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PROJECT OBJECTIVES 
 
The overall objective of this project is to develop an improved understanding and predictive capability of 
the enhanced immobilization and decreased bioaccessibility of hazardous metals in soil as a result of 
chemical amendment strategies.  The specific objectives of this investigation are to: 
 
(1) Develop an improved understanding of the rates and mechanisms of enhanced metal sequestration 

in DoD soils that have been treated with various organic and inorganic amendment strategies. 
 
(2) Develop remedial protocols that maximize toxic metal sequestration and minimize 

bioaccessibility for a wide range of soil types and mixed metal systems encountered at DoD sites. 
 
(3) Develop an improved predictive capability for evaluating sequestration and bioaccessibility of 

mixed toxic metal systems for various amendments and soil types. 
 
The proposed research is motivated by our previous SERDP-sponsored research findings (CU-1166) that 
indicated the conditions that reduce metal bioaccessibility in soils, and more importantly for the current 
research, conditions that do not favor reduced metal bioaccessibility in soils.  For example, the 
bioaccessibility of weakly bound soil metals, such as Cd and Pb, is typically not reduced to the same 
extent as strongly bound metals such as As and Cr.  Certain soil conditions also promote the enhanced 
bioaccessibility of strongly sequestered metals such as As and Cr.  Thus, engineered additions of 
materials to soil that enhance the sequestration of toxic metals can potentially induce the formation of less 
hazardous metal forms, providing a practical approach to in-place inactivation.  In the following research, 
we will show that non-toxic, low-cost, commercially available materials can be incorporated into soil to 
immobilize toxic metals and decrease metal bioaccessibility for long time periods.  The research is an 
innovative response to SERDP’s SON in that we integrate laboratory scale macroscopic fate and transport 
experiments with novel microscopic spectroscopy techniques to assess the kinetics and mechanisms of 
enhanced metal sequestration and decreased bioaccessibility as a function of various soil amendment 
strategies.  
 
BACKGROUND 
 
There are thousands of metal contaminated sites on DoD lands awaiting remediation and closure.  The 
toxic metals Pb, As, Cr, and Cd are of particular concern since these metals control risk-based remedial 
decisions for soils at DoD sites (Exponent, 2001).  Ingestion of contaminated soil by children is the 
exposure pathway that generally controls remediation goals (Pausterbach, 1989; Davis et al., 1990; 
Sheehan et al., 1991).  With the exception of Pb-contaminated soils, the risk posed by soil ingestion is 
currently calculated from the total metal concentration and the allowed reference dose.  Reference doses 
are available for most metals, and are typically derived from studies that have used very soluble metal 
species.  In other words, with the exception of Pb, EPA’s risk assessment guidance implicitly assumes a 
default relative bioavailability of 100%.  The toxicity assessment for Pb is unique and is based on a 
pharmacokinetic model of blood Pb.  The default bioavailability assumptions in EPA’s blood-Pb model 
are 50% for food and water and 30% for soil, thus yielding a relative bioavailability in soil of 60% 
(30/50). 
 
Metals in soil, however, can be relatively insoluble, and sometimes require aggressive digestion 
procedures for complete analytical metal recovery.  As a result, reference doses developed from studies 
using soluble metal species may overstate the risk posed by less soluble metals in soils.  Recent SERDP 
research within our group has shown that reference dose criteria used for soil As and Cr is often highly 
conservative since the indigenous metal-sequestering properties of many soils can significantly lower the 
bioavailability of ingested toxic metals relative to commonly used default values (Yang et al, 2002; 2003 
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Stewart et al., 2003 a,b).  We used a relative bioaccessibility factor to show that numerous DoD soils 
throughout the U.S. can effectively sequester Cr(III/VI) and As(III/V) and significantly decrease metal 
bioavailability.  Certain soil physical and chemical properties (e.g. Fe-oxide content, organic matter 
content, pH) were found to be highly correlated with  decreased metal bioaccessibility, and statistical 
models were formulated to assess which soils had the greatest risk with regard to metal bioaccessibility.  
We also used high-resolution spectroscopic techniques, such as X-ray Absorption Spectroscopy, to 
quantify the chemical environment and speciation of the sequestered metals and to verify the modeling 
results.  Studies conducted at DOE’s Stanford Synchrotron Radiation Laboratory confirmed that 
numerous DoD soils contained natural soil constituents that could reduce mobile Cr(VI) to the less toxic 
Cr(III) species, and oxidize highly mobile As(III) to the less mobile As(V) species.  These redox 
transformation processes caused a significant decrease in the toxic metal bioaccessibility.  Nevertheless, 
certain soil conditions were also found to promote the enhanced bioavailability of these metals.  For 
example, when the soil Fe-oxide content for a particular DoD soil fell below 0.5% on a mass basis, the 
bioaccessibility of As increased dramatically, particularly for alkaline soils (Yang et al., 2002, 2003).  
Likewise, for DoD soils low in organic and inorganic carbon, the bioaccessibility of Cr(III) and Cr(VI) is 
significantly higher relative to soils which possessed these mineral constituents (Stewart et al., 2003 a, b).  
It is these conditions for which engineered additions of soil amendments may enhance the sequestration 
of toxic metals and potentially induce the formation of less hazardous metal forms, providing a practical 
approach to in-place inactivation. 
 
