. In the forb/subshrub trial, four (0- to 6-inch) subsamples were taken per replication to form one representative sample. Duplicate subsamples to form one representative sample.

were taken per replication to form one representative sample. Duplicate subsamples were taken in replication 1 and alternate subsamples were taken in replication 3.

The arsenic and metal concentrations of the post-planting soil samples were generally moderate with the exception of copper. Copper concentrations within the three trials averaged 832 mg/kg and ranged from 525 mg/kg to 1080 mg/kg. The average copper concentrations in the grass, forb/subshrub, and seed mixture trials were 845 mg/kg, 877 mg/kg, and 774 mg/kg, respectively. The pH of post-planting soil samples were all above neutral, averaging 7.8 and ranging from 7.2 to 8.2.

Planting Design

The study is arranged as three separate trials (grass, forb/subshrub, and seed mixture) each in a Randomized Complete Block Design replicated four times. The three trials are situated adjacent to each other as shown in figure 1. The grass, forb/subshrub, and seed mixture trials are 0.96 acre, 0.44 acre, and 0.14 acre, respectively, with a total plot size of 1.52 acres. Between each replication, as well as between trials, an 8-foot strip of *Elymus trachycaulus* 'Pryor' was planted to minimize edge effect. The seed bed was prepared by DATC Project personnel on April 22, 2003, using a 5-foot box scraper to level the soil. Rocks greater than 6 inches in diameter within the plot boundary were hand-picked. After rock removal, another pass was made with the box scraper and spike-tooth harrow to till out tractor tire compressions.

On May 13, 2003, the seed treatments were planted using a 4-row Kincaid[™] cone drill with 1-ft row spacing and a 0.5-inch planting depth. The seeding rate for the grass and forb/subshrub trials was 50 Pure Live Seeds (PLS) per linear foot of row. The seeding rate for the seed mixture trial was based on a total seeding rate of 50 PLS per square foot. Each component of the mix was calculated as a percentage of the per-square-foot rate.

The seed mixtures were formulated for two distinct applications. An "Upland" blend was designed for sloping areas with generally low water infiltration and to provide wildlife habitat. The "Waste Management Area" (WMA) blend was designed to provide a vegetative cover for areas in which remedial options appear to be limited and their use for containment of large volumes of waste appears logical (EPA, 1995a). The seed mixtures referred to as "Developed" are the seed formulations, utilizing commercially available cultivars, currently specified for use in the Remedial Action Work Plan/Final Design Report 2002. The seed mixture previously referred to as Revegetation Mix #1, planted in the surrounding treatment area, is synonymous with the "Upland Developed" seed mixture. The seed mixtures referred to as "Experimental" are local ecotypes of the same species from mine-impacted lands.

Each treatment block is 8 feet (8 rows) by 25 feet. In the grass and forb/subshrub trials, each treatment block was planted with a single accession. Two exceptions exist due to seed quantity restraints. In all replications of the grass trial, *Pascopyrum smithii* 9081968 was drilled in only 6 rows with *Elymus trachycaulus* 'Pryor' drilled into the remaining 2 rows. In all replications of the forb/subshrub trial, *Eriogonum ovalifolium*

9082098 was drilled into only 4 rows with *Elymus trachycaulus* 'Pryor' drilled into the remaining 4 rows.

As mentioned above, *Elymus trachycaulus* 'Pryor' was drilled in the border strips and also broadcast in the unplanted area south of the forb/subshrub trial. Wooden stakes, spray painted orange and marked with an identification number, were installed in the northeast corner of each treatment block. Lastly, a single-strand, smooth wire fence was installed around the perimeter of the plot to designate plot boundaries and restrict vehicular trespassing. In mid-July and again in mid-September, volunteer Canadian thistle was spot sprayed initially with a 3% solution of 2-4-D Amine and subsequently with a 3% solution of Stinger[™] (Clopyralid) applied with a backpack sprayer.

Seeded Species

The species entries consist of 36 grass accessions representing 9 grass genera, 14 forb accessions representing 5 forb genera, 2 subshrub accessions representing 1 subshrub species, and 4 seed mixtures representing 2 seed mixture formulations (tables 3-8). The 15 total genera tested were selected for inclusion in the study based on results from previous Development of Acid/Heavy Metal-Tolerant Cultivars (DATC) Project studies such as the Initial Evaluation Planting study (Marty 2000, July) and the Greenhouse Comparative Evaluation Planting study (Marty 2001, October).

Each genus tested includes at least one accession originating from metalliferous soil sites in the proximity of the Anaconda Smelter NPL Site, except in one case. Neither of the two *Krascheninnikovia lanata* accessions originated from metalliferous soils. In this report, accessions that originated from metalliferous soils are referred to as "local," whereas accessions originating from undisturbed soils are referred to as "non-local."

Sampling Methods

Seedling density was the growth response variable used to assess performance during the first growing season (2003). Measurements were taken using an 11.8- x 19.7-inch (30- x 50-cm) quadrat frame that was randomly placed at five sample locations within each (8- x 25-ft) treatment block. The quadrat was situated with its long axis perpendicular to the seeded rows so that each sampling measurement included two rows. Seedlings rooted within the quadrat frame were counted. Seeded seedlings, as well as non-seeded seedlings, were counted and recorded separately. Photographs of each treatment block were taken during sampling events. Density data was collected on June 24, 2003, to assess emergence and initial establishment and on August 25, 2003, to assess subsequent establishment and/or die off.

	Comparative Evaluation Plantin	iy.	
Species Id. #	Genus & Species	Accession/Variety	Origin
1	Eriogonum ovalifolium	9082098	Deer Lodge County, MT
2	Eriogonum umbellatum	9082271	Utah
3	Eriogonum umbellatum	9082273	Idaho
4	Krascheninnikovia lantana	Northern Cold Desert Germplasm	Composite from UT & ID
5	Krascheninnikovia lantana	Open Range Germplasm	Composite from MT & WY
6	Penstemon eriantherus	Old Works Germplasm	Deer Lodge County, MT
7	Penstemon eatonii	Richfield Selected	Sevier County, UT
8	Penstemon strictus	'Bandera' 477980	Torrance County, NM
9	Penstemon venustus	Clearwater Selected	Clearwater River area, ID
10	Phacelia hastata	9081632	Deer Lodge County, MT
11	Phacelia hastata	9082275	California
12	Potentilla gracilis	9081679	California
13	Potentilla hippiana	9076274	Deer Lodge County, MT
14	Symphyotrichum chilense	9078675	Deer Lodge County, MT
15	Symphyotrichum chilense	9081678	Colorado
16	Symphyotrichum chilense	9082274	Unknown

 Table 3. Forb and subshrub treatments included in the forb/subshrub trial at the Stucky Ridge Uplands

 Comparative Evaluation Planting.

 Table 4. Grass treatments included in the grass trial at the Stucky Ridge Uplands Comparative Evaluation Planting.

Specie			
s Id. #	Genus & Species	Accession/Variety	Origin
1	Achnatherum hymenoides	9081628	Deer Lodge County, MT
2	Achnatherum hymenoides	9081629	Deer Lodge County, MT
3	Achnatherum hymenoides	'Rimrock'	Yellowstone County, MT
4	Achnatherum hymenoides	'Nezpar'	White Bird, ID
5	Agrostis gigantea	9076276	Deer Lodge County, MT
6	Agrostis gigantea	9081619	Deer Lodge County, MT
7	Agrostis gigantea	9076266	Deer Lodge County, MT
8	Agrostis gigantea	'Streaker'	Illinois
9	Deschampsia cespitosa	9076290	Silver Bow County, MT
10	Deschampsia cespitosa	9082620	California
11	Deschampsia cespitosa	'Nortran'	Alaska
12	Elymus trachycaulus	9081620	Deer Lodge County, MT
13	Elymus trachycaulus	9081621	Deer Lodge County, MT
14	Elymus trachycaulus	'Pryor'	Carbon County, MT
15	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada
16	Elymus trachycaulus	'San Luis'	Rio Grande County, CO
17	Leymus cinereus	9081624	Deer Lodge County, MT
18	Leymus cinereus	9081625	Deer Lodge County, MT
19	Leymus cinereus	Washoe Germplasm	Deer Lodge County, MT

Species			
ld. #	Genus & Species	Accession/Variety	Origin
20	Leymus cinereus	'Magnar'	Saskatchewan, Canada
21	Leymus cinereus	'Trailhead'	Musselshell County, MT
22	Pascopyrum smithii	9081968 [†]	Deer Lodge County, MT
23	Pascopyrum smithii	'Rodan'	Morton County, ND
24	Pascopyrum smithii	'Rosana'	Rosebud County, MT
25	Poa alpina	9016273	Gallatin County, MT
26	Poa alpina	9082259	British Columbia, Canada
27	Poa alpina	'Gruening'	France/Switzerland
28	Poa alpina	9082266	Unknown
29	Poa secunda (ampla)	9081633	Deer Lodge County, MT
30	Poa secunda (ampla)	'Sherman'	Sherman County, OR
31	Poa secunda (canbyi)	'Canbar'	Columbia County, WA
32	Poa species	9081635	Deer Lodge County, MT
33	Poa species	9081322	Lewis & Clark County, MT
34	Pseudoroegneria spicata	9081636	Deer Lodge County, MT
35	Pseudoroegneria spicata	'Goldar'	Asotin County, WA
36	Elymus wawawaiensis	'Secar'	Washington

Table 4. Grass treatments included in the grass trial at the Stucky Ridge Uplands Comparative Evaluation Planting--Continued.

Table 5. Upland Areas - Experimental Seed Mix Formulation.

Species								
ld. #	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage				
1	<u>GRASSES:</u>							
	Achnatherum hymenoides	9081629	Deer Lodge County, MT	15.0				
	Elymus trachycaulus	9081620	Deer Lodge County, MT	15.0				
	Leymus cinereus	Washoe Germ.	Deer Lodge County, MT	15.0				
	Pascopyrum smithii 9081968		Deer Lodge County, MT	5.0				
	Poa alpina 90816273		Gallatin County, MT	10.0				
	Poa secunda (ampla)	9081633	Deer Lodge County, MT	15.0				
	Pseudoroegneria spicata	9081636	Deer Lodge County, MT	15.0				
	FORBS:							
	Aster chilensis 9078675		Deer Lodge County, MT	2.5				
	Penstemon eriantherus	Old Works Germ.	Deer Lodge County, MT	5.0				
	Potentilla hippiana	9076274	Silverbow County, MT	2.5				

Table 6. Upland Areas - Developed Seed Mix Formulation.

Species Id. #	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
2	GRASSES:	· · ·	·	· · · · ·
	Achnatherum hymenoides	'Nezpar'	White Bird, ID	5.0
	Elymus lanceolatus	'Critana'	Hill County, MT	15.0
	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada	15.0
	Festuca ovina	'Covar'	Central Turkey	10.0
	Leymus cinereus	'Magnar'	Saskatchewan, Canada	15.0
	Pascopyrum smithii	'Rosana'	Rosebud County, MT	10.0
	Poa secunda (ampla)	'Sherman'	Sherman County, OR	14.5
	Pseudoroegneria spicata	'Goldar'	Asotin County, WA	10.0
	FORBS:	• •	· · · · ·	
	Achillea lanulosa	Great Northern	Flathead County, MT	2.5
	Artemisia frigida	9082258	Unknown	0.5
	Linum lewisii	'Appar'	Custer County, SD	2.5

Species				
ld. #	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
3	GRASSES:			
	Agrostis gigantea	9076276	Deer Lodge County, MT	15
	Deschampsia cespitosa	9076290	Silverbow County, MT	10
	Elymus trachycaulus 9081620 Deer		Deer Lodge County, MT	15
	Leymus cinereus	Washoe Germ.	Deer Lodge County, MT	15
	Pascopyrum smithii	9081968	Deer Lodge County, MT	5
	Poa secunda (ampla)	9081633	Deer Lodge County, MT	10
	Stipa comata 9078314 Deer Lodge Cou		Deer Lodge County, MT	10
	FORBS:		•	
	Aster chilensis	9078675	Deer Lodge County, MT	10

Table 7. Waste Management Areas - Experimental Seed Mix Formulation

Table 8. Waste Management Areas - Developed Seed Mix Formulation.

Species				Seed Mixture Percentage				
ld. #	Genus & Species	Accession/Variety	Origin	-				
4	<u>GRASSES:</u>	GRASSES:						
	Agropyrum intermedium	'Greenar'	Former USSR	10				
	Bromus inermis	'Manchar'	Manchuria, China	15				
	Elymus lanceolatus	'Critana'	Hill County, MT	10				
	Elymus trachycaulus	'Revenue' Saskatchewan, Car		15				
	Leymus cinereus	'Magnar'	Saskatchewan, Canada	15				
	Poa secumda (ampla)	'Sherman'	Sherman County, OR	10				
	Stipa viridula 9082255 Washington		Washington	10				
	FORBS:							
	Medicago sativa	'Ladak'	Kashmir, India	15				

Data was collected on June 30/July 1 and again on September 22-23, 2004 and on August 29-30, 2005. During the early summer sampling, four randomly located frames (30 x 50 cm) were utilized, from which average plant height was measured, percentage stand was estimated, and ocular estimates of plant vigor were made. Random samples were located along rows 2-3 and 6-7 to avoid edge-effect error. In the fall the same random frame locations were used to estimate percentage stand, plant vigor, plant height (2005) and sample biomass production. If combined biomass samples from all four replications did not yield at least 10 grams of material, additional clipping was done so that there would be enough biomass for tissue analysis. All biomass samples were oven dried at 60° C (14° F) for 24 hours, weighed, and later cut into small pieces and packaged in plastic zip-lock bags for delivery to Energy Laboratories, Inc. for tissue analysis.

Results and Discussion

Grass Trial (2003)

The grand mean of seedling density data collected on June 24, 2003, in the grass trial was 5.4 seedlings/ft² and ranged from 15.0 to 0.3 seedlings/ft² (tables 9 and 10). Three accessions of *Elymus trachycaulus* ('Pryor', 9081620, and 'San Luis') had the greatest seedling densities at 15.0, 14.1, and 13.6, respectively. These results are not surprising as *Elymus trachycaulus* is recognized for its excellent seedling vigor and quick establishment and growth on a variety of soil types. Density data collected 2 months later on August 25, 2003, indicated that these three *E. trachycaulus* accessions had significantly greater densities than 86% of the accessions tested. The locally collected

E. trachycaulus 9081620, however, did not perform significantly better than 'Pryor' or 'San Luis'.

Pascopyrum smithii ('Rosana' and 9081968) had 13.3 and 12.7 seedlings/ft², respectively, on June 24 (table 9). *P. smithii* is an aggressively rhizomatous, long-lived grass known to be adapted to a wide range of soil types from acidic to basic. Seedling density data collected on August 25 indicated that the above *P. smithii* accessions also had significantly greater densities than 86% of the accessions tested including *P. smithii* 'Rodan'.

Seedling density data from the June evaluation indicated that *Leymus cinereus* 9081624 had significantly greater density (7.8 seedlings/ft²) than 80.5% of the accessions including the four other *Leymus cinereus* accessions (table 9). However, by the August evaluation *L. cinereus* 9081624 was not significantly better than *L. cinereus* 'Trailhead' (table 10). This accession's success is somewhat unexpected due to the species' poor to fair seedling vigor and slow seedling establishment. This species has been reported to be tolerant of elevated arsenic and heavy metal concentrations (Munshower 1998, September).

The *Pseudoroegneria spicata* accessions ('Goldar' and 9081636) also performed in the top third of the field in June and August (tables 9 and 10). In August, both accessions mentioned above had significantly better seedling densities than >50% of the accessions. The local accession *P. spicata* 9081636 did not perform significantly better than *P. spicata* 'Goldar'. *P. spicata* is reported to have fair seedling vigor and establishment with tolerances to acidic to slightly alkaline soils.

The grand mean for the August 25, 2003, evaluation is 4.3 seedlings/ft² and ranged from 14.5 to 0.31 seedlings/ft² (table 10). This indicates that seedling density declined by 1.1 seedlings/ft² or 20.4% between the June and August evaluations

Grass Trials (2004)

Based on the number of new seedlings found in 2004, there were many seeds that did not germinate during the 2003 growing season. The most notable species were *Achnatherum hymenoides* (Indian ricegrass), *Leymus cinereus* (basin wildrye), and *Pascopyrum smithii* (western wheatgrass). Indian ricegrass has a hard seed coat and should normally be dormant-seeded in the fall, but the basin wildrye and western wheatgrass may have delayed germination because of the combination of a relatively late spring planting date and subsequent hot, dry weather. The increase in new seedlings could be expressed in relatively higher percentage stands, but was not revealed in the biomass production, as seedlings were still quite small at the time of the late summer biomass sampling.

At the early summer sampling (6/30/04), the top accession, by a significant amount, was 9081620 slender wheatgrass (*Elymus trachycaulus*) with a 61.3% stand, 54.4 cm average height, and a 3.4 vigor rating. Other 'local source' accessions that exhibited

good survival, stand, and vigor included 9081633 big bluegrass (*Poa secunda*), 9081621 slender wheatgrass (*Elymus trachycaulus*), 9081621 western wheatgrass (*Pascopyrum smithii*), 9081624 basin wildrye (*Leymus cinereus*), 9081628 Indian ricegrass (*Achnatherum hymenoides*), 9081635 Canby bluegrass (*Poa secunda*), and 9081636 bluebunch wheatgrass (*Pseudoroegneria spicata*) (see table 11 and 12).

Toward the end of the growing season (9/22/04 sampling date), there was very little change in the top performing accessions (table 13). Of the top 16 accessions in the early summer evaluation, 15 were still ranked as the top performing accessions. The 9081620 slender wheatgrass remained as the top performer by a significant margin. Of the 'local source' accessions, 9081633 big bluegrass, 9081621 slender wheatgrass, 9081968 western wheatgrass, 9081635 Canby bluegrass, 9081624 basin wildrye, and 9081636 bluebunch wheatgrass all show promise, and are among those being increased at the Bridger PMC for potential release to the commercial seed industry. Fall biomass production was relatively low, with only 9081620 slender wheatgrass producing more than 706 kg/ha (2,083 kg/ha) (table 14). Some of the low production can be attributed to the number of new seedlings emerging in 2004. Also 2-year-old plants were often spindly because of the harsh edaphic conditions. Toward the end of the growing season (9/22/04 sampling date), there was very little change in the top performing accessions (table 13). Of the top 16 accessions in the early summer evaluation, 15 were still ranked as the top performing accessions. The 9081620 slender wheatgrass remained as the top performer by a significant margin. Of the 'local source' accessions, 9081633 big bluegrass, 9081621 slender wheatgrass, 9081968 western wheatgrass, 9081635 Canby bluegrass, 9081624 basin wildrye, and 9081636 bluebunch wheatgrass all show promise, and are among those being increased at the Bridger PMC for potential release to the commercial seed industry. Fall biomass production was relatively low, with only 9081620 slender wheatgrass producing more than 706 kg/ha (2,083 kg/ha) (table 14). Some of the low production can be attributed to the number of new seedlings emerging in 2004. Also 2-year-old plants were often spindly because of the harsh edaphic conditions.

Grass Trials (2005)

The grasses were evaluated and sampled on August 30, 2005. Although there has been some mortality, the top performers of 2003/2004 continue to exhibit their ability to withstand the harsh edaphic conditions of this site. Slender wheatgrass (9081620) is the top performer with an average stand of 75% (table 15), average plant height of 87.5 cm (table 16), and average biomass production of 8,211 kg/ha (table 17). Other superior accessions include 9081633 big bluegrass (stand-43.4%, biomass-2,506 kg/ha), 9081621 slender wheatgrass (stand-34.1%, biomass-4,100 kg/ha), 9081635 bluegrass (stand-25.9%, biomass-906 kg/ha), 9081968 western wheatgrass (stand-21.9%, biomass-800 kg/ha), and 9081624 basin wildrye (stand-22.2%, biomass-1,844 kg/ha). The released cultivars, Secar Snake River wheatgrass, Pryor slender wheatgrass, San Luis slender wheatgrass, Rosana western wheatgrass, and Trailhead basin wildrye were among the top performers; but, in most cases, performances were slightly less than their indigenous counterparts.

	Grass Trial			Rep 1	Rep 2	Not to So
4 ACHY Nezpar	16 ELTR San Luis	30 POSE Sherman	20 LECI Magnar	10 PHHA 9081632	8 PEST Bandera	
24 PASM Rosana	32 POSP 9081635	23 PPSM Lodorm	36 ELNA Secar	12 POGI 9081679	5 KRLA Op.Range	NT
19 LECI Washoe	22 PASM 9081968	29 POSE 9081633	11 DECE Nortran	1 EROV 9082098	4 KRLA NCD	N 🔶
28 POAL 1858	2 ACHY 9081629	35 PSSP Goldar	18 LECI 9081625	14 SYCH 9078675	15 SYCH 9081678	
26 POAL 01-13-1	15 ELTR Revenue	32 POSP 9081635	10 DECE 13970176	16 SYCH 5255-RS	9 PEVE Clearwater	
21 LECI Trailhead	36 ELWA Secar	7 AGGI 9076266	8 AGGI Streaker	6 PEER Old Works	1 EROV 9082098	
16 ELTR San Luis	13 ELTR 9081621	21 LECI Trailhead	4 ACHY Nezpar	4 KRLA NCD	6 PEER Old Works	
25 POAL 9016273	1 ACHY 9081628	5 AGGI 9076276	30 POSE Sherman	9 PEVE Clearwater	7 PEEA Richfield	
11 DECE Nortran	6 AGGI 9081619	1 ACHY 9081628	35 PSSP Goldar	7 PEEA Richfield	3 ERUM 01-206-1	
27 POAL Gruening	26 POAL 01-13-1	26 POAL 01-13-1	23 PASM Rodan	11 PHHA 9003	12 POGR 9081679	
14 ELTR Pryor	3 ACHY Rimrock	3 ACHY Rimrock	16 ELTR San Luis	3 ERUM 01-206-1	11 PHHA 9003	
10 DECE 13970176	19 LECI Washoe	27 POAL Gruening	25 POAL 9016273	15 SYCH 9081678	10 PHHA 9081632	
3 ACHY Rimrock	12 ELTR 9081620	13 ELTR 9081621	29 POSE 9081633	8 PEST Bandera	2 ERUM 450	
12 ELTR 9081620	27 POAL Gruening	34 PSSP 9081636	12 ELTR 9081620	13 POHI 9076274	13 POHI 9076274	
30 POSE Sherman	17 LECI 9081624	10 DECE 13970176	9 DECE 9076290	5 KRLA Op.Range	16 SYCH 5255-RS	
17 LECI 9081624	5 AGGI 9076276	15 ELTR Revenue	27 POAL Gruening	2 ERUM 450	14 SYCH 9078675	
36 ELWA Secar	30 POSE Sherman	18 LECI 9081625	6 AGGI 9081619	12 POGI 9081679	11 PHHA 9003	
7 AGGI 9076266	10 DECE 13970176	12 ELTR 9081620	5 AGGI 9076276	9 PEVE Clearwater	10 PHHA 9081632	Forb/Subshrut
22 PASM 9081968	11 DECE Nortran	25 POAL 9016273	13 ELTR 9081621	5 KRLA Op.Range	5 KRLA Op.Range	
6 AGGI 9081619	34 PSSP 9081636	2 ACHY 9081629	32 POSP 9081635	4 KRLA NCD	13 POHI 9076274	Trial
3 AGGI Streaker	18 LECI 9081625	8 AGGI Streaker	2 ACHY 9081629	16 SYCH 5255-RS	6 PEER Old Works	
13 ELTR 9081621	8 AGGI Streaker	16 ELTR San Luis	33 POSP 9081322	13 POHI 9076274	8 PEST Bandera	
29 POSE 9081633	33 POSP 9081322	22 PASM 9081968	26 POAL 01-13-1	10 PHHA 9081632	15 SYCH 9081678	
18 LECI 9081625	21 LECI Trailhead	11 DECE Nortran	7 AGGI 9076266	15 SYCH 9081678	7 PEEA Richfield	
33 POSP 9081322	29 POSE 9081633	4 ACHY Nezpar	15 ELTR Revenue	11 PHHA 9003	4 KRLA NCD	
15 ELTR Revenue	9 DECE 9076290	33 POSP 9081322	22 PASM 9081968	8 PEST Bandera	12 POGR 9081679	
35 PSSP Goldar	14 ELTR Pryor	28 POAL 1858	28 POAL 1858	2 ERUM 450	2 ERUM 450	
1 ACHY 9081628	23 PASM Rodan	24 PASM Rosana	31 POSE Canbar	1 EROV 9082098	9 PEVE Clearwater	
9 DECE 9076290	28 POAL 1858	20 LECI Magnar	14 ELTR Pryor	6 PEER Old Works	1 EROV 9082098	
31 POSE Canbar	24 PASM Rosana	36 ELWA Secar	24 PASM Rosana	3 ERUM 01-206-1	14 SYCH 9078675	
34 PSSP 9081636	31 POSE Canbar	6 AGGI 9081619	19 LECI Washoe	7 PEEA Richfield	16 SYCH 5255-RS	
32 POSP 9081635	4 ACHY Nezpar	31 POSE Canbar	34 PSSP 9081636	14 SYCH 9078675	3 ERUM 01-206-1	
2 ACHY 9081629	35 PSSP Goldar	14 ELTR Pryor	17 LECI 9081624	Rep 3	Rep 4	
5 AGGI 9076276	20 LECI Magnar	17 LECI 9081624	3 ACHY Rimrock		·	
23 PASM Rodan	7 AGGI 9076266	9 DECE 9076290	1 ACHY 9081628			
20 LECI Magnar	25 POAL 9016273	19 LECI Washoe	21 LECI Trailhead			
4 WMA Dev	3 WMA Exp	4 WMA Dev	1 UP Exp			
1 UP Exp	2 UP Dev	1 UP Exp	4 WMA Dev			
2 UP Dev	1 UP Exp	3 WMA Exp	3 WMA Exp			
3 WMA Exp	4 WMA Dev	2 UP Dev	2 UP Dev			
Rep 1	Rep 2	Rep.3 xture Trial	Rep 4			

Figure 1. Layout of the grass, forb/subshrub, and seed mixture trials at the Stucky Ridge Comparative Evaluation Planting.

Genus & Species	Accession	Species ID	Density/ft ²	Mean Separation
Elymus trachycaulus	'Pryor'	14	14.97	A*
Elymus trachycaulus	9081620	12	14.09	AB
Elymus trachycaulus	'San Luis'	16	13.63	AB
Pascopyrum smithii	'Rosana'	24	13.31	AB
Pascopyrum smithii	9081968	22	12.72	AB
Pseudoroegneria spicata	9081636	34	11.75	BC
Leymus cinereus	9081624	17	11.25	BC
Elymus wawawaiensis	'Secar'	36	9.47	CD
Elymus trachycaulus	9081621	13	9.34	CD
Pseudoroegneria spicata	'Goldar'	35	9.09	CDE
Achnatherum hymenoides	'Nezpar'	4	8.94	CDEF
Elymus trachycaulus	'Revenue'	15	8.75	CDEFG
Poa secunda	9081633	29	7.13	DEFG
Leymus cinereus	'Magnar'	20	6.13	EFGH
Leymus cinereus	'Trailhead'	21	5.81	FGH
Pascopyrum smithii	'Rodan'	23	5.66	GH
Leymus cinereus	9081625	18	3.84	HI
Leymus cinereus	Washoe Germplasm	19	3.66	HIJ
Poa secunda	'Sherman'	30	3.13	HIJ
Agrostis gigantea	9081619	6	2.38	IJ
Poa alpine	9016273	25	2.34	IJ
Poa species	9081635	32	1.88	IJ
Agrostis gigantea	9076276	5	1.75	IJ
Poa alpine	9082266	28	1.72	IJ
Poa species	9081322	33	1.31	IJ
Achnatherum hymenoides	'Rimrock'	3	1.28	IJ
Deschampsia cespitosa	9076290	9	1.28	IJ
Poa secunda	'Canbar'	31	1.22	IJ
Deschampsia cespitosa	'Nortran'	11	1.00	IJ
Agrostis gigantea	9076266	7	0.81	IJ
Achnatherum hymenoides	9081629	2	0.78	IJ
Agrostis gigantea	'Streaker'	8	0.75	IJ
Poa alpine	9082259	26	0.66	IJ
Achnatherum hymenoides	9081628	1	0.59	IJ
Deschampsia cespitosa	9082260	10	0.56	IJ
Poa alpine	'Gruening'	27	0.34	J

 Table 9. Density (seedlings per square foot) sampled on June 24, 2003, at the Stucky Ridge Comparative Evaluation Planting grass trial.

* Means followed by the same letter are not significantly different at the 0.05 significance level using the Duncan's Multiple Range Test.

 Table 10.
 Density (seedlings per square foot) sampled on August 25, 2003, at the Stucky Ridge Comparative Evaluation Planting grass trial.

Genus & Species	Accession	Species ID	Density/ft ²	Mean Separation
i		·		
Elymus trachycaulus	9081620	12	14.47	A*
Elymus trachycaulus	'San Luis'	16	13.44	А
Elymus trachycaulus	'Pryor'	14	12.13	А
Pascopyrum smithii	'Rosana'	24	12.00	А
Pascopyrum smithii	9081968	22	11.59	А
Elymus trachycaulus	'Revenue'	15	8.38	В
Leymus cinereus	9081624	17	7.81	BC
Pseudoroegneria spicata	'Goldar'	35	7.28	BC
Pseudoroegneria spicata	9081636	34	7.16	BC
Elymus wawawaiensis	'Secar'	36	6.56	BC
Achnatherum hymenoides	'Nezpar'	4	6.53	BC
Elymus trachycaulus	9081621	13	6.09	BC
Pascopyrum smithii	'Rodan'	23	5.75	BCD
Poa secunda	9081633	29	5.16	CDE
Leymus cinereus	'Trailhead'	21	4.91	CDE
Leymus cinereus	'Magnar'	20	3.00	DEF
Leymus cinereus	9081625	18	2.44	EF
Poa secunda	'Sherman'	30	2.34	EF
Agrostis gigantea	9081619	6	2.28	EF
Leymus cinereus	Washoe Germplasm	19	2.16	EF
Agrostis gigantea	9076276	5	1.47	F
Poa alpine	9082266	28	1.25	F
Poa alpine	9082259	26	1.03	F
Agrostis gigantea	9076266	7	0.97	F
Achnatherum hymenoides	'Rimrock'	3	0.91	F
Poa alpine	9016273	25	0.91	F
Poa species	9081635	32	0.91	F
Deschampsia cespitosa	'Nortran'	11	0.88	F
Poa species	9081322	33	0.72	F
Achnatherum hymenoides	9081628	1	0.59	F
Poa alpine	'Gruening'	27	0.53	F
Poa secunda	'Canbar'	31	0.47	F
Deschampsia cespitosa	9076290	9	0.44	F
Deschampsia cespitosa	9082260	10	0.38	F
Agrostis gigantea	'Streaker'	8	0.34	F
Achnatherum hymenoides	9081629	2	0.31	F

* Means followed by the same letter are not significantly different at the 0.05 significance level using the Duncan's Multiple Range Test.

C_{opus} $\mathcal{C}_{\text{opus}}$	Accession	Stand	Vigor
Genus & Species	Accession	Stand	Vigor
		%	19
Elymus trachycaulus	9081620	61.3 a*	3.4
Achnatherum hymenoides	Rimrock	31.3 b	4.8
Poa secunda	9081633	31.3 b	3.3
Elymus trachycaulus	9081621	28.4 bc	4.8
Elymus trachycaulus	Pryor	26.9 bcd	4.8
Pascopyrum smithii	9081968	26.7 bcd	4.9
Achnatherum hymenoides	Nezpar	25.3 bcde	5
Leymus cinereus	9081624	20.8 bcdef	4.4
Elymus wawawaiensis	Secar	20 bcdefg	4.6
Elymus trachycaulus	Revenue	19.7 cdefg	4.8
Elymus trachycaulus	San Luis	18.6 cdefgh	4.8
Achnatherum hymenoides	9081628	18.3 cdefgh	5.6
Pascopyrum smithii	Rosana	16.9 defghi	4.75
Leymus cinereus	Trailhead	15.1 efghij	4.8
Poa secunda	9081635	15 efghij	3.3
Pseudoroegneria spicata	9081636	14.5 efghijk	5.3
Leymus cinereus	Washoe	12.8 fghijkl	5
Leymus cinereus	Magnar	12.2 fghijkl	5.3
Pascopyrum smithii	Rodan	11.8 fghijklm	5.3
Agrostis gigantea	9081619	10.7 fghijklm	3.2
Leymus cinereus	9081625	10.1 fghijklm	5.5
Pseudoroegneria spicata	Goldar	10 fghijklm	5
Achnatherum hymenoides	9081629	8.6 ghijklm	5.7
Agrostis gigantea	9076276	8.1 hijklm	2.6
Poa secunda	Sherman	6.2 ijklm	4.8
Poa alpina	1—131	4.1 jklm	3.3
, Deschampsia cespitosa	9076290	4 jklm	4.2
Poa secunda	9081322	3.6 klm	4.3
Poa alpina	9016273	3.3 klm	4.6
Agrostis gigantea	9076266	3.1 klm	2.5
Poa alpina	1858	1.4 lm	4.5
Deschampsia cespitosa	Nortran	0.6 m	2.1
Poa alpina	Gruening	0.5 m	4
Agrostis gigantea	Streaker	0.4 m	5.2
Poa secunda	Canbar	0.4 m	6.2
Deschampsia cespitosa	13970176	0.2 m	5.3

Table 11. Percentage **stand and vigor** of grass trials on Stucky Ridge Plots (evaluated **6/30/04**).

Genus & Species	Accession	Height
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm
Elymus trachycaulus	9081620	54.4 a*
Elymus trachycaulus	9081621	34.2 c
Agrostis gigantea	9076276	33.3 cd
Agrostis gigantea	9081619	27.1 cde
Poa secunda	9081633	26.5 cdef
Elymus wawawaiensis	Secar	24 defg
Poa secunda	9081635	23.3 efgh
Pseudoroegneria spicata	Goldar	22.5 efghi
Agrostis gigantea	9076266	21 efghij
Elymus trachycaulus	Pryor	18.5 efghijk
Leymus cinereus	9081624	17.9 efghijkl
Poa secunda	9081322	17.5 fghijkl
Achnatherum hymenoides	Nezpar	16.9 ghijklm
Leymus cinereus	Trailhead	16.1 ghijklmn
Elymus trachycaulus	San Luis	14.5 hijklmno
Deschampsia cespitosa	9076290	14.5 hijklmno
Elymus trachycaulus	Revenue	14.3 hijklmno
Pascopyrum smithii	Rosana	13.5 ijklmno
Achnatherum hymenoides	Rimrock	13 jklmnop
Leymus cinereus	Magnar	12.8 jklmnop
Leymus cinereus	Washoe	12.5 jklmnop
Pascopyrum smithii	Rodan	12.3 jklmnop
Pseudoroegneria spicata	9081636	12 jklmnop
Pascopyrum smithii	9081968	11.3 klmnop
Leymus cinereus	9081625	10.6 klmnop
Agrostis gigantea	Streaker	10.3 klmnop
Achnatherum hymenoides	9081628	9.1 Imnop
Poa alpine	113—1	8.1 mnop
Achnatherum hymenoides	9081629	7.6 mnop
Deschampsia cespitosa	13970176	7 nop
Poa secunda	Sherman	6.8 nop
Poa secunda	Canbar	6.3 op
Deschampsia cespitosa	Nortran	6 op
Poa alpina	9016273	5.8 op
Poa alpina	Gruening	4.5 p
Poa alpina	1858	3.9 p

Table 12. Average plant height of grasses in Stucky Ridge plots (measured 6/30/04).

5122104).				+1
Genus & Species	Accession		Stand	Vigor
			%	1—9
Elymus trachycaulus	9081620	61.3 a	l*	1.8
Poa secunda	9081633	37.2	С	2.4
Elymus trachycaulus	9081621		cd	2.7
Pascopyrum smithii	9081968	28.4	cde	4
Elymus trachycaulus	Pryor	27.5	cde	4.6
Pascopyrum smithii	Rosana	26.3	de	3.6
Achnatherum hymenoides	Rimrock	24.1	def	4.2
Poa sp.	9081635	24.1	def	2.8
Elymus trachycaulus	Revenue	23.8	defg	4.3
Leymus cinereus	9081624	22.8	defgh	3.6
Leymus cinereus	Trailhead	20	defghi	4
Elymus wawawiensis	Secar	19.2	defghi	4
Elymus trachycaulus	San Luis	19.1	defghi	4.4
Achnatherum hymenoides	Nezpar	18.4	efghij	4.1
Pseudoroegneria spicata	9081636	17.9	efghij	3.8
Agrostis gigantea	9081619	17.8	efghij	2.1
Pascopyrum smithii	Rodan	16.6	fghijk	4.5
Agrostis gigantea	9076276	15.9	fghijk	2.7
Achnatherum hymenoides	9081628	14.4	ghijkl	4.9
Leymus cinereus	Washoe	14.1	ghijkl	4.6
Leymus cinereus	Magnar	13.4	ghijkl	4.7
Pseudoroegneria spicata	Goldar	13.4	ghijkl	4.1
Poa secunda	Sherman	12.2	hijklm	4.1
Poa sp.	9081322	11.9	ijklm	2.9
Leymus cinereus	9081625	11.6	ijklmn	4.1
Achnatherum hymenoides	9081629	11.3	ijklmno	5.4
Poa alpina	01-13-1	8.4	jklmnop	3.6
Agrostis gigantea	9076266	7.8	jklmnop	2.1
Dechampsia cespitosa	9076290	6.3	klmnop	2.8
Poa alpina	9016273	5.2	Imnop	3.6
Poa alpina	1858	4.4	Imnop	3.6
Agrostis gigantea	Streaker	1.9	mnop	4
Dechampsia cespitosa	13970176	1.9	mnop	3.3
Poa alpina	Gruening	1.1	ор	3.3
Dechampsia cespitosa	Nortran	0.4	ор	3
Poa secunda	Canbar	0	ор	9

Table 13. Percentage **stand and vigor** of grasses in Stucky Ridge plots (evaluated **9/22/04**).

Genus & Species	Accession	Biomass
		kg/ha
Elymus trachycaulus	9081620	2,083 a*
		*
Agrostis gigantea	9081619	706 cd 544 cde
Elymus trachycaulus	9081621	
Poa secunda	9081633	408 cdef
Elymus trachycaulus	Pryor	386 cdef
Elymus wawawiensis	Secar	346 def
Leymus cinereus	9081624	216 ef
Leymus cinereus	Trailhead	192 ef
Elymus trachycaulus	Revenue	172 ef
Leymus cinereus	Washoe	148 ef
Agrostis gigantea	9076276	148 ef
Poa secunda	Sherman	115 ef
Elymus trachycaulus	San Luis	100 f
Poa sp.	9081635	100 f
Dechampsia cespitosa	9076290	99 f
Pseudoroegneria spicata	9081636	97 f
Pascopyrum smithii	Rosana	95 f
Achnatherum hymenoides	Rimrock	84 f
Leymus cinereus	9081625	52 f
Pascopyrum smithii	Rodan	45 f
Pseudoroegneria spicata	Goldar	43 f
Poa sp.	9081322	34 f
Agrostis gigantea	9076266	29 f
Poa alpina	01-13-1	14 f
Pascopyrum smithii	9081968	11 f
Achnatherum hymenoides	Nezpar	9 f
Dechampsia cespitosa	13970176	8 f
Poa alpina	9016273	7 f
Achnatherum hymenoides	9081629	4 f
Achnatherum hymenoides	9081628	4 f
Leymus cinereus	Magnar	3 f
Poa alpina	1858	2 f
Poa alpina	Gruening	2 f
Dechampsia cespitosa	Nortran	1 f
Agrostis gigantea	Streaker	tr f
Poa secunda	Canbar	0 f

Table 14. Biomass production of grasses in Stucky Ridge Trials (clipped 9/22/04).

Table15.	Percentage stand and	vigor o	of grass	trials on	Stucky	Ridge	Plots (e	valuated
	8/30/05).	-	-		-	-		

Genus & Species	Accession	Stand	Vigor
		%	19
Elymus trachycaulus	9081620	75.0 a*	2.1
Poa secunda	9081633	43.4 b	2.1
Elymus trachycaulus	9081621	34.1 bc	2.7
Poa secunda	9081635	25.9 cd	3.3
Elymus trachycaulus	Pryor	23.1 cde	5.3
Leymus cinereus	9081624	22.2 cdef	3.8
Pascopyrum smithii	9081968	21.9 defg	4.5
Elymus wawiensis	Secar	21.6 defg	4.3
Elymus trachycaulus	San Luis	20.9 defgh	4.6
Pascopyrum smithii	Rosana	20.6 defgh	4.7
Leymus cinereus	Trailhead	16.2 defghi	4.3
Pascopyrum smithii	Rodan	16.2 defghi	5.0
Achnatherum hymenoides	9081628	14.1 defghij	5.3
Achnatherum hymenoides	Rimrock	14.1 defghij	4.5
Leymus cinereus	9081625	13.8 defghij	5.5
Pseudoroegneria spicata	9081636	13.8 defghij	4.5
Agrostis gigantea	9081619	13.4 efghijk	3.2
Leymus cinereus	Washoe	13.4 efghijk	4.8
Agrostis gigantea	9076276	13.1 efghijk	3.7
Poa secunda	Sherman	12.5 efghijkl	4.0
Achnatherum hymenoides	Nezpar	11.9 efghijklm	4.6
Elymus trachycaulus	Revenue	11.9 efghijklm	5.4
Pseudoroegneria spicata	Goldar	11.1 efghijklm	4.6
Leymus cinereus	Magnar	10.9 fghijklm	5.2
Deschampsia cespitosa	9076290	10.6 fghijklm	3.9
Poa secunda	9081322	10.0 ghijklm	4.2
Agrostis gigantea	9076266	9.0 hijklm	4.0
Achnatherum hymenoides	9081629	6.4 ijklm	5.7
Poa alpina	01-13-1	3.9 jklm	5.0
Poa alpina	1858	3.6 jklm	5.3
, Poa alpina	9016273	3.0 jklm	3.8
, Deschampsia cespitosa	Nortran	1.6 klm	3.8
Deschampsia cespitosa	13970176	0.9 Im	3.8
Poa alpina	Gruening	0.8 Im	1.5
Agrostis giganteus	Streaker	0.4 m	1.5
Poa secunda	Canbar	0.1 m	8.0

Genus & Species	Accession	Height		
		(cm)		
Elymus trachycaulus	9081620	87.5 a*		
Elymus trachycaulus	9081621	76.3 a		
Poa secunda	9081633	59.0 b		
Leymus cinereus	9081624	58.0 bc		
Elymus trachycaulus	Pryor	47.0 bcd		
Elymus wawawiensis	Secar	46.5 bcde		
Elymus trachycaulus	San Luis	46.3 bcde		
Poa secunda	9081635	45.6 bcdef		
Leymus cinereus	9081625	44.0 bcdef		
Agrostis giganteus	9081619	43.8 bcdef		
Leymus cinereus	Trailhead	42.9 cdefg		
Achnatherum hymenoides	Rimrock	39.5 defg		
Elymus trachycaulus	Revenue	36.9 defgh		
Poa secunda	9081322	36.9 defgh		
Leymus cinereus	Washoe	36.1 defgh		
Agrostis giganteus	9076276	35.0 defgh		
Achnatherum hymenoides	Nezpar	33.4 defgh		
Pseudoroegneria spicata	Goldar	33.1 defgh		
Pseudoroegneria spicata	9081636	31.5 efgh		
Leymus cinereus	Magnar	30.9 fghi		
Poa secunda	Sherman	30.4 fghi		
Pascopyrum smithii	Rosana	28.6 ghi		
Pascopyrum smithii	Rodan	27.5 ghi		
Agrostis giganteus	9076266	26.3 ghi		
Pascopyrum smithii	9081968	24.7 hi		
Deschampsia cespitosa	9076290	22.8 hi		
Achnatherum hymenoides	9081628	20.8 hij		
Achnatherum hymenoides	9081629	15.9 ijk		
Poa alpina	01-13-1	6.4 jkl		
Deschampsia cespitosa	Nortran	5.7 jkl		
Poa alpina	9016273	5.4 kl		
Deschampsia cespitosa	13970176	4.5 kl		
Poa alpina	1858	4.1 kl		
Poa alpina	Gruening	1.1 kl		
Agrostis giganteus	Streaker	0.9 kl		
Poa secunda	Canbar	0.0		

Table 16. Average **plant height** of grasses in Stucky Ridge plots (measured **8/30/05**).

Table 17.	Biomass	production c	of grasses	in Stucky	/ Ridge	Trials	(clipped 8/30/05).
-----------	---------	--------------	------------	-----------	---------	--------	----------------------------

Genus & Species	Accession	Biomass
		kg/ha
Elymus trachycaulus	9081620	8,211 a*
Elymus tracycaulus	9081621	4,100 b
Poa secunda	9081633	2,506 c
Leymus cinereus	Trailhead	2,222 cd
Agrostis giganteus	9076276	2,189 cd
Agrostis giganteus	9081619	2,039 cde
Leymus cinereus	9081624	1,844 cdef
Elymus trachycaulus	Pryor	1,578 cdefg
Agrostis giganteus	9076266	1,367 cdefgh
Elymus wawawiensis	Secar	1,289 cdefgh
Poa sp.	9081635	906 defgh
Achnatherum hymenoides	Nezpar	872 defgh
Deschampsia cespitosa	9076290	844 defgh
Pascopyrum smithii	9081968	800 defgh
Pascopyrum smithii	Rosana	650 efgh
Leymus cinereus	Magnar	639 efgh
Elymus tachycaulus	San Luis	622 efgh
Elymus trachycaulus	Revenue	578 fgh
Leymus cinereus	9081625	428 fgh
Leymus cinereus	Washoe	361 gh
Achnatherum hymenoides	Rimrock	339 gh
Pseudoroegneria spicata	9081636	317 gh
Pseudoroegneria spicata	Goldar	272 gh
Poa secunda	9081322	233 gh
Pascopyrum smithii	Rodan	189 gh
Poa secunda	Sherman	189 gh
Agrostis giganteus	Streaker	122 h
Achnatherum hymenoides	9081628	61 h
Achnatherum hymenoides	9081629	61 h
Poa alpina	9016273	51 h
Poa alpina	1858	28 h
Deschampsia cespitosa	13970176	28 h
Poa alpina	01-13-1	23 h
Poa alpina	Groening	0 h
Deschampsia cespitosa	Nortran	0 h
Poa secunda	Canbar	0 h

Seed Mixture Trial

The forbs included in the seed mixtures (see Planting Design section) did not emerge; therefore, densities reflect only emergent grass seedlings (tables 5, 6, 7, and 8). During the establishment year, the Developed Waste Management Area (WMA) mix had the greatest seedling density with 10.5 seedlings/ft² (table18). The Experimental WMA mix had the lowest density with 6.3 seedlings/ft². The two Developed mixtures averaged 9.9 seedlings/ft². The two Experimental mixtures averaged 6.3 seedlings/ft². There were no significant differences among the mixtures at the P=0.05 level. By the fall of the first year, the Developed WMA mixture still had the highest density (8.0 seedlings/ft²) and the Experimental WMA mixture the lowest density (6.9 seedlings/ft²). The two Developed mixtures averaged 7.7 seedlings/ft² and the two Experimental mixtures averaged 6.9 seedlings/ft². As in June, no significant differences were seen among the four seed mixtures.

At the start of the second growing season (2004), the two Experimental mixes had significantly better stands (Upland Exp.—39.4% and Waste Mgmt. Exp.—38.1%) than did the Developed mixes (Upland Dev.—17.3 and Waste Mgmt. Dev.—15.0%). By fall of the second year, the stands of all the mixes had increased, but the Experimental mixes were still significantly better than the Developed mixes. Biomass production of the Experimental mixes was also significantly better than that of the Developed mixes.

During the third year (2005), the percentage stands of all mixes increased only slightly, but the biomass production was much higher. The Experimental mixes were dominated by 9081620 slender wheatgrass, while the Developed mixes were dominated by Revenue slender wheatgrass and Critana thickspike wheatgrass. The Waste Management Experimental mix topped all mixes with 8,933 kg/ha of oven-dry biomass production.