Recent SERDP research within our group on DoD contaminated soils and DOE firing range soils, also 
found that nearly all soil-bound Pb was bioaccessible even at very high solid phase Pb concentrations 
(near 1% on a mass basis).  These data were in agreement with Pb-spiked DoD soils from around the 
country that suggested Pb bioaccessibility remained high despite the fact that it was thoroughly adsorbed 
to various mineral constituents in the soils (Yang et al., 2002).  Molecular speciation analyses using XAS 
suggested that Pb(II) was weakly associated with the soil via electrostatic interactions).  Apparently in 
these systems, the weak surface bonds between Pb and soil were easily disrupted by the acidic conditions 
encountered in the stomach digestive system, allowing the Pb to be much more bioavailable relative to Pb 
in mining soils which exist most likely as sparingly- soluble PbS. 
 
Contaminated DoD soils lacking the ability to naturally sequester and decrease toxic metal bioavailability 
will remain a human health risk in their natural state.  Methods for the in situ stabilization of 
contaminants present an attractive alternative to ex situ methods due to the lower cost and the potential for 
achieving remediation objectives.  Chemical manipulation strategies are most attractive for metal 
contaminated soils since the redox state and chemical speciation of metals can easily be altered through 
changes in soil geochemistry.  In situ incorporation of various organic and inorganic constituents, such as 
clay minerals and zeolites, organic matter, phosphate compounds, ferrous-iron bearing minerals, and 
limestone can change the chemical environment and speciation of metals in soils (GarciaDelgado et al., 
1996; Traina and Laperche, 1999; Jardine et al., 1999; Lothenbach et al., 1999; Hettiarachchi et al., 2000; 
McGowen et al., 2001; Yang et al., 2001; Moirou et al., 2001; Wang et al., 2001).  Research in this area 
has emphasized amendment strategies targeted at immobilizing Pb in soils, where phosphate bearing 
minerals such as hydroxyapatite and rock phosphates have been shown to be extremely effective (Zhang 
et al., 1998; Traina and Laperche, 1999; Pearson et al., 2000; Ryan et al., 2001).  Despite the success of 
chemical manipulation strategies for immobilizing Pb in various subsurface environments, this area of 
research remains immature with regard to other toxic metals and the effects of varying soil type.   
Chemical manipulation strategies have not been investigated to a significant extent on a vast array of DoD 
soils or on DoD priority contaminants other than Pb (e.g. As(III/V), Cr(III,VI), and Cd). While P-
compounds may work well at immobilizing Pb in soil, they do very little to stabilize Cd, and actually 
accelerate the movement of As(III/V) and Cr(VI) in soils (Boisson et al., 1999; Pearson et al., 2000; 
Seaman et al., 2001).  The rates and mechanisms that control enhanced metal sequestration and decreased 
bioavailability in DoD soils are largely unknown, as are the costs associated with risk-reduction due to 
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decreased bioaccessibility of metals in amended soils.  The following research seeks to address these 
issues through a series of hypothesis-driven tasks that seek to demonstrate that non-toxic, low-cost, 
commercially available soil amendment strategies can be used to immobilize toxic metals in situ for long 
time periods and decrease metal bioaccessibility. 
 
APPROACH 
 
The research approach of this project involves a series of multidisciplinary tasks that couple mechanistic 
macroscopic-scale metal immobilization studies with microscopic-scale interrogation of solid-phase 
interfacial processes and numerical modeling.  We use field-relevant, laboratory-based metal 
immobilization studies that target the DoD priority metals Pb, Cd, As(III/V), and Cr(III/VI) in numerous 
different types of DoD soils.  We utilize a unique experimental design that couples contaminant fate and 
transport monitoring on chemically amended soils, with metal bioaccessibility and molecular speciation 
using techniques such as synchrotron-generated radiation.  Empirical models that relate metal 
bioaccessibility to soil properties and amendments have also be formulated and applied to various DoD 
sites. 
 
Soil collection 
For this research, we collected two types of soils: contaminated soils from DoD sites and uncontaminated 
soils representative of DoD sites from around the United States.  The uncontaminated soils were similar 
to those used in the previous SERDP funded project CU-1166 where an effort was made to acquire 
additional soils from the western U.S.  Experiments conducted with soluble metals added to 
uncontaminated soil allowed us to investigate the sequestration techniques for the most important 
operational species from a bioavailability standpoint, labile metals.  Contaminated soils from a wide range 
of DoD sites were also used to identify the sources of the most labile and bioavailable metal species (e.g., 
oxide coatings on bullet fragments) and to test and validate our understanding of sequestration techniques 
developed in experiments with soluble metals. 
 
TASK A:  Enhanced Immobilization and Decreased Bioaccessibility of Single and Mixed Metal Soil 
Systems 
 
A.1  Stabilizing redox-stable toxic metals: Cd- and Pb- soils 
 
Pb-soils: Stabilization by precipitation 
 
In this task we quantify the rate and magnitude of Pb immobilization on Pb-contaminated and Pb-spiked 
DoD soils using various phosphate sources including rock phosphate, hydroxyapatite, and triple super 
phosphate.  The effect of amendment type, loading level, and aging were assessed on DoD soils that 
varied considerably in their physical and chemical properties.  Laboratory amendment strategies 
mimicked a well-mixed tillage approach with loading levels designed for scale-up to the field.  Loading 
levels for the various phosphate sources were 0.5, 1.0, and 5.0 % P w/w.  Such treatment strategies are 
economical for implementing at the field scale.  Rock phosphate and apatite cost $0.25 and $0.35 per kg, 
respectively, which suggests treating a 1 hectare square field soil to a depth of 10 cm would cost between 
$1,800 to $12,500 / hectare for the 1% and 5% loading levels, respectively. The rate and extent of metal 
immobilization and bioaccessibility were quantified on each amended soil and its control as described 
below. 
 
Cd-soils: Stabilization by complexation 
 
In this task we propose to use a novel approach that takes advantage of the low solubility of CdS 
precipitates.  Ca-polysulfide will be added to the contaminated and Cd-spiked DoD soils.  Previous 
research involving Hg(II), which also forms highly insoluble precipitates with S2- suggests preferential 
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bonding of Hg(II) to reduced organic S sites (Xia et al., 1999; Hesterberg et al., 2001).  The reduced S 
functional groups are known to be stable under aerobic conditions (Hutchison et al., 2001) and they 
should effectively sequester Cd from contaminated soils. Thus, strong preferential bonding of Cd to 
reduced sulfide ligand should result in a significant decrease in Cd bioavailability.  As with the Pb 
system, the effect of amendment types, loading level, and aging will be assessed on the various DoD 
soils.  Laboratory amendment strategies will mimic a well-mixed tillage approach with loading levels 
designed for scale-up to the field.  Loading levels for Ca-polysulfide will be 0.5, 1.0, and 5.0 % w/w.   As 
with the Pb system, the rate and extent of metal immobilization and bioaccessibility will be quantified on 
each amended soils and its control as described below. 
 
A.2  Stabilizing redox-sensitive toxic metals: Cr- and As- soils 
 
Cr-soils: Stabilization by reduction 
 
Studies by Stewart et al. (2003 a) have already demonstrated that numerous DoD soils can effectively 
reduce Cr(VI) to Cr(III) with a corresponding dramatic decrease in Cr bioaccessibility.  Because of its 
effectiveness, commercial availability, and low-cost, organic matter amendment strategies are emphasized 
for Cr contaminated soils.  For soils with pH values above 8, Cr(VI) reduction by organic matter may be 
kinetically prohibitive and this was monitored using synchrotron radiation.  For such conditions, 
alternative Cr(VI) reduction strategies may be considered.  The effect of amendment loading level, aging, 
and soil properties were assessed for the various DoD soils. Laboratory amendment strategies mimicked a 
well-mixed tillage approach with loading levels designed for scale-up to the field.  Loading levels for 
humus or sphagnum moss will be 0.5, 1.0, and 5.0 % w/w.  Such treatment strategies are economical for 
implementing at the field scale.  Premium grade humus or sphagnum moss cost $0.10 per kg which 
suggests treating a 1 hectare square field soil to a depth of 10 cm would cost $550 and $2,700 / hectare for 
the 1% and 5% loading levels. The rate and extent of metal immobilization and bioaccessibility were 
quantified on each amended soil and it’s control as described below. 
 
As-soils: Stabilization by Oxidation 
 
Studies by Yang et al.(2005) have already demonstrated that numerous DoD soils can effectively oxidize 
As(III) to As(V) with a corresponding dramatic decrease in As bioaccessibility.  These finding coupled 
with the fact that Fe-oxides strongly sequester and decrease the bioaccessibility of both As(III) and 
As(V), suggest that soluble Fe or Fe(III)-oxide amendments strategies in DoD soils may be an effective, 
low-cost remedial strategy for As contaminated soils.  Because of its effectiveness, low-cost, and ease of 
production and commercial availability, soluble Fe and Fe-oxide amendment strategies are emphasized 
for As contaminated soils.  The effect of amendment surface area, crystallinity, and loading level, as well 
as aging and soil properties were assessed for the various DoD soils.  Laboratory amendment strategies 
mimicked a well-mixed tillage approach with loading levels designed for scale-up to the field.  Loading 
levels for hematite were 0.5, 1.0, and 5.0% w/w.  Such treatment strategies are economical for 
implementing at the field scale.  Commercial grade hematite cost $0.22 per kg which suggests treating a 1 
hectare square field soil to a depth of 10 cm would cost $1,500 and $7,800 / hectare for the 1% and 5% 
loading levels, respectively.  The rate and extent of metal immobilization and bioaccessibility were 
quantified on each amended soil and its control as described below. 
 