	Density	Density	Stand	Stand	Stand	Height	Height	Biomass	Biomass
	6/03	8/03	6/04	9/04	8/05	2004	2005	2004	2005
	2	no/ft ²	%	%	%	ст	ст	kg/ha	kg/ha
Upland Exp.	6.4	7.4	39.4	45.9	60.6	45.8	78.8	700	5939
Upland Dev.	6.4 9.3	7.0	17.3	24.4	25.9	14.8	47.2	790 215	2011
Waste Mgmt Area Exp	6.3	6.9	38.1	46.9	59.7	44.8	82.5	1206	8933
Waste Mgmt Area Dev	10.5	8.0	15.0	23.8	28.4	19.8	56.6	306	4494

Table 18. Moto-X Replicated Mixture Trial on Stucky Ridg	Table 18.	Moto-X Replicat	ted Mixture Trial	on Stucky Ridge.
--	-----------	-----------------	-------------------	------------------

no/ft

Forb/Subshrub Trial

Ten of the 16 trial entries had no emergence and 15 of the 16 entries had <0.50 seedlings/ft² the seedling year (table 19). The subshrub, winterfat (*Krascheninnikovia* lanata) Open Range Germplasm, was the only entry that demonstrated significant emergence with 9.5 seedlings/ft². The lack of forb emergence may be due to the May 13 planting date. The forb species in the study may have some physiological (after ripening) or physical (hard seed coat) seed dormancy. To overcome seed dormancy, many forb seeds generally require several weeks (8 to 14 weeks) of cold chilling. As with the grass species, some additional germination and emergence was expected in the spring of 2004, but this did not happen with the forb species. Some species such as thickstem aster (Symphyotrichum chilense) and buckwheat (Eriogonum sp.) do better with shallow seeding. By the second growing season, only plants of Open Range winterfat and 9081632 silverleaf phacelia remained alive. There was no sign of new emergence of any of the accessions/species in the spring of 2004. The surviving, mature plants of Open Range Germplasm winterfat performed well, with some plants flowering and setting seed. After the third growing season (2005), plants of Open Range winterfat, 9081632 silverleaf phacelia, Old Works fuzzytongue penstemon, Richfield firecracker penstemon, and Northern Cold Desert winterfat were found to be surviving. New plants of firecracker penstemon and fuzzytongue penstemon had germinated two years after being planted. The surviving plants of Open Range winterfat and 9081632 silverleaf phacelia exhibited good vigor, growth, and seed production.

· · · · ·	· · · · · · · · · · · · · · · · · · ·	Species	2003 D	ensity/ft ²	2004	Stand	2005 Avg.Plants/ Plot
Genus & Species	Variety/Accession	ID	6/24	8/25	6/30	9/22	8/30
					%	%	
Krascheninnikovia lanata	Open Range Germplasm	5	9.47 a*	6.75 a*	5.5 a*	4.5 a*	20.00
Phacelia hastata	9081632	10	0.28 b	0.22 b	0.5 b	0.5 b	6.00
Krascheninnikovia lanata	Northern Cold Desert Germ.	4	0.19 b	0.16 b	0.0 b	0.0 b	0.25
Penstemon strictus	'Bandera'	8	0.19 b	0.03 b	0.0 b	0.0 b	0
Erigonum umbellatum	9082271	2	0.06 b	0.00 b	0.0 b	0.0 b	0
Penstemon venustus	Clearwater Selected	9	0.03 b	0.00 b	0.0 b	0.0 b	0
Erigonum umbellatum	9082273	3	0.00 b	0.00 b	0.0 b	0.0 b	0
Penstemon eatonii	Richfield Select	7	0.00 b	0.00 b	0.0 b	0.0 b	0.75
Erigonum ovalifolium	9082098	1	0.00 b	0.00 b	0.0 b	0.0 b	0
Penstemon eriantherus	Old Works Germplasm	6	0.00 b	0.00 b	0.0 b	0.0 b	15.00
Phacelia hastate	9082275	11	0.00 b	0.00 b	0.0 b	0.0 b	0
Potentilla gracilis	9081679	12	0.00 b	0.00 b	0.0 b	0.0 b	0
Potentilla hippiana	9076274	13	0.00 b	0.00 b	0.0 b	0.0 b	0
Symphyotrichum chilense	9078675	14	0.00 b	0.00 b	0.0 b	0.0 b	0
Symphyotrichum chilense	9081678	15	0.00 b	0.00 b	0.0 b	0.0 b	0
Symphyotrichum chilense	9082274	16	0.00 b	0.00 b	0.0 b	0.0 b	0

Table 19.	Seedling density (2003), percentage stand (2004), and total plant density (2005) of forb and
	subshrub accessions in the Stucky Ridge Comparative Evaluation Planting (evaluated 6/24/03,
	8/25/03, 6/30/04, 9/22/04, and 8/30/05).

* Means followed by the same letter are similar at the 0.05 level of significance using the LSD Mean Comparison method.

Tissue Analysis

Following the Fall 2004 and Fall 2005 evaluation for cover and vigor, each individual plot was sampled for biomass production. These clippings from all four replications, along with additional clipping of low producing plots, made up the 10 gram or greater of oven-dry samples that were submitted for tissue analysis. Samples were submitted to Energy Laboratories, Inc. in Billings, Montana, for determination of heavy-metal concentrations in and on sampled plant materials from the Stucky Ridge Moto-X site. Metal loads (concentration in and on the plant tissue) can be compared to maximum tolerable levels of dietary minerals for domestic animals (National Reseach Council 1980). The dietary level of cadmium for domesticated animals is based on human food residue considerations (NRC, 1980), and the need to avoid increases of cadmium in the food supply of the United States. Higher residue levels (>0.50 mg/kg) for a short period of time would not be expected to be harmful to animal health nor to human food use. particularly if the animals were slaughtered at a young age. Based on a review of the scientific literature, ranges of elemental levels for mature leaf tissue have been presented by Kabata-Pendias and Pendias (1992). The authors provide elemental levels for generalized plant species into ranges representing deficient, sufficient, or normal, and excessive or toxic (table 20).

All tissue samples are unreplicated composites of samples from random plants in all four replications of the Stucky Ridge Comparative Evaluation Trial. Metal loads in the sampled tissue were generally below toxic levels.

<u>Arsenic (As)</u>—Arsenic was detected in 19 of the 39 samples in 2004 and in 32 of the 40 samples in 2005 with levels ranging from 5 mg/kg to 35 mg/kg. This is below the tolerable levels for domestic livestock (50 mg/kg) and wildlife (50 mg/kg). However, the detected levels rank in the 'Excessive or Toxic' level in plants.

<u>Cadmium (Cd)</u>—This element was detected in only one sample (Rimrock Indian ricegrass) in 2004 and in 2005 it was detected in 5 samples (3 of which were in Indian ricegrasses). The detected level (1-2 mg/kg) are at the tolerable level for domestic livestock (0.5 mg/kg) and wildlife (2 mg/kg).

<u>Copper (Cu)</u>—Copper detected in all tissue samples ranging from 14 mg/kg to 307 mg/kg. Only three samples (2004) and 5 samples (2005) exceeded the tolerable level for domestic livestock (100 mg/kg), but 15 samples (2004) and 19 samples (2005) exceeded the tolerable level for wildlife (55 mg/kg). Since this is a copper smelting impacted area, high levels of copper are to be expected.

Lead (Pb)—Lead was detected in a sample of ten-petal blazing star (*Mentselia decapetala*) only (2004), at a level of 9 mg/kg, well below the tolerable level for domestic livestock and wildlife. In 2005 lead was detected in only four samples and at very low levels.

Zinc (Zn)—Zinc was detected in all samples, ranging from 14 mg/kg to 175 mg/kg well below the tolerable level for domestic livestock (500 mg/kg) and wildlife (300 mg/kg).

Worth noting was the fact that heavy metal concentrations were highest in/on alpine blue grass, silverleaf phacelia, winterfat and fuzzytongue pemstemon. This is likely due to the excess dust particles on the low profile plants and ones with leaf pubescence.

able 20	. Heavy metal conc	entrations	of clippe	d hiomas	Appen s samples		Stucky F	Ridae Cor	nnarative	2			
	Evaluation Trial							-	•				
Lot #	Species	AI		As		Cd		Cu		Pb		Zn	
201 //	opooloo	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		2004	2005	2004	2005	2004	2005	2004	2005	2004	2005	2004	2005
1	ACHY 9081628	331	279	6	8	ND	2	39	34	ND	ND	123	88
2	ACHY 9081629	288	420	9	8	ND	2	41	35	ND	ND	111	73
3	ACHY Rimrock	235	332	ND	9	5	1	17	35	ND	ND	68	38
4	ACHY Nezpar	276	200	ND	ND	ND	ND	16	21	ND	ND	51	31
5	AGGI 9076276	258	382	ND	6	ND	ND	46	62	ND	ND	54	41
6	AGGI 9081619	663	375	ND	ND	ND	ND	100	62	ND	ND	51	64
7	AGGI 9076266	548	320	ND	6	ND	ND	74	39	ND	ND	100	49
8	AGGI Streaker		2500		35		ND		243		13		78
9	DECE 9076290	334	405	5	6	ND	1	48	45	ND	ND	63	52
10	DECE 13970176	1420	121	8	6	ND	ND	57	14	ND	ND	87	44
11	DECE Nortran	336		8		ND		29		ND		67	
12	ELTR 9081620	242	285	ND	5	ND	ND	26	47	ND	ND	14	16
13	ELTR 9081621	197	283	ND	ND	ND	ND	38	41	ND	ND	21	22
14	ELTR Pryor	301	413	ND	8	ND	ND	25	62	ND	ND	37	35
15	ELTR Revenue	280	445	ND	7	ND	ND	48	65	ND	ND	50	47
16	ELTR San Luis	441	193	ND	6	ND	ND	45	27	ND	ND	40	33
17	LECI 9081624	424	436	ND	5	ND	ND	62	73	ND	ND	111	55
18	LECI 9081625	463	559	6	9	ND	1	72	76	ND	ND	172	124
19	LECI Washoe	472	366	7	ND	ND	ND	47	47	ND	ND	175	106
20	LECI Magnar	636	410	11	8	ND	ND	113	63	ND	ND	84	69
21	LECI Trailhead	441	391	ND	8	ND	ND	35	51	ND	ND	85	93
22	PASM 9081968	374	315	6	5	ND	ND	45	41	ND	ND	86	64
23	PASM Rodan	495	243	7	6	ND	ND	52	29	ND	ND	56	39
24	PASM Rosana	210	318	6	9	ND	ND	29	47	ND	ND	61	52
25	POAL 9016273	799	1740	7	21	ND	ND	50	120	ND	8	45	64
26	POAL 01-13-1	1220	695	8	17	ND	ND	78	80	ND	ND	49	50
27	POAL Greuning	706		ND		ND		40		ND		36	
28	POAL 1858	1190	1410	ND	20	ND	ND	33	93	ND	9	62	156
29	POSE 9081633	442	417	9	ND	ND	ND	49	52	ND	ND	35	44
30	POSE Sherman	311	420	9	12	ND	ND	36	52	ND	ND	94	106
31	POSE Canbar	no san	· .	0					-02			0.	100
32	POSP 9081635	364	549	11	14	ND	ND	46	59	ND	ND	38	44
33	POSP 9081322	441	346	ND	9	ND	ND	83	62	ND	ND	57	64
34	PSSP 9081636	676	931	16	20	ND	ND	76	112	ND	ND	81	84
35	PSSP Goldar	654	548	13	12	ND	ND	81	68	ND	ND	77	58
36	ELWA Secar	396	635	ND	7	ND	ND	34	59	ND	ND	68	65
1	UPEXP	392	266	ND	, ND	ND	ND	54	43	ND	ND	22	31
2	UPDEV	268	545	ND	12	ND	ND	31	69	ND	ND	73	40
2	WMAEXP	374	421	ND	ND	ND	ND	35	50	ND	ND	27	40 25
4	WMADEV	270	548	ND	9	ND	ND	26	66	ND	ND	67	44
						-							
5	KRLA Op. Range	1173.3	372	7.5	ND	ND	ND	108.3	44	ND	ND	82	47
6	PEER Old Works		1280		14		ND		65		ND		31
10	PHHA 9081632		3720		42	<u> </u>	ND		307		15		91
lavimun	n Tolerable Levels	for											
	c livestock ¹ .			50		0 F		100		30		500	
						0.5							
Vildlife ² .				50	1	2		55		40		300	
	els in Plants ³ .	1	1	1		1		1		1		1	

11	to 1.7	0.05 to 0.2	5 to 30	5 to 10	27 to 150			
5	to 20	5 to 30	20 to 100	30 to 300	100 to 400			
1. NRC 1980, 2. Ford, 1996, 3. Kabata-Pendias and Pendias 1992.								
	5	1 to 1.7 5 to 20 Pendias and Pendias 1992.	5 to 20 5 to 30	5 to 20 5 to 30 20 to 100	5 to 20 5 to 30 20 to 100 30 to 300			

CONCLUSION

Not all of the potential germinable seeds germinated the first year (2003). The record high temperatures and low precipitation in July and August, along with the late spring planting date (May 13), are considered to be the primary factors affecting the incomplete germination and emergence during the 2003 growing season. There was a significant amount of new grass seedling emergence detected during the June 30, 2004, evaluation, particularly in the Indian ricegrass, western wheatgrass, big bluegrass, and basin wildrye plots and some new germination of forbs in 2005.

In the single-species plots, the 'local source' plants that exhibited superior performance include 9081620 and 9081621 slender wheatgrass, 9081633 big bluegrass, 908168 western wheatgrass, 9081624 and Washoe Germplasm basin wildrye, 9081628 Indian ricegrass, 9081636 bluebunch wheatgrass, and 9081635 bluegrass. The superior indigenous plant material is being further increased for potential release to the commercial seed industry. Worth noting was the performance of some of the released cultivars such as Pryor and Revenue slender wheatgrass, Rosana western wheatgrass, Rimrock Indian ricegrass, Trailhead basin wildrye, Secar Snake River wheatgrass, and Goldar bluebunch wheatgrass.

The forb/subshrub trial had poor emergence and consequently poor seedling densities with the exception of Open Range Germplasm winterfat. The low densities were most likely the result of the late spring planting that resulted in an insufficient period of cold-moist stratification. An additional problem may have been sowing small-sized seed too deeply. There was also heavy surface erosion on this portion of the trial site.

In the Seed Mixture Trials, the 'Experimental' mixes that contained native 'local source' were far superior to the 'Developed' mixes that consisted of native 'nonlocal source' (Upland mix) and introduced cultivars (Waste Management Areas). However, it was estimated that the majority of plants in the Experimental mixtures, both Upland and Waste Management Areas, were 9081620 slender wheatgrass, which was the best overall performer on this particular site.

The tissue analyses show that the heavy metal concentrations in and on the plant tissue sampled from the Stucky Ridge plots were generally within the tolerable limits for both domestic livestock and wildlife.

The overall performance on the Stucky Ridge plots was quite variable, with strips running north and south that had poorer plant vigor and biomass production. The Pryor slender wheatgrass strips between replications (running east and west) exhibited waves of good and poor establishment and performance. Soil samples (0-6 in.) were taken under four plant stands of slender wheatgrass ranging from excellent to very poor in hopes of explaining this variability. It was thought that the incorporation of the amendments may have created strips with varying pH. Soil analysis for pH indicated no difference in pH (all 6.8 to 7.3) under the varying stand of slender wheatgrass. Therefore, this variability is still unexplained.

REFERENCES

- ARCO. 2002, May. Remedial action work plan/final design report, 2002 Stucky Ridge RA (Portions of Stucky Ridge Area No. 4 RAWP) Uplands Revegetation.
- Bahr, Autumn. 2003, February 18. Jordan contracting site report. Electronic (e-mail) communication.
- Baker, A.J.M. 1987. Metal tolerance. *In*: New Phytologist. (1987), 106 (Suppl.), p. 93-111.
- EPA. 1995a. Draft Statement of Work for the ARWW OU Feasibility Study.
- Ford, Karl L. Risk management criteria for metals at BLM mining sites. U.S. Department of the Interior, Bureau of Land Management, Technical Note 390 rev., December 1996.
- Kabata-Pendias, A. and H. Pendias. 1992. Trace elements in soils and plants. CRC Press, Boca Raton, FL 365 pp.
- Marty, Leslie J. 2000, July. Development of acid/heavy metal-tolerant cultivars project final report–July 1998 to July 2000. Pp 1-9.
- Marty, Leslie J. 2001, October. Development of acid/heavy metal-tolerant cultivars project bi-annual report--April 1, 2001, to September 30, 2001. Pp Appendix A.
- National Weather Service. 2003. Missoula Weather Forecast Office. [Online]. Available: http://www.wrh.noaa.gov/Missoula. [accessed November 2003].
- National Research Council. 1980. Mineral tolerance of domestic animals. National Research Council, National Academy of Sciences, Washington D.C. 577 pp.
- Reclamation Research Unit (RRU). 1993, October. Anaconda revegetation treatability studies, phase I: literature review, reclamation assessments, and demonstration site selection. Document No.: ASSS-ARTS-I-FR-R1-102293.

IV. SEED PRODUCTION

SEED PRODUCTION

All seed increase activities take place at the USDA-NRCS Plant Materials Center near Bridger, Montana. The 140-acre research farm is set up for irrigated seed production of conservation plants for use in Montana and Wyoming. Breeders and Foundation seed of released plant materials are produced at the Bridger PMC for distribution to commercial seed growers through the Foundation Seed programs at Montana State University-Bozeman and the University of Wyoming-Laramie. The PMC is set up to utilize both sprinkler and furrow irrigation. Seed increase blocks or fields are established by direct seeding, transplanting of container-grown stock, and transplanting/establishment of seed production orchards (woody plant material). Special consideration must be given to properly isolate DATC project material from other releases or test material of the same species. Cross-pollinated species are isolated at least 900 feet apart, while self-fertilized species are isolated at least 100 feet apart.

Cultural Practices

Seeding

All seeding is done with a two-row, double-disk planter equipped with depth bands so as to get a uniform 0.25- to 0.5-inch seeding depth. Seed is planted in rows spaced 3 feet apart to accommodate the gated pipe irrigation water delivery system. Depending on the species, planting is done either as a dormant-fall planting (Oct. 15 to Dec. 15) or as an early spring planting (April 1 to May 15). Seed that have a dormancy or after-ripening problem are dormant-fall seeded to get natural stratification.

Transplanting

For small lots of seed that need seed increase, the limited seed supply is planted into Cone-tainers[™] and transplanted into fields following 6 months of growth under greenhouse conditions. A mechanical transplanter is used, resulting in uniform 14" within-row spacing. This method has been used on alpine bluegrass (*Poa alpina*), western wheatgrass (*Pascopyrum smithii*), bluebunch wheatgrass (*Pseudoroegneria spicata*), fuzzy-tongue penstemon (*Penstemon eriantherus*), silverleaf phacelia (*Phacelia hastata*), wooly cinquefoil (*Potentilla hippiana*), and tufted hairgrass (*Deschampsia cespitosa*).

Woody Transplants

All woody material is container grown and transplanted as 2-0 stock into seed production orchards. In some cases weed-barrier is used to reduce weed establishment within the rows, while in others cultivation is used to keep between row spaced weed-free. Most shrubs will not initiate seed production until the plants are 5-6 years old.

Production Fields

The following table (table 1) shows the species that are presently being grown for seed production. Some of the woody increase orchards have yet to reach the maturity level necessary for seed production, but seed will be harvested once these stands are productive and seed made available to other researchers and potentially released to the commercial plant production industry.

Weed Control

Mechanical weed control, either by cultivation or hand roguing, is the preferred method, but chemical weed control is often necessary. With everything established in rows, between-row cultivation can be easily accomplished with standard cultivators. All chemical applications need to be done prior to flowering or late in the season when plants are going dormant.

·			Field	Field	
Common Name	Accession	Release	No.	size	Established
woolly cinquefoil	9076274		4		spring 2006 ¹
fuzzytongue penstemon	9081631	Old Works	20	.30	11/04 ²
silverleaf phacelia	9081632		20	.35	11/04 ²
basin wildrye	9081627	Washoe	20	.80	4/05 ²
basin wildrye	9081627	Washoe	22	.21	4/99 ²
bluebunch wheatgrass	9081636		20	.30	4/05 ²
slender wheatgrass	9081620		20	.35	4/05 ²
big bluegrass	9081633		20	.24	4/05 ²
Indian ricegrass	9081628		22	.14	4/99 ²
western wheatgrass	9081968		22	.10	6/05 ¹
common snowberry	9078388	Prospectors	19	.44	5/00 ³
creeping juniper	9081623		23	.60	5/02, 5/03 ³
Wood's rose	9081638		30	.40	7/99 ³
western snowberry	9081639		30	.40	5/00 ³
silver buffaloberry	9081334		30	.60	5/00 ³

-			
Table 1. Seed	d production fields established	d at the Bridger PMC for	the DATR project.

1-transplanted cone-tainers

2-established from seed

3-transplanted 2-0 stock

Fertilization

No fertilizers are added to field increase plots until the fall of the first growing season, and then every fall for the life of the stand. A standard mix of 80 lb N/acre and 40 lb P_2O_5 /acre is used on most species. Fall applications are usually applied in granular form from September 15 to October 15.

Irrigation

The Bridger area receives an average of only 11.3" of annual precipitation, making it necessary to provide supplemental water to improve seed production. Hand-moved sprinklers are available for plant establishment if natural precipitation is inadequate. Once established, furrow irrigation is generally used. Critical irrigation times are early summer prior to flowering, after pollination as seeds are maturing, and during the fall when seedhead primordia are developing for the following year.

Seed Harvest

Depending on the species, size of stand, and amount of seed, harvesting may be accomplished in a variety of ways. Seed can be hand stripped, direct combined, swathed/combined, or head harvested/dried/combined. Seed is harvested at a 20-30% moisture level and dried to <12% for cleaning and storage. Seed that is officially released and made available to commercial growers must meet standards established by the Montana Seed Growers Association and be analyzed for purity and germination by the Montana Seed Testing Laboratory at Montana State University.

Post-harvest Maintenance

Following harvest, seed production stands are mowed to removed excess biomass and stimulate tillering. The stands are also cultivated prior to fall fertilization and irrigation.

Seed Cleaning

A variety of standard seed cleaning equipment is utilized to clean the DATR seed, both wildland collections and field seed increase. A hammermill is used to further thresh seed or remove appendages. Three different sizes of screen-fanning mills are available for cleaning seed based on size, shape, and weight. An indent cylinder is used to remove round weed seed from elongated grass seed and a small gravity table is used to make separations based on specific gravity.

Seed Storage

All cleaned seed are stored in cloth-mesh bags on shelves in the basement of the office building at the Bridger PMC. The ambient conditions at Bridger are quite good for seed storage, as there is consistently low relative humidity and uniform cool temperatures in the basement environment. Under these conditions, most native seeds will remain viable for up to 10 years.

Seed Accessioning and Inventory

The USDA-NRCS Plant Materials nation-wide network utilizes POMS (Plant Materials Operation and Management System) for the accessioning, inventory, and distribution of all lots of seed and plants handled through the Plant Materials network. All seed is inventoried to the nearest gram (table 2).

Genus & Species	Common Name	Accession	Seed on Hand
			kilograms
Achnatherum hymenoides	Indian ricgrass	9081628	4.81
Agrostis giganteus	redtop	9076276	50.03
Elymus trachycaulus	slender wheatgrass	9081620	44.52
Juniperus horizontalis	creeping juniper	9081623	0.34
Leymus cinereus	basin wildrye	Washoe	28.84
Pascopyrum smithii	western wheatgrass	9081968	0.01
Penstemon eriantherus	fuzzytongue penstemon	Old Works	2.75
Phacelia hastata	silverleaf phacelia	9081632	9.96
Poa secunda	big bluegrass	9081633	4.16
Potentilla hippiana	woolly cinquefoil	9076274	4.80
Pseudoroegneria spicata	bluebunch wheatgrass	9081636	23.71
Rosa woodsii	Wood's rose	9081638	0.56
Shepherdia argentea	silver buffaloberry	9081334	0.00
Symphoricarpos albus	common snowberry	Prospectors	0.47
Symphoricarpos occidentalis	western snowberry	9081639	0.10

Table 2. Seed on hand of Increase Plant Material for DATR project.

Appendix A

V. RELEASES

Appendix A

PLANT RELEASES

The seed and plants that are available to reclamationists are usually cultivar (cultivated varieties) releases from universities, USDA Plant Material Centers, USDA Agricultural Research Service, or private plant breeders. To be released as a cultivar, the germplasm must be extensively tested, reviewing primary traits through multiple generations, and field testing to determine range of adaptability. This process takes at least 10 years with herbaceous plant material and can take 20 or more years for woody plants. Other sources of native plants are wildland collections and pre-damage plant salvage.

In recent years, the demand for native, indigenous plant material has resulted in the development of an alternate, quicker mechanism for the release of plant materials known as Pre-Varietal Release. Through this process plant propagules can be released to the commercial seed and nursery industries in a more timely manner, but at the expense of extensive field testing. Germplasm is still managed through the Certified seed agencies, maintaining the same quality, purity, and germination standards of Cultivar releases. There are three categories of Pre-Varietal releases:

<u>Source-Identified</u>—With this classification, a person can locate and collect seed from a specific native site and have the seed certified by source only. A representative from a seed certification agency must inspect the collection site prior to harvest, documenting the identity of the species, elevation, latitude/longitude, and associated species. The collector can certify the seed as being from a particular source and of a standard quality, and selling the seed directly to a customer. The collector can also take that seed and establish seed production fields, raising up to two generations past the original collection. This product must be included in a seed certification program to be able to certify the seed as 'Source Identified' germplasm. Through this process, seed can be certified the year of collection or in 2 years when the seed increase fields begin to produce.

<u>Selected</u>—This category is for plant breeders who assemble and evaluate multiple collections of a species, making a selection of the superior accession, or bulk or cross-pollinate the superior accessions. This release process can take as few as 5 years, but can claim only that one accession or bulk of accessions has been found to be superior for the conditions under which it was tested. No field testing or the testing of progeny is required.

<u>Tested</u>—If the progeny of a superior germplasm is tested to make sure that the desired traits continue to manifest themselves in subsequent generations, the germplasm qualifies to be released as a Tested germplasm. This process can take 6-8 years in herbaceous plant material and considerably longer with woody plants. The only difference between Tested and Cultivar releases is the extensive field testing of a Cultivar.

Appendix A

The Pre-Varietal release mechanism has been used extensively on native plant materials that are not readily available on the commercial market, either from seed growers, nurseries, or wildland collectors. Through this process native plant material can be placed into the commercial seed and nursery industry sooner, but with limited information on range of adaptation, ease of establishment in various climate and edaphic conditions, and longevity.

DATR Project Releases

The Conservation Districts of Montana and Wyoming own the land and facilities at the Bridger Plant Materials Center and lease to the USDA-Natural Resource Conservation Service. The USDA-NRCS Plant Materials Center has been in operation since 1959 and has established a cooperative relationship with the Agricultural Experiment Station network of Montana State University-Bozeman (MSU) and the University of Wyoming-Laramie (U of W). The Plant Materials Center has experience in the release of conservation plants, both introduced and native, in cooperation with MSU and U of W. Breeders and Foundation seed is produced at the Bridger PMC, making Foundation seed available to the commercial seed industry for the production of Certified seed. In the case of Pre-Varietal releases, the Bridger PMC produces G_1 (Generation 1) seed for distribution to growers who will produce G_2 and G_3 under the Certified Seed Program. Once a release is made, the releasing agency is responsible for maintaining a supply of G_1 (Pre-Varietal release) or Foundation (Cultivar release) seed for as long as seed/plants of the release are in demand.

The DATR project has identified numerous plants (grasses, forbs, shrubs, and trees) that exhibit tolerance of acidic and metaliferous soil conditions and have the potential for use by reclamationists in restoration efforts of severely impacted sites. Thus far the DATRproject has been instrumental in the release of germplasm of three plants;

Washoe Selected germplasm basin wildrye (*Leymus cinereus*) **Old Works** Source Identified germplasm fuzzy-tongue penstemon (*Penstemon eriantherus*)

Prospectors Selected germplasm common snowberry (*Symphoricarpos albus*)

Information brochures have been published on these three releases and are distributed to potential seed growers and potential seed-purchasing customers. G_1 (Foundation quality) seed of Washoe basin wildrye has been distributed to two commercial seed growers in Montana, and seed of Old Works fuzzy-tongue penstemon has been distributed to one grower in Washington and one grower in Idaho. No growers have yet shown interest in the production of Prospectors common snowberry.

During the winter of 2006 **Copperhead** Selected class germplasm slender wheatgrass (9081620) will be submitted for release consideration to the Variety Release committee at Montana State University and the Pure Seed Committee at the University of Wyoming. This accession of slender wheatgrass has performed exceptionally well on

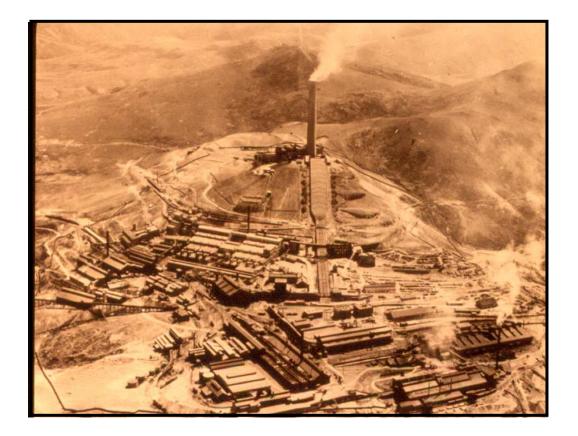
the amended Stucky Ridge Trial site. If the release is successful G_1 seed will be available to commercial growers in the spring of 2006.

The DATR Project has established seed increase fields of all plant species that have exhibited superior establishment and performance in field test plantings in the Anaconda vicinity on smelter and mining-impacted sites. The USDA-NRCS Plant Materials Center, in cooperation with the Deer Lodge Valley Conservation District, plans to continue releasing superior plant materials that have exhibited tolerance of acid/heavy metal-contaminated sites. Some of the potential releases are as follows:

9081620 slender wheatgrass (*Elymus trachycaulus*)
9081968 western wheatgrass (*Pascopyrum smithii*)
9081636 bluebunch wheatgrass (*Pseudoroegneria spicata*)
9081637 big bluegrass (*Poa secunda*)
9081628 Indian ricegrass (*Achnatherum hymnoides*)
9081619 redtop (*Agrostis gigantea*)
9081632 silverleaf phacelia (*Phacelia hastata*)
9076274 wooly conquifoil (*Potentilla hippiana*)
9078675 stiffstem aster (*Symphyotrichum chilensis*)
9081638 Woods rose (*Rosa woodsii*)
9081623 horizontal juniper (*Juniperus horizontalis*).

Plant materials that are being considered for release in FY2007 are 9081632 silverleaf phacelia and 9081633 big bluegrass. Other releases within the next three years include 9081968 western wheatgrass, 9081636 bluebunch wheatgrass, and 9081638 Woods rose.

Development of Acid/Heavy Metal Tolerant Releases (DATR) 2006 Activities


A Report to

Montana Natural Resource Damages Program

By Deer Lodge Valley Conservation District in cooperation with the USDA-NRCS Bridger Plant Materials Center

I. INTRODUCTION

Development of Acid/Heavy Metal Tolerant Releases (DATR) 2006 Activities

Project History

To address this need for adapted native plants, the Development of Acid/Heavy Metal-Tolerant Plants (DATC), now called the Development of Acid/Heavy Metal Tolerant Releases (DATR), project was initiated in 1995. The DATC (DATR) project was initially funded by a Montana Department of Natural Resources-Reclamation and Development Grant awarded to the Deer Lodge Valley Conservation District (DLVCD), with research conducted by Matt Marsh. The DLVCD worked in cooperation with the USDA-NRCS Bridger Plant Materials Center. The national network of 26 Plant Materials Centers is the primary source of native plants developed specifically for reclamation and conservation use. The Bridger PMC, in south-central Montana, is a 140-acre research facility dedicated to the selection and release of native plant materials, primarily for use in Montana and Wyoming. The original DNRC grant expired at the end of 1996 and this project did not receive funding until June 1998, at which time carry-over money for the 1997-98 grant period was made available to this project, as well as some financial support from Atlantic Richfield Co. (ARCO). During 1999 and 2000, the project was again funded by a DNRC Reclamation and Development grant. Since 2000, the DATC (DATR) project has been funded by the EPA Mine Waste Technology Program (through 2005) and the Montana Department of Justice-Natural Resource Damage Program (through 2008). To date, the DATC (DATR) project has involved the seed collection of 145 native grasses, forbs, shrubs, and trees from within the Upper Clark Fork River Basin and abandoned mine sites throughout western Montana. These collections have been planted at various study sites in comparison with nonlocal native and introduced plant species. The Atlantic Richfield Company (ARCO) has provided land access for seed collection and sites for experimental plots.

The first Initial Evaluation Plantings (IEPs) (single-row plots) were established in 1995 on the flats east of Anaconda (near junction of Highway 1 and 48), on the Opportunity Ponds (three levels of lime amendment), and adjacent to the Lead Smelter at East Helena. Collectively these three research sites tested 220 accessions of 95 species of native and introduced plants. In the spring of 1999, a Comparative Evaluation Planting (CEP) (single-row plots) was established along Willow Glen Road east of Anaconda evaluating 84 entries, which included multiple accessions of 6 forbs, 13 grasses, and 6 forb/grass mixes. During the fall/winter of 1999, a greenhouse study at the Bridger PMC utilized contaminated soil from the Anaconda Flats area. The results of this replicated, controlled environment study provided enough statistically significant data to move some individual collections toward official release to the commercial seed industry. In 2001, CEPs were established with a four-row cone seeder on Stucky Ridge (upland site) and on the Mill Creek Flats (lowland site) to evaluate eight seed mixtures, four consisting of native, local-origin species and four consisting of nonlocal-origin released cultivars. In October 2002, a shrub/tree CEP (Willow Glenn Road Site) was established to compare native indigenous material with commercially available stock of the same species, utilizing 2-0 transplants. All plantings prior to 2003 were established

on unamended sites, receiving deep-plowing treatment only (except Opportunity Pond-Site 2). In the spring of 2003, another replicated trial was established on Stucky Ridge (adjacent to the moto-cross site) on a site that had been deep plowed and amended with lime.

To date, there have been four official germplasm releases by the DATC (DATR) project: Washoe Selected Class germplasm of basin wildrye (*Leymus cinereus*), Old Works Source Identified Class germplasm of fuzzytongue penstemon (*Penstemon eriantherus*), Prospectors Selected Class germplasm of common snowberry (*Symphoricarpos albus*), and Copperhead Selected Class germplasm of slender wheatgrass (*Elymus trachycaulus*). Presently there are 15 collections of 9 species (see Seed Increase section) that have been established in seed increase fields for potential future release. Two commercial growers in Montana are growing Washoe basin wildrye, while a grower in Idaho and one in Washington have recently established seed production fields of Old Works fuzzytongue penstemon.

II. WOODY EVALUATION

WOODY COMPARATIVE EVALUATION PLANTING

Introduction

This report summarizes the plant performance of the Woody Comparative Evaluation Planting (CEP) installed in the fall of 2000 at the Anaconda Smelter Superfund Site. One of the most impacted areas is the ~18 mi² of uplands within the Anaconda Smelter Superfund Site. The uplands are commonly derived from the weathering of bedrock and are typically thin, clay-rich alfisols. Due to the susceptibility of these soils to erosion by wind and water, the soil surface in many areas has eroded away and the subsoil, which is now exposed at the surface, continues to erode. Original vegetation in the uplands consisted primarily of shrub lands with coniferous forests above approximately 5,800 feet (Keammerer, 1995). In an effort to stem the transport of contaminants and restore these injured areas, state and federal regulatory agencies have developed several reclamation alternatives, many of which include the planting of shrubs and trees in the uplands.

The low pH soils at the Anaconda Smelter Superfund Site are routinely ameliorated by incorporating lime; however, nonuniform lime incorporation, as well as the upward migration of acid-producing compounds, results in pockets of acidity. Additionally, many steeply sloped areas are not accessible to heavy equipment making them difficult to amend. Research has demonstrated that metal-tolerant plants can be used to stabilize and immobilize contaminants in the soil (Smith and Bradshaw, 1972; Bradshaw et al., 1978). Metals are absorbed and accumulated by roots, adsorbed onto roots, or precipitated within the rhizosphere, thereby trapping contaminants in the soil and breaking the soil-plant-animal cycle.

Numerous demonstration projects over the last 50 years at the Anaconda Smelter Superfund Site have tested the performance of several woody plant species in diverse edaphic conditions (Dutton, 1992; Eliason, 1959; Gordon, 1984; Reclamation Research Unit and Schafer and Associates, 1993; Reclamation Research Unit, 1997). This study builds on previous research findings by testing accessions (ecotypes) of woody plant species that have shown adaptations to low pH and heavy-metal contaminated soils. The objective of the study is to identify acid/heavy-metal-tolerant native plant ecotypes that provide erosion control and wildlife habitat. The Development of Acid/Heavy-Metal-Tolerant Cultivars Project's (currently DATR) goal is to release these superior ecotypes to the commercial market and thereby provide a greater array of plant materials for the reclamation industry.

Study entries include "local" germplasm originated from seed collected on nearby mineaffected soils in Deer Lodge County, Montana, as well as "nonlocal" germplasm originated from seed collected on non-impacted lands in various counties of Montana, Colorado, South Dakota, Utah, and Wyoming. Seedlings of 19 accessions of 7 woody species including *Pinus contorta* lodgepole pine, *Pinus ponderosa* ponderosa pine, *Shepherdia argentea* silver buffaloberry, *Rosa woodsii* Woods' rose, *Symphoricarpos albus* common snowberry, *Symphoricarpos occidentalis* western snowberry, and *Ribes* *cereum* wax currant were transplanted into a common garden in a randomized complete block design.

Study Site

The 0.4-acre study site, located ~4 miles southeast of Anaconda, Montana, has been impacted by emission fallout from the Upper and Lower Works as well as the Washoe smelter. The Upper and Lower Works smelters operated from 1884 to 1902 at which point the Washoe smelter took over smelting operations until 1980. The study site lies ~200 yards east of Mill Creek at an elevation of 5,140 ft in USDA Plant Hardiness Zone 4a. The soils at the site are in the Haploboroll's Family and consist of deep, well-drained soils formed in mixed alluvium composed of granitic, meta-sedimentary, and volcanic rocks. The alluvium is derived from the Mill Creek drainage. Cobbles and stones commonly occur on the soil surface. In 1999, the site was plowed to a depth of 6 inches, rototilled, and packed. Laboratory analysis of four (0- to 6-inch) composite soil samples taken after tilling to 6 inches indicated an average pH of 4.53. Average arsenic, cadmium, copper, lead, and zinc concentrations in the four soil samples were 423 mg/kg, 6 mg/kg, 510 mg/kg, 233 mg/kg, and 308 mg/kg, respectively (table 1).

_	рН	As	Cd	Cu	Pb	Zn
Sample No.	s.u.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
A.T. 0-6" NE	4.0	610	7	620	320	370
A.T. 0-6" NW	4.9	360	5	340	120	222
A.T. 0-6" SE	4.6	530	5	340	150	200
A.T. 0-6" SW	4.6	190	7	740	340	440
\boxtimes	4.53	422.5	6	510	232.5	308
Phytotoxic						
Criteria [†]	< 5.0	136-315	5.1-20	236-750	94-250	196-240

Table 1. Acid extractable heavy-metal levels (EPA method 3050) and pH of 0- to 6-inch composite samples.

† EPA phytotoxicity standards (CDM Federal 1997).

Methods and Materials

The study tested 19 accessions consisting of two or three accessions of each of the seven shrub/tree species (table 2). The 1-0 and 2-0 (6- to 12-inch) seedlings were transplanted in a Randomized Complete Block Design replicated 20 times on October 18, 2000. An individual plant of each accession is represented in each replication. The seedlings are spaced 4.5 feet apart within rows and 9 feet apart between rows. The plot receives no supplemental irrigation. The spring following planting, VisporeTM (3-ft x 3-ft) tree mats were installed on all entries to suppress weeds and retard soil moisture evaporation.

Family/Species	Seed Origin	Elevation
Caprifoliaceae:		
Symphoricarpos albus (L.) Blake	Deer Lodge Co., MT	6000 ft
S. albus (L.) Blake	Ravalli Co., MT	3500
S. occidentalis Hook.	Deer Lodge Co., MT	5559
S. occidentalis Hook	CO Seed Source	unknown
S. occidentalis Hook	Weston Co., WY	5000
Elaeagnaceae:		
Shepherdia argentea (Pursh) Nutt.	Deer Lodge Co., MT	6000
S. argentea (Pursh) Nutt.	UT Seed Source	unknown
S. argentea (Pursh) Nutt.	Sweetwater Co., WY	6000
Grossulariaceae:		
Ribes cereum Dougl.	Deer Lodge Co., MT	5700
R. cereum Dougl.	Chaffee Co., CO	8000
Pinaceae:		
Pinus contorta Dougl. ex Loud.	Deer Lodge Co., MT	6400
P. contorta Dougl. ex Loud.	Albany Co., WY	9500
P. contorta Dougl. ex Loud.	Custer Co., ID	6300
P. ponderosa P. & C. Lawson	Deer Lodge Co., MT	5850
P. ponderosa P. & C. Lawson	Lawrence Co., SD	5500
P. ponderosa P. & C. Lawson	San Juan Co., CO	8000
Rosaceae:		
Rosa woodsii	Deer Lodge Co., MT	5168
R. woodsii	Ravalli Co., MT	3400
R. woodsii	Pueblo Co., CO	6000

Table 2. Seed origin and elevation of entries in the Woody Comparative Evaluation Planting.

Plant survival, height, and vigor were assessed in 2001 (May 21 and August 14), 2002 (May 20 and August 20), 2003 (May 28 and August 26), 2004 (June 30), 2005 (August 29), and 2006 (August 28). Plant height is measured in centimeters to the top of live foliage. Vigor is measured on a scale of 1 to 9, with 1 representing excellent vigor and 9 representing plant mortality.

Results and Discussion

Survival

Overall survival of the entrees in the Woody CEP after 1 year (2001) was local 91.4% and nonlocal 79.2%) (table 3). The edaphic conditions have taken their toll, as survival has decreased each subsequent year; 2002—local 84.3% and nonlocal 52.5%, 2003—local 73.6% and nonlocal 43.8%, 2004—local 70.7% and nonlocal 40%, 2005 local 61.4% and nonlocal 37.5%, 2006-local 58.6% and nonlocal 32.9%. Anaconda's 30-year average annual precipitation is 13.93 inches. The site was quite dry the year of establishment (2000—9.57 inches), but the years following were near or above normal; 2001—13.99", 2002—16.23", 2003—15.42", 2004—13.37", 2005---15.75", and 2006—19.03". Precipitation in Anaconda, therefore, was probably not a major factor in plant mortality.

In all species except *Symphoricarpos occidentalis,* the "local" source had equal or better survival than the "nonlocal" sources. As shown in table 3, the superior accessions included *Pinus ponderosa* (Deer Lodge County, MT), *P. ponderosa* (Lawrence County, SD), *R. cereum* (Deer Lodge County, MT), *Symphoricarpos albus* (Deer Lodge County, MT), and *Shepherdia argentea* (Deer Lodge County, MT). Based on survival and growth, the best overall performing species have been *Pinus ponderosa,* followed by *Symphoricarpos albus, Shepherdia argentea, Ribes cereum, and Rosa woodsii.* All accessions of *Pinus contorta* have performed poorly.

Growth

The average growth over the first 4-year period for the local source material was 14.99 cm (5.9 inches), while the nonlocal material averaged 10.33 cm (4.07 inches) of growth. In 2005, the local material averaged 13.44 cm of growth, while the nonlocal averaged 8.7 cm. In 2006, the local material averaged 3.59 cm of growth, while the nonlocal averaged 1.71 cm. Generally, the local source material outgrew the nonlocal material except for the two snowberry species, *Symphoricarpos albus* and *Symphoricarpos occidentalis*, and the lodgepole pine (*Pinus contorta*). Some of the shrubs exhibited leader mortality or cropping by wildlife, which resulted in negative overall growth. The accessions with the greatest sustained growth were *Ribes cereum* (Deer Lodge County), *Shepherdia argentea* (Deer Lodge County), *Symphoricapos occidentalis* (Wyoming source), *Rosa woodsii* (Deer Lodge County), and *Symphoricarpos albus* (Ravalli County).

Vigor

Live plants were rated on a scale from 1 to 9 (1=highest rating) based on a visual assessment of their vigor or robustness. Dead plants were entered as missing values. The vigor rating for local source material was somewhat better than the nonlocal source material, but not significantly so: 2001—local 3.8 vs. nonlocal 5.4, 2002—local 3.9 vs. nonlocal 4.8, 2003--local 5.1 vs. non-local 5.9, 2004--local 5.1 vs. non-local 5.9, 2005--local 5.4 vs. non-local 5.5, and 2006—local 5.4 vs. non-local 5.5. No patterns in superior vigor seem to exist by species or origin other than the local material has slightly better vigor rating than the non-local.

The top-ranking accession for vigor was *Ribes cereum* (Deer Lodge County) followed by *Shepherdia argentea* (Deer Lodge County). *R. cereum* and *S. argentea* have consistently out performed the non-local sources since establishment. As in the other categories, the lodgepole pine *Pinus contorta* accessions had the poorest overall performance.

Table 3. Woody Com	parative I	Evaluatio	n: 2002-	2006											
Replication	Vigor	Vigor	Vigor	Vigor	Vigor	Avg. Ht.	Surv.	Surv.	Surv.	Surv.	Surv.				
	2002	2003	2004	2005	2006	2002	2003	2004	2005	2006	2002	2003	2004	2005	2006
						(cm)	(cm)	(cm)	(cm)	(cm)	%	%	%	%	%
PICO 9078320	5.80	5.10	6.50	7.60	7.40	10.06	10.19	11.83	14.00	17.40	85	40	25	25	25
PICO m039ID0002	5.00	5.00	7.00	8.00	8.00	12.83	16.33	16.00	16.50	16.00	30	15	10	10	10
PICO m038WY0002	4.00	4.50	5.50	6.00	6.50	14.50	15.67	18.00	20.50	20.00	20	15	5	10	10
PIPO 9081318	2.10	3.40	5.63	5.74	5.84	24.68	27.38	25.79	31.26	32.32	100	100	95	95	95
PIPO m04CO0002	4.20	4.80	7.29	8.00	7.90	14.29	14.74	13.65	14.13	11.90	85	85	85	75	50
PIPO m020SD9903	3.20	2.70	4.84	5.26	5.37	26.80	32.10	31.47	38.32	41.63	100	100	95	95	95
RICE 9081329	4.80	2.80	3.86	3.25	3.42	25.50	47.15	52.00	78.67	93.92	75	65	70	60	60
RICE m024CO0003	5.40	5.10	5.90	5.38	5.13	12.31	24.00	25.60	46.88	56.75	65	50	50	40	40
ROWO 9081638	4.20	4.50	4.54	4.36	5.00	26.07	35.85	39.39	57.27	57.50	75	65	65	55	50
ROWO m076C00003	7.00	7.00	8.00	0.00	0.00	9.00	5.00	4.00	0.00	0.00	15	5	5	0	0
ROWO m07MT0003	5.00	4.00	6.00	4.00	7.00	12.00	28.50	21.67	50.50	46.00	20	10	15	10	10
SHAR 9081334	2.50	2.50	3.94	4.00	3.67	29.88	37.94	41.69	73.93	79.93	80	80	80	75	75
SHAR m022WY0005	6.60	5.20	6.67	7.29	6.25	5.58	7.79	12.67	20.14	33.25	60	35	30	35	20
SHAR m015UT9901	5.80	5.00	5.50	6.00	5.50	9.20	13.25	15.00	31.50	24.00	25	20	10	10	10
SYAL 9078388	3.60	4.00	4.53	5.67	6.24	18.67	25.06	28.53	30.50	29.00	90	85	95	90	85
SYAL m045MT003	3.60	3.00	4.17	4.83	4.83	18.33	30.33	33.67	40.50	45.67	30	30	30	30	30
SYOC 9081639	4.60	5.20	6.85	6.50	6.00	18.06	16.09	18.62	26.50	27.25	85	80	65	30	20
SYOC m021WY0004	3.80	2.80	4.57	4.39	4.09	24.79	40.57	37.53	55.69	59.55	90	75	70	65	55
SYOC m018CO9904	4.00	4.50	4.80	5.36	5.39	16.61	22.79	23.71	35.93	36.39	90	85	75	70	65

Conclusion

Several dead plants were dug up and it was observed that the roots of these plants had not penetrated the native soil beyond their soil media plug area. It seems probable that plants whose roots were able to tolerate the low pH and metalliferous surroundings beyond their plug area flourished, while those with roots sensitive to the edaphic contaminates declined.