A.3  Quantify Soil-Metal Bioaccessibility 
 
We used the physiologically-based extraction test (PBET) to measure contaminant bioaccessibility (a 
surrogate for bioavailability measured in a in vitro test) on chemically amended and unamended DoD 
soils (Stewart et al., 2003 a,b; Yang et al., 2002; 2003; 2005).  The PBET is an in vitro leaching 
procedure designed to replicate the solubility-limiting conditions of a child’s digestive tract.  Results of 
the in vitro PBET method have been shown to correlate well with results from in vivo animal studies for 
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Pb and As (Ruby et al., 1996; Rodriguez et al., 1999).   The PBET will be performed at both a pH of 1.5 
and 2.3.  Analytical analysis of the metals will be accomplished via ICP-MS and AA.   Matrix matching 
is the most important aspect of the analyses since a variety of wet chemical techniques was involved in 
the investigation (e.g. EPA total digest method for total solid phase metals, PBET extraction).  Each 
PBET measurement was performed on triplicate samples. A rigorous QA/QC protocol is used where 
triplicate analyses are performed on samples and internal standards are analyzed every 10 to 15 samples.  
With regard to the total digest analyses, soils from the National Institute of Standards, with known 
concentrations of solid phase metals, were also analyzed with each block of analyses (12 samples).  On 
numerous occasions, samples were reanalyzed at different institutions (ORNL, Stanford, and Auburn) to 
ensure accuracy and precision.     
 
A.4  Metal speciation using high-resolution spectroscopy techniques. 
 
The mechanisms of enhanced metal sequestration and solid-phase metal speciation were quantified with a 
variety of high-resolution surface spectroscopy techniques including X-ray Diffraction (XRD), Scanning 
Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), Transition Electron Microscopy 
(TEM), Raman Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy, and X-ray Absorption 
Spectroscopy (XAS).  Bulk XRD, SEM, and TEM measurements were conducted at the premier facilities 
for determining the environmental speciation of metals, located at DOE’s Environmental Molecular 
Science Laboratory (EMSL), Pacific Northwest Laboratory, Richland, WA., which provided direct 
quantification of the mineralogic and crystallographic nature of solid phase contaminants that form in 
response to various amendment strategies.  We also conducted synchrotron-based XRD at the Stanford 
Synchrotron Radiation Laboratory (SSRL) using beamline 2-1.  The high-intensity x-ray source improved 
our detection limits for crystalline solids by more than an order of magnitude relative to conventional x-
ray sources.  The molecular-scale information provided an improved conceptual understanding of toxic 
metal sequestration that will be incorporated into more rigorous mechanistic models for predicting metal 
bioavailability in subsurface environments. This task builds upon our previous SERDP research (CU-
1166) that has established baseline relationships between molecular metal speciation and bioavailability 
in soils, as well as the molecular scale validation of macroscopic metal bioavailability statistical models. 
 
TASK B:  Quantitative Models for Metal Sequestration and Bioaccessibility 
 
Empirical mathematical models will be developed to predict metal bioaccessibility as a function of 
baseline soil properties and types and quantities of soil amendments.  This approach has been extremely 
effective in our previous SERDP research, CU-1166, where the bioaccessibility of As(V), Cr(III), and 
Cr(VI) were significantly correlated with key soil properties (Yang et al., 2002, 2003; Stewart et al., 2003 
a,b; Jardine et al., 2007).  A multiple linear regression strategy revealed that more than 80 percent of the 
variability in soil-As(V) bioaccessibility could be described by the soil pH and Fe-oxide content, and that 
more than 70 percent of the variability in soil-Cr(III/VI) bioaccessibility could be described by the soil 
clay and TOC or TIC content. The validity of the models was supported with metal speciation results 
obtained with XAS at SSRL and the Advanced Photon Source (APS) which showed that As(V) was 
preferentially sorbed to soil Fe-oxides and Cr(III/VI) redox dynamics and sequestration were controlled 
by organic and inorganic carbon.  Due to greater anticipated complexity of relationships investigated in 
this study, we utilized a more flexible and powerful neural network modeling technique to develop 
predictive models. Neural networks look for patterns in data sets, learn these patterns, and develop the 
ability to make forecasts and predictions in a manner that mimics the brain's problem solving process 
(Caudill and Butler, 1990; Specht, 1991; Chen, 1996). Neural networks initially identify linear 
relationships between input and output variables and then add additional model layers (“hidden neurons”) 
to describe nonlinear relationships. The network "learns" by adjusting interconnection weights between 
layers until no further improvement in the model can be made.   By coupling the bioaccessibility and 
amended soil property models, bioaccessibility may be estimated as a function of amendment and 
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baseline soil properties for individual metals. Based on the working hypothesis that multiple contaminants 
do not interact and that multiple amendment effects are linearly separable, the models may be further used 
to estimate bioaccessibility for multiple metal systems in response to combinations of amendments. The 
assumption will be tested by comparing model prediction to data from samples with multiple metal 
contaminants and multiple amendments. 
 
RESULTS AND DISCUSSION 
 
The following section has been divided into four discussion topics, namely (1) decreasing soil Pb 
bioaccessibility, (2) decreasing soil Cr(VI) bioaccessibility, (3) decreasing soil As(V) bioaccessibility, 
and (4) decreasing soil Cd bioaccessibility.  Detailed discussions of each topical area are available 
through peer-reviewed publications and published abstracts listed in the Publication section of this text.  
 