The accessions that have had good survival and are now putting on substantial growth include:

Pinus ponderosa (Deer Lodge County, MT) Pinus ponderosa (Lawrence County, SD) Ribes cereum (Deer Lodge County, MT) Rosa woodsii (Deer Lodge County, MT) Shepherdia argentea (Deer Lodge County, MT) Symphoricarpos albus (Deer Lodge County, MT) Symphoricarpos occidentalis (Weston County, WY)

Recommendations

There are obvious limitations and apparent weaknesses in this study. Currently, only one individual plant comprises an experimental unit. This is problematic because high mortality at the plot resulted in replications lacking an experimental unit, thus generating missing values. It is suggested that an experimental unit include five to ten individuals and that the number or replications be decreased. A larger experimental unit would also allow the harvesting of a few individuals for examination of subterranean growth. Secondly, the "local" and "nonlocal" seedlings of each species in this study were assembled from different growers and were not produced using identical cultural techniques. It is important that accessions of each species are produced under the same regimes. Thirdly, the current study lacks a control. A control plot located at a relatively uncontaminated site is needed in order to compare soil effects and the effectiveness of the treatments. It is believed that the installation of Vispore[™] tree mats was beneficial.

References

- Bradshaw. A.D., M.O. Humphreys, and M.S. Johnson. 1978. The value of heavy metal tolerance in the revegetation of metalliferous mine wastes, pp. 311-333. <u>In</u>: Environmental Management of Mineral Wastes. G.T. Goodman and M.J. Chadwick (eds.). Sijthoff and Noordhoff, Alphen aan den Rejn, The Netherlands.
- Dutton, B. 1992, August 27. Old Works Revegetation Project, Planting Trials Survival Analysis. ARCO Report, 11p. Atlantic Richfield Company, Anaconda, MT.
- Eliason, L. 1959, August. Anaconda Mineral Company Memorandum, Tailing Area Tree Planting Status Report. Montana Historical Archives, Boxes 90 and 91, Helena, MT
- Gordon, R. 1984, December. Container Seedling Plots at Anaconda. Anaconda Minerals Company Internal Correspondence, MSE Records Library, Butte, MT.
- Keammerer, Warren R. 1995, July. U.S. District Court, District of Montana, Helena Division. State of Montana vs. ARCO No. cv-83-317-HLN-PGH. Expert Report of Warren Keammerer. July 13, 1995.
- Reclamation Research Unit and Schafer and Associates. 1993. Streambank Tailing and Revegetation Studies, STARS Phase III, Final Report. Montana Department of Health and Environmental Sciences, Helena, MT.
- Reclamation Research Unit. 1997, July. Anaconda Revegetation Treatability Studies, Phase IV: Monitoring and Evaluation, Volume 1. Montana State University, Bozeman, MT 59717-0290. Document No.: ASSS-ARTS-IV-FR-073197.
- Smith, R.A. and A.D. Bradshaw. 1972. Stabilization of toxic mine wastes by the use of tolerant plant populations. Trans. Inst. of Mining and Metallurgy 81:A230-238.

III. STUCKY RIDGE MOTO-X SITE

COMPARATIVE EVALUATION OF GRASSES, FORBS, AND SEED MIXTURES FROM "LOCAL" VERSUS "NON-LOCAL" ORIGINS Moto-X—Stucky Ridge

Methods and Materials

Study Site

The study is located on Stucky Ridge, ~2 mi northeast of Anaconda, Montana, in Deer Lodge County. The legal description and geographic position of the study site are the SW 1/4 of the SW 1/4 of Section 30, Range 11 West, Township 5 North and North 46°09'09"/ West 112°54'30". The study plot occupies 1.5 acres in subpolygon OWSR-013.09, which is part of the Stucky Ridge Remedial Design Unit (RDU) #1 within the Anaconda Regional Water, Waste, and Soils Operable Unit.

RDU #1 encompasses 242 acres of the ~13,000 acres of upland terrestrial vegetation contaminated by emission fallout from the Washoe, as well as the Upper and Lower Works smelters. Concerns identified in the Stucky Ridge RDU include elevated arsenic concentrations in surface soils, barren or sparsely vegetated areas due to low pH and elevated contaminant concentrations, and steep slopes with high erosion potentials (ARCO 2002, May) (table 1). Current and historic use of this area primarily consists of agricultural grazing, recreation, and open space/wildlife habitat.

The plot site is situated on a stream terrace above Lost Creek at an elevation of 5308 feet and covers most of the relatively flat ground on the east end of Stucky Ridge. The vegetation, although sparse, includes scattered groves of quaking aspen, shrublands dominated by Wood's rose, currant species, rubber rabbitbrush, and horsebrush; and grasslands dominated by redtop and basin wildrye. Annual precipitation at the site ranges from 10 to 14 inches with most of the precipitation occurring in the spring. The parent material is alluvium. The soil has a gravelly loam texture and is well drained. The slope at the plot site averages ~5 to 10 percent.

					Sat. Paste
Soil Sample Station	Depth	As	Cu	Zn	pН
	inches	mg/kg	mg/kg	mg/kg	s.u.
94S-SR-71	0-2				4.70
94S-SR-71	2-8				4.90
94S-SR-73	0-2				4.30
94S-SR-73	2-8				4.60
99-098A	0-2	495.0	1660.0	419.0	
99-098B	2-6	163.0	1320.0	276.0	
99-098C	0-6				4.20
99-098D	6-12				7.60
99-098E	12-18				7.80
99-099A	0-2	489.0	1370.0	303.0	
99-099B	2-6	95.8	1020.0	245.0	

Table 1. Pre-tillage soils data in the proximity of the plot site (ARCO 2002, May).

99-099C	0-6				4.00
99-099D	6-12				7.30
99-099E	12-18				7.70
99-123A	0-2	656.0	1530.0	425.0	
99-123B	2-6	167.0	1530.0	332.0	
99-123C	0-6				4.40
99-123D	6-12				4.80
99-123E	12-18				6.30
99-163A	0-2	537.0	2180.0	493.0	
99-163B	2-6	256.0	1430.0	365.0	
99-163C	0-6				4.00
99-163D	6-12				6.20
99-163E	12-18				

Soil Treatment

The study plot site was ameliorated along with the rest of treatment area (OWSR-013.09) following the remedial actions specified in the Remedial Action Work Plan/Final Design Report (ARCO 2002, May). The remedy identified for this treatment area was soil tilling to 12 inches with the addition of a neutralizing amendment to ameliorate the low pH soil conditions. Remediation of the area was performed by Jordan Contracting, Inc. and their subcontractors starting in the fall of 2002. According to the work report from Jordan Contracting, Inc. (Bahr 2003, February 18) prior to tillage, many of the erosion rills and gullies were graded using a D8 Dozer and a CAT 330 excavator. The entire treatment area was pre-tilled by Western Reclamation, Inc. with a Rhome™ disc to approximately 12 inches in mid-September. Lime kiln dust, procured from Continental Lime, Inc., was then applied at a rate of ~22.0 tons/acre to neutralize the soil. Four additional passes were made with the Rhome™ disc to a depth of 12 inches to incorporate the lime. Lime incorporation was completed on November 14, 2002.

In the spring of 2003, fertilizer (12% N, $16\%P_2O_5$, 30% K₂O) was applied at a rate of 500 bulk pounds per acre and incorporated to 6 inches using a chisel plow. The tillage area was drill seeded in early May 2003 at a rate of 25 lbs/acre with "Revegetation Mix #1." Table 2 below lists the soil characteristics of pre-tillage soil data points closest to the study site (northwest portion of treatment area [OWSR-013.09] as stated in the Remedial Action Work Plan/Final Design Report [ARCO 2002, May]).

Sample Id.	Sample Description.	рН	As	Cd	Cu	Pb	Zn
		s.u.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GR1	Grass Trial, Rep. 1	8.2	120	1	797	35	174
GR2	Grass Trial, Rep. 2	8.1	117	1	906	34	177
GR3	Grass Trial, Rep. 3	7.9	132	1	833	43	195
GR4	Grass Trial, Rep. 4	8.0	212	2	985	61	228

 Table 2. Post-planting grass, forb/subshrub, and seed mixture trial (0- to 6-inch) composite soil sample analysis from the Stucky Ridge Comparative Evaluation Planting.

						1	1
GDR1	Grass Trial, Rep. 1, Duplicate	7.7	121	1	703	39	153
GDR3	Grass Trial, Rep. 3, Alternate	7.7	178	1	845	57	201
FR1	Forb Trial, Rep. 1	8.0	115	1	774	38	185
FR2	Forb Trial, Rep. 2	7.2	127	2	888	45	182
FR3	Forb Trial, Rep. 3	7.7	153	2	1010	45	220
FR4	Forb Trial, Rep. 4	7.6	127	2	1080	40	210
FD1	Forb Trial, Rep. 1, Duplicate	8.0	91	ND [†]	681	31	170
FD3	Forb Trial, Rep. 3, Duplicate	7.9	106	1	828	33	171
MR1	Seed Mix. Trial, Rep. 1	8.0	39	1	721	6	143
MR2	Seed Mix. Trial, Rep. 2	7.5	367	2	909	97	226
MR3	Seed Mix. Trial, Rep. 3	7.7	39	ND	706	12	161
MR4	Seed Mix. Trial, Rep. 4	7.8	257	2	857	91	209
MDR1	Seed Mix. Trial, Rep. 1, Duplicate	7.4	130	1	925	35	165
MDR3	Seed Mix. Trial, Rep 3, Alternate	8.1	29	ND	525	9	153

† ND: Not detected at the reporting limit.

Post-Treatment Soil Sampling Methods

Soil sampling of the grass, forb/subshrub, and seed mixture trials was completed on June 24, 2003, after planting. The soil samples were analyzed for pH (1:1 saturated paste), and total As, Cd, Cu, Pb, and Zn by Energy Laboratories, Inc. in Billings, Montana. At the grass trial eight randomly selected treatment blocks in each replication were subsampled. The eight (0- to 6-inch, 0- to 15-cm) composite subsamples collected from a replication were combined and mixed to form one representative sample. Duplicate soil samples were taken in replication 1 and alternate soil samples were taken in replication 3. In the forb/subshrub trial, four (0- to 6-inch) subsamples were taken in replications 1 and 3. In the mixture trial, two (0- to 6-inch) subsamples were taken per replication to form one representative sample. Duplicate subsamples were taken in replications 1 and 3. In the mixture trial, two (0- to 6-inch) subsamples were taken per replication to form one representative sample. Duplicate subsamples were taken in replication 5.

The arsenic and metal concentrations of the post-planting soil samples were generally moderate with the exception of copper. Copper concentrations within the three trials averaged 832 mg/kg and ranged from 525 mg/kg to 1080 mg/kg. The average copper concentrations in the grass, forb/subshrub, and seed mixture trials were 845 mg/kg, 877 mg/kg, and 774 mg/kg, respectively. The pH of post-planting soil samples were all above neutral, averaging 7.8 and ranging from 7.2 to 8.2.

Planting Design

The study is arranged as three separate trials (grass, forb/subshrub, and seed mixture) each in a Randomized Complete Block Design replicated four times. The three trials are situated adjacent to each other as shown in figure 1. The grass, forb/subshrub, and seed mixture trials are 0.96 acre, 0.44 acre, and 0.14 acre, respectively, with a total plot size of 1.52 acres. Between each replication, as well as between trials, an 8-foot strip of *Elymus trachycaulus* 'Pryor' was planted to minimize edge effect. The seed bed was prepared by DATC Project personnel on April 22, 2003, using a 5-foot box scraper to level the soil. Rocks greater than 6 inches in diameter within the plot boundary were hand-picked. After rock removal, another pass was made with the box scraper and spike-tooth harrow to till out tractor tire compressions.

On May 13, 2003, the seed treatments were planted using a 4-row Kincaid[™] cone drill with 1-ft row spacing and a 0.5-inch planting depth. The seeding rate for the grass and forb/subshrub trials was 50 Pure Live Seeds (PLS) per linear foot of row. The seeding rate for the seed mixture trial was based on a total seeding rate of 50 PLS per square foot. Each component of the mix was calculated as a percentage of the per-square-foot rate.

The seed mixtures were formulated for two distinct applications. An "Upland" blend was designed for sloping areas with generally low water infiltration and to provide wildlife habitat. The "Waste Management Area" (WMA) blend was designed to provide a vegetative cover for areas in which remedial options appear to be limited and their use for containment of large volumes of waste appears logical (EPA, 1995a). The seed mixtures referred to as "Developed" are the seed formulations, utilizing commercially available cultivars, currently specified for use in the Remedial Action Work Plan/Final Design Report 2002. The seed mixture previously referred to as Revegetation Mix #1, planted in the surrounding treatment area, is synonymous with the "Upland Developed" seed mixture. The seed mixtures referred to as "Experimental" are local ecotypes of the same species from mine-impacted lands.

Each treatment block is 8 feet (8 rows) by 25 feet. In the grass and forb/subshrub trials, each treatment block was planted with a single accession. Two exceptions exist due to seed quantity restraints. In all replications of the grass trial, *Pascopyrum smithii* 9081968 was drilled in only 6 rows with *Elymus trachycaulus* 'Pryor' drilled into the remaining 2 rows. In all replications of the forb/subshrub trial, *Eriogonum ovalifolium* 9082098 was drilled into only 4 rows with *Elymus trachycaulus* 'Pryor' drilled into the remaining 4 rows.

As mentioned above, Elymus trachycaulus 'Pryor' was drilled in the border strips and also broadcast in the unplanted area south of the forb/subshrub trial. Wooden stakes, spray painted orange and marked with an identification number, were installed in the northeast corner of each treatment block. Lastly, a single-strand, smooth wire fence was installed around the perimeter of the plot to designate plot boundaries and restrict vehicular trespassing. In mid-July and again in mid-September, volunteer Canadian thistle was spot sprayed initially with a 3% solution of 2-4-D Amine and subsequently with a 3% solution of StingerTM (Copyralid) applied with a backpack sprayer.

	Grass Trial			Rep 1	Rep 2
4 ACHY Nezpar	16 ELTR San Luis	30 POSE Sherman	20 LECI Magnar	10 PHHA 9081632	8 PEST Bandera
24 PASM Rosana	32 POSE 9081635	23 PASM Rodan	36 ELWA Secar	12 POGI 9081679	5 KRLA Op.Range
19 LECI Washoe	22 PASM 9081968	29 POSE 9081633	11 DECE Nortran	1 EROV 9082098	4 KRLA NCD
28 POAL 1858	2 ACHY 9081629	35 PSSP Goldar	18 LECI 9081625	14 SYCH 9078675	15 SYCH 9081678
26 POAL 01-13-1	15 ELTR Revenue	32 POSE 9081635	10 DECE 13970176	16 SYCH 5255-RS	9 PEVE Clearwater
21 LECI Trailhead	36 ELWA Secar	7 AGGI 9076266	8 AGGI Streaker	6 PEER Old Works	1 EROV 9082098
16 ELTR San Luis	13 ELTR 9081621	21 LECI Trailhead	4 ACHY Nezpar	4 KRLA NCD	6 PEER Old Works
25 POAL 9016273	1 ACHY 9081628	5 AGGI 9076276	30 POSE Sherman	9 PEVE Clearwater	7 PEEA Richfield
11 DECE Nortran	6 AGGI 9081619	1 ACHY 9081628	35 PSSP Goldar	7 PEEA Richfield	3 ERUM 01-206-1
27 POAL Gruening	26 POAL 01-13-1	26 POAL 01-13-1	23 PASM Rodan	11 PHHA 9003	12 POGR 9081679
14 ELTR Pryor	3 ACHY Rimrock	3 ACHY Rimrock	16 ELTR San Luis	3 ERUM 01-206-1	11 PHHA 9003
10 DECE 13970176	19 LECI Washoe	27 POAL Gruening	25 POAL 9016273	15 SYCH 9081678	10 PHHA 9081632
3 ACHY Rimrock	12 ELTR 9081620	13 ELTR 9081621	29 POSE 9081633	8 PEST Bandera	2 ERUM 450
12 ELTR 9081620	27 POAL Gruening	34 PSSP 9081636	12 ELTR 9081620	13 POHI 9076274	13 POHI 9076274
30 POSE Sherman	17 LECI 9081624	10 DECE 13970176	9 DECE 9076290	5 KRLA Op.Range	16 SYCH 5255-RS
17 LECI 9081624	5 AGGI 9076276	15 ELTR Revenue	27 POAL Gruening	2 ERUM 450	14 SYCH 9078675
36 ELWA Secar	30 POSE Sherman	18 LECI 9081625	6 AGGI 9081619	12 POGI 9081679	11 PHHA 9003
7 AGGI 9076266	10 DECE 13970176	12 ELTR 9081620	5 AGGI 9076276	9 PEVE Clearwater	10 PHHA 9081632
22 PASM 9081968	11 DECE Nortran	25 POAL 9016273	13 ELTR 9081621	5 KRLA Op.Range	5 KRLA Op.Range
6 AGGI 9081619	34 PSSP 9081636	2 ACHY 9081629	32 POSE 9081635	4 KRLA NCD	13 POHI 9076274
8 AGGI Streaker	18 LECI 9081625	8 AGGI Streaker	2 ACHY 9081629	16 SYCH 5255-RS	6 PEER Old Works
13 ELTR 9081621	8 AGGI Streaker	16 ELTR San Luis	33 POSE 9081322	13 POHI 9076274	8 PEST Bandera
29 POSE 9081633	33 POSE 9081322	22 PASM 9081968	26 POAL 01-13-1	10 PHHA 9081632	15 SYCH 9081678
18 LECI 9081625	21 LECI Trailhead	11 DECE Nortran	7 AGGI 9076266	15 SYCH 9081678	7 PEEA Richfield
33 POSE 9081322	29 POSE 9081633	4 ACHY Nezpar	15 ELTR Revenue	11 PHHA 9003	4 KRLA NCD
15 ELTR Revenue	9 DECE 9076290	33 POSE 9081322	22 PASM 9081968	8 PEST Bandera	12 POGR 9081679
35 PSSP Goldar	14 ELTR Pryor	28 POAL 1858	28 POAL 1858	2 ERUM 450	2 ERUM 450
1 ACHY 9081628	23 PASM Rodan	24 PASM Rosana	31 POSE Canbar	1 EROV 9082098	9 PEVE Clearwater
9 DECE 9076290	28 POAL 1858	20 LECI Magnar	14 ELTR Pryor	6 PEER Old Works	1 EROV 9082098
31 POSE Canbar	24 PASM Rosana	36 ELWA Secar	24 PASM Rosana	3 ERUM 01-206-1	14 SYCH 9078675
34 PSSP 9081636	31 POSE Canbar	6 AGGI 9081619	19 LECI Washoe	7 PEEA Richfield	16 SYCH 5255-RS
32 POSE 9081635	4 ACHY Nezpar	31 POSE Canbar	34 PSSP 9081636	14 SYCH 9078675	3 ERUM 01-206-1
2 ACHY 9081629	35 PSSP Goldar	14 ELTR Pryor	17 LECI 9081624	Rep 3	Rep 4
5 AGGI 9076276	20 LECI Magnar	17 LECI 9081624	3 ACHY Rimrock		
23 PASM Rodan	7 AGGI 9076266	9 DECE 9076290	1 ACHY 9081628		
20 LECI Magnar	25 POAL 9016273	19 LECI Washoe	21 LECI Trailhead		
4 WMA Dev	3 WMA Exp	4 WMA Dev	1 UP Exp		
1 UP Exp	2 UP Dev	1 UP Exp	4 WMA Dev		
2 UP Dev	1 UP Exp	3 WMA Exp	3 WMA Exp		
3 WMA Exp	4 WMA Dev	2 UP Dev	2 UP Dev		
Rep 1	Rep 2	Rep 3	Rep 4		

Seed Mixture Trial

Figure 1. Layout of the grass, forb/subshrub, and seed mixture trials at the Stucky Ridge Comparative Evaluation Planting.

Seeded Species

The species entries consist of 36 grass accessions representing 9 grass genera, 14 forb accessions representing 5 forb genera, 2 subshrub accessions representing 1 subshrub species, and 4 seed mixtures representing 2 seed mixture formulations (tables 3-8). The 15 total genera tested were selected for inclusion in the study based on results from previous Development of Acid/Heavy Metal-Tolerant Cultivars (DATC) Project (currently DATR) studies such as the Initial Evaluation Planting study (Marty 2000, July) and the Greenhouse Comparative Evaluation Planting study (Marty 2001, October).

Each genus tested includes at least one accession originating from metalliferous soil sites in the proximity of the Anaconda Smelter NPL Site, except in one case. Neither of the two *Krascheninnikovia lanata* accessions originated from metalliferous soils. In this report, accessions that originated from metalliferous soils are referred to as "local," whereas accessions originating from undisturbed soils are referred to as "non-local."

Sampling Methods

Seedling density was the growth response variable used to assess performance during the first growing season (2003). Measurements were taken using an 11.8- x 19.7-inch (30- x 50-cm) quadrat frame that was randomly placed at five sample locations within each (8- x 25-ft) treatment block. The quadrat was situated with its long axis perpendicular to the seeded rows so that each sampling measurement included two rows. Seedlings rooted within the quadrat frame were counted. Seeded seedlings, as well as non-seeded seedlings, were counted and recorded separately. Photographs of each treatment block were taken during sampling events. Density data was collected on June 24, 2003, to assess emergence and initial establishment and on August 26, 2003, to assess subsequent establishment and/or die off.

Species		 	
Id. #	Genus & Species	Accession/Variety	Origin
1	Eriogonum ovalifolium	9082098	Deer Lodge County, MT
2	Eriogonum umbellatum	9082271	Utah
3	Eriogonum umbellatum	9082273	Idaho
4	Krascheninnikovia lantana	Northern Cold Desert Germplasm	Composite from UT & ID
5	Krascheninnikovia lantana	Open Range Germplasm	Composite from MT & WY
6	Penstemon eriantherus	Old Works Germplasm	Deer Lodge County, MT
7	Penstemon eatonii	Richfield Selected	Sevier County, UT
8	Penstemon strictus	'Bandera' 477980	Torrance County, NM
9	Penstemon venustus	Clearwater Selected	Clearwater River area, ID
10	Phacelia hastata	9081632	Deer Lodge County, MT
11	Phacelia hastata	9082275	California
12	Potentilla gracilis	9081679	California
13	Potentilla hippiana	9076274	Deer Lodge County, MT
14	Symphyotrichum chilense	9078675	Deer Lodge County, MT
15	Symphyotrichum chilense	9081678	Colorado
16	Symphyotrichum chilense	9082274	Unknown

 Table 3. Forb and subshrub treatments included in the forb/subshrub trial at the Stucky Ridge Uplands Comparative Evaluation Planting.

Table 4.	Grass treatments included in the grass trial at the Stucky Ridge Uplands Comparative
	Evaluation Planting.

Species			
ld. #	Genus & Species	Accession/Variety	Origin
1	Achnatherum hymenoides	9081628	Deer Lodge County, MT
2	Achnatherum hymenoides	9081629	Deer Lodge County, MT
3	Achnatherum hymenoides	'Rimrock'	Yellowstone County, MT
4	Achnatherum hymenoides	'Nezpar'	White Bird, ID
5	Agrostis gigantea	9076276	Deer Lodge County, MT
6	Agrostis gigantea	9081619	Deer Lodge County, MT
7	Agrostis gigantea	9076266	Deer Lodge County, MT
8	Agrostis gigantea	'Streaker'	Illinois
9	Deschampsia caespitosa	9076290	Silver Bow County, MT
10	Deschampsia caespitosa	9082620	California
11	Deschampsia caespitosa	'Nortran'	Alaska
12	Elymus trachycaulus	9081620	Deer Lodge County, MT
13	Elymus trachycaulus	9081621	Deer Lodge County, MT
14	Elymus trachycaulus	'Pryor'	Carbon County, MT
15	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada
16	Elymus trachycaulus	'San Luis'	Rio Grande County, CO
17	Leymus cinereus	9081624	Deer Lodge County, MT
18	Leymus cinereus	9081625	Deer Lodge County, MT
19	Leymus cinereus	Washoe Germplasm	Deer Lodge County, MT
20	Leymus cinereus	'Magnar'	Saskatchewan, Canada
21	Leymus cinereus	'Trailhead'	Musselshell County, MT
22	Pascopyrum smithii	9081968 [†]	Deer Lodge County, MT
23	Pascopyrum smithii	'Rodan'	Morton County, ND
24	Pascopyrum smithii	'Rosana'	Rosebud County, MT
25	Poa alpina	9016273	Gallatin County, MT
26	Poa alpina	01-13-1	British Columbia, Canada
27	Poa alpina	'Gruening'	France/Switzerland
28	Poa alpina	1858	Unknown
29	Poa secunda (ampla)	9081633	Deer Lodge County, MT
30	Poa secunda (ampla)	'Sherman'	Sherman County, OR
31	Poa secunda (canbyi)	'Canbar'	Columbia County, WA
32	Poa secunda	9081635	Deer Lodge County, MT
33	Poa secunda	9081322	Lewis & Clark County, MT
34	Pseudoroegneria spicata	9081636	Deer Lodge County, MT
35	Pseudoroegneria spicata	'Goldar'	Asotin County, WA
36	Elymus wawawaiensis	'Secar'	Washington

Table 5. Upland Areas - Experimental Seed Mix Formulation.

Species				
ld. #	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
1	<u>GRASSES:</u>			
	Achnatherum hymenoides	9081629	Deer Lodge County, MT	15.0
	Elymus trachycaulus	9081620	Deer Lodge County, MT	15.0
	Leymus cinereus	Washoe Germ.	Deer Lodge County, MT	15.0
	Pascopyrum smithii	9081968	Deer Lodge County, MT	5.0
	Poa alpina	90816273	Gallatin County, MT	10.0
	Poa secunda (ampla)	9081633	Deer Lodge County, MT	15.0
	Pseudoroegneria spicata	9081636	Deer Lodge County, MT	15.0
	FORBS:			
	Aster chilensis	9078675	Deer Lodge County, MT	2.5

Appendix	B
----------	---

Penstemon eriantherus	Old Works Germ.	Deer Lodge County, MT	5.0
Potentilla hippiana	9076274	Silverbow County, MT	2.5

Table 6. Upland Areas - Develo	oped Seed Mix Formulation.
--------------------------------	----------------------------

Species						
ld. #	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage		
2	<u>GRASSES:</u>	ASSES:				
	Achnatherum hymenoides	'Nezpar'	White Bird, ID	5.0		
	Elymus lanceolatus	'Critana'	Hill County, MT	15.0		
	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada	15.0		
	Festuca ovina	'Covar'	Central Turkey	10.0		
	Leymus cinereus	'Magnar'	Saskatchewan, Canada	15.0		
	Pascopyrum smithii	'Rosana'	Rosebud County, MT	10.0		
	Poa secunda (ampla)	'Sherman'	Sherman County, OR	14.5		
	Pseudoroegneria spicata	'Goldar'	Asotin County, WA	10.0		
	FORBS:					
	Achillea lanulosa	Great Northern	Flathead County, MT	2.5		
	Artemisia frigida	9082258	Unknown	0.5		
	Linum lewisii	'Appar'	Custer County, SD	2.5		

Table 7. Waste Management Areas - Experimental Seed Mix Formulation

Species				
ld. #	Genus & Species	Accession/Variety	Origin	Seed Mixture Percentage
3	<u>GRASSES:</u>			
	Agrostis gigantea	9076276	Deer Lodge County, MT	15
	Deschampsia caespitosa	9076290	Silverbow County, MT	10
	Elymus trachycaulus	9081620	Deer Lodge County, MT	15
	Leymus cinereus	Washoe Germ.	Deer Lodge County, MT	15
	Pascopyrum smithii	9081968	Deer Lodge County, MT	5
	Poa secunda (ampla)	9081633	Deer Lodge County, MT	10
	Stipa comata	9078314	Deer Lodge County, MT	10
	FORBS:			
	Aster chilensis	9078675	Deer Lodge County, MT	10

Table 8. Waste Management Areas - Developed Seed Mix Formulation.

Species	<u> </u>			Seed Mixture Percentage
ld. #	Genus & Species	Accession/Variety	Origin	
4	GRASSES:			
	Agropyrum intermedium	'Greenar'	Former USSR	10
	Bromus inermis	'Manchar'	Manchuria, China	15
	Elymus lanceolatus	'Critana'	Hill County, MT	10
	Elymus trachycaulus	'Revenue'	Saskatchewan, Canada	15
	Leymus cinereus	'Magnar'	Saskatchewan, Canada	15
	Poa secunda (ampla)	'Sherman'	Sherman County, OR	10
	Stipa viridula	9082255	Washington	10
	FORBS:			
	Medicago sativa	'Ladak'	Kashmir, India	15

Data was collected on June 30/July 1 and again on September 22-23, 2004, on August 29-30, 2005, and on August 28-29, 2006. During the early summer sampling, four randomly located frames (30 x 50 cm) were utilized, from which average plant height was measured, percentage stand was estimated, and ocular estimates of plant vigor were made. Random samples were located along rows 2-3 and 6-7 to avoid edge-effect error. In the fall the same random frame locations were used to estimate percentage stand, plant vigor, plant height (2005) and sample biomass production. If combined biomass samples from all four replications did not yield at least 10 grams of material, additional clipping was done so that there would be enough biomass for tissue analysis. All biomass samples were oven dried at 60^oC (140^oF) for 24 hours, weighed, and later cut into small pieces and packaged in plastic zip-lock bags for delivery to Energy Laboratories, Inc. for tissue analysis.

Results and Discussion

Grass Trial (2003)

The grand mean of seedling density data collected on June 24, 2003, in the grass trial was 5.4 seedlings/ft² and ranged from 15.0 to 0.3 seedlings/ft² (tables 9 and 10). Three accessions of *Elymus trachycaulus* ('Pryor', 9081620, and 'San Luis') had the greatest seedling densities at 15.0, 14.1, and 13.6, respectively. These results are not surprising as *Elymus trachycaulus* is recognized for its excellent seedling vigor and quick establishment and growth on a variety of soil types. Density data collected 2 months later on August 26, 2003, indicated that these three *E. trachycaulus* accessions had significantly greater densities than 86% of the accessions tested. The locally collected *E. trachycaulus* 9081620, however, did not perform significantly better than 'Pryor' or 'San Luis'.

Pascopyrum smithii ('Rosana' and 9081968) had 13.3 and 12.7 seedlings/ft², respectively, on June 24 (table 9). *P. smithii* is an aggressively rhizomatous, long-lived grass known to be adapted to a wide range of soil types from acidic to basic. Seedling density data collected on August 26 indicated that the above *P. smithii* accessions also had significantly greater densities than 86% of the accessions tested including *P. smithii* 'Rodan'.

Seedling density data from the June evaluation indicated that *Leymus cinereus* 9081624 had significantly greater density (7.8 seedlings/ft²) than 80.5% of the accessions including the four other *Leymus cinereus* accessions (table 9). However, by the August evaluation *L. cinereus* 9081624 was not significantly better than *L. cinereus* 'Trailhead' (table 10). This accession's success is somewhat unexpected due to the species' poor to fair seedling vigor and slow seedling establishment. This species has been reported to be tolerant of elevated arsenic and heavy metal concentrations (Munshower 1998, September).

The *Pseudoroegneria spicata* accessions ('Goldar' and 9081636) also performed in the top third of the field in June and August (tables 9 and 10). In August, both accessions

mentioned above had significantly better seedling densities than >50% of the accessions. The local accession *P. spicata* 9081636 did not perform significantly better than *P. spicata* 'Goldar'. *P. spicata* is reported to have fair seedling vigor and establishment with tolerances to acidic to slightly alkaline soils.

The grand mean for the August 26, 2003, evaluation is 4.3 seedlings/ft² and ranged from 14.5 to 0.31 seedlings/ft² (table 10). This indicates that seedling density declined by 1.1 seedlings/ft² or 20.4% between the June and August evaluations.

Grass Trials (2004)

Based on the number of new seedlings found in 2004, there were many seeds that did not germinate during the 2003 growing season. The most notable species were *Achnatherum hymenoides* (Indian ricegrass), *Leymus cinereus* (basin wildrye), and *Pascopyrum smithii* (western wheatgrass). Indian ricegrass has a hard seed coat and should normally be dormant-seeded in the fall, but the basin wildrye and western wheatgrass may have delayed germination because of the combination of a relatively late spring planting date and subsequent hot, dry weather. The increase in new seedlings could be expressed in relatively higher percentage stands, but was not revealed in the biomass production, as seedlings were still quite small at the time of the late summer biomass sampling.

At the early summer sampling (6/30/04), the top accession, by a significant amount, was 9081620 slender wheatgrass (*Elymus trachycaulus*) with a 61.3% stand, 54.4 cm average height, and a 3.4 vigor rating. Other 'local source' accessions that exhibited good survival, stand, and vigor included 9081633 big bluegrass (*Poa secunda*), 9081621 slender wheatgrass (*Elymus trachycaulus*), 9081968 western wheatgrass (*Pascopyrum smithii*), 9081624 basin wildrye (*Leymus cinereus*), 9081628 Indian ricegrass (*Achnatherum hymenoides*), 9081635 Canby bluegrass (*Poa secunda*), and 9081636 bluebunch wheatgrass (*Pseudoroegneria spicata*) (see table 11 and 12).

Toward the end of the growing season (9/22/04 sampling date), there was very little change in the top performing accessions (table 13). Of the top 16 accessions in the early summer evaluation, 15 were still ranked as the top performing accessions. The 9081620 slender wheatgrass remained as the top performer by a significant margin. Of the 'local source' accessions, 9081633 big bluegrass, 9081621 slender wheatgrass, 9081968 western wheatgrass, 9081635 Canby bluegrass, 9081624 basin wildrye, and 9081636 bluebunch wheatgrass all show promise, and are among those being increased at the Bridger PMC for potential release to the commercial seed industry. Fall biomass production was relatively low, with only 9081620 slender wheatgrass producing more than 706 kg/ha (2,083 kg/ha) (table 14). Some of the low production can be attributed to the number of new seedlings emerging in 2004. Also 2-year-old plants were often spindly because of the harsh edaphic conditions. Toward the end of the growing season (9/22/04 sampling date), there was very little change in the top performing accessions (table 13). Of the top 16 accessions in the early summer evaluation, 15 were still ranked as the top performing accessions. The 9081620 slender wheatgrass remained as the top performer by a significant margin.

Grass Trials (2005)

The grasses were evaluated and sampled on August 30, 2005. Although there has been some mortality, the top performers of 2003/2004 continue to exhibit their ability to withstand the harsh edaphic conditions of this site. Slender wheatgrass (9081620) is the top performer with an average stand of 75% (table 15), average plant height of 87.5 cm (table 16), and average biomass production of 8,211 kg/ha (table 17). Other superior accessions include 9081633 big bluegrass (stand-43.4%, biomass-2,506 kg/ha), 9081621 slender wheatgrass (stand-34.1%, biomass-4,100 kg/ha), 9081635 bluegrass (stand-25.9%, biomass-906 kg/ha), 9081968 western wheatgrass (stand-21.9%, biomass-800 kg/ha), and 9081624 basin wildrye (stand-22.2%, biomass-1,844 kg/ha). The released cultivars, Secar Snake River wheatgrass, Pryor slender wheatgrass, San Luis slender wheatgrass, Rosana western wheatgrass, and Trailhead basin wildrye were among the top performers; but, in most cases, performances were slightly less than their indigenous counterparts.

Grass Trials (2006)

The grasses were evaluated and sampled on August 28 & 29, 2006. There has been some change in the order of performance but the top performers from 2003-2005 are still in the top 10. Slender wheatgrass (9081620) is still the top overall performer with and average stand of 78.13% (table 18), average plant height of 77.31 cm (table 19), and average biomass production of 2311.11 kg/ha (table 20). Other top performers include 9081633 big bluegrass, 9081621 slender wheatgrass, 9081635 Canbyi bluegrass, and 9081624 basin wildrye. Western wheatgrass (9081968) dropped down from a standing of number 7 in 2005 to number 15 in 2006. The released cultivars, Secar Snake River wheatgrass, Pryor slender wheatgrass, San Luis slender wheatgrass, Rosana western wheatgrass, and Trailhead basin wildrye were still among the top performers; but their overall performance had not improved by any significance.

Genus & Species	Accession	Species ID	Density/ft ²	Mean Separation
Elymus trachycaulus	'Pryor'	14	14.88	A*
Elymus trachycaulus	9081620	14	14.00	AB
Elymus trachycaulus	'San Luis'	12	13.54	AB
Pascopyrum smithii	'Rosana'	24	13.23	AB
Pascopyrum smithii	9081968	24	12.64	AB
Pseudoroegneria spicata	9081636	34	12.30	AB
Leymus cinereus	9081624	17	11.18	BC
Elymus wawawaiensis	'Secar'	36	9.41	CD
Elymus trachycaulus	9081621	13	9.29	CD
Pseudoroegneria spicata	'Goldar'	35	9.04	CD
Achnatherum hymenoides	'Nezpar'	4	8.88	CDE
Elymus trachycaulus	'Revenue'	15	8.70	CDE
Poa secunda	9081633	29	7.08	DEF
Leymus cinereus	'Magnar'	20	6.09	EFG
Leymus cinereus	'Trailhead'	20	5.78	FGH
Pascopyrum smithii	'Rodan'	23	5.62	FGH
Leymus cinereus	9081625	18	3.82	GHI
Leymus cinereus	Washoe Germplasm	19	3.63	GHIJ
Poa secunda	'Sherman'	30	3.11	HIJK
Agrostis gigantea	9081619	6	2.42	IJK
Poa alpina	9016273	25	2.33	IJK
Poa secunda	9081635	32	1.86	IJK
Agrostis gigantea	9076276	5	1.74	IJK
Poa alpina	1858	28	1.71	IJK
Deschampsia caespitosa	9076290	9	1.33	IJK
Poa secunda	9081322	33	1.31	IJK
Achnatherum hymenoides	'Rimrock'	3	1.27	IJK
Poa secunda	'Canbar'	31	1.21	IJK
Deschampsia caespitosa	'Nortran'	11	0.99	IJK
Agrostis gigantea	9076266	7	0.81	JK
Achnatherum hymenoides	9081629	2	0.78	K
Agrostis gigantea	'Streaker'	8	0.75	K
Poa alpina	01-13-1	26	0.65	K
Achnatherum hymenoides	9081628	1	0.59	K
Deschampsia caespitosa	13970176	10	0.56	K
Poa alpina	'Gruening'	27	0.34	K

 Table 9. Density (seedlings per square foot) sampled on June 24, 2003, at the Stucky Ridge Comparative Evaluation Planting grass trial.

 Poa alpina
 'Gruening'
 27
 0.34

 * Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Genus & Species	Accession	Species ID	Density/ft ²	Mean Separation
	9081620	12	14.38	A*
Elymus trachycaulus Elymus trachycaulus	'San Luis'	12	14.36	AB
Pascopyrum smithii	'Rosana'	24	13.35	AB
Pascopyrum smithii	9081968	24	11.52	B
Elymus trachycaulus	'Pryor'	14	11.43	В
Elymus trachycaulus	'Revenue'	15	8.32	C
Leymus cinereus	9081624	17	7.76	C
Pseudoroegneria spicata	'Goldar'	35	7.21	CD
Pseudoroegneria spicata	9081636	34	7.11	CD
Elymus wawawaiensis	'Secar'	36	6.52	CD
Achnatherum hymenoides	'Nezpar'	4	6.49	CD
Elymus trachycaulus	9081621	13	6.06	CD
Pascopyrum smithii	'Rodan'	23	5.71	CD
Poa secunda	9081633	29	5.12	DE
Leymus cinereus	'Trailhead'	21	4.88	DEF
Leymus cinereus	'Magnar'	20	2.98	EFG
Leymus cinereus	9081625	18	2.33	FGH
Poa secunda	'Sherman'	30	2.33	FGH
Agrostis gigantea	9081619	6	2.27	FGH
Leymus cinereus	Washoe Germplasm	19	2.14	GH
Agrostis gigantea	9076276	5	1.46	GH
Poa alpina	1858	28	1.24	GH
Poa secunda	9081635	32	1.09	GH
Poa alpina	01-13-1	26	1.03	GH
Agrostis gigantea	9076266	7	0.96	GH
Achnatherum hymenoides	'Rimrock'	3	0.90	GH
Poa alpina	9016273	25	0.90	GH
, Deschampsia caespitosa	'Nortran'	11	0.87	GH
Poa secunda	9081322	33	0.71	GH
Achnatherum hymenoides	9081628	1	0.59	GH
Poa alpina	'Gruening'	27	0.53	GH
Poa secunda	'Canbar'	31	0.47	GH
Deschampsia caespitosa	9076290	9	0.44	GH
Deschampsia caespitosa	13970176	10	0.37	GH
Agrostis gigantea	'Streaker'	8	0.34	Н
Achnatherum hymenoides	9081629	2	0.28	Н

Table 10. **Density** (seedlings per square foot) sampled on **August 26, 2003**, at the Stucky Ridge Comparative Evaluation Planting grass trial.

Genus & Species	Accession	1	Stand	Vigor
	///////////////////////////////////////		%	19
			70	1.0
Elymus trachycaulus	9081620	61.3	A*	2.1
Achnatherum hymenoides	Rimrock	31.3	В	4.8
Poa secunda	9081633	31.3	B	3.3
Elymus trachycaulus	9081621	28.4	BC	3.4
Elymus trachycaulus	Pryor	26.9	BCD	4.9
Pascopyrum smithii	9081968	26.7	BCD	4.9
Achnatherum hymenoides	Nezpar	25.3	BCDE	5.0
Leymus cinereus	9081624	20.8	BCDEF	4.4
Elymus wawawaiensis	Secar	20.0	BCDEFG	4.6
Elymus trachycaulus	Revenue	19.7	CDEFG	4.8
Elymus trachycaulus	San Luis	18.6	CDEFGH	4.8
Achnatherum hymenoides	9081628	18.3	CDEFGH	5.6
Pascopyrum smithii	Rosana	16.9	DEFGHI	4.8
Leymus cinereus	Trailhead	15.1	EFGHIJ	4.8
Poa secunda	9081635	15.0	EFGHIJ	3.3
Pseudoroegneria spicata	9081636	14.5	EFGHIJK	5.2
Leymus cinereus	Washoe	12.8	FGHIJKL	5.0
Leymus cinereus	Magnar	12.2	FGHIJKL	5.2
Pascopyrum smithii	Rodan	11.8	FGHIJKLM	5.3
Agrostis gigantea	9081619	10.7	FGHIJKLM	3.2
Leymus cinereus	9081625	10.1	FGHIJKLM	5.4
Pseudoroegneria spicata	Goldar	10.0	FGHIJKLM	5.1
Achnatherum hymenoides	9081629	8.6	GHIJKLM	5.7
Agrostis gigantea	9076276	8.1	HIJKLM	2.9
Poa secunda	Sherman	6.2	IJKLM	4.8
Poa alpina	01-131	4.1	JKLM	3.3
Deschampsia caespitosa	9076290	4.0	JKLM	4.2
Poa secunda	9081322	3.6	KLM	4.3
Poa alpina	9016273	3.3	KLM	4.5
Agrostis gigantea	9076266	3.1	KLM	4.0
Poa alpina	1858	1.4	LM	4.5
Deschampsia caespitosa	Nortran	0.6	М	5.3
Poa alpina	Gruening	0.5	М	4.0
Agrostis gigantea	Streaker	0.4	М	5.2
Poa secunda	Canbar	0.4	М	6.2
Deschampsia caespitosa	13970176	0.2	М	5.5

Table 11. Percentage stand and vigor of grass trials on Stucky Ridge Plots (evaluated
6/30/04).

Accession		Height
		mm
9081620	54.37	A*
9081621	34.19	В
9076276	33.13	В
9081619	27.13	BC
9081633	26.25	BCD
Secar	23.88	CDE
9081635	23.31	CDE
9076266	20.96	CDEF
Pryor	18.50	CDEFG
9081624	17.94	DEFG
9081322	17.63	DEFGH
Goldar	17.33	EFGH
Nezpar	16.94	EFGH
Sherman	16.54	EFGHI
Trailhead	16.06	EFGHIJ
San Luis	14.50	FGHIJK
9076290	14.41	FGHIJKL
Revenue	14.25	FGHIJKL
Rosana	13.50	FGHIJKL
Rimrock	13.00	FGHIJKLM
Magnar	13.00	FGHIJKLM
Washoe	12.36	FGHIJKLMN
Rodan	12.27	FGHIJKLMN
9081636	12.04	GHIJKLMN
Streaker	11.83	GHIJKLMN
9081968	11.38	GHIJKLMN
9081625	10.67	GHIJKLMN
9081628	9.04	HIJKLMN
01-13-1	8.11	IJKLMN
9081629	7.54	JKLMN
13970176	7.00	KLMN
Canbar	6.33	KLMN
Nortran	6.00	KLMN
9016273	5.71	LMN
Gruening	4.50	MN
1858	3.83	N
	Accession 9081620 9081621 9076276 9081619 9081633 Secar 9081635 9076266 Pryor 9081624 9081624 9081624 9081624 9081322 Goldar Nezpar Sherman Trailhead San Luis 9076290 Revenue Rosana Rimrock Magnar Washoe Rodan 9081636 Streaker 9081628 01-13-1 9081628 01-13-1 9081628 01-13-1 9081629 13970176 Canbar Nortran 9016273 Gruening 1858	9081620 54.37 9081621 34.19 9076276 33.13 9081619 27.13 9081633 26.25 Secar 23.88 9081635 23.31 9076266 20.96 Pryor 18.50 9081624 17.94 9081322 17.63 Goldar 17.33 Nezpar 16.94 Sherman 16.54 Trailhead 16.06 San Luis 14.50 9076290 14.41 Revenue 14.25 Rosana 13.50 Rimrock 13.00 Washoe 12.36 Rodan 12.27 9081636 12.04 Streaker 11.38 9081625 10.67 9081625 10.67 9081625 10.67 9081625 10.67 9081625 10.67 9081625 10.67 9081625

Table 12. Average plant height of grasses in Stucky Ridge plots (measured 6/30/04).

9/22/04).			
Genus & Species	Accession	Stand	Vigor
		%	1—9
Elymus trachycaulus	9081620	61.25 A*	1.8
Poa secunda	9081633	37.19 B	2.4
Elymus trachycaulus	9081621	30.00 BC	2.7
Pascopyrum smithii	9081968	28.44 BCD	4.0
Elymus trachycaulus	Pryor	26.25 CDE	4.6
Pascopyrum smithii	Rosana	26.25 CDE	3.6
Poa secunda	9081635	24.06 CDEF	2.8
Elymus trachycaulus	Revenue	23.75 CDEFG	4.3
Achnatherum hymenoides	Rimrock	23.44 CDEFG	4.2
Leymus cinereus	9081624	22.81 CDEFGH	3.6
Leymus cinereus	Trailhead	20.00 DEFGHI	4.0
Elymus wawawaiensis	Secar	19.19 DEFGHI	4.0
Elymus trachycaulus	San Luis	19.06 DEFGHI	4.4
Achnatherum hymenoides	Nezpar	18.44 EFGHI	4.1
Agrostis gigantea	9081619	17.81 EFGHIJ	2.1
Pseudoroegneria spicata	9081636	17.50 EFGHIJK	3.8
Pascopyrum smithii	Rodan	16.56 EFGHIJK	4.5
Agrostis gigantea	9076276	15.94 FGHIJKL	2.7
Achnatherum hymenoides	9081628	4.38 FGHIJKLM	4.9
Leymus cinereus	Washoe	14.06 GHIJKLMN	4.6
Leymus cinereus	Magnar	13.44 HIJKLMN	4.7
Pseudoroegneria spicata	Goldar	13.44 HIJKLMN	4.1
Poa secunda	Sherman	12.19 IJKLMN	4.1
Poa secunda	9081322	11.88 IJKLMNC) 2.9
Leymus cinereus	9081625	11.56 IJKLMNC	
Achnatherum hymenoides	9081629	11.25 IJKLMNC) 5.4
Poa alpina	01-13-1	8.44 JKLMNC	DP 3.6
Agrostis gigantea	9076266	7.81 KLMN0	DP 2.1
Deschampsia caespitosa	9076290	6.25 LMNC)P 2.8
Poa alpina	9016273	5.19 MNC	DP 3.6
Poa alpina	1858	4.38 NC	
Agrostis gigantea	Streaker	1.88 0	DP 4.0
Deschampsia caespitosa	13970176	1.88 0	DP 3.3
Poa alpina	Gruening	1.06	P 3.3
Deschampsia caespitosa	Nortran	0.44	P 3.0
Poa secunda	Canbar	0.00	P 9.0

Table 13. Percentage **stand and vigor** of grasses in Stucky Ridge plots (evaluated **9/22/04**).