Decreasing Soil Lead Bioaccessibility 
 

Soil Pb Stabilization and Decreased Bioaccessibility through Phosphate Treatments 
 
In–situ stabilization of soil Pb using phosphorus (P) amendments, such as phosphate fertilizers and 
phosphate rock, have been suggested as a cost–effective and less disruptive alternative for remediating Pb 
in soils relative to several other commonly used methods.  In the current research we examined the effect 
of time (0-365 days), in vitro extraction pH (1.5 versus 2.3), and dosage of three different phosphate-
based amendments on the reduction in the bioaccessibility (as a surrogate for oral bioavailability) of Pb in 

ten soils from U. S. 
Department of Defense 
(DoD) facilities.  Initial 
unamended soil Pb 

bioaccessibility 
consistently exceeded the 
U. S. Environmental 
Protection Agency 
default value of 60% 
relative bioavailability at 
a pH of 1.5 but not at a 
pH of 2.3 (Fig. 1).  This 
suggested that Pb 
bioavailability under 
conditions of a fasting 
human stomach 
environment (pH=1.5) 
were of possible concern 
to induce health effects 
(Yang et al., 2003).  The 
results also suggested 
that these potential health 
effects diminish when 
food is present within the 

stomach which causes stomach pH environment to increase (e.g. >2.3). Although phosphate-based 
amendments statistically (statistical p<0.05) reduced bioaccessibility in many instances, with reduction 
dependent on the amendment type and dosage, large amendment dosages (c. 20-25% by mass to yield 5% 
P by mass) were required to reduce average bioaccessibility by c. 25%.  For most amendment 
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combinations, soil Pb bioaccessibility continued to decrease for periods up to one year, indicating that the 
observed reductions were not merely experimental artifacts of the in vitro extraction procedure.  Although 
our results indicated that reductions in Pb bioaccessibility with P amendments are technically feasible, 
relatively large (up to 26.2% by weight) amendment masses were required to achieve relatively modest 
(c. 25%) reductions in bioaccessibility. The need for high P dosage levels for moderate reductions in Pb 
bioaccessiblity most likely reflects the source of Pb in these soils which is predominately metallic Pb as 
bullet fragments (Fig. 2).  The oxidation rinds surrounding this metallic Pb source may have occluded 
regimes that are inaccessible to P relative to the more aggressive action of high concentrations of 
hydronium ions within the PBET.  These findings suggest that the cost and environmental implications of 
adding such large amounts of P to soil may reflect practical limitations of remediating Pb contaminated 
DoD soils with P-based in situ stabilization. 

 
 

Potentially Adverse Effects of Soil Pb Stabilization and Decreased Bioaccessibility 
 Through Phosphate Treatments 

  
The potential negative effects of adding phosphate containing fertilizers as amendments for Pb 
immobilization in contaminated soils were studied using column and batch experiments.  Soils 
contaminated with high levels of lead (Pb), arsenic (As), and antimony (Sb) were amended with triple 
superphosphate (TSP).  Sb is used as a hardening agent in Pb bullets and this is a significant problem in 
Europe and the U.S. since Sb is highly toxic and mobile in soils and may become a significant 
groundwater pollutant.  Strong linear correlations were observed between Sb and Pb in both bullets 
collected from a small-arm firing range as well as several soils samples collected from three different 
metal-contaminated sites (Fig. 3).  No linear correlations were observed between As and Pb at these sites, 
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however, indicating the presence of As to be either naturally occurring or indigenous.   Results from 
miscible displacement studies suggested that elevated concentrations of Sb and As were present in 

column effluent for P amended soils vs. 
unamended soils (Fig. 4).  Adding 
phosphate amendments to Pb 
contaminated soils can both decrease the 
mobility and the bioavailability of Pb, 
limiting its negative health impacts on 
humans.  However, phosphate use as an 
amendment may have a significant impact 
on both the mobility and bioavailability of 
Sb and As.  Thus, phosphate additions to 
lead contaminated soils that also contain 
elevated concentrations of Sb and As, can 
greatly increase the mobility of Sb and As.  
Because As and phosphate are known to 
compete for reaction sites, along with the 
fact that Sb is also similar to As in 
chemical behavior, an abundance of 
phosphate may lead to the increased 
mobility of As and Sb in a contaminated 
soil.  With regard to Pb mobility, column 
studies employed in this research 

indicated that Pb migration was not accelerated when amended with 5% P via TSP addition to 
contaminated soils.   
 
Batch experiments revealed bioavailability 
changes in both Sb and As, though these 
changes were not necessarily negative.  In a 
contaminated soil with a higher sand 
fraction, Sb bioaccessibility increased with 
phosphate addition, while As 
bioaccessibility decreased.  A contaminated 
firing range soil with a slightly higher clay 
fraction, showed a slight increase in As 
bioaccessibility and a decrease in Sb 
bioaccessibility.  These results indicate 
varying bioavailability behavior between As 
and Sb at varying sites.  Bioavailability 
studies involving various phosphate 
amendments and multiple contaminated 
soils should be conducted in order to fully 
make any assessments in regard to As and 
Sb bioavailability. With regards to Pb 
bioavailability, Pb bioaccessibility values 
were greatly decreased in both contaminated 
soils at the highest TSP additions.   
 