Genus & Species	Accession	Biomass
		kg/ha
Elymus trachycaulus	9081620	2,083 A*
Agrostis gigantea	9081619	706 B
Elymus trachycaulus	9081621	544 BC
Elymus wawawaiensis	Secar	413 BCD
Poa secunda	9081633	408 BCD
Elymus trachycaulus	Pryor	386 BCDE
Leymus cinereus	9081624	333 CDEF
	Washoe	289 CDEF
Leymus cinereus	9076276	287 CDEF
Agrostis gigantea		
Elymus trachycaulus	Revenue	
Poa secunda	9081635	216 CDEF
Deschampsia caespitosa	9076290	193 CDEF
Leymus cinereus	Trailhead	192 CDEF
Agrostis gigantea	9076266	185 DEF
Poa secunda	Sherman	183 DEF
Achnatherum hymenoides	Nezpar	169 DEF
Pseudoroegneria spicata	Goldar	165 DEF
Pascopyrum smithii	9081968	127 DEF
Leymus cinereus	9081625	124 DEF
Elymus trachycaulus	San Luis	100 DEF
Pseudoroegneria spicata	9081636	97 DEF
Pascopyrum smithii	Rosana	95 DEF
Poa alpina	01-13-1	92 DEF
Pascopyrum smithii	Rodan	85 DEF
Achnatherum hymenoides	Rimrock	84 DEF
Poa alpina	9016273	80 DEF
Leymus cinereus	Magnar	75 DEF
Deschampsia caespitosa	Nortran	73 DEF
Achnatherum hymenoides	9081628	34 EF
Poa secunda	9081322	24 F
Achnatherum hymenoides	9081629	23 F
Poa alpina	Gruening	15 F
Deschampsia caespitosa	13970176	8 F
Poa alpina	1858	7 F
Agrostis gigantea	Streaker	0 F
Poa secunda	Canbar	0 F

Table 14. Biomass production of grasses in Stucky Ridge Trials (clipped 9/22/04).

Table15. Percentage **stand and vigor** of grass trials on Stucky Ridge Plots (evaluated **8/30/05**).

Genus & Species	Accession	Stand %		Vigor 19
Elymus trachycaulus	9081620	75.0 A*		2.1
Poa secunda	9081633	43.4 B		2.1
Elymus trachycaulus	9081621	34.1 B0	C	2.7
Poa secunda	9081635	25.9 (CD	3.3
Elymus trachycaulus	Pryor	23.1 (CDE	5.3
Leymus cinereus	9081624	22.2 (CDEF	3.8
Pascopyrum smithii	9081968	21.9	DEFG	4.5
Elymus wawawaiensis	Secar	21.6	DEFG	4.3
Elymus trachycaulus	San Luis	20.9	DEFGH	4.6
Pascopyrum smithii	Rosana	20.6	DEFGH	4.7
Leymus cinereus	Trailhead	16.2	DEFGHI	4.3
Pascopyrum smithii	Rodan	16.2	DEFGHI	5.0
Achnatherum hymenoides	9081628	14.1	DEFGHIJ	5.3
Achnatherum hymenoides	Rimrock	14.1	DEFGHIJ	4.5
Leymus cinereus	9081625	13.8	DEFGHIJ	5.5
Pseudoroegneria spicata	9081636	13.8	DEFGHIJ	4.5
Agrostis gigantea	9081619	13.4	EFGHIJK	3.2
Leymus cinereus	Washoe	13.4	EFGHIJK	4.8
Agrostis gigantea	9076276	13.1	EFGHIJK	3.7
Poa secunda	Sherman	12.5	EFGHIJKL	4.0
Achnatherum hymenoides	Nezpar	11.9	EFGHIJKLM	4.6
Elymus trachycaulus	Revenue	11.9	EFGHIJKLM	5.4
Pseudoroegneria spicata	Goldar	11.1	EFGHIJKLM	4.6
Leymus cinereus	Magnar	10.9	FGHIJKLM	5.2
Deschampsia caespitosa	9076290	10.6	FGHIJKLM	3.9
Poa secunda	9081322	10.0	GHIJKLM	4.2
Agrostis gigantea	9076266	9.0	HIJKLM	4.0
Achnatherum hymenoides	9081629	6.4	IJKLM	5.7
Poa alpina	01-13-1	3.9	JKLM	5.0
Poa alpina	1858	3.6	JKLM	5.3
Poa alpina	9016273	3.0	JKLM	3.8
Deschampsia caespitosa	Nortran	1.6	KLM	3.8
Deschampsia caespitosa	13970176	0.9	LM	3.8
Poa alpina	Gruening	0.8	LM	1.5
Agrostis gigantea	Streaker	0.4	М	1.5
Poa secunda	Canbar	0.1	М	8.0

Table 16. Average plant height of grasses in Stucky Ridge plots (measured 8/30/05).
--

(cm)Elymus trachycaulus908162087.5A*Elymus trachycaulus908162176.3APoa secunda908163359.1BLeymus cinereus908162458.0BElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908163545.6BCDEPoa secunda908163245.6BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFAgrostis gigantea907627638.9CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907620036.5CDEFGHPoa secundaSherman34.9CDEFGHPosudoroegneria spicataGoldar38.1CDEFGHPoschampsia caespitosa907629036.5CDEFGHPoschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908162822.8HIJKLAchnatherum hymenoidesNezpar33.7CDEFGHIPoa alpina001-13-115.7JKLMPoa alpina <th>Genus & Species</th> <th>Accession</th> <th>Height</th>	Genus & Species	Accession	Height
Elymus trachycaulus908162176.3APoa secunda908163359.1BLeymus cinereus908162458.0BElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163639.7CDEFFAgrostis gigantea907627644.7BCDEFAgrostis gigantea907627644.7BCDEFAgrostis gigantea907626638.9CDEFGPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGPseudoroegneria spicataGoldar38.1CDEFGHLeymus cinereusMagnar36.7CDEFGHPseudoroegneria spicata907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithiiRosana29.8FGHIJKPoa alpina901627317.0JKLPoa alpina901627317.0JKLAgrostis gigantea90717624.0 </th <th></th> <th></th> <th>(cm)</th>			(cm)
Elymus trachycaulus908162176.3APoa secunda908163359.1BLeymus cinereus908162458.0BElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163639.7CDEFAgrostis gigantea907627644.7BCDEFAgrostis gigantea907627644.7BCDEFAgrostis gigantea907626638.9CDEFGPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGPseudoroegneria spicataGoldar38.1CDEFGHLeymus cinereusMagnar36.7CDEFGHPseudoroegneria spicata907629036.5CDEFGHPseudoroegneria spicata907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIPoa secundaSherman34.9CDEFGHIPoa secundaSherman30.9DEFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithiiRosana29.8FGHIJKPoa alpina90816282			
Poa secunda908163359.1BLeymus cinereus908162458.0BElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163545.6BCDEPoa secunda908163545.6BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPoa secunda908163639.7CDEFFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGPseudoroegneria spicataGoldar36.7CDEFGHLeymus cinereusMagnar36.7CDEFGHLeymus cinereusMagnar36.7CDEFGHPseudoroegneria spicataGoldar38.1CDEFGHPseudoroegneria spicataGoldar38.1CDEFGHLeymus cinereusMagnar36.7CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPascopyrum smithiiRoban30.9DEFGHIJKPascopyrum smithiiRoban30.9DEFGHJKPascopyrum smithiiRo	Elymus trachycaulus	9081620	87.5 A*
Leymus cinereus908162458.0BElymus wawawaiensisSecar50.3BCElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908163545.6BCDPoa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithii908162824.7GHIJKLPascopyrum smithii908162824.7GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLMAgrostis g	Elymus trachycaulus	9081621	76.3 A
Elymus wawawaiensisSecar50.3BCElymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908161946.5BCDPoa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907626638.9CDEFGHLeymus cinereusMagnar36.7CDEFGHPoa secundaSherman34.9CDEFGHLeymus cinereusMagnar36.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRoban30.9DEFGHIJKPascopyrum smithii90816824.7GHIJKLPascopyrum smithii90816824.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLPoa alpina<	Poa secunda	9081633	59.1 B
Elymus trachycaulusSan Luis48.8BCLeymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908161946.5BCDPoa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHPoa secundaSherman34.9CDEFGHLeymus cinereusMagnar36.7CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPoa secundaSherman30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908162824.7GHIJKLDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithii908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3JKLM <t< td=""><td>Leymus cinereus</td><td>9081624</td><td>58.0 B</td></t<>	Leymus cinereus	9081624	58.0 B
Leymus cinereus908162547.7BCElymus trachycaulusPryor47.0BCAgrostis gigantea908161946.5BCDPoa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus cinereusMagnar36.7CDEFGHPseudoroegneria spicataGoldar38.1CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHIPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908162824.7GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLM <td>Elymus wawawaiensis</td> <td>Secar</td> <td>50.3 BC</td>	Elymus wawawaiensis	Secar	50.3 BC
Elymus trachycaulusPryor47.0BCAgrostis gigantea908161946.5BCDPoa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGPseudoroegneria spicataGoldar36.7CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJPascopyrum smithiiRodan30.9DEFGHIJKPascopyrum smithii908196824.7GHIJKLPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162820.3IJKLPoa alpina01-13-1 <td< td=""><td>Elymus trachycaulus</td><td>San Luis</td><td>48.8 BC</td></td<>	Elymus trachycaulus	San Luis	48.8 BC
Agrostis gigantea908161946.5BCDPoa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHIPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908168824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLMAgrostis gigantea01-13-115.0 </td <td>Leymus cinereus</td> <td>9081625</td> <td>47.7 BC</td>	Leymus cinereus	9081625	47.7 BC
Poa secunda908163545.6BCDELeymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHIPoa secundaSherman34.9CDEFGHIPoa secundaNortran30.3EFGHIJKPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162820.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Elymus trachycaulus	Pryor	47.0 BC
Leymus cinereusTrailhead45.5BCDEPoa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHIPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Agrostis gigantea	9081619	46.5 BCD
Poa secunda908132245.4BCDEFAgrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Poa secunda	9081635	45.6 BCDE
Agrostis gigantea907627644.7BCDEFLeymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.7CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Leymus cinereus	Trailhead	45.5 BCDE
Leymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Poa secunda	9081322	45.4 BCDEF
Leymus cinereusWashoe43.6BCDEFPseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Agrostis gigantea	9076276	44.7 BCDEF
Pseudoroegneria spicata908163639.7CDEFGAchnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRobana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162821.7JKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		Washoe	43.6 BCDEF
Achnatherum hymenoidesRimrock39.5CDEFGAgrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHIPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		9081636	39.7 CDEFG
Agrostis gigantea907626638.9CDEFGPseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLPascopyrum smithii908162822.8HIJKLDeschampsia caespitosa1397017624.0GHIJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		Rimrock	39.5 CDEFG
Pseudoroegneria spicataGoldar38.1CDEFGHElymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		9076266	38.9 CDEFG
Elymus trachycaulusRevenue36.9CDEFGHLeymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa908162822.8HIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		Goldar	38.1 CDEFGH
Leymus cinereusMagnar36.7CDEFGHDeschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa908162822.8HIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Elymus trachycaulus	Revenue	36.9 CDEFGH
Deschampsia caespitosa907629036.5CDEFGHPoa secundaSherman34.9CDEFGHIAchnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa908162822.8HIJKLDeschampsia caespitosa908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		Magnar	36.7 CDEFGH
Achnatherum hymenoidesNezpar33.7CDEFGHIPascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLDeschampsia caespitosa908162822.8HIJKLPoschampsia caespitosa908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		9076290	36.5 CDEFGH
Pascopyrum smithiiRodan30.9DEFGHIJDeschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLAgrostis giganteaStreaker15.0JKLM	Poa secunda	Sherman	34.9 CDEFGHI
Deschampsia caespitosaNortran30.3EFGHIJKPascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Achnatherum hymenoides	Nezpar	33.7 CDEFGHI
Pascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Pascopyrum smithii	Rodan	30.9 DEFGHIJ
Pascopyrum smithiiRosana29.8FGHIJKPascopyrum smithii908196824.7GHIJKLDeschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Deschampsia caespitosa	Nortran	30.3 EFGHIJK
Deschampsia caespitosa1397017624.0GHIJKLAchnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM		Rosana	29.8 FGHIJK
Achnatherum hymenoides908162822.8HIJKLAchnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Pascopyrum smithii	9081968	24.7 GHIJKL
Achnatherum hymenoides908162920.3IJKLPoa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Deschampsia caespitosa	13970176	24.0 GHIJKL
Poa alpina901627317.0JKLPoa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Achnatherum hymenoides	9081628	22.8 HIJKL
Poa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Achnatherum hymenoides	9081629	20.3 IJKL
Poa alpina01-13-115.7JKLMAgrostis giganteaStreaker15.0JKLM	Poa alpina	9016273	17.0 JKL
3 3 3	•	01-13-1	15.7 JKLM
	Agrostis gigantea	Streaker	15.0 JKLM
<i>Poa alpina</i> 1858 10.8 JKLM	Poa alpina	1858	10.8 JKLM
Poa alpina Gruening 9.0 JKLM	Poa alpina	Gruening	9.0 JKLM
Poa secunda Canbar 0.0 M			0.0 M

		Biomass					
		kg/ha					
9081620	8,211	A*					
9081621	4,100	В					
9081633	2,506	С					
Trailhead	2,222	CD					
9081619	2,189	CD					
9076276	2,039	CDE					
9081624	1,844	CDEF					
Pryor	1,578	CDEFG					
9076266	1,367	CDEFGH					
Secar		CDEFGH					
9081635	906	DEFGH					
	872	DEFGH					
9076290	844	DEFGH					
9081968	800	DEFGH					
	650	EFGH					
		EFGH					
		EFGH					
		FGH					
	428	FGH					
	361	GH					
		GH					
		GH					
		GH					
9081322		GH					
Rodan		GH					
	189	GH					
	122	Н					
9081629	61	Н					
	61	Н					
	51	Н					
1858	28	Н					
13970176	28	Н					
01-13-1	23	Н					
	0	Н					
Nortran	0	Н					
Canbar	0	H					
	9081621 9081633 Trailhead 9081619 9076276 9081624 Pryor 9076266 Secar 9081635 Nezpar 9076290 9081968 Rosana Magnar San Luis Revenue 9081625 Washoe Rimrock 9081636 Goldar 9081636 Goldar 9081637 Nezpar 9081625 Washoe Rimrock 9081636 Goldar 9081625 Notrean Sherman Streaker 9081628 9016273 1858 13970176 01-13-1 Gruening Nortran Canbar	9081621 4,100 9081633 2,506 Trailhead 2,222 9081619 2,189 9076276 2,039 9081624 1,844 Pryor 1,578 9076266 1,367 Secar 1,289 9081635 906 Nezpar 872 9076290 844 9081968 800 Rosana 650 Magnar 639 San Luis 622 Revenue 578 9081625 428 Washoe 361 Rimrock 339 9081636 317 Goldar 272 9081636 317 Goldar 272 9081636 317 Goldar 272 9081629 61 9081629 61 9081629 61 9081628 61 9016273 51 185					

Scientific Name	Accession		Stand	Vigor
			%	19
Elymus trachycaulus	9081620	78.13	A*	3.25
Poa secunda	9081633	63.13	А	2.94
Elymus trachycaulus	9081621	41.25	В	3.44
Agrostis gigantea	9081619	29.38	BC	3.25
Leymus cinereus	9081624	28.13	BCD	4.77
Elymus trachycaulus	San Luis	26.56	BCDE	4.58
Elymus wawawaiensis	Secar	25.31	BCDEF	4.04
Poa secunda	9081635	23.75	BCDEFG	4.06
Elymus trachycaulus	Pryor	22.19	CDEFGH	5.04
Agrostis gigantea	9076276	21.56	CDEFGHI	3.65
Leymus cinereus	Trailhead	19.38	CDEFGHIJ	4.73
Pascopyrum smithii	Rosana	17.19	CDEFGHIJ	5.00
Achnatherum hymenoides	Rimrock	14.06	CDEFGHIJ	4.50
Poa secunda	Sherman	13.44	CDEFGHIJ	4.38
Pascopyrum smithii	9081968	12.81	CDEFGHIJ	5.52
Agrostis gigantea	9076266	11.25	CDEFGHIJ	4.00
Leymus cinereus	9081625	10.94	CDEFGHIJ	4.85
Pseudoroegneria spicata	Goldar	10.94	CDEFGHIJ	4.50
Elymus trachycaulus	Revenue	10.63	CDEFGHIJ	4.58
Pascopyrum smithii	Rodan	10.63	CDEFGHIJ	4.39
Achnatherum hymenoides	Nezpar	9.69	DEFGHIJ	3.85
Leymus cinereus	Washoe	9.06	EFGHIJ	4.67
Leymus cinereus	Magnar	7.19	FGHIJ	5.19
Achnatherum hymenoides	9081628	5.94	GHIJ	4.42
Agrostis gigantea	Streaker	5.94	GHIJ	5.10
Achnatherum hymenoides	9081629	4.69	HIJ	4.92
Poa alpina	Gruening	4.69	HIJ	5.47
Poa secunda	9081322	4.06	HIJ	4.00
Pseudoroegneria spicata	9081636	3.44	HIJ	5.38
Poa alpina	9016273	3.44	HIJ	5.50
Poa alpina	01131	2.81	IJ	4.75
Deschampsia caespitosa	Nortran	2.81	IJ	6.13
Deschampsia caespitosa	13970176	2.81	IJ	5.17
Poa secunda	Canbar	2.50	J	5.00
Poa alpina	1858	1.88	J	5.00
Deschampsia caespitosa	9076290	0.63	J	4.50

Table 18: Percentage **stand and vigor** of grass trials on Stucky Ridge Plots (evaluated 8/28/06).

Scientific Name	Accession		Height						
			(cm)						
Elymus trachycaulus	9081621	78.56	A*						
Leymus cinereus	9081624	78.56	Α						
Leymus cinereus	Trailhead	77.88	Α						
Elymus trachycaulus	9081620	77.31	Α						
Leymus cinereus	9081625	74.04	AB						
Elymus wawawaiensis	Secar	69.96	ABC						
Elymus trachycaulus	San Luis	69.92	ABC						
Leymus cinereus	Washoe	67.88	ABCD						
Leymus cinereus	Magnar	66.33	ABCDE						
Elymus trachycaulus	Pryor	64.31	ABCDEF						
Poa secunda	9081633	62.38	ABCDEFG						
Poa secunda	Sherman	61.94	ABCDEFGH						
Poa secunda	Canbar	60.75	ABCDEFGH						
Achnatherum hymenoides	Nezpar	57.33	BCDEFGHI						
Agrostis gigantea	9081619	57.11	BCDEFGHIJ						
Agrostis gigantea	9076276	57.04	BCDEFGHIJ						
Elymus trachycaulus	Revenue	54.92	CDEFGHIJ						
Achnatherum hymenoides	Rimrock	54.31	CDEFGHIJ						
Pseudoroegneria spicata	Goldar	52.63	CDEFGHIJ						
Poa secunda	9081635	50.81	DEFGHIJK						
Poa alpina	1131	50.75	DEFGHIJK						
Poa alpina	1858	50.00	DEFGHIJKL						
Agrostis gigantea	9076266	48.88	EFGHIJKL						
Pascopyrum smithii	Rodan	48.33	FGHIJKL						
Poa secunda	9081322	47.13	FGHIJKLM						
Deschampsia caespitosa	Nortran	46.50	FGHIJKLM						
Achnatherum hymenoides	9081628	46.25	GHIJKLM						
Pseudoroegneria spicata	9081636	45.75	GHIJKLM						
Agrostis gigantea	Streaker	45.39	GHIJKLM						
Poa alpina	Gruening	44.47	HIJKLM						
Achnatherum hymenoides	9081629	42.50	IJKLMN						
Pascopyrum smithii	Rosana	39.38	JKLMN						
Poa alpina	9016273	33.00	KLMN						
Deschampsia caespitosa	13970176	32.67	LMN						
Pascopyrum smithii	9081968	30.00	MN						
Deschampsia caespitosa	9076290	26.50	Ν						

Table 19: Average plant height of grasses in Stucky Ridge plots (measured 8/28/06).

Table 20: Biomass production Scientific Name	Accession	Biomass
		kg/ha
Elymus trachycaulus	9081621	4894.44 A*
Agrostis gigantea	9081619	3322.22 AB
Leymus cinereus	9081624	2633.33 BC
Elymus trachycaulus	9081620	2311.11 BCD
Poa secunda	9081633	2311.11 BCD
Leymus cinereus	Trailhead	2255.56 BCDE
Elymus wawawaiensis	Secar	2172.22 BCDE
Leymus cinereus	Washoe	1988.89 BCDEF
Leymus cinereus	9081625	1761.11 BCDEFG
Agrostis gigantea	9076276	1550.00 CDEFGH
Leymus cinereus	Magnar	1550.00 CDEFGH
Elymus trachycaulus	Revenue	1272.22 CDEFGH
Agrostis gigantea	9076266	1216.67 CDEFGH
Poa secunda	9081635	1150.00 CDEFGH
Pseudoroegneria spicata	Goldar	1072.22 CDEFGH
Achnatherum hymenoides	Nezpar	1022.22 CDEFGH
Elymus trachycaulus	Pryor	1000.00 CDEFGH
Pascopyrum smithii	Rodan	922.22 DEFGH
Elymus trachycaulus	San Luis	777.78 DEFGH
Achnatherum hymenoides	Rimrock	677.78 DEFGH
Agrostis gigantea	Streaker	622.22 EFGH
Achnatherum hymenoides	9081628	461.11 FGH
Pascopyrum smithii	9081968	455.56 FGH
Poa secunda	9081322	444.44 FGH
Pseudoroegneria spicata	9081636	400.00 FGH
Poa secunda	Sherman	305.56 GH
Pascopyrum smithii	Rosana	294.44 GH
Poa alpina	01131	177.78 GH
Achnatherum hymenoides	9081629	138.89 GH
Poa secunda	Canbar	122.22 GH
Deschampsia caespitosa	Nortran	88.89 GH
Poa alpina	Gruening	83.33 H
Deschampsia caespitosa	9076290	77.78 H
Poa alpina	9016273	72.22 H
Deschampsia caespitosa	13970176	38.89 H
Poa alpina	1858	5.56 H

Table 20: Biomass production of grasses in Stucky Ridge Trials (clipped 8/28/06).

Seed Mixture Trial

The forbs included in the seed mixtures (see Planting Design section) did not emerge; therefore, densities reflect only emergent grass seedlings (tables 5, 6, 7, and 8). During the establishment year, the Developed Waste Management Area (WMA) mix had the greatest seedling density with 10.5 seedlings/ft² (table 21). The Experimental WMA mix had the lowest density with 6.3 seedlings/ft². The two Developed mixtures averaged 9.9 seedlings/ft². The two Experimental mixtures averaged 6.3 seedlings/ft². There were no significant differences among the mixtures at the P=0.05 level. By the fall of the first year, the Developed WMA mixture still had the highest density (8.0 seedlings/ft²) and the Experimental WMA mixture the lowest density (6.9 seedlings/ft²). The two Developed mixtures averaged 7.7 seedlings/ft² and the two Experimental mixtures averaged 6.9 seedlings/ft². As in June, no significant differences were seen among the four seed mixtures.

At the start of the second growing season (2004), the two Experimental mixes had significantly better stands (Upland Exp.—39.4% and Waste Mgmt. Exp.—38.1%) than did the Developed mixes (Upland Dev.—17.3 and Waste Mgmt. Dev.—15.0%). By fall of the second year, the stands of all the mixes had increased, but the Experimental mixes were still significantly better than the Developed mixes. Biomass production of the Experimental mixes was also significantly better than that of the Developed mixes.

During the third year (2005), the percentage stands of all mixes increased only slightly, but the biomass production was much higher. The Experimental mixes were dominated by 9081620 slender wheatgrass, while the Developed mixes were dominated by Revenue slender wheatgrass and Critana thickspike wheatgrass. The Waste Management Experimental mix topped all mixes with 8,933 kg/ha of oven-dry biomass production.

Growing season 2006 took a different approach; the percentage stand went up in all but one, the Upland Experimental mix. Biomass production of all mixes had decreased, but the Waste Management mixes dominated over the Upland mixes. The biomass decrease averaged 34.5% for the Experimental mixes and 81.2% for the Developed mixes. Overall I think the grass mixes are doing well and this year was a recovery year for production, compared to last year's high biomass production.

	Density	Density	Stand	Stand	Stand	Stand	Height	Height	Height	Biomass	Biomass	Biomass
	6/03	8/03	6/04	9/04	8/05	8/06	2004	2005	2006	2004	2005	2006
	no/ft ²	no/ft ²	%	%	%	%	ст	ст	ст	kg/ha	kg/ha	kg/ha
Upland Exp.	6.4	7.4	39.4	45.9	60.6	49.7	45.8	78.8	75.3	790	5939	1367
Upland Dev.	9.3	7.0	17.3	24.4	25.9	35.9	14.8	47.2	57.6	215	2011	1783
Waste Mgmt	6.3	6.9	38.1	46.9	59.7	65.0	44.8	82.5	76.3	1206	8933	4106
Area Exp												
Waste Mgmt Area Dev	10.5	8.0	15.0	23.8	28.4	38.1	19.8	56.6	72.3	306	4494	3311

Table 21. Moto-X Replicated Mixture Trial on Stucky Ridge.