 
 
 

Figure 3: Correlations between Sb and Pb at three different sites 
and As and Pb at one site.  Strong correlations were observed 
between Sb and Pb at all three sites (r2 > 0.9), while a weak 
correlation was observed between As and Pb at site 3 (r2 = 0.1037).
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Decreasing Soil Chromium (VI) Bioaccessibility 
 

Soil Cr Stabilization and Decreased Bioaccessibility through Organic Matter Treatments 
 
In–situ stabilization of Cr(VI) in soil has been viewed as a particularly difficult challenge since Cr(VI) 
exist as an anion and soils are typically dominated by negatively charged minerals.  Thus the retention of 
Cr(VI) by soils is typically poor and it remains a mobile, carcinogenic contaminant in many 
environmental systems.  In the present research we investigated the propensity of soil organic matter 
amendments to enhance the stabilization of soil Cr(VI) which may in turn decrease the bioavailability of 
the contaminant.  We examined the effect of time (0-365 days) and dosage rate of natural peat 
amendments on the reduction of Cr(VI) bioaccessibility (as a surrogate for oral bioavailability) in 
numerous DoD Cr(VI) contaminated soils and in a large number of soils with drastically differing 
properties that were spiked with Cr(VI).  Initial unamended soil Cr(VI) bioaccessibility as determined by 
PBET pH=1.5 consistently exceeded the U. S. Environmental Protection Agency default value of 100 % 
relative bioavailability.  Multiple regression analysis suggested that more than 60% of the variability in 
Cr(VI) bioaccessibility could be described by soil organic C and pH (Fig. 5a).  Results suggested that 
when indigenous soil organic C fell below ~0.5% w/w the bioaccessiblity of Cr(VI) increased 
dramatically from a low 10-20 % to nearly 65 % (Fig. 5b).   

  
The addition of a natural peat source to various Cr(VI) contaminated DoD soils and Cr(VI) spiked soils 
with drastically different soil properties resulted in a large decrease in Cr(VI) bioaccessiblity in most 
cases (Fig. 6) .  Typically as the addition of soil peat increased from 1 to 5 % peat w/w, a corresponding 
decrease in Cr(VI) bioaccessibility was noted.  The reaction kinetics of the decreased bioaccessibility was 
rapid such that Cr stabilization via reaction with peat was nearly complete within 60 d. 
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decreases significantly when soil organic carbon increases above
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High-resolution interfacial 
surface spectroscopy techniques 
were used to assess the 
mechanism of enhanced Cr 
stabilization and decreased 
bioaccessiblity.  X-ray 
Absorption Near Edge Structure 
(XANES) suggested that Cr(VI) 
was reduced to Cr(III) in the 
presence of organic matter or 
peat (Fig. 7).  Extended X-ray 
Absorption Fine Structure 
(EXAFS) revealed that the 
reduction product Cr(III) was 
precipitated as sparingly soluble 
Cr(III)-hydroxide (Fig. 7).   The 
trivalent cation Cr(III) is highly 
reactive in soil systems and 
tends to precipitate from solution 
above pH 5.0 (Stewart et al., 
2003 b).  The precipitation 
products are often surface 
reactive and highly resistant to 
reoxidation.  Backscattering 
electron imaging confirmed that 
the Cr(III)-hydroxide formed in 
these systems was associated 
with soil Fe-oxides thus 
suggesting reoxidation of surface 
bound Cr(III) to Cr(VI) was 
highly unlikely (Fig. 8).  
Therefore, the transformation of 

Cr(VI) to Cr(III) coupled with the surface reactivity of the latter results in a very significant decrease in 
Cr(VI) bioaccessibility and risk with regard to human health. 
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Figure 7: X-ray Absorption Spectroscopy confirms that peat amendments enhance the reduction of 
Cr(VI) to sparingly soluble Cr(III)-hydroxides.  Reoxidation to Cr(VI) is extremely unlikely and would 
require the addition of powerful oxidants such as Mn-oxides.  Even then, surface stabilized Cr(III) 
may not reoxidize.
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Figure 6: Peat amendments are very effective at decreasing the 
bioaccessibility of Cr(VI) in DoD contaminated soils and metal spiked soils.  

 Decrease in Cr(VI) Bioaccessibility with Peat Amendment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Si
bl

ey
 A

Si
bl

ey
 B

W
ak

el
an

d 
A1

W
ak

el
an

d 
A2

Doa
ku

m B
Le

nb
er

g 
A

Le
nb

er
g 

B
Nor

fo
lk 

B
Cec

il A
Cec

il B
M

el
to

n 
A

M
el

to
n 

B
To

wali
ga

 A
To

wali
ga

 B
W

alk
er

 A
W

alk
er

 BR
el

at
iv

e 
D

ec
re

as
e 

in
 C

r(V
I) 

B
io

ac
ce

ss
ib

ili
ty

0% Amendment
1% Peat
2.5% Peat
5% PeatCr(VI) spiked soils

DoD Cr(VI) contaminated soils

Deseret CD #5

Dugway PG #2
Radford AAP

Savanna Depot
Hill AFB #1

%
 C

r(
V

I) 
B

io
ac

ce
ss

ib
ili

ty

0

5

10

15

20

25

30
O% Peat 
1.0% Peat 
2.5% Peat 
5.0% Peat 

0%

Figure 6: Peat amendments are very effective at decreasing the 
bioaccessibility of Cr(VI) in DoD contaminated soils and metal spiked soils.  

 Decrease in Cr(VI) Bioaccessibility with Peat Amendment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Si
bl

ey
 A

Si
bl

ey
 B

W
ak

el
an

d 
A1

W
ak

el
an

d 
A2

Doa
ku

m B
Le

nb
er

g 
A

Le
nb

er
g 

B
Nor

fo
lk 

B
Cec

il A
Cec

il B
M

el
to

n 
A

M
el

to
n 

B
To

wali
ga

 A
To

wali
ga

 B
W

alk
er

 A
W

alk
er

 BR
el

at
iv

e 
D

ec
re

as
e 

in
 C

r(V
I) 

B
io

ac
ce

ss
ib

ili
ty

0% Amendment
1% Peat
2.5% Peat
5% PeatCr(VI) spiked soils

DoD Cr(VI) contaminated soils



 12

 

 
This project also initiated new 
modeling endeavors that 
developed Neural Network 
Models (NNM) to estimate 
bioavailable metal 
concentrations for baseline 
conditions from site 
characterization data as well as 
to estimate bioavailable metal 
concentration reductions 
following addition of soil 
amendments.  Due to funding 
constraints we did not complete 
tasks designed to incorporate 
the NNMs into spreadsheet 
tools for estimating baseline 
health risk and risk following 
soil amendment additions.  We 
also did not implement 
uncertainty and cost analyses 
into the models to facilitate 
decision making on remedial 
options and data collection 

Travis #5

Figure 8: Backscattered electron 
image of soils from Travis Air Force 
Base illustrating local areas of metal 
deposition (denoted by bright fields).  

Zones of Cr are found to be 
associated with iron coated 
aluminosilicates based on energy 
dispersive spectroscopic analysis.

Thus reoxidation of Cr(III) is highly 
unlikely since it is stabilized by Fe-
oxides.

10 µm
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image of soils from Travis Air Force 
Base illustrating local areas of metal 
deposition (denoted by bright fields).  

Zones of Cr are found to be 
associated with iron coated 
aluminosilicates based on energy 
dispersive spectroscopic analysis.

Thus reoxidation of Cr(III) is highly 
unlikely since it is stabilized by Fe-
oxides.
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Figure 9: Neural Net Model was a better predictor and more robust 
than previous multiple regression model as it predicts / estimates 
over many orders of magnitude.  This method will significantly 
enhance bioaccessibility spreadsheet tool (SBAT) developed in 
previous CU-1166.
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requirements.  The research did however show that that the developed NNMs were better predictors of 
metal bioaccessibility as a function of soil properties versus traditional multiple regression models 
developed in CU-1166 (Figure 9).  The new NNMs were more robust and could predict bioaccessibility 
changes over many orders of magnitude. 
 

Decreasing Soil Arsenic (V) Bioaccessibility 
 

Soil As Stabilization and Decreased Bioaccessibility through Soluble Fe Treatments 
 
We investigated the use of various iron amendments (metallic Fe and soluble Fe(II)- and Fe(III)-halide 
salts) to reduce arsenic (As) bioaccessibility (as a surrogate for oral bioavailability) in contaminated soils. 
Previous research of CU-1166 showed that As(III) and As(V) bioaccessibility in soils was controlled 
primarily by the soil Fe-oxide content and pH (Fig. 10 a).  Bioaccessibility of As decreased significantly 
as the soil Fe-oxide content increased above 0.5 to 1.0% on a mass basis (Fig. 10 b).   

 
In the current study, soluble Fe(II)- and Fe(III)-salts were found to be more effective than metallic Fe in 
reducing As bioaccessibility.  Adding soluble Fe(III)-salts to contaminated soil caused a decrease in soil 
As bioaccessibility by increasing the Fe(III) (hydr)oxide content via precipitation reactions.  The freshly 
precipitated amorphous Fe-oxides provide significant surface area and charge to strongly bind As(III) and 
As(V), thus creating an As form that is far less bioavailable in soil.  A detailed investigation into the 
effect of soil moisture when adding Fe(III) amendments indicated that the reaction can occur in situ if 
sufficient (≥30% moisture) is available.  If the amendments are added to the soil without sufficient 
moisture, a reduction in As bioaccessibility occurs in the extraction fluid itself (i.e., an experimental 
artifact not reflecting a true in situ reduction in bioaccessibility).  Adding Fe(III)-salts to nine As-
contaminated DoD soils at a Fe:As molar ratio of 100:1 reduced the average bioaccessibility in the soils 
by a factor of approximately two (Fig. 11).  Greater reductions in As bioaccessibility could be achieved 
by increasing the Fe:As molar ratio. Electron microprobe analysis indicated that As in contaminated DoD 
soils was largely associated with Fe-oxides (Fig. 12).  These results were consistent with X-ray 
Absorption Spectroscopy analyses of DoD soils showing that As(V) was strongly bound to soil Fe-oxides 
via inner-sphere complexes. It is this strong complex that contributes to the decrease in As 
bioaccessibility.  The equation developed by Yang et al. (2002), which considers Fe-oxides and pH 
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influences on As bioaccessibility, was found to be a good indicator of the potential effects of Fe 
amendments on As bioaccessibility in soil, particularly if the soil’s pH buffering capacity was not 
exceeded due to the Fe addition (Fig. 13). The addition of alkalinity (e.g., lime) may help stabilize the pH 
in those soils that lack sufficient natural buffering capacity.  Although site-specific, pilot-scale in vitro 
and in vivo bioaccessibility and bioavailability measurements will need to be conducted before adopting 
this remediation method at As-contaminated sites, these results suggest that such pilot-scale testing may 
be worthwhile, particularly at sites with large volumes of soil exhibiting high As bioaccessibility, high 
pH, and low native Fe concentrations. These results suggest decreasing As bioaccessibility and 
bioavailability in soil by adding Fe amendments may be an effective strategy to remediate As-
contaminated soils. 
 