Forb/Subshrub Trial

Ten of the 16 trial entries had no emergence and 15 of the 16 entries had <0.50 seedlings/ft² the seedling year (table 22). The subshrub, winterfat (*Krascheninnikovia* lanata) Open Range Germplasm, was the only entry that demonstrated significant emergence with 9.5 seedlings/ft². The lack of forb emergence may be due to the May 13 planting date. The forb species in the study may have some physiological (after ripening) or physical (hard seed coat) seed dormancy. To overcome seed dormancy, many forb seeds generally require several weeks (8 to 14 weeks) of cold chilling. As with the grass species, some additional germination and emergence was expected in the spring of 2004, but this did not happen with the forb species. Some species such as thickstem aster (Symphyotrichum chilense) and buckwheat (Eriogonum sp.) do better with shallow seeding. By the second growing season, only plants of Open Range winterfat and 9081632 silverleaf phacelia remained alive. There was no sign of new emergence of any of the accessions/species in the spring of 2004. The surviving, mature plants of Open Range Germplasm winterfat performed well, with some plants flowering and setting seed. After the third growing season (2005), plants of Open Range winterfat, 9081632 silverleaf phacelia, Old Works fuzzytongue penstemon, Richfield firecracker penstemon, and Northern Cold Desert winterfat were found to be surviving. New plants of firecracker penstemon and fuzzytongue penstemon had germinated two years after being planted. The surviving plants of Open Range winterfat and 9081632 silverleaf phacelia exhibited good vigor, growth, and seed production. In 2006 the only surviving plants were the Open Range winterfat and Old Works fuzzytongue penstemon. Both showed good vigor and seed production.

i		Species	2003 De	nsity/ft ²	2004	Stand	2005 Avg. Plants/ Plot	2006 Avg. Plants/ Plot
Genus & Species	Variety/Accession	ID	6/24	8/25	6/30	9/22	8/30	8/28
					%	%		
Krascheninnikovia lanata	Open Range Germplasm	5	9.47 a*	6.75 a*	5.5 a*	4.5 a*	20.00	17
Phacelia hastata	9081632	10	0.28 b	0.22 b	0.5 b	0.5 b	6.00	0
Krascheninnikovia lanata	Northern Cold Desert Germ.	4	0.19 b	0.16 b	0.0 b	0.0 b	0.25	0
Penstemon strictus	'Bandera'	8	0.19 b	0.03 b	0.0 b	0.0 b	0	0
Eriogonum umbellatum	9082271	2	0.06 b	0.00 b	0.0 b	0.0 b	0	0
Penstemon venustus	Clearwater Selected	9	0.03 b	0.00 b	0.0 b	0.0 b	0	0
Eriogonum umbellatum	9082273	3	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Penstemon eatonii	Richfield Select	7	0.00 b	0.00 b	0.0 b	0.0 b	0.75	0
Eriogonum ovalifolium	9082098	1	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Penstemon eriantherus	Old Works Germplasm	6	0.00 b	0.00 b	0.0 b	0.0 b	15.00	10
Phacelia hastata	9082275	11	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Potentilla gracilis	9081679	12	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Potentilla hippiana	9076274	13	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Symphyotrichum chilense	9078675	14	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Symphyotrichum chilense	9081678	15	0.00 b	0.00 b	0.0 b	0.0 b	0	0
Symphyotrichum chilense	9082274	16	0.00 b	0.00 b	0.0 b	0.0 b	0	0

Table 22. Seedling density (2003), percentage stand (2004), and total plant density (2005) of forb and subshrub accessions in the Stucky Ridge Comparative Evaluation Planting (evaluated 6/24/03, 8/25/03, 6/30/04, 9/22/04, 8/30/05, and 8/29/06).

* Means followed by the same letter are similar at the 0.05 level of significance using the LSD Mean Comparison method.

Tissue Analysis

Following the Fall 2004 and Fall 2005 evaluation for cover and vigor, each individual plot was sampled for biomass production. These clippings from all four replications, along with additional clipping of low producing plots, made up the 10 gram or greater of oven-dry samples that were submitted for tissue analysis. Samples were submitted to Energy Laboratories, Inc. in Billings, Montana, for determination of heavy-metal concentrations in and on sampled plant materials from the Stucky Ridge Moto-X site. Metal loads (concentration in and on the plant tissue) can be compared to maximum tolerable levels of dietary minerals for domestic animals (National Research Council 1980). The dietary level of cadmium for domesticated animals is based on human food residue considerations (NRC, 1980), and the need to avoid increases of cadmium in the food supply of the United States. Higher residue levels (>0.50 mg/kg) for a short period of time would not be expected to be harmful to animal health nor to human food use, particularly if the animals were slaughtered at a young age. Based on a review of the scientific literature, ranges of elemental levels for mature leaf tissue have been presented by Kabata-Pendias and Pendias (1992). The authors provide elemental levels for generalized plant species into ranges representing deficient, sufficient, or normal, and excessive or toxic (table 23).

All tissue samples are unreplicated composites of samples from random plants in all four replications of the Stucky Ridge Comparative Evaluation Trial. Metal loads in the sampled tissue were generally below toxic levels.

<u>Arsenic (As)</u>—Arsenic was detected in 19 of the 39 samples in 2004, in 32 of the 40 samples in 2005, and 3 of the 42 samples in 2006 with levels ranging from 5 mg/kg to 35 mg/kg. This is below the tolerable levels for domestic livestock (50 mg/kg) and wildlife (50 mg/kg). However, the detected levels rank in the 'Excessive or Toxic' level in plants.

<u>Cadmium (Cd)</u>—This element was detected in only one sample (Rimrock Indian ricegrass) in 2004 and in 2005 it was detected in 5 samples (3 of which were in Indian ricegrasses). In 2006 there was no detection of cadmium in any sample. The detected level (1-2 mg/kg) are at the tolerable level for domestic livestock (0.5 mg/kg) and wildlife (2 mg/kg).

<u>Copper (Cu)</u>—Copper detected in all tissue samples ranging from 5 mg/kg to 307 mg/kg. Only three samples (2004), 5 samples (2005), and no samples (2006) exceeded the tolerable level for domestic livestock (100 mg/kg), but 15 samples (2004), 19 samples (2005), and 1 sample (2006) exceeded the tolerable level for wildlife (55 mg/kg). Since this is a copper smelting impacted area, high levels of copper are to be expected.

Lead (Pb)—Lead was detected in a sample of ten-petal blazing star (*Mentselia decapetala*) only (2004), at a level of 9 mg/kg, well below the tolerable level for domestic livestock and wildlife. In 2005 lead was detected in only four samples and at very low levels. In 2006 lead was detected in two samples and one sample rated in the "Excessive or Toxic" level in plants.

Zinc (Zn)—Zinc was detected in all samples, ranging from 9 mg/kg to 175 mg/kg well below the tolerable level for domestic livestock (500 mg/kg) and wildlife (300

mg/kg). In 2006 zinc was detected in all samples but with low levels. The levels ranged from 9 to 35 except for LECI Trailhead which had a level of 125, still well below the tolerable levels for domestic livestock and wildlife and in the normal level for plants.

Worth noting was the fact that heavy metal concentrations were highest in/on alpine blue grass, silverleaf phacelia, winterfat and fuzzytongue penstemon. This is likely due to the excess dust particles on the low profile plants and ones with leaf pubescence.

Lot	Species		Al			As			Cd			Cu			Pb			Zn	
			mg/kg												mg/kg			mg/kg	
		2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006
1	ACHY 9081628	331	279	62	6mg/k	g 8	ND	Nfag/	v	ND	39ng/k	0	6	ND	ND	ND	123	88	15
2	ACHY 9081629	288	420	101	9	8	ND	ND	2	ND	41	35	8	ND	ND	ND	111	73	12
3	ACHY Rimrock	235	332	101	ND	9	ND	5	1	ND	17	35	9	ND	ND	ND	68	38	10
4	ACHY Nezpar	276	200	54	ND	ND	ND	ND	ND	ND	16	21	5	ND	ND	ND	51	31	14
5	AGGI 9076276	258	382	158	ND	6	ND	ND	ND	ND	46	62	22	ND	ND	ND	54	41	20
6	AGGI 9081619	663	375	136	ND	ND	ND	ND	ND	ND	100	62	18	ND	ND	ND	51	64	17
7	AGGI 9076266	548	320	190	ND	6	ND	ND	ND	ND	74	39	30	ND	ND	ND	100	49	23
8	AGGI Streaker		2500	80		35	ND		ND	ND			16		13	ND		78	20
9	DECE 9076290	334	405	473	5	6	7	ND	1	ND	48	45	80	ND	ND	ND	63	52	35
10	DECE 13970176	1420	121	188	8	6	ND	ND	ND	ND	57,13	14	19	ND	ND	ND	87	44	24
11	DECE Nortran	336			8		ND	ND		ND	29			ND		ND	67		18
12	ELTR 9081620	242	285	151	ND	5	ND	ND	ND	ND	26	47	15	ND	ND	ND	14	16	9
13	ELTR 9081621	197	283 413	136	ND	ND	ND	ND	ND	ND	38	41.	17	ND	ND	ND	21	22	9
14	ELTR Pryor	301	413	70	ND	8	ND	ND	ND	ND	25	62^{11}	12	ND	ND	ND	37	35	9
15	ELTR Revenue	280	445	127	ND	7	ND	ND	ND	ND	48	65	15	ND	ND	ND	50	47	11
16	ELTR San Luis	441	193	140	ND	6	ND	ND	ND	ND	45	27	16	ND	ND	ND	40	33	13
17	LECI 9081624	424	436	147	ND	5	ND	ND	ND	ND	62	73	19	ND	ND	ND	111	55	26
18	LECI 9081625	463	559	119	6	9	ND	ND	1	ND	72	76	16	ND	ND	ND	172	124	30
19	LECI Washoe	472	366	111	7	ND	ND	ND	ND	ND	47	47	14	ND	ND	ND	175	106	28
20	LECI Magnar	636	410	101	11	8	ND	ND	ND	ND	113	63	16	ND	ND	ND	84	69	23
21	LECI Trailhead	441	391	235	ND	8	ND	ND	ND	ND	35	51	25	ND	ND	207	85	93	125
22	PASM 9081968	374	315	272	6	5	ND	ND	ND	ND	45	41	32	ND	ND	ND	86	64	28
23	PASM Rodan	495	243	163	7	6	ND	ND	ND	ND	52	29	27	ND	ND	ND	56	39	14
24	PASM Rosana	210	318	186	6	9	ND	ND	ND	ND	29	47	26	ND	ND	ND	61	52	18
25	POAL 9016273	799	1740	162	7	21	ND	ND	ND	ND	50	120	18	ND	8	ND	45	64	17
26	POAL 01-13-1	1220	695	148	8	17	ND	ND	ND	ND	78	80	14	ND	ND	ND	49	50	15
27	POAL Greuning	706		67	ND		5	ND		ND	40		11	ND		15	36		33
28	POAL 1858	1190	1410	75	ND	20	6	ND	ND	ND	33	93	8	ND	9	ND	62	156	27
29	POSE 9081633	442	417	155	9	ND	ND	ND	ND	ND	49	52	19	ND	ND	ND	35	44	18
30	POSE Sherman	311	420	95	9	12	ND	ND	ND	ND	36	52	12	ND	ND	ND	94	106	19
31	POSE Canbar	no sai	mples	43			ND			ND			6			ND			17
32	POSP 9081635	364	549	168	11	14	ND	ND	ND	ND	46	59	24	ND	ND	ND	38	44	17
33	POSP 9081322	441	346	220	ND	9	ND	ND	ND	ND	83	62	32	ND	ND	ND	57	64	33
34	PSSP 9081636	676	931	137	16	20	ND	ND	ND	ND	76	112	21	ND	ND	ND	81	84	19
35	PSSP Goldar	654	548	74	13	12	ND	ND	ND	ND	81	68	9	ND	ND	ND	77	58	19

Lot	Species		Al			As			Cd			Cu			Pb			Zn	
			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg	
		2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006
36	ELWA Secar	396	635	94	ND	7	ND	ND	ND	ND	34	59	14	ND	ND	ND	68	65	17
1	UPEXP	392	266	94	ND	ND	ND	ND	ND	ND	51	43	15	ND	ND	ND	22	31	11
2	UPDEV	268	545	118	ND	12	ND	ND	ND	ND	31	69	14	ND	ND	ND	73	40	11
3	WMAEXP	374	421	84	ND	ND	ND	ND	ND	ND	35	50	11	ND	ND	ND	27	25	11
4	WMADEV	270	548	124	ND	9	ND	ND	ND	ND	26	66	15	ND	ND	ND	67	44	10
5	KRLA Op. Range	1173	372	132	7.5	ND	ND	ND	ND	ND	108	44	15	ND	ND	ND	82	47	14
6	PEER Old Works		1280	192		14	ND		ND	ND		65	15		ND	ND		31	10
10	PHHA 9081632		3720			42			ND			307			15			91	
	num Tolerable Leve stic livestock 1.	els for				50			0.5			100			30			500	
Wildl						50		0.3			55		40			300			
	levels in Plants 3.					50						55			10			500	
Defici												2 to 5							
Sufficient or Normal			1 to1.7			0.05 to 0.2			5 to 30		5 to 10			27 to 150					
Excessive or Toxic					5 to 20	2		5 to 30		20 to 100		30 to 300			100 to 400				

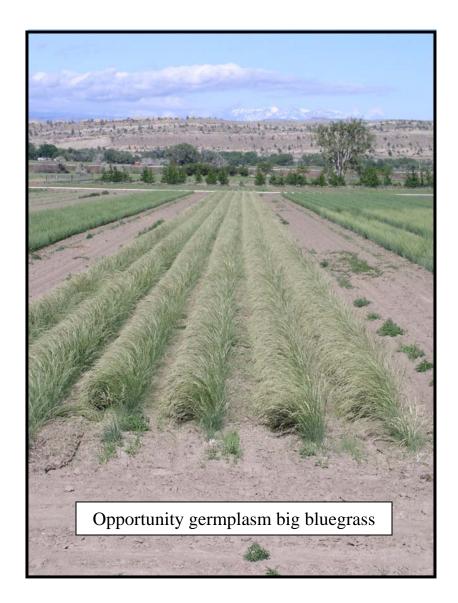
CONCLUSION

Not all of the potential germinable seeds germinated the first year (2003). The record high temperatures and low precipitation in July and August, along with the late spring planting date (May 13), are considered to be the primary factors affecting the incomplete germination and emergence during the 2003 growing season. There was a significant amount of new grass seedling emergence detected during the June 30, 2004, evaluation, particularly in the Indian ricegrass, western wheatgrass, big bluegrass, and basin wildrye plots and some new germination of forbs in 2005.

In the single-species plots, the 'local source' plants that exhibited superior performance include 9081620 and 9081621 slender wheatgrass, 9081633 big bluegrass, 9081968 western wheatgrass, 9081624 and Washoe Germplasm basin wildrye, 9081628 Indian ricegrass, 9081636 bluebunch wheatgrass, and 9081635 Canbyi bluegrass. The superior indigenous plant material is being further increased for potential release to the commercial seed industry. Worth noting was the performance of some of the released cultivars such as Pryor and Revenue slender wheatgrass, Rosana western wheatgrass, Rimrock Indian ricegrass, Trailhead basin wildrye, Secar Snake River wheatgrass, and Goldar bluebunch wheatgrass.

The forb/subshrub trial had poor emergence and consequently poor seedling densities with the exception of Open Range Germplasm winterfat. The low densities were most likely the result of the late spring planting that resulted in an insufficient period of cold-moist stratification. An additional problem may have been sowing small-sized seed too deeply. There was also heavy surface erosion on this portion of the trial site.

In the Seed Mixture Trials, the 'Experimental' mixes that contained native 'local source' were far superior to the 'Developed' mixes that consisted of native 'nonlocal source' (Upland mix) and introduced cultivars (Waste Management Areas). However, it was estimated that the majority of plants in the Experimental mixtures, both Upland and Waste Management Areas, were 9081620 slender wheatgrass, which was the best overall performer on this particular site.


The tissue analyses show that the heavy metal concentrations in and on the plant tissue sampled from the Stucky Ridge plots were generally within the tolerable limits for both domestic livestock and wildlife.

The overall performance on the Stucky Ridge plots was quite variable, with strips running north and south that had poorer plant vigor and biomass production. The Pryor slender wheatgrass strips between replications (running east and west) exhibited waves of good and poor establishment and performance. Soil samples (0-6 in.) were taken under four plant stands of slender wheatgrass ranging from excellent to very poor in hopes of explaining this variability. It was thought that the incorporation of the amendments may have created strips with varying pH. Soil analysis for pH indicated no difference in pH (all 6.8 to 7.3) under the varying stand of slender wheatgrass. Therefore, this variability is still unexplained.

REFERENCES

- ARCO. 2002, May. Remedial action work plan/final design report, 2002 Stucky Ridge RA (Portions of Stucky Ridge Area No. 4 RAWP) Uplands Revegetation.
- Bahr, Autumn. 2003, February 18. Jordan contracting site report. Electronic (e-mail) communication.
- Baker, A.J.M. 1987. Metal tolerance. *In*: New Phytologist. (1987), 106 (Suppl.), p. 93-111.
- EPA. 1995a. Draft Statement of Work for the ARWW OU Feasibility Study.
- Ford, Karl L. Risk management criteria for metals at BLM mining sites. U.S. Department of the Interior, Bureau of Land Management, Technical Note 390 rev., December 1996.
- Kabata-Pendias, A. and H. Pendias. 1992. Trace elements in soils and plants. CRC Press, Boca Raton, FL 365 pp.
- Marty, Leslie J. 2000, July. Development of acid/heavy metal-tolerant cultivars project final report–July 1998 to July 2000. Pp 1-9.
- Marty, Leslie J. 2001, October. Development of acid/heavy metal-tolerant cultivars project bi-annual report--April 1, 2001, to September 30, 2001. Pp Appendix A.
- National Weather Service. 2003. Missoula Weather Forecast Office. [Online]. Available: http://www.wrh.noaa.gov/Missoula. [accessed November 2003].
- National Research Council. 1980. Mineral tolerance of domestic animals. National Research Council, National Academy of Sciences, Washington D.C. 577 pp.
- Reclamation Research Unit (RRU). 1993, October. Anaconda revegetation treatability studies, phase I: literature review, reclamation assessments, and demonstration site selection. Document No.: ASSS-ARTS-I-FR-R1-102293.

IV. RELEASES

PLANT RELEASES

The seed and plants that are available to reclamationists are usually cultivar (cultivated varieties) releases from universities, USDA Plant Material Centers, USDA Agricultural Research Service, or private plant breeders. To be released as a cultivar, the germplasm must be extensively tested, reviewing primary traits through multiple generations, and field testing to determine range of adaptability. This process takes at least 10 years with herbaceous plant material and can take 20 or more years for woody plants. Other sources of native plants are wildland collections and pre-damage plant salvage.

In recent years, the demand for native, indigenous plant material has resulted in the development of an alternate, quicker mechanism for the release of plant materials known as Pre-Varietal Release. Through this process plant propagules can be released to the commercial seed and nursery industries in a more timely manner, but at the expense of extensive field testing. Germplasm is still managed through the Certified seed agencies, maintaining the same quality, purity, and germination standards of Cultivar releases. There are three categories of Pre-Varietal releases:

<u>Source-Identified</u>—With this classification, a person can locate and collect seed from a specific native site and have the seed certified by source only. A representative from a seed certification agency must inspect the collection site prior to harvest, documenting the identity of the species, elevation, latitude/longitude, and associated species. The collector can certify the seed as being from a particular source and of a standard quality, and selling the seed directly to a customer. The collector can also take that seed and establish seed production fields, raising up to two generations past the original collection. This product must be included in a seed certification program to be able to certify the seed as 'Source Identified' germplasm. Through this process, seed can be certified the year of collection or in 2 years when the seed increase fields begin to produce.

<u>Selected</u>—This category is for plant breeders who assemble and evaluate multiple collections of a species, making a selection of the superior accession, or bulk or cross-pollinate the superior accessions. This release process can take as few as 5 years, but can claim only that one accession or bulk of accessions has been found to be superior for the conditions under which it was tested. No field testing or the testing of progeny is required.

<u>Tested</u>—If the progeny of a superior germplasm is tested to make sure that the desired traits continue to manifest themselves in subsequent generations, the germplasm qualifies to be released as a Tested germplasm. This process can take 6-8 years in herbaceous plant material and considerably longer with woody plants. The only difference between Tested and Cultivar releases is the extensive field testing of a Cultivar.

The Pre-Varietal release mechanism has been used extensively on native plant materials that are not readily available on the commercial market, either from seed growers, nurseries, or wildland collectors. Through this process native plant material can be placed into the commercial seed and nursery industry sooner, but with limited information on range of adaptation, ease of establishment in various climate and edaphic conditions, and longevity.

DATR Project Releases

The Conservation Districts of Montana and Wyoming own the land and facilities at the Bridger Plant Materials Center and lease to the USDA-Natural Resource Conservation Service. The USDA-NRCS Plant Materials Center has been in operation since 1959 and has established a cooperative relationship with the Agricultural Experiment Station network of Montana State University-Bozeman (MSU) and the University of Wyoming-Laramie (U of W). The Plant Materials Center has experience in the release of conservation plants, both introduced and native, in cooperation with MSU and U of W. Breeders and Foundation seed is produced at the Bridger PMC, making Foundation seed available to the commercial seed industry for the production of Certified seed. In the case of Pre-Varietal releases, the Bridger PMC produces G_1 (Generation 1) seed for distribution to growers who will produce G_2 and G_3 under the Certified Seed Program. Once a release is made, the releasing agency is responsible for maintaining a supply of G_1 (Pre-Varietal release) or Foundation (Cultivar release) seed for as long as seed/plants of the release are in demand.

The DATR (formerly DATC) project has identified numerous plants (grasses, forbs, shrubs, and trees) that exhibit tolerance of acidic and metaliferous soil conditions and have the potential for use by reclamationists in restoration efforts of severely impacted sites. Thus far the DATR project has been instrumental in the release of germplasm of four plants;

Washoe Selected germplasm basin wildrye (*Leymus cinereus*) **Old Works** Source Identified germplasm fuzzy-tongue penstemon (*Penstemon eriantherus*)

Prospectors Selected germplasm common snowberry (*Symphoricarpos albus*) **Copperhead** Selected germplasm slender wheatgrass (*Elymus trachycaulus*)

Information brochures have been published on three releases and are distributed to potential seed growers and potential seed-purchasing customers. The Copperhead slender wheatgrass brochure has not been published but is being worked on. G_1 (Foundation quality) seed of Washoe basin wildrye has been distributed to two commercial seed growers in Montana, and seed of Old Works fuzzy-tongue penstemon has been distributed to one grower in Washington and one grower in Idaho. No growers have yet shown interest in the production of Prospectors common snowberry.

During the winter of 2007 **Opportunity** Selected class germplasm big bluegrass (9081633) will be submitted for release approval to the Variety Release Committee at

Montana State University and the Pure Seed Committee at the University of Wyoming. This accession of big bluegrass has performed exceptionally well on the amended Stucky Ridge Trial site. If the release is successful G_1 seed will be available to commercial growers in the spring of 2008.

The DATR Project has established seed increase fields of all plant species that have exhibited superior establishment and performance in field test plantings in the Anaconda vicinity on smelter and mining-impacted sites. The USDA-NRCS Plant Materials Center, in cooperation with the Deer Lodge Valley Conservation District, plans to continue releasing superior plant materials that have exhibited tolerance of acid/heavy metal-contaminated sites. Some of the potential releases are as follows:

9081968 western wheatgrass (*Pascopyrum smithii*)
9081636 bluebunch wheatgrass (*Pseudoroegneria spicata*)
9081628 Indian ricegrass (*Achnatherum hymnoides*)
9081632 silverleaf phacelia (*Phacelia hastata*)
9076274 woolly cinquefoil (*Potentilla hippiana*)
9081334 silver buffaloberry (*Shepherdia argentea*)
9081638 Woods' rose (*Rosa woodsii*)
9081623 horizontal juniper (*Juniperus horizontalis*).

Plant material that is being considered for release in FY2008 is 9081636 bluebunch wheatgrass. Other releases within the next three years include 9081968 western wheatgrass, 9081632 silverleaf phacelia, and 9081334 silver buffaloberry.