 
 

Figure 11:  Adding 100 moles FeCl3(s) per mole of As to nine contaminated DoD
soils reduced the As bioaccessibility by approximately a factor of two on average 
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Decreasing Soil Cadmium Bioaccessibility 
 

Soil Cd Stabilization and Decreased Bioaccessibility through Ca-polysulfide Treatment 
 
 The magnitude of Cd bioaccessibility in soil is often large since this divalent cation is often weakly 
bound to the soil via electrostatic surface charge interactions.  Smelter soils with elevated concentrations 

of sulfides, or subsurface material high in 
P, have the propensity for decreased soil 
Cd bioaccessibility owing to the potential 
formation of strong Cd-ligand bonds with 
S2- and HPO4

2-.  In this research we 
investigated the impact of phosphorus (P) 
amendments, such as phosphate 
fertilizers and phosphate rock, and 
various sulfide sources on enhanced soil 
Cd stabilization and decreased 
bioaccessibility.  We examined the effect 
of time (0-365 days), in vitro extraction 
pH (1.5 versus 2.3), and dosage of 
different phosphate- and sulfide-based 
amendments on the reduction in the Cd 
bioaccessibility.  Initial unamended soil 
Cd bioaccessibility in spiked soils and 
naturally contaminated DoD soils as 
determined by PBET pH=1.5 and 2.3 
consistently exceeded the U. S. 
Environmental Protection Agency default 
value of 100 % relative bioavailability.  
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Figure 14: XAS 
elemental maps of Cd
and Fe in three Cd spiked 
soils;  lighter colors 
represent higher 
concentrations of specific 
elements.  Cadmium 
correlations with Fe-
oxides were inconsistent 
suggesting cadmium is 
weakly associated with 
Fe-bearing minerals.
Cd bioaccessibility was 
greater in high Fe soils 
relative to than in low Fe 
soils.  The extent of Cd
adsorption was generally 
greater in subsurface 
horizons having higher 
CEC values, leading to a 
general decrease in Cd
bioavailability
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Elemental mapping via XAS confirmed that Cd was typically bound to the soil via weak surface bonds 
associated with phyllosilicates and, to a lesser extent, Fe-oxides (Fig. 14). The addition of rock phosphate, 
hydroxyapatite, or triple super phosphate had no effect on Cd bioaccessibility in DoD contaminated soils 
(Fig. 15).  These results suggested that the solid phase Cd in these DoD soils was strongly bound or 

occluded and potentially 
unavailable to soluble P.  We 
also investigated the 
functional group 
characteristics of 
commercially available peat 
(i.e. organic matter) to 
identify reduced organic S 
sites that may strongly bind 
Cd via CdS complexes.  It 
was found that only about 
10% of the organic matter 
exchange sites could strongly 
bind Cd, a quantity deemed 
too low to be considered 
significant enough to limit Cd 
bioavailability in soil (Fig. 
16).   Additional research is 
needed to determine if other 
organic matter sources can 
provide larger quantities of 

strong binding sites, particularly organic sources with significant amounts of sulfide functional groups. 
   

365d Bioaccessibility with pH 2.3
Corrected for amendment mass

0

20

40

60

80

100

Aberdeen SS19 Aberdeen B116 Hill AFB # 4 Hill AFB # 5

no amendment

1% TSP

2.5% TSP

5%TSP

%
 C

d 
bi

oa
cc

es
si

bi
lit

y

P-source
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Continued research used Ca-polysulfide as an additive to both Cd contaminated soils that were spiked 
with solution phase Cd and DoD soils containing indigenous Cd as a result of military disposal 
operations.  The addition of polysulfide was intended to take advantage of the potential formation of 
sparingly soluble CdS during treatment.  For spiked soils where the initial soil Cd is most likely labile 
(i.e. weakly bound via electrostatic interactions with the soil), polysulfide was quite effective at 
decreasing the bioaccessibility of Cd as estimated by the PBET method at both pH 1.5 and 2.3 (Fig. 17).  
The kinetics of the polysulfide reaction was rapid, as little change in Cd bioaccessibility was noted from 7 
to 30 d of aging.  In contrast, polysulfide additions to Cd-contaminated DoD soils had no effect on soil Cd 
bioaccessibility suggesting the Cd was non-labile and most likely occluded and non-reactive with the S2- 
ligand.  However, the acidic conditions of the PBET were sufficient to dissolve soil components that were 
responsible for the occlusion of Cd thus allowing it to become bioaccessible.  Additional research is 
required to determine amendment strategies and conditions that are amendable for decreasing soil-Cd 
bioaccessibility. 
